WorldWideScience

Sample records for abnormal brain function

  1. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    Science.gov (United States)

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. © 2015 Wiley Periodicals, Inc.

  2. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Qiu eXiangzhe

    2016-05-01

    Full Text Available Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM. However, the DM-related changes in the topological properties in functional brain networks are almost unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs, followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized shortest path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing the functional evidence for the abnormalities of brain networks in DM.

  3. Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach

    Science.gov (United States)

    Tschernegg, Melanie; Crone, Julia S.; Eigenberger, Tina; Schwartenbeck, Philipp; Fauth-Bühler, Mira; Lemènager, Tagrid; Mann, Karl; Thon, Natasha; Wurst, Friedrich M.; Kronbichler, Martin

    2013-01-01

    Functional neuroimaging studies of pathological gambling (PG) demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in PG. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional magnetic resonance imaging data in PG. We compared 19 patients with PG to 19 healthy controls (HCs) using the Graph Analysis Toolbox (GAT). None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (supplementary motor area, SMA), reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients. These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that PG is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in PG cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders. PMID:24098282

  4. Abnormal small-world brain functional networks in obsessive-compulsive disorder patients with poor insight.

    Science.gov (United States)

    Lei, Hui; Cui, Yan; Fan, Jie; Zhang, Xiaocui; Zhong, Mingtian; Yi, Jinyao; Cai, Lin; Yao, Dezhong; Zhu, Xiongzhao

    2017-09-01

    There are limited data on neurobiological correlates of poor insight in obsessive-compulsive disorder (OCD). This study explored whether specific changes occur in small-world network (SWN) properties in the brain functional network of OCD patients with poor insight. Resting-state electroencephalograms (EEGs) were recorded for 12 medication-free OCD patients with poor insight, 50 medication-free OCD patients with good insight, and 36 healthy controls. Both of the OCD groups exhibited topological alterations in the brain functional network characterized by abnormal small-world parameters at the beta band. However, the alterations at the theta band only existed in the OCD patients with poor insight. A relatively small sample size. Subjects were naïve to medications and those with Axis I comorbidity were excluded, perhaps limiting generalizability. Disrupted functional integrity at the beta bands of the brain functional network may be related to OCD, while disrupted functional integrity at the theta band may be associated with poor insight in OCD patients, thus this study might provide novel insight into our understanding of the pathophysiology of OCD. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    Science.gov (United States)

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  6. Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction.

    Science.gov (United States)

    Ding, Zhongxiang; Zhang, Han; Lv, Xiao-Fei; Xie, Fei; Liu, Lizhi; Qiu, Shijun; Li, Li; Shen, Dinggang

    2018-01-01

    Radiation therapy, a major method of treatment for brain cancer, may cause severe brain injuries after many years. We used a rare and unique cohort of nasopharyngeal carcinoma patients with normal-appearing brains to study possible early irradiation injury in its presymptomatic phase before severe, irreversible necrosis happens. The aim is to detect any structural or functional imaging biomarker that is sensitive to early irradiation injury, and to understand the recovery and progression of irradiation injury that can shed light on outcome prediction for early clinical intervention. We found an acute increase in local brain activity that is followed by extensive reductions in such activity in the temporal lobe and significant loss of functional connectivity in a distributed, large-scale, high-level cognitive function-related brain network. Intriguingly, these radiosensitive functional alterations were found to be fully or partially recoverable. In contrast, progressive late disruptions to the integrity of the related far-end white matter structure began to be significant after one year. Importantly, early increased local brain functional activity was predictive of severe later temporal lobe necrosis. Based on these findings, we proposed a dynamic, multifactorial model for radiation injury and another preventive model for timely clinical intervention. Hum Brain Mapp 39:407-427, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Abnormal Spontaneous Brain Activity in Patients With Anisometropic Amblyopia Using Resting-State Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Tang, Angcang; Chen, Taolin; Zhang, Junran; Gong, Qiyong; Liu, Longqian

    2017-09-01

    To explore the abnormality of spontaneous activity in patients with anisometropic amblyopia under resting-state functional magnetic resonance imaging (Rs-fMRI). Twenty-four participants were split into two groups. The anisometropic amblyopia group had 10 patients, all of whom had anisometropic amblyopia of the right eye, and the control group had 14 healthy subjects. All participants underwent Rs-fMRI scanning. Measurement of amplitude of low frequency fluctuations of the brain, which is a measure of the amplitudes of spontaneous brain activity, was used to investigate brain changes between the anisometropic amblyopia and control groups. Compared with an age- and gender-matched control group, the anisometropic amblyopia group showed increased amplitude of low frequency fluctuations of spontaneous brain activity in the left superior temporal gyrus, the left inferior parietal lobe, the left pons, and the right inferior semi-lunar lobe. The anisometropic amblyopia group also showed decreased amplitude of low frequency fluctuations in the bilateral medial frontal gyrus. This study demonstrated abnormal spontaneous brain activities in patients with anisometropic amblyopia under Rs-fMRI, and these abnormalities might contribute to the neuropathological mechanisms of anisometropic amblyopia. [J Pediatr Ophthalmol Strabismus. 2017;54(5):303-310.]. Copyright 2017, SLACK Incorporated.

  8. Co-Localisation of Abnormal Brain Structure and Function in Specific Language Impairment

    Science.gov (United States)

    Badcock, Nicholas A.; Bishop, Dorothy V. M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior…

  9. Schizophrenia and abnormal brain network hubs.

    Science.gov (United States)

    Rubinov, Mikail; Bullmore, Ed

    2013-09-01

    Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia.

  10. Resting-State EEG Oscillatory Dynamics in Fragile X Syndrome: Abnormal Functional Connectivity and Brain Network Organization

    NARCIS (Netherlands)

    van der Molen, M.J.W.; Stam, C.J.; van der Molen, M.W.

    2014-01-01

    Disruptions in functional connectivity and dysfunctional brain networks are considered to be a neurological hallmark of neurodevelopmental disorders. Despite the vast literature on functional brain connectivity in typical brain development, surprisingly few attempts have been made to characterize

  11. Abnormal functional lateralization and activity of language brain areas in typical specific language impairment (developmental dysphasia)

    Science.gov (United States)

    De Guibert, Clément; Maumet, Camille; Jannin, Pierre; Ferré, Jean-Christophe; Tréguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-01-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting structural language (n=21), to a matched group of typically-developing children using a panel of four language tasks neither requiring reading nor metalinguistic skills, including two auditory lexico-semantic tasks (category fluency and responsive naming) and two visual phonological tasks based on picture naming. Data processing involved normalizing the data with respect to a matched pairs pediatric template, groups and between-groups analysis, and laterality indexes assessment within regions of interest using single and combined task analysis. Children with specific language impairment exhibited a significant lack of left lateralization in all core language regions (inferior frontal gyrus-opercularis, inferior frontal gyrus-triangularis, supramarginal gyrus, superior temporal gyrus), across single or combined task analysis, but no difference of lateralization for the rest of the brain. Between-group comparisons revealed a left hypoactivation of Wernicke’s area at the posterior superior temporal/supramarginal junction during the responsive naming task, and a right hyperactivation encompassing the anterior insula with adjacent inferior frontal gyrus and the head of the caudate nucleus during the first phonological task. This study thus provides evidence that this specific subtype of specific language impairment is associated with atypical lateralization and functioning of core language areas. PMID:21719430

  12. Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study.

    Science.gov (United States)

    Tian, Lin; Meng, Chun; Jiang, Ying; Tang, Qunfeng; Wang, Shuai; Xie, Xiyao; Fu, Xiangshuai; Jin, Chunhui; Zhang, Fuquan; Wang, Jidong

    2016-04-03

    Abnormal brain networks have been observed in patients with obsessive-compulsive disorder (OCD). However, detailed network hub and connectivity changes remained unclear in treatment-naive patients with OCD. Here, we sought to determine whether patients show hub-related connectivity changes in their whole-brain functional networks. We used resting-state functional magnetic resonance imaging data and voxel-based graph-theoretic analysis to investigate functional connectivity strength and hubs of whole-brain networks in 29 treatment-naive patients with OCD and 29 age- and gender-matched healthy controls. Correlation analysis was applied for potential associations with OCD symptom severity. OCD selectively targeted brain regions of higher functional connectivity strength than the average including brain network hubs, mainly distributed in the cortico-striato-thalamo-cortical (CSTC) circuits and additionally parietal, occipital, temporal and cerebellar regions. Moreover, affected functional connectivity strength in the cerebellum, the medial orbitofrontal cortex and superior occipital cortex was significantly associated with global OCD symptom severity. Our results provide the evidence about OCD-related brain network hub changes, not only in the CSTC circuits but more distributed in whole brain networks. Data suggest that whole brain network hub analysis is useful for understanding the pathophysiology of OCD. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Immune function and brain abnormalities in patients with systemic lupus erythematosus without overt neuropsychiatric manifestations.

    Science.gov (United States)

    Kozora, E; Filley, C M; Zhang, L; Brown, M S; Miller, D E; Arciniegas, D B; Pelzman, J L; West, S G

    2012-04-01

    This study examined the relationship between immune, cognitive and neuroimaging assessments in subjects with systemic lupus erythematosus (SLE) without histories of overt neuropsychiatric (NP) disorders. In total, 84 subjects with nonNPSLE and 37 healthy controls completed neuropsychological testing from the American College of Rheumatology SLE battery. Serum autoantibody and cytokine measures, volumetric magnetic resonance imaging, and magnetic resonance spectroscopy data were collected on a subset of subjects. NonNPSLE subjects had lower scores on measures of visual/complex attention, visuomotor speed and verbal memory compared with controls. No clinically significant differences between nonNPSLE patients and controls were found on serum measures of lupus anticoagulant, anticardiolipin antibodies, beta 2-glycoproteins, or pro-inflammatory cytokines (interleukin (IL)-1, IL-6, interferon alpha (IFN-alpha), and interferon gamma (IFN-gamma)). Higher scores on a global cognitive impairment index and a memory impairment index were correlated with lower IFN-alpha. Few associations between immune functions and neuroimaging parameters were found. Results indicated that nonNPSLE patients demonstrated cognitive impairment but not immune differences compared with controls. In these subjects, who were relatively young and with mild disease, no relationship between cognitive dysfunction, immune parameters, or previously documented neuroimaging abnormalities were noted. Immune measures acquired from cerebrospinal fluid instead of serum may yield stronger associations.

  14. Profiling brain function: spatiotemporal characterization of normal and abnormal visual activation.

    Science.gov (United States)

    Versteeg, Vanessa L; Marchand, Yannick; Mazerolle, Erin L; D'Arcy, Ryan C N

    2010-06-30

    In clinical neuroscience, the utility of evoked and event-related potentials (EPs and ERPs) resides in the temporal information they provide. However, it is largely unknown whether valuable diagnostic information resides within the corresponding spatial patterns. To determine this, the first step involves testing whether "normal" versus "abnormal" EPs/ERPs can be differentiated based on spatial patterns. In the current study, we present a method that characterizes similarities across individual source maps, called the profile algorithm. The profile algorithm was evaluated in terms of its ability to detect spatial activation differences in myopic individuals with corrected and uncorrected vision. This experiment represents a critical test of the method before applying it to the assessment of perceptual/cognitive functions. Visual-evoked potentials (VEPs) were recorded from healthy subjects using checkerboard stimulation. The N75 and P100 were examined in individuals with corrected (20/20) and uncorrected vision (20/40 or worse). N75 and P100 amplitudes and latencies were modulated by vision condition. The profile algorithm differentiated successfully between corrected and uncorrected vision. Its discriminatory power outperformed a more traditional method based on ERP peak amplitude. Subsequent correlations revealed significant relationships between visual impairment and both the components and the spatial activation. Overall, the findings suggested that VEP spatial patterns were sensitive to manipulations of visual acuity. The findings demonstrate that EP/ERP spatial activation can be evaluated at the individual level and compared against normative data. Ultimately, the method may provide a valuable tool for assessing individual spatial activation changes in perceptual/cognitive functions. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  15. Absence of PTHrP nuclear localization and carboxyl terminus sequences leads to abnormal brain development and function.

    Directory of Open Access Journals (Sweden)

    Zhen Gu

    Full Text Available We assessed whether the nuclear localization sequences (NLS and C terminus of parathyroid hormone-related protein (PTHrP play critical roles in brain development and function. We used histology, immunohistochemistry, histomorphometry, Western blots and electrophysiological recordings to compare the proliferation and differentiation of neural stem cells, neuronal hippocampal synaptic transmission, and brain phenotypes including shape and structures, in Pthrp knock-in mice, which express PTHrP (1-84, a truncated form of the protein that is missing the NLS and the C-terminal region of the protein, and their wild-type littermates. Results showed that Pthrp knock-in mice display abnormal brain shape and structures; decreased neural cell proliferative capacity and increased apoptosis associated with up-regulation of cyclin dependent kinase inhibitors p16, p21, p27 and p53 and down-regulation of the Bmi-1 oncogene; delayed neural cell differentiation; and impaired hippocampal synaptic transmission and plasticity. These findings provide in vivo experimental evidence that the NLS and C-terminus of PTHrP are essential not only for the regulation of neural cell proliferation and differentiation, but also for the maintenance of normal neuronal synaptic transmission and plasticity.

  16. Resting-state functional MRI of abnormal baseline brain activity in young depressed patients with and without suicidal behavior.

    Science.gov (United States)

    Cao, Jun; Chen, Xiaorong; Chen, Jianmei; Ai, Ming; Gan, Yao; Wang, Wo; Lv, Zhen; Zhang, Shuang; Zhang, Shudong; Wang, Suya; Kuang, Li; Fang, Weidong

    2016-11-15

    Suicide among youth is a major public health challenge, attracting increasing attention. However, the neurobiological mechanisms and the pathophysiology underlying suicidal behavior in depressed youths are still unclear. The fMRI enables a better understanding of functional changes in the brains of young suicide attempters with depressive disorder through detecting spontaneous neural activity. The purpose of this study was to identify the relationship between abnormalities involving local brain function and suicidal attempts in depressed youths using resting-state fMRI (RS-fMRI). Thirty-five depressed youths aged between 15 and 29 years with a history of suicidal attempts (SU group), 18 patients without suicidal attempts (NSU group) and 47 gender-, age- and education-matched healthy controls (HC) underwent psychological assessment and R-fMRI. The differences in fractional amplitude of low-frequency fluctuation (ALFF) among the three groups were compared. The clinical factors correlated with z-score ALFF in the regions displaying significant group differences were investigated. The ROC method was used to evaluate these clusters as markers to screen patients with suicidal behavior. Compared with the NSU and HC groups, the SU group showed increased zALFF in the right superior temporal gyrus (r-STG), left middle temporal gyrus (L-MTG) and left middle occipital gyrus (L-MOG). Additionally, significantly decreased zALFF values in the L-SFG and L-MFG were found in the SU group compared with the NSU group, which were negatively correlated with BIS scores in the SU group. Further ROC analysis revealed that the mean zALFF values in these two regions (sensitivity=83.3% and specificity=71.4%) served as markers to differentiate the two patient subtypes. The SU group had abnormal spontaneous neural activity during the resting state, and decreased activity in L-SFG and L-MFG was associated with increased impulsivity in SU group. Our results suggested that abnormal neural activity

  17. Abnormal Functional Lateralization and Activity of Language Brain Areas in Typical Specific Language Impairment (Developmental Dysphasia)

    Science.gov (United States)

    de Guibert, Clement; Maumet, Camille; Jannin, Pierre; Ferre, Jean-Christophe; Treguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-01-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting…

  18. Resting-state EEG oscillatory dynamics in fragile X syndrome: abnormal functional connectivity and brain network organization.

    Directory of Open Access Journals (Sweden)

    Melle J W van der Molen

    Full Text Available Disruptions in functional connectivity and dysfunctional brain networks are considered to be a neurological hallmark of neurodevelopmental disorders. Despite the vast literature on functional brain connectivity in typical brain development, surprisingly few attempts have been made to characterize brain network integrity in neurodevelopmental disorders. Here we used resting-state EEG to characterize functional brain connectivity and brain network organization in eight males with fragile X syndrome (FXS and 12 healthy male controls. Functional connectivity was calculated based on the phase lag index (PLI, a non-linear synchronization index that is less sensitive to the effects of volume conduction. Brain network organization was assessed with graph theoretical analysis. A decrease in global functional connectivity was observed in FXS males for upper alpha and beta frequency bands. For theta oscillations, we found increased connectivity in long-range (fronto-posterior and short-range (frontal-frontal and posterior-posterior clusters. Graph theoretical analysis yielded evidence of increased path length in the theta band, suggesting that information transfer between brain regions is particularly impaired for theta oscillations in FXS. These findings are discussed in terms of aberrant maturation of neuronal oscillatory dynamics, resulting in an imbalance in excitatory and inhibitory neuronal circuit activity.

  19. Cognition and brain abnormalities on MRI in pituitary patients

    International Nuclear Information System (INIS)

    Brummelman, Pauline; Sattler, Margriet G.A.; Meiners, Linda C.; Berg, Gerrit van den; Klauw, Melanie M. van der; Elderson, Martin F.; Dullaart, Robin P.F.; Koerts, Janneke; Werumeus Buning, Jorien; Tucha, Oliver; Wolffenbuttel, Bruce H.R.; Bergh, Alfons C.M. van den; Beek, André P. van

    2015-01-01

    Highlights: • Cognitive impairments are frequently observed in treated NFA patients. • NFA patients with cognitive impairments do not show brain abnormalities on MRI more frequently than patients without cognitive impairments. • The absence of brain abnormalities on brain MRI does not exclude impairments of cognition. - Abstract: Purpose: The extent to which cognitive dysfunction is related to specific brain abnormalities in patients treated for pituitary macroadenoma is unclear. Therefore, we compared brain abnormalities seen on Magnetic Resonance Imaging (MRI) in patients treated for nonfunctioning pituitary macroadenoma (NFA) with or without impairments in cognitive functioning. Methods: In this cross-sectional design, a cohort of 43 NFA patients was studied at the University Medical Center Groningen. White matter lesions (WMLs), cerebral atrophy, (silent) brain infarcts and abnormalities of the temporal lobes and hippocampi were assessed on pre-treatment and post-treatment MRI scans. Post-treatment cognitive examinations were performed using a verbal memory and executive functioning test. We compared our patient cohort with large reference populations representative of the Dutch population. Results: One or more impairments on both cognitive tests were frequently observed in treated NFA patients. No treatment effects were found with regard to the comparison between patients with and without impairments in executive functioning. Interestingly, in patients with one or more impairments on verbal memory function, treatment with radiotherapy had been given more frequently (74% in the impaired group versus 40% in the unimpaired group, P = 0.025). Patients with or without any brain abnormality on MRI did not differ in verbal memory or executive functioning. Conclusions: Brain abnormalities on MRI are not observed more frequently in treated NFA patients with impairments compared to NFA patients without impairments in verbal memory or executive functioning

  20. Cognition and brain abnormalities on MRI in pituitary patients

    Energy Technology Data Exchange (ETDEWEB)

    Brummelman, Pauline [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Sattler, Margriet G.A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen (Netherlands); Department of Radiation Oncology, Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Meiners, Linda C. [Department of Radiology, University of Groningen, University Medical Center Groningen (Netherlands); Berg, Gerrit van den; Klauw, Melanie M. van der [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Elderson, Martin F. [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); LifeLines Cohort Study and Biobank, University of Groningen, University Medical Center Groningen (Netherlands); Dullaart, Robin P.F. [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Koerts, Janneke [Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen (Netherlands); Werumeus Buning, Jorien, E-mail: j.werumeus.buning@umcg.nl [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Tucha, Oliver [Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen (Netherlands); Wolffenbuttel, Bruce H.R. [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); LifeLines Cohort Study and Biobank, University of Groningen, University Medical Center Groningen (Netherlands); Bergh, Alfons C.M. van den [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen (Netherlands); Beek, André P. van, E-mail: a.p.van.beek@umcg.nl [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands)

    2015-02-15

    Highlights: • Cognitive impairments are frequently observed in treated NFA patients. • NFA patients with cognitive impairments do not show brain abnormalities on MRI more frequently than patients without cognitive impairments. • The absence of brain abnormalities on brain MRI does not exclude impairments of cognition. - Abstract: Purpose: The extent to which cognitive dysfunction is related to specific brain abnormalities in patients treated for pituitary macroadenoma is unclear. Therefore, we compared brain abnormalities seen on Magnetic Resonance Imaging (MRI) in patients treated for nonfunctioning pituitary macroadenoma (NFA) with or without impairments in cognitive functioning. Methods: In this cross-sectional design, a cohort of 43 NFA patients was studied at the University Medical Center Groningen. White matter lesions (WMLs), cerebral atrophy, (silent) brain infarcts and abnormalities of the temporal lobes and hippocampi were assessed on pre-treatment and post-treatment MRI scans. Post-treatment cognitive examinations were performed using a verbal memory and executive functioning test. We compared our patient cohort with large reference populations representative of the Dutch population. Results: One or more impairments on both cognitive tests were frequently observed in treated NFA patients. No treatment effects were found with regard to the comparison between patients with and without impairments in executive functioning. Interestingly, in patients with one or more impairments on verbal memory function, treatment with radiotherapy had been given more frequently (74% in the impaired group versus 40% in the unimpaired group, P = 0.025). Patients with or without any brain abnormality on MRI did not differ in verbal memory or executive functioning. Conclusions: Brain abnormalities on MRI are not observed more frequently in treated NFA patients with impairments compared to NFA patients without impairments in verbal memory or executive functioning

  1. Brain Volume Abnormalities in ADHD

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-11-01

    Full Text Available Regional brain volumes have been compared at initial MRI scans and their change over time in 152 medicated and previously unmedicated male and female patients (age range, 5-18 years with attention-deficit/hyperactivity disorder (ADHD and 139 age- and sex-matched healthy controls.

  2. Structural and Functional Brain Abnormalities in Attention-Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder: A Comparative Meta-analysis.

    Science.gov (United States)

    Norman, Luke J; Carlisi, Christina; Lukito, Steve; Hart, Heledd; Mataix-Cols, David; Radua, Joaquim; Rubia, Katya

    2016-08-01

    Patients with attention-deficit/hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD) share impaired inhibitory control. However, it is unknown whether impairments are mediated by shared or disorder-specific neurostructural and neurofunctional abnormalities. To establish shared and disorder-specific structural, functional, and overlapping multimodal abnormalities in these 2 disorders through a voxel-based meta-analytic comparison of whole-brain gray matter volume (GMV) and functional magnetic resonance imaging (fMRI) studies of inhibition in patients with ADHD and OCD. Literature search using PubMed, ScienceDirect, Web of Knowledge, and Scopus up to September 30, 2015. Whole-brain voxel-based morphometry (VBM) or fMRI studies during inhibitory control comparing children and adults with ADHD or OCD with controls. Voxel-wise meta-analyses of GMV or fMRI differences were performed using Seed-based d-Mapping. Regional structure and function abnormalities were assessed within each patient group and then a quantitative comparison was performed of abnormalities (relative to controls) between ADHD and OCD. Meta-analytic disorder-specific and shared abnormalities in GMV, in inhibitory fMRI, and in multimodal functional and structural measures. The search revealed 27 ADHD VBM data sets (including 931 patients with ADHD and 822 controls), 30 OCD VBM data sets (928 patients with OCD and 942 controls), 33 ADHD fMRI data sets (489 patients with ADHD and 591 controls), and 18 OCD fMRI data sets (287 patients with OCD and 284 controls). Patients with ADHD showed disorder-contrasting multimodal structural (left z = 1.904, P disorder-specific reduced function and structure in rostral and dorsal anterior cingulate/medial prefrontal cortex (fMRI z = 2.113, P disorder-specific underactivation predominantly in the right ventrolateral prefrontal cortex (z = 1.229, P disorders relative to controls. Shared impairments in inhibitory control, rather

  3. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection

    Directory of Open Access Journals (Sweden)

    Hwang Jong-Hee

    2008-10-01

    Full Text Available Abstract Background Worldwide, approximately two billion people are chronically infected with Toxoplasma gondii with largely unknown consequences. Methods To better understand long-term effects and pathogenesis of this common, persistent brain infection, mice were infected at a time in human years equivalent to early to mid adulthood and studied 5–12 months later. Appearance, behavior, neurologic function and brain MRIs were studied. Additional analyses of pathogenesis included: correlation of brain weight and neurologic findings; histopathology focusing on brain regions; full genome microarrays; immunohistochemistry characterizing inflammatory cells; determination of presence of tachyzoites and bradyzoites; electron microscopy; and study of markers of inflammation in serum. Histopathology in genetically resistant mice and cytokine and NRAMP knockout mice, effects of inoculation of isolated parasites, and treatment with sulfadiazine or αPD1 ligand were studied. Results Twelve months after infection, a time equivalent to middle to early elderly ages, mice had behavioral and neurological deficits, and brain MRIs showed mild to moderate ventricular dilatation. Lower brain weight correlated with greater magnitude of neurologic abnormalities and inflammation. Full genome microarrays of brains reflected inflammation causing neuronal damage (Gfap, effects on host cell protein processing (ubiquitin ligase, synapse remodeling (Complement 1q, and also increased expression of PD-1L (a ligand that allows persistent LCMV brain infection and CD 36 (a fatty acid translocase and oxidized LDL receptor that mediates innate immune response to beta amyloid which is associated with pro-inflammation in Alzheimer's disease. Immunostaining detected no inflammation around intra-neuronal cysts, practically no free tachyzoites, and only rare bradyzoites. Nonetheless, there were perivascular, leptomeningeal inflammatory cells, particularly contiguous to the aqueduct of

  4. Abnormally altered patterns of whole brain functional connectivity network of posterior cingulate cortex in remitted geriatric depression: a longitudinal study.

    Science.gov (United States)

    Jiang, Wen-Hao; Yuan, Yong-Gui; Zhou, Hong; Bai, Feng; You, Jia-Yong; Zhang, Zhi-Jun

    2014-08-01

    A longitudinal study investigated the remitted geriatric depression (RGD) patients' persistent cognitive impairment and potential correlation with their PCC functional connectivity network. A total of 14 RGD patients and 18 matched controls were recruited. All subjects finished the neuropsychological tests and functional magnetic resonance imaging scan at baseline and follow-up. A spherical region of interest was placed in PCC to calculate the functional connectivity, and further analysis was employed to detect correlations between longitudinal changes in the brain regions and neuropsychological data. There were significant cognitive declines in RGD patients at baseline and follow-up. Altered patterns of functional connectivity were detected within the RGD group showing correlations with neuropsychological tests. The longitudinal change in functional connectivity between PCC and cerebellum posterior lobe was correlated with longitudinal changes in auditory verbal memory test-recall (r=0.550, P=0.042). The longitudinal change in functional connectivity between PCC and right parahippocampal gyrus was correlated with Trail Making Test-A (r=0.631, P=0.015). The longitudinal change in functional connectivity between PCC and supramarginal_R was correlated with Mini-Mental State Examination (r=-0.630, P=0.016). RGD patients performed worse cognitive function, and altered PCC functional connectivity network might have a role in these cognitive declines. © 2014 John Wiley & Sons Ltd.

  5. Brain Abnormalities in Neuromyelitis Optica Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Woojun Kim

    2012-01-01

    Full Text Available Neuromyelitis optica (NMO is an idiopathic inflammatory syndrome of the central nervous system that is characterized by severe attacks of optic neuritis (ON and myelitis. Until recently, NMO was considered a disease without brain involvement. However, since the discovery of NMO-IgG/antiaqaporin-4 antibody, the concept of NMO was broadened to NMO spectrum disorder (NMOSD, and brain lesions are commonly recognized. Furthermore, some patients present with brain symptoms as their first manifestation and develop recurrent brain symptoms without ON or myelitis. Brain lesions with characteristic locations and configurations can be helpful in the diagnosis of NMOSD. Due to the growing recognition of brain abnormalities in NMOSD, these have been included in the NMO and NMOSD diagnostic criteria or guidelines. Recent technical developments such as diffusion tensor imaging, MR spectroscopy, and voxel-based morphometry reveal new findings related to brain abnormalities in NMOSD that were not identified using conventional MRI. This paper focuses on the incidence and characteristics of the brain lesions found in NMOSD and the symptoms that they cause. Recent studies using advanced imaging techniques are also introduced.

  6. Migraine and structural abnormalities in the brain

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal Mohammad; Ashina, Messoud

    2014-01-01

    PURPOSE OF REVIEW: The aim is to provide an overview of recent studies of structural brain abnormalities in migraine and to discuss the potential clinical significance of their findings. RECENT FINDINGS: Brain structure continues to be a topic of extensive research in migraine. Despite advances...... in neuroimaging techniques, it is not yet clear if migraine is associated with grey matter changes. Recent large population-based studies sustain the notion of increased prevalence of white matter abnormalities in migraine, and possibly of silent infarct-like lesions. The clinical relevance of this association...... is not clear. Structural changes are not related to cognitive decline, but a link to an increased risk of stroke, especially in patients with aura, cannot be ruled out. SUMMARY: Migraine may be a risk factor for structural changes in the brain. It is not yet clear how factors such as migraine sub-type, attack...

  7. Evidence of brain abnormality in patients with psychogenic nonepileptic seizures.

    NARCIS (Netherlands)

    Reuber, M.; Fernandez, G.S.E.; Bauer, J.; Singh, D.D.; Elger, C.E.

    2002-01-01

    Markers of brain abnormalities in patients with psychogenic nonepileptic seizures (PNES) were studied to explore whether physical brain disorder is associated with an increased risk of PNES. Evidence of epileptiform EEG changes, MRI abnormalities, and neuropsychological (NPS)

  8. Brain MRI abnormalities in neuromyelitis optica

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fei, E-mail: feiwang1973@gmail.com [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Liu Yaou, E-mail: asiaeurope80@gmail.com [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Duan Yunyun, E-mail: duanyun2003@sohu.com [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Li Kuncheng, E-mail: kunchengli@yahoo.com.cn [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Education Ministry Key Laboratory for Neurodegenerative Disease, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China)

    2011-11-15

    Objective: The purpose of this study was to explore brain MRI findings in neuromyelitis optica (NMO) and to investigate specific brain lesions with respect to the localization of aquaporin-4 (AQP-4). Materials and methods: Forty admitted patients (36 women) who satisfied the 2006 criteria of Wingerchuk et al. for NMO were included in this study. All patients received a neurological examination and MRI scanning including brain and spinal cord. MRIs were classified as normal, nonspecific, multiple sclerosis-like, typical abnormalities. MS-like lesions were too few to satisfy the Barkhof et al. criteria for MS. Confluent lesions involving high AQP-4 regions were considered typical. Non-enhancing deep white matter lesions other than MS-like lesions or typical lesions were classified as nonspecific. Results: Brain MRI lesions were delineated in 12 patients (25%). Four patients (10%) had hypothalamus, brainstem or periventricle lesions. Six (15%) patients were nonspecific, and 2 (5%) patients had multiple sclerosis-like lesions. Conclusion: Brain MRIs are negative in most NMO, and brain lesions do not exclude the diagnosis of NMO. Hypothalamus, brainstem or periventricle lesions, corresponding to high sites of AQP-4 in the brain, are indicative of lesions of NMO.

  9. Association between abnormal brain functional connectivity in children and psychopathology: A study based on graph theory and machine learning.

    Science.gov (United States)

    Sato, João Ricardo; Biazoli, Claudinei Eduardo; Salum, Giovanni Abrahão; Gadelha, Ary; Crossley, Nicolas; Vieira, Gilson; Zugman, André; Picon, Felipe Almeida; Pan, Pedro Mario; Hoexter, Marcelo Queiroz; Amaro, Edson; Anés, Mauricio; Moura, Luciana Monteiro; Del'Aquilla, Marco Antonio Gomes; Mcguire, Philip; Rohde, Luis Augusto; Miguel, Euripedes Constantino; Jackowski, Andrea Parolin; Bressan, Rodrigo Affonseca

    2018-03-01

    One of the major challenges facing psychiatry is how to incorporate biological measures in the classification of mental health disorders. Many of these disorders affect brain development and its connectivity. In this study, we propose a novel method for assessing brain networks based on the combination of a graph theory measure (eigenvector centrality) and a one-class support vector machine (OC-SVM). We applied this approach to resting-state fMRI data from 622 children and adolescents. Eigenvector centrality (EVC) of nodes from positive- and negative-task networks were extracted from each subject and used as input to an OC-SVM to label individual brain networks as typical or atypical. We hypothesised that classification of these subjects regarding the pattern of brain connectivity would predict the level of psychopathology. Subjects with atypical brain network organisation had higher levels of psychopathology (p EVC in the typical group at the bilateral posterior cingulate and bilateral posterior temporal cortices; and significant decreases in EVC at left temporal pole. The combination of graph theory methods and an OC-SVM is a promising method to characterise neurodevelopment, and may be useful to understand the deviations leading to mental disorders.

  10. Functional neuroimaging abnormalities in idiopathic generalized epilepsy

    Directory of Open Access Journals (Sweden)

    Megan L. McGill

    2014-01-01

    Full Text Available Magnetic resonance imaging (MRI techniques have been used to quantitatively assess focal and network abnormalities. Idiopathic generalized epilepsy (IGE is characterized by bilateral synchronous spike–wave discharges on electroencephalography (EEG but normal clinical MRI. Dysfunctions involving the neocortex, particularly the prefrontal cortex, and thalamus likely contribute to seizure activity. To identify possible morphometric and functional differences in the brains of IGE patients and normal controls, we employed measures of thalamic volumes, cortical thickness, gray–white blurring, fractional anisotropy (FA measures from diffusion tensor imaging (DTI and fractional amplitude of low frequency fluctuations (fALFF in thalamic subregions from resting state functional MRI. Data from 27 patients with IGE and 27 age- and sex-matched controls showed similar thalamic volumes, cortical thickness and gray–white contrast. There were no differences in FA values on DTI in tracts connecting the thalamus and prefrontal cortex. Functional analysis revealed decreased fALFF in the prefrontal cortex (PFC subregion of the thalamus in patients with IGE. We provide minimum detectable effect sizes for each measure used in the study. Our analysis indicates that fMRI-based methods are more sensitive than quantitative structural techniques for characterizing brain abnormalities in IGE.

  11. Intrinsic brain abnormalities in young healthy adults with childhood trauma: A resting-state functional magnetic resonance imaging study of regional homogeneity and functional connectivity.

    Science.gov (United States)

    Lu, Shaojia; Gao, Weijia; Wei, Zhaoguo; Wang, Dandan; Hu, Shaohua; Huang, Manli; Xu, Yi; Li, Lingjiang

    2017-06-01

    Childhood trauma confers great risk for the development of multiple psychiatric disorders; however, the neural basis for this association is still unknown. The present resting-state functional magnetic resonance imaging study aimed to detect the effects of childhood trauma on brain function in a group of young healthy adults. In total, 24 healthy individuals with childhood trauma and 24 age- and sex-matched adults without childhood trauma were recruited. Each participant underwent resting-state functional magnetic resonance imaging scanning. Intra-regional brain activity was evaluated by regional homogeneity method and compared between groups. Areas with altered regional homogeneity were further selected as seeds in subsequent functional connectivity analysis. Statistical analyses were performed by setting current depression and anxiety as covariates. Adults with childhood trauma showed decreased regional homogeneity in bilateral superior temporal gyrus and insula, and the right inferior parietal lobule, as well as increased regional homogeneity in the right cerebellum and left middle temporal gyrus. Regional homogeneity values in the left middle temporal gyrus, right insula and right cerebellum were correlated with childhood trauma severity. In addition, individuals with childhood trauma also exhibited altered default mode network, cerebellum-default mode network and insula-default mode network connectivity when the left middle temporal gyrus, right cerebellum and right insula were selected as seed area, respectively. The present outcomes suggest that childhood trauma is associated with disturbed intrinsic brain function, especially the default mode network, in adults even without psychiatric diagnoses, which may mediate the relationship between childhood trauma and psychiatric disorders in later life.

  12. Abnormal brain synchrony in Down Syndrome☆

    Science.gov (United States)

    Anderson, Jeffrey S.; Nielsen, Jared A.; Ferguson, Michael A.; Burback, Melissa C.; Cox, Elizabeth T.; Dai, Li; Gerig, Guido; Edgin, Jamie O.; Korenberg, Julie R.

    2013-01-01

    Down Syndrome is the most common genetic cause for intellectual disability, yet the pathophysiology of cognitive impairment in Down Syndrome is unknown. We compared fMRI scans of 15 individuals with Down Syndrome to 14 typically developing control subjects while they viewed 50 min of cartoon video clips. There was widespread increased synchrony between brain regions, with only a small subset of strong, distant connections showing underconnectivity in Down Syndrome. Brain regions showing negative correlations were less anticorrelated and were among the most strongly affected connections in the brain. Increased correlation was observed between all of the distributed brain networks studied, with the strongest internetwork correlation in subjects with the lowest performance IQ. A functional parcellation of the brain showed simplified network structure in Down Syndrome organized by local connectivity. Despite increased interregional synchrony, intersubject correlation to the cartoon stimuli was lower in Down Syndrome, indicating that increased synchrony had a temporal pattern that was not in response to environmental stimuli, but idiosyncratic to each Down Syndrome subject. Short-range, increased synchrony was not observed in a comparison sample of 447 autism vs. 517 control subjects from the Autism Brain Imaging Exchange (ABIDE) collection of resting state fMRI data, and increased internetwork synchrony was only observed between the default mode and attentional networks in autism. These findings suggest immature development of connectivity in Down Syndrome with impaired ability to integrate information from distant brain regions into coherent distributed networks. PMID:24179822

  13. Cognition and brain functional aging

    Directory of Open Access Journals (Sweden)

    Hui-jie LI

    2014-03-01

    Full Text Available China has the largest population of elderly adults. Meanwhile, it is one of the countries showing fastest aging speed in the world. Aging processing is always companied with a series of brain structural and functional changes, which result in the decline of processing speed, working memory, long-term memory and executive function, etc. The studies based on functional magnetic resonance imaging (fMRI found certain aging effects on brain function activation, spontaneous activity and functional connectivity in old people. However, few studies have explored the brain functional curve during the aging process while most previous studies explored the differences in the brain function between young people and old people. Delineation of the human brain functional aging curve will promote the understanding of brain aging mechanisms and support the normal aging monitoring and early detection of abnormal aging changes. doi: 10.3969/j.issn.1672-6731.2014.03.005

  14. Abnormalities of inter- and intrahemispheric functional connectivity in Autism Spectrum Disorders: A study using the Autism Brain Imaging Data Exchange database

    Directory of Open Access Journals (Sweden)

    Jung Min eLee

    2016-05-01

    Full Text Available Recently, the Autism Brain Imaging Data Exchange (ABIDE project revealed decreased functional connectivity in individuals with Autism Spectrum Disorders (ASD relative to the typically developing controls (TDCs. However, it is still questionable whether the source of functional underconnectivity in subjects with ASD is equally contributed by the ipsilateral and contralateral parts of the brain. In this study, we decomposed the inter- and intrahemispheric regions and compared the functional connectivity density (FCD between 458 subjects with ASD and 517 TDCs from the ABIDE database. We quantified the inter- and intrahemispheric FCDs in the brain by counting the number of functional connectivity with all voxels in the opposite and same hemispheric brain regions, respectively. Relative to TDCs, both inter- and intrahemispheric FCDs in the posterior cingulate cortex, lingual/parahippocampal gyrus, and postcentral gyrus were significantly decreased in subjects with ASD. Moreover, in the ASD group, the restricted and repetitive behavior subscore of the Autism Diagnostic Observation Schedule (ADOS-RRB score showed significant negative correlations with the average interhemispheric FCD and contralateral FCD in the lingual/parahippocampal gyrus cluster. Also, the ADOS-RRB score showed significant negative correlations with the average contralateral FCD in the default mode network regions such as the posterior cingulate cortex and precuneus. Taken together, our findings imply that a deficit of non-social functioning processing in ASD such as restricted and repetitive behaviors and sensory hypersensitivity could be determined via both inter- and intrahemispheric functional disconnections.

  15. Improvement of Brain Reward Abnormalities by Antipsychotic Monotherapy in Schizophrenia

    DEFF Research Database (Denmark)

    Nielsen, Mette Ødegaard; Rostrup, Egill; Wulff, Sanne

    2012-01-01

    CONTEXT Schizophrenic symptoms are linked to a dysfunction of dopamine neurotransmission and the brain reward system. However, it remains unclear whether antipsychotic treatment, which blocks dopamine transmission, improves, alters, or even worsens the reward-related abnormalities. OBJECTIVE...... To investigate changes in reward-related brain activations in schizophrenia before and after antipsychotic monotherapy with a dopamine D2/D3 antagonist. DESIGN Longitudinal cohort study. SETTING Psychiatric inpatients and outpatients in the Capital Region of Denmark. PARTICIPANTS Twenty-three antipsychotic...... with the antipsychotic compound amisulpride. Controls were followed up without treatment. MAIN OUTCOME MEASURES Task-related blood oxygen level-dependent activations as measured by functional magnetic resonance imaging before and after antipsychotic treatment. RESULTS At baseline, patients, as compared with controls...

  16. Brain imaging and brain function

    International Nuclear Information System (INIS)

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage

  17. Neuroanatomical abnormalities in chronic tinnitus in the human brain

    Science.gov (United States)

    Adjamian, Peyman; Hall, Deborah A.; Palmer, Alan R.; Allan, Thomas W.; Langers, Dave R.M.

    2014-01-01

    In this paper, we review studies that have investigated brain morphology in chronic tinnitus in order to better understand the underlying pathophysiology of the disorder. Current consensus is that tinnitus is a disorder involving a distributed network of peripheral and central pathways in the nervous system. However, the precise mechanism remains elusive and it is unclear which structures are involved. Given that brain structure and function are highly related, identification of anatomical differences may shed light upon the mechanism of tinnitus generation and maintenance. We discuss anatomical changes in the auditory cortex, the limbic system, and prefrontal cortex, among others. Specifically, we discuss the gating mechanism of tinnitus and evaluate the evidence in support of the model from studies of brain anatomy. Although individual studies claim significant effects related to tinnitus, outcomes are divergent and even contradictory across studies. Moreover, results are often confounded by the presence of hearing loss. We conclude that, at present, the overall evidence for structural abnormalities specifically related to tinnitus is poor. As this area of research is expanding, we identify some key considerations for research design and propose strategies for future research. PMID:24892904

  18. Global gene expression profiles in brain regions reflecting abnormal neuronal and glial functions targeting myelin sheaths after 28-day exposure to cuprizone in rats

    International Nuclear Information System (INIS)

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Watanabe, Yousuke; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Both developmental and postpubertal cuprizone (CPZ) exposure impairs hippocampal neurogenesis in rats. We previously found that developmental CPZ exposure alters the expression of genes related to neurogenesis, myelination, and synaptic transmission in specific brain regions of offspring. Here, we examined neuronal and glial toxicity profiles in response to postpubertal CPZ exposure by using expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex, and cerebellar vermis of 5-week-old male rats exposed to 0, 120, and 600 mg/kg CPZ for 28 days. Genes showing transcript upregulation were subjected to immunohistochemical analysis. We found transcript expression alterations at 600 mg/kg for genes related to synaptic transmission, Ache and Prima1, and cell cycle regulation, Tfap4 and Cdkn1a, in the dentate gyrus, which showed aberrant neurogenesis in the subgranular zone. This dose downregulated myelination-related genes in multiple brain regions, whereas KLOTHO + oligodendrocyte density was decreased only in the corpus callosum. The corpus callosum showed an increase in transcript levels for inflammatory response-related genes and in the number of CD68 + microglia, MT + astrocytes, and TUNEL + apoptotic cells. These results suggest that postpubertal CPZ exposure targets synaptic transmission and cell cycle regulation to affect neurogenesis in the dentate gyrus. CPZ suppressed myelination in multiple brain regions and KLOTHO-mediated oligodendrocyte maturation only in the corpus callosum. The increased number of CD68 + microglia, MT + astrocytes, and TUNEL + apoptotic cells in the corpus callosum may be involved in the induction of KLOTHO + oligodendrocyte death and be a protective mechanism against myelin damage following CPZ exposure. - Highlights: • Target gene expression profiles were examined in rats after 28-day CPZ exposure. • Multiple brain region-specific global gene expression profiling was performed. • CPZ

  19. The brain stem function in patients with brain bladder

    International Nuclear Information System (INIS)

    Takahashi, Toshihiro

    1990-01-01

    A syndrome of detrusor-sphincter dyssynergia (DSD) is occasionally found in patients with brain bladder. To evaluate the brain stem function in cases of brain bladder, urodynamic study, dynamic CT scan of the brain stem (DCT) and auditory brainstem response (ABR) were performed. The region of interest of DCT aimed at the posterolateral portion of the pons. The results were analysed in contrast with the presense of DSD in urodynamic study. DCT studies were performed in 13 cases with various brain diseases and 5 control cases without neurological diseases. Abnormal patterns of the time-density curve consisted of low peak value, prolongation of filling time and low rapid washout ratio (low clearance ratio) of the contrast medium. Four of 6 cases with DSD showed at least one of the abnormal patterns of the time-density curve bilaterally. In 7 cases without DSD none showed bilateral abnormality of the curve and in 2 of 7 cases only unilateral abnormality was found. ABR was performed in 8 patients with brain diseases. The interpeak latency of the wave I-V (I-V IPL) was considered to be prolonged in 2 cases with DSD compared to that of 4 without DSD. In 2 cases with DSD who had normal DCT findings, measurement of the I-V IPL was impossible due to abnormal pattern of the ABR wave. Above mentioned results suggests the presence of functional disturbance at the posterolateral portion of the pons in cases of brain bladder with DSD. (author)

  20. Abnormal scintigrams in demyclinating diseases of the brain

    International Nuclear Information System (INIS)

    Podreka, I.; Heiss, W.D.; Jellinger, K.; Vienna Univ.

    1977-01-01

    In 6 patients with acute or exacerbating demyelinating disease and in 2 cases suffering from adrenoleucodystrophy (Schilder's disease) brain scintigraphy revealed areas with increased isotope uptake. The pathological foci were verified by autopsy in 4 cases and by inspection in 1. These foci are difficult to distinguish from other localized brain diseases causing increased isotope uptake; in addition to the clinical course and to spinal fluid abnormalities reversibility of the scintigraphic lesions indicate demyelinating diseases. The typical pattern of symmetrical lesions within the white matter and the progression of abnormalities from the occipital to the frontal lobe speak in favor of Schilder's disease. (orig.) [de

  1. Morphometric Brain Abnormalities in Boys with Conduct Disorder

    Science.gov (United States)

    Huebner, Thomas; Vloet, Timo D.; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R.; Herpertz, Sabine C.; Herpertz-Dahlmann, Beate

    2008-01-01

    Conduct disorder (CD) is associated with antisocial personality behavior that violates the basic rights of others. Results, on examining the structural brain aberrations in boys' CD, show that boys with CD and cormobid attention-deficit/hyperactivity disorder showed abnormalities in frontolimbic areas that could contribute to antisocial…

  2. Neonatal brain abnormalities and memory and learning outcomes at 7 years in children born very preterm.

    Science.gov (United States)

    Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J

    2014-01-01

    Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term-born controls. Neonatal brain abnormalities, and in particular deep grey-matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function.

  3. Lutein and Brain Function

    Directory of Open Access Journals (Sweden)

    John W. Erdman

    2015-10-01

    Full Text Available Lutein is one of the most prevalent carotenoids in nature and in the human diet. Together with zeaxanthin, it is highly concentrated as macular pigment in the foveal retina of primates, attenuating blue light exposure, providing protection from photo-oxidation and enhancing visual performance. Recently, interest in lutein has expanded beyond the retina to its possible contributions to brain development and function. Only primates accumulate lutein within the brain, but little is known about its distribution or physiological role. Our team has begun to utilize the rhesus macaque (Macaca mulatta model to study the uptake and bio-localization of lutein in the brain. Our overall goal has been to assess the association of lutein localization with brain function. In this review, we will first cover the evolution of the non-human primate model for lutein and brain studies, discuss prior association studies of lutein with retina and brain function, and review approaches that can be used to localize brain lutein. We also describe our approach to the biosynthesis of 13C-lutein, which will allow investigation of lutein flux, localization, metabolism and pharmacokinetics. Lastly, we describe potential future research opportunities.

  4. Hypomelanosis of Ito and brain abnormalities: MRI findings and literature review

    International Nuclear Information System (INIS)

    Steiner, J.; Adamsbaum, C.; Desguerres, I.; Lalande, G.; Raynaud, F.; Ponsot, G.; Kalifa, G.

    1996-01-01

    We report the results of a 14-year retrospective study of brain MRI abnormalities in 12 pediatric patients presenting with hypomelanosis of Ito (HI). Miscellaneous brain abnormalities were found: one patient had a medulloblastoma, three had cortical malformations, and five demonstrated ''minor'' abnormalities such as dilated Virchow-Robin spaces or brain atrophy. We emphasize the polymorphism of brain abnormalities associated with HI. (orig.). With 5 figs., 1 tab

  5. Congenital adrenal hyperplasia and brain magnetic resonance imaging abnormalities.

    Science.gov (United States)

    Samia, Younes-Mhenni; Mahdi, Kamoun; Baha, Zantour; Saida, Jerbi-Ommezine; Tahar, Sfar Mohamed; Habib, Sfar Mohamed

    2010-10-01

    A 15-yr-old male patient with congenital adrenal hyperplasia (CAH) was referred to our department with a one year history of gradual worsening of tremors. He was diagnosed with salt-wasting 21-hydroxylase deficiency CAH at 40 d old and was started on hydrocortisone, fludrocortisone and salt. He was found to have hypertension at 8 yr of age. Detailed investigations failed to detect any cause for secondary hypertension. Physical findings on the current hospitalization objectified obesity, blood pressure of 150/80 mmHg, postural and action tremor, left cerebellar syndrome, reflex tetra pyramidal syndrome and mental decline. Brain magnetic resonance imaging (MRI) showed bilateral periventricular white matter hyperintensity that was more pronounced in the posterior regions and associated with cortico-subcortical atrophy and complete agenesis of the corpus callosum. All investigations for leukoencephalopathy were negative. A diagnosis of brain MRI abnormalities related to CAH was made, and the patient received symptomatic treatment of tremors. Our case report provides evidence of an increased frequency of brain MRI abnormalities in CAH. The literature suggests hormonal imbalance and exposure to excess exogenous glucocorticoids as main probable mechanisms. Thus, in clinical practice, CAH should be considered as one of the possible causes of brain white matter involvement associated with or without cerebral atrophy.

  6. Abnormal Brain Network Organization in Body Dysmorphic Disorder

    Science.gov (United States)

    Arienzo, Donatello; Leow, Alex; Brown, Jesse A; Zhan, Liang; GadElkarim, Johnson; Hovav, Sarit; Feusner, Jamie D

    2013-01-01

    Body dysmorphic disorder (BDD) is characterized by preoccupation with misperceived defects of appearance, causing significant distress and disability. Previous studies suggest abnormalities in information processing characterized by greater local relative to global processing. The purpose of this study was to probe whole-brain and regional white matter network organization in BDD, and to relate this to specific metrics of symptomatology. We acquired diffusion-weighted 34-direction MR images from 14 unmedicated participants with DSM-IV BDD and 16 healthy controls, from which we conducted whole-brain deterministic diffusion tensor imaging tractography. We then constructed white matter structural connectivity matrices to derive whole-brain and regional graph theory metrics, which we compared between groups. Within the BDD group, we additionally correlated these metrics with scores on psychometric measures of BDD symptom severity as well as poor insight/delusionality. The BDD group showed higher whole-brain mean clustering coefficient than controls. Global efficiency negatively correlated with BDD symptom severity. The BDD group demonstrated greater edge betweenness centrality for connections between the anterior temporal lobe and the occipital cortex, and between bilateral occipital poles. This represents the first brain network analysis in BDD. Results suggest disturbances in whole brain structural topological organization in BDD, in addition to correlations between clinical symptoms and network organization. There is also evidence of abnormal connectivity between regions involved in lower-order visual processing and higher-order visual and emotional processing, as well as interhemispheric visual information transfer. These findings may relate to disturbances in information processing found in previous studies. PMID:23322186

  7. N-terminal pro-brain natriuretic peptide and abnormal brain aging: The AGES-Reykjavik Study.

    Science.gov (United States)

    Sabayan, Behnam; van Buchem, Mark A; de Craen, Anton J M; Sigurdsson, Sigurdur; Zhang, Qian; Harris, Tamara B; Gudnason, Vilmundur; Arai, Andrew E; Launer, Lenore J

    2015-09-01

    To investigate the independent association of serum N-terminal fragment of the prohormone natriuretic peptide (NT-proBNP) with structural and functional features of abnormal brain aging in older individuals. In this cross-sectional study based on the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study, we included 4,029 older community-dwelling individuals (born 1907 to 1935) with a measured serum level of NT-proBNP. Outcomes included parenchymal brain volumes estimated from brain MRI, cognitive function measured by tests of memory, processing speed, and executive functioning, and presence of depressive symptoms measured using the Geriatric Depression Scale. In a substudy, cardiac output of 857 participants was assessed using cardiac MRI. In multivariate analyses, adjusted for sociodemographic and cardiovascular factors, higher levels of NT-proBNP were independently associated with lower total (p brain volumes. Likewise, in multivariate analyses, higher levels of NT-proBNP were associated with worse scores in memory (p = 0.005), processing speed (p = 0.001), executive functioning (p brain parenchymal volumes, impaired executive function and processing speed, and higher depressive symptoms were independent of the level of cardiac output. Higher serum levels of NT-proBNP, independent of cardiovascular risk factors and a measure of cardiac function, are linked with alterations in brain structure and function. Roles of natriuretic peptides in the process of brain aging need to be further elucidated. © 2015 American Academy of Neurology.

  8. Comparison of brain perfusion SPECT abnormalities with anatomical imaging in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Majid Asadi

    2007-02-01

    Full Text Available Background: Trauma is the most common cause of morbidity and mortality in industrialized countries and also in Iran. Anatomical imaging (AI CT and MRI is helpful in the diagnosis of acute traumatic complications however it is not efficient in the diagnosis of disabling injury syndrome. In contrast, brain perfusion SPECT (Single Photon Emission Computed Tomography can be more useful for evaluation of microvascular structure. This study was designed to compare these two diagnostic methods. Methods: A total of 50 patients who had been suffering from traumatic brain injury for more than 1 year, and were followed as mild traumatic brain injury group according to “the Brain Injury Interdisciplinary Special Interest Group of the Ameri can Congress of Rehabilitation Medicine” criteria, were examined by brain perfusion SPECT and AI. The common anatomical classification of the lobes of brain was used. Results: The male to female ratio was 3:2. The mean age was 32.32±11.8 years and mean post-traumatic time was 1.48±0.65 years. The most common symptoms were headache (60%, agusia (36% and anosmia (32%. Among 400 examined brain lobes in this study, brain perfusion SPECT revealed remarkable abnormality in 76 lobes (19%, but AI determined abnormalities in 38 lobes (9.5% therefore, SPECT was twice sensitive than AI in mild traumatic brain injury (P<0.001. The correlation between SPECT and AI findings was 84%. SPECT was more sensitive than AI in demonstrating brain abnormalities in frontal lobe it was more obvious in the male group however, there was no significant difference between more and less than 30 years old groups. Conclusion: According to the findings of this study, we recommend using brain perfusion SPECT for all patients with chronic complications of head trauma, particularly those who have signs and symptoms of hypofrontalism, even though with some abnormalities in AI.

  9. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities

    Directory of Open Access Journals (Sweden)

    Janušonis Skirmantas

    2005-07-01

    Full Text Available Abstract Background A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin in blood platelets (platelet hyperserotonemia. The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. Results The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. Conclusion At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene based on currently available clinical and

  10. Structural brain abnormalities in early onset first-episode psychosis

    DEFF Research Database (Denmark)

    Pagsberg, A K; Baaré, W F C; Raabjerg Christensen, A M

    2007-01-01

    BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder......, delusional disorder or other non-organic psychosis), aged 10-18 to those of 29 matched controls, using optimized voxel-based morphometry. RESULTS: Psychotic patients had frontal white matter abnormalities, but expected (regional) gray matter reductions were not observed. Post hoc analyses revealed...... already at illness onset in young schizophrenia spectrum patients, suggests aberrant neurodevelopmental processes in the pathogenesis of these disorders. Gray matter volume changes, however, appear not to be a key feature in early onset first-episode psychosis....

  11. Structural brain abnormalities in early onset first-episode psychosis

    DEFF Research Database (Denmark)

    Pagsberg, A K; Baaré, W F C; Raabjerg Christensen, A M

    2007-01-01

    BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder, delusi...... already at illness onset in young schizophrenia spectrum patients, suggests aberrant neurodevelopmental processes in the pathogenesis of these disorders. Gray matter volume changes, however, appear not to be a key feature in early onset first-episode psychosis.......BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder......, delusional disorder or other non-organic psychosis), aged 10-18 to those of 29 matched controls, using optimized voxel-based morphometry. RESULTS: Psychotic patients had frontal white matter abnormalities, but expected (regional) gray matter reductions were not observed. Post hoc analyses revealed...

  12. No abnormalities of intrinsic brain connectivity in the interictal phase of migraine with aura.

    Science.gov (United States)

    Hougaard, A; Amin, F M; Magon, S; Sprenger, T; Rostrup, E; Ashina, M

    2015-04-01

    Functional neuroimaging studies have shown hyperresponsiveness of cortical areas to visual stimuli in migraine patients with aura outside of attacks. This may be a key feature in the initiation of aura episodes and possibly also migraine headache attacks. It is unknown if cortical dysfunction is present at rest, i.e. in the absence of any external stimuli. Functional magnetic resonance imaging is a powerful technique for evaluating resting state functional connectivity, i.e. coherence of brain activity across cerebral areas. The objective of this study was to investigate resting-state functional brain connectivity in migraineurs with aura outside of attacks using functional magnetic resonance imaging. Forty patients suffering from migraine with visual aura and 40 individually age and gender matched healthy controls with no history or family history of migraine were investigated. Following advanced denoising, the data were analyzed both in a hypothesis-driven fashion, testing for abnormalities involving 27 different brain areas of potential relevance to migraine with aura including the cortical visual areas, the amygdala and peri-aqueductal grey matter, and in a data-driven exploratory fashion (dual regression) in order to reveal any possible between-group differences of resting state networks. Age, gender, attack frequency and disease duration were included as nuisance variables. No differences of functional connectivity were found between patients and controls. The previously reported increased cortical hyperresponsivity in the interictal phase of migraine with aura is unlikely to be caused by abnormalities of intrinsic brain connectivity. The interictal migraine aura brain may be abnormally functioning only during exposure to external stimuli. © 2015 EAN.

  13. Anorectal functional abnormalities in Egyptian children with chronic functional constipation.

    Science.gov (United States)

    Fathy, Abeer; Megahed, Ahmed; Barakat, Tarik; Abdalla, Ahmed F

    2013-03-01

    Chronic functional constipation represents 95% of the cases of paediatric constipation. Epidemiologic data, pathophysiology and anorectal functional abnormalities vary greatly among different reports across different populations. The aim of this study was to evaluate these data in Egyptian children with chronic functional constipation. This study included 150 children with chronic functional constipation (101 males, 49 females; mean age 6 ± 3.1 years); a control group of 50 age- and sex-matched healthy children were enrolled for standardisation of the manometry technique. A structured symptom questionnaire and clinical examination including digital rectal examination in addition to anorectal manometry were done for all included children. Defaecation dynamics were assessed in all children 5 years or older using anorectal manometry with integrated electromyogram of the external anal sphincter and the puborectalis muscle. The maximal tolerable volume was significantly higher in the constipated children than in the control group (p=0.03). No significant differences existed between constipated and control children regarding other anorectal manometric parameters. Abnormal defaecation dynamics were detected in 35 out of 95 tested patients (36.8%). Increased maximal tolerable volume is the most striking manometric feature in Egyptian children with chronic functional constipation. Abnormal defaecation dynamics were detected in about one-third of the tested patients. Standardisation of the measurement techniques and obtaining normal ranges for anorectal manometric parameters for each laboratory are recommended. Copyright © 2013 Arab Journal of Gastroenterology. Published by Elsevier Ltd. All rights reserved.

  14. Functional brain imaging

    International Nuclear Information System (INIS)

    Frackowiak, R.S.J.

    1996-01-01

    Major advances in computing and mathematics, especially the back-projection algorithms introduced for reconstructing tomographic data obtained by non-invasive imaging, have led to new opportunities for the study of the structure, function and structure-function relationships of the human brain. Functional neuro-imaging methods fall, broadly, into two classes. Those methods that provide information about synaptic activity and those that provide information of a chemical or neurochemical nature. The former methods usually depend on some form of perfusion mapping because of the tight coupling between local glucose metabolism and blood flow in the brain at rest and at times of altered synaptic activity. The latter methods depend on identification of a chemical species of interest by using an appropriate radioligand, or by using the intrinsic magnetic properties of a compound. (author)

  15. Structural brain abnormalities in 12 persons with aniridia [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Madison K. Grant

    2017-09-01

    Full Text Available Background: Aniridia is a disorder predominately caused by heterozygous loss-of-function mutations of the PAX6 gene, which is a transcriptional regulator necessary for normal eye and brain development.  The ocular abnormalities of aniridia have been well characterized, but mounting evidence has implicated brain-related phenotypes as a prominent feature of this disorder as well.  Investigations using neuroimaging in aniridia patients have shown reductions in discrete brain structures and changes in global grey and white matter.  However, limited sample sizes and substantive heterogeneity of structural phenotypes in the brain remain a challenge.  Methods: Here, we examined brain structure in a new population sample in an effort to add to the collective understanding of anatomical abnormalities in aniridia.  The current study used 3T magnetic resonance imaging to acquire high-resolution structural data in 12 persons with aniridia and 12 healthy demographically matched comparison subjects.  Results: We examined five major structures: the anterior commissure, the posterior commissure, the pineal gland, the corpus callosum, and the optic chiasm.  The most consistent reductions were found in the anterior commissure and the pineal gland; however, abnormalities in all of the other structures examined were present in at least one individual.  Conclusions: Our results indicate that the anatomical abnormalities in aniridia are variable and largely individual-specific.  These findings suggest that future studies investigate this heterogeneity further, and that normal population variation should be considered when evaluating structural abnormalities.

  16. Correlation between arterial wall stiffness, N-terminal prohormone of brain natriuretic peptide, functional and structural myocardial abnormalities in patients with type 2 diabetes mellitus and cardiac autonomic neuropathy

    Directory of Open Access Journals (Sweden)

    Viktoriya Aleksandrovna Serhiyenko

    2013-12-01

    Full Text Available Aim. To assess arterial wall stiffness, plasma levels of of N-terminal prohormone of brain natriuretic peptide (NT-proBNP, as well as functional state and structure of the myocardium in patients with type 2 diabetes mellitus (T2DM and cardiac autonomic neuropathy (CAN.Materials and Methods. The study involved a total of 65 patients with T2DM. 12 had no evidence of cardiovascular disease (CVD or CAN, 14 were diagnosed with subclinical stage of CAN, 18 – with functional stage, and 21 – with organic stage. We measured aortic pulse wave velocity (PWV, aortic augmentation index (AIx, brachial artery AIx, ambulatory arterial stiffness index (AASI and plasma levels of NT-proBNP. Clinical examination included ECG, Holter monitoring, ambulatory BP measurement and echocardiography.Results. Patients with isolated T2DM showed a trend for increased vascular wall stiffness. PWV was increased in patients with subclinical stage of CAN. Aortic and brachial AIx, PWV and AASI were elevated in patients with functional stage of CAN, PWV being significantly higher vs. subclinical CAN subgroup. Organic stage was characterized by pathologically increased values of all primary parameters; PWV and AASI were significantly higher compared with other groups. Development and progression of CAN was accompanied by an increase in NT-proBNP plasma levels. Concentration of NT-proBNP was in direct correlation with left ventricular mass (LVM and PWV. PWV and LVM values also directly correlated between themselves.Conclusion. Development and progression of CAN in patients with T2DM is accompanied by an increase in vascular wall stiffness. The elevation of plasma NT-proBNP in patients with T2DM correlates with the development of CAN and is significantly and independently associated with an increase in LVM and PWV. Our data suggests the pathophysiological interconnection between metabolic, functional and structural myocardial abnormalities in patients with T2DM and CAN.

  17. Locating abnormalities in brain blood vessels using parallel computing architecture.

    Science.gov (United States)

    Adeshina, A M; Hashim, R; Khalid, N E A; Abidin, S Z Z

    2012-09-01

    CT and MRI scans are widely used in medical diagnosis procedures, but they only produce 2-D images. However, the human anatomical structure, the abnormalities, tumors, tissues and organs are in 3-D. 2-D images from these devices are difficult to interpret because they only show cross-sectional views of the human structure. Consequently, such circumstances require doctors to use their expert experiences in the interpretation of the possible location, size or shape of the abnormalities, even for large datasets of enormous amount of slices. Previously, the concept of reconstructing 2-D images to 3-D was introduced. However, such reconstruction model requires high performance computation, may either be time-consuming or costly. Furthermore, detecting the internal features of human anatomical structure, such as the imaging of the blood vessels, is still an open topic in the computer-aided diagnosis of disorders and pathologies. This paper proposes a volume visualization framework using Compute Unified Device Architecture (CUDA), augmenting the widely proven ray casting technique in terms of superior qualities of images but with slow speed. Considering the rapid development of technology in the medical community, our framework is implemented on Microsoft.NET environment for easy interoperability with other emerging revolutionary tools. The framework was evaluated with brain datasets from the department of Surgery, University of North Carolina, United States, containing around 109 MRA datasets. Uniquely, at a reasonably cheaper cost, our framework achieves immediate reconstruction and obvious mappings of the internal features of human brain, reliable enough for instantaneous locations of possible blockages in the brain blood vessels.

  18. Mapping brain function to brain anatomy

    International Nuclear Information System (INIS)

    Valentino, D.J.; Huang, H.K.; Mazziotta, J.C.

    1988-01-01

    In Imaging the human brain, MRI is commonly used to reveal anatomical structure, while PET is used to reveal tissue function. This paper presents a protocol for correlating data between these two imaging modalities; this correlation can provide in vivo regional measurements of brain function which are essential to our understanding of the human brain. The authors propose a general protocol to standardize the acquisition and analysis of functional image data. First, MR and PET images are collected to form three-dimensional volumes of structural and functional image data. Second, these volumes of image data are corrected for distortions inherent in each imaging modality. Third, the image volumes are correlated to provide correctly aligned structural and functional images. The functional images are then mapped onto the structural images in both two-dimensional and three-dimensional representations. Finally, morphometric techniques can be used to provide statistical measures of the structure and function of the human brain

  19. Neonatal Brain Abnormalities and Memory and Learning Outcomes at 7 Years in Children Born Very Preterm

    Science.gov (United States)

    Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J

    2014-01-01

    Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term born controls. Neonatal brain abnormalities, and in particular deep grey matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children, especially global, white-matter, grey-matter and cerebellar abnormalities. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function. PMID:23805915

  20. Brain Structure Abnormalities in Adolescent Girls with Conduct Disorder

    Science.gov (United States)

    Fairchild, Graeme; Hagan, Cindy C.; Walsh, Nicholas D.; Passamonti, Luca; Calder, Andrew J.; Goodyer, Ian M.

    2013-01-01

    Background: Conduct disorder (CD) in female adolescents is associated with a range of negative outcomes, including teenage pregnancy and antisocial personality disorder. Although recent studies have documented changes in brain structure and function in male adolescents with CD, there have been no neuroimaging studies of female adolescents with CD.…

  1. Abnormal Brain Connectivity Spectrum Disorders Following Thimerosal Administration

    Directory of Open Access Journals (Sweden)

    David A. Geier

    2017-03-01

    Full Text Available Background: Autism spectrum disorder (ASD, tic disorder (TD, and hyperkinetic syndrome of childhood (attention deficit disorder [ADD]/attention deficit hyperactivity disorder [ADHD] are disorders recently defined as abnormal connectivity spectrum disorders (ACSDs because they show a similar pattern of abnormal brain connectivity. This study examines whether these disorders are associated with exposure to thimerosal, a mercury (Hg-based preservative. Methods: A hypothesis testing case-control study evaluated the Vaccine Safety Datalink for the potential dose-dependent odds ratios (ORs for diagnoses of ASD, TD, and ADD/ADHD compared to controls, following exposure to Hg from thimerosal-containing Haemophilus influenzae type b vaccines administrated within the first 15 months of life. Febrile seizures, cerebral degeneration, and unspecified disorders of metabolism, which are not biologically plausibly linked to thimerosal, were examined as control outcomes. Results: On a per 25 μg Hg basis, cases diagnosed with ASD (OR = 1.493, TD (OR = 1.428, or ADD/ADHD (OR = 1.503 were significantly (P < .001 more likely than controls to have received increased Hg exposure. Similar relationships were observed when separated by gender. Cases diagnosed with control outcomes were no more likely than controls to have received increased Hg exposure. Conclusion: The results suggest that Hg exposure from thimerosal is significantly associated with the ACSDs of ASD, TD, and ADD/ADHD.

  2. Abnormal neural activities of directional brain networks in patients with long-term bilateral hearing loss.

    Science.gov (United States)

    Xu, Long-Chun; Zhang, Gang; Zou, Yue; Zhang, Min-Feng; Zhang, Dong-Sheng; Ma, Hua; Zhao, Wen-Bo; Zhang, Guang-Yu

    2017-10-13

    The objective of the study is to provide some implications for rehabilitation of hearing impairment by investigating changes of neural activities of directional brain networks in patients with long-term bilateral hearing loss. Firstly, we implemented neuropsychological tests of 21 subjects (11 patients with long-term bilateral hearing loss, and 10 subjects with normal hearing), and these tests revealed significant differences between the deaf group and the controls. Then we constructed the individual specific virtual brain based on functional magnetic resonance data of participants by utilizing effective connectivity and multivariate regression methods. We exerted the stimulating signal to the primary auditory cortices of the virtual brain and observed the brain region activations. We found that patients with long-term bilateral hearing loss presented weaker brain region activations in the auditory and language networks, but enhanced neural activities in the default mode network as compared with normally hearing subjects. Especially, the right cerebral hemisphere presented more changes than the left. Additionally, weaker neural activities in the primary auditor cortices were also strongly associated with poorer cognitive performance. Finally, causal analysis revealed several interactional circuits among activated brain regions, and these interregional causal interactions implied that abnormal neural activities of the directional brain networks in the deaf patients impacted cognitive function.

  3. Structural Brain Abnormalities in Successfully Treated HIV Infection: Associations With Disease and Cerebrospinal Fluid Biomarkers

    NARCIS (Netherlands)

    van Zoest, Rosan A.; Underwood, Jonathan; de Francesco, Davide; Sabin, Caroline A.; Cole, James H.; Wit, Ferdinand W.; Caan, Matthan W. A.; Kootstra, Neeltje A.; Fuchs, Dietmar; Zetterberg, Henrik; Majoie, Charles B. L. M.; Portegies, Peter; Winston, Alan; Sharp, David J.; Gisslén, Magnus; Reiss, Peter; Winston, A.; Prins, M.; Schim van der Loeff, M. F.; Schouten, J.; Schmand, B.; Geurtsen, G. J.; Sharp, D. J.; Villaudy, J.; Berkhout, B.; Gisslén, M.; Pasternak, A.; Sabin, C. A.; Guaraldi, G.; Bürkle, A.; Libert, C.; Franceschi, C.; Kalsbeek, A.; Fliers, E.; Hoeijmakers, J.; Pothof, J.; van der Valk, M.; Bisschop, P. H.; Zaheri, S.; Burger, D.; Cole, J. H.; Zikkenheiner, W.; Janssen, F. R.; Underwood, J.; Kooij, K. W.; Doyle, N.; Verheij, E.; Verboeket, S. O.; Elsenga, B. C.; Hillebregt, M. M. J.; Ruijs, Y. M. C.; Benschop, D. P.; Tembo, L.; McDonald, L.; Stott, M.; Legg, K.; Lovell, A.; Erlwein, O.; Kingsley, C.; Norsworthy, P.; Mullaney, S.; Kruijer, T.; del Grande, L.; Olthof, V.; Visser, G. R.; May, L.; Verbraak, F.; Demirkaya, N.; Visser, I.; Su, T.; Leech, R.; Huguet, J.; Frankin, E.; van der Kuyl, A.; Weijer, K.; Siteur-van Rijnstra, E.; Harskamp-Holwerda, A. M.; Maurer, I.; Mangas Ruiz, M. M.; Girigorie, A. F.; Boeser-Nunnink, B.; de Graaff-Teulen, M.; Dewaele, S.; Garagnani, P.; Pirazzini, C.; Capri, M.; Dall'Olio, F.; Chiricolo, M.; Salvioli, S.; Fuchs, D.; Zetterberg, H.; Weber, D.; Grune, T.; Jansen, E. H. J. M.; de Francesco, D.; Sindlinger, T.; Oehlke, S.

    2018-01-01

    Background. Brain structural abnormalities have been reported in persons living with human immunodeficiency virus (HIV; PLWH) who are receiving suppressive combination antiretroviral therapy (cART), but their pathophysiology remains unclear. Methods. We investigated factors associated with brain

  4. Abnormal thyroid function tests in psychiatric patients: a red herring?

    Science.gov (United States)

    Dickerman, Anna L; Barnhill, John W

    2012-02-01

    Thyroid abnormalities can induce mood, anxiety, psychotic, and cognitive disorders. Thus, thyroid function tests are routinely checked in psychiatric patients. However, up to one-third of psychiatric patients may demonstrate thyroid function test abnormalities that do not reflect true thyroid disease, but rather are a manifestation of secondary effects on one or more levels of the hypothalamic-pituitary-thyroid (HPT) axis. Originally termed the euthyroid sick syndrome, this phenomenon is now more commonly referred to as "non-thyroidal illness." In psychiatric patients with non-thyroidal illness, patterns of thyroid function test abnormalities may vary considerably based upon factors such as the underlying psychiatric disorder, the presence of substance abuse, or even the use of certain psychiatric medications. Thus, any abnormal thyroid function tests in psychiatric patients should be viewed with skepticism. Given the fact that thyroid function test abnormalities seen in non-thyroidal illness usually resolve spontaneously, treatment is generally unnecessary, and may even be potentially harmful.

  5. Abnormal brain connectivity patterns in adults with ADHD: a coherence study.

    Directory of Open Access Journals (Sweden)

    João Ricardo Sato

    Full Text Available Studies based on functional magnetic resonance imaging (fMRI during the resting state have shown decreased functional connectivity between the dorsal anterior cingulate cortex (dACC and regions of the Default Mode Network (DMN in adult patients with Attention-Deficit/Hyperactivity Disorder (ADHD relative to subjects with typical development (TD. Most studies used Pearson correlation coefficients among the BOLD signals from different brain regions to quantify functional connectivity. Since the Pearson correlation analysis only provides a limited description of functional connectivity, we investigated functional connectivity between the dACC and the posterior cingulate cortex (PCC in three groups (adult patients with ADHD, n=21; TD age-matched subjects, n=21; young TD subjects, n=21 using a more comprehensive analytical approach - unsupervised machine learning using a one-class support vector machine (OC-SVM that quantifies an abnormality index for each individual. The median abnormality index for patients with ADHD was greater than for TD age-matched subjects (p=0.014; the ADHD and young TD indices did not differ significantly (p=0.480; the median abnormality index of young TD was greater than that of TD age-matched subjects (p=0.016. Low frequencies below 0.05 Hz and around 0.20 Hz were the most relevant for discriminating between ADHD patients and TD age-matched controls and between the older and younger TD subjects. In addition, we validated our approach using the fMRI data of children publicly released by the ADHD-200 Competition, obtaining similar results. Our findings suggest that the abnormal coherence patterns observed in patients with ADHD in this study resemble the patterns observed in young typically developing subjects, which reinforces the hypothesis that ADHD is associated with brain maturation deficits.

  6. Positron emission tomography studies in the normal and abnormal ageing of human brain

    International Nuclear Information System (INIS)

    Comar, D.; Baron, J.C.

    1987-01-01

    Until recently, the investigation of the neurophysiological correlates of normal and abnormal ageing of the human brain was limited by methodological constraints, as the technics available provided only a few parameters (e.g. electroencephalograms, cerebral blood flow) monitored in superficial brain structures in a grossly regional and poorly quantitative way. Lately several non invasive techniques have been developed which allow to investigate in vivo both quantitatively and on local basis a number of previously inaccessible important aspects of brain function. Among these techniques, such as single photon emission tomography imaging of computerized electric events, nuclear magnetic resonance, positron emission tomography stands out as the most powerful and promising method since it allows the in vivo measurement of biochemical and pharmacological parameters

  7. Motor-related brain abnormalities in HIV-infected patients. A multimodal MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yawen; Wang, Xiaoxiao; Miao, Hui; Wei, Yarui; Ali, Rizwan [University of Science and Technology of China, Centers for Biomedical Engineering, Hefei, Anhui (China); Li, Ruili; Li, Hongjun [Capital Medical University, Department of Radiology, Beijing Youan Hospital, Beijing (China); Qiu, Bensheng [University of Science and Technology of China, Centers for Biomedical Engineering, Hefei, Anhui (China); Anhui Computer Application Institute of Traditional Chinese Medicine, Hefei, Anhui (China)

    2017-11-15

    It is generally believed that HIV infection could cause HIV-associated neurocognitive disorders (HAND) across a broad range of functional domains. Some of the most common findings are deficits in motor control. However, to date no neuroimaging studies have evaluated basic motor control in HIV-infected patients using a multimodal approach. In this study, we utilized high-resolution structural imaging and task-state functional magnetic resonance imaging (fMRI) to assess brain structure and motor function in a homogeneous cohort of HIV-infected patients. We found that HIV-infected patients had significantly reduced gray matter (GM) volume in cortical regions, which are involved in motor control, including the bilateral posterior insula cortex, premotor cortex, and supramarginal gyrus. Increased activation in bilateral posterior insula cortices was also demonstrated by patients during hand movement tasks compared with healthy controls. More importantly, the reduced GM in bilateral posterior insula cortices was spatially coincident with abnormal brain activation in HIV-infected patients. In addition, the results of partial correlation analysis indicated that GM reduction in bilateral posterior insula cortices and premotor cortices was significantly correlated with immune system deterioration. This study is the first to demonstrate spatially coincident GM reduction and abnormal activation during motor performance in HIV-infected patients. Although it remains unknown whether the brain deficits can be recovered, our findings may yield new insights into neurologic injury underlying motor dysfunction in HAND. (orig.)

  8. Motor-related brain abnormalities in HIV-infected patients. A multimodal MRI study

    International Nuclear Information System (INIS)

    Zhou, Yawen; Wang, Xiaoxiao; Miao, Hui; Wei, Yarui; Ali, Rizwan; Li, Ruili; Li, Hongjun; Qiu, Bensheng

    2017-01-01

    It is generally believed that HIV infection could cause HIV-associated neurocognitive disorders (HAND) across a broad range of functional domains. Some of the most common findings are deficits in motor control. However, to date no neuroimaging studies have evaluated basic motor control in HIV-infected patients using a multimodal approach. In this study, we utilized high-resolution structural imaging and task-state functional magnetic resonance imaging (fMRI) to assess brain structure and motor function in a homogeneous cohort of HIV-infected patients. We found that HIV-infected patients had significantly reduced gray matter (GM) volume in cortical regions, which are involved in motor control, including the bilateral posterior insula cortex, premotor cortex, and supramarginal gyrus. Increased activation in bilateral posterior insula cortices was also demonstrated by patients during hand movement tasks compared with healthy controls. More importantly, the reduced GM in bilateral posterior insula cortices was spatially coincident with abnormal brain activation in HIV-infected patients. In addition, the results of partial correlation analysis indicated that GM reduction in bilateral posterior insula cortices and premotor cortices was significantly correlated with immune system deterioration. This study is the first to demonstrate spatially coincident GM reduction and abnormal activation during motor performance in HIV-infected patients. Although it remains unknown whether the brain deficits can be recovered, our findings may yield new insights into neurologic injury underlying motor dysfunction in HAND. (orig.)

  9. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort

    Directory of Open Access Journals (Sweden)

    Benjamin S.C. Wade

    2015-01-01

    Full Text Available Over 50% of HIV+ individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV+ participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD and radial distances (RD defined on each region's surfaces. We also investigated effects of nadir CD4+ T-cell counts, viral load, time since diagnosis (TSD and cognition on subcortical morphology. Lastly, we explored whether HIV+ participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF model. The model was validated with 2-fold cross-validation. Volumes of HIV+ participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV+ people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV+ participants vs. controls, our RF model attained an area under the curve of 72%.

  10. Assessment of abnormal brain structures and networks in major depressive disorder using morphometric and connectome analyses.

    Science.gov (United States)

    Chen, Vincent Chin-Hung; Shen, Chao-Yu; Liang, Sophie Hsin-Yi; Li, Zhen-Hui; Tyan, Yeu-Sheng; Liao, Yin-To; Huang, Yin-Chen; Lee, Yena; McIntyre, Roger S; Weng, Jun-Cheng

    2016-11-15

    It is hypothesized that the phenomenology of major depressive disorder (MDD) is subserved by disturbances in the structure and function of brain circuits; however, findings of structural abnormalities using MRI have been inconsistent. Generalized q-sampling imaging (GQI) methodology provides an opportunity to assess the functional integrity of white matter tracts in implicated circuits. The study population was comprised of 16 outpatients with MDD (mean age 44.81±2.2 years) and 30 age- and gender-matched healthy controls (mean age 45.03±1.88 years). We excluded participants with any other primary mental disorder, substance use disorder, or any neurological illnesses. We used T1-weighted 3D MRI with voxel-based morphometry (VBM) and vertex-wise shape analysis, and GQI with voxel-based statistical analysis (VBA), graph theoretical analysis (GTA) and network-based statistical (NBS) analysis to evaluate brain structure and connectivity abnormalities in MDD compared to healthy controls correlates with clinical measures of depressive symptom severity, Hamilton Depression Rating Scale 17-item (HAMD) and Hospital Anxiety and Depression Scale (HADS). Using VBM and vertex-wise shape analyses, we found significant volumetric decreases in the hippocampus and amygdala among subjects with MDD (pbrain disorder with abnormal circuit structure and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Abnormal brain activation in excoriation (skin-picking) disorder

    DEFF Research Database (Denmark)

    Odlaug, Brian L.; Hampshire, Adam; Chamberlain, Samuel R

    2016-01-01

    encompassing bilateral dorsal striatum (maximal in right caudate), bilateral anterior cingulate and right medial frontal regions. These abnormalities were, for the most part, outside the dorsal planning network typically activated by executive planning tasks. Conclusions: Abnormalities of neural regions...

  12. Functional connectivity hubs of the mouse brain.

    Science.gov (United States)

    Liska, Adam; Galbusera, Alberto; Schwarz, Adam J; Gozzi, Alessandro

    2015-07-15

    Recent advances in functional connectivity methods have made it possible to identify brain hubs - a set of highly connected regions serving as integrators of distributed neuronal activity. The integrative role of hub nodes makes these areas points of high vulnerability to dysfunction in brain disorders, and abnormal hub connectivity profiles have been described for several neuropsychiatric disorders. The identification of analogous functional connectivity hubs in preclinical species like the mouse may provide critical insight into the elusive biological underpinnings of these connectional alterations. To spatially locate functional connectivity hubs in the mouse brain, here we applied a fully-weighted network analysis to map whole-brain intrinsic functional connectivity (i.e., the functional connectome) at a high-resolution voxel-scale. Analysis of a large resting-state functional magnetic resonance imaging (rsfMRI) dataset revealed the presence of six distinct functional modules related to known large-scale functional partitions of the brain, including a default-mode network (DMN). Consistent with human studies, highly-connected functional hubs were identified in several sub-regions of the DMN, including the anterior and posterior cingulate and prefrontal cortices, in the thalamus, and in small foci within well-known integrative cortical structures such as the insular and temporal association cortices. According to their integrative role, the identified hubs exhibited mutual preferential interconnections. These findings highlight the presence of evolutionarily-conserved, mutually-interconnected functional hubs in the mouse brain, and may guide future investigations of the biological foundations of aberrant rsfMRI hub connectivity associated with brain pathological states. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Abnormal parietal function in conversion paresis.

    Directory of Open Access Journals (Sweden)

    Marije van Beilen

    Full Text Available The etiology of medically unexplained symptoms such as conversion disorder is poorly understood. This is partly because the interpretation of neuroimaging results in conversion paresis has been complicated by the use of different control groups, tasks and statistical comparisons. The present study includes these different aspects in a single data set. In our study we included both normal controls and feigners to control for conversion paresis. We studied both movement execution and imagery, and we contrasted both within-group and between-group activation. Moreover, to reveal hemisphere-specific effects that have not been reported before, we performed these analyses using both flipped and unflipped data. This approach resulted in the identification of abnormal parietal activation which was specific for conversion paresis patients. Patients also showed reduced activity in the prefrontal cortex, supramarginal gyrus and precuneus, including hemisphere-specific activation that is lateralized in the same hemisphere, regardless of right- or left-sided paresis. We propose that these regions are candidates for an interface between psychological mechanisms and disturbed higher-order motor control. Our study presents an integrative neurophysiological view of the mechanisms that contribute to the etiology of this puzzling psychological disorder, which can be further investigated with other types of conversion symptoms.

  14. Abnormal Parietal Function in Conversion Paresis

    Science.gov (United States)

    van Beilen, Marije; de Jong, Bauke M.; Gieteling, Esther W.; Renken, Remco; Leenders, Klaus L.

    2011-01-01

    The etiology of medically unexplained symptoms such as conversion disorder is poorly understood. This is partly because the interpretation of neuroimaging results in conversion paresis has been complicated by the use of different control groups, tasks and statistical comparisons. The present study includes these different aspects in a single data set. In our study we included both normal controls and feigners to control for conversion paresis. We studied both movement execution and imagery, and we contrasted both within-group and between-group activation. Moreover, to reveal hemisphere-specific effects that have not been reported before, we performed these analyses using both flipped and unflipped data. This approach resulted in the identification of abnormal parietal activation which was specific for conversion paresis patients. Patients also showed reduced activity in the prefrontal cortex, supramarginal gyrus and precuneus, including hemisphere-specific activation that is lateralized in the same hemisphere, regardless of right- or left-sided paresis. We propose that these regions are candidates for an interface between psychological mechanisms and disturbed higher-order motor control. Our study presents an integrative neurophysiological view of the mechanisms that contribute to the etiology of this puzzling psychological disorder, which can be further investigated with other types of conversion symptoms. PMID:22039428

  15. Brain perfusion abnormality in patients with chronic pain.

    Science.gov (United States)

    Honda, Tetsumi; Maruta, Toshihiko; Takahashi, Kumiko

    2007-06-01

    We performed single photon emission computed tomography (SPECT) of the brain in 15 patients with chronic pain (males, 7; females, 8; average age 49.1 +/- 17.9 years) and identified the locus of cerebral blood flow reduction by a new analytical method (easy Z-score Imaging System: eZIS) to clarify the functional neuroanatomical basis of chronic pain. Of the 15 patients, 6 had backache, 2 neck pain, 2 gonalgia, and 5 pain at other sites, with an average Visual analog scale of pain (VAS) value of 6.1 +/- 1.9. In comparison with a information on a data base on physically unimpaired persons, the dorsolateral prefrontal area (both sides, right dominant), medial prefrontal area (both sides), dorsal aspect of the anterior cingulate gyrus nociceptive cortex (both sides) and the lateral part of the orbitofrontal cortex (right side) were found to have blood flow reduction in the group of patients with chronic pain. As for chronic pain and its correlation with clinical features such as a depressive state, anticipation anxiety, PTSD, and conversion hysteria, the mechanism in the brain that was suggested by this study should be followed-up by functional neuroimaging studies.

  16. Brain perfusion abnormality in patients with chronic pain

    International Nuclear Information System (INIS)

    Honda, Tetsumi; Maruta, Toshihiko; Takahashi, Kumiko

    2007-01-01

    We performed single photon emission computed tomography (SPECT) of the brain in 15 patients with chronic pain (males, 7; females, 8; average age 49.1±17.9 years) and identified the locus of cerebral blood flow reduction by a new analytical method (easy Z-score Imaging System: eZIS) to clarify the functional neuroanatomical basis of chronic pain. Of the 15 patients, 6 had backache, 2 neck pain, 2 gonalgia, and 5 pain at other sites, with an average Visual analog scale of pain (VAS) value of 6.1±1.9. In comparison with a information on a data base on physically unimpaired persons, the dorsolateral prefrontal area (both sides, right dominant), medial prefrontal area (both sides), dorsal aspect of the anterior cingulate gyrus nociceptive cortex (both sides) and the lateral part of the orbitofrontal cortex (right side) were found to have blood flow reduction in the group of patients with chronic pain. As for chronic pain and its correlation with clinical features such as a depressive state, anticipation anxiety, post-traumatic stress disorder (PTSD), and conversion hysteria, the mechanism in the brain that was suggested by this study should be followed-up by functional neuroimaging studies. (author)

  17. Neurobehavioral Abnormalities Associated with Executive Dysfunction after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Rodger Ll. Wood

    2017-10-01

    Full Text Available Objective: This article will address how anomalies of executive function after traumatic brain injury (TBI can translate into altered social behavior that has an impact on a person’s capacity to live safely and independently in the community.Method: Review of literature on executive and neurobehavioral function linked to cognitive ageing in neurologically healthy populations and late neurocognitive effects of serious TBI. Information was collated from internet searches involving MEDLINE, PubMed, PyscINFO and Google Scholar as well as the authors’ own catalogs.Conclusions: The conventional distinction between cognitive and emotional-behavioral sequelae of TBI is shown to be superficial in the light of increasing evidence that executive skills are critical for integrating and appraising environmental events in terms of cognitive, emotional and social significance. This is undertaken through multiple fronto-subcortical pathways within which it is possible to identify a predominantly dorsolateral network that subserves executive control of attention and cognition (so-called cold executive processes and orbito-frontal/ventro-medial pathways that underpin the hot executive skills that drive much of behavior in daily life. TBI frequently involves disruption to both sets of executive functions but research is increasingly demonstrating the role of hot executive deficits underpinning a wide range of neurobehavioral disorders that compromise relationships, functional independence and mental capacity in daily life.

  18. Tansig activation function (of MLP network) for cardiac abnormality detection

    Science.gov (United States)

    Adnan, Ja'afar; Daud, Nik Ghazali Nik; Ishak, Mohd Taufiq; Rizman, Zairi Ismael; Rahman, Muhammad Izzuddin Abd

    2018-02-01

    Heart abnormality often occurs regardless of gender, age and races. This problem sometimes does not show any symptoms and it can cause a sudden death to the patient. In general, heart abnormality is the irregular electrical activity of the heart. This paper attempts to develop a program that can detect heart abnormality activity through implementation of Multilayer Perceptron (MLP) network. A certain amount of data of the heartbeat signals from the electrocardiogram (ECG) will be used in this project to train the MLP network by using several training algorithms with Tansig activation function.

  19. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study.

    Directory of Open Access Journals (Sweden)

    Wen Miao

    Full Text Available To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1 patients using multimodal MRI imaging.T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender-matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls.Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus.CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1.

  20. Abnormal lung function at preschool age - asthma in adolescence?

    Science.gov (United States)

    Lajunen, Katariina; Kalliola, Satu; Kotaniemi-Syrjänen, Anne; Sarna, Seppo; Malmberg, L Pekka; Pelkonen, Anna S; Mäkelä, Mika J

    2018-03-06

    Asthma often begins early in childhood. However, the risk for persistence is challenging to evaluate. This longitudinal study relates lung function assessed with impulse oscillometry (IOS) in preschool children to asthma in adolescence. Lung function was measured with IOS in 255 children with asthma-like symptoms aged 4-7 years. Baseline measurements were followed by exercise challenge and bronchodilation tests. At age 12-16 years, 121 children participated in the follow-up visit, when lung function was assessed with spirometry, followed by a bronchodilation test. Asthma symptoms and medication were recorded by a questionnaire and atopy defined by skin prick tests. Abnormal baseline values in preschool IOS were significantly associated with low lung function, the need for asthma medication, and asthma symptoms in adolescence. Preschool abnormal R5 at baseline (z-score ≥1.645 SD) showed 9.2 odds ratio (95%CI 2.7;31.7) for abnormal FEV1/FVC, use of asthma medication in adolescence, and 9.9 odds ratio (95%CI 2.9;34.4) for asthma symptoms. Positive exercise challenge and modified asthma-predictive index at preschool age predicted asthma symptoms and the need for asthma medication, but not abnormal lung function at teenage. Abnormal preschool IOS is associated with asthma and poor lung function in adolescence and might be utilised for identification of asthma persistence. Copyright © 2018. Published by Elsevier Inc.

  1. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    Science.gov (United States)

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital lobes together, 4.6%.

  2. Functional and structural abnormalities associated with empathy in ...

    Indian Academy of Sciences (India)

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM).

  3. Incidental sinus abnormalities in 256 patients referred for brain MRI

    Directory of Open Access Journals (Sweden)

    Ghanaati H

    2007-06-01

    Full Text Available Background: Imaging abnormalities in the paranasal sinuses are regularly noted as incidental findings on MRI, however, little is known about their prevalence in the Iranian population. The purpose of this study was to classify these findings in the paranasal sinuses as seen on MRI and to investigate the prevalence, according to site and type of paranasal abnormality. Methods: In this cross-sectional study, the T2-weighted axial MRI of 256 patients with diseases unrelated to their paranasal sinuses were reviewed between May 2002 and June 2003. The findings were categorized according to the anatomic location and the imaging characteristics of the abnormality. The abnormalities recorded included total sinus opacification, mucoperiosteal thickening >5mm, air fluid levels and retention cysts or polyps. Unilateral or bilateral involvement and septal deviation were also noted. A sinus was considered normal if it was fully aerated and no soft-tissue density was apparent within the cavity. Results: Among our cases, 111 (43.5% were male and 145 (56.5% were female. Of these patients, abnormalities in one or more of the sinus groups were found in 110 subjects (42.9%, 55.5% of which were male and 44.5% were female (P=0.001. Maxillary sinus abnormalities were observed in 66.4% of the patients, while ethmoid sinus abnormalities were found in 63.6%. Of the ethmoid abnormalities, 21% were found in the anterior section, 9% in the middle ethmoid, and 8% in the posterior ethmoid. The most common abnormality found was mucosal thickening. Among our cases, 23.4% had septal deviation, which was significantly higher among those with sinusitis (29% versus 19.1%; P<0.01. Of those patients with sinus involvement, 16% were involved in the sphenoid sinus and 5% in the frontal sinus. The results obtained from the patients with sinus abnormality revealed that 85% suffered from cough, nasal obstruction, runny nose, facial pain and post nasal discharge and 24% had been diagnosed

  4. Functional and structural abnormalities associated with empathy in ...

    Indian Academy of Sciences (India)

    In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis ...

  5. TUBA1A Mutation Associated With Eye Abnormalities in Addition to Brain Malformation.

    Science.gov (United States)

    Myers, Kenneth A; Bello-Espinosa, Luis E; Kherani, Amin; Wei, Xing-Chang; Innes, Allan Micheil

    2015-11-01

    We describe the case of a boy with a TUBA1A mutation presenting with microphthalmia and congenital cataracts in addition to microcephaly and severe brain malformation. A boy presented in early infancy with microphthalmia, congenital cataracts, and microcephaly. His neurological course included severe hypotonia and drug-resistant epilepsy. Magnetic resonance imaging of the brain revealed a complex malformation that included agenesis of the corpus callosum, severely hypoplastic cerebellar vermis, mildly hypoplastic and dysplastic cerebellar hemispheres, mildly hypoplastic brainstem, mild posterior simplified cerebral gyral pattern, dysplastic basal ganglia and thalami, hypoplastic optic nerves, and absent olfactory bulbs. TUBA1A genetic testing was conducted and revealed a previously unreported heterozygous 808G>T missense mutation. Parental genetic testing was negative, indicating that the child's mutation was de novo. The TUBA1A gene encodes tubulin alpha-1A, a protein with an important role in microtubule function and stability. Human mutations can result in a wide spectrum of brain malformations including lissencephaly, microlissencephaly, cerebellar hypoplasia, agenesis of the corpus callosum, pachygyria and polymicrogyria. Although TUBA1A is expressed in both developing brain and retinal tissue, there are no reported cases of TUBA1A mutations in association with major developmental ophthalmologic abnormalities. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The nature of white matter abnormalities in blast-related mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jasmeet P. Hayes

    2015-01-01

    Full Text Available Blast-related traumatic brain injury (TBI has been a common injury among returning troops due to the widespread use of improvised explosive devices in the Iraq and Afghanistan Wars. As most of the TBIs sustained are in the mild range, brain changes may not be detected by standard clinical imaging techniques such as CT. Furthermore, the functional significance of these types of injuries is currently being debated. However, accumulating evidence suggests that diffusion tensor imaging (DTI is sensitive to subtle white matter abnormalities and may be especially useful in detecting mild TBI (mTBI. The primary aim of this study was to use DTI to characterize the nature of white matter abnormalities following blast-related mTBI, and in particular, examine the extent to which mTBI-related white matter abnormalities are region-specific or spatially heterogeneous. In addition, we examined whether mTBI with loss of consciousness (LOC was associated with more extensive white matter abnormality than mTBI without LOC, as well as the potential moderating effect of number of blast exposures. A second aim was to examine the relationship between white matter integrity and neurocognitive function. Finally, a third aim was to examine the contribution of PTSD symptom severity to observed white matter alterations. One hundred fourteen OEF/OIF veterans underwent DTI and neuropsychological examination and were divided into three groups including a control group, blast-related mTBI without LOC (mTBI - LOC group, and blast-related mTBI with LOC (mTBI + LOC group. Hierarchical regression models were used to examine the extent to which mTBI and PTSD predicted white matter abnormalities using two approaches: 1 a region-specific analysis and 2 a measure of spatial heterogeneity. Neurocognitive composite scores were calculated for executive functions, attention, memory, and psychomotor speed. Results showed that blast-related mTBI + LOC was associated with greater odds of

  7. Structural brain abnormalities in early onset first-episode psychosis

    DEFF Research Database (Denmark)

    Pagsberg, A K; Baaré, William Frans Christian; Raabjerg Christensen, A M

    2007-01-01

    BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder...

  8. Brain perfusion studies in the evaluation of acute neurologic abnormalities.

    Science.gov (United States)

    Zuckier, Lionel S; Sogbein, O O

    2013-03-01

    Two categories of single-photon radiopharmaceuticals for brain perfusion exist, nonlipophilic and lipophilic compounds. The former are useful in performing simple flow examinations which today have application primarily in the determination of brain death. The latter also exhibit a parenchymal uptake phase that allows for evaluation of the distribution of blood flow within the brain. The lipophilic radiopharmaceuticals, therefore, have application in the evaluation of patients following catastrophic brain injury and traumatic brain injury (TBI) and in prognosticating the outcome following cerebral vascular accidents. Use of these agents to monitor therapy with thrombolytic agents, although theoretically helpful, is technically difficult due to the need to institute treatment rapidly, without undue delay. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Magnetic resonance imaging of neonatal brain. Assessment of normal and abnormal findings

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Koh; Kadono, Naoko; Kawase, Shohji; Kihara, Minako; Matsuo, Yasutaka; Yoshioka, Hiroshi; Kinugasa, Akihiko; Sawada, Tadashi (Kyoto Prefectural Univ. of Medicine (Japan))

    1994-11-01

    To establish the normal MRI appearance of the neonatal brain, magnetic resonance imaging (MRI) was performed on 124 neonates who admitted to our neonatal intensive care unit. Degree of myelination, ventricular size, width of the extracerebral space and focal lesion in the brain were evaluated to investigate the relationship between MRI findings of neonatal brain and the neurological prognosis. 85 neonates underwent MRI both at neonatal period and at the corrected age of one year. The change of abnormal MRI findings was evaluated. 19 neonates had abnormal neurological outcome on subsequent examinations. Delayed myelination, ventriculomegaly and large extracerebral space were seen in 13, 7 and 9 neonates respectively. 4, 3 and 5 neonates out of them showed abnormal neurological prognosis respectively. Of the 19 neonates with focal lesion in MRI, 2 had parenchymal hematoma in the brain, 2 had subdural hematoma, 5 had chronic hematoma following subependymal hemorrhage, 6 had cystic formation following subependymal hemorrhage, 2 had subcortical leukomalacia, one had periventricular leukomalacia and one had cyst in the parenchyma of cerebellum. 4 neonates of 19 with focal lesion in MRI showed abnormal development. Of the neonates who had abnormal neurological prognosis, 7 neonates showed no abnormal finding in MRI at neonatal period. 3 of them had mild mental retardation. MRI shows promise in the neonatal period. It facilitates recognition of abnormalities of neonatal brain and may be used to predict abnormal neurologic outcome. However physiological change in the brain of neonates, especially of premature neonates, should be considered on interpreting these findings. Awareness of developmental features should help to minimize misinterpretation of normal changes in the neonatal brain. (author).

  10. Magnetic resonance imaging of neonatal brain. Assessment of normal and abnormal findings

    International Nuclear Information System (INIS)

    Hasegawa, Koh; Kadono, Naoko; Kawase, Shohji; Kihara, Minako; Matsuo, Yasutaka; Yoshioka, Hiroshi; Kinugasa, Akihiko; Sawada, Tadashi

    1994-01-01

    To establish the normal MRI appearance of the neonatal brain, magnetic resonance imaging (MRI) was performed on 124 neonates who admitted to our neonatal intensive care unit. Degree of myelination, ventricular size, width of the extracerebral space and focal lesion in the brain were evaluated to investigate the relationship between MRI findings of neonatal brain and the neurological prognosis. 85 neonates underwent MRI both at neonatal period and at the corrected age of one year. The change of abnormal MRI findings was evaluated. 19 neonates had abnormal neurological outcome on subsequent examinations. Delayed myelination, ventriculomegaly and large extracerebral space were seen in 13, 7 and 9 neonates respectively. 4, 3 and 5 neonates out of them showed abnormal neurological prognosis respectively. Of the 19 neonates with focal lesion in MRI, 2 had parenchymal hematoma in the brain, 2 had subdural hematoma, 5 had chronic hematoma following subependymal hemorrhage, 6 had cystic formation following subependymal hemorrhage, 2 had subcortical leukomalacia, one had periventricular leukomalacia and one had cyst in the parenchyma of cerebellum. 4 neonates of 19 with focal lesion in MRI showed abnormal development. Of the neonates who had abnormal neurological prognosis, 7 neonates showed no abnormal finding in MRI at neonatal period. 3 of them had mild mental retardation. MRI shows promise in the neonatal period. It facilitates recognition of abnormalities of neonatal brain and may be used to predict abnormal neurologic outcome. However physiological change in the brain of neonates, especially of premature neonates, should be considered on interpreting these findings. Awareness of developmental features should help to minimize misinterpretation of normal changes in the neonatal brain. (author)

  11. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2016-01-01

    Full Text Available Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment (r = -0.609, P = 0.047 and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = -0.737, P = 0.010. Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients.

  12. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study.

    Science.gov (United States)

    Wu, Ping; Zhou, Yu-Mei; Zeng, Fang; Li, Zheng-Jie; Luo, Lu; Li, Yong-Xin; Fan, Wei; Qiu, Li-Hua; Qin, Wei; Chen, Lin; Bai, Lin; Nie, Juan; Zhang, San; Xiong, Yan; Bai, Yu; Yin, Can-Xin; Liang, Fan-Rong

    2016-09-01

    Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment ( r = -0.609, P = 0.047) and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale ( r = -0.737, P = 0.010). Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients.

  13. Abnormal connectivity in the sensorimotor network predicts attention deficits in traumatic brain injury.

    Science.gov (United States)

    Shumskaya, Elena; van Gerven, Marcel A J; Norris, David G; Vos, Pieter E; Kessels, Roy P C

    2017-03-01

    The aim of this study was to explore modifications of functional connectivity in multiple resting-state networks (RSNs) after moderate to severe traumatic brain injury (TBI) and evaluate the relationship between functional connectivity patterns and cognitive abnormalities. Forty-three moderate/severe TBI patients and 34 healthy controls (HC) underwent resting-state fMRI. Group ICA was applied to identify RSNs. Between-subject analysis was performed using dual regression. Multiple linear regressions were used to investigate the relationship between abnormal connectivity strength and neuropsychological outcome. Forty (93%) TBI patients showed moderate disability, while 2 (5%) and 1 (2%) upper severe disability and low good recovery, respectively. TBI patients performed worse than HC on the domains attention and language. We found increased connectivity in sensorimotor, visual, default mode (DMN), executive, and cerebellar RSNs after TBI. We demonstrated an effect of connectivity in the sensorimotor RSN on attention (p < 10 -3 ) and a trend towards a significant effect of the DMN connectivity on attention (p = 0.058). A group-by-network interaction on attention was found in the sensorimotor network (p = 0.002). In TBI, attention was positively related to abnormal connectivity within the sensorimotor RSN, while in HC this relation was negative. Our results show altered patterns of functional connectivity after TBI. Attention impairments in TBI were associated with increased connectivity in the sensorimotor network. Further research is needed to test whether attention in TBI patients is directly affected by changes in functional connectivity in the sensorimotor network or whether the effect is actually driven by changes in the DMN.

  14. Abnormal brain iron homeostasis in human and animal prion disorders.

    Directory of Open Access Journals (Sweden)

    Ajay Singh

    2009-03-01

    Full Text Available Neurotoxicity in all prion disorders is believed to result from the accumulation of PrP-scrapie (PrP(Sc, a beta-sheet rich isoform of a normal cell-surface glycoprotein, the prion protein (PrP(C. Limited reports suggest imbalance of brain iron homeostasis as a significant associated cause of neurotoxicity in prion-infected cell and mouse models. However, systematic studies on the generality of this phenomenon and the underlying mechanism(s leading to iron dyshomeostasis in diseased brains are lacking. In this report, we demonstrate that prion disease-affected human, hamster, and mouse brains show increased total and redox-active Fe (II iron, and a paradoxical increase in major iron uptake proteins transferrin (Tf and transferrin receptor (TfR at the end stage of disease. Furthermore, examination of scrapie-inoculated hamster brains at different timepoints following infection shows increased levels of Tf with time, suggesting increasing iron deficiency with disease progression. Sporadic Creutzfeldt-Jakob disease (sCJD-affected human brains show a similar increase in total iron and a direct correlation between PrP and Tf levels, implicating PrP(Sc as the underlying cause of iron deficiency. Increased binding of Tf to the cerebellar Purkinje cell neurons of sCJD brains further indicates upregulation of TfR and a phenotype of neuronal iron deficiency in diseased brains despite increased iron levels. The likely cause of this phenotype is sequestration of iron in brain ferritin that becomes detergent-insoluble in PrP(Sc-infected cell lines and sCJD brain homogenates. These results suggest that sequestration of iron in PrP(Sc-ferritin complexes induces a state of iron bio-insufficiency in prion disease-affected brains, resulting in increased uptake and a state of iron dyshomeostasis. An additional unexpected observation is the resistance of Tf to digestion by proteinase-K, providing a reliable marker for iron levels in postmortem human brains. These

  15. Neuroendocrine Abnormalities in Patients with Traumatic Brain Injury

    Science.gov (United States)

    1991-01-01

    oxytocin (41). However. global brain damage may not substantially increase ACTH secretion. Our study in rats showed that fluid percussion brain injury...who were comatose following trauma. Plasma cortisol and aldosterone levels wcre measured at 4-h intervals throughout three consecutive 24-h cycles in...148). In dog and rabbit, hypothalamic compressive lesion led to a hypothyroidisr within 4 weeks (30). The relationship between responses to head

  16. Prevalence of abnormal liver function tests in rheumatoid arthritis ...

    African Journals Online (AJOL)

    Objective: To determine the prevalence of Abnormal Liver Function Tests (LFTs) in patients with rheumatoid arthritis at the rheumatology out-patient clinic, Kenyatta National Hospital (KNH). Design: Cross-sectional descriptive study. Setting: Rheumatology out-patient clinic at KNH. Participants: One hundred and seven RA ...

  17. Abnormal neural connectivity in schizophrenia and fMRI-brain computer interface as a potential therapeutic approach

    Directory of Open Access Journals (Sweden)

    Sergio eRuiz

    2013-03-01

    Full Text Available Considering that single locations of structural and functional abnormalities are insufficient to explain the diverse psychopathology of schizophrenia, new models have postulated that the impairments associated with the disease arise from a failure to integrate the activity of local and distributed neural circuits: the abnormal neural connectivity hypothesis. In the last years, new evidence coming from neuroimaging have supported and expanded this theory. However, despite the increasing evidence that schizophrenia is a disorder of neural connectivity, so far there are no treatments that have shown to produce a significant change in brain connectivity, or that have been specifically designed to alleviate this problem. Brain-Computer Interfaces based on real-time functional Magnetic Resonance Imaging (fMRI-BCI are novel techniques that have allowed subjects to achieve self-regulation of circumscribed brain regions. In recent studies, experiments with this technology have resulted in new findings suggesting that this methodology could be used to train subjects to enhance brain connectivity, and therefore could potentially be used as a therapeutic tool in mental disorders including schizophrenia.The present article summarizes the findings coming from hemodynamics-based neuroimaging that support the abnormal connectivity hypothesis in schizophrenia, and discusses a new approach that could address this problem.

  18. Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients.

    Science.gov (United States)

    Bubber, P; Hartounian, V; Gibson, G E; Blass, J P

    2011-03-01

    Images of brain metabolism and measurements of activities of components of the electron transport chain support earlier studies that suggest that brain glucose oxidation is inherently abnormal in a significant proportion of persons with schizophrenia. Therefore, we measured the activities of enzymes of the tricarboxylic (TCA) cycle in dorsolateral-prefrontal-cortex from schizophrenia patients (N=13) and non-psychiatric disease controls (N=13): the pyruvate dehydrogenase complex (PDHC), citrate synthase (CS), aconitase, isocitrate dehydrogenase (ICDH), the alpha-ketoglutarate dehydrogenase complex (KGDHC), succinate thiokinase (STH), succinate dehydrogenase (SDH), fumarase and malate dehydrogenase (MDH). Activities of aconitase (18.4%, pTCA cycle, were lower, but SDH (18.3%, pTCA cycle and cognitive function, age or choline acetyl transferase activity, except for aconitase activity which decreased slightly with age (r=0.55, p=003). The increased activities of dehydrogenases in the second half of the TCA cycle may reflect a compensatory response to reduced activities of enzymes in the first half. Such alterations in the components of TCA cycle are adequate to alter the rate of brain metabolism. These results are consistent with the imaging studies of hypometabolism in schizophrenia. They suggest that deficiencies in mitochondrial enzymes can be associated with mental disease that takes the form of schizophrenia. Copyright © 2010 Elsevier B.V. and ECNP. All rights reserved.

  19. Thrombotic thrombocytopenic purpura: MR demonstration of reversible brain abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    D' Aprile, P.; Carella, A.; Pagliarulo, R. (Univ. of Bari (Italy)); Farchi, G. (Oncology Institute, Bari (Italy))

    1994-01-01

    We report a case of thrombotic thrombocytopenic purpura evaluated by MR, Multiple hyperintense foci on the TS-weighted images, observed principally in the brain stem and in the region of the basal nuclei, and neurologic signs disappeared after 15 days of therapy. 6 refs., 2 figs.

  20. An unusual presentation of muscle-eye-brain disease: severe eye abnormalities with mild muscle and brain involvement.

    Science.gov (United States)

    Demir, Ercan; Gucuyener, Kivilcim; Akturk, Aysima; Talim, Beril; Konus, Oznur; Del Bo, Roberto; Ghezzi, Serena; Comi, Giacomo P

    2009-10-01

    Muscle-eye-brain disease (MEB) is characterised by congenital muscular dystrophy, structural brain malformations and eye abnormalities. We report a MEB case whose presenting sign was congenital blindness. She was investigated primarily for eye abnormalities at onset. She had bilateral retinal detachment and microphthalmia. Mild axial hypotonia and motor retardation were attributed to cerebral disorder in another center. Muscle biopsy showed mild myopathic changes and significant alpha-dystroglycan deficiency. Analysis of the POMGnT1 showed a novel homozygous mutation 1814G>C, causing p.Arg605Pro change. This case expands the clinical spectrum of MEB with unusually severe eye abnormalities compared to mild skeletal muscle and brain involvement.

  1. Prospective evaluation of abnormal liver function tests in pregnancy.

    Science.gov (United States)

    Harish, K; Nitha, R; Harikumar, R; Sunil Kumar, K; Varghese, Thomas; Sreedevi, N S; Bushrath, K; Sandesh, K; Tony, J

    2005-01-01

    Abnormalities in liver function tests (LFT) during pregnancy are a commonly encountered problem often associated with serious consequences especially when it occurs in the third trimester. The spectrum of abnormal liver functions in pregnancy can be fairly wide and diagnostic work up often challenging. There is insufficient prospective data on the spectrum and outcome of liver disease in pregnant population from south India. This study was performed to assess the causes of deranged liver function in the pregnant population and also to prospectively determine the outcome of liver dysfunction in pregnancy. All abnormal LFT results observed in serum samples from pregnant patients attending the obstetric unit of our hospital from January 2003 to January 2005 were evaluated and prospectively followed throughout pregnancy. Laboratory investigations included coagulation profile, renal function tests, serology for viral markers (HBsAg, anti-HCV, IgM anti-HEV and IgM anti-HAV) and other relevant biochemical tests. In those with liver dysfunction in the third trimester the maternal and perinatal outcome was evaluated. A total of 125 patients were identified with abnormalities in LFT results during this period. The majority of causes were related to pregnancy specific conditions (57.6%). Most episodes of abnormal LFT occurred in the third trimester (59.2%). Hyperemesis gravidarum (55.8%) and viral hepatitis (47%) were the most common causes of abnormal LFT in the first and second trimesters respectively. HELLP (28.3%) and AFLP (14.8%) were the most common causes of abnormal LFT in the third trimester. There were no mAternal deaths due to liver dysfunction in the first or second trimester. Liver dysfunction in the third trimester (74 patients) was associated with serious consequences. DIC was the most common complication (20.2%). The overall and perinatal mortality was 20.2% and 24.6% respectively. AFLP and HELLP syndromes were associated with poor maternal and fetal outcome

  2. [Functional brain mapping of pain perception].

    Science.gov (United States)

    Peyron, Roland; Faillenot, Isabelle

    2011-01-01

    In this review, we summarize the contribution of functional imaging to the question of nociception in humans. In the beginning of the 90's, brain areas supposed to be involved in physiological pain processes were almost exclusively the primary somatosensory area (SI), thalamus, and anterior cingulate cortex. In spite of these a priori hypotheses, the first imaging studies revealed that the main brain areas and those providing the most consistent activations in pain conditions were the insular and the SII cortices, bilaterally. This has been confirmed with other techniques such as intracerebral recordings of evoked potentials after nociceptive stimulations with laser showing a consistent response in the operculo-insular area which amplitude correlates with pain intensity. In spite of electrode implantations in other areas of the brain, only rare and inconsistent responses have been found outside the operculo-insular cortices. With electrical stimulation delivered directly in the brain, it has also been shown that stimulation in this area only--and not in other brain areas--was able to elicit a painful sensation. Thus, over the last 15 years, the operculo-insular cortex has been re-discovered as a main area of pain integration, mainly in its sensory and intensity aspects. In neuropathic pain also, these areas have been demonstrated as being abnormally recruited, bilaterally, in response to innocuous stimuli. These results suggest that plastic changes may occur in brain areas that were pre-defined for generating pain sensations. Conversely, when the brain activations concomitant to pain relief is taken into account, a large number of studies pointed out medial prefrontal and rostral cingulate areas as being associated with pain controls. Interestingly, these activations may correlate with the magnitude of pain relief, with the activation of the PAG, and, at least in some instances, with the involvement of endogenous opioids.

  3. Gray Matter Concentration Abnormality in Brains of Narcolepsy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Eun Yeon; Tae, Woo Suk; Kim, Sung Tae; Hong, Seung Bong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2009-12-15

    To investigate gray matter concentration changes in the brains of narcoleptic patients. Twenty-nine narcoleptic patient with cataplexy and 29 age and sex-matched normal subjects (mean age, 31 years old) underwent volumetric MRIs. The MRIs were spatially normalized to a standard T1 template and subdivided into gray matter, white matter, and cerebrospinal fluid (CSF). These segmented images were then smoothed using a 12-mm full width at half maximum (FWHM) isotropic Gaussian kernel. An optimized voxel-based morphometry protocol was used to analyze brain tissue concentrations using SPM2 (statistical parametric mapping). A one-way analysis of variance was applied to the concentration analysis of gray matter images. Narcoleptics with cataplexy showed reduced gray matter concentration in bilateral thalami, left gyrus rectus, bilateral frontopolar gyri, bilateral short insular gyri, bilateral superior frontal gyri, and right superior temporal and left inferior temporal gyri compared to normal subjects (uncorrected p < 0.001). Furthermore, small volume correction revealed gray matter concentration reduction in bilateral nuclei accumbens, hypothalami, and thalami (false discovery rate corrected p < 0.05). Gray matter concentration reductions were observed in brain regions related to excessive daytime sleepiness, cognition, attention, and memory in narcoleptics with cataplexy

  4. Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Cianfoni, A., E-mail: acianfoni@hotmail.com [Neuroradiology, Neurocenter of Italian Switzerland–Ospedale regionale Lugano, Via Tesserete 46, Lugano, 6900, CH (Switzerland); Caulo, M., E-mail: caulo@unich.it [Department of Neuroscience and Imaging, University of Chieti, Via dei Vestini 33, 6610 Chieti. Italy (Italy); Cerase, A., E-mail: alfonsocerase@gmail.com [Unit of Neuroimaging and Neurointervention NINT, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Universitaria Senese, Policlinico “Santa Maria alle Scotte”, V.le Bracci 16, Siena (Italy); Della Marca, G., E-mail: dellamarca@rm.unicatt.it [Neurology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Falcone, C., E-mail: carlo_falc@libero.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Di Lella, G.M., E-mail: gdilella@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Gaudino, S., E-mail: sgaudino@sirm.org [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Edwards, J., E-mail: edwardjc@musc.edu [Neuroscience Dept., Medical University of South Carolina, 96J Lucas st, 29425, Charleston, SC (United States); Colosimo, C., E-mail: colosimo@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy)

    2013-11-01

    Introduction MRI abnormalities in the postictal period might represent the effect of the seizure activity, rather than its structural cause. Material and Methods Retrospective review of clinical and neuroimaging charts of 26 patients diagnosed with seizure-related MR-signal changes. All patients underwent brain-MRI (1.5-Tesla, standard pre- and post-contrast brain imaging, including DWI-ADC in 19/26) within 7 days from a seizure and at least one follow-up MRI, showing partial or complete reversibility of the MR-signal changes. Extensive clinical work-up and follow-up, ranging from 3 months to 5 years, ruled out infection or other possible causes of brain damage. Seizure-induced brain-MRI abnormalities remained a diagnosis of exclusion. Site, characteristics and reversibility of MRI changes, and association with characteristics of seizures were determined. Results MRI showed unilateral (13/26) and bilateral abnormalities, with high (24/26) and low (2/26) T2-signal, leptomeningeal contrast-enhancement (2/26), restricted diffusion (9/19). Location of abnormality was cortical/subcortical, basal ganglia, white matter, corpus callosum, cerebellum. Hippocampus was involved in 10/26 patients. Reversibility of MRI changes was complete in 15, and with residual gliosis or focal atrophy in 11 patients. Reversibility was noted between 15 and 150 days (average, 62 days). Partial simple and complex seizures were associated with hippocampal involvement (p = 0.015), status epilepticus with incomplete reversibility of MRI abnormalities (p = 0.041). Conclusions Seizure or epileptic status can induce transient, variably reversible MRI brain abnormalities. Partial seizures are frequently associated with hippocampal involvement and status epilepticus with incompletely reversible lesions. These seizure-induced MRI abnormalities pose a broad differential diagnosis; increased awareness may reduce the risk of misdiagnosis and unnecessary intervention.

  5. Brain and cognition abnormalities in long-term anabolic-androgenic steroid users.

    Science.gov (United States)

    Kaufman, Marc J; Janes, Amy C; Hudson, James I; Brennan, Brian P; Kanayama, Gen; Kerrigan, Andrew R; Jensen, J Eric; Pope, Harrison G

    2015-07-01

    Anabolic-androgenic steroid (AAS) use is associated with psychiatric symptoms including increased aggression as well as with cognitive dysfunction. The brain effects of long-term AAS use have not been assessed in humans. This multimodal magnetic resonance imaging study of the brain compared 10 male weightlifters reporting long-term AAS use with 10 age-matched weightlifters reporting no AAS exposure. Participants were administered visuospatial memory tests and underwent neuroimaging. Brain volumetric analyses were performed; resting-state fMRI functional connectivity (rsFC) was evaluated using a region-of-interest analysis focused on the amygdala; and dorsal anterior cingulate cortex (dACC) metabolites were quantified by proton magnetic resonance spectroscopy (MRS). AAS users had larger right amygdala volumes than nonusers (P=0.002) and reduced rsFC between right amygdala and frontal, striatal, limbic, hippocampal, and visual cortical areas. Left amygdala volumes were slightly larger in AAS users (P=0.061) but few group differences were detected in left amygdala rsFC. AAS users also had lower dACC scyllo-inositol levels (P=0.004) and higher glutamine/glutamate ratios (P=0.028), possibly reflecting increased glutamate turnover. On a visuospatial cognitive task, AAS users performed more poorly than nonusers, with the difference approaching significance (P=0.053). Long-term AAS use is associated with right amygdala enlargement and reduced right amygdala rsFC with brain areas involved in cognitive control and spatial memory, which could contribute to the psychiatric effects and cognitive dysfunction associated with AAS use. The MRS abnormalities we detected could reflect enhanced glutamate turnover and increased vulnerability to neurotoxic or neurodegenerative processes, which could contribute to AAS-associated cognitive dysfunction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Relationship of functional leg-length discrepancy to abnormal pronation.

    Science.gov (United States)

    Rothbart, Brian A

    2006-01-01

    The objective of this study was to determine whether a correlation exists between abnormal pronation and functional leg-length discrepancies. Visual assessment and a pelvic thrust maneuver were used to identify the functionally short leg in 56 indigenous Mexicans (20 males and 36 females; mean age, 33 years; mean weight, 59 kg; and mean height, 1.60 m). The Foot Posture Index was used with a modified stance position to identify the more pronated foot. The posterosuperior iliac spines were used to identify the "relative" position of the innominate bones. The raw data obtained from this study were evaluated using the McNemar test for paired proportions. A significant positive correlation was found between abnormal pronation and hip position and between hip position and functional leg-length discrepancy. These results are consistent with a theoretical ascending dysfunctional pelvic model: Abnormal pronation pulls the innominate bones anteriorly (forward); anterior rotation of the innominate bones shifts the acetabula posteriorly and cephalad (backward and upward); and this shift in the acetabula hyperextends the knees and shortens the legs, with the shortest leg corresponding to the most pronated foot.

  7. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation

    Science.gov (United States)

    Israelashvili, Michal; Loewenstern, Yocheved

    2015-01-01

    Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders. PMID:25925326

  8. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer.

    Science.gov (United States)

    Kiebish, Michael A; Han, Xianlin; Cheng, Hua; Chuang, Jeffrey H; Seyfried, Thomas N

    2008-12-01

    Otto Warburg first proposed that cancer originated from irreversible injury to mitochondrial respiration, but the structural basis for this injury has remained elusive. Cardiolipin (CL) is a complex phospholipid found almost exclusively in the inner mitochondrial membrane and is intimately involved in maintaining mitochondrial functionality and membrane integrity. Abnormalities in CL can impair mitochondrial function and bioenergetics. We used shotgun lipidomics to analyze CL content and composition in highly purified brain mitochondria from the C57BL/6J (B6) and VM/Dk (VM) inbred strains and from subcutaneously grown brain tumors derived from these strains to include an astrocytoma and ependymoblastoma (B6 tumors), a stem cell tumor, and two microgliomas (VM tumors). Major abnormalities in CL content or composition were found in all tumors. The compositional abnormalities involved an abundance of immature molecular species and deficiencies of mature molecular species, suggesting major defects in CL synthesis and remodeling. The tumor CL abnormalities were also associated with significant reductions in both individual and linked electron transport chain activities. A mathematical model was developed to facilitate data interpretation. The implications of our findings to the Warburg cancer theory are discussed.

  9. Abnormal brain structure in youth who commit homicide.

    Science.gov (United States)

    Cope, L M; Ermer, E; Gaudet, L M; Steele, V R; Eckhardt, A L; Arbabshirani, M R; Caldwell, M F; Calhoun, V D; Kiehl, K A

    2014-01-01

    Violence that leads to homicide results in an extreme financial and emotional burden on society. Juveniles who commit homicide are often tried in adult court and typically spend the majority of their lives in prison. Despite the enormous costs associated with homicidal behavior, there have been no serious neuroscientific studies examining youth who commit homicide. Here we use neuroimaging and voxel-based morphometry to examine brain gray matter in incarcerated male adolescents who committed homicide (n = 20) compared with incarcerated offenders who did not commit homicide (n = 135). Two additional control groups were used to understand further the nature of gray matter differences: incarcerated offenders who did not commit homicide matched on important demographic and psychometric variables (n = 20) and healthy participants from the community (n = 21). Compared with incarcerated adolescents who did not commit homicide (n = 135), incarcerated homicide offenders had reduced gray matter volumes in the medial and lateral temporal lobes, including the hippocampus and posterior insula. Feature selection and support vector machine learning classified offenders into the homicide and non-homicide groups with 81% overall accuracy. Our results indicate that brain structural differences may help identify those at the highest risk for committing serious violent offenses.

  10. Brain White Matter Abnormalities in Female Interstitial Cystitis/Bladder Pain Syndrome: A MAPP Network Neuroimaging Study.

    Science.gov (United States)

    Farmer, Melissa A; Huang, Lejian; Martucci, Katherine; Yang, Claire C; Maravilla, Kenneth R; Harris, Richard E; Clauw, Daniel J; Mackey, Sean; Ellingson, Benjamin M; Mayer, Emeran A; Schaeffer, Anthony J; Apkarian, A Vania

    2015-07-01

    Several chronic pain conditions may be distinguished by condition specific brain anatomical and functional abnormalities on imaging, which are suggestive of underlying disease processes. We present what is to our knowledge the first characterization of interstitial cystitis/bladder pain syndrome associated white matter (axonal) abnormalities based on multicenter neuroimaging from the MAPP Research Network. We assessed 34 women with interstitial cystitis/bladder pain syndrome and 32 healthy controls using questionnaires on pain, mood and daily function. White matter microstructure was evaluated by diffusion tensor imaging to model directional water flow along axons or fractional anisotropy. Regions correlating with clinical parameters were further examined for gender and syndrome dependence. Women with interstitial cystitis/bladder pain syndrome showed numerous white matter abnormalities that correlated with pain severity, urinary symptoms and impaired quality of life. Interstitial cystitis/bladder pain syndrome was characterized by decreased fractional anisotropy in aspects of the right anterior thalamic radiation, the left forceps major and the right longitudinal fasciculus. Increased fractional anisotropy was detected in the right superior and bilateral inferior longitudinal fasciculi. To our knowledge we report the first characterization of brain white matter abnormalities in women with interstitial cystitis/bladder pain syndrome. Regional decreases and increases in white matter integrity across multiple axonal tracts were associated with symptom severity. Given that white matter abnormalities closely correlated with hallmark symptoms of interstitial cystitis/bladder pain syndrome, including bladder pain and urinary symptoms, brain anatomical alterations suggest that there are neuropathological contributions to chronic urological pelvic pain. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights

  11. Early MR abnormality indicating functional recovery from spontaneous intracerebral hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Fumeya, Hiroshi; Hideshima, Hiroshi (Hideshima Hospital, Musashino, Tokyo (Japan))

    1991-10-01

    Magnetic resonance (MR) imaging as an indicator of recovery from hemiparesis was evaluated in 60 patients with spontaneous intracerebral hemorrhage. T{sub 2}-weighted MR images revealed early MR abnormality (EMA) of the corticospinal tract within 1 week of ictus. Most patients without EMA recovered beyond Brunnstrom's Recovery Stage 3 while only a few patients with EMA did so. Patients with EMA cannot regain motor function because EMA is almost always followed by complete tract degeneration. EMA in the brainstem and poor motor function recovery are closely correlated. (author).

  12. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder

    Science.gov (United States)

    Eilam-Stock, Tehila; Xu, Pengfei; Cao, Miao; Gu, Xiaosi; Van Dam, Nicholas T.; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Park, Yunsoo; Siller, Michael; He, Yong; Hof, Patrick R.

    2014-01-01

    Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance response, an objective index of sympathetic neural activity, and brain fluctuations during rest in high-functioning adults with autism spectrum disorder relative to neurotypical controls. Compared with control participants, individuals with autism spectrum disorder showed less skin conductance responses overall. They also showed weaker correlations between skin conductance responses and frontal brain regions, including the anterior cingulate and anterior insular cortices. Additionally, skin conductance responses were found to have less contribution to default mode network connectivity in individuals with autism spectrum disorders relative to controls. These results suggest that autonomic processing is altered in autism spectrum disorders, which may be related to the abnormal socio-emotional behaviours that characterize this condition. PMID:24424916

  13. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS

    Directory of Open Access Journals (Sweden)

    Johnston Jennifer

    2011-07-01

    Full Text Available Abstract Background Bardet-Biedl syndrome (BBS is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1 normal intracranial volume; 2 reduced white matter in all regions of the brain, but most in the occipital region; 3 preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4 reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5 increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes

  14. Abnormal Vasomotor System Function in Idiopathic Generalized Epileptic Patients

    Directory of Open Access Journals (Sweden)

    Mehdi Maghbooli

    2014-12-01

    Full Text Available OBJECTIVE: Autonomic dysfunction is widely recognized in both partial and generalized epilepsies. The aim of this study was to evaluate the vasomotor response in patients with generalized idiopathic epilepsy by the clinical autonomic function tests. METHODS: 124 consecutive subjects including 62 idiopathic generalized epileptic patients diagnosed for more than 3 months receiving monotherapy and 62 matched for sex and age healthy controls were assessed in this case-control study. The evaluation of the vasomotor system was made using a questionnaire and autonomic function tests including Cold pressor, Valsalva maneuver, mental arithmetic and hand-grip tests. RESULTS: Abnormal score of the Cold pressor test was seen in 59.7%, Valsalva maneuver in 64.5% and 33.9% in mental arithmetic test of epileptic patients. These results were different significantly in comparison to control group. If abnormal hand grip test was defined as an increase less than 11 mmHg in diastolic pressure, there was found no significant difference between two groups of case and control, also a few people in control group was reported normal. While defining abnormal test was interpreted by increase in only one parameter or none of systolic blood pressure, diastolic blood pressure or heart rate, 43.5% in case group versus 14.5% in controls had abnormal results with significantly difference. CONCLUSION: Vasomotor dysfunction evaluated by cardiovascular tests was present commonly in the patients with generalized epilepsy. Further confirmation requires detailed reviewing of central and peripheral limbs to the breakdown of the system to be felt.

  15. Extra-visual functional and structural connection abnormalities in Leber's hereditary optic neuropathy.

    Directory of Open Access Journals (Sweden)

    Maria A Rocca

    Full Text Available We assessed abnormalities within the principal brain resting state networks (RSNs in patients with Leber's hereditary optic neuropathy (LHON to define whether functional abnormalities in this disease are limited to the visual system or, conversely, tend to be more diffuse. We also defined the structural substrates of fMRI changes using a connectivity-based analysis of diffusion tensor (DT MRI data. Neuro-ophthalmologic assessment, DT MRI and RS fMRI data were acquired from 13 LHON patients and 13 healthy controls. RS fMRI data were analyzed using independent component analysis and SPM5. A DT MRI connectivity-based parcellation analysis was performed using the primary visual and auditory cortices, bilaterally, as seed regions. Compared to controls, LHON patients had a significant increase of RS fluctuations in the primary visual and auditory cortices, bilaterally. They also showed decreased RS fluctuations in the right lateral occipital cortex and right temporal occipital fusiform cortex. Abnormalities of RS fluctuations were correlated significantly with retinal damage and disease duration. The DT MRI connectivity-based parcellation identified a higher number of clusters in the right auditory cortex in LHON vs. controls. Differences of cluster-centroid profiles were found between the two groups for all the four seeds analyzed. For three of these areas, a correspondence was found between abnormalities of functional and structural connectivities. These results suggest that functional and structural abnormalities extend beyond the visual network in LHON patients. Such abnormalities also involve the auditory network, thus corroborating the notion of a cross-modal plasticity between these sensory modalities in patients with severe visual deficits.

  16. Functional abnormalities underlying pathological gambling in Parkinson disease.

    Science.gov (United States)

    Cilia, Roberto; Siri, Chiara; Marotta, Giorgio; Isaias, Ioannis U; De Gaspari, Danilo; Canesi, Margherita; Pezzoli, Gianni; Antonini, Angelo

    2008-12-01

    Pathological gambling (PG) may develop in patients with Parkinson disease (PD) during dopamine replacement therapy, but the underlying neural correlates are still unclear. To investigate resting state brain perfusion in PD patients with active PG compared with matched PD controls and healthy controls. Case-control study. Outpatient tertiary clinic. Eleven right-handed PD patients with active PG according to Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition, Text Revision) criteria, 40 matched PD controls, and 29 age-matched healthy controls. All the participants underwent resting state brain perfusion single-photon emission computed tomography using technetium TC 99m ethylcysteinate dimer bicisate. All PD subjects were taking dopaminergic medication. Statistical Parametric Mapping was used for data analysis (P<.005, false discovery rate corrected). PD patients with PG showed resting state overactivity in a right hemisphere network that included the orbitofrontal cortex, the hippocampus, the amygdala, the insula, and the ventral pallidum. No areas of perfusion reduction were detected. We found that PD patients with PG have abnormal resting state dysfunction of the mesocorticolimbic network possibly associated with a drug-induced overstimulation of relatively preserved reward-related neuronal systems. These findings support the concept that PG is a "behavioral" addictive disorder.

  17. Resting-state functional connectivity abnormalities in limbic and salience networks in social anxiety disorder without comorbidity

    NARCIS (Netherlands)

    Pannekoek, J. Nienke; Veer, Ilya M.; van Tol, Marie-Jose; van der Werff, Steven J. A.; Demenescu, Liliana R.; Aleman, Andre; Veltman, Dick J.; Zitman, Frans G.; Rombouts, Serge A. R. B.; van der Wee, Nic J. A.

    The neurobiology of social anxiety disorder (SAD) is not yet fully understood. Structural and functional neuroimaging studies in SAD have identified abnormalities in various brain areas, particularly the amygdala and elements of the salience network. This study is the first to examine resting-state

  18. Resting-state functional connectivity abnormalities in limbic and salience networks in social anxiety disorder without comorbidity

    NARCIS (Netherlands)

    Pannekoek, J.N.; Veer, I.M.; van Tol, M.J.; van der Werff, S.J.A.; Demenescu, L.R.; Aleman, A.; Veltman, D.J.; Zitman, F. G.; Rombouts, S.A.R.B.; van der Wee, N.J.A.

    2013-01-01

    The neurobiology of social anxiety disorder (SAD) is not yet fully understood. Structural and functional neuroimaging studies in SAD have identified abnormalities in various brain areas, particularly the amygdala and elements of the salience network. This study is the first to examine resting-state

  19. Cannabis use and memory brain function in adolescent boys: A cross-sectional multicenter functional magnetic resonance imaging study

    NARCIS (Netherlands)

    Jager, G.; Block, R.I.; Luijten, M.; Ramsey, N.F.

    2010-01-01

    Early-onset cannabis use has been associated with later use/abuse, mental health problems (psychosis, depression), and abnormal development of cognition and brain function. During adolescence, ongoing neurodevelopmental maturation and experience shape the neural circuitry underlying complex

  20. Preliminary research on abnormal brain detection by wavelet-energy and quantum- behaved PSO.

    Science.gov (United States)

    Zhang, Yudong; Ji, Genlin; Yang, Jiquan; Wang, Shuihua; Dong, Zhengchao; Phillips, Preetha; Sun, Ping

    2016-04-29

    It is important to detect abnormal brains accurately and early. The wavelet-energy (WE) was a successful feature descriptor that achieved excellent performance in various applications; hence, we proposed a WE based new approach for automated abnormal detection, and reported its preliminary results in this study. The kernel support vector machine (KSVM) was used as the classifier, and quantum-behaved particle swarm optimization (QPSO) was introduced to optimize the weights of the SVM. The results based on a 5 × 5-fold cross validation showed the performance of the proposed WE + QPSO-KSVM was superior to ``DWT + PCA + BP-NN'', ``DWT + PCA + RBF-NN'', ``DWT + PCA + PSO-KSVM'', ``WE + BPNN'', ``WE +$ KSVM'', and ``DWT $+$ PCA $+$ GA-KSVM'' w.r.t. sensitivity, specificity, and accuracy. The work provides a novel means to detect abnormal brains with excellent performance.

  1. Congenital brain abnormalities: an update on malformations of cortical development and infratentorial malformations.

    Science.gov (United States)

    Poretti, Andrea; Boltshauser, Eugen; Huisman, Thierry A G M

    2014-07-01

    In the past two decades, significant progress in neuroimaging and genetic techniques has allowed for advances in the correct definition/classification of congenital brain abnormalities, which have resulted in a better understanding of their pathogenesis. In addition, new groups of diseases, such as axonal guidance disorders or tubulinopathies, are increasingly reported. Well-defined neuroimaging diagnostic criteria have been suggested for the majority of congenital brain abnormalities. Accurate diagnoses of these complex abnormalities, including distinction between malformations and disruptions, are of paramount significance for management, prognosis, and family counseling. In the next decade, these advances will hopefully be translated into deeper understanding of these disorders and more specific treatments. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Abnormal Resting-State Functional Connectivity in Progressive Supranuclear Palsy and Corticobasal Syndrome

    Directory of Open Access Journals (Sweden)

    Komal Bharti

    2017-06-01

    Full Text Available BackgroundPathological and MRI-based evidence suggests that multiple brain structures are likely to be involved in functional disconnection between brain areas. Few studies have investigated resting-state functional connectivity (rsFC in progressive supranuclear palsy (PSP and corticobasal syndrome (CBS. In this study, we investigated within- and between-network rsFC abnormalities in these two conditions.MethodsTwenty patients with PSP, 11 patients with CBS, and 16 healthy subjects (HS underwent a resting-state fMRI study. Resting-state networks (RSNs were extracted to evaluate within- and between-network rsFC using the Melodic and FSLNets software packages.ResultsIncreased within-network rsFC was observed in both PSP and CBS patients, with a larger number of RSNs being involved in CBS. Within-network cerebellar rsFC positively correlated with mini-mental state examination scores in patients with PSP. Compared to healthy volunteers, PSP and CBS patients exhibit reduced functional connectivity between the lateral visual and auditory RSNs, with PSP patients additionally showing lower functional connectivity between the cerebellar and insular RSNs. Moreover, rsFC between the salience and executive-control RSNs was increased in patients with CBS compared to HS.ConclusionThis study provides evidence of functional brain reorganization in both PSP and CBS. Increased within-network rsFC could represent a higher degree of synchronization in damaged brain areas, while between-network rsFC abnormalities may mainly reflect degeneration of long-range white matter fibers.

  3. Thyroid function abnormalities in HIV-infected patients.

    Science.gov (United States)

    Hoffmann, Christopher J; Brown, Todd T

    2007-08-15

    Abnormal thyroid function test results are common among human immunodeficiency virus (HIV)-infected patients. Although the prevalence of overt thyroid disease does not appear to be significantly increased in HIV-infected patients, compared with the general population, specific patterns of abnormal thyroid function test findings are more frequently identified among HIV-infected patients. Among patients with advanced acquired immunodeficiency syndrome, nonthyroidal illness (i.e., euthyroid sick syndrome) is common. During antiretroviral therapy, the prevalence of 2 generally asymptomatic conditions (subclinical hypothyroidism, which is characterized by isolated elevated thyroid-stimulating hormone levels, and isolated low free thyroxine levels) is increased. In addition, Graves disease, which is marked by low thyroid-stimulating hormone and elevated thyroxine levels, may occur during immune reconstitution. Testing for thyroid disease among symptomatic patients should begin with measurement of the thyroid-stimulating hormone level. However, there is insufficient evidence to recommend routine thyroid screening of asymptomatic HIV-infected individuals. This review summarizes the current evidence regarding the optimal laboratory evaluation of thyroid function; highlights the causes, presentation, and treatment of thyroid dysfunction in HIV-infected patients; and discusses the controversies regarding screening.

  4. Abnormal brain magnetic resonance imaging in two patients with Smith-Magenis syndrome.

    Science.gov (United States)

    Maya, Idit; Vinkler, Chana; Konen, Osnat; Kornreich, Liora; Steinberg, Tamar; Yeshaya, Josepha; Latarowski, Victoria; Shohat, Mordechai; Lev, Dorit; Baris, Hagit N

    2014-08-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable contiguous gene syndrome ascribed to an interstitial deletion in chromosome 17p11.2. Seventy percent of SMS patients have a common deletion interval spanning 3.5 megabases (Mb). Clinical features of SMS include characteristic mild dysmorphic features, ocular anomalies, short stature, brachydactyly, and hypotonia. SMS patients have a unique neurobehavioral phenotype that includes intellectual disability, self-injurious behavior and severe sleep disturbance. Little has been reported in the medical literature about anatomical brain anomalies in patients with SMS. Here we describe two patients with SMS caused by the common deletion in 17p11.2 diagnosed using chromosomal microarray (CMA). Both patients had a typical clinical presentation and abnormal brain magnetic resonance imaging (MRI) findings. One patient had subependymal periventricular gray matter heterotopia, and the second had a thin corpus callosum, a thin brain stem and hypoplasia of the cerebellar vermis. This report discusses the possible abnormal MRI images in SMS and reviews the literature on brain malformations in SMS. Finally, although structural brain malformations in SMS patients are not a common feature, we suggest baseline routine brain imaging in patients with SMS in particular, and in patients with chromosomal microdeletion/microduplication syndromes in general. Structural brain malformations in these patients may affect the decision-making process regarding their management. © 2014 Wiley Periodicals, Inc.

  5. Diffusion tensor MR imaging in neurofibromatosis type 1: expanding the knowledge of microstructural brain abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz-Filho, Jose R.L.; Muniz, Marcos P.; Souza, Antonio S. [Medical School in Sao Jose do Rio Preto (FAMERP), Radiology Department, Sao Paulo (Brazil); Rocha, Antonio J. da [School Medical Sciences of the Santa Casa de Sao Paulo, Radiology Department, Sao Paulo (Brazil); Goloni-Bertollo, Eny M.; Pavarino-Bertelli, Erika C. [Center of Research and attendace in Neurofibromatosis (CEPAN) of Medical School in Sao Jose do Rio Preto (FAMERP), Sao Paulo (Brazil)

    2012-04-15

    Neurofibromatosis type 1 (NF1) is a hereditary disease with a dominant autosomal pattern. In children and adolescents, it is frequently associated with the appearance of T2-weighted hyperintensities in the brain's white matter. MRI with diffusion tensor imaging (DTI) is used to detect white matter abnormalities by measuring fractional anisotropy (FA). This study employed DTI to evaluate the relationship between FA patterns and the findings of T2 sequences, with the aim of improving our understanding of anatomical changes and microstructural brain abnormalities in individuals with NF1. Forty-four individuals with NF1 and 20 control subjects were evaluated. The comparative analysis of FA between NF1 and control groups was based on four predetermined anatomical regions of the brain hemispheres (basal ganglia, cerebellum, pons, thalamus) and related the presence or absence of T2-weighted hyperintensities in the brain, which are called unidentified bright objects (UBOs). The FA values between the groups demonstrated statistically significant differences (P {<=} 0.05) for the cerebellum and thalamus in patients with NF1, independent of the occurrence of UBOs. Diffusion tensor MR imaging confirms the influence of UBOs in the decrease of FA values in this series of patients with NF1. Additionally, this technique allows the characterization of microstructural abnormalities even in some brain regions that appear normal in conventional MR sequences. (orig.)

  6. Diffusion tensor MR imaging in neurofibromatosis type 1: expanding the knowledge of microstructural brain abnormalities

    International Nuclear Information System (INIS)

    Ferraz-Filho, Jose R.L.; Muniz, Marcos P.; Souza, Antonio S.; Rocha, Antonio J. da; Goloni-Bertollo, Eny M.; Pavarino-Bertelli, Erika C.

    2012-01-01

    Neurofibromatosis type 1 (NF1) is a hereditary disease with a dominant autosomal pattern. In children and adolescents, it is frequently associated with the appearance of T2-weighted hyperintensities in the brain's white matter. MRI with diffusion tensor imaging (DTI) is used to detect white matter abnormalities by measuring fractional anisotropy (FA). This study employed DTI to evaluate the relationship between FA patterns and the findings of T2 sequences, with the aim of improving our understanding of anatomical changes and microstructural brain abnormalities in individuals with NF1. Forty-four individuals with NF1 and 20 control subjects were evaluated. The comparative analysis of FA between NF1 and control groups was based on four predetermined anatomical regions of the brain hemispheres (basal ganglia, cerebellum, pons, thalamus) and related the presence or absence of T2-weighted hyperintensities in the brain, which are called unidentified bright objects (UBOs). The FA values between the groups demonstrated statistically significant differences (P ≤ 0.05) for the cerebellum and thalamus in patients with NF1, independent of the occurrence of UBOs. Diffusion tensor MR imaging confirms the influence of UBOs in the decrease of FA values in this series of patients with NF1. Additionally, this technique allows the characterization of microstructural abnormalities even in some brain regions that appear normal in conventional MR sequences. (orig.)

  7. Clinical significance of brain SPECT abnormalities of thalami and cerebellum in cerebral palsy with normal MRI

    Energy Technology Data Exchange (ETDEWEB)

    Park, C. H.; Lim, S. Y.; Lee, I. Y.; Kim, O. H.; Bai, M. S.; Kim, S. J.; Yoon, S. N.; Cho, C. W. [College of Medicine, Ajou Univ., Suwon (Korea, Republic of)

    1997-07-01

    The cerebral palsy(CP) encephalopathies are often of uncertain etiology and various functional image findings comparing with anatomical image findings have been reported. However, only a few have mentioned its clinical implications. The purpose of our report is to compare clinical severity and functional SPECT abnormalities of thalami and cerebellum in CP patients with normal MRI. Thirty six CP patients with bilateral spastic palsy who had normal MRI and brain SPECT were studied from July 1996 to September 1997. The patients' age at the time of SPECT was 22.84{+-}17.69 months. The patients were divided into two groups according to motor quotient(MQ); moderate defect (>50MQ : n=27 MQ=22.78{+-}10.36), mild defect (<50MQ : n=9, MQ=66.11{+-}13.87). The degree of rCBF decrease between the two groups was evaluated by {chi}{sup 2} test. Brain SPECT was performed following IV administration of 0.05-0.1 mCi/kg (minimum 2.0 mCi) of Tc-99m ECD and chloral hydrate sedation (50-80 mg/kg p.o) using a triple head system (MS 3, Siemens). Interpretation of brain SPECT was visual analysis: severe decrease is defined when the defect is moderate to marked and mild decrease in rCBF as mild. Seven of 36 (19.4%) showed unilateral or bilateral moderate decrease in rCBF in thalami, 20(55.6%) showed mild decrease, and 9(25.0%) showed no decreased rCBF. All 7 who had moderate thalamic defect reveled moderate motor defect clinically. Ten of 36(27.9%) revealed unilateral or bilateral moderate rCBF defect, 23 (63.9%) depicted mild defect, and 3(8.3%) showed no defect. Sixteen with moderate thalamic rCBF defect showed moderate motor defect in 15 patients. There was statistically significant (p=0.02605) relationship between rCBF defect and motor defect in our CP patients. In conclusion, brain SPECT appears sensitive, non-invasive tool in the evaluation as well as in the prognostication of bilateral spastic cerebral palsy patients and deserves further study using larger number of patients.

  8. Disrupted nodal and hub organization account for brain network abnormalities in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Yuko Koshimori

    2016-11-01

    Full Text Available The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson’s disease. This study aimed to investigate functional changes in sensorimotor and cognitive networks in parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the healthy control and patient groups. We found nodal and hub changes in patients compared with healthy controls, including the right pre-supplementary motor area, left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex, and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e. right pre-supplementary motor area and right mid-insula displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral dorsolateral prefrontal cortex possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of Parkinson’s disease.

  9. Abnormal Default System Functioning in Depression: Implications for Emotion Regulation.

    Science.gov (United States)

    Messina, Irene; Bianco, Francesca; Cusinato, Maria; Calvo, Vincenzo; Sambin, Marco

    2016-01-01

    Depression is widely seen as the result of difficulties in regulating emotions. Based on neuroimaging studies on voluntary emotion regulation, neurobiological models have focused on the concept of cognitive control, considering emotion regulation as a shift toward involving controlled processes associated with activation of the prefrontal and parietal executive areas, instead of responding automatically to emotional stimuli. According to such models, the weaker executive area activation observed in depressed patients is attributable to a lack of cognitive control over negative emotions. Going beyond the concept of cognitive control, psychodynamic models describe the development of individuals' capacity to regulate their emotional states in mother-infant interactions during childhood, through the construction of the representation of the self, others, and relationships. In this mini-review, we link these psychodynamic models with recent findings regarding the abnormal functioning of the default system in depression. Consistently with psychodynamic models, psychological functions associated with the default system include self-related processing, semantic processes, and implicit forms of emotion regulation. The abnormal activation of the default system observed in depression may explain the dysfunctional aspects of emotion regulation typical of the condition, such as an exaggerated negative self-focus and rumination on self-esteem issues. We also discuss the clinical implications of these findings with reference to the therapeutic relationship as a key tool for revisiting impaired or distorted representations of the self and relational objects.

  10. Abnormal vibration induced illusion of movement in essential tremor: evidence for abnormal muscle spindle afferent function

    OpenAIRE

    Frima, N; Grunewald, R

    2005-01-01

    Objectives: Vibration induced illusion of movement (VIIM) is abnormal in patients with idiopathic focal dystonia, an abnormality which corrects with fatigue of the vibrated muscle. Since dystonia and essential tremor sometimes coexist in families, we investigated the perception of VIIM and the effect of fatigue on VIIM in patients with essential tremor.

  11. Vigorous Exercise Can Cause Abnormal Pulmonary Function in Healthy Adolescents.

    Science.gov (United States)

    Abosaida, Alladdin; Chen, Jen Jen; Nussbaum, Eliezer; Leu, Szu-Yun; Chin, Terry; Schwindt, Christina D

    2015-06-01

    Although exercise-induced bronchoconstriction is more common in adolescents with asthma, it also manifests in healthy individuals without asthma. The steady-state exercise protocol is widely used and recommended by the American Thoracic Society (ATS) as a method to diagnose exercise-induced bronchoconstriction. Airway narrowing in response to exercise is thought to be related to airway wall dehydration secondary to hyperventilation. More rigorous exercise protocols may have a role in detecting exercise-induced bronchoconstriction in those who otherwise have a normal response to steady-state exercise challenge. The objective of this study was to determine the effect of two different exercise protocols--a constant work rate protocol and a progressive ramp protocol--on pulmonary function testing in healthy adolescents. We hypothesized that vigorous exercise protocols would lead to reductions in lung function in healthy adolescents. A total of 56 healthy adolescents (mean age, 15.2 ± 3.3 [SD] years) were recruited to perform two exercise protocols: constant work rate exercise test to evaluate for exercise-induced bronchoconstriction (as defined by ATS) and standardized progressive ramp protocol. Pulmonary function abnormalities were defined as a decline from baseline in FEV1 of greater than 10%. Ten participants (17.8%) had a significant drop in FEV1. Among those with abnormal lung function after exercise, three (30%) were after the ATS test only, five (50%) were after the ramp test only, and two (20%) were after both ATS and ramp tests. Healthy adolescents demonstrate subtle bronchoconstriction after exercise. This exercise-induced bronchoconstriction may be detected in healthy adolescents via constant work rate or the progressive ramp protocol. In a clinical setting, ramp testing warrants consideration in adolescents suspected of having exercise-induced bronchoconstriction and who have normal responses to steady-state exercise testing.

  12. Disrupted Gamma Synchrony after Mild Traumatic Brain Injury and Its Correlation with White Matter Abnormality

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2017-10-01

    Full Text Available Mild traumatic brain injury (mTBI has been firmly associated with disrupted white matter integrity due to induced white matter damage and degeneration. However, comparatively less is known about the changes of the intrinsic functional connectivity mediated via neural synchronization in the brain after mTBI. Moreover, despite the presumed link between structural and functional connectivity, no existing studies in mTBI have demonstrated clear association between the structural abnormality of white matter axons and the disruption of neural synchronization. To investigate these questions, we recorded resting state EEG and diffusion tensor imaging (DTI from a cohort of military service members. A newly developed synchronization measure, the weighted phase lag index was applied on the EEG data for estimating neural synchronization. Fractional anisotropy was computed from the DTI data for estimating white matter integrity. Fifteen service members with a history of mTBI within the past 3 years were compared to 22 demographically similar controls who reported no history of head injury. We observed that synchronization at low-gamma frequency band (25–40 Hz across scalp regions was significantly decreased in mTBI cases compared with controls. The synchronization in theta (4–7 Hz, alpha (8–13 Hz, and beta (15–23 Hz frequency bands were not significantly different between the two groups. In addition, we found that across mTBI cases, the disrupted synchronization at low-gamma frequency was significantly correlated with the white matter integrity of the inferior cerebellar peduncle, which was also significantly reduced in the mTBI group. These findings demonstrate an initial correlation between the impairment of white matter integrity and alterations in EEG synchronization in the brain after mTBI. The results also suggest that disruption of intrinsic neural synchronization at low-gamma frequency may be a characteristic functional pathology

  13. Water Quality and Brain Function.

    Science.gov (United States)

    Bondy, Stephen C; Campbell, Arezoo

    2017-12-21

    In the United States, regulations are in place to ensure the quality of drinking water. Such precautions are intended to safeguard the health of the population. However, regulatory guidelines may at times fail to achieve their purpose. This may be due to lack of sufficient data regarding the health hazards of chronic low dose exposure to contaminants or the introduction of new substances that pose a health hazard risk that has yet to be identified. In this review, examples of different sources of contaminants in drinking water will be discussed, followed by an evaluation of some select individual toxicants with known adverse neurological impact. The ability of mixtures to potentially cause additive, synergistic, or antagonistic neurotoxic responses will be briefly addressed. The last section of the review will provide examples of select mechanisms by which different classes of contaminants may lead to neurological impairments. The main objective of this review is to bring to light the importance of considering trace amounts of chemicals in the drinking water and potential brain abnormalities. There is continued need for toxicology studies to better understand negative consequences of trace amounts of toxins and although it is beyond the scope of this brief overview it is hoped that the review will underscore the paucity of studies focused on determining how long-term exposure to minute levels of contaminants in drinking water may pose a significant health hazard.

  14. Abnormal brain MRI in a case of acute ataxia as the only sign of abdominal neuroblastoma

    International Nuclear Information System (INIS)

    Molla Mohammadi, M.; Karimzadeh, P.; Khatami, A.; Jadali, F.

    2010-01-01

    Ataxia is a movement disorder that may manifest an acute, intermittent, non progressive or chronic progressive course. Ataxia alone is rare as a para neoplastic sign, especially if it is due to neuroblastoma (abdominal or chest). We report an abdominal neuroblastoma in a two-year-old girl presenting with only acute ataxia and abnormal neuroimaging. Brain MRI showed abnormal signal finding in the medulla, pons, cortico spinal tract and the periventricular space. In the abdominal CT, a mass was detected in the right adrenal gland with calcification and the histopathologic examination re-vealed neuroblastoma. We suggest in children with acute ataxia, with or without opalescence-myoclonus, neuroblastoma should be considered.

  15. Annual research review: Growth connectomics--the organization and reorganization of brain networks during normal and abnormal development.

    Science.gov (United States)

    Vértes, Petra E; Bullmore, Edward T

    2015-03-01

    We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). We discuss preliminary evidence and current hypotheses for how the emergence of network properties correlates with concomitant cognitive and behavioural changes associated with development. We highlight some of the technical and conceptual challenges to be addressed by future developments in this rapidly moving field. Given the parallels previously discovered between neural systems across species and over a range of spatial scales, we also review some recent advances in developmental network studies at the cellular scale. We highlight the opportunities presented by such studies and how they may complement neuroimaging in advancing our understanding of brain development. Finally, we note that many brain and mind disorders are thought to be neurodevelopmental in origin and that charting the trajectory of brain network changes associated with healthy development also sets the stage for understanding abnormal network development. We therefore briefly review the clinical relevance of network metrics as potential diagnostic markers and some recent efforts in computational modelling of brain networks which might contribute to a more mechanistic understanding of neurodevelopmental disorders in future. © 2014 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health.

  16. Annual Research Review: Growth connectomics – the organization and reorganization of brain networks during normal and abnormal development

    Science.gov (United States)

    Vértes, Petra E; Bullmore, Edward T

    2015-01-01

    Background We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). Synthesis We discuss preliminary evidence and current hypotheses for how the emergence of network properties correlates with concomitant cognitive and behavioural changes associated with development. We highlight some of the technical and conceptual challenges to be addressed by future developments in this rapidly moving field. Given the parallels previously discovered between neural systems across species and over a range of spatial scales, we also review some recent advances in developmental network studies at the cellular scale. We highlight the opportunities presented by such studies and how they may complement neuroimaging in advancing our understanding of brain development. Finally, we note that many brain and mind disorders are thought to be neurodevelopmental in origin and that charting the trajectory of brain network changes associated with healthy development also sets the stage for understanding abnormal network development. Conclusions We therefore briefly review the clinical relevance of network metrics as potential diagnostic markers and some recent efforts in computational modelling of brain networks which might contribute to a more mechanistic understanding of neurodevelopmental disorders in future. PMID:25441756

  17. Abnormal intrinsic functional hubs in alcohol dependence: evidence from a voxelwise degree centrality analysis.

    Science.gov (United States)

    Luo, Xiaoping; Guo, Linghong; Dai, Xi-Jian; Wang, Qinglai; Zhu, Wenzhong; Miao, Xinjun; Gong, Honghan

    2017-01-01

    To explore the abnormal intrinsic functional hubs in alcohol dependence using voxelwise degree centrality analysis approach, and their relationships with clinical features. Twenty-four male alcohol dependence subjects free of medicine (mean age, 50.21±9.62 years) and 24 age- and education-matched male healthy controls (mean age, 50.29±8.92 years) were recruited. The alcohol use disorders identification test and the severity of alcohol dependence questionnaire (SADQ) were administered to assess the severity of alcohol craving. Voxelwise degree centrality approach was used to assess the abnormal intrinsic functional hubs features in alcohol dependence. Simple linear regression analysis was performed to investigate the relationships between the clinical features and abnormal intrinsic functional hubs. Compared with healthy controls, alcohol dependence subjects exhibited significantly different degree centrality values in widespread left lateralization brain areas, including higher degree centrality values in the left precentral gyrus (BA 6), right hippocampus (BA 35, 36), and left orbitofrontal cortex (BA 11) and lower degree centrality values in the left cerebellum posterior lobe, bilateral secondary visual network (BA 18), and left precuneus (BA 7, 19). SADQ revealed a negative linear correlation with the degree centrality value in the left precentral gyrus ( R 2 =0.296, P =0.006). The specific abnormal intrinsic functional hubs appear to be disrupted by alcohol intoxication, which implicates at least three principal neural systems: including cerebellar, executive control, and visual cortex, which may further affect the normal motor behavior such as an explicit type of impaired driving behavior. These findings expand our understanding of the functional characteristics of alcohol dependence and may provide a new insight into the understanding of the dysfunction and pathophysiology of alcohol dependence.

  18. The brain stem function in patients with brain bladder; Clinical evaluation using dynamic CT scan and auditory brainstem response

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Toshihiro (Yokohama City Univ. (Japan). Faculty of Medicine)

    1990-11-01

    A syndrome of detrusor-sphincter dyssynergia (DSD) is occasionally found in patients with brain bladder. To evaluate the brain stem function in cases of brain bladder, urodynamic study, dynamic CT scan of the brain stem (DCT) and auditory brainstem response (ABR) were performed. The region of interest of DCT aimed at the posterolateral portion of the pons. The results were analysed in contrast with the presense of DSD in urodynamic study. DCT studies were performed in 13 cases with various brain diseases and 5 control cases without neurological diseases. Abnormal patterns of the time-density curve consisted of low peak value, prolongation of filling time and low rapid washout ratio (low clearance ratio) of the contrast medium. Four of 6 cases with DSD showed at least one of the abnormal patterns of the time-density curve bilaterally. In 7 cases without DSD none showed bilateral abnormality of the curve and in 2 of 7 cases only unilateral abnormality was found. ABR was performed in 8 patients with brain diseases. The interpeak latency of the wave I-V (I-V IPL) was considered to be prolonged in 2 cases with DSD compared to that of 4 without DSD. In 2 cases with DSD who had normal DCT findings, measurement of the I-V IPL was impossible due to abnormal pattern of the ABR wave. Above mentioned results suggests the presence of functional disturbance at the posterolateral portion of the pons in cases of brain bladder with DSD. (author).

  19. Abnormalities of satellite cells function in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Pradat, Pierre-François; Barani, Aude; Wanschitz, Julia; Dubourg, Odile; Lombès, Anne; Bigot, Anne; Mouly, Vincent; Bruneteau, Gaelle; Salachas, François; Lenglet, Timothée; Meininger, Vincent; Butler-Browne, Gillian

    2011-07-01

    Abstract Amyotrophic lateral sclerosis (ALS) is characterized by progressive denervation leading to muscle atrophy prevented, during the early phase, by compensatory reinnervation. Little is known about muscle fibre regeneration capacity in ALS. We have carried out in vivo and in vitro investigation of skeletal muscle in ALS. Seven ALS patients underwent a deltoid muscle biopsy. Immunohistochemical analysis revealed various degrees of denervation- and reinnervation-related changes in the ALS muscle biopsies including satellite cells (SCs) activation and regenerating fibres. Only 3/7 primary cultures of ALS muscle cells were successfully established and had sufficient myogenicity, as assessed by desmin positivity, to be used without further purification. This was in contrast with the cultures derived from control muscles, predominantly desmin-positive cells. Although capable to proliferate in vitro, ALS-derived SCs presented an abnormal senescent-like morphology. Markers of senescence, including senescent-associated (SA)-βGal activity and p16 expression, were increased. Furthermore, ALS-derived SCs were also unable to fully differentiate in vitro as shown by abnormal myotubes morphology and reduced MHC isoform expression, compared to control myotubes. Our study suggests that SC function is altered in ALS. This could limit the efficacy of compensatory processes and therefore could contribute to the progression of muscle atrophy and weakness.

  20. Specificity of abnormal brain volume in major depressive disorder: a comparison with borderline personality disorder.

    Science.gov (United States)

    Depping, Malte S; Wolf, Nadine D; Vasic, Nenad; Sambataro, Fabio; Thomann, Philipp A; Christian Wolf, R

    2015-03-15

    Abnormal brain volume has been frequently demonstrated in major depressive disorder (MDD). It is unclear if these findings are specific for MDD since aberrant brain structure is also present in disorders with depressive comorbidity and affective dysregulation, such as borderline personality disorder (BPD). In this transdiagnostic study, we aimed to investigate if regional brain volume loss differentiates between MDD and BPD. Further, we tested for associations between brain volume and clinical variables within and between diagnostic groups. 22 Females with a DSM-IV diagnosis of MDD, 17 females with a DSM-IV diagnosis of BPD and without comorbid posttraumatic stress disorder, and 22 age-matched female healthy controls (HC) were investigated using magnetic resonance imaging. High-resolution structural data were analyzed using voxel-based morphometry. A significant (pdisorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Paediatrics brain imaging in epilepsy: common presenting symptoms and spectrum of abnormalities detected on MRI

    International Nuclear Information System (INIS)

    Ali, A.; Akram, F.; Khan, G.; Hussain, S.

    2017-01-01

    Epilepsy, a common neurological disorder can present at any age and has a number of aetiologies with underlying brain disease being the most common aetiology. Brain imaging becomes important and mandatory in the work up for epilepsy in localization and lateralization of the seizure focus. Methods: This cross-sectional study was conducted in the department of Radiology Ayub Medical Teaching Institution Abbottabad from 1st March 2015 to 31st March 2016. A total of 209 children aged 28 days to 14 years were included in the study who presented with seizures to clinicians. Information obtained from history, clinical examination and investigations especially MRI brains were recorded in a prescribed pro forma. The data was analysed in SPSS 20. Results: MRI examination was unremarkable in 44.01% (n=92) and mild generalized brain atrophy was noted in 12.91% (n=27). Arachnoid cysts, mild unilateral brain atrophy and hydrocephalous due to aqueduct stenosis were recorded in 3.82% (n=8) of each group. Neoplastic lesions were the second most common abnormal MRI finding and constituted 5.74% (n=12). Leukodystrophy was diagnosed in 4.78% (n=10). MRI examination showed ring enhancing lesions (tuberculomas) and AVM in 1.43% (n=3) of each group. Perinatal ischemia and intracranial infection, (focal or generalized) were recorded in 2.87% (n=6) of each group. A 0.95 % (n=2) of children in each group had agenesis of corpus callosum and cavernoma. The radiological MRI diagnosis of Raussmussen encephalitis was made in 3.34% (n=7). Single case, each of mesial temporal sclerosis, subdural haemorrhage, infarct and craniopharyngioma was recorded making 0.47 % of the total patients in each case. Conclusion: MRI examination was abnormal in significant number of patients (55.86%), so therefore if properly utilized, in a good clinical context, this can identify most of the structural brain abnormalities in paediatric patients presenting with seizures. (author)

  2. Comparison of brain volume abnormalities between ADHD and conduct disorder in adolescence

    Science.gov (United States)

    Stevens, Michael C.; Haney-Caron, Emily

    2012-01-01

    Background Previous studies of brain structure abnormalities in conduct disorder and attention-deficit/hyperactivity disorder (ADHD) samples have been limited owing to cross-comorbidity, preventing clear understanding of which structural brain abnormalities might be specific to or shared by each disorder. To our knowledge, this study was the first direct comparison of grey and white matter volumes in diagnostically “pure” (i.e., no comorbidities) conduct disorder and ADHD samples. Methods Groups of adolescents with noncormobid conduct disorder and with noncomorbid, combined-subtype ADHD were compared with age- and sex-matched controls using DARTEL voxel-based analysis of T1-weighted brain structure images. Analysis of variance with post hoc analyses compared whole brain grey and white matter volumes among the groups. Results We included 24 adolescents in each study group. There was an overall 13% reduction in grey matter volume in adolescents with conduct disorder, reflecting numerous frontal, temporal, parietal and subcortical deficits. The same grey matter regions typically were not abnormal in those with ADHD. Deficits in frontal lobe regions previously identified in studies of patients with ADHD either were not detected, or group differences from controls were not as strong as those between the conduct disorder and control groups. White matter volume measurements did not differentiate conduct disorder and ADHD. Limitations Our modest sample sizes prevented meaningful examination of individual features of ADHD or conduct disorder, such as aggression, callousness, or hyperactive versus inattentive symptom subtypes. Conclusion The evidence supports theories of frontotemporal abnormalities in adolescents with conduct disorder, but raises questions about the prominence of frontal lobe and striatal structural abnormalities in those with noncomorbid, combined-subtype ADHD. The latter point is clinically important, given the widely held belief that ADHD is

  3. Functional brain imaging; Funktionelle Hirnbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, E.R. [Medizinische Universitaet Innsbruck, Universitaetsklinik fuer Neuroradiologie, Innsbruck (Austria)

    2016-02-15

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.) [German] Mittlerweile ist die funktionelle MRT (fMRT) eine Methode, die nicht mehr nur in der neurowissenschaftlichen Routine verwendet wird. Die fMRT ermoeglicht die nichtinvasive Darstellung der Hirnaktivitaet in guter raeumlicher und zeitlicher Aufloesung unter Ausnutzung der Durchblutungsaenderung aufgrund der erhoehten Nervenzellaktivitaet. Unter

  4. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    OpenAIRE

    Kleinridders, Andr?; Ferris, Heather A.; Cai, Weikang; Kahn, C. Ronald

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in t...

  5. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study

    Science.gov (United States)

    Altmann, Andre; Botía, Juan A; Jahanshad, Neda; Hibar, Derrek P; Absil, Julie; Alhusaini, Saud; Alvim, Marina K M; Auvinen, Pia; Bartolini, Emanuele; Bergo, Felipe P G; Bernardes, Tauana; Blackmon, Karen; Braga, Barbara; Caligiuri, Maria Eugenia; Calvo, Anna; Carr, Sarah J; Chen, Jian; Chen, Shuai; Cherubini, Andrea; David, Philippe; Domin, Martin; Foley, Sonya; França, Wendy; Haaker, Gerrit; Isaev, Dmitry; Keller, Simon S; Kotikalapudi, Raviteja; Kowalczyk, Magdalena A; Kuzniecky, Ruben; Langner, Soenke; Lenge, Matteo; Leyden, Kelly M; Liu, Min; Loi, Richard Q; Martin, Pascal; Mascalchi, Mario; Morita, Marcia E; Pariente, Jose C; Rodríguez-Cruces, Raul; Rummel, Christian; Saavalainen, Taavi; Semmelroch, Mira K; Severino, Mariasavina; Thomas, Rhys H; Tondelli, Manuela; Tortora, Domenico; Vaudano, Anna Elisabetta; Vivash, Lucy; von Podewils, Felix; Wagner, Jan; Weber, Bernd; Yao, Yi; Yasuda, Clarissa L; Zhang, Guohao; Bargalló, Nuria; Bender, Benjamin; Bernasconi, Neda; Bernasconi, Andrea; Bernhardt, Boris C; Blümcke, Ingmar; Carlson, Chad; Cavalleri, Gianpiero L; Cendes, Fernando; Concha, Luis; Delanty, Norman; Depondt, Chantal; Devinsky, Orrin; Doherty, Colin P; Focke, Niels K; Gambardella, Antonio; Guerrini, Renzo; Hamandi, Khalid; Jackson, Graeme D; Kälviäinen, Reetta; Kochunov, Peter; Kwan, Patrick; Labate, Angelo; McDonald, Carrie R; Meletti, Stefano; O'Brien, Terence J; Ourselin, Sebastien; Richardson, Mark P; Striano, Pasquale; Thesen, Thomas; Wiest, Roland; Zhang, Junsong; Vezzani, Annamaria; Ryten, Mina; Thompson, Paul M

    2018-01-01

    Abstract Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen’s d = −0.24 to −0.73; P < 1.49 × 10−4), and lower thickness in the precentral gyri bilaterally (d = −0.34 to −0.52; P < 4.31 × 10−6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = −1.73 to −1.91, P < 1.4 × 10−19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = −0.36 to −0.52; P < 1.49 × 10−4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = −0.29 to −0.54; P < 1.49 × 10−4). Contrastingly, thickness differences of the ipsilateral pars

  6. Abnormal Resting-State Functional Connectivity of the Anterior Cingulate Cortex in Unilateral Chronic Tinnitus Patients

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chen

    2018-01-01

    Full Text Available Purpose: The anterior cingulate cortex (ACC has been suggested to be involved in chronic subjective tinnitus. Tinnitus may arise from aberrant functional coupling between the ACC and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI to illuminate the functional connectivity (FC network of the ACC subregions in chronic tinnitus patients.Methods: Resting-state fMRI scans were obtained from 31 chronic right-sided tinnitus patients and 40 healthy controls (age, sex, and education well-matched in this study. Rostral ACC and dorsal ACC were selected as seed regions to investigate the intrinsic FC with the whole brain. The resulting FC patterns were correlated with clinical tinnitus characteristics including the tinnitus duration and tinnitus distress.Results: Compared with healthy controls, chronic tinnitus patients showed disrupted FC patterns of ACC within several brain networks, including the auditory cortex, prefrontal cortex, visual cortex, and default mode network (DMN. The Tinnitus Handicap Questionnaires (THQ scores showed positive correlations with increased FC between the rostral ACC and left precuneus (r = 0.507, p = 0.008 as well as the dorsal ACC and right inferior parietal lobe (r = 0.447, p = 0.022.Conclusions: Chronic tinnitus patients have abnormal FC networks originating from ACC to other selected brain regions that are associated with specific tinnitus characteristics. Resting-state ACC-cortical FC disturbances may play an important role in neuropathological features underlying chronic tinnitus.

  7. Behavioral and Brain Functions. A new journal

    Directory of Open Access Journals (Sweden)

    Sagvolden Terje

    2005-04-01

    Full Text Available Abstract Behavioral and Brain Functions (BBF is an Open Access, peer-reviewed, online journal considering original research, review, and modeling articles in all aspects of neurobiology or behavior, favoring research that relates to both domains. Behavioral and Brain Functions is published by BioMed Central. The greatest challenge for empirical science is to understand human behavior; how human behavior arises from the myriad functions such as attention, language, memory and emotion; how these functions are reflected in brain structures and functions; and how the brain and behavior are altered in disease. Behavioral and Brain Functions covers the entire area of behavioral and cognitive neuroscience – an area where animal studies traditionally play a prominent role. Behavioral and Brain Functions is published online, allowing unlimited space for figures, extensive datasets to allow readers to study the data for themselves, and moving pictures, which are important qualities assisting communication in modern science.

  8. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    International Nuclear Information System (INIS)

    Liu Yaou; Liang Peipeng; Duan Yunyun; Jia Xiuqin; Wang Fei; Yu Chunshui; Qin Wen; Dong Huiqing; Ye Jing; Li Kuncheng

    2011-01-01

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  9. Effects of a functional COMT polymorphism on brain anatomy and cognitive function in adults with velo-cardio-facial syndrome

    NARCIS (Netherlands)

    van Amelsvoort, T.; Zinkstok, J.; Figee, M.; Daly, E.; Morris, R.; Owen, M. J.; Murphy, K. C.; de Haan, L.; Linszen, D. H.; Glaser, B.; Murphy, D. G. M.

    2008-01-01

    BACKGROUND: Velo-cardio-facial syndrome (VCFS) is associated with deletions at chromosome 22q11, abnormalities in brain anatomy and function, and schizophrenia-like psychosis. Thus it is assumed that one or more genes within the deleted region are crucial to brain development. However, relatively

  10. Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state.

    Science.gov (United States)

    Wang, Tianyue; Li, Qian; Guo, Mingxia; Peng, Yanmin; Li, Qingji; Qin, Wen; Yu, Chunshui

    2014-05-14

    Amblyopia is a developmental disorder resulting from anomalous binocular visual input in early life. Task-based neuroimaging studies have widely investigated cortical functional impairments in amblyopia, but changes in spontaneous neuronal functional activities in amblyopia remain largely unknown. In the present study, functional connectivity density (FCD) mapping, an ultrafast data-driven method based on fMRI, was applied for the first time to investigate changes in cortical functional connectivities in amblyopia during the resting-state. We quantified and compared both short- and long-range FCD in both the brains of children with anisometropic amblyopia (AAC) and normal sighted children (NSC). In contrast to the NSC, the AAC showed significantly decreased short-range FCD in the inferior temporal/fusiform gyri, parieto-occipital and rostrolateral prefrontal cortices, as well as decreased long-range FCD in the premotor cortex, dorsal inferior parietal lobule, frontal-insular and dorsal prefrontal cortices. Furthermore, most regions with reduced long-range FCD in the AAC showed decreased functional connectivity with occipital and posterior parietal cortices in the AAC. The results suggest that chronically poor visual input in amblyopia not only impairs the brain's short-range functional connections in visual pathways and in the frontal cortex, which is important for cognitive control, but also affects long-range functional connections among the visual areas, posterior parietal and frontal cortices that subserve visuomotor and visual-guided actions, visuospatial attention modulation and the integration of salient information. This study provides evidence for abnormal spontaneous brain activities in amblyopia. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Evening dietary tryptophan improves post-sleep behavioral and brain measures of memory function in healthy subjects

    NARCIS (Netherlands)

    Markus, C.R.; Jonkman, L.M.; Lammers, J.H.C.M.; Deutz, N.E.P.

    2006-01-01

    Brain serotonin function has been implicated in the control of sleep and sleep related memory dysfunctions are attributed to deficient brain serotonin activity. Depletion of the serotonin precursor tryptophan reduces brain serotonin function and is found to cause sleep abnormalities and cognitive

  12. Added value of fetal MRI in fetuses with suspected brain abnormalities on neurosonography : a systematic review and meta-analysis

    NARCIS (Netherlands)

    van Doorn, Martine; Oude Rengerink, K|info:eu-repo/dai/nl/375367292; Newsum, Esther A; Reneman, Liesbeth; Majoie, Charles B; Pajkrt, Eva

    PURPOSE: To evaluate the additional diagnostic value of fetal Magnetic Resonance Imaging (MRI) in fetuses with suspected brain abnormalities identified with advanced neurosonography (NS). METHODS: A systematic literature search was performed for studies reporting on a comparison between diagnosis

  13. Biochemical and functional abnormalities in hypercholesterolemic rabbit platelets

    International Nuclear Information System (INIS)

    Dalal, K.B.; Ebbe, S.; Mazoyer, E.; Carpenter, D.; Yee, T.

    1990-01-01

    This study was designed to elucidate changes in rabbit platelet lipids induced by a cholesterol rich diet and to explore the possible correlation of these lipid changes with platelet abnormalities. Pronounced biochemical alterations were observed when serum cholesterol levels of 700-1000 mg% were reached. Hypercholesterolemic (HC) platelets contained 37% more neutral lipids and 16% less phospholipids than the controls. Lysolecithin, cholesterol esters and phosphatidylinositol (PI) levels were increased in HC platelets, and the levels of phosphatidylcholine (PC) were decreased. The cholesterol/phospholipid molar ratio of lipidemic platelets increased from 0.55 +/- 0.011 to 0.89 +/- 0.016 (P less than 0.01) in eight weeks. HC platelets had 90% more arachidonic acid (AA) in the PI than normal platelets. No significant changes in AA of PC were observed. Platelet function was monitored by the uptake and release of [14C]serotonin in platelet rich plasma (PRP), using varying concentrations of collagen as an aggregating agent. The uptake of [14C]serotonin in HC and normal platelets ranged from 78-94%. The percent of [14C]serotonin released from normal and HC platelets was proportional to the concentration of collagen. However, lipidemic platelets were hyperreactive to low concentrations of collagen. Incorporation of 50 microM acetylsalicylic acid into the aggregating medium suppressed the release of [14C]serotonin in normal PRP by more than 90%, but had only a partial effect on lipidemic PRP

  14. Morphological and Functional Platelet Abnormalities in Berkeley Sickle Cell Mice

    Science.gov (United States)

    Shet, Arun S.; Hoffmann, Thomas J.; Jirouskova, Marketa; Janczak, Christin A.; Stevens, Jacqueline R.M.; Adamson, Adewole; Mohandas, Narla; Manci, Elizabeth A.; Cynober, Therese; Coller, Barry S.

    2009-01-01

    Berkeley sickle cell mice are used as an animal model of human sickle cell disease but there are no reports of platelet studies in this model. Since humans with sickle cell disease have platelet abnormalities, we studied platelet morphology and function in Berkeley mice (SS). We observed elevated mean platelet forward angle light scatter (FSC) values (an indirect measure of platelet volume) in SS compared to wild type (WT) (37 ± 3.2 vs. 27 ± 1.4, mean ± SD; p Howell-Jolly bodies and “pocked” erythrocytes (p <0.001 for both) suggesting splenic dysfunction. SS mice also had elevated numbers of thiazole orange positive platelets (5 ± 1 % vs. 1 ± 1%; p <0.001), normal to low plasma thrombopoietin levels, normal plasma glycocalicin levels, normal levels of platelet recovery, and near normal platelet life spans. Platelets from SS mice bound more fibrinogen and antibody to P-selectin following activation with a threshold concentration of a protease activated receptor (PAR)-4 peptide compared to WT mice. Enlarged platelets are associated with a predisposition to arterial thrombosis in humans and some humans with SCD have been reported to have large platelets. Thus, additional studies are needed to assess whether large platelets contribute either to pulmonary hypertension or the large vessel arterial occlusion that produces stroke in some children with sickle cell disease. PMID:18374611

  15. Abnormal functional architecture of amygdala-centered networks in adolescent posttraumatic stress disorder.

    Science.gov (United States)

    Aghajani, Moji; Veer, Ilya M; van Hoof, Marie-José; Rombouts, Serge A R B; van der Wee, Nic J; Vermeiren, Robert R J M

    2016-03-01

    Posttraumatic stress disorder (PTSD) is a prevalent, debilitating, and difficult to treat psychiatric disorder. Very little is known of how PTSD affects neuroplasticity in the developing adolescent brain. Whereas multiple lines of research implicate amygdala-centered network dysfunction in the pathophysiology of adult PTSD, no study has yet examined the functional architecture of amygdala subregional networks in adolescent PTSD. Using intrinsic functional connectivity analysis, we investigated functional connectivity of the basolateral (BLA) and centromedial (CMA) amygdala in 19 sexually abused adolescents with PTSD relative to 23 matched controls. Additionally, we examined whether altered amygdala subregional connectivity coincides with abnormal grey matter volume of the amygdaloid complex. Our analysis revealed abnormal amygdalar connectivity and morphology in adolescent PTSD patients. More specifically, PTSD patients showed diminished right BLA connectivity with a cluster including dorsal and ventral portions of the anterior cingulate and medial prefrontal cortices (p PTSD patients showed increased left CMA connectivity with a cluster including the orbitofrontal and subcallosal cortices (p PTSD. These findings provide unique insights into how perturbations in major amygdalar circuits could hamper fear regulation and drive excessive acquisition and expression of fear in PTSD. As such, they represent an important step toward characterizing the neurocircuitry of adolescent PTSD, thereby informing the development of reliable biomarkers and potential therapeutic targets. © 2016 Wiley Periodicals, Inc.

  16. Abnormal intrinsic functional hubs in alcohol dependence: evidence from a voxelwise degree centrality analysis

    Directory of Open Access Journals (Sweden)

    Luo X

    2017-07-01

    Full Text Available Xiaoping Luo,1,2 Linghong Guo,1 Xi-Jian Dai,3 Qinglai Wang,2 Wenzhong Zhu,2 Xinjun Miao,2 Honghan Gong1 1Department of Radiology, The First Affiliated Hospital of Nanchang University, Nangchang, Jiangxi, People’s Republic of China; 2Department of Radiology, Wenzhou Chinese Medicine Hospital, Wenzhou, Zhejiang, People’s Republic of China; 3Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China Objective: To explore the abnormal intrinsic functional hubs in alcohol dependence using voxelwise degree centrality analysis approach, and their relationships with clinical features.Materials and methods: Twenty-four male alcohol dependence subjects free of medicine (mean age, 50.21±9.62 years and 24 age- and education-matched male healthy controls (mean age, 50.29±8.92 years were recruited. The alcohol use disorders identification test and the severity of alcohol dependence questionnaire (SADQ were administered to assess the severity of alcohol craving. Voxelwise degree centrality approach was used to assess the abnormal intrinsic functional hubs features in alcohol dependence. Simple linear regression analysis was performed to investigate the relationships between the clinical features and abnormal intrinsic functional hubs.Results: Compared with healthy controls, alcohol dependence subjects exhibited significantly different degree centrality values in widespread left lateralization brain areas, including higher degree centrality values in the left precentral gyrus (BA 6, right hippocampus (BA 35, 36, and left orbitofrontal cortex (BA 11 and lower degree centrality values in the left cerebellum posterior lobe, bilateral secondary visual network (BA 18, and left precuneus (BA 7, 19. SADQ revealed a negative linear correlation with the degree centrality value in the left precentral gyrus (R2=0.296, P=0.006.Conclusion: The specific abnormal intrinsic functional hubs appear

  17. Brain structure abnormalities in young women who presented conduct disorder in childhood/adolescence.

    Science.gov (United States)

    Budhiraja, Meenal; Savic, Ivanka; Lindner, Philip; Jokinen, Jussi; Tiihonen, Jari; Hodgins, Sheilagh

    2017-08-01

    The phenotype and genotype of antisocial behavior among females are different from those among males. Previous studies have documented structural brain alterations in males with antisocial behavior, yet little is known about the neural correlates of female antisocial behavior. The present study examined young women who had presented conduct disorder (CDW) prior to age 15 to determine whether brain abnormalities are present in adulthood and whether the observed abnormalities are associated with comorbid disorders or maltreatment that typically characterize this population. Using magnetic resonance imaging and voxel-based morphometry, we compared gray matter volumes (GMV) of 31 women who presented CD by midadolescence and 25 healthy women (HW), age, on average, 23 years. Participants completed structured, validated interviews to diagnose mental disorders, and validated questionnaires to document physical and sexual abuse. Relative to HW, CDW presented increased GMV in the left superior temporal gyrus that was associated with past alcohol and drug dependence, current use of alcohol and drugs, and current anxiety and depression symptoms and maltreatment. Additionally, CDW displayed reduced GMV in lingual gyrus, hippocampus, and anterior cingulate cortex that was associated with past comorbid disorders, current alcohol and drugs use, current anxiety and depression symptoms, and maltreatment. The CDW also presented reduced total GMV that was associated with past comorbid disorders and current anxiety/depression symptoms. Alterations of brain structure were observed among young adult females with prior CD, relative to HW, all of which were associated with internalizing and externalizing disorders and maltreatment that typically accompany CD.

  18. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors

    Science.gov (United States)

    Haziza, Simon; Mohan, Nitin; Loe-Mie, Yann; Lepagnol-Bestel, Aude-Marie; Massou, Sophie; Adam, Marie-Pierre; Le, Xuan Loc; Viard, Julia; Plancon, Christine; Daudin, Rachel; Koebel, Pascale; Dorard, Emilie; Rose, Christiane; Hsieh, Feng-Jen; Wu, Chih-Che; Potier, Brigitte; Herault, Yann; Sala, Carlo; Corvin, Aiden; Allinquant, Bernadette; Chang, Huan-Cheng; Treussart, François; Simonneau, Michel

    2017-05-01

    Brain diseases such as autism and Alzheimer's disease (each inflicting >1% of the world population) involve a large network of genes displaying subtle changes in their expression. Abnormalities in intraneuronal transport have been linked to genetic risk factors found in patients, suggesting the relevance of measuring this key biological process. However, current techniques are not sensitive enough to detect minor abnormalities. Here we report a sensitive method to measure the changes in intraneuronal transport induced by brain-disease-related genetic risk factors using fluorescent nanodiamonds (FNDs). We show that the high brightness, photostability and absence of cytotoxicity allow FNDs to be tracked inside the branches of dissociated neurons with a spatial resolution of 12 nm and a temporal resolution of 50 ms. As proof of principle, we applied the FND tracking assay on two transgenic mouse lines that mimic the slight changes in protein concentration (∼30%) found in the brains of patients. In both cases, we show that the FND assay is sufficiently sensitive to detect these changes.

  19. Alzheimer disease: functional abnormalities in the dorsal visual pathway.

    LENUS (Irish Health Repository)

    Bokde, Arun L W

    2012-02-01

    PURPOSE: To evaluate whether patients with Alzheimer disease (AD) have altered activation compared with age-matched healthy control (HC) subjects during a task that typically recruits the dorsal visual pathway. MATERIALS AND METHODS: The study was performed in accordance with the Declaration of Helsinki, with institutional ethics committee approval, and all subjects provided written informed consent. Two tasks were performed to investigate neural function: face matching and location matching. Twelve patients with mild AD and 14 age-matched HC subjects were included. Brain activation was measured by using functional magnetic resonance imaging. Group statistical analyses were based on a mixed-effects model corrected for multiple comparisons. RESULTS: Task performance was not statistically different between the two groups, and within groups there were no differences in task performance. In the HC group, the visual perception tasks selectively activated the visual pathways. Conversely in the AD group, there was no selective activation during performance of these same tasks. Along the dorsal visual pathway, the AD group recruited additional regions, primarily in the parietal and frontal lobes, for the location-matching task. There were no differences in activation between groups during the face-matching task. CONCLUSION: The increased activation in the AD group may represent a compensatory mechanism for decreased processing effectiveness in early visual areas of patients with AD. The findings support the idea that the dorsal visual pathway is more susceptible to putative AD-related neuropathologic changes than is the ventral visual pathway.

  20. Brain gene expression differences are associated with abnormal tail biting behavior in pigs.

    Science.gov (United States)

    Brunberg, E; Jensen, P; Isaksson, A; Keeling, L J

    2013-03-01

    Knowledge about gene expression in animals involved in abnormal behaviors can contribute to the understanding of underlying biological mechanisms. This study aimed to explore the motivational background to tail biting, an abnormal injurious behavior and severe welfare problem in pig production. Affymetrix microarrays were used to investigate gene expression differences in the hypothalamus and prefrontal cortex of pigs performing tail biting, pigs receiving bites to the tail and neutral pigs who were not involved in the behavior. In the hypothalamus, 32 transcripts were differentially expressed (P biting behavior as performers or receivers. Among these 19 transcripts were genes associated with production traits in pigs (PDK4), sociality in humans and mice (GTF2I) and novelty seeking in humans (EGF). These are in line with hypotheses linking tail biting with reduced back fat thickness and explorative behavior. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  1. Abnormal Intrinsic Functional Hubs in Severe Male Obstructive Sleep Apnea: Evidence from a Voxel-Wise Degree Centrality Analysis.

    Science.gov (United States)

    Li, Haijun; Li, Lan; Shao, Yi; Gong, Honghan; Zhang, Wei; Zeng, Xianjun; Ye, Chenglong; Nie, Si; Chen, Liting; Peng, Dechang

    2016-01-01

    Obstructive sleep apnea (OSA) has been associated with changes in brain structure and regional function in certain brain areas. However, the functional features of network organization in the whole brain remain largely uncertain. The purpose of this study was to identify the OSA-related spatial centrality distribution of the whole brain functional network and to investigate the potential altered intrinsic functional hubs. Forty male patients with newly confirmed severe OSA on polysomnography, and well-matched good sleepers, participated in this study. All participants underwent a resting-state functional MRI scan and clinical and cognitive evaluation. Voxel-wise degree centrality (DC) was measured across the whole brain, and group difference in DC was compared. The relationship between the abnormal DC value and clinical variables was assessed using a linear correlation analysis. Remarkably similar spatial distributions of the functional hubs (high DC) were found in both groups. However, OSA patients exhibited a pattern of significantly reduced regional DC in the left middle occipital gyrus, posterior cingulate cortex, left superior frontal gyrus, and bilateral inferior parietal lobule, and DC was increased in the right orbital frontal cortex, bilateral cerebellum posterior lobes, and bilateral lentiform nucleus, including the putamen, extending to the hippocampus, and the inferior temporal gyrus, which overlapped with the functional hubs. Furthermore, a linear correlation analysis revealed that the DC value in the posterior cingulate cortex and left superior frontal gyrus were positively correlated with Montreal cognitive assessment scores, The DC value in the left middle occipital gyrus and bilateral inferior parietal lobule were negatively correlated with apnea-hypopnea index and arousal index in OSA patients. Our findings suggest that OSA patients exhibited specific abnormal intrinsic functional hubs including relatively reduced and increased DC. This expands

  2. The Abnormal Functional Connectivity between the Hypothalamus and the Temporal Gyrus Underlying Depression in Alzheimer's Disease Patients.

    Science.gov (United States)

    Liu, Xiaozheng; Chen, Wei; Tu, Yunhai; Hou, Hongtao; Huang, Xiaoyan; Chen, Xingli; Guo, Zhongwei; Bai, Guanghui; Chen, Wei

    2018-01-01

    Hypothalamic communication with the rest of the brain is critical for accomplishing a wide variety of physiological and psychological functions, including the maintenance of neuroendocrine circadian rhythms and the management of affective processes. Evidence has shown that major depressive disorder (MDD) patients exhibit increased functioning of the hypothalamic-pituitary-adrenal (HPA) axis. Neurofibrillary tangles are also found in the hypothalamus of Alzheimer's disease (AD) patients, and AD patients exhibit abnormal changes in the HPA. However, little is known of how the hypothalamus interacts with other brain regions in AD patients with depression (D-AD). Functional connectivity (FC) analysis explores the connectivity between brain regions that share functional properties. Here, we used resting-state (rs) magnetic resonance imaging (MRI) technology and the FC method to measure hypothalamic connectivity across the whole brain in 22 D-AD patients and 21 non-depressed AD patients (nD-AD). Our results showed that D-AD patients had reduced FC among the hypothalamus, the right middle temporal gyrus (MTG) and the right superior temporal gyrus (STG) compared with the FC of nD-AD patients, suggesting that the abnormal FC between the hypothalamus and the temporal lobe may play a key role in the pathophysiology of depression in AD patients.

  3. Abnormal neurological exam findings in individuals with mild traumatic brain injury (mTBI) versus psychiatric and healthy controls.

    Science.gov (United States)

    Silva, Marc A; Donnell, Alison J; Kim, Michelle S; Vanderploeg, Rodney D

    2012-01-01

    In those with a history of mild traumatic brain injury (mTBI), cognitive and emotional disturbances are often misattributed to that preexisting injury. However, causal determinations of current symptoms cannot be conclusively determined because symptoms are often nonspecific to etiology and offer virtually no differential diagnostic value in postacute or chronic phases. This population-based study examined whether the presence of abnormalities during neurological examination would distinguish between mTBI (in the chronic phase), healthy controls, and selected psychiatric conditions. Retrospective analysis of data from 4462 community-dwelling Army veterans was conducted. Diagnostically unique groups were compared on examination of cranial nerve function and other neurological signs. Results demonstrated that individuals with mTBI were no more likely than those with a major depressive disorder, generalized anxiety disorder, posttraumatic stress disorder, or somatoform disorder to show any abnormality. Thus, like self-reported cognitive and emotional symptoms, the presence of cranial nerve or other neurological abnormalities offers no differential diagnostic value. Clinical implications and study limitations are presented.

  4. Toward discovery science of human brain function

    DEFF Research Database (Denmark)

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian

    2010-01-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints...... of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (... individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships...

  5. Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Work in progress

    International Nuclear Information System (INIS)

    Tumeh, S.S.; Nagel, J.S.; English, R.J.; Moore, M.; Holman, B.L.

    1990-01-01

    Single photon emission computed tomography (SPECT) perfusion brain scans with iodine-123 isopropyl iodoamphetamine (IMP) were obtained in 12 subjects who acknowledged using cocaine on a sporadic to a daily basis. The route of cocaine administration varied from nasal to intravenous. Concurrent abuse of other drugs was also reported. None of the patients were positive for human immunodeficiency virus. Brain scans demonstrated focal defects in 11 subjects, including seven who were asymptomatic, and no abnormality in one. Among the findings were scattered focal cortical deficits, which were seen in several patients and which ranged in severity from small and few to multiple and large, with a special predilection for the frontal and temporal lobes. No perfusion deficits were seen on I-123 SPECT images in five healthy volunteers. Focal alterations in cerebral perfusion are seen commonly in asymptomatic drug users, and these focal deficits are readily depicted by I-123 IMP SPECT

  6. Structural brain abnormalities in the frontostriatal system and cerebellum in pedophilia.

    Science.gov (United States)

    Schiffer, Boris; Peschel, Thomas; Paul, Thomas; Gizewski, Elke; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Krueger, Tillmann H C

    2007-11-01

    Even though previous neuropsychological studies and clinical case reports have suggested an association between pedophilia and frontocortical dysfunction, our knowledge about the neurobiological mechanisms underlying pedophilia is still fragmentary. Specifically, the brain morphology of such disorders has not yet been investigated using MR imaging techniques. Whole brain structural T1-weighted MR images from 18 pedophile patients (9 attracted to males, 9 attracted to females) and 24 healthy age-matched control subjects (12 hetero- and 12 homosexual) from a comparable socioeconomic stratum were processed by using optimized automated voxel-based morphometry within multiple linear regression analyses. Compared to the homosexual and heterosexual control subjects, pedophiles showed decreased gray matter volume in the ventral striatum (also extending into the nucl. accumbens), the orbitofrontal cortex and the cerebellum. These observations further indicate an association between frontostriatal morphometric abnormalities and pedophilia. In this respect these findings may support the hypothesis that there is a shared etiopathological mechanism in all obsessive-compulsive spectrum disorders.

  7. Insulin action in brain regulates systemic metabolism and brain function.

    Science.gov (United States)

    Kleinridders, André; Ferris, Heather A; Cai, Weikang; Kahn, C Ronald

    2014-07-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. © 2014 by the American Diabetes Association.

  8. Comparing CAT12 and VBM8 for Detecting Brain Morphological Abnormalities in Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Farnaz Farokhian

    2017-08-01

    Full Text Available The identification of the brain morphological alterations that play important roles in neurodegenerative/neurological diseases will contribute to our understanding of the causes of these diseases. Various automated software programs are designed to provide an automatic framework to detect brain morphological changes in structural magnetic resonance imaging (MRI data. A voxel-based morphometry (VBM analysis can also be used for the detection of brain volumetric abnormalities. Here, we compared gray matter (GM and white matter (WM abnormality results obtained by a VBM analysis using the Computational Anatomy Toolbox (CAT12 via the current version of Statistical Parametric Mapping software (SPM12 with the results obtained by a VBM analysis using the VBM8 toolbox implemented in the older software SPM8, in adult temporal lobe epilepsy (TLE patients with (n = 51 and without (n = 57 hippocampus sclerosis (HS, compared to healthy adult controls (n = 28. The VBM analysis using CAT12 showed that compared to the healthy controls, significant GM and WM reductions were located in ipsilateral mesial temporal lobes in the TLE-HS patients, and slight GM amygdala swelling was present in the right TLE-no patients (n = 27. In contrast, the VBM analysis via the VBM8 toolbox showed significant GM and WM reductions only in the left TLE-HS patients (n = 25 compared to the healthy controls. Our findings thus demonstrate that compared to VBM8, a VBM analysis using CAT12 provides a more accurate volumetric analysis of the brain regions in TLE. Our results further indicate that a VBM analysis using CAT12 is more robust and accurate against volumetric alterations than the VBM8 toolbox.

  9. Abnormal structural connectivity in the brain networks of children with hydrocephalus

    Directory of Open Access Journals (Sweden)

    Weihong Yuan

    2015-01-01

    Full Text Available Increased intracranial pressure and ventriculomegaly in children with hydrocephalus are known to have adverse effects on white matter structure. This study seeks to investigate the impact of hydrocephalus on topological features of brain networks in children. The goal was to investigate structural network connectivity, at both global and regional levels, in the brains in children with hydrocephalus using graph theory analysis and diffusion tensor tractography. Three groups of children were included in the study (29 normally developing controls, 9 preoperative hydrocephalus patients, and 17 postoperative hydrocephalus patients. Graph theory analysis was applied to calculate the global network measures including small-worldness, normalized clustering coefficients, normalized characteristic path length, global efficiency, and modularity. Abnormalities in regional network parameters, including nodal degree, local efficiency, clustering coefficient, and betweenness centrality, were also compared between the two patients groups (separately and the controls using two tailed t-test at significance level of p < 0.05 (corrected for multiple comparison. Children with hydrocephalus in both the preoperative and postoperative groups were found to have significantly lower small-worldness and lower normalized clustering coefficient than controls. Children with hydrocephalus in the postoperative group were also found to have significantly lower normalized characteristic path length and lower modularity. At regional level, significant group differences (or differences at trend level in regional network measures were found between hydrocephalus patients and the controls in a series of brain regions including the medial occipital gyrus, medial frontal gyrus, thalamus, cingulate gyrus, lingual gyrus, rectal gyrus, caudate, cuneus, and insular. Our data showed that structural connectivity analysis using graph theory and diffusion tensor tractography is sensitive to

  10. The restless brain: how intrinsic activity organizes brain function.

    Science.gov (United States)

    Raichle, Marcus E

    2015-05-19

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease.

  11. Brain Microstructural Abnormalities Are Related to Physiological Alterations in End-Stage Renal Disease.

    Directory of Open Access Journals (Sweden)

    Zhigang Bai

    Full Text Available To study whole-brain microstructural alterations in patients with end-stage renal disease (ESRD and examine the relationship between brain microstructure and physiological indictors in the disease.Diffusion tensor imaging data were collected from 35 patients with ESRD (28 men, 18-61 years and 40 age- and gender-matched healthy controls (HCs, 32 men, 22-58 years. A voxel-wise analysis was then used to identify microstructural alterations over the whole brain in the ESRD patients compared with the HCs. Multiple biochemical measures of renal metabolin, vascular risk factors, general cognitive ability and dialysis duration were correlated with microstructural integrity for the patients.Compared to the HCs, the ESRD patients exhibited disrupted microstructural integrity in not only white matter (WM but also gray matter (GM regions, as characterized by decreased fractional anisotropy (FA and increased mean diffusivity (MD, axial diffusivity (AD and radial diffusivity (RD. Further correlation analyses revealed that the in MD, AD and RD values showed significantly positive correlations with the blood urea nitrogen in the left superior temporal gyrus and significantly negative correlations with the calcium levels in the left superior frontal gyrus (orbital part in the patients.Our findings suggest that ESRD is associated with widespread diffusion abnormalities in both WM and GM regions in the brain, and microstructural integrity of several GM regions are related to biochemical alterations in the disease.

  12. Three-dimensional textural analysis of brain images reveals distributed grey-matter abnormalities in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Ganeshan, Balaji [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Miles, Kenneth A.; Critchley, Hugo D. [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); Young, Rupert C.D.; Chatwin, Christopher R. [University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Gurling, Hugh M.D. [University College London, Department of Mental Health Sciences, London (United Kingdom)

    2010-04-15

    Three-dimensional (3-D) selective- and relative-scale texture analysis (TA) was applied to structural magnetic resonance (MR) brain images to quantify the presence of grey-matter (GM) and white-matter (WM) textural abnormalities associated with schizophrenia. Brain TA comprised volume filtration using the Laplacian of Gaussian filter to highlight fine, medium and coarse textures within GM and WM, followed by texture quantification. Relative TA (e.g. ratio of fine to medium) was also computed. T1-weighted MR whole-brain images from 32 participants with diagnosis of schizophrenia (n = 10) and healthy controls (n = 22) were examined. Five patients possessed marker alleles (SZ8) associated with schizophrenia on chromosome 8 in the pericentriolar material 1 gene while the remaining five had not inherited any of the alleles (SZ0). Filtered fine GM texture (mean grey-level intensity; MGI) most significantly differentiated schizophrenic patients from controls (P = 0.0058; area under the receiver-operating characteristic curve = 0.809, sensitivity = 90%, specificity = 70%). WM measurements did not distinguish the two groups. Filtered GM and WM textures (MGI) correlated with total GM and WM volume respectively. Medium-to-coarse GM entropy distinguished SZ0 from controls (P = 0.0069) while measures from SZ8 were intermediate between the two. 3-D TA of brain MR enables detection of subtle distributed morphological features associated with schizophrenia, determined partly by susceptibility genes. (orig.)

  13. Three-dimensional textural analysis of brain images reveals distributed grey-matter abnormalities in schizophrenia

    International Nuclear Information System (INIS)

    Ganeshan, Balaji; Miles, Kenneth A.; Critchley, Hugo D.; Young, Rupert C.D.; Chatwin, Christopher R.; Gurling, Hugh M.D.

    2010-01-01

    Three-dimensional (3-D) selective- and relative-scale texture analysis (TA) was applied to structural magnetic resonance (MR) brain images to quantify the presence of grey-matter (GM) and white-matter (WM) textural abnormalities associated with schizophrenia. Brain TA comprised volume filtration using the Laplacian of Gaussian filter to highlight fine, medium and coarse textures within GM and WM, followed by texture quantification. Relative TA (e.g. ratio of fine to medium) was also computed. T1-weighted MR whole-brain images from 32 participants with diagnosis of schizophrenia (n = 10) and healthy controls (n = 22) were examined. Five patients possessed marker alleles (SZ8) associated with schizophrenia on chromosome 8 in the pericentriolar material 1 gene while the remaining five had not inherited any of the alleles (SZ0). Filtered fine GM texture (mean grey-level intensity; MGI) most significantly differentiated schizophrenic patients from controls (P = 0.0058; area under the receiver-operating characteristic curve = 0.809, sensitivity = 90%, specificity = 70%). WM measurements did not distinguish the two groups. Filtered GM and WM textures (MGI) correlated with total GM and WM volume respectively. Medium-to-coarse GM entropy distinguished SZ0 from controls (P = 0.0069) while measures from SZ8 were intermediate between the two. 3-D TA of brain MR enables detection of subtle distributed morphological features associated with schizophrenia, determined partly by susceptibility genes. (orig.)

  14. Evaluation of Brain and Cervical MRI Abnormality Rates in Patients With Systemic Lupus Erythematosus With or Without Neurological Manifestations

    International Nuclear Information System (INIS)

    Harirchian, Mohammad Hossein; Saberi, Hazhir; Najafizadeh, Seyed Reza; Hashemi, Seyed Ali

    2011-01-01

    Central nervous system (CNS) involvement has been observed in 14-80% of patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is an appropriate method for evaluating CNS involvement in these patients. Clinical manifestations and MRI findings of CNS lupus should be differentiated from other mimicking diseases such as multiple sclerosis (MS). The aim of this study was to evaluate the prevalence and extent of brain and cervical cord MRI lesions of lupus patients. The relationship between neurological signs and symptoms and MRI findings were evaluated as well. Fifty SLE patients who had been referred to the rheumatology clinic of our hospital within 2009 were included in a cross sectional study. All patients fulfilled the revised 1981 American College of Rheumatology (ACR) criteria for SLE. We evaluated the neurological signs and symptoms and brain and cervical MRI findings in these patients. Forty-one patients (82%) were female and nine (18%) were male. The mean age was 30.1 ± 9.3 years. Twenty eight (56%) patients had an abnormal brain MRI. No one showed any abnormality in the cervical MRI. The lesions in 20 patients were similar to demyelinative plaques. Seventeen patients with abnormal brain MRI were neurologically asymptomatic. There was only a significant relationship between neurological motor manifestations and brain MRI abnormal findings. Unlike the brain, cervical MRI abnormality and especially asymptomatic cord involvement in MRI is quite rare in SLE patients. This finding may be helpful to differentiate SLE from other CNS disorders such as MS

  15. Communication abnormalities predict functional outcomes in chronic schizophrenia: differential associations with social and adaptive functions.

    Science.gov (United States)

    Bowie, Christopher R; Harvey, Philip D

    2008-08-01

    Communication abnormalities are hallmark features of schizophrenia. Despite the prevalence and persistence of these symptoms, little is known about their functional implications. In this study, we examined, in a sample of chronically institutionalized schizophrenia patients (N=317), whether two types of communication abnormalities (i.e., verbal underproductivity and disconnected speech) had differential relationships with social and adaptive outcomes. Baseline ratings of verbal underproductivity, disconnected speech, global cognitive performance, and clinical symptoms, were entered into stepwise regression analyses to examine their relationship with 2.5 year social and adaptive outcomes. At baseline, disconnected speech was significantly associated with socially impolite behavior, while verbal underproductivity was associated with social disengagement and impaired friendships. Both types of communication abnormalities were significantly associated with other types of social skills. Verbal underproductivity predicted follow-up social skills, social engagement, and friendships, accounting for more variance than. cognition or symptoms. In contrast to social outcomes, adaptive outcomes were predicted by baseline neurocognition and clinical symptoms, but not communication abnormalities. These findings provide evidence for specific relationships of communication disorder subtypes with diverse impairments in social functions. In this chronically institutionalized sample, communication disorder was a stronger predictor of social, but not adaptive, outcomes than neurocognition or clinical symptoms.

  16. mTOR signaling and its roles in normal and abnormal brain development.

    Directory of Open Access Journals (Sweden)

    Nobuyuki eTakei

    2014-04-01

    Full Text Available Target of rapamycin (TOR was first identified in yeast as a target molecule of rapamycin, an anti-fugal and immunosuppressant macrolide compound. In mammals, its orthologue is called mTOR (mammalian TOR. mTOR is a serine/threonine kinase that converges different extracellular stimuli, such as nutrients and growth factors, and diverges into several biochemical reactions, including translation, autophagy, transcription, and lipid synthesis among others. These biochemical reactions govern cell growth and cause cells to attain an anabolic state. Thus, the disruption of mTOR signaling is implicated in a wide array of diseases such as cancer, diabetes, and obesity. In the central nervous system (CNS, the mTOR signaling cascade is activated by nutrients, neurotrophic factors, and neurotransmitters that enhances protein (and possibly lipid synthesis and suppresses autophagy. These processes contribute to normal neuronal growth by promoting their differentiation, neurite elongation and branching, and synaptic formation during development. Therefore, disruption of mTOR signaling may cause neuronal degeneration and abnormal neural development. While reduced mTOR signaling is associated with neurodegeneration, excess activation of mTOR signaling causes abnormal development of neurons and glia, leading to brain malformation. In this review, we first introduce the current state of molecular knowledge of mTOR complexes and signaling in general. We then describe mTOR activation in neurons, which leads to translational enhancement, and finally discuss the link between mTOR and normal/abnormal neuronal growth during development.

  17. Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder With Oppositional Defiant Disorder.

    Science.gov (United States)

    Noordermeer, Siri D S; Luman, Marjolein; Greven, Corina U; Veroude, Kim; Faraone, Stephen V; Hartman, Catharina A; Hoekstra, Pieter J; Franke, Barbara; Buitelaar, Jan K; Heslenfeld, Dirk J; Oosterlaan, Jaap

    2017-11-01

    Attention-deficit/hyperactivity disorder (ADHD) is associated with structural abnormalities in total gray matter, basal ganglia, and cerebellum. Findings of structural abnormalities in frontal and temporal lobes, amygdala, and insula are less consistent. Remarkably, the impact of comorbid oppositional defiant disorder (ODD) (comorbidity rates up to 60%) on these neuroanatomical differences is scarcely studied, while ODD (in combination with conduct disorder) has been associated with structural abnormalities of the frontal lobe, amygdala, and insula. The aim of this study was to investigate the effect of comorbid ODD on cerebral volume and cortical thickness in ADHD. Three groups, 16 ± 3.5 years of age (mean ± SD; range 7-29 years), were studied on volumetric and cortical thickness characteristics using structural magnetic resonance imaging (surface-based morphometry): ADHD+ODD (n = 67), ADHD-only (n = 243), and control subjects (n = 233). Analyses included the moderators age, gender, IQ, and scan site. ADHD+ODD and ADHD-only showed volumetric reductions in total gray matter and (mainly) frontal brain areas. Stepwise volumetric reductions (ADHD+ODD conduct disorder rather than ODD. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. The Therapeutic Function of the Instructor in Abnormal Psychology.

    Science.gov (United States)

    Halgin, Richard P.

    1982-01-01

    Describes three main types of therapeutic problems which college instructors of abnormal psychology courses may encounter with their students. Students may seek the instructor's assistance in helping a relative or acquaintance or for self-help. Often a student may not seek help but may display pathological behavior. (AM)

  19. Cannabis Use and Memory Brain Function in Adolescent Boys: A Cross-Sectional Multicenter Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Jager, Gerry; Block, Robert I.; Luijten, Maartje; Ramsey, Nick F.

    2010-01-01

    Objective: Early-onset cannabis use has been associated with later use/abuse, mental health problems (psychosis, depression), and abnormal development of cognition and brain function. During adolescence, ongoing neurodevelopmental maturation and experience shape the neural circuitry underlying complex cognitive functions such as memory and…

  20. Brain abnormalities underlying limb apraxia in corticobasal degeneration: an fMRI study

    Science.gov (United States)

    Beauchet, Olivier; Giraux, Pascal; Schneider, Fabien; Peyron, Roland; Barral, Fabrice; Laurent, Bernard

    2001-01-01

    Corticobasal degeneration is a neurodegenerative disease characterized, by cortical dysfunction and extrapyramidal signs. The most consistent symptom is a unilateral limb apraxia, which consists of an isolated disorder of gestural production involving primarily the upper limb. The objective of this study is to investigate the functional abnormalities that may underlie motor dysfunction, and those which might correlate to the severity of limb apraxia. PMID:22034043

  1. No abnormalities of intrinsic brain connectivity in the interictal phase of migraine with aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, F M; Magon, S

    2015-01-01

    BACKGROUND AND PURPOSE: Functional neuroimaging studies have shown hyperresponsiveness of cortical areas to visual stimuli in migraine patients with aura outside of attacks. This may be a key feature in the initiation of aura episodes and possibly also migraine headache attacks. It is unknown...... if cortical dysfunction is present at rest, i.e. in the absence of any external stimuli. Functional magnetic resonance imaging is a powerful technique for evaluating resting state functional connectivity, i.e. coherence of brain activity across cerebral areas. The objective of this study was to investigate...... resting-state functional brain connectivity in migraineurs with aura outside of attacks using functional magnetic resonance imaging. METHODS: Forty patients suffering from migraine with visual aura and 40 individually age and gender matched healthy controls with no history or family history of migraine...

  2. Multidimensional morphometric 3D MRI analyses for detecting brain abnormalities in children: impact of control population.

    Science.gov (United States)

    Wilke, Marko; Rose, Douglas F; Holland, Scott K; Leach, James L

    2014-07-01

    Automated morphometric approaches are used to detect epileptogenic structural abnormalities in 3D MR images in adults, using the variance of a control population to obtain z-score maps in an individual patient. Due to the substantial changes the developing human brain undergoes, performing such analyses in children is challenging. This study investigated six features derived from high-resolution T1 datasets in four groups: normal children (1.5T or 3T data), normal clinical scans (3T data), and patients with structural brain lesions (3T data), with each n = 10. Normative control data were obtained from the NIH study on normal brain development (n = 401). We show that control group size substantially influences the captured variance, directly impacting the patient's z-scores. Interestingly, matching on gender does not seem to be beneficial, which was unexpected. Using data obtained at higher field scanners produces slightly different base rates of suprathreshold voxels, as does using clinically derived normal studies, suggesting a subtle but systematic effect of both factors. Two approaches for controlling suprathreshold voxels in a multidimensional approach (combining features and requiring a minimum cluster size) were shown to be substantial and effective in reducing this number. Finally, specific strengths and limitations of such an approach could be demonstrated in individual cases.

  3. Multicenter Study of Brain Volume Abnormalities in Children and Adolescent-Onset Psychosis

    Science.gov (United States)

    Reig, Santiago; Parellada, Mara; Castro-Fornieles, Josefina; Janssen, Joost; Moreno, Dolores; Baeza, Inmaculada; Bargalló, Nuria; González-Pinto, Ana; Graell, Montserrat; Ortuño, Felipe; Otero, Soraya; Arango, Celso; Desco, Manuel

    2011-01-01

    The goal of the study is to determine the extent of structural brain abnormalities in a multicenter sample of children and adolescents with a recent-onset first episode of psychosis (FEP), compared with a sample of healthy controls. Total brain and lobar volumes and those of gray matter (GM), white matter, and cerebrospinal fluid (CSF) were measured in 92 patients with a FEP and in 94 controls, matched for age, gender, and years of education. Male patients (n = 64) showed several significant differences when compared with controls (n = 61). GM volume in male patients was reduced in the whole brain and in frontal and parietal lobes compared with controls. Total CSF volume and frontal, temporal, and right parietal CSF volumes were also increased in male patients. Within patients, those with a further diagnosis of “schizophrenia” or “other psychosis” showed a pattern similar to the group of all patients relative to controls. However, bipolar patients showed fewer differences relative to controls. In female patients, only the schizophrenia group showed differences relative to controls, in frontal CSF. GM deficit in male patients with a first episode correlated with negative symptoms. Our study suggests that at least part of the GM deficit in children and adolescent-onset schizophrenia and in other psychosis occurs before onset of the first positive symptoms and that, contrary to what has been shown in children-onset schizophrenia, frontal GM deficits are probably present from the first appearance of positive symptoms in children and adolescents. PMID:20478821

  4. Brain resting-state networks in adolescents with high-functioning autism: Analysis of spatial connectivity and temporal neurodynamics

    NARCIS (Netherlands)

    Bernas, A.; Barendse, E.M.; Aldenkamp, A.P.; Backes, W.H.; Hofman, P.A.M.; Hendriks, M.P.H.; Kessels, R.P.C.; Willems, F.M.J.; With, P.H.N. de; Zinger, S.; Jansen, J.F.A.

    2018-01-01

    Introduction: Autism spectrum disorder (ASD) is mainly characterized by functional and communication impairments as well as restrictive and repetitive behavior. The leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, which can be assessed using

  5. Neuroenergetics: How energy constraints shape brain function

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The nervous system consumes a disproportionate fraction of the resting body’s energy production. In humans, the brain represents 2% of the body’s mass, yet it accounts for ~20% of the total oxygen consumption. Expansion in the size of the brain relative to the body and an increase in the number of connections between neurons during evolution underpin our cognitive powers and are responsible for our brains’ high metabolic rate. The molecules at the center of cellular energy metabolism also act as intercellular signals and constitute an important communication pathway, coordinating for instance the immune surveillance of the brain. Despite the significance of energy consumption in the nervous system, how energy constrains and shapes brain function is often under appreciated. I will illustrate the importance of brain energetics and metabolism with two examples from my recent work. First, I will show how the brain trades information for energy savings in the visual pathway. Indeed, a significant fraction ...

  6. Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder.

    Science.gov (United States)

    Jin, Chenwang; Zhang, Ting; Cai, Chenxi; Bi, Yanzhi; Li, Yangding; Yu, Dahua; Zhang, Ming; Yuan, Kai

    2016-09-01

    Internet Gaming Disorder (IGD) among adolescents has become an important public concern and gained more and more attention internationally. Recent studies focused on IGD and revealed brain abnormalities in the IGD group, especially the prefrontal cortex (PFC). However, the role of PFC-striatal circuits in pathology of IGD remains unknown. Twenty-five adolescents with IGD and 21 age- and gender-matched healthy controls were recruited in our study. Voxel-based morphometric (VBM) and functional connectivity analysis were employed to investigate the abnormal structural and resting-state properties of several frontal regions in individuals with online gaming addiction. Relative to healthy comparison subjects, IGD subjects showed significant decreased gray matter volume in PFC regions including the bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and the right supplementary motor area (SMA) after controlling for age and gender effects. We chose these regions as the seeding areas for the resting-state analysis and found that IGD subjects showed decreased functional connectivity between several cortical regions and our seeds, including the insula, and temporal and occipital cortices. Moreover, significant decreased functional connectivity between some important subcortical regions, i.e., dorsal striatum, pallidum, and thalamus, and our seeds were found in the IGD group and some of those changes were associated with the severity of IGD. Our results revealed the involvement of several PFC regions and related PFC-striatal circuits in the process of IGD and suggested IGD may share similar neural mechanisms with substance dependence at the circuit level.

  7. Neonatal brain abnormalities associated with autism spectrum disorder in children born very preterm.

    Science.gov (United States)

    Ure, Alexandra M; Treyvaud, Karli; Thompson, Deanne K; Pascoe, Leona; Roberts, Gehan; Lee, Katherine J; Seal, Marc L; Northam, Elisabeth; Cheong, Jeanie L; Hunt, Rod W; Inder, Terrie; Doyle, Lex W; Anderson, Peter J

    2016-05-01

    Very preterm (VP) survivors are at increased risk of autism spectrum disorder (ASD) compared with term-born children. This study explored whether neonatal magnetic resonance (MR) brain features differed in VP children with and without ASD at 7 years. One hundred and seventy-two VP children (brain MR scans at term equivalent age (TEA; 40 weeks' gestation ±2 weeks) and were assessed for ASD at 7 years of age. The presence and severity of white matter, cortical gray matter, deep nuclear gray matter, and cerebellar abnormalities were assessed, and total and regional brain volumes were measured. ASD was diagnosed using a standardized parent report diagnostic interview and confirmed via an independent assessment. Eight VP children (4.7%) were diagnosed with ASD. Children with ASD had more cystic lesions in the cortical white matter at TEA compared with those without ASD (odds ratio [OR] 8.7, 95% confidence interval [CI] 1.5, 51.3, P = 0.02). There was also some evidence for smaller cerebellar volumes in children with ASD compared with those without ASD (OR = 0.82, CI = 0.66, 1.00, P = 0.06). Overall, the results suggest that VP children with ASD have different brain structure in the neonatal period compared with those who do not have ASD. Autism Res 2016, 9: 543-552. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  8. Effects of soccer heading on brain structure and function

    Directory of Open Access Journals (Sweden)

    Ana Carolina Oliveira Rodrigues

    2016-03-01

    Full Text Available Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of six to twelve incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the

  9. Effects of Soccer Heading on Brain Structure and Function

    Science.gov (United States)

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6–12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety

  10. Three-dimensional brain growth abnormalities in childhood-onset schizophrenia visualized by using tensor-based morphometry.

    Science.gov (United States)

    Gogtay, Nitin; Lu, Allen; Leow, Alex D; Klunder, Andrea D; Lee, Agatha D; Chavez, Alex; Greenstein, Deanna; Giedd, Jay N; Toga, Arthur W; Rapoport, Judith L; Thompson, Paul M

    2008-10-14

    Earlier studies revealed progressive cortical gray matter (GM) loss in childhood-onset schizophrenia (COS) across both lateral and medial surfaces of the developing brain. Here, we use tensor-based morphometry to visualize white matter (WM) growth abnormalities in COS throughout the brain. Using high-dimensional elastic image registration, we compared 3D maps of local WM growth rates in COS patients and healthy children over a 5-year period, based on analyzing longitudinal brain MRIs from 12 COS patients and 12 healthy controls matched for age, gender, and scan interval. COS patients showed up to 2.2% slower growth rates per year than healthy controls in WM (P = 0.02, all P values corrected). The greatest differences were in the right hemisphere (P = 0.006). This asymmetry was attributable to a right slower than left hemisphere growth rate mapped in COS patients (P = 0.037) but not in healthy controls. WM growth rates reached 2.6% per year in healthy controls (P = 0.0002). COS patients showed only a 1.3% per year trend for growth in the left hemisphere (P = 0.066). In COS, WM growth rates were associated with improvement in the Children's Global Assessment Scale (R = 0.64, P = 0.029). Growth rates were reduced throughout the brain in COS, but this process appeared to progress in a front-to-back (frontal-parietal) fashion, and this effect was not attributable to lower IQ. Growth rates were correlated with functional prognosis and were visualized as detailed 3D maps. Finally, these findings also confirm that the progressive GM deficits seen in schizophrenia are not the result of WM overgrowth.

  11. Impact of dietary fats on brain functions.

    Science.gov (United States)

    Chianese, Rosanna; Coccurello, Roberto; Viggiano, Andrea; Scafuro, Marika; Fiore, Marco; Coppola, Giangennaro; Operto, Francesca Felicia; Fasano, Silvia; Layé, Sophie; Pierantoni, Riccardo; Meccariello, Rosaria

    2017-10-17

    Adequate dietary intake and nutritional status have important effects on brain functions and on brain health. Energy intake and specific nutrients excess or deficiency from diet differently affect cognitive processes, emotions, behaviour, neuroendocrine functions and synaptic plasticity with possible protective or detrimental effects on neuronal physiology. Lipids, in particular, play structural and functional roles in neurons. Here the importance of dietary fats and the need to understand the brain mechanisms activated by peripheral and central metabolic sensors. Thus, the manipulation of lifestyle factors such as dietary interventions may represent a successful therapeutic approach to maintain and preserve brain health along lifespan. This review aims at summarizing the impact of dietary fats on brain functions. Starting from fat consumption, nutrient sensing and food-related reward, the impact of gut-brain communications will be discussed in brain health and disease. A specific focus will be on the impact of fats on the molecular pathways within the hypothalamus involved in the control of reproduction via the expression and the release of Gonadotropin-Releasing Hormone. Lastly, the effects of specific lipid classes such as polyunsaturated fatty acids and of the "fattest" of all diets, commonly known as "ketogenic diets", on brain functions will also be discussed. Despite the knowledge of the molecular mechanisms is still a work in progress, the clinical relevance of the manipulation of dietary fats is well acknowledged and such manipulations are in fact currently in use for the treatment of brain diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study.

    Science.gov (United States)

    Miao, Wen; Man, Fengyuan; Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A; He, Huiguang; Jiao, Yonghong

    2015-01-01

    To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender-matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (pabnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1.

  13. Apathy is associated with white matter abnormalities in anterior, medial brain regions in persons with HIV infection

    Science.gov (United States)

    Kamat, Rujvi; Brown, Gregory G.; Bolden, Khalima; Fennema-Notestine, Christine; Archibald, Sarah; Marcotte, Thomas D.; Letendre, Scott L.; Ellis, Ronald J.; Woods, Steven Paul; Grant, Igor; Heaton, Robert K.

    2015-01-01

    Apathy is a relatively common psychiatric syndrome in HIV infection, but little is known about its neural correlates. In the present study, we examined the associations between apathy and diffusion tensor imaging (DTI) indices in key frontal white matter regions in the thalamocorticostriatal circuit that has been implicated in the expression of apathy. Nineteen participants with HIV infection and 19 demographically comparable seronegative comparison subjects completed the Apathy subscale of the Frontal Systems Behavioral Scale as a part of a comprehensive neuropsychiatric research evaluation. When compared to the seronegative participants, the HIV+ group had significantly more frontal white matter abnormalities. Within HIV+ persons, and as predicted, higher ratings of apathy were associated with greater white matter alterations in the anterior corona radiata, genu, and orbital medial prefrontal cortex. The associations between white matter alterations and apathy were independent of depression and were stronger among participants with lower current CD4 counts. All told, these findings indicate that apathy is independently associated with white matter abnormalities in anterior, medial brain regions in persons infected with HIV, particularly in the setting of lower current immune functioning, which may have implications for antiretroviral therapy. PMID:25275424

  14. Frequency of brain MRI abnormalities in neuromyelitis optica spectrum disorder at presentation: A cohort of Latin American patients.

    Science.gov (United States)

    Carnero Contentti, Edgar; Daccach Marques, Vanessa; Soto de Castillo, Ibis; Tkachuk, Veronica; Antunes Barreira, Amilton; Armas, Elizabeth; Chiganer, Edson; de Aquino Cruz, Camila; Di Pace, José Luis; Hryb, Javier Pablo; Lavigne Moreira, Carolina; Lessa, Carmen; Molina, Omaira; Perassolo, Monica; Soto, Arnoldo; Caride, Alejandro

    2018-01-01

    Brain magnetic resonance imaging (BMRI) lesions were classically not reported in neuromyelitis optica (NMO). However, BMRI lesions are not uncommon in NMO spectrum disorder (NMOSD) patients. To report BMRI characteristic abnormalities (location and configuration) in NMOSD patients at presentation. Medical records and BMRI characteristics of 79 patients with NMOSD (during the first documented attack) in Argentina, Brazil and Venezuela were reviewed retrospectively. BMRI abnormalities were observed in 81.02% of NMOSD patients at presentation. Forty-two patients (53.1%) showed typical-NMOSD abnormalities. We found BMRI abnormalities at presentation in the brainstem/cerebellum (n = 26; 32.9%), optic chiasm (n = 16; 20.2%), area postrema (n = 13; 16.4%), thalamus/hypothalamus (n = 11; 13.9%), corpus callosum (n = 11; 13.9%), periependymal-third ventricle (n = 9; 11.3%), corticospinal tract (n = 7; 8.8%), hemispheric white matter (n = 1; 1.2%) and nonspecific areas (n = 49; 62.03%). Asymptomatic BMRI lesions were more common. The frequency of brain MRI abnormalities did not differ between patients who were positive and negative for aquaporin 4 antibodies at presentation. Typical brain MRI abnormalities are frequent in NMOSD at disease onset. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Structural and functional abnormalities of default mode network in minimal hepatic encephalopathy: a study combining DTI and fMRI.

    Directory of Open Access Journals (Sweden)

    Rongfeng Qi

    Full Text Available BACKGROUND AND PURPOSE: Live failure can cause brain edema and aberrant brain function in cirrhotic patients. In particular, decreased functional connectivity within the brain default-mode network (DMN has been recently reported in overt hepatic encephalopathy (HE patients. However, so far, little is known about the connectivity among the DMN in the minimal HE (MHE, the mildest form of HE. Here, we combined diffusion tensor imaging (DTI and resting-state functional MRI (rs-fMRI to test our hypothesis that both structural and functional connectivity within the DMN were disturbed in MHE. MATERIALS AND METHODS: Twenty MHE patients and 20 healthy controls participated in the study. We explored the changes of structural (path length, tracts count, fractional anisotropy [FA] and mean diffusivity [MD] derived from DTI tractography and functional (temporal correlation coefficient derived from rs-fMRI connectivity of the DMN in MHE patients. Pearson correlation analysis was performed between the structural/functional indices and venous blood ammonia levels/neuropsychological tests scores of patients. All thresholds were set at P<0.05, Bonferroni corrected. RESULTS: Compared to the healthy controls, MHE patients showed both decreased FA and increased MD in the tract connecting the posterior cingulate cortex/precuneus (PCC/PCUN to left parahippocampal gyrus (PHG, and decreased functional connectivity between the PCC/PCUN and left PHG, and medial prefrontal cortex (MPFC. MD values of the tract connecting PCC/PCUN to the left PHG positively correlated to the ammonia levels, the temporal correlation coefficients between the PCC/PCUN and the MPFC showed positive correlation to the digital symbol tests scores of patients. CONCLUSION: MHE patients have both disturbed structural and functional connectivity within the DMN. The decreased functional connectivity was also detected between some regions without abnormal structural connectivity, suggesting that the

  16. Differing patterns of brain structural abnormalities between black and white patients with their first episode of psychosis.

    LENUS (Irish Health Repository)

    Morgan, K D

    2010-07-01

    African-Caribbean and black African people living in the UK are reported to have a higher incidence of diagnosed psychosis compared with white British people. It has been argued that this may be a consequence of misdiagnosis. If this is true they might be less likely to show the patterns of structural brain abnormalities reported in white British patients. The aim of this study therefore was to investigate whether there are differences in the prevalence of structural brain abnormalities in white and black first-episode psychosis patients.

  17. Abnormalities of resting state functional connectivity are related to sustained attention deficits in MS.

    Directory of Open Access Journals (Sweden)

    Marisa Loitfelder

    Full Text Available OBJECTIVES: Resting state (RS functional MRI recently identified default network abnormalities related to cognitive impairment in MS. fMRI can also be used to map functional connectivity (FC while the brain is at rest and not adhered to a specific task. Given the importance of the anterior cingulate cortex (ACC for higher executive functioning in MS, we here used the ACC as seed-point to test for differences and similarities in RS-FC related to sustained attention between MS patients and controls. DESIGN: Block-design rest phases of 3 Tesla fMRI data were analyzed to assess RS-FC in 31 patients (10 clinically isolated syndromes, 16 relapsing-remitting, 5 secondary progressive MS and 31 age- and gender matched healthy controls (HC. Participants underwent extensive cognitive testing. OBSERVATIONS: In both groups, signal changes in several brain areas demonstrated significant correlation with RS-activity in the ACC. These comprised the posterior cingulate cortex (PCC, insular cortices, the right caudate, right middle temporal gyrus, angular gyri, the right hippocampus, and the cerebellum. Compared to HC, patients showed increased FC between the ACC and the left angular gyrus, left PCC, and right postcentral gyrus. Better cognitive performance in the patients was associated with increased FC to the cerebellum, middle temporal gyrus, occipital pole, and the angular gyrus. CONCLUSION: We provide evidence for adaptive changes in RS-FC in MS patients compared to HC in a sustained attention network. These results extend and partly mirror findings of task-related fMRI, suggesting FC may increase our understanding of cognitive dysfunction in MS.

  18. Regulation of Central Nervous System Myelination in Higher Brain Functions

    Directory of Open Access Journals (Sweden)

    Mara Nickel

    2018-01-01

    Full Text Available The hippocampus and the prefrontal cortex are interconnected brain regions, playing central roles in higher brain functions, including learning and memory, planning complex cognitive behavior, and moderating social behavior. The axons in these regions continue to be myelinated into adulthood in humans, which coincides with maturation of personality and decision-making. Myelin consists of dense layers of lipid membranes wrapping around the axons to provide electrical insulation and trophic support and can profoundly affect neural circuit computation. Recent studies have revealed that long-lasting changes of myelination can be induced in these brain regions by experience, such as social isolation, stress, and alcohol abuse, as well as by neurological and psychiatric abnormalities. However, the mechanism and function of these changes remain poorly understood. Myelin regulation represents a new form of neural plasticity. Some progress has been made to provide new mechanistic insights into activity-independent and activity-dependent regulations of myelination in different experimental systems. More extensive investigations are needed in this important but underexplored research field, in order to shed light on how higher brain functions and myelination interplay in the hippocampus and prefrontal cortex.

  19. Brain plasticity and recovery of cognitive functions

    Directory of Open Access Journals (Sweden)

    Anja Čuš

    2011-10-01

    Full Text Available Through its capacity of plastic changes, the adult brain enables successful dealing with new demands of everyday life and recovery after an acquired brain damage either spontaneously or by the help of rehabilitation interventions. Studies which explored the effects of cognitive training in the normal population report on different types of changes in the performance of cognitive tasks as well as different types of changes in brain activation patterns.Following practice, brain activation can change in its extent, intensity or location, while cognitive processes can become more efficient or can be replaced by different processes.After acquired brain damage plastic changes are somewhat different. After the injury, the damaged brain area can either gradually regain its previous function, or different brain regions are recruited to perform that function.Studies of spontaneous and guided recovery of cognitive functions have revealed both types of plastic changes that follow each other, as well as significant correlations between these changes and improvement on the behavioural level.

  20. Cerebral Correlates of Abnormal Emotion Conflict Processing in Euthymic Bipolar Patients: A Functional MRI Study.

    Directory of Open Access Journals (Sweden)

    Pauline Favre

    Full Text Available Patients with bipolar disorder experience cognitive and emotional impairment that may persist even during the euthymic state of the disease. These persistent symptoms in bipolar patients (BP may be characterized by disturbances of emotion regulation and related fronto-limbic brain circuitry. The present study aims to investigate the modulation of fronto-limbic activity and connectivity in BP by the processing of emotional conflict.Fourteen euthymic BP and 13 matched healthy subjects (HS underwent functional magnetic resonance imaging (fMRI while performing a word-face emotional Stroop task designed to dissociate the monitoring/generation of emotional conflict from its resolution. Functional connectivity was determined by means of psychophysiological interaction (PPI approach.Relative to HS, BP were slower to process incongruent stimuli, reflecting higher amount of behavioral interference during emotional Stroop. Furthermore, BP showed decreased activation of the right dorsolateral prefrontal cortex (DLPFC during the monitoring and a lack of bilateral amygdala deactivation during the resolution of the emotional conflict. In addition, during conflict monitoring, BP showed abnormal positive connectivity between the right DLPFC and several regions of the default mode network.Overall, our results highlighted dysfunctional processing of the emotion conflict in euthymic BP that may be subtended by abnormal activity and connectivity of the DLPFC during the conflict monitoring, which, in turn, leads to failure of amygdala deactivation during the resolution of the conflict. Emotional dysregulation in BP may be underpinned by a lack of top-down cognitive control and a difficulty to focus on the task due to persistent self-oriented attention.

  1. THE TIME COURSE OF ABNORMALITIES IN THE BRAIN SUBCORTICAL VISUAL CENTRE FOLLOWING EARLY IMPAIRMENT OF BINOCULAR EXPERIENCE

    Directory of Open Access Journals (Sweden)

    S. V. Alekseenko

    2016-01-01

    Full Text Available Background: Amblyopia related to congenital strabismus belongs to neurological disorders since it is caused by structural and functional remodeling of the visual parts of the brain without any baseline retinal pathology. Although a large number of animal studies on experimentally induced strabismus, as well as clinical cases have been published, the mechanisms and time course of the processes within the brain structures are not fully understood. Aim: To study the time course of abnormalities in the dorsal lateral geniculate nucleus (LGNd in animals with surgically induced convergent strabismus. LGNd is the structure through which the information from the retina goes to the visual cortex separately for each eye. Materials and methods: 14 strabismic and 17 intact kittens of four age groups were studied. Histochemical method was used to identify cytochrome oxidase which is a  mitochondrial respiratory chain enzyme whose activity correlates with neuronal functional activity. Optical density in eye-specific layers  A  and A1 was measured on the images of stained LGNd sections, with calculation of the contrast difference between them. Results: In strabismic kittens, there were changes in activity of A and A1 layers in the projection of the central part of visual field in LGNd of both hemispheres. At early stages of their formation, a relative decrease in activity was found in both hemispheres in the LGNd layers innervated through non-crossed pathways from both retinae. Thereafter, the time course of abnormalities in LGNd of both hemispheres was different. In the hemisphere ipsilateral to the squinting eye, the difference in layer activity was highest at the age from 3 to 5 months. However, in the opposite hemisphere the same difference indicating a decreased activity in the layer of the squinting eye were observed only at the age of 5 months. Conclusion: The process of amblyopia development during congenital convergent strabismus is

  2. Abnormal glucose metabolism in acute myocardial infarction: influence on left ventricular function and prognosis

    DEFF Research Database (Denmark)

    Høfsten, Dan E; Løgstrup, Brian B; Møller, Jacob E

    2009-01-01

    OBJECTIVES: We studied the influence of abnormal glucose metabolism on left ventricular (LV) function and prognosis in 203 patients with acute myocardial infarction. BACKGROUND: Abnormal glucose metabolism is associated with increased mortality after acute myocardial infarction. This appears to b...... alone did not explain the excess mortality in patients with newly detected or known diabetes....

  3. Abnormal brain activation during movement observation in patients with conversion paralysis.

    Science.gov (United States)

    Burgmer, Markus; Konrad, Carsten; Jansen, Andreas; Kugel, Harald; Sommer, Jens; Heindel, Walter; Ringelstein, Erich B; Heuft, Gereon; Knecht, Stefan

    2006-02-15

    Dissociative paralysis in conversion disorders has variably been attributed to a lack of movement initiation or an inhibition of movement. While psychodynamic theory suggests altered movement conceptualization, brain activation associated with observation and replication of movements has so far not been assessed neurobiologically. Here, we measured brain activation by functional magnetic resonance imaging during observation and subsequent imitative execution of movements in four patients with dissociative hand paralysis. Compared to healthy controls conversion disorder patients showed decreased activation of cortical hand areas during movement observation. This effect was specific to the side of their dissociative paralysis. No brain activation compatible with movement inhibition was observed. These findings indicate that in dissociative paralysis, there is not only derangement of movement initiation but already of movement conceptualization. This raises the possibility that strategies targeted at reestablishing appropriate movement conceptualization may contribute to the therapy of dissociative paralysis.

  4. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hua Chiaho, E-mail: Chia-Ho.Hua@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu Shengjie [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Chemaitilly, Wassim [Division of Endocrinology, Department of Pediatric Medicine, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Lukose, Renin C.; Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  5. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    International Nuclear Information System (INIS)

    Hua Chiaho; Wu Shengjie; Chemaitilly, Wassim; Lukose, Renin C.; Merchant, Thomas E.

    2012-01-01

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test ≥7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  6. Bizarre hierarchy of brain function

    Science.gov (United States)

    Kercel, Stephen W.; Caulfield, H. John; Bach-y-Rita, Paul

    2003-08-01

    At its substratum, brain/mind organization requires both synaptic firings and non-synaptic events. Synaptic firings organize the pattern of non-synaptic events. Non-synaptic events organize the pattern of synaptic firings. The processes are related in a bizarre hierarchy. Comparing these processes to electric circuits, it is as if we have two circuits that each continuously and simultaneously update the topology, and consequently, the dynamical laws of the other. Since either can be seen to be rebuilding the other, from its own perspective each process appears higher than the other in a hierarchy. This same kind of hierarchy is found in a hyperset structure. Interpreted as a directed graph, the nodes in a hyperset form a hierarchy in which, from the perspective of any node in the hierarchy, that node is at the top. This organizational structure violates the Foundation Axiom. Algorithmic computation strictly complies with the Foundation Axiom. Thus, an algorithm organized like a hyperset is a contradiction in terms. Does this contradiction mean are we precluded forever from implementing brain-like activities artificially? Not at all! An algorithm is incapable of doing the job, but nothing prevents us from constructing interacting analog processes that update each other's dynamical laws on the fly.

  7. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: a voxel-based morphometry study.

    Science.gov (United States)

    Amianto, Federico; Caroppo, Paola; D'Agata, Federico; Spalatro, Angela; Lavagnino, Luca; Caglio, Marcella; Righi, Dorico; Bergui, Mauro; Abbate-Daga, Giovanni; Rigardetto, Roberto; Mortara, Paolo; Fassino, Secondo

    2013-09-30

    Recent studies focussing on neuroimaging features of eating disorders have observed that anorexia nervosa (AN) is characterized by significant grey matter (GM) atrophy in many brain regions, especially in the cerebellum and anterior cingulate cortex. To date, no studies have found GM atrophy in bulimia nervosa (BN) or have directly compared patients with AN and BN. We used voxel-based morphometry (VBM) to characterize brain abnormalities in AN and BN patients, comparing them with each other and with a control group, and correlating brain volume with clinical features. We recruited 17 AN, 13 BN and 14 healthy controls. All subjects underwent high-resolution magnetic resonance imaging (MRI) with a T1-weighted 3D image. VBM analysis was carried out with the FSL-VBM 4.1 tool. We found no global atrophy, but regional GM reduction in AN with respect to controls and BN in the cerebellum, fusiform area, supplementary motor area, and occipital cortex, and in the caudate in BN compared to AN and controls. Both groups of patients had a volumetric increase bilaterally in somatosensory regions with respect to controls, in areas that are typically involved in the sensory-motor integration of body stimuli and in mental representation of the body image. Our VBM study documented, for the first time in BN patients, the presence of volumetric alterations and replicated previous findings in AN patients. We evidenced morphological differences between AN and BN, demonstrating in the latter atrophy of the caudate nucleus, a region involved in reward mechanisms and processes of self-regulation, perhaps involved in the genesis of the binge-eating behaviors of this disorder. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Adolescent Cannabis Use: What is the Evidence for Functional Brain Alteration?

    Science.gov (United States)

    Lorenzetti, Valentina; Alonso-Lana, Silvia; Youssef, George J; Verdejo-Garcia, Antonio; Suo, Chao; Cousijn, Janna; Takagi, Michael; Yücel, Murat; Solowij, Nadia

    2016-01-01

    Cannabis use typically commences during adolescence, a period during which the brain undergoes profound remodeling in areas that are high in cannabinoid receptors and that mediate cognitive control and emotion regulation. It is therefore important to determine the impact of adolescent cannabis use on brain function. We investigate the impact of adolescent cannabis use on brain function by reviewing the functional magnetic resonance imaging studies in adolescent samples. We systematically reviewed the literature and identified 13 functional neuroimaging studies in adolescent cannabis users (aged 13 to 18 years) performing working memory, inhibition and reward processing tasks. The majority of the studies found altered brain function, but intact behavioural task performance in adolescent cannabis users versus controls. The most consistently reported differences were in the frontal-parietal network, which mediates cognitive control. Heavier use was associated with abnormal brain function in most samples. A minority of studies controlled for the influence of confounders that can also undermine brain function, such as tobacco and alcohol use, psychopathology symptoms, family history of psychiatric disorders and substance use. Emerging evidence shows abnormal frontal-parietal network activity in adolescent cannabis users, particularly in heavier users. Brain functional alterations may reflect a compensatory neural mechanism that enables normal behavioural performance. It remains unclear if cannabis exposure drives these alterations, as substance use and mental health confounders have not been systematically examined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Adolescent binge drinking linked to abnormal spatial working memory brain activation: differential gender effects.

    Science.gov (United States)

    Squeglia, Lindsay M; Schweinsburg, Alecia Dager; Pulido, Carmen; Tapert, Susan F

    2011-10-01

    Binge drinking is prevalent during adolescence, and its effect on neurocognitive development is of concern. In adult and adolescent populations, heavy substance use has been associated with decrements in cognitive functioning, particularly on tasks of spatial working memory (SWM). Characterizing the gender-specific influences of heavy episodic drinking on SWM may help elucidate the early functional consequences of drinking on adolescent brain functioning. Forty binge drinkers (13 females, 27 males) and 55 controls (24 females, 31 males), aged 16 to 19 years, completed neuropsychological testing, substance use interviews, and an SWM task during functional magnetic resonance imaging. Significant binge drinking status × gender interactions were found (p working memory performances (p effects of heavy alcohol use during adolescence, while males may be more resilient to the deleterious effects of binge drinking. Future longitudinal research will examine the significance of SWM brain activation as an early neurocognitive marker of alcohol impact to the brain on future behaviors, such as driving safety, academic performance, and neuropsychological performance. Copyright © 2011 by the Research Society on Alcoholism.

  10. Pathways of Polyunsaturated Fatty Acid Utilization: Implications for Brain Function in Neuropsychiatric Health and Disease

    Science.gov (United States)

    Liu, Joanne J.; Green, Pnina; Mann, J. John; Rapoport, Stanley I.; Sublette, M. Elizabeth

    2014-01-01

    Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer’s disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease. PMID:25498862

  11. Brain, Mind and Language Functional Architectures

    OpenAIRE

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Marchetti, Giorgio

    2010-01-01

    The interaction between brain and language has been investigated by a vast amount of research and different approaches, which however do not offer a comprehensive and unified theoretical framework to analyze how brain functioning performs the mental processes we use in producing language and in understanding speech. This Special Issue addresses the need to develop such a general theoretical framework, by fostering an interaction among the various scientific disciplines and methodologies, whic...

  12. Imaging visual function of the human brain

    International Nuclear Information System (INIS)

    Marg, E.

    1988-01-01

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references

  13. Microstructural abnormalities of uncinate fasciculus as a function of ...

    Indian Academy of Sciences (India)

    2016-08-02

    Aug 2, 2016 ... plays an important role in the pathology of this disorder and involved in cognitive functions such as memory, language ... suggest that microstructural changes in UNC fibre may contribute to underlying dysfunction in the cognitive functions ..... ing H 2004 Facial recognition deficits and cognition in schizo-.

  14. Brain structural abnormalities in behavior therapy-resistant obsessive-compulsive disorder revealed by voxel-based morphometry

    Directory of Open Access Journals (Sweden)

    Hashimoto N

    2014-10-01

    Full Text Available Nobuhiko Hashimoto,1 Shutaro Nakaaki,2 Akiko Kawaguchi,1 Junko Sato,1 Harumasa Kasai,3 Takashi Nakamae,4 Jin Narumoto,4 Jun Miyata,5 Toshi A Furukawa,6,7 Masaru Mimura2 1Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; 2Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; 3Department of Central Radiology, Nagoya City University Hospital, Nagoya, Japan; 4Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; 5Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 6Department of Health Promotion and Human Behavior, 7Department of Clinical Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan Background: Although several functional imaging studies have demonstrated that behavior therapy (BT modifies the neural circuits involved in the pathogenesis of obsessive-compulsive disorder (OCD, the structural abnormalities underlying BT-resistant OCD remain unknown. Methods: In this study, we examined the existence of regional structural abnormalities in both the gray matter and the white matter of patients with OCD at baseline using voxel-based morphometry in responders (n=24 and nonresponders (n=15 to subsequent BT. Three-dimensional T1-weighted magnetic resonance imaging was performed before the completion of 12 weeks of BT. Results: Relative to the responders, the nonresponders exhibited significantly smaller gray matter volumes in the right ventromedial prefrontal cortex, the right orbitofrontal cortex, the right precentral gyrus, and the left anterior cingulate cortex. In addition, relative to the responders, the nonresponders exhibited significantly smaller white matter volumes in the left cingulate bundle and the left superior frontal white matter. Conclusion: These results suggest that the brain

  15. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    Science.gov (United States)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  16. Added value of fetal MRI in fetuses with suspected brain abnormalities on neurosonography: a systematic review and meta-analysis

    NARCIS (Netherlands)

    van Doorn, Martine; Oude Rengerink, Katrien; Newsum, Esther A.; Reneman, Liesbeth; Majoie, Charles B.; Pajkrt, Eva

    2016-01-01

    To evaluate the additional diagnostic value of fetal Magnetic Resonance Imaging (MRI) in fetuses with suspected brain abnormalities identified with advanced neurosonography (NS). A systematic literature search was performed for studies reporting on a comparison between diagnosis with NS and MRI, in

  17. Cross-Sectional and Longitudinal Abnormalities in Brain Structure in Children with Severe Mood Dysregulation or Bipolar Disorder

    Science.gov (United States)

    Adleman, Nancy E.; Fromm, Stephen J.; Razdan, Varun; Kayser, Reilly; Dickstein, Daniel P.; Brotman, Melissa A.; Pine, Daniel S.; Leibenluft, Ellen

    2012-01-01

    Background: There is debate as to whether chronic irritability (operationalized as severe mood dysregulation, SMD) is a developmental form of bipolar disorder (BD). Although structural brain abnormalities in BD have been demonstrated, no study compares neuroanatomy among SMD, BD, and healthy volunteers (HV) either cross-sectionally or over time.…

  18. Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy

    NARCIS (Netherlands)

    Smits, P.; Saada, A.; Wortmann, S.B.; Heister, A.; Brink, M.; Pfundt, R.P.; Miller, C.; Haas, D.; Hantschmann, R.; Rodenburg, R.J.T.; Smeitink, J.A.M.; Heuvel, L.P.W.J. van den

    2011-01-01

    The oxidative phosphorylation (OXPHOS) system is under control of both the mitochondrial and the nuclear genomes; 13 subunits are synthesized by the mitochondrial translation machinery. We report a patient with Cornelia de Lange-like dysmorphic features, brain abnormalities and hypertrophic

  19. MR urography for morphological and functional assessment of UT abnormalities

    International Nuclear Information System (INIS)

    Hadjidekov, G.

    2013-01-01

    Full text: Introduction: Magnetic resonance urography is a new, modern method in various urological conditions. The method is most often used for the evaluation of hydronephrosis and provides valuable information on a variety of obstructive uropathy, presenting both morphological and functional information about the urinary tract. What you will learn: The purpose of this presentation is to examine the current role of MR urography in evaluation of hydronephrosis and hydroureter, variants and congenital anomalies of the kidney, various causes of obstruction, tumor and inflammation, hematuria. Combining static and dynamic MR urography, yielding both morphological and functional information by using different sequences with and without the injection of contrast agents. Highlighted the advantages of the method in children and demonstrated software programs available for postprocessing in urodiagnostic illustrated with typical clinical cases. Discussion: MR urography is a promising method to diagnose a wide range of pathological conditions of the urogenital tract, with huge development opportunities in urogenital tract imaging. It integrates excellent anatomical informative in combination with various functional data in the absence of ionizing radiation. Postprocessing algorithms facilitate the assessment of differentiated renal function, by generating curves of signal intensity - time. Due to the risk of nephrogenic systemic fibrosis, using the contrast media requires caution, especially in cases of impaired renal function. Conclusion: MR urography is a highly informative method in the case of diagnostic difficulties using conventional techniques, overcoming their limitations and has the potential to become a future the leading method for diagnosing kidney disease, especially in infants and children

  20. Functional brain imaging - baric and clinical questions

    International Nuclear Information System (INIS)

    Mager, T.; Moeller, H.J.

    1997-01-01

    The advancing biological knowledge of disease processes plays a central part in the progress of modern psychiatry. An essential contribution comes from the functional and structural brain imaging techniques (CT, MRI, SPECT, PET). Their application is important for biological oriented research in psychiatry and there is also a growing relevance in clinical aspects. This development is taken into account by recent diagnostic classification systems in psychiatry. The capabilities and limitations of functional brain imaging in the context of research and clinic will be presented and discussed by examples and own investigations. (orig.) [de

  1. Oligodendrocyte-Neuron Interactions: Impact on Myelination and Brain Function.

    Science.gov (United States)

    Shimizu, Takeshi; Osanai, Yasuyuki; Ikenaka, Kazuhiro

    2018-01-01

    In the past, glial cells were considered to be 'glue' cells whose primary role was thought to be merely filling gaps in neural circuits. However, a growing number of reports have indicated the role of glial cells in higher brain function through their interaction with neurons. Myelin was originally thought to be just a sheath structure surrounding neuronal axons, but recently it has been shown that myelin exerts effects on the conduction velocity of neuronal axons even after myelin formation. Therefore, the investigation of glial cell properties and the neuron-glial interactions is important for understanding higher brain function. Moreover, since there are many neurological disorders caused by glial abnormalities, further understanding of glial cell-related diseases and the development of effective therapeutic strategies are warranted. In this review, we focused on oligodendrocyte-neuron interactions, with particular attention on (1) axonal signals underlying oligodendrocyte differentiation and myelination, (2) neuronal activity-dependent myelination and (3) the effects of myelination on higher brain function.

  2. Abnormal subcortical brain morphology in patients with knee osteoarthritis: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Cui Ping eMao

    2016-01-01

    Full Text Available Despite the involvement of subcortical brain structures in the pathogenesis of chronic pain and persistent pain as the defining symptom of knee osteoarthritis (KOA, little attention has been paid to the morphometric measurements of these subcortical nuclei in patients with KOA. The purpose of this study is to explore the potential morphological abnormalities of subcortical brain structures in patients with KOA as compared to healthy control subjects by using high resolution MRI. Structural MRI data were acquired from 26 patients with KOA and 31 demographically similar healthy individuals. The MR data were analyzed by using FMRIB's integrated registration and segmentation tool (FIRST. Both volumetric analysis and surface-based shape analysis were performed to characterize the subcortical morphology. The normalized volumes of bilateral caudate nucleus were significantly smaller in the KOA group than in the control group (P = 0.004. There was also a trend toward smaller volume of the hippocampus in KOA as compared to the control group (P = 0.027. Detailed surface analyses further localized these differences with a greater involvement of the left hemisphere (P < 0.05, corrected for the caudate nucleus. Hemispheric asymmetry (right larger than left of the caudate nucleus was found in both KOA and control groups. Besides, no significant correlation was found between the structural data and pain intensities. Our results indicated that patients with KOA had statistically significant smaller normalized volumes of bilateral caudate nucleus and a trend toward smaller volume of the hippocampus as compared to the control subjects. Further investigations are necessary to characterize the role of caudate nucleus in the course of chronicity of pain associated with KOA.

  3. Functional and structural abnormalities associated with empathy in ...

    Indian Academy of Sciences (India)

    2015-04-20

    Apr 20, 2015 ... disorders like schizophrenia and autism are associated with difficulties in responding empathically leading to social dys- function associated with these disorders (Henry et al. 2008). There are several neuropsychological studies which have reported impaired empathic abilities in schizophrenia (Montag.

  4. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain

    Directory of Open Access Journals (Sweden)

    Minchenko Dimitri

    2010-04-01

    Full Text Available Abstract Background The Rett Syndrome (RTT brain displays regional histopathology and volumetric reduction, with frontal cortex showing such abnormalities, whereas the occipital cortex is relatively less affected. Results Using microarrays and quantitative PCR, the mRNA expression profiles of these two neuroanatomical regions were compared in postmortem brain tissue from RTT patients and normal controls. A subset of genes was differentially expressed in the frontal cortex of RTT brains, some of which are known to be associated with neurological disorders (clusterin and cytochrome c oxidase subunit 1 or are involved in synaptic vesicle cycling (dynamin 1. RNAi-mediated knockdown of MeCP2 in vitro, followed by further expression analysis demonstrated that the same direction of abnormal expression was recapitulated with MeCP2 knockdown, which for cytochrome c oxidase subunit 1 was associated with a functional respiratory chain defect. Chromatin immunoprecipitation (ChIP analysis showed that MeCP2 associated with the promoter regions of some of these genes suggesting that loss of MeCP2 function may be responsible for their overexpression. Conclusions This study has shed more light on the subset of aberrantly expressed genes that result from MECP2 mutations. The mitochondrion has long been implicated in the pathogenesis of RTT, however it has not been at the forefront of RTT research interest since the discovery of MECP2 mutations. The functional consequence of the underexpression of cytochrome c oxidase subunit 1 indicates that this is an area that should be revisited.

  5. Multivariate Heteroscedasticity Models for Functional Brain Connectivity

    Directory of Open Access Journals (Sweden)

    Christof Seiler

    2017-12-01

    Full Text Available Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI. We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.

  6. Visceral Afferent Pathways and Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    Stuart W.G. Derbyshire

    2003-01-01

    Full Text Available The application of functional imaging to study painful sensations has generated considerable interest regarding insight into brain dysfunction that may be responsible for functional pain such as that suffered in patients with irritable bowel syndrome (IBS. This review provides a brief introduction to the development of brain science as it relates to pain processing and a snapshot of recent functional imaging results with somatic and visceral pain. Particular emphasis is placed on current hypotheses regarding dysfunction of the brain-gut axis in IBS patients. There are clear and interpretable differences in brain activation following somatic as compared with visceral noxious sensation. Noxious visceral distension, particularly of the lower gastrointestinal tract, activates regions associated with unpleasant affect and autonomic responses. Noxious somatic sensation, in contrast, activates regions associated with cognition and skeletomotor responses. Differences between IBS patients and control subjects, however, were far less clear and interpretable. While this is in part due to the newness of this field, it also reflects weaknesses inherent within the current understanding of IBS. Future use of functional imaging to examine IBS and other functional disorders will be more likely to succeed by describing clear theoretical and clinical endpoints.

  7. Reward abnormalities among women with full and subthreshold bulimia nervosa: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Bohon, Cara; Stice, Eric

    2011-11-01

    To test the hypothesis that women with full and subthreshold bulimia nervosa show abnormal neural activation in response to food intake and anticipated food intake relative to healthy control women. Females with and without full/subthreshold bulimia nervosa recruited from the community (N = 26) underwent functional magnetic resonance imaging (fMRI) during receipt and anticipated receipt of chocolate milkshake and a tasteless control solution. Women with bulimia nervosa showed trends for less activation than healthy controls in the right anterior insula in response to anticipated receipt of chocolate milkshake (vs. tasteless solution) and in the left middle frontal gyrus, right posterior insula, right precentral gyrus, and right mid dorsal insula in response to consumptions of milkshake (vs. tasteless solution). Bulimia nervosa may be related to potential hypofunctioning of the brain reward system, which may lead these individuals to binge eat to compensate for this reward deficit, though the hypo-responsivity might be a result of a history of binge eating highly palatable foods. Copyright © 2010 Wiley Periodicals, Inc.

  8. Pheochromocytoma with Markedly Abnormal Liver Function Tests and Severe Leukocytosis

    Directory of Open Access Journals (Sweden)

    Chai Ryoung Eun

    2014-03-01

    Full Text Available Pheochromocytoma is a rare neuroendocrine tumor arising from the medulla of the adrenal glands, which causes an overproduction of catecholamines. The common symptoms are headache, palpitations, and sweating; however, various other clinical manifestations might also be present. Accurate diagnosis of pheochromocytoma is important because surgical treatment is usually successful, and associated clinical problems are reversible if treated early. A 49-year-old man with a history of uncontrolled hypertension and diabetes mellitus presented with chest pain, fever, and sweating. His liver function tests and white blood cell counts were markedly increased and his echocardiography results suggested stress-induced cardiomyopathy. His abdominal computed tomography showed a 5×5-cm-sized tumor in the left adrenal gland, and laboratory tests confirmed catecholamine overproduction. After surgical resection of the left adrenal gland, his liver function tests and white blood cell counts normalized, and echocardiography showed normal cardiac function. Moreover, his previous antihypertensive regimen was deescalated, and his previously uncontrolled blood glucose levels normalized without medication.

  9. Abnormal serotonin transporter availability in the brains of adults with conduct disorder.

    Science.gov (United States)

    Chang, Chieh; Gau, Susan Shur-Fen; Huang, Wen-Sheng; Shiue, Chyng-Yann; Yeh, Chin-Bin

    2017-06-01

    The aims of the current study were to determine whether patients with conduct disorder (CD) showed an abnormal availability of serotonin reuptake transporter (SERT), and if their hyperkinetic symptoms, impulsivity, and quality of life were correlated with the availability of SERT. We recruited 14 drug-naïve patients with CD and eight age-matched healthy controls (HCs). The adult attention-deficit/hyperactivity disorder (ADHD) self-report scale (ASRS), Barrett impulsivity scale (BIS), and the World Health Organization quality of life-brief version (WHOQOL-BREF) scale were administered. Positron emission tomography (PET) of the brain with 4-[ 18 F]-ADAM was arranged for SERT imaging. SERT availability was significantly reduced in the striatum and midbrain of patients with CD. Quality of life and inattention symptoms were also significantly correlated with the availability of SERT in the prefrontal cortex. The study suggested that a reduction in the availability of SERT might be associated with CD and could potentially predict poor quality of life or symptoms of inattention for these patients. The implications of our results might be limited to individuals with CD; a future study with a larger sample to validate our preliminary results is warranted. Copyright © 2016. Published by Elsevier B.V.

  10. Structural brain abnormalities in patients with type I bipolar disorder and suicidal behavior.

    Science.gov (United States)

    Duarte, Dante G G; Neves, Maila de Castro L; Albuquerque, Maicon R; Turecki, Gustavo; Ding, Yang; de Souza-Duran, Fabio Luis; Busatto, Geraldo; Correa, Humberto

    2017-07-30

    Some studies have identified brain morphological changes in the frontolimbic network (FLN) in bipolar subjects who attempt suicide (SA). The present study investigated neuroanatomical abnormalities in the FLN to find a possible neural signature for suicidal behavior in patients with bipolar disorder type I (BD-I). We used voxel-based morphometry to compare euthymic patients with BD-I who had attempted suicide (n=20), who had not attempted suicide (n=19) and healthy controls (HCs) (n=20). We also assessed the highest medical lethality of their previous SA. Compared to the participants who had not attempted suicide, the patients with BD-I who had attempted suicide exhibited significantly increased gray matter volume (GMV) in the right rostral anterior cingulate cortex (ACC), which was more pronounced and extended further to the left ACC in the high-lethality subgroup (p<0.05, with family-wise error (FWE) correction for multiple comparisons using small-volume correction). GMV in the insula and orbitofrontal cortex was also related to suicide lethality (p<0.05, FWE-corrected). The current findings suggest that morphological changes in the FLN could be a signature of previous etiopathogenic processes affecting regions related to suicidality and its severity in BD-I patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder With Oppositional Defiant Disorder

    NARCIS (Netherlands)

    Noordermeer, S.D.; Luman, M.; Greven, C.U.; Veroude, K.; Faraone, S.V.; Hartman, C.A.; Hoekstra, P.J.; Franke, B.; Buitelaar, J.K.; Heslenfeld, D.J.; Oosterlaan, J.

    2017-01-01

    BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is associated with structural abnormalities in total gray matter, basal ganglia, and cerebellum. Findings of structural abnormalities in frontal and temporal lobes, amygdala, and insula are less consistent. Remarkably, the impact of

  12. Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder.

    Science.gov (United States)

    Brieber, Sarah; Neufang, Susanne; Bruning, Nicole; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Fink, Gereon R; Konrad, Kerstin

    2007-12-01

    Although autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) are two distinct neurodevelopmental diseases, they share behavioural, neuropsychological and neurobiological characteristics. For the identification of endophenotypes across diagnostic categories, further investigations of phenotypic overlap between ADHD and autism at the behavioural, neurocognitive, and brain levels are needed. We examined regional grey matter differences and similarities in children and adolescents with ASD and ADHD in comparison to healthy controls using structural magnetic resonance imaging (MRI) and voxel-based morphometry. With regard to clinical criteria, the clinical groups did not differ with respect to ADHD symptoms; however, only patients with ASD showed deficits in social communication and interaction, according to parental rating. Structural abnormalities across both clinical groups compared to controls became evident as grey matter reductions in the left medial temporal lobe and as higher grey matter volumes in the left inferior parietal cortex. In addition, autism-specific brain abnormalities were found as increased grey matter volume in the right supramarginal gyrus. While the shared structural deviations in the medial temporal lobe might be attributed to an unspecific delay in brain development and might be associated with memory deficits, the structural abnormalities in the inferior parietal lobe may correspond to attentional deficits observed in both ASD and ADHD. By contrast, the autism-specific grey matter abnormalities near the right temporo-parietal junction may be associated with impaired 'theory of mind' abilities. These findings shed some light on both similarities and differences in the neurocognitive profiles of ADHD and ASD patients.

  13. Perinatal factors and regional brain volume abnormalities at term in a cohort of extremely low birth weight infants.

    Directory of Open Access Journals (Sweden)

    Nehal A Parikh

    Full Text Available Our objective was to investigate diverse clinical antecedents of total and regional brain volume abnormalities and white matter hyperintensity volume on term MRI in extremely low birth weight (birth weight ≤1000 g survivors. A consecutive cohort of extremely low birth weight infants who survived to 38 weeks postmenstrual age (n = 122 and a control group of 16 healthy term newborns underwent brain MRI at term-equivalent age. Brain volumes were measured using semi-automated and manual segmentation methods. Using multivariable linear regression, clinical antecedents were correlated with volumes of total brain tissue, white matter hyperintensities, and regional tissues/structures, adjusted for age at MRI, total cranial volume, and total tissue volume. Regional brain volumes were markedly reduced in extremely low birth weight infants as compared to term newborns (relative difference range: -11.0%, -35.9%. Significant adverse clinical associations for total brain tissue volume included: small for gestational age, seizures, caffeine therapy/apnea of prematurity, duration of parenteral nutrition, pulmonary hemorrhage, and white matter injury (p<0.01 for each; relative difference range: -1.4% to -15.0%. Surgery for retinopathy of prematurity and surgery for necrotizing enterocolitis or spontaneous intestinal perforation were significantly associated with increasing volume of white matter hyperintensities. Regional brain volumes are sensitive to multiple perinatal factors and neonatal morbidities or interventions. Brain growth measurements in extremely low birth weight infants can advance our understanding of perinatal brain injury and development.

  14. Impaired Cardiac Function and Cognitive Brain Aging.

    Science.gov (United States)

    van der Velpen, Isabelle F; Yancy, Clyde W; Sorond, Farzaneh A; Sabayan, Behnam

    2017-12-01

    It is well established that patients with heart failure are at a greater risk for dementia. Recent evidence suggests that the heart-brain link goes beyond advanced heart failure, and even suboptimal cardiac function is associated with brain structural and functional changes leading to cognitive impairment. In this review, we address several pathophysiological mechanisms underlying this association, including hemodynamic stress and cerebral hypoperfusion, neuroinflammation, cardiac arrhythmias, and hypercoagulation. The close link between cardiac function and brain health has numerous clinical and public health implications. Cardiac dysfunction and cognitive impairment are both common in older adults. However, in our current clinical practice, these medical conditions are generally evaluated and treated in isolation. Emerging evidence on the significance of the heart-brain link calls for comprehensive cardiovascular risk assessment in patients with cognitive impairment and a neurocognitive workup in patients with impaired cardiac function. A multidisciplinary approach by cardiologists, neurologists, and geriatricians would benefit the diagnostic process and disease management and ultimately improve the quality of life for patients with cardiac and cognitive dysfunction. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  15. Integrating Retinoic Acid Signaling with Brain Function

    Science.gov (United States)

    Luo, Tuanlian; Wagner, Elisabeth; Drager, Ursula C.

    2009-01-01

    The vitamin A derivative retinoic acid (RA) regulates the transcription of about a 6th of the human genome. Compelling evidence indicates a role of RA in cognitive activities, but its integration with the molecular mechanisms of higher brain functions is not known. Here we describe the properties of RA signaling in the mouse, which point to…

  16. Naltrexone ameliorates functional network abnormalities in alcohol‐dependent individuals

    Science.gov (United States)

    Baek, Kwangyeol; Tait, Roger; Elliott, Rebecca; Ersche, Karen D.; Flechais, Remy; McGonigle, John; Murphy, Anna; Nestor, Liam J.; Orban, Csaba; Passetti, Filippo; Paterson, Louise M.; Rabiner, Ilan; Reed, Laurence; Smith, Dana; Suckling, John; Taylor, Eleanor M.; Bullmore, Edward T.; Lingford‐Hughes, Anne R.; Deakin, Bill; Nutt, David J.; Sahakian, Barbara J.; Robbins, Trevor W.; Voon, Valerie

    2017-01-01

    Abstract Naltrexone, an opioid receptor antagonist, is commonly used as a relapse prevention medication in alcohol and opiate addiction, but its efficacy and the mechanisms underpinning its clinical usefulness are not well characterized. In the current study, we examined the effects of 50‐mg naltrexone compared with placebo on neural network changes associated with substance dependence in 21 alcohol and 36 poly‐drug‐dependent individuals compared with 36 healthy volunteers. Graph theoretic and network‐based statistical analysis of resting‐state functional magnetic resonance imaging (MRI) data revealed that alcohol‐dependent subjects had reduced functional connectivity of a dispersed network compared with both poly‐drug‐dependent and healthy subjects. Higher local efficiency was observed in both patient groups, indicating clustered and segregated network topology and information processing. Naltrexone normalized heightened local efficiency of the neural network in alcohol‐dependent individuals, to the same levels as healthy volunteers. Naltrexone failed to have an effect on the local efficiency in abstinent poly‐substance‐dependent individuals. Across groups, local efficiency was associated with substance, but no alcohol exposure implicating local efficiency as a potential premorbid risk factor in alcohol use disorders that can be ameliorated by naltrexone. These findings suggest one possible mechanism for the clinical effects of naltrexone, namely, the amelioration of disrupted network topology. PMID:28247526

  17. Brain Function and Upper Limb Outcome in Stroke: A Cross-Sectional fMRI Study.

    Science.gov (United States)

    Buma, Floor E; Raemaekers, Mathijs; Kwakkel, Gert; Ramsey, Nick F

    2015-01-01

    The nature of changes in brain activation related to good recovery of arm function after stroke is still unclear. While the notion that this is a reflection of neuronal plasticity has gained much support, confounding by compensatory strategies cannot be ruled out. We address this issue by comparing brain activity in recovered patients 6 months after stroke with healthy controls. We included 20 patients with upper limb paresis due to ischemic stroke and 15 controls. We measured brain activation during a finger flexion-extension task with functional MRI, and the relationship between brain activation and hand function. Patients exhibited various levels of recovery, but all were able to perform the task. Comparison between patients and controls with voxel-wise whole-brain analysis failed to reveal significant differences in brain activation. Equally, a region of interest analysis constrained to the motor network to optimize statistical power, failed to yield any differences. Finally, no significant relationship between brain activation and hand function was found in patients. Patients and controls performed scanner task equally well. Brain activation and behavioral performance during finger flexion-extensions in (moderately) well recovered patients seems normal. The absence of significant differences in brain activity even in patients with a residual impairment may suggest that infarcts do not necessarily induce reorganization of motor function. While brain activity could be abnormal with higher task demands, this may also introduce performance confounds. It is thus still uncertain to what extent capacity for true neuronal repair after stroke exists.

  18. DHA Effects in Brain Development and Function

    Directory of Open Access Journals (Sweden)

    Lotte Lauritzen

    2016-01-01

    Full Text Available Docosahexaenoic acid (DHA is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders.

  19. DHA effects in brain development and function

    DEFF Research Database (Denmark)

    Lauritzen, Lotte; Brambilla, Paola; Mazzocchi, Allesandra

    2016-01-01

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endoge......Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since...... the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies...... justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects...

  20. Liver function test abnormalities in users of aqueous kava extracts.

    Science.gov (United States)

    Clough, Alan R; Bailie, Ross S; Currie, Bart

    2003-01-01

    Hepatic toxicity from manufactured herbal remedies that contain kava lactones has been reported in Europe, North America, and Australia. There is no evidence for serious liver damage in kava-using populations in Pacific Island societies or in Indigenous Australians who have used aqueous kava extracts. This article presents evidence that liver function changes in users of aqueous kava extracts appear to be reversible. Data from one Arnhem Land community [Northern Territory (NT), Australia] with 340 indigenous people older than 15 years of age in 2000 are used. This study was a cross-sectional study with 98 participants, 36 of whom had never used kava. Among 62 kava users, 23 had discontinued kava at least 1 year before the study. Continuing users had not used kava for 1 to 2 months (n = 10) or 1 to 2 weeks previously (n = 15). Some (n = 14) had used kava within the previous 24 hr. Liver function tests were compared across these groups, taking into account differences due to age, sex, alcohol, and other substance use. The average quantity of kava powder consumed was 118 g/week, and median duration of use was 12 years (range, 1-18 years). Kava usage levels were less than one-half of those found in previous studies. More recent kava use was independently associated with higher levels of liver enzymes gamma-glutamyl transferase (GGT) (p < 0.001) and alkaline phosphatase (ALP) (p < 0.001), but not with alanine aminotransferase or bilirubin, which were not elevated. In those who were not heavy alcohol users, only those who used kava within the previous 24 hr showed GGT levels higher than nonusers (p < 0.001), whereas higher ALP levels occurred only in those who last used kava 1 to 2 weeks (p = 0.015) and 24 hr previously (p = 0.005). Liver function changes in users of aqueous kava extracts at these moderate levels of consumption appear to be reversible and begin to return to baseline after 1 to 2 weeks abstinence from kava. No evidence for irreversible liver damage has

  1. Gender Differences in Brain Functional Connectivity Density

    OpenAIRE

    Tomasi, Dardo; Volkow, Nora D.

    2011-01-01

    The neural bases of gender differences in emotional, cognitive, and socials behaviors are largely unknown. Here, magnetic resonance imaging data from 336 women and 225 men revealed a gender dimorphism in the functional organization of the brain. Consistently across five research sites, women had 14% higher local functional connectivity density (lFCD) and up to 5% higher gray matter density than men in cortical and subcortical regions. The negative power scaling of the lFCD was steeper for men...

  2. Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth.

    Directory of Open Access Journals (Sweden)

    Olga Kapellou

    2006-08-01

    Full Text Available We postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment.We analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25-1.33, which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001 independent of intrauterine or postnatal somatic growth.Human brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery.

  3. Brain abnormalities among the mentally retarded prenatally exposed atomic bomb survivors

    International Nuclear Information System (INIS)

    Schull, W.J.; Otake, Masanori; Nishitani, Hiromu; Hasuo, Kanehiro; Kobayashi, Takuro; Goto, Ikuo.

    1992-07-01

    An increased occurrence of severe mental retardation, with or without accompanying small head size, at specific gestational ages has been the most conspicuous effect on brain development of prenatal exposure to the bombings of Hiroshima and Nagasaki. A variety of biological mechanisms could be responsible for this finding, including cell killing and mismanaged neuronal migration. We describe here the findings on magnetic resonance imaging of the brains of five of these mentally retarded individuals, all of whom were exposed in the 8th through the 15th weeks following fertilization, the gestational period shown to be the most vulnerable to radiation-related damage. In the two cases exposed at the 8th or 9th week following fertilization, large areas of ectopic gray matter are seen, strong evidence of a failure of the neurons to migrate to their proper functional sites. The two individuals exposed in the 12th or 13th week show no readily recognized ectopic gray areas but do show mild macrogyria, which implies some impairment in the development of the cortical zone. Moreover, both have mega cisterna magna. Finally, the one individual seen who was exposed still later in development, in the 15th week, shows none of the changes seen in the other four individuals. This person's brain, though small, appears to have normal architecture. These findings are discussed in terms of the embryological events transpiring at the time of the prenatal exposure of these individuals to ionizing radiation. (author)

  4. Brain functional connectivity and cognition in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Xiong, K.L.; Zhang, Y.L.; Chen, H.; Zhang, J.N.; Zhang, Y.; Qiu, M.G.

    2016-01-01

    The aim of this study was to analyze brain functional connectivity and its relationship to cognition in patients with mild traumatic brain injury (mTBI). Twenty-five patients with mTBI and 25 healthy control subjects were studied using resting-state functional MRI (rs-fMRI). Amplitudes of low-frequency fluctuations (ALFFs) and functional connectivity (FC) were calculated and correlated with cognition. Compared with the normal control group, the mTBI patients showed a significant decrease in working memory index (WMI) and processing speed index (PSI), as well as significantly decreased ALFFs in the cingulate gyrus, the middle frontal gyrus and superior frontal gyrus. In contrast, the mTBI patients' ALFFs in the left middle occipital gyrus, the left precuneus, and lingual gyrus increased. Additionally, FC significantly decreased in the thalamus, caudate nucleus, and right hippocampus in the mTBI patients. Statistical analysis further showed a significant positive correlation between the ALFF in the cingulate gyrus and the WMI (R 2 = 0.423, P < 0.05) and a significant positive correlation between the FC in the left thalamus and left middle frontal gyrus and the WMI (R 2 = 0.381, P < 0.05). rs-fMRI can reveal the functional state of the brain in patients with mTBI. This finding differed from observations of the normal control group and was significantly associated with clinical cognitive dysfunction. Therefore, rs-fMRI offers an objective imaging modality for treatment planning and prognosis assessment in patients with mTBI. (orig.)

  5. Violent Video Games Alter Brain Function in Young Men

    Science.gov (United States)

    ... feed News from the RSNA Annual Meeting Violent Video Games Alter Brain Function in Young Men At A ... functional MRI, researchers have found that playing violent video games for one week causes changes in brain function. ...

  6. Lung Function Abnormalities in Smokers with Ischemic Heart Disease.

    Science.gov (United States)

    Franssen, Frits M E; Soriano, Joan B; Roche, Nicolas; Bloomfield, Paul H; Brusselle, Guy; Fabbri, Leonardo M; García-Rio, Francisco; Kearney, Mark T; Kwon, Namhee; Lundbäck, Bo; Rabe, Klaus F; Raillard, Alice; Muellerova, Hana; Cockcroft, John R

    2016-09-01

    The aim of the ALICE (Airflow Limitation in Cardiac Diseases in Europe) study was to investigate the prevalence of airflow limitation in patients with ischemic heart disease and the effects on quality of life, healthcare use, and future health risk. To examine prebronchodilator and post-bronchodilator spirometry in outpatients aged greater than or equal to 40 years with clinically documented ischemic heart disease who were current or former smokers. This multicenter, cross-sectional study was conducted in 15 cardiovascular outpatient clinics in nine European countries. Airflow limitation was defined as post-bronchodilator FEV1/FVC less than 0.70. Among the 3,103 patients with ischemic heart disease who were recruited, lung function was defined for 2,730 patients. Airflow limitation was observed in 30.5% of patients with ischemic heart disease: 11.3% had mild airflow limitation, 15.8% moderate airflow limitation, 3.3% severe airflow limitation, and 0.1% very severe airflow limitation. Most patients with airflow limitation (70.6%) had no previous spirometry testing or diagnosed pulmonary disease. Airflow limitation was associated with greater respiratory symptomatology, impaired health status, and more frequent emergency room visits (P < 0.05). Airflow limitation compatible with chronic obstructive pulmonary disease affects almost one-third of patients with ischemic heart disease. Although airflow limitation is associated with additional morbidity and societal burden, it is largely undiagnosed and untreated. Clinical trial registered with www.clinicaltrials.gov (NCT 01485159).

  7. Thyroid function abnormalities during amiodarone therapy for persistent atrial fibrillation.

    Science.gov (United States)

    Batcher, Elizabeth L; Tang, X Charlene; Singh, Bramah N; Singh, Steven N; Reda, Domenic J; Hershman, Jerome M

    2007-10-01

    Many patients receiving amiodarone therapy are male. The long-term risk for amiodarone-induced thyroid dysfunction in these patients has not been systematically and prospectively investigated. The purpose of this study was to determine the extent of amiodarone-induced thyroid dysfunction in a large male cohort. This is a substudy of a prospective randomized controlled trial (SAFE-Trial) in which amiodarone, sotalol, and placebo for persistent atrial fibrillation were evaluated. For the purpose of this substudy, sotalol and placebo groups were combined into a control group. Serial thyroid function tests were performed over 1-4.5 years. Of the 665 patients enrolled in the SAFE-Trial, 612 patients were included in this sub-study. Subclinical hypothyroidism, thyroid-stimulating hormone (TSH) level 4.5-10 mU/L, was seen among 25.8% of the amiodarone-treated patients and only 6.6% of controls (P 10 mU/L, was seen among 5.0% of the amiodarone-treated patients, and only 0.3% of controls (P amiodarone had been detected. There was a trend toward a greater proportion of hyperthyroidism, defined as a TSH amiodarone group compared with the control group (5.3% vs 2.4%, P=.07). Hypothyroidism developed in 30.8% of older males treated with amiodarone and in only 6.9% of the controls. Hypothyroidism presented at an early stage of therapy. Hyperthyroidism occurred in 5.3% of amiodarone treated patients, and was a subclinical entity in all but 1 case.

  8. Functional brain imaging: an evidence-based analysis.

    Science.gov (United States)

    2006-01-01

    genetic and environmental components. The prevalence of MS in Canada is 240 cases per 100,000 people. Parkinson's disease is the most prevalent movement disorder; it affects an estimated 100,000 Canadians. Currently, the standard for measuring disease progression is through the use of scales, which are subjective measures of disease progression. Functional brain imaging may provide an objective measure of disease progression, differentiation between parkinsonian syndromes, and response to therapy. FUNCTIONAL BRAIN IMAGING: Functional brain imaging technologies measure blood flow and metabolism. The results of these tests are often used in conjunction with structural imaging (e.g., MRI or CT). Positron emission tomography and MRS identify abnormalities in brain tissues. The former measures abnormalities through uptake of radiotracers in the brain, while the latter measures chemical shifts in metabolite ratios to identify abnormalities. The potential role of functional MRI (fMRI) is to identify the areas of the brain responsible for language, sensory and motor function (sensorimotor cortex), rather than identifying abnormalities in tissues. Magnetoencephalography measures magnetic fields of the electric currents in the brain, identifying aberrant activity. Magnetoencephalography may have the potential to localize seizure foci and to identify the sensorimotor cortex, visual cortex and auditory cortex. In terms of regulatory status, MEG and PET are licensed by Health Canada. Both MRS and fMRI use a MRI platform; thus, they do not have a separate licence from Health Canada. The radiotracers used in PET scanning are not licensed by Health Canada for general use but can be used through a Clinical Trials Application. The literature published up to September 2006 was searched in the following databases: MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, Cochrane Database of Systematic Reviews, CENTRAL, and International Network of Agencies for Health Technology

  9. Electroencephalographic imaging of higher brain function

    Science.gov (United States)

    Gevins, A.; Smith, M. E.; McEvoy, L. K.; Leong, H.; Le, J.

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.

  10. Bayesian Modelling of Functional Whole Brain Connectivity

    DEFF Research Database (Denmark)

    Røge, Rasmus

    This thesis deals with parcellation of whole-brain functional magnetic resonance imaging (fMRI) using Bayesian inference with mixture models tailored to the fMRI data. In the three included papers and manuscripts, we analyze two different approaches to modeling fMRI signal; either we accept...... the prevalent strategy of standardizing of fMRI time series and model data using directional statistics or we model the variability in the signal across the brain and across multiple subjects. In either case, we use Bayesian nonparametric modeling to automatically learn from the fMRI data the number...... of funcional units, i.e. parcels. We benchmark the proposed mixture models against state of the art methods of brain parcellation, both probabilistic and non-probabilistic. The time series of each voxel are most often standardized using z-scoring which projects the time series data onto a hypersphere...

  11. Brain Imaging and Blood Biomarker Abnormalities in Children With Autosomal Dominant Alzheimer Disease: A Cross-Sectional Study.

    Science.gov (United States)

    Quiroz, Yakeel T; Schultz, Aaron P; Chen, Kewei; Protas, Hillary D; Brickhouse, Michael; Fleisher, Adam S; Langbaum, Jessica B; Thiyyagura, Pradeep; Fagan, Anne M; Shah, Aarti R; Muniz, Martha; Arboleda-Velasquez, Joseph F; Munoz, Claudia; Garcia, Gloria; Acosta-Baena, Natalia; Giraldo, Margarita; Tirado, Victoria; Ramírez, Dora L; Tariot, Pierre N; Dickerson, Bradford C; Sperling, Reisa A; Lopera, Francisco; Reiman, Eric M

    2015-08-01

    cingulate cortex with medial temporal lobe regions (mean [SD] parameter estimates were 0.038 [0.070] for noncarriers and 0.190 [0.057] for carriers), as well as greater gray matter volumes in temporal regions (eg, left parahippocampus; P < . 049, corrected for multiple comparisons). Children at genetic risk for ADAD have functional and structural brain changes and abnormal levels of plasma Aβ1-42. The extent to which the underlying brain changes are either neurodegenerative or developmental remains to be determined. This study provides additional information about the earliest known biomarker changes associated with ADAD.

  12. Abnormal Liver Function in Relation to Hemodynamic Profile in Heart Failure Patients

    NARCIS (Netherlands)

    Van Deursen, V. M.; Damman, K.; Hillege, H. L.; Van Beek, A. P.; Van Veldhuisen, D. J.; Voors, A. A.

    Background: We studied the relation between liver function abnormalities and hemodynamic profile in patients with heart failure (HF). Methods and Results: in 323 HF patients, liver function was determined by aspartate and alanine aminotransferase (AST, ALT), alkaline phosphatase, gamma-glutamyl

  13. Neuropsychological deficits and morphological MRI brain scan abnormalities in apparently health non-encephalopathic patients with cirrhosis

    International Nuclear Information System (INIS)

    Moore, J.W.; De Lacey, G.; Dunk, A.A.; Sinclair, T.S.; Mowat, M.A.G.; Brunt, P.W.; Deans, H.; Crawford, J.R.; Besson, J.A.O.

    1989-01-01

    By means of psychometric testing, we have determined the frequency of latent hepatic encephalopathy in a group of 19 cirrhotics with no clinical evidence of encephalopathy. Magnetic resonance imaging (MRI) of the brain was performed in order to determine whether morphological cerebral abnormalities were associated with latent encephalopathy. Nineteen age and educationally matched patient with normal liver function acted as controls. Significant differences (P < 0.05) between cirrhotics and controls were found in tests of short-term visual memory and speed of reaction to light (cirrhotics 326 ] 132 ms vs. controls 225 ] 36 ms), sound (cirrhotics 361 ] 152 ms vs. controls 236 ] 52 ms) and choice (cirrhotics 651 ] 190 ms vs. controls 406 ] 101 ms) stimuli (all values mean ] S.D.). Reitan trail test performance, however, was similar in both groups. ( Trail A: cirrhotics 43 ] 19 s vs. controls 35 ] 13 s; Trail B: cirrhotics 105 ] 66 s vs. controls 93 ] 36 s.) In patients with cirrhosis, MRI revealed statistically significant increases in the maximum fissure width of right frontal sulci, light and left parietal sulci, inter-hemispheric fissure width and in bicaudafe index. These changes, indicating cerebral atrophy, were largely confined to alcoholics. There was poor correlation between measurements of cerebral morphology and neuropsychological performance, only 10% of associations achieving statistical significance. (author). 2 refs.; 3 figs.; 5 tabs

  14. Frequency and Prognostic Significance of Abnormal Liver Function Tests in Patients With Cardiogenic Shock

    DEFF Research Database (Denmark)

    Jäntti, Toni; Tarvasmäki, Tuukka; Harjola, Veli Pekka

    2017-01-01

    Cardiogenic shock (CS) is a cardiac emergency often leading to multiple organ failure and death. Assessing organ dysfunction and appropriate risk stratification are central for the optimal management of these patients. The purpose of this study was to assess the prevalence of abnormal liver...... function tests (LFTs), as well as early changes of LFTs and their impact on outcome in CS. We measured LFTs in 178 patients in CS from serial blood samples taken at 0 hours, 12 hours, and 24 hours. The associations of LFT abnormalities and their early changes with all-cause 90-day mortality were estimated...... using Fisher's exact test and Cox proportional hazards regression analysis. Baseline alanine aminotransferase (ALT) was abnormal in 58% of the patients, more frequently in nonsurvivors. Abnormalities in other LFTs analyzed (alkaline phosphatase, gamma-glutamyl transferase, and total bilirubin) were...

  15. Non-invasive assessment of choledocholithiasis in patients with gallstones and abnormal liver function.

    Science.gov (United States)

    Al-Jiffry, Bilal O; Elfateh, Abdeen; Chundrigar, Tariq; Othman, Bassem; Almalki, Owaid; Rayza, Fares; Niyaz, Hashem; Elmakhzangy, Hesham; Hatem, Mohammed

    2013-09-21

    To find a non-invasive strategy for detecting choledocholithiasis before cholecystectomy, with an acceptable negative rate of endoscopic retrograde cholangiopancreatography. All patients with symptomatic gallstones were included in the study. Patients with abnormal liver functions and common bile duct abnormalities on ultrasound were referred for endoscopic retrograde cholangiopancreatography. Patients with normal ultrasound were referred to magnetic resonance cholangiopancreatography. All those who had a negative magnetic resonance or endoscopic retrograde cholangiopancreatography underwent laparoscopic cholecystectomy with intraoperative cholangiography. Seventy-eight point five percent of patients had laparoscopic cholecystectomy directly with no further investigations. Twenty-one point five percent had abnormal liver function tests, of which 52.8% had normal ultrasound results. This strategy avoided unnecessary magnetic resonance cholangiopancreatography in 47.2% of patients with abnormal liver function tests with a negative endoscopic retrograde cholangiopancreatography rate of 10%. It also avoided un-necessary endoscopic retrograde cholangiopancreatography in 35.2% of patients with abnormal liver function. This strategy reduces the cost of the routine use of magnetic resonance cholangiopancreatography, in the diagnosis and treatment of common bile duct stones before laparoscopic cholecystectomy.

  16. Robust transient dynamics and brain functions.

    Science.gov (United States)

    Rabinovich, Mikhail I; Varona, Pablo

    2011-01-01

    In the last few decades several concepts of dynamical systems theory (DST) have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques) has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc., have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework - heteroclinic sequential dynamics - to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i) within the same modality, (ii) among different modalities from the same family (like perception), and (iii) among modalities from different families (like emotion and cognition). The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential) dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory - a vital cognitive function -, and to find specific dynamical signatures - different kinds of instabilities - of several brain functions and mental diseases.

  17. Robust transient dynamics and brain functions

    Directory of Open Access Journals (Sweden)

    Mikhail I Rabinovich

    2011-06-01

    Full Text Available In the last few decades several concepts of Dynamical Systems Theory (DST have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc. have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework -heteroclinic sequential dynamics- to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i within the same modality, (ii among different modalities from the same family (like perception, and (iii among modalities from different families (like emotion and cognition. The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory -a vital cognitive function-, and to find specific dynamical signatures -different kinds of instabilities- of several brain functions and mental diseases.

  18. Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: correlation with neuropsychological tests and delayed recovery

    International Nuclear Information System (INIS)

    Hughes, David G.; Jackson, Alan; Mason, Damon L.; Berry, Elizabeth; Hollis, Sally; Yates, David W.

    2004-01-01

    Mild traumatic brain injury (MTBI) is a common reason for hospital attendance and is associated with significant delayed morbidity. We studied a series of 80 persons with MTBI. Magnetic resonance imaging (MRI) and neuropsychological testing were used in the acute phase and a questionnaire for post-concussion syndrome (PCS) and return to work status at 6 months. In 26 subjects abnormalities were seen on MRI, of which 5 were definitely traumatic. There was weak correlation with abnormal neuropsychological tests for attention in the acute period. There was no significant correlation with a questionnaire for PCS and return to work status. Although non-specific abnormalities are frequently seen, standard MRI techniques are not helpful in identifying patients with MTBI who are likely to have delayed recovery. (orig.)

  19. The influence of brain death on liver function

    NARCIS (Netherlands)

    Olinga, Peter; Hoeven, Joost Alexander Boreas van der; Merema, M.T.; Freund, R.L.; Ploeg, R.J; Groothuis, Geny

    Background: In this study, we investigated the influence of brain death on inflammatory response and the effects of brain death on liver function both directly after explantation and after reoxygenation. Methods: The influence of brain death on liver function was studied in rats using a brain death

  20. Functional connectivity hubs in the human brain.

    Science.gov (United States)

    Tomasi, Dardo; Volkow, Nora D

    2011-08-01

    Brain networks appear to have few and well localized regions with high functional connectivity density (hubs) for fast integration of neural processing, and their dysfunction could contribute to neuropsychiatric diseases. However the variability in the distribution of these brain hubs is unknown due in part to the overwhelming computational demands associated to their localization. Recently we developed a fast algorithm to map the local functional connectivity density (lFCD). Here we extend our method to map the global density (gFDC) taking advantage of parallel computing. We mapped the gFCD in the brain of 1031 subjects from the 1000 Functional Connectomes project and show that the strongest hubs are located in regions of the default mode network (DMN) and in sensory cortices, whereas subcortical regions exhibited the weakest hubs. The strongest hubs were consistently located in ventral precuneus/cingulate gyrus (previously identified by other analytical methods including lFCD) and in primary visual cortex (BA 17/18), which highlights their centrality to resting connectivity networks. In contrast and after rescaling, hubs in prefrontal regions had lower gFCD than lFCD, which suggests that their local functional connectivity (as opposed to long-range connectivity) prevails in the resting state. The power scaling of the probability distribution of gFCD hubs (as for lFCD) was consistent across research centers further corroborating the "scale-free" topology of brain networks. Within and between-subject variability for gFCD were twice than that for lFCD (20% vs. 12% and 84% vs. 34%, respectively) suggesting that gFCD is more sensitive to individual differences in functional connectivity. Published by Elsevier Inc.

  1. Temporal fractal analysis of the rs-BOLD signal identifies brain abnormalities in autism spectrum disorder.

    Science.gov (United States)

    Dona, Olga; Hall, Geoffrey B; Noseworthy, Michael D

    2017-01-01

    Brain connectivity in autism spectrum disorders (ASD) has proven difficult to characterize due to the heterogeneous nature of the spectrum. Connectivity in the brain occurs in a complex, multilevel and multi-temporal manner, driving the fluctuations observed in local oxygen demand. These fluctuations can be characterized as fractals, as they auto-correlate at different time scales. In this study, we propose a model-free complexity analysis based on the fractal dimension of the rs-BOLD signal, acquired with magnetic resonance imaging. The fractal dimension can be interpreted as measure of signal complexity and connectivity. Previous studies have suggested that reduction in signal complexity can be associated with disease. Therefore, we hypothesized that a detectable difference in rs-BOLD signal complexity could be observed between ASD patients and Controls. Anatomical and functional data from fifty-five subjects with ASD (12.7 ± 2.4 y/o) and 55 age-matched (14.1 ± 3.1 y/o) healthy controls were accessed through the NITRC database and the ABIDE project. Subjects were scanned using a 3T GE Signa MRI and a 32-channel RF-coil. Axial FSPGR-3D images were used to prescribe rs-BOLD (TE/TR = 30/2000ms) where 300 time points were acquired. Motion correction was performed on the functional data and anatomical and functional images were aligned and spatially warped to the N27 standard brain atlas. Fractal analysis, performed on a grey matter mask, was done by estimating the Hurst exponent in the frequency domain using a power spectral density approach and refining the estimation in the time domain with de-trended fluctuation analysis and signal summation conversion methods. Voxel-wise fractal dimension (FD) was calculated for every subject in the control group and in the ASD group to create ROI-based Z-scores for the ASD patients. Voxel-wise validation of FD normality across controls was confirmed, and non-Gaussian voxels were eliminated from subsequent analysis. To maintain

  2. Functionality predictors in acquired brain damage.

    Science.gov (United States)

    Huertas Hoyas, E; Pedrero Pérez, E J; Águila Maturana, A M; García López-Alberca, S; González Alted, C

    2015-01-01

    Most individuals who have survived an acquired brain injury present consequences affecting the sensorimotor, cognitive, affective or behavioural components. These deficits affect the proper performance of daily living activities. The aim of this study is to identify functional differences between individuals with unilateral acquired brain injury using functional independence, capacity, and performance of daily activities. Descriptive cross-sectional design with a sample of 58 people, with right-sided injury (n=14 TBI; n=15 stroke) or left-sided injury (n = 14 TBI, n = 15 stroke), right handed, and with a mean age of 47 years and time since onset of 4 ± 3.65 years. The functional assessment/functional independence measure (FIM/FAM) and the International Classification of Functioning (ICF) were used for the study. The data showed significant differences (P<.000), and a large size effect (dr=0.78) in the cross-sectional estimates, and point to fewer restrictions for patients with a lesion on their right side. The major differences were in the variables 'speaking' and 'receiving spoken messages' (ICF variables), and 'Expression', 'Writing' and 'intelligible speech' (FIM/FAM variables). In the linear regression analysis, the results showed that only 4 FIM/FAM variables, taken together, predict 44% of the ICF variance, which measures the ability of the individual, and up to 52% of the ICF, which measures the individual's performance. Gait alone predicts a 28% of the variance. It seems that individuals with acquired brain injury in the left hemisphere display important differences regarding functional and communication variables. The motor aspects are an important prognostic factor in functional rehabilitation. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Disrupted functional brain connectome in unilateral sudden sensorineural hearing loss.

    Science.gov (United States)

    Xu, Haibo; Fan, Wenliang; Zhao, Xueyan; Li, Jing; Zhang, Wenjuan; Lei, Ping; Liu, Yuan; Wang, Haha; Cheng, Huamao; Shi, Hong

    2016-05-01

    Sudden sensorineural hearing loss (SSNHL) is generally defined as sensorineural hearing loss of 30 dB or greater over at least three contiguous audiometric frequencies and within a three-day period. This hearing loss is usually unilateral and can be associated with tinnitus and vertigo. The pathogenesis of unilateral sudden sensorineural hearing loss is still unknown, and the alterations in the functional connectivity are suspected to involve one possible pathogenesis. Despite scarce findings with respect to alterations in brain functional networks in unilateral sudden sensorineural hearing loss, the alterations of the whole brain functional connectome and whether these alterations were already in existence in the acute period remains unknown. The aim of this study was to investigate the alterations of brain functional connectome in two large samples of unilateral sudden sensorineural hearing loss patients and to investigate the correlation between unilateral sudden sensorineural hearing loss characteristics and changes in the functional network properties. Pure tone audiometry was performed to assess hearing ability. Abnormal changes in the peripheral auditory system were examined using conventional magnetic resonance imaging. The graph theoretical network analysis method was used to detect brain connectome alterations in unilateral sudden sensorineural hearing loss. Compared with the control groups, both groups of unilateral SSNHL patients exhibited a significantly increased clustering coefficient, global efficiency, and local efficiency but a significantly decreased characteristic path length. In addition, the primary increased nodal strength (e.g., nodal betweenness, hubs) was observed in several regions primarily, including the limbic and paralimbic systems, and in the auditory network brain areas. These findings suggest that the alteration of network organization already exists in unilateral sudden sensorineural hearing loss patients within the acute period

  4. The neuro-radiological anatomy of the normal and abnormal rat brain

    International Nuclear Information System (INIS)

    Schumacher, M.; Doller, P.; Voigt, K.

    1979-01-01

    In vivo and post mortem techniques for the radiological examination of normal brains have been developed, using 66 white adult rats. Aortic arch injections for survey angiograms (10 animals), selective catheterisation of the internal carotid artery (16 animals) and ventriculography by percutaneous needle puncture (20 animals) were performed in vivo; the animals survived and the examinations could be repeated. The techniques proved useful and accurate methods for the radiological demonstration of the topography and morphology of cerebral vessels and chambers; they also provided information on the function of the cerebral circulation and C.S.F. dynamics. The findings were checked and correlated by post mortem studies (20 animals) using contact radiography, micro-angiography and casts of the ventricles. As a result, extensive topographic and anatomic information concerning the cerebral vessels in the rat was obtained, including some microscopic-radiological findings. The combined use of these methods provided a basis for studying the growth of experimentally induced brain tumours and the effect of various types of treatment. (orig.) [de

  5. Social functioning in children with brain insult

    Directory of Open Access Journals (Sweden)

    Mardee Greenham

    2010-03-01

    Full Text Available Social dysfunction is commonly reported by survivors of brain insult, and is often rated as the most debilitating of all sequelae, impacting on many areas of daily life, as well as overall quality of life. Within the early brain insult (EBI literature, physical and cognitive domains have been of primary interest and social skills have received scant attention. As a result it remains unclear how common these problems are, and whether factors predictive of recovery (insult severity, lesion location, age at insult, environment in other functional domains (motor, speech, cognition also contribute to social outcome. This study compared social outcomes for children sustaining EBI at different times from gestation to late childhood to determine whether EBI was associated with an increased risk of problems. Children with focal brain insults were categorized according to timing of brain insult: (i Congenital (n = 38: EBI: first–second trimester; (ii Perinatal (n = 33; EBI: third trimester to 1 month post-natal; (iii Infancy (n=23: EBI: 2 months–2 years post-birth; (iv Preschool (n = 19: EBI: 3–6 years; (v Middle Childhood (n = 31: EBI: 7–9 years; and (vi Late Childhood (n = 19: EBI: after age 10. Children’s teachers completed questionnaires measuring social function (Strengths and Difficulties Questionnaire, Walker McConnell Scale of Social Competence and School Adjustment. Results showed that children with EBI were at increased risk for social impairment compared to normative expectations. EBI before age 2 years was associated with most significant social impairment, while children with EBI in the preschool years and in late childhood recorded scores closer to normal. Lesion location and laterality were not predictive of social outcome, and nor was social risk. In contrast, presence of disability (seizures and family function were shown to contribute to aspects of social function.

  6. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning

    Directory of Open Access Journals (Sweden)

    Francesca eBaglio

    2014-10-01

    Full Text Available Borderline intellectual functioning (BIF is a condition characterized by an intelligence quotient (IQ between 70 and 85. BIF children present with cognitive, motor, social and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. Aim of this study was to investigate brain morphometry and its relation to IQ level in borderline intellectual functioning children.Thirteen children with BIF and 14 age- and sex-matched typically developing children were enrolled. All children underwent a full IQ assessment (WISC-III scale and a Magnetic Resonance (MR examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel based morphometry (VBM analysis. To investigate to what extent the group influenced gray matter volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional gray matter volume in bilateral sensori-motor and right posterior temporal cortices and decreased gray matter volume in right parahippocampal gyrus. Gray matter volumes were highly correlated with IQ indices.Our is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning and behavioral processes. Our findings, although allowing for little generalization to general population, contributes to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention.

  7. Mismatch negativity, social cognition, and functional outcomes in patients after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui-yan Sun

    2015-01-01

    Full Text Available Mismatch negativity is generated automatically, and is an early monitoring indicator of neuronal integrity impairment and functional abnormality in patients with brain injury, leading to decline of cognitive function. Antipsychotic medication cannot affect mismatch negativity. The present study aimed to explore the relationships of mismatch negativity with neurocognition, daily life and social functional outcomes in patients after brain injury. Twelve patients with traumatic brain injury and 12 healthy controls were recruited in this study. We examined neurocognition with the Wechsler Adult Intelligence Scale-Revised China, and daily and social functional outcomes with the Activity of Daily Living Scale and Social Disability Screening Schedule, respectively. Mismatch negativity was analyzed from electroencephalogram recording. The results showed that mismatch negativity amplitudes decreased in patients with traumatic brain injury compared with healthy controls. Mismatch negativity amplitude was negatively correlated with measurements of neurocognition and positively correlated with functional outcomes in patients after traumatic brain injury. Further, the most significant positive correlations were found between mismatch negativity in the fronto-central region and measures of functional outcomes. The most significant positive correlations were also found between mismatch negativity at the FCz electrode and daily living function. Mismatch negativity amplitudes were extremely positively associated with Social Disability Screening Schedule scores at the Fz electrode in brain injury patients. These experimental findings suggest that mismatch negativity might efficiently reflect functional outcomes in patients after traumatic brain injury.

  8. Mismatch negativity, social cognition, and functional outcomes in patients after traumatic brain injury.

    Science.gov (United States)

    Sun, Hui-Yan; Li, Qiang; Chen, Xi-Ping; Tao, Lu-Yang

    2015-04-01

    Mismatch negativity is generated automatically, and is an early monitoring indicator of neuronal integrity impairment and functional abnormality in patients with brain injury, leading to decline of cognitive function. Antipsychotic medication cannot affect mismatch negativity. The present study aimed to explore the relationships of mismatch negativity with neurocognition, daily life and social functional outcomes in patients after brain injury. Twelve patients with traumatic brain injury and 12 healthy controls were recruited in this study. We examined neurocognition with the Wechsler Adult Intelligence Scale-Revised China, and daily and social functional outcomes with the Activity of Daily Living Scale and Social Disability Screening Schedule, respectively. Mismatch negativity was analyzed from electroencephalogram recording. The results showed that mismatch negativity amplitudes decreased in patients with traumatic brain injury compared with healthy controls. Mismatch negativity amplitude was negatively correlated with measurements of neurocognition and positively correlated with functional outcomes in patients after traumatic brain injury. Further, the most significant positive correlations were found between mismatch negativity in the fronto-central region and measures of functional outcomes. The most significant positive correlations were also found between mismatch negativity at the FCz electrode and daily living function. Mismatch negativity amplitudes were extremely positively associated with Social Disability Screening Schedule scores at the Fz electrode in brain injury patients. These experimental findings suggest that mismatch negativity might efficiently reflect functional outcomes in patients after traumatic brain injury.

  9. Functional brain networks in schizophrenia: a review

    Directory of Open Access Journals (Sweden)

    Vince D Calhoun

    2009-08-01

    Full Text Available Functional magnetic resonance imaging (fMRI has become a major technique for studying cognitive function and its disruption in mental illness, including schizophrenia. The major proportion of imaging studies focused primarily upon identifying regions which hemodynamic response amplitudes covary with particular stimuli and differentiate between patient and control groups. In addition to such amplitude based comparisons, one can estimate temporal correlations and compute maps of functional connectivity between regions which include the variance associated with event related responses as well as intrinsic fluctuations of hemodynamic activity. Functional connectivity maps can be computed by correlating all voxels with a seed region when a spatial prior is available. An alternative are multivariate decompositions such as independent component analysis (ICA which extract multiple components, each of which is a spatially distinct map of voxels with a common time course. Recent work has shown that these networks are pervasive in relaxed resting and during task performance and hence provide robust measures of intact and disturbed brain activity. This in turn bears the prospect of yielding biomarkers for schizophrenia, which can be described both in terms of disrupted local processing as well as altered global connectivity between large scale networks. In this review we will summarize functional connectivity measures with a focus upon work with ICA and discuss the meaning of intrinsic fluctuations. In addition, examples of how brain networks have been used for classification of disease will be shown. We present work with functional network connectivity, an approach that enables the evaluation of the interplay between multiple networks and how they are affected in disease. We conclude by discussing new variants of ICA for extracting maximally group discriminative networks from data. In summary, it is clear that identification of brain networks and their

  10. Dynamic reconfiguration of human brain functional networks through neurofeedback.

    Science.gov (United States)

    Haller, Sven; Kopel, Rotem; Jhooti, Permi; Haas, Tanja; Scharnowski, Frank; Lovblad, Karl-Olof; Scheffler, Klaus; Van De Ville, Dimitri

    2013-11-01

    Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. The genetic and environmental determinants of the association between brain abnormalities and schizophrenia: the schizophrenia twins and relatives consortium.

    Science.gov (United States)

    van Haren, Neeltje E M; Rijsdijk, Fruhling; Schnack, Hugo G; Picchioni, Marco M; Toulopoulou, Timothea; Weisbrod, Matthias; Sauer, Heinrich; van Erp, Theo G; Cannon, Tyrone D; Huttunen, Matti O; Boomsma, Dorret I; Hulshoff Pol, Hilleke E; Murray, Robin M; Kahn, Rene S

    2012-05-15

    Structural brain abnormalities are consistently found in schizophrenia (Sz) and have been associated with the familial risk for the disorder. We aim to define the relative contributions of genetic and nongenetic factors to the association between structural brain abnormalities and Sz in a uniquely powered cohort (Schizophrenia Twins and Relatives consortium). An international multicenter magnetic resonance imaging collaboration was set up to pool magnetic resonance imaging scans from twin pairs in Utrecht (The Netherlands), Helsinki (Finland), London (United Kingdom), and Jena (Germany). A sample of 684 subjects took part, consisting of monozygotic twins (n = 410, with 51 patients from concordant and 52 from discordant pairs) and dizygotic twins (n = 274, with 39 patients from discordant pairs). The additive genetic, common, and unique environmental contributions to the association between brain volumes and risk for Sz were estimated by structural equation modeling. The heritabilities of most brain volumes were significant and ranged between 52% (temporal cortical gray matter) and 76% (cerebrum). Heritability of cerebral gray matter did not reach significance (34%). Significant phenotypic correlations were found between Sz and reduced volumes of the cerebrum (-.22 [-.30/-.14]) and white matter (-.17 [-.25/-.09]) and increased volume of the third ventricle (.18 [.08/.28]). These were predominantly due to overlapping genetic effects (77%, 94%, and 83%, respectively). Some of the genes that transmit the risk for Sz also influence cerebral (white matter) volume. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Functional neuroimaging of normal aging: Declining brain, adapting brain.

    Science.gov (United States)

    Sugiura, Motoaki

    2016-09-01

    Early functional neuroimaging research on normal aging brain has been dominated by the interest in cognitive decline. In this framework the age-related compensatory recruitment of prefrontal cortex, in terms of executive system or reduced lateralization, has been established. Further details on these compensatory mechanisms and the findings reflecting cognitive decline, however, remain the matter of intensive investigations. Studies in another framework where age-related neural alteration is considered adaptation to the environmental change are recently burgeoning and appear largely categorized into three domains. The age-related increase in activation of the sensorimotor network may reflect the alteration of the peripheral sensorimotor systems. The increased susceptibility of the network for the mental-state inference to the socioemotional significance may be explained by the age-related motivational shift due to the altered social perception. The age-related change in activation of the self-referential network may be relevant to the focused positive self-concept of elderly driven by a similar motivational shift. Across the domains, the concept of the self and internal model may provide the theoretical bases of this adaptation framework. These two frameworks complement each other to provide a comprehensive view of the normal aging brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Association Between Brain Activation and Functional Connectivity.

    Science.gov (United States)

    Tomasi, Dardo; Volkow, Nora D

    2018-04-13

    The origin of the "resting-state" brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.

  14. Non-invasive brain-to-brain interface (BBI: establishing functional links between two brains.

    Directory of Open Access Journals (Sweden)

    Seung-Schik Yoo

    Full Text Available Transcranial focused ultrasound (FUS is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI. In conjunction with the use of brain-to-computer interface (BCI techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat, thus creating a brain-to-brain interface (BBI. The implementation was aimed to non-invasively translate the human volunteer's intention to stimulate a rat's brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer's intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications.

  15. Influence of denture treatment on brain function activity

    Directory of Open Access Journals (Sweden)

    Toshio Hosoi

    2011-02-01

    In this study, it was revealed that brain function activity was enhanced by the improvement of complete dentures, and by wearing partial dentures. Not only denture function improvement but also brain functional activation was achieved in elderly denture wearers at risk of brain activity deterioration.

  16. The Big Five default brain: functional evidence.

    Science.gov (United States)

    Sampaio, Adriana; Soares, José Miguel; Coutinho, Joana; Sousa, Nuno; Gonçalves, Óscar F

    2014-11-01

    Recent neuroimaging studies have provided evidence that different dimensions of human personality may be associated with specific structural neuroanatomic correlates. Identifying brain correlates of a situation-independent personality structure would require evidence of a stable default mode of brain functioning. In this study, we investigated the correlates of the Big Five personality dimensions (Extraversion, Neuroticism, Openness/Intellect, Agreeableness, and Conscientiousness) and the default mode network (DMN). Forty-nine healthy adults completed the NEO-Five Factor. The results showed that the Extraversion (E) and Agreeableness (A) were positively correlated with activity in the midline core of the DMN, whereas Neuroticism (N), Openness (O), and Conscientiousness (C) were correlated with the parietal cortex system. Activity of the anterior cingulate cortex was positively associated with A and negatively with C. Regions of the parietal lobe were differentially associated with each personality dimension. The present study not only confirms previous functional correlates regarding the Big Five personality dimensions, but it also expands our knowledge showing the association between different personality dimensions and specific patterns of brain activation at rest.

  17. Abnormal resting-state functional connectivity study in unilateral pulsatile tinnitus patients with single etiology: A seed-based functional connectivity study

    International Nuclear Information System (INIS)

    Lv, Han; Zhao, Pengfei; Liu, Zhaohui; Li, Rui; Zhang, Ling; Wang, Peng; Yan, Fei; Liu, Liheng; Wang, Guopeng; Zeng, Rong; Li, Ting; Dong, Cheng; Gong, Shusheng; Wang, Zhenchang

    2016-01-01

    Objective: Previous studies demonstrated altered regional neural activations in several brain areas in patients with pulsatile tinnitus (PT), especially indicating an important role of posterior cingulate cortex (PCC). However, few studies focused on the degree of functional connectivity (FC) of this area in PT patients. In this study, we will compare the FC of PCC in patients affected with this condition and normal controls by using resting-state functional magnetic resonance imaging (fMRI). Methods: Structural and functional MRI data were obtained from 36 unilateral PT patients with single etiology and 36 matched healthy controls. FC feature of the region of interest (PCC) were characterized using a seed-based correlation method with the voxels in the whole-brain. Results: Compared with healthy controls, patients showed significant decreased FC to the right middle temporal gyrus (MTG), right thalamus and bilateral insula. By contrast, PCC demonstrated increased functional connectivity between the precuneus, bilateral inferior parietal lobule and middle occipital gyrus. We also found correlations between the disease duration of PT and FC of PCC-right MTG (r = −0.616, p < 0.001). Conclusions: Unilateral PT patients could have abnormal FC to the PCC bilaterally in the brain. PCC, as a highly integrated brain area, is an example of nucleus that was involved in mediation between different neural networks. It might be a modulation core between visual network and auditory network. The decreased FC of MTG to PCC may indicate a down regulation of activity between PCC and auditory associated brain cortex. Decreased FC between limbic system (bilateral AI) and PCC may reflect the emotional message control in patient group. This study facilitated understanding of the underlying neuropathological process in patients with pulsatile tinnitus.

  18. Abnormal resting-state functional connectivity study in unilateral pulsatile tinnitus patients with single etiology: A seed-based functional connectivity study

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Han [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Neuroradiology Division, Department of Radiology, Stanford University, CA, 94305 (United States); Zhao, Pengfei [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Liu, Zhaohui [Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730 (China); Li, Rui; Zhang, Ling; Wang, Peng [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Yan, Fei [Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730 (China); Liu, Liheng [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Wang, Guopeng; Zeng, Rong [Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Li, Ting [Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730 (China); Dong, Cheng [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Gong, Shusheng, E-mail: gongss@ccmu.edu.cn [Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China); Wang, Zhenchang, E-mail: cjr.wzhch@vip.163.com [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050 (China)

    2016-11-15

    Objective: Previous studies demonstrated altered regional neural activations in several brain areas in patients with pulsatile tinnitus (PT), especially indicating an important role of posterior cingulate cortex (PCC). However, few studies focused on the degree of functional connectivity (FC) of this area in PT patients. In this study, we will compare the FC of PCC in patients affected with this condition and normal controls by using resting-state functional magnetic resonance imaging (fMRI). Methods: Structural and functional MRI data were obtained from 36 unilateral PT patients with single etiology and 36 matched healthy controls. FC feature of the region of interest (PCC) were characterized using a seed-based correlation method with the voxels in the whole-brain. Results: Compared with healthy controls, patients showed significant decreased FC to the right middle temporal gyrus (MTG), right thalamus and bilateral insula. By contrast, PCC demonstrated increased functional connectivity between the precuneus, bilateral inferior parietal lobule and middle occipital gyrus. We also found correlations between the disease duration of PT and FC of PCC-right MTG (r = −0.616, p < 0.001). Conclusions: Unilateral PT patients could have abnormal FC to the PCC bilaterally in the brain. PCC, as a highly integrated brain area, is an example of nucleus that was involved in mediation between different neural networks. It might be a modulation core between visual network and auditory network. The decreased FC of MTG to PCC may indicate a down regulation of activity between PCC and auditory associated brain cortex. Decreased FC between limbic system (bilateral AI) and PCC may reflect the emotional message control in patient group. This study facilitated understanding of the underlying neuropathological process in patients with pulsatile tinnitus.

  19. Exercise tolerance, lung function abnormalities, anemia, and cardiothoracic ratio in sickle cell patients

    NARCIS (Netherlands)

    van Beers, Eduard J.; van der Plas, Mart N.; Nur, Erfan; Bogaard, Harm-Jan; van Steenwijk, Reindert P.; Biemond, Bart J.; Bresser, Paul

    2014-01-01

    Many patients with sickle cell disease (SCD) have a reduced exercise capacity and abnormal lung function. Cardiopulmonary exercise testing (CPET) can identify causes of exercise limitation. Forty-four consecutive SCD patients (27 HbSS, 11 HbSC, and 6 HbS-beta thalassemia) with a median age

  20. Random matrix theory for analyzing the brain functional network in attention deficit hyperactivity disorder

    Science.gov (United States)

    Wang, Rong; Wang, Li; Yang, Yong; Li, Jiajia; Wu, Ying; Lin, Pan

    2016-11-01

    Attention deficit hyperactivity disorder (ADHD) is the most common childhood neuropsychiatric disorder and affects approximately 6 -7 % of children worldwide. Here, we investigate the statistical properties of undirected and directed brain functional networks in ADHD patients based on random matrix theory (RMT), in which the undirected functional connectivity is constructed based on correlation coefficient and the directed functional connectivity is measured based on cross-correlation coefficient and mutual information. We first analyze the functional connectivity and the eigenvalues of the brain functional network. We find that ADHD patients have increased undirected functional connectivity, reflecting a higher degree of linear dependence between regions, and increased directed functional connectivity, indicating stronger causality and more transmission of information among brain regions. More importantly, we explore the randomness of the undirected and directed functional networks using RMT. We find that for ADHD patients, the undirected functional network is more orderly than that for normal subjects, which indicates an abnormal increase in undirected functional connectivity. In addition, we find that the directed functional networks are more random, which reveals greater disorder in causality and more chaotic information flow among brain regions in ADHD patients. Our results not only further confirm the efficacy of RMT in characterizing the intrinsic properties of brain functional networks but also provide insights into the possibilities RMT offers for improving clinical diagnoses and treatment evaluations for ADHD patients.

  1. Brain structure, function, and genetics revealed by studies of the eye and face.

    Science.gov (United States)

    Sisodiya, Sanjay

    2008-08-01

    Understanding the structure and function of the human brain is intrinsically interesting and fundamental to improved diagnosis, treatment, and prevention of human neurological diseases, which constitute an increasing global burden. The intimate connections between brain and face, and brain and eye, have been utilized to access brain structure and function. Concepts and recent progress are reviewed here. Continued work on biological links between brain and eye or face has uncovered further genetic abnormalities causing facial or eye anomalies, which in either case may clearly indicate changes in the underlying brain. Cause and effect can be difficult to disentangle, but the use of conditional animal models can help establish whether brain changes are the result of face or eye changes or the result of a parallel influence on brain and eye or face. The application of newer methods and technologies such as parameterization of facial characteristics and comparative genomic hybridization has led to new discoveries and insights. Further interdisciplinary studies into brain structure and function through the windows of the face and the eye, with the application of genome-wide studies in larger cohorts, will potentially enable more discovery and critically may reveal unsuspected therapeutic targets in human disease.

  2. Brain mechanisms of abnormal temperature perception in cold allodynia induced by ciguatoxin.

    Science.gov (United States)

    Eisenblätter, Anneka; Lewis, Richard; Dörfler, Arnd; Forster, Clemens; Zimmermann, Katharina

    2017-01-01

    Cold allodynia occurs as a major symptom of neuropathic pain states. It remains poorly treated with current analgesics. Ciguatoxins (CTXs), ichthyosarcotoxins that cause ciguatera, produce a large peripheral sensitization to dynamic cold stimuli in Aδ-fibers by activating sodium channels without producing heat or mechanical allodynia. We used CTXs as a surrogate model of cold allodynia to dissect the framework of cold allodynia-activated central pain pathways. Reversible cold allodynia was induced in healthy male volunteers by shallow intracutaneous injection of low millimolar concentrations of CTX into the dorsal skin of the forefoot. Cold and warm stimuli were delivered to the treated and the control site using a Peltier-driven thermotest device. Functional magnetic resonance imaging (fMRI) scans were acquired with a 3T MRI scanner using a blood oxygen level-dependent (BOLD) protocol. The CTX-induced substantial peripheral sensitization to cooling stimuli in Aδ-fibers is particularly retrieved in BOLD changes due to dynamic temperature changes and less during constant cooling. Brain areas that responded during cold allodynia were almost always located bilaterally and appeared in the medial insula, medial cingulate cortex, secondary somatosensory cortex, frontal areas, and cerebellum. Whereas these areas also produced changes in BOLD signal during the dynamic warming stimulus on the control site, they remained silent during the warming stimuli on the injected site. We describe the defining feature of the cold allodynia pain percept in the human brain and illustrate why ciguatera sufferers often report a perceptual temperature reversal. ANN NEUROL 2017;81:104-116. © 2016 American Neurological Association.

  3. Hierarchical modularity in human brain functional networks

    Directory of Open Access Journals (Sweden)

    David Meunier

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  4. Size matters to function: Brain volume correlates with intrinsic brain activity across healthy individuals.

    Science.gov (United States)

    Qing, Zhao; Gong, Gaolang

    2016-10-01

    A fundamental issue in neuroscience is to understand the structural substrates of neural activities. Intrinsic brain activity has been increasingly recognized as an important functional activity mode and is tightly linked with various cognitive functions. Structurally, cognitive functions have also shown a relation with brain volume/size. Therefore, an association between intrinsic brain activities and brain volume/size can be hypothesized, and brain volume/size may impact intrinsic brain activity in human brains. The present study aimed to explicitly investigate this brain structure-function relationship using two large independent cohorts of 176 and 236 young adults. Structural-MRI was performed to estimate the brain volume, and resting-state functional-MRI was applied to extract the amplitude of low-frequency fluctuations (ALFF), an imaging measure of intrinsic brain activity. Intriguingly, our results revealed a robust linear correlation between whole-brain size and ALFF. Moreover, specific brain lobes/regions, including the frontal lobe, the left middle frontal gyrus, anterior cingulate gyrus, Rolandic operculum, and insula, also showed a reliable, positive volume-ALFF correlation in the two cohorts. These findings offer direct, empirical evidence of a strong association between brain size/volume and intrinsic brain activity, as well as provide novel insight into the structural substrates of the intrinsic brain activity of the human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Brain functional connectivity in stimulant drug dependence and obsessive-compulsive disorder.

    Science.gov (United States)

    Meunier, David; Ersche, Karen D; Craig, Kevin J; Fornito, Alex; Merlo-Pich, Emilio; Fineberg, Naomi A; Shabbir, Shaila S; Robbins, Trevor W; Bullmore, Edward T

    2012-01-16

    There are reasons for thinking that obsessive-compulsive disorder (OCD) and drug dependence, although conventionally distinct diagnostic categories, might share important cognitive and neurobiological substrates. We tested this hypothesis directly by comparing brain functional connectivity measures between patients with OCD, stimulant dependent individuals (SDIs; many of whom were non-dependent users of other recreational drugs) and healthy volunteers. We measured functional connectivity between each possible pair of 506 brain regional functional MRI time series representing low frequency (0.03-0.06 Hz) spontaneous brain hemodynamics in healthy volunteers (N=18), patients with OCD (N=18) and SDIs (N=18). We used permutation tests to identify i) brain regions where strength of connectivity was significantly different in both patient groups compared to healthy volunteers; and ii) brain regions and connections which had significantly different functional connectivity between patient groups. We found that functional connectivity of right inferior and superior orbitofrontal cortex (OFC) was abnormally reduced in both disorders. Whether diagnosed as OCD or SDI, patients with higher scores on measures of compulsive symptom severity showed greater reductions of right orbitofrontal connectivity. Functional connections specifically between OFC and dorsal medial pre-motor and cingulate cortex were attenuated in both patient groups. However, patients with OCD demonstrated more severe and extensive reductions of functional connectivity compared to SDIs. OCD and stimulant dependence are not identical at the level of brain functional systems but they have some important abnormalities in common compared with healthy volunteers. Orbitofrontal connectivity may serve as a human brain systems biomarker for compulsivity across diagnostic categories. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Safety and Yield of Diagnostic ERCP in Liver Transplant Patients with Abnormal Liver Function Tests

    Directory of Open Access Journals (Sweden)

    Jayapal Ramesh

    2014-01-01

    Full Text Available Background. Abnormal liver enzymes postorthotopic liver transplant (OLT may indicate significant biliary pathology or organ rejection. There is very little known in the literature regarding the current role of diagnostic ERCP in this scenario. Aim. To review the utility of diagnostic ERCP in patients presenting with abnormal liver function tests in the setting of OLT. Methods. A retrospective review of diagnostic ERCPs in patients with OLT from 2002 to 2013 from a prospectively maintained, IRB approved database. Results. Of the 474 ERCPs performed in OLT patients, 210 (44.3%; 95% CI 39.8–48.8 were performed for abnormal liver function tests during the study period. Majority of patients were Caucasian (83.8%, male (62.4% with median age of 55 years (IQR 48–62 years. Biliary cannulation was successful in 99.6% of cases and findings included stricture in 45 (21.4 %; biliary stones/sludge in 23 (11%; biliary dilation alone in 31 (14.8%; and normal in 91 (43.3%. Three (1.4% patients developed mild, self-limiting pancreatitis; one patient (0.5% developed cholangitis and two (1% had postsphincterotomy bleeding. Multivariate analyses showed significant association between dilated ducts on imaging with a therapeutic outcome. Conclusion. Diagnostic ERCP in OLT patients presenting with liver function test abnormalities is safe and frequently therapeutic.

  7. Brain Microstructural Abnormalities Are Related to Physiological Alterations in End-Stage Renal Disease

    OpenAIRE

    Bai, Zhigang; Ma, Xiaofen; Tian, Junzhang; Dong, Jianwei; He, Jinlong; Zhan, Wenfeng; Xu, Lijuan; Xu, Yikai; Jiang, Guihua

    2016-01-01

    Purpose To study whole-brain microstructural alterations in patients with end-stage renal disease (ESRD) and examine the relationship between brain microstructure and physiological indictors in the disease. Materials and Methods Diffusion tensor imaging data were collected from 35 patients with ESRD (28 men, 18?61 years) and 40 age- and gender-matched healthy controls (HCs, 32 men, 22?58 years). A voxel-wise analysis was then used to identify microstructural alterations over the whole brain i...

  8. Schizophrenia and Category-Selectivity in the Brain: Normal for Faces but Abnormal for Houses

    Directory of Open Access Journals (Sweden)

    Lisa Kronbichler

    2018-02-01

    Full Text Available Face processing is regularly found to be impaired in schizophrenia (SZ, thus suggesting that social malfunctioning might be caused by dysfunctional face processing. Most studies focused on emotional face processes, whereas non-emotional face processing received less attention. While current reports on abnormal face processing in SZ are mixed, examinations of non-emotional face processing compared to adequate control stimuli may clarify whether SZ is characterized by a face-processing deficit. Patients with SZ (n = 28 and healthy controls (n = 30 engaged in an fMRI scan where images of non-emotional faces and houses were presented. A simple inverted-picture detection task warranted the participants’ attention. Region of interest (ROI analyses were conducted on face-sensitive regions including the fusiform face area, the occipital face area, and the superior temporal sulcus. Scene-sensitivity was assessed in the parahippocampal place area (PPA and served as control condition. Patients did not show aberrant face-related neural processes in face-sensitive regions. This finding was also evident when analyses were done on individually defined ROIs or on in-house-localizer ROIs. Patients revealed a decreased specificity toward house stimuli as reflected in decreased neural response toward houses in the PPA. Again, this result was supported by supplementary analyses. Neural activation toward neutral faces was not found to be impaired in SZ, therefore speaking against an overall face-processing deficit. Aberrant activation in scene-sensitive PPA is also found in assessments of memory processes in SZ. It is up to future studies to show how impairments in PPA relate to functional outcome in SZ.

  9. Cortico-striato-thalamo-cortical circuit abnormalities in obsessive-compulsive disorder: A voxel-based morphometric and fMRI study of the whole brain.

    Science.gov (United States)

    Tang, Wenxin; Zhu, Qifeng; Gong, Xiangyang; Zhu, Cheng; Wang, Yiquan; Chen, Shulin

    2016-10-15

    The primary aim of this study was to identify structural and functional abnormalities in the brains of obsessive-compulsive disorder (OCD) patients. Another aim was to assess the effect of serotonin selective reuptake inhibitors (SSRIs) on brain structure of OCD patients. All subjects underwent brain magnetic resonance imaging (MRI) and resting functional MRI (fMRI). High-resolution three-dimensional images were processed using the voxel-based morphometry (VBM) method. The final analysis included 18 OCD patients and 16 healthy controls. In the OCD patients there was a decrease in gray matter volume in the bilateral cingulate cortex and bilateral striatum. In some cortical structures including the cerebellar anterior lobe, left orbital frontal gyrus, right middle frontal gyrus, left middle temporal gyrus, precentral gyrus, and postcentral gyrus, there was an increase in gray matter volume. On fMRI the OCD patients had overactivation of the right cerebellum and right parietal lobe and reduced activation of the left cingulate gyrus, putamen, and caudate nucleus. Eleven OCD patients who improved during 12 weeks of drug treatment with sertraline hydrochloride had a significant increase in gray matter volume in several brain structures but no significant differences were found on resting fMRI. The results indicated a consistent trend between structural and functional images. Higher cortical structures showed increased gray matter volume and increased activation as did the cerebellum whereas subcortical structures showed decreased gray matter volume and decreased activation. And brain structure improvement consisted with symptom improvement after SSRIs treatment in OCD patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Ming-Xiong Huang

    2014-01-01

    Full Text Available Traumatic brain injury (TBI is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz that can be measured and localized by resting-state magnetoencephalography (MEG. In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes, our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes, blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI.

  11. Assessment of functional status in children with brain tumors

    International Nuclear Information System (INIS)

    Sugita, Yasuo; Kobayashi, Seiichi; Uegaki, Masami; Katayama, Masahiko; Miyagi, Jun; Iryo, Osamu; Shigemori, Minoru; Kuramoto, Shinken; Ootsubo, Masaaki

    1987-01-01

    Thirty children treated for brain tumors between 1978 - 1985 at Kurume university hospital were evaluated for alternation in intellectual, emotional, and social function. They were 15 males and 15 females, aged 3 to 16 years, on the averaged 1.7 years after treatment. Twenty-eight children had no neurological deficits and 2 children had slight neurological deficits. It was possible for twenty-eight children to be evaluated for intelligence quotient by Wechsler Intelligence Scale for Children-revised and Tanaka-Binet. The median score and standard deviation of intelligence quotient (IQ) test in children with brain tumors were as follows; verbal IQ: 84 ± 16, performance IQ: 77 ± 20, full scale IQ: 80 ± 20. There children with brain tumors obtained significant low IQ scores than children (t-test, P < 0.01). Twenty-one (72 %) children showed subnormal IQ scores (IQ < 90) and 7 children showed normal IQ scores (IQ ≥ 90). Concerning social and emotional function, twelve children (45.7 %) showed abnormal behaviour. The median scores and standard deviation of IQ scores in cranial irradiated patients were as follows; verbal IQ: 79 ± 13, performance IQ: 71 ± 15, full scale IQ: 71 ± 14. Especially, ten of twelve cranial irradiated patients showed subnormal IQ scores. Also, cranial irradiated patients obtained significant low IQ scores than non-cranial irradiated patients (t-test, P < 0.05). Serial evaluation of three cranial irradiated patients revealed further deterioration without recurrence of tumor and hydrocephalus. The results are discussed to: (1) the effects and mechanism of cranial irradiation on cognitive development: (2) the relationship between cognitive dysfunction and irradiation methods. The effects and mechanism of cranial irradiation on cognitive dysfunction is considered to be not only injury of cortex but also injury of fiber tracts. Also, cognitive dysfunction is apt to be related to age of irradiated patients. (J.P.N.)

  12. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    OpenAIRE

    Tingting Xu; Kathryn R. Cullen; Bryon Mueller; Mindy W. Schreiner; Kelvin O. Lim; S. Charles Schulz; Keshab K. Parhi

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and construc...

  13. Characterization of subtle brain abnormalities in a mouse model of Hedgehog pathway antagonist-induced cleft lip and palate.

    Science.gov (United States)

    Lipinski, Robert J; Holloway, Hunter T; O'Leary-Moore, Shonagh K; Ament, Jacob J; Pecevich, Stephen J; Cofer, Gary P; Budin, Francois; Everson, Joshua L; Johnson, G Allan; Sulik, Kathleen K

    2014-01-01

    Subtle behavioral and cognitive deficits have been documented in patient cohorts with orofacial clefts (OFCs). Recent neuroimaging studies argue that these traits are associated with structural brain abnormalities but have been limited to adolescent and adult populations where brain plasticity during infancy and childhood may be a confounding factor. Here, we employed high resolution magnetic resonance microscopy to examine primary brain morphology in a mouse model of OFCs. Transient in utero exposure to the Hedgehog (Hh) signaling pathway antagonist cyclopamine resulted in a spectrum of facial dysmorphology, including unilateral and bilateral cleft lip and palate, cleft of the secondary palate only, and a non-cleft phenotype marked by midfacial hypoplasia. Relative to controls, cyclopamine-exposed fetuses exhibited volumetric differences in several brain regions, including hypoplasia of the pituitary gland and olfactory bulbs, hyperplasia of the forebrain septal region, and expansion of the third ventricle. However, in affected fetuses the corpus callosum was intact and normal division of the forebrain was observed. This argues that temporally-specific Hh signaling perturbation can result in typical appearing OFCs in the absence of holoprosencephaly--a condition classically associated with Hh pathway inhibition and frequently co-occurring with OFCs. Supporting the premise that some forms of OFCs co-occur with subtle brain malformations, these results provide a possible ontological basis for traits identified in clinical populations. They also argue in favor of future investigations into genetic and/or environmental modulation of the Hh pathway in the etiopathogenesis of orofacial clefting.

  14. Uncomplicated obesity is associated with abnormal aortic function assessed by cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Channon Keith M

    2008-02-01

    Full Text Available Abstract Aims Obese subjects with insulin resistance and hypertension have abnormal aortic elastic function, which may predispose them to the development of left ventricular dysfunction. We hypothesised that obesity, uncomplicated by other cardiovascular risk factors, is independently associated with aortic function. Methods and results We used magnetic resonance imaging to measure aortic compliance, distensibility and stiffness index in 27 obese subjects (BMI 33 kg/m2 without insulin resistance and with normal cholesterol and blood pressure, and 12 controls (BMI 23 kg/m2. Obesity was associated with reduced aortic compliance (0.9 ± 0.1 vs. 1.5 ± 0.2 mm2/mmHg in controls, p -1 × 10-3, p Conclusion Aortic elastic function is abnormal in obese subjects without other cardiovascular risk factors. These findings highlight the independent importance of obesity in the development of cardiovascular disease.

  15. Abnormal frontal theta oscillations underlie the cognitive flexibility deficits in children with high-functioning autism spectrum disorders.

    Science.gov (United States)

    Yeung, Michael K; Han, Yvonne M Y; Sze, Sophia L; Chan, Agnes S

    2016-03-01

    Deficits in cognitive flexibility have been suggested to underlie the repetitive and stereotyped behavior in individuals with autism spectrum disorders (ASD). Because cognitive flexibility is primarily mediated by the frontal lobe, where structural and functional abnormalities have been extensively found in these individuals, it is conceivable that their deficits in cognitive flexibility are related to abnormal activations of the frontal lobe. The present study investigates cognitive flexibility and its underlying neurophysiological activities as indicated by theta oscillations in children with ASD. Twenty-five children with high-functioning ASD and 25 IQ- and age-matched typically developing (TD) children were subjected to neuropsychological assessments on cognitive flexibility and electroencephalography recordings. The children with ASD performed significantly worse than the TD children across the tasks of cognitive flexibility, including the modified Wisconsin Card Sorting Test (WCST). These children also demonstrated a reduced increase of the theta power localized in multiple brain regions, including various sectors of the frontal lobe at the late stage (i.e., 600 ms-900 ms poststimulus interval) but not the early stage (i.e., 250 ms-550 ms poststimulus interval) of the performance of the modified WCST. The suppressed late frontal theta activities were further shown to be significantly correlated with a poorer performance on the cognitive flexibility measures. Our findings suggest that abnormal activations of multiple cortical regions, especially the frontal lobe, form the neural basis of the cognitive flexibility deficits in children with ASD. In addition, we found an EEG marker of cognitive flexibility which could be used to monitor treatment outcomes objectively. (c) 2016 APA, all rights reserved).

  16. Social-cognitive brain function and connectivity during visual perspective-taking in autism and schizophrenia.

    Science.gov (United States)

    Eack, Shaun M; Wojtalik, Jessica A; Keshavan, Matcheri S; Minshew, Nancy J

    2017-05-01

    Autism spectrum disorder (ASD) and schizophrenia are neurodevelopmental conditions that are characterized by significant social impairment. Emerging genomic and neurobiological evidence has increasingly pointed to shared pathophysiologic mechanisms in the two disorders. Overlap in social impairment may reflect similar underlying neural dysfunction in social-cognitive brain networks, yet few studies have directly compared brain function and communication between those with ASD and schizophrenia. Outpatients with schizophrenia (n=36), ASD (n=33), and healthy volunteers (n=37) completed a visual perspective-taking task during functional neuroimaging at 3T to assess similarities and differences in fronto-temporal brain function and connectivity during social-cognitive processing. Analyses employed general linear models to examine differences in amplitude of BOLD-signal response between disorder groups, and computed functional connectivity coefficients to investigate differences in the connectivity profiles of networks implicated in social cognition. Despite similar behavioral impairments, participants with ASD and schizophrenia evidenced distinct neural abnormalities during perspective-taking. Functional activation results indicated reduced temporo-parietal junction and medial prefrontal activity in ASD compared to schizophrenia (all P uncor schizophrenia (all P FDR schizophrenia are characterized by similar social-cognitive impairments that may stem from different underlying abnormalities in the functional organization and communication of the social brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. WONOEP APPRAISAL: NEW SYSTEMIC FUNCTIONAL IMAGING TECHNOLOGIES TO STUDY THE BRAIN IN EXPERIMENTAL MODELS OF EPILEPSY

    Science.gov (United States)

    Dedeurwaerdere, Stefanie; Shultz, Sandy R.; Federico, Paolo; Engel, Jerome

    2014-01-01

    Summary Objectives Modern functional neuroimaging provides opportunities to visualize activity of the entire brain, making it an indispensable diagnostic tool for epilepsy. Various forms of non-invasive functional neuroimaging are now also being performed as research tools in animal models of epilepsy and provide opportunities for parallel animal/human investigations into fundamental mechanisms of epilepsy and identification of epilepsy biomarkers. Methods Recent animal studies of epilepsy using positron emission tomography, tractography, and functional magnetic resonance imaging were reviewed. Results Epilepsy is an abnormal emergent property of disturbances in neuronal networks which, even for epilepsies characterized by focal seizures, involve widely distributed systems, often in both hemispheres. Functional neuroimaging in animal models now provides opportunities to examine neuronal disturbances in the whole brain that underlie generalized and focal seizure generation as well as various types of epileptogenesis. Significance Tremendous advances in understanding the contribution of specific properties of widely distributed neuronal networks to both normal and abnormal human behavior have been provided by current functional neuroimaging methodologies. Successful application of functional neuroimaging of the whole brain in the animal laboratory now permits investigations during epileptogenesis and correlation with deep brain EEG activity. With the continuing development of these techniques and analytical methods, the potential for future translational research on epilepsy is enormous. PMID:24836499

  18. Brain MRI abnormalities in the adult form of myotonic dystrophy type 1: A longitudinal case series study

    OpenAIRE

    Conforti, Renata; de Cristofaro, Mario; Cristofano, Adriana; Brogna, Barbara; Sardaro, Angela; Tedeschi, Gioacchino; Cirillo, Sossio; Di Costanzo, Alfonso

    2016-01-01

    This study aimed to verify whether brain abnormalities, previously described in patients with myotonic dystrophy type 1 (DM1) by magnetic resonance imaging (MRI), progressed over time and, if so, to characterize their progression. Thirteen DM1 patients, who had at least two MRI examinations, were retrospectively evaluated and included in the study. The mean duration (± standard deviation) of follow-up was 13.4 (±3.8) years, over a range of 7–20 years. White matter lesions (WMLs) were rated by...

  19. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    Science.gov (United States)

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in v

  20. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    Directory of Open Access Journals (Sweden)

    Julie Nemecek

    Full Text Available Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA to amplify abnormal prion protein (PrP(TSE from highly diluted variant Creutzfeldt-Jakob disease (vCJD-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrP(TSE in tissues and blood. Macaque vCJD PrP(TSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA. Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV, a close relative of the bank vole, seeded with macaque vCJD PrP(TSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N. We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrP(TSE. Meadow vole brain (170N/N PrP genotype was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrP(TSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrP(TSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrP(TSE was more permissive than human PrP(TSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrP(TSE from brains of humans and macaques with vCJD. PrP(TSE signals were reproducibly detected by Western blot in dilutions through 10⁻¹² of vCJD-infected 10% brain homogenates. This is the first report showing PrP(TSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect Pr

  1. The emergence of functional architecture during early brain development

    NARCIS (Netherlands)

    Keunen, Kristin; Counsell, Serena J.; Benders, Manon J.N.L.

    2017-01-01

    Early human brain development constitutes a sequence of intricate processes resulting in the ontogeny of functionally operative neural circuits. Developmental trajectories of early brain network formation are genetically programmed and can be modified by epigenetic and environmental influences. Such

  2. Social functioning after traumatic brain injury.

    Science.gov (United States)

    Temkin, Nancy R; Corrigan, John D; Dikmen, Sureyya S; Machamer, Joan

    2009-01-01

    To determine the relationship between adult-onset traumatic brain injury (TBI) and social functioning including employment, social relationships, independent living, recreation, functional status, and quality of life 6 months or longer after injury. Not applicable. Systematic review of the published, peer-reviewed literature. Not applicable. Fourteen primary and 25 secondary studies were identified that allowed comparison to controls for adults who were at least 6 months post-TBI. TBI decreases the probability of employment after injury in those who were workers before their injury, lengthens the timing of their return if they do return to work, and decreases the likelihood that they will return to the same position. Those with moderate and severe TBI are clearly affected, but there was insufficient evidence of a relationship between unemployment and mild TBI. Penetrating head injury sustained in wartime is clearly associated with increased unemployment. TBI also adversely affects leisure and recreation, social relationships, functional status, quality of life, and independent living. Although there is a dose-response relationship between severity of injury and social outcomes, there is insufficient evidence to determine at what level of severity the adverse effects are demonstrated. TBI clearly has adverse effects on social functioning for adults. While some consequences might arise from injuries to other parts of the body, those with moderate to severe TBI have more impaired functioning than do those with other injuries alone.

  3. Comparison of brain MRI findings with language and motor function in the dystroglycanopathies.

    Science.gov (United States)

    Brun, Brianna N; Mockler, Shelley R H; Laubscher, Katie M; Stephan, Carrie M; Wallace, Anne M; Collison, Julia A; Zimmerman, M Bridget; Dobyns, William B; Mathews, Katherine D

    2017-02-14

    To describe the spectrum of brain MRI findings in a cohort of individuals with dystroglycanopathies (DGs) and relate MRI results to function. All available brain MRIs done for clinical indications on individuals enrolled in a DG natural history study (NCT00313677) were reviewed. Reports were reviewed when MRI was not available. MRIs were categorized as follows: (1) cortical, brainstem, and cerebellar malformations; (2) cortical and cerebellar malformations; or (3) normal. Language development was assigned to 1 of 3 categories by a speech pathologist. Maximal motor function and presence of epilepsy were determined by history or examination. Twenty-five MRIs and 9 reports were reviewed. The most common MRI abnormalities were cobblestone cortex or dysgyria with an anterior-posterior gradient and cerebellar hypoplasia. Seven individuals had MRIs in group 1, 8 in group 2, and 19 in group 3. Language was impaired in 100% of those in MRI groups 1 and 2, and degree of language impairment correlated with severity of imaging. Eighty-five percent of the whole group achieved independent walking, but only 33% did in group 1. Epilepsy was present in 8% of the cohort and rose to 37% of those with an abnormal MRI. Developmental abnormalities of the brain such as cobblestone lissencephaly, cerebellar cysts, pontine hypoplasia, and brainstem bowing are hallmarks of DG and should prompt consideration of these diagnoses. Brain imaging in individuals with DG helps to predict outcomes, especially language development, aiding clinicians in prognostic counseling. © 2017 American Academy of Neurology.

  4. Zika Virus Infection as a Cause of Congenital Brain Abnormalities and Guillain-Barré Syndrome: Systematic Review.

    Directory of Open Access Journals (Sweden)

    Fabienne Krauer

    2017-01-01

    Full Text Available The World Health Organization (WHO stated in March 2016 that there was scientific consensus that the mosquito-borne Zika virus was a cause of the neurological disorder Guillain-Barré syndrome (GBS and of microcephaly and other congenital brain abnormalities based on rapid evidence assessments. Decisions about causality require systematic assessment to guide public health actions. The objectives of this study were to update and reassess the evidence for causality through a rapid and systematic review about links between Zika virus infection and (a congenital brain abnormalities, including microcephaly, in the foetuses and offspring of pregnant women and (b GBS in any population, and to describe the process and outcomes of an expert assessment of the evidence about causality.The study had three linked components. First, in February 2016, we developed a causality framework that defined questions about the relationship between Zika virus infection and each of the two clinical outcomes in ten dimensions: temporality, biological plausibility, strength of association, alternative explanations, cessation, dose-response relationship, animal experiments, analogy, specificity, and consistency. Second, we did a systematic review (protocol number CRD42016036693. We searched multiple online sources up to May 30, 2016 to find studies that directly addressed either outcome and any causality dimension, used methods to expedite study selection, data extraction, and quality assessment, and summarised evidence descriptively. Third, WHO convened a multidisciplinary panel of experts who assessed the review findings and reached consensus statements to update the WHO position on causality. We found 1,091 unique items up to May 30, 2016. For congenital brain abnormalities, including microcephaly, we included 72 items; for eight of ten causality dimensions (all except dose-response relationship and specificity, we found that more than half the relevant studies supported

  5. Zika Virus Infection as a Cause of Congenital Brain Abnormalities and Guillain-Barré Syndrome: Systematic Review.

    Science.gov (United States)

    Krauer, Fabienne; Riesen, Maurane; Reveiz, Ludovic; Oladapo, Olufemi T; Martínez-Vega, Ruth; Porgo, Teegwendé V; Haefliger, Anina; Broutet, Nathalie J; Low, Nicola

    2017-01-01

    The World Health Organization (WHO) stated in March 2016 that there was scientific consensus that the mosquito-borne Zika virus was a cause of the neurological disorder Guillain-Barré syndrome (GBS) and of microcephaly and other congenital brain abnormalities based on rapid evidence assessments. Decisions about causality require systematic assessment to guide public health actions. The objectives of this study were to update and reassess the evidence for causality through a rapid and systematic review about links between Zika virus infection and (a) congenital brain abnormalities, including microcephaly, in the foetuses and offspring of pregnant women and (b) GBS in any population, and to describe the process and outcomes of an expert assessment of the evidence about causality. The study had three linked components. First, in February 2016, we developed a causality framework that defined questions about the relationship between Zika virus infection and each of the two clinical outcomes in ten dimensions: temporality, biological plausibility, strength of association, alternative explanations, cessation, dose-response relationship, animal experiments, analogy, specificity, and consistency. Second, we did a systematic review (protocol number CRD42016036693). We searched multiple online sources up to May 30, 2016 to find studies that directly addressed either outcome and any causality dimension, used methods to expedite study selection, data extraction, and quality assessment, and summarised evidence descriptively. Third, WHO convened a multidisciplinary panel of experts who assessed the review findings and reached consensus statements to update the WHO position on causality. We found 1,091 unique items up to May 30, 2016. For congenital brain abnormalities, including microcephaly, we included 72 items; for eight of ten causality dimensions (all except dose-response relationship and specificity), we found that more than half the relevant studies supported a causal

  6. Zika Virus Infection as a Cause of Congenital Brain Abnormalities and Guillain–Barré Syndrome: Systematic Review

    Science.gov (United States)

    Reveiz, Ludovic; Oladapo, Olufemi T.; Martínez-Vega, Ruth; Haefliger, Anina

    2017-01-01

    Background The World Health Organization (WHO) stated in March 2016 that there was scientific consensus that the mosquito-borne Zika virus was a cause of the neurological disorder Guillain–Barré syndrome (GBS) and of microcephaly and other congenital brain abnormalities based on rapid evidence assessments. Decisions about causality require systematic assessment to guide public health actions. The objectives of this study were to update and reassess the evidence for causality through a rapid and systematic review about links between Zika virus infection and (a) congenital brain abnormalities, including microcephaly, in the foetuses and offspring of pregnant women and (b) GBS in any population, and to describe the process and outcomes of an expert assessment of the evidence about causality. Methods and Findings The study had three linked components. First, in February 2016, we developed a causality framework that defined questions about the relationship between Zika virus infection and each of the two clinical outcomes in ten dimensions: temporality, biological plausibility, strength of association, alternative explanations, cessation, dose–response relationship, animal experiments, analogy, specificity, and consistency. Second, we did a systematic review (protocol number CRD42016036693). We searched multiple online sources up to May 30, 2016 to find studies that directly addressed either outcome and any causality dimension, used methods to expedite study selection, data extraction, and quality assessment, and summarised evidence descriptively. Third, WHO convened a multidisciplinary panel of experts who assessed the review findings and reached consensus statements to update the WHO position on causality. We found 1,091 unique items up to May 30, 2016. For congenital brain abnormalities, including microcephaly, we included 72 items; for eight of ten causality dimensions (all except dose–response relationship and specificity), we found that more than half the

  7. Abnormal resting state functional connectivity of the periaqueductal grey in patients with fibromyalgia.

    Science.gov (United States)

    Truini, Andrea; Tinelli, Emanuele; Gerardi, Maria Chiara; Calistri, Valentina; Iannuccelli, Cristina; La Cesa, Silvia; Tarsitani, Lorenzo; Mainero, Caterina; Sarzi-Puttini, Piercarlo; Cruccu, Giorgio; Caramia, Francesca; Di Franco, Manuela

    2016-01-01

    Emerging evidence associates chronic pain syndrome, such as fibromyalgia, with endogenous pain modulatory system dysfunction, leading to an impaired descending pain inhibition. In this study, using resting-state functional magnetic resonance imaging (fMRI), we aimed at seeking possible functional connectivity changes of the periaqueductal gray (PAG), a brainstem area that belongs to the endogenous pain modulatory system, in patients with fibromyalgia. In 20 patients with fibromyalgia and 15 healthy subjects, we investigated PAG functional connectivity using resting-state fMRI. We also analysed the correlation between clinical variables, such as pain severity, disease duration, and depressive personality traits with PAG functional connectivity. Compared with control subjects, we identified that patients with fibromyalgia had an increased PAG connectivity with insula, anterior cingulate cortex, and anterior prefrontal cortex. The functional connectivity between PAG and the rostral ventral medulla, however, was not concordantly increased. PAG functional connectivity correlated with pain severity, disease duration, and the depressive personality trait rating. Our fMRI study showing abnormal resting state functional connectivity of the PAG suggests that patients with fibromyalgia have an endogenous pain modulatory system dysfunction, possibly causing an impaired descending pain inhibition. This abnormal PAG functioning might underlay the chronic pain these patients suffer from.

  8. Magnetic resonance imaging in classification of congenital muscular dystrophies with brain abnormalities

    NARCIS (Netherlands)

    van der Knaap, M. S.; Smit, L. M.; Barth, P. G.; Catsman-Berrevoets, C. E.; Brouwer, O. F.; Begeer, J. H.; de Coo, I. F.; Valk, J.

    1997-01-01

    A survey was performed of magnetic resonance imaging (MRI) findings in 21 patients with congenital muscular dystrophy (CMD) with cerebral abnormalities to evaluate the contribution of MRI to the classification of CMD patients. In 5 patients with Walker-Warburg syndrome (WWS), MRI showed

  9. Magnetic resonance imaging in classification of congenital muscular dystrophies with brain abnormalities

    NARCIS (Netherlands)

    vanderKnaap, MS; Smit, LME; Barth, PG; CatsmanBerrevoets, CE; Brouwer, OF; Begeer, JH; deCoo, IFM; Valk, J.

    A survey was performed of magnetic resonance imaging (MRI) findings in 21 patients with congenital muscular dystrophy (QID) with cerebral abnormalities to evaluate the contribution of MRI to the classification of CMD patients. In 5 patients with Walker-Warburg syndrome (WWS), MRI showed

  10. Swimming attenuates d-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics.

    Science.gov (United States)

    Kou, Xianjuan; Li, Jie; Liu, Xingran; Chang, Jingru; Zhao, Qingxia; Jia, Shaohui; Fan, Jingjing; Chen, Ning

    2017-06-01

    microRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. To explore the regulatory role of miR-34a in aging-related diseases such as Alzheimer's disease (AD) during exercise intervention, we constructed a rat model with d-galactose (d-gal)-induced oxidative stress and cognitive impairment coupled with dysfunctional autophagy and abnormal mitochondrial dynamics, determined the mitigation of cognitive impairment of d-gal-induced aging rats during swimming intervention, and evaluated miR-34a-mediated functional status of autophagy and abnormal mitochondrial dynamics. Meanwhile, whether the upregulation of miR-34a can lead to dysfunctional autophagy and abnormal mitochondrial dynamics was confirmed in human SH-SY5Y cells with silenced miR-34a by the transfection of a miR-34a inhibitor. Results indicated that swimming intervention could significantly attenuate cognitive impairment, prevent the upregulation of miR-34a, mitigate the dysfunctional autophagy, and inhibit the increase of dynamin-related protein 1 (DRP1) in d-gal-induced aging model rats. In contrast, the miR-34a inhibitor in cell model not only attenuated D-gal-induced the impairment of autophagy but also decreased the expression of DRP1 and mitofusin 2 (MFN2). Therefore, swimming training can delay brain aging of d-gal-induced aging rats through attenuating the impairment of miR-34a-mediated autophagy and abnormal mitochondrial dynamics, and miR-34a could be the novel therapeutic target for aging-related diseases such as AD. NEW & NOTEWORTHY In the present study, we have found that the upregulation of miR-34a is the hallmark of aging or aging-related diseases, which can result in dysfunctional autophagy and abnormal mitochondrial dynamics. In contrast, swimming intervention can delay the aging process by rescuing the impaired functional status of autophagy and abnormal mitochondrial dynamics via the suppression of miR-34a. Copyright © 2017 the American Physiological Society.

  11. Association of a Guardian's Report of a Child Acting Abnormally With Traumatic Brain Injury After Minor Blunt Head Trauma.

    Science.gov (United States)

    Nishijima, Daniel K; Holmes, James F; Dayan, Peter S; Kuppermann, Nathan

    2015-12-01

    Increased use of computed tomography (CT) in children is concerning owing to the cancer risk from ionizing radiation, particularly in children younger than 2 years. A guardian report that a child is acting abnormally is a risk factor for clinically important traumatic brain injury (ciTBI) and may be a driving factor for CT use in the emergency department. To determine the prevalence of ciTBIs and TBIs in children younger than 2 years with minor blunt head trauma and a guardian report of acting abnormally with (1) no other findings or (2) other concerning findings for TBI. Secondary analysis of a large, prospective, multicenter cohort study that included 43 399 children younger than 18 years with minor blunt head trauma evaluated in 25 emergency departments. The study was conducted on data obtained between June 2004 and September 2006. Data analysis was performed between August 21, 2014, and March 9, 2015. A guardian report that the child was acting abnormally after minor blunt head trauma. The prevalence of ciTBI (defined as death, neurosurgery, intubation for >24 hours, or hospitalization for ≥2 nights in association with TBI on CT imaging) and TBI on CT imaging in children with a guardian report of acting abnormally with (1) no other findings and (2) other concerning findings for TBI. Of 43 399 children in the cohort study, a total of 1297 children had reports of acting abnormally, of whom 411 (31.7%) had this report as their only finding. Reported as percentage (95% CI), 1 of 411 (0.2% [0-1.3%]) had a ciTBI, and 4 TBIs were noted on the CT scans in 185 children who underwent imaging (2.2% [0.6%-5.4%]). In children with reports of acting abnormally and other concerning findings for TBI, 29 of 886 (3.3% [2.2%-4.7%]) had ciTBIs and 66 of 674 (9.8% [7.7%-12.3%]) had TBIs on CT. Clinically important TBIs are very uncommon, and TBIs noted on CT are uncommon in children younger than 2 years with minor blunt head trauma and guardian reports of the child acting

  12. Exploring brain function with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Di Salle, F.; Formisano, E.; Linden, D.E.J.; Goebel, R.; Bonavita, S.; Pepino, A.; Smaltino, F.; Tedeschi, G.

    1999-01-01

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology

  13. Default mode of brain function in monkeys.

    Science.gov (United States)

    Mantini, Dante; Gerits, Annelis; Nelissen, Koen; Durand, Jean-Baptiste; Joly, Olivier; Simone, Luciano; Sawamura, Hiromasa; Wardak, Claire; Orban, Guy A; Buckner, Randy L; Vanduffel, Wim

    2011-09-07

    Human neuroimaging has revealed a specific network of brain regions-the default-mode network (DMN)-that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment.

  14. Abnormal functional network connectivity among resting-state networks in children with frontal lobe epilepsy.

    Science.gov (United States)

    Widjaja, E; Zamyadi, M; Raybaud, C; Snead, O C; Smith, M L

    2013-12-01

    Epilepsy is considered a disorder of neural networks. The aims of this study were to assess functional connectivity within resting-state networks and functional network connectivity across resting-state networks by use of resting-state fMRI in children with frontal lobe epilepsy and to relate changes in resting-state networks with neuropsychological function. Fifteen patients with frontal lobe epilepsy and normal MR imaging and 14 healthy control subjects were recruited. Spatial independent component analysis was used to identify the resting-state networks, including frontal, attention, default mode network, sensorimotor, visual, and auditory networks. The Z-maps of resting-state networks were compared between patients and control subjects. The relation between abnormal connectivity and neuropsychological function was assessed. Correlations from all pair-wise combinations of independent components were performed for each group and compared between groups. The frontal network was the only network that showed reduced connectivity in patients relative to control subjects. The remaining 5 networks demonstrated both reduced and increased functional connectivity within resting-state networks in patients. There was a weak association between connectivity in frontal network and executive function (P = .029) and a significant association between sensorimotor network and fine motor function (P = .004). Control subjects had 79 pair-wise independent components that showed significant temporal coherence across all resting-state networks except for default mode network-auditory network. Patients had 66 pairs of independent components that showed significant temporal coherence across all resting-state networks. Group comparison showed reduced functional network connectivity between default mode network-attention, frontal-sensorimotor, and frontal-visual networks and increased functional network connectivity between frontal-attention, default mode network-sensorimotor, and frontal

  15. [Hunger-driven modulation in brain functions].

    Science.gov (United States)

    Hirano, Yukinori; Saitoe, Minoru

    2014-01-01

    \\All organisms must obtain nutrition in order to survive and produce their progeny. In the natural environment, however, adequate nutrition or food is not always available. Thus, all organisms are equipped with mechanisms by which their nutritional condition alters their internal activities. In animals, the loss of nutritional intake (fasting) alters not only metabolism, but also behavior in a manner dependent on hormones such as insulin, glucagon, leptin, and ghrelin. As a result, animals are able to maintain their blood sugar level, and are motivated to crave food upon fasting. Moreover, our recent study revealed a novel role of hunger, which facilitates long-term memory (LTM) formation, and its molecular mechanism in the fruit fly, Drosophila. Here, we review the overall effect of fasting, and how fasting affects brain function. I then introduce our finding in which mild fasting facilitates LTM formation, and discuss its biological significance.

  16. Dopaminergic modulation of default mode network brain functional connectivity in attention deficit hyperactivity disorder.

    Science.gov (United States)

    Silberstein, Richard B; Pipingas, Andrew; Farrow, Maree; Levy, Florence; Stough, Con K

    2016-12-01

    Recent evidence suggests that attention deficit hyperactivity disorder (ADHD) is associated with a range of brain functional connectivity abnormalities, with one of the most prominent being reduced inhibition of the default mode network (DMN) while performing a cognitive task. In this study, we examine the effects of a methylphenidate dose on brain functional connectivity in boys diagnosed with ADHD while they performed a cognitive task. Brain functional connectivity was estimated using steady-state visual evoked potential partial coherence before and 90 min after the administration of a methylphenidate dose to 42 stimulant drug-naïve boys newly diagnosed with ADHD while they performed the A-X version of the continuous performance task (CPT A-X). Methylphenidate robustly reversed the transient functional connectivity increase in the A-X interval seen premedication to a postmedication decrease during this interval. In addition, methylphenidate-induced reductions in individual reaction time were correlated with corresponding reductions in functional connectivity. These findings suggest that methylphenidate suppresses the increased functional connectivity observed in ADHD and that such suppression is associated with improved performance. Our findings support the suggestion that the increased functional connectivity we have observed in ADHD is associated with abnormal DMN activity. In addition, we comment on the significance of specific frequency channels mediating top-down communication within the cortex and the extent to which our findings are selectively sensitive to top-down intracortical communication.

  17. Functional brain networks involved in reality monitoring.

    Science.gov (United States)

    Metzak, Paul D; Lavigne, Katie M; Woodward, Todd S

    2015-08-01

    Source monitoring refers to the recollection of variables that specify the context and conditions in which a memory episode was encoded. This process involves using the qualitative and quantitative features of a memory trace to distinguish its source. One specific class of source monitoring is reality monitoring, which involves distinguishing internally generated from externally generated information, that is, memories of imagined events from real events. The purpose of the present study was to identify functional brain networks that underlie reality monitoring, using an alternative type of source monitoring as a control condition. On the basis of previous studies on self-referential thinking, it was expected that a medial prefrontal cortex (mPFC) based network would be more active during reality monitoring than the control condition, due to the requirement to focus on a comparison of internal (self) and external (other) source information. Two functional brain networks emerged from this analysis, one reflecting increasing task-related activity, and one reflecting decreasing task-related activity. The second network was mPFC based, and was characterized by task-related deactivations in areas resembling the default-mode network; namely, the mPFC, middle temporal gyri, lateral parietal regions, and the precuneus, and these deactivations were diminished during reality monitoring relative to source monitoring, resulting in higher activity during reality monitoring. This result supports previous research suggesting that self-referential thinking involves the mPFC, but extends this to a network-level interpretation of reality monitoring. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Motor abnormalities in first-episode psychosis patients and long-term psychosocial functioning.

    Science.gov (United States)

    Cuesta, Manuel J; García de Jalón, Elena; Campos, M Sol; Moreno-Izco, Lucía; Lorente-Omeñaca, Ruth; Sánchez-Torres, Ana M; Peralta, Víctor

    2017-09-07

    Motor abnormalities (MAs) are highly prevalent in patients with first-episode psychosis both before any exposure and after treatment with antipsychotic drugs. However, the extent to which these abnormalities have predictive value for long-term psychosocial functioning is unknown. One hundred antipsychotic-naive first-episode psychosis (FEP) patients underwent extensive motor evaluation including catatonic, parkinsonism, dyskinesia, akathisia and neurological soft signs. Patients were assessed at naïve state and 6months later. Patients were followed-up in their naturalistic treatment and settings and their psychosocial functioning was assessed at 6-month, 1year, 5year and 10years from the FEP by collecting all available information. A set of linear mixed models were built to account for the repeated longitudinal assessment of psychosocial functioning during the follow-up regarding to the five domains of MAs (catatonic, parkinsonism, akathisia, dyskinesia and neurologic soft-signs) at index episode at antipsychotic naïve state and after 6months of FEP. Basic epidemiological variables, schizophrenia diagnosis and average of chlorpromazine equivalent doses of antipsychotic drugs were included as covariates. Catatonic signs and dyskinesia at drug-naïve state were significantly associated with poor long-term psychosocial functioning. Moreover, higher scores on parkinsonism, akathisia, neurological soft signs and catatonic signs at 6-month of FEP but not dyskinesia showed significant associations with poor long-term psychosocial functioning. Our results added empirical evidence to motor abnormalities as core manifestations of psychotic illness before and after antipsychotic treatment with high predictive value for poor long-term psychosocial functioning in FEP patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: The neurophysiological mechanisms underlying tinnitus perception are not well understood. Surprisingly, there have been no group studies comparing abnormalities in ongoing, spontaneous neuronal activity in individuals with and without tinnitus perception. METHODS AND FINDINGS: Here, we show that the spontaneous neuronal activity of a group of individuals with tinnitus (n = 17 is characterised by a marked reduction in alpha (8-12 Hz power together with an enhancement in delta (1.5-4 Hz as compared to a normal hearing control group (n = 16. This pattern was especially pronounced for temporal regions. Moreover, correlations with tinnitus-related distress revealed strong associations with this abnormal spontaneous activity pattern, particularly in right temporal and left frontal areas. Overall, effects were stronger for the alpha than for the delta frequency band. A data stream of 5 min, recorded with a whole-head neuromagnetometer under a resting condition, was sufficient to extract the marked differences. CONCLUSIONS: Despite some limitations, there are arguments that the regional pattern of abnormal spontaneous activity we found could reflect a tinnitus-related cortical network. This finding, which suggests that a neurofeedback approach could reduce the adverse effects of this disturbing condition, could have important implications for the treatment of tinnitus.

  20. Abnormal brain white matter network in young smokers: a graph theory analysis study.

    Science.gov (United States)

    Zhang, Yajuan; Li, Min; Wang, Ruonan; Bi, Yanzhi; Li, Yangding; Yi, Zhang; Liu, Jixin; Yu, Dahua; Yuan, Kai

    2018-04-01

    Previous diffusion tensor imaging (DTI) studies had investigated the white matter (WM) integrity abnormalities in some specific fiber bundles in smokers. However, little is known about the changes in topological organization of WM structural network in young smokers. In current study, we acquired DTI datasets from 58 male young smokers and 51 matched nonsmokers and constructed the WM networks by the deterministic fiber tracking approach. Graph theoretical analysis was used to compare the topological parameters of WM network (global and nodal) and the inter-regional fractional anisotropy (FA) weighted WM connections between groups. The results demonstrated that both young smokers and nonsmokers had small-world topology in WM network. Further analysis revealed that the young smokers exhibited the abnormal topological organization, i.e., increased network strength, global efficiency, and decreased shortest path length. In addition, the increased nodal efficiency predominately was located in frontal cortex, striatum and anterior cingulate gyrus (ACG) in smokers. Moreover, based on network-based statistic (NBS) approach, the significant increased FA-weighted WM connections were mainly found in the PFC, ACG and supplementary motor area (SMA) regions. Meanwhile, the network parameters were correlated with the nicotine dependence severity (FTND) scores, and the nodal efficiency of orbitofrontal cortex was positive correlation with the cigarette per day (CPD) in young smokers. We revealed the abnormal topological organization of WM network in young smokers, which may improve our understanding of the neural mechanism of young smokers form WM topological organization level.

  1. Functional dissection of abnormal signal processing performed by the somatosensory cortex of young Fmr1-KO mice.

    OpenAIRE

    Domanski, Aleksander Peter Frederick

    2014-01-01

    Every second throughout life, cortical circuitry efficiently compresses and interprets huge volumes of incoming sensory information. This high fidelity sensory processing guides normal brain development and is essential for animals’ successful interaction with the environment. Low-level sensory perceptual disturbance is nearly ubiquitous in Autism Spectrum Disorder (ASD), but despite the potential to offer crucial insight into the abnormal development of higher brain functio...

  2. Altered cortical hubs in functional brain networks in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ma, Xujing; Zhang, Jiuquan; Zhang, Youxue; Chen, Heng; Li, Rong; Wang, Jian; Chen, Huafu

    2015-11-01

    Cortical hubs are highly connected nodes in functional brain networks that play vital roles in the efficient transfer of information across brain regions. Although altered functional connectivity has been found in amyotrophic lateral sclerosis (ALS), the changing pattern in functional network hubs in ALS remains unknown. In this study, we applied a voxel-wise method to investigate the changing pattern of cortical hubs in ALS. Through resting-state fMRI, we constructed whole-brain voxel-wise functional networks by measuring the temporal correlations of each pair of brain voxels and identified hubs using the graph theory method. Specifically, a functional connectivity strength (FCS) map was derived from the data on 20 patients with ALS and 20 healthy controls. The brain regions with high FCS values were regarded as functional network hubs. Functional hubs were found mainly in the bilateral precuneus, parietal cortex, medial prefrontal cortex, and in several visual regions and temporal areas in both groups. Within the hub regions, the ALS patients exhibited higher FCS in the prefrontal cortex compared with the healthy controls. The FCS value in the significantly abnormal hub regions was correlated with clinical variables. Results indicated the presence of altered cortical hubs in the ALS patients and could therefore shed light on the pathophysiology mechanisms underlying ALS.

  3. Risk and significance of chest radiograph and pulmonary function abnormalities in an elderly cohort of former nuclear weapons workers.

    Science.gov (United States)

    Mikulski, Marek A; Hartley, Patrick G; Sprince, Nancy L; Sanderson, Wayne T; Lourens, Spencer; Worden, Nicole E; Wang, Kai; Fuortes, Laurence J

    2011-09-01

    To estimate prevalence and risk factors for International Labour Organization radiographic abnormalities, and assess relationship of these abnormalities with spirometry results in former Department of Energy nuclear weapons workers. Participants were offered chest x-ray (CXR) and lung function testing. Three occupational medicine physicians read CXRs. Forty-five (5.9%) of 757 screened workers were found to have isolated parenchymal abnormalities on CXR and this rate is higher than that in many Department of Energy studies. Parenchymal and pleural and isolated pleural abnormalities were found in 19 (2.5%) and 37 (4.9%) workers, respectively, and these rates are lower than those in other Department of Energy studies to date. Lung function impairment was associated with radiographic abnormalities. This study found an elevated rate of parenchymal abnormalities compared to other DoE populations but the effect of age or other causes could not be ruled out. (C)2011The American College of Occupational and Environmental Medicine

  4. Effects of the diet on brain function

    Science.gov (United States)

    Fernstrom, John D.

    The rates of synthesis by brain neurons of the neurotransmitters serotonin, acetylcholine, and the catecholamines depend on the brain levels of the respective precursor molecules. Brain levels of each precursor are influenced by their blood concentration, and for the amino acid precursors, by the blood levels of other amino acids as well. Since diet readily alters blood concentrations of each of these precursors, it thereby also influences the brain formation of their neurotransmitter products.

  5. Effects of the diet on brain function

    Science.gov (United States)

    Fernstrom, J. D.

    1981-01-01

    The rates of synthesis by brain neurons of the neurotransmitters serotonin, acetylcholine, and the catecholamines depend on the brain levels of the respective precursor molecules. Brain levels of each precursor are influenced by their blood concentration, and for the amino acid precursors, by the blood levels of other amino acids as well. Since diet readily alters blood concentrations of each of these precursors, it thereby also influences the brain formation of their neutrotransmitter products.

  6. Abnormalities of Microcirculation and Intracranial and Cerebral Perfusion Pressures in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2008-01-01

    Full Text Available Objective: to evaluate the states of microcirculation, cerebral perfusion intracranial pressures in patients with isolated severe brain injury (SBI and to determine their possible relationships. Subjects and methods. 148 studies were performed in 16 victims with SBI. According to the outcome of brain traumatic disease, the patients were divided into two groups: 1 those who had a good outcome (n=8 and 2 those who had a fatal outcome (n=8. Microcirculation was examined by skin laser Doppler flowmetry using a LAKK-01 capillary blood flow laser analyzer (LAZMA Research-and-Production Association, Russian Federation. All the victims underwent surgical interventions to remove epi-, subdural, and intracerebral hematomas. A Codman subdural/intraparenchymatous intracranial pressure (ICD sensor (Johnson & Johnson, United Kingdom was intraoperatively inserted in the victims. Cerebral perfusion pressure (CPP was calculated using the generally accepted formula: CPP = MBP (mean blood pressure — ICD. ICD, CPP, and microcirculation were studied on postoperative days 1, 3, 5, and 7. Their values were recorded simultaneously. Ninety and 58 studies were conducted in the group of patients with good and fatal outcomes, respectively. Results. No correlation between the changes in MBP, ICD, and microcirculatory parameters suggested that the value of ICD was determined by the nature of brain damage and it was the leading and determining indicator in the diagnosis and treatment of secondary cerebral lesions. The amplitude of low-frequency fluctuations directly correlated with ICD, which indicated that they might be used to evaluate cerebral perfusion and impaired cerebral circulation indirectly in victims with severe brain injury. Conclusion. The laser Doppler flowmetric technique makes it possible not only to qualitatively, but also quantitatively determine changes in the tissue blood flow system in severe brain injury. With this technique, both the local and central

  7. 3D PATTERN OF BRAIN ABNORMALITIES IN WILLIAMS SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    Science.gov (United States)

    Chiang, Ming-Chang; Reiss, Allan L.; Lee, Agatha D.; Bellugi, Ursula; Galaburda, Albert M.; Korenberg, Julie R.; Mills, Debra L.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of ~20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the complex pattern of gray/white matter reductions in WS, based on fluid registration of structural brain images. Methods 3D T1-weighted brain MRIs of 41 WS subjects (age: 29.2±9.2SD years; 23F/18M) and 39 age-matched healthy controls (age: 27.5±7.4 years; 23F/16M) were fluidly registered to a minimum deformation target. Fine-scale volumetric differences were mapped between diagnostic groups. Local regions were identified where regional structure volumes were associated with diagnosis, and with intelligence quotient (IQ) scores. Brain asymmetry was also mapped and compared between diagnostic groups. Results WS subjects exhibited widely distributed brain volume reductions (~10–15% reduction; P < 0.0002, permutation test). After adjusting for total brain volume, the frontal lobes, anterior cingulate, superior temporal gyrus, amygdala, fusiform gyrus and cerebellum were found to be relatively preserved in WS, but parietal and occipital lobes, thalamus and basal ganglia, and midbrain were disproportionally decreased in volume (P < 0.0002). These regional volumes also correlated positively with performance IQ in adult WS subjects (age ≥ 30 years, P = 0.038). Conclusion TBM facilitates 3D visualization of brain volume reductions in WS. Reduced parietal/occipital volumes may be associated with visuospatial deficits in WS. By contrast, frontal lobes, amygdala, and cingulate gyrus are relatively preserved or even enlarged, consistent with unusual affect regulation and language production in WS. PMID:17512756

  8. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Cao, Miao; Shu, Ni; Cao, Qingjiu; Wang, Yufeng; He, Yong

    2014-12-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopment disorders in childhood. Clinically, the core symptoms of this disorder include inattention, hyperactivity, and impulsivity. Previous studies have documented that these behavior deficits in ADHD children are associated with not only regional brain abnormalities but also changes in functional and structural connectivity among regions. In the past several years, our understanding of how ADHD affects the brain's connectivity has been greatly advanced by mapping topological alterations of large-scale brain networks (i.e., connectomes) using noninvasive neurophysiological and neuroimaging techniques (e.g., electroencephalograph, functional MRI, and diffusion MRI) in combination with graph theoretical approaches. In this review, we summarize the recent progresses of functional and structural brain connectomics in ADHD, focusing on graphic analysis of large-scale brain systems. Convergent evidence suggests that children with ADHD had abnormal small-world properties in both functional and structural brain networks characterized by higher local clustering and lower global integrity, suggesting a disorder-related shift of network topology toward regular configurations. Moreover, ADHD children showed the redistribution of regional nodes and connectivity involving the default-mode, attention, and sensorimotor systems. Importantly, these ADHD-associated alterations significantly correlated with behavior disturbances (e.g., inattention and hyperactivity/impulsivity symptoms) and exhibited differential patterns between clinical subtypes. Together, these connectome-based studies highlight brain network dysfunction in ADHD, thus opening up a new window into our understanding of the pathophysiological mechanisms of this disorder. These works might also have important implications on the development of imaging-based biomarkers for clinical diagnosis and treatment evaluation in ADHD.

  9. Abnormalities in personal space and parietal–frontal function in schizophrenia

    Directory of Open Access Journals (Sweden)

    Daphne J. Holt

    2015-01-01

    Full Text Available Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to “keep their distance” from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal–frontal network involved in monitoring the space immediately surrounding the body (“personal space”. Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS, was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area was normal in schizophrenia. Together, these findings suggest that changes in parietal–frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia.

  10. Abnormalities in personal space and parietal–frontal function in schizophrenia

    Science.gov (United States)

    Holt, Daphne J.; Boeke, Emily A.; Coombs, Garth; DeCross, Stephanie N.; Cassidy, Brittany S.; Stufflebeam, Steven; Rauch, Scott L.; Tootell, Roger B.H.

    2015-01-01

    Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to “keep their distance” from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal–frontal network involved in monitoring the space immediately surrounding the body (“personal space”). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal–frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia. PMID:26484048

  11. Abnormalities in personal space and parietal-frontal function in schizophrenia.

    Science.gov (United States)

    Holt, Daphne J; Boeke, Emily A; Coombs, Garth; DeCross, Stephanie N; Cassidy, Brittany S; Stufflebeam, Steven; Rauch, Scott L; Tootell, Roger B H

    2015-01-01

    Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to "keep their distance" from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal-frontal network involved in monitoring the space immediately surrounding the body ("personal space"). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal-frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia.

  12. Dynamic functional brain connectivity for face perception

    NARCIS (Netherlands)

    Yang, Yuan; Qiu, Yihong; Schouten, Alfred C.

    2015-01-01

    Face perception is mediated by a distributed brain network comprised of the core system at occipito-temporal areas and the extended system at other relevant brain areas involving bilateral hemispheres. In this study we explored how the brain connectivity changes over the time for face-sensitive

  13. Mapping distributed brain function and networks with diffuse optical tomography

    Science.gov (United States)

    Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

    2014-06-01

    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

  14. The Union of Shortest Path Trees of Functional Brain Networks

    NARCIS (Netherlands)

    Meier, J.; Tewarie, P.; Van Mieghem, P.

    2015-01-01

    Communication between brain regions is still insufficiently understood. Applying concepts from network science has shown to be successful in gaining insight in the functioning of the brain. Recent work has implicated that especially shortest paths in the structural brain network seem to play a major

  15. Pulmonary function abnormalities and airway irritation symptoms of metal fumes exposure on automobile spot welders.

    Science.gov (United States)

    Luo, Jiin-Chyuan John; Hsu, Kuang-Hung; Shen, Wu-Shiun

    2006-06-01

    Spot or resistance welding has been considered less hazardous than other types of welding. Automobile manufacturing is a major industry in Taiwan. Spot and arc welding are common processes in this industry. The respiratory effects on automobile spot welders exposed to metal fumes are investigated. The cohort consisted of 41 male auto-body spot welders, 76 male arc welders, 71 male office workers, and 59 assemblers without welding exposure. Inductivity Coupled Plasma Mass Spectrophotometer (ICP-MS) was applied to detect metals' (zinc, copper, nickel) levels in the post-shift urine samples. Demographic data, work history, smoking status, and respiratory tract irritation symptoms were gathered by a standard self-administered questionnaire. Pulmonary function tests were also performed. There were significantly higher values for average urine metals' (zinc, copper, nickel) levels in spot welders and arc welders than in the non-welding controls. There were 4 out of 23 (17.4%) abnormal forced vital capacity (FVC) among the high-exposed spot welders, 2 out of 18 (11.1%) among the low-exposed spot welders, and 6 out of 130 (4.6%) non-welding-exposed workers. There was a significant linear trend between spot welding exposure and the prevalence of restrictive airway abnormalities (P = 0.036) after adjusting for other factors. There were 9 out of 23 (39.1%) abnormal peak expiratory flow rate (PEFR) among high-exposed spot welders, 5 out of 18 (27.8%) among the low-exposed spot welders, and 28 out of 130 (21.5%) non-welding-exposed workers. There was a borderline significant linear trend between spot welding exposure and the prevalence of obstructive lung function abnormalities (P = 0.084) after adjusting for other factors. There was also a significant dose-response relationship of airway irritation symptoms (cough, phlegm, chronic bronchitis) among the spot welders. Arc welders with high exposure status also had a significant risk of obstructive lung abnormalities (PEFR

  16. Abnormal Default-Mode Network Activation in Cirrhotic Patients: A Functional Magnetic Resonance Imaging Study

    Energy Technology Data Exchange (ETDEWEB)

    Long Jiang Zhang; Guifen Yang; Jianzhong Yin; Yawu Liu; Ji Qi [Dept. of Radiology, Tianjin First Central Hospital, Tianjin Medical Univ., Tianjin (China)

    2007-09-15

    Background: Recently, increasing numbers of studies have demonstrated that, in humans, a default-mode functional network exists in the resting state. Abnormal default-mode network in various diseases has been reported; however, no report concerning hepatic cirrhosis has been published to date. Purpose: To prospectively explore whether the resting-state network in patients with hepatic cirrhosis is abnormal or not, using functional magnetic resonance imaging (fMRI). Material and Methods: 14 patients with hepatic cirrhosis (12 male, two female; 45{+-}9 years) and 14 age- and gender-matched healthy volunteers (12 male, two female; 42{+-}10 years) participated in a blocked-design fMRI study. A modified Stroop task with Chinese characters was used as the target stimulus. Statistical Parametric Mapping 99 software was employed to process the functional data. Individual maps and group data were generated for patients with hepatic cirrhosis and for healthy controls, respectively. Intergroup analysis between patients and healthy controls was also generated using the two-sample t-test model. Cluster analyses were done based on the group data, and an identical P value 0.01 with continuously connected voxels of no less than 10 was defined as significant deactivation. After fMRI scanning was complete, behavioral Stroop interference tests were performed on all subjects; reaction time and error number were recorded. Results: Functionally, deactivation of the posterior cingulate cortex (PCC) and precuneus was absent when subjects performed the incongruous word-reading task; deactivation of the PCC, precuneus, and ventral medial prefrontal cortex was increased when they performed the incongruous color-naming task. Conclusion: The functional as well as behavioral data suggest that cirrhotic patients may have an abnormal deactivation mode. The absence of deactivation in the PCC and precuneus may be a sensitive rather than specific marker in patients with hepatic cirrhosis.

  17. Changes in cognitive state alter human functional brain networks

    Directory of Open Access Journals (Sweden)

    Malaak Nasser Moussa

    2011-08-01

    Full Text Available The study of the brain as a whole system can be accomplished using network theory principles. Research has shown that human functional brain networks during a resting state exhibit small-world properties and high degree nodes, or hubs, localized to brain areas consistent with the default mode network (DMN. However, the study of brain networks across different tasks and or cognitive states has been inconclusive. Research in this field is important because the underpinnings of behavioral output are inherently dependent on whether or not brain networks are dynamic. This is the first comprehensive study to evaluate multiple network metrics at a voxel-wise resolution in the human brain at both the whole brain and regional level under various conditions: resting state, visual stimulation, and multisensory (auditory and visual stimulation. Our results show that despite global network stability, functional brain networks exhibit considerable task-induced changes in connectivity, efficiency, and community structure at the regional level.

  18. Structural brain abnormalities in women with subclinical depression, as revealed by voxel-based morphometry and diffusion tensor imaging.

    Science.gov (United States)

    Hayakawa, Yayoi K; Sasaki, Hiroki; Takao, Hidemasa; Mori, Harushi; Hayashi, Naoto; Kunimatsu, Akira; Aoki, Shigeki; Ohtomo, Kuni

    2013-01-25

    Brain structural changes accompany major depressive disorder, but whether subclinical depression is accompanied by similar changes in brain volume and white matter integrity is unknown. By using voxel-based morphometry (VBM) of the gray matter and tract-specific analysis based on diffusion tensor imaging (DTI) of the white matter, we explored the extent to which abnormalities could be identified in specific brain structures of healthy adults with subclinical depression. The subjects were 21 community-dwelling adults with subclinical depression, as measured by their Center for Epidemiologic Studies Depression Scale (CES-D) scores. They were not demented and had no neurological or psychiatric history. We collected brain magnetic resonance images of the patients and of 21 matched control subjects, and we used VBM to analyze the differences in regional gray matter volume between the two groups. Moreover, we examined the white matter integrity by using tract-specific analysis based on the gray matter volume changes revealed by VBM. VBM revealed that the volumes of both anterior cingulate gyri and the right rectal gyrus were smaller in subclinically depressed women than in control women. Calculation of DTI measures in the anterior cingulum bundle revealed a positive correlation between CES-D scale score and radial diffusivity in the right anterior cingulum in subclinically depressed women. The small sample size limits the stability of the reported findings. Gray matter volume reduction and white matter integrity change in specific frontal brain regions may be associated with depressive symptoms in women, even at a subclinical level. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The spectrum of epilepsy and electroencephalographic abnormalities due to SHANK3 loss-of-function mutations.

    Science.gov (United States)

    Holder, J Lloyd; Quach, Michael M

    2016-10-01

    The coincidence of autism with epilepsy is 27% in those individuals with intellectual disability. 1 Individuals with loss-of-function mutations in SHANK3 have intellectual disability, autism, and variably, epilepsy. 2-5 The spectrum of seizure semiologies and electroencephalography (EEG) abnormalities has never been investigated in detail. With the recent report that SHANK3 mutations are present in approximately 2% of individuals with moderate to severe intellectual disabilities and 1% of individuals with autism, determining the spectrum of seizure semiologies and electrographic abnormalities will be critical for medical practitioners to appropriately counsel the families of patients with SHANK3 mutations. A retrospective chart review was performed of all individuals treated at the Blue Bird Circle Clinic for Child Neurology who have been identified as having either a chromosome 22q13 microdeletion encompassing SHANK3 or a loss-of-function mutation in SHANK3 identified through whole-exome sequencing. For each subject, the presence or absence of seizures, seizure semiology, frequency, age of onset, and efficacy of therapy were determined. Electroencephalography studies were reviewed by a board certified neurophysiologist. Neuroimaging was reviewed by both a board certified pediatric neuroradiologist and child neurologist. There is a wide spectrum of seizure semiologies, frequencies, and severity in individuals with SHANK3 mutations. There are no specific EEG abnormalities found in our cohort, and EEG abnormalities were present in individuals diagnosed with epilepsy and those without history of a clinical seizure. All individuals with a mutation in SHANK3 should be evaluated for epilepsy due to the high prevalence of seizures in this population. The most common semiology is atypical absence seizure, which can be challenging to identify due to comorbid intellectual disability in individuals with SHANK3 mutations; however, no consistent seizure semiology, neuroimaging

  20. Overlapping and Segregating Structural Brain Abnormalities in Twins With Schizophrenia or Bipolar Disorder

    NARCIS (Netherlands)

    Pol, Hilleke E. Hulshoff; van Baal, G. Caroline M.; Schnack, Hugo G.; Brans, Rachel G. H.; van der Schot, Astrid C.; Brouwer, Rachel M.; van Haren, Neeltje E. M.; Lepage, Claude; Collins, D. Louis; Evans, Alan C.; Boomsma, Dorret I.; Nolen, Willem; Kahn, Rene S.

    Context: The nosologic dichotomy between schizophrenia and bipolar disorder (BD) as formulated by Kraepelin is currently being questioned, stimulated by the finding that schizophrenia and BD partly share a common genetic origin. Although both disorders are characterized by changes in brain

  1. MR Spectroscopy evaluation of white matter signal abnormalities of different non-neoplastic brain lesions

    Directory of Open Access Journals (Sweden)

    Randa O. Kaddah

    2016-03-01

    Conclusion: MRS is a noninvasive additional MRI technique to define the nature of non-neoplastic brain lesions. Together with image analysis, it may be the key to etiologic diagnosis or, at least, definition of the group where the lesion is classified, by detecting changes in different metabolites and peaks of inflammation.

  2. Brief Report: Abnormal Association between the Thalamus and Brain Size in Asperger's Disorder

    Science.gov (United States)

    Hardan, Antonio Y.; Girgis, Ragy R.; Adams, Jason; Gilbert, Andrew R.; Melhem, Nadine M.; Keshavan, Matcheri S.; Minshew, Nancy J.

    2008-01-01

    The objective of this study was to examine the relationship between thalamic volume and brain size in individuals with Asperger's disorder (ASP). Volumetric measurements of the thalamus were performed on MRI scans obtained from 12 individuals with ASP (age range: 10-35 years) and 12 healthy controls (age range: 9-33 years). A positive correlation…

  3. Effect of occlusal support by implant prostheses on brain function.

    Science.gov (United States)

    Okamoto, Naoko

    2011-10-01

    The present study was carried out to identify how gum chewing with and without occlusal support by implant prostheses affects brain function as well as chewing function. Twenty-four subjects rehabilitated with implant-supported fixed prostheses were evaluated. An electroencephalograph (EEG) (ESA-Pro) and mandibular kinesiograph (Bio PAK(®)) wear used to measure brain function and chewing function, respectively, before and after gum chewing with and without an implant superstructure. Based on brain function estimated by the Dα values derived from measurement data, the subjects were divided into the normal region group (including the sub-normal region group) (n=15; Dα≥0.952) and the impaired region group (n=9; DαBrain function in the normal region group showed no change after gum chewing, whether or not an implant superstructure was in place (p>0.05). However, brain function in the impaired region group showed significant improvement after gum chewing (pbrain function compared to the results without an implant superstructure. In the impaired region group, there was a high positive correlation between brain function and masticatory movement (γ=0.75). Subjects in the impaired region group revealed a strong positive correlation between brain function and masticatory movement, indicating that occlusal support by implant-supported fixed prostheses has the potential to enhance brain function. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. Functional magnetic resonance imaging of higher brain activity

    International Nuclear Information System (INIS)

    Cui He; Wang Yunjiu; Chen Runsheng; Tang Xiaowei.

    1996-01-01

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind

  5. Functional characteristics of the brain in college students with internet gaming disorder.

    Science.gov (United States)

    Liu, Jun; Li, Weihui; Zhou, Shunke; Zhang, Li; Wang, Zhiyuan; Zhang, Yan; Jiang, Yebin; Li, Lingjiang

    2016-03-01

    Internet gaming disorder (IGD) is a subtype of internet addiction disorder (IAD), but its pathogenesis remains unclear. This study investigated brain function in IGD individuals using task-state functional magnetic resonance imaging (fMRI). It is a prospective study in 19 IGD individuals and 19 matched healthy controls. They all received internet videogame stimuli while a 3.0 T fMRI was used to assess echo planar imaging. Brain activity was analyzed using the Brain Voyager software package. Functional data were spatially smoothed using Gaussian kernel. The threshold level was positioned at 10 pixels, and the activation range threshold was set to 10 voxels. Activated brain regions were compared between the two groups, as well as the amount of activated voxels. The internet videogame stimuli activated brain regions in both groups. Compared with controls, the IGD group showed increased activation in the right superior parietal lobule, right insular lobe, right precuneus, right cingulated gyrus, right superior temporal gyrus, and left brainstem. There was a significant difference in the number of activated voxels between the two groups. An average of 1078 voxels was activated in the IGD group compared with only 232 in the control group. Internet videogame play activates the vision, space, attention, and execution centers located in the occipital, temporal, parietal, and frontal gyri. Abnormal brain function was noted in IGD subjects, with hypofunction of the frontal cortex. IGD subjects showed laterality activation of the right cerebral hemisphere.

  6. Inconsistency in Abnormal Brain Activity across Cohorts of ADHD-200 in Children with Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Jian-Bao Wang

    2017-06-01

    Full Text Available Many papers have shown results from the multi-site dataset of resting-state fMRI (rs-fMRI in attention deficit hyperactivity disorder (ADHD, a data-sharing project named ADHD-200. However, few studies have illustrated that to what extent the pooled findings were consistent across cohorts. The present study analyzed three voxel-wise whole-brain metrics, i.e., amplitude of low-frequency fluctuation (ALFF, regional homogeneity (ReHo, and degree centrality (DC based on the pooled dataset as well as individual cohort of ADHD-200. In addition to the conventional frequency band of 0.01–0.08 Hz, sub-frequency bands of 0–0.01, 0.01–0.027, 0.027–0.073, 0.073–0.198, and 0.198–0.25 Hz, were assessed. While the pooled dataset showed abnormal activity in some brain regions, e.g., the bilateral sensorimotor cortices, bilateral cerebellum, and the bilateral lingual gyrus, these results were highly inconsistent across cohorts, even across the three cohorts from the same research center. The standardized effect size was rather small. These findings suggested a high heterogeneity of spontaneous brain activity in ADHD. Future studies based on multi-site large-sample dataset should be performed on pooled data and single cohort data, respectively and the effect size must be shown.

  7. Left ventricular mass-geometry and silent cerebrovascular disease: The Cardiovascular Abnormalities and Brain Lesions (CABL) study.

    Science.gov (United States)

    Nakanishi, Koki; Jin, Zhezhen; Homma, Shunichi; Elkind, Mitchell S V; Rundek, Tatjana; Tugcu, Aylin; Yoshita, Mitsuhiro; DeCarli, Charles; Wright, Clinton B; Sacco, Ralph L; Di Tullio, Marco R

    2017-03-01

    Although abnormal left ventricular geometric patterns have prognostic value for morbidity and mortality, their possible association with silent cerebrovascular disease has not been extensively evaluated. We examined 665 participants in the CABL study who underwent transthoracic echocardiography and brain magnetic resonance imaging. Participants were divided into 4 geometric patterns: normal geometry (n=397), concentric remodeling (n=89), eccentric hypertrophy (n=126), and concentric hypertrophy (n=53). Subclinical cerebrovascular disease was defined as silent brain infarcts (SBIs) and white matter hyperintensity volume (WMHV; expressed as log-transformed percentage of the total cranial volume). Silent brain infarcts were observed in 94 participants (14%). Mean log-WMHV was -0.97±0.93. Concentric hypertrophy carried the greatest risk for both SBI (adjusted odds ratio [OR] 3.39, Pdisease. In subgroup analyses, concentric and eccentric hypertrophies were significantly associated with SBI and WMHV in both genders and nonobese participants, but differed for SBI by age (all ages for eccentric hypertrophy, only patients ≥70years for concentric hypertrophy) and by race-ethnicity (Hispanics for eccentric hypertrophy, blacks for concentric hypertrophy; no association in whites). Left ventricular hypertrophy, with both eccentric and concentric patterns, was significantly associated with subclinical cerebrovascular disease in a multiethnic stroke-free general population. Left ventricular geometric patterns may carry different risks for silent cerebrovascular disease in different sex, age, race-ethnic, and body size subgroups. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Prevalence of thyroid function test abnormalities and thyroid autoantibodies in children with vitiligo

    Directory of Open Access Journals (Sweden)

    Fatma Sule Afsar

    2013-01-01

    Full Text Available Although the exact pathogenic processes involved in vitiligo are still unknown, its association with autoimmune disorders and endocrine dysfunction has been reported. One of its associations is with thyroid diseases. The purpose of this retrospective study was to determine the prevalence of thyroid function tests and thyroid autoantibody abnormalities in children diagnosed with vitiligo and compare the results with the literature. The laboratory documents of thyroid function tests (FT3, FT4, and TSH and thyroid autoantibodies (TgAb and TPOAb belonging to the pediatric vitiligo patients were studied retrospectively. Thyroid function tests and thyroid autoantibody abnormalities were detected in 20 (25.3% of the pediatric vitiligo patients. Thirteen (16.4% patients were evaluated as subclinical hypothyroidism, two (2.5% were evaluated as hypothyroidism, and five (6.3% were evaluated as euthyroidism. Thyroid autoantibodies were found to be positive in nine (11.3% patients. Previously reported prevalence of thyroid disease in children with vitiligo ranged from 10.7 to 24.1%, and the prevalence of 25.3% determined in this study was compatible with the literature. Also, the high rate of subclinical hypothyroidism determined in these patients attracted attention to the probable development of overt hypothyroidism in a long term. Thus, our results suggest that thyroid function tests and thyroid autoantibodies should be analyzed in children with vitiligo.

  9. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    Science.gov (United States)

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Demonstration of cerebral abnormalities in cocaine abusers with SPECT perfusion brain scans

    International Nuclear Information System (INIS)

    Nagel, J.S.; Tumeh, S.S.; English, R.J.; Moore, M.; Lee, V.W.; Holman, L.B.

    1989-01-01

    This paper reports I-123 isopropyl iodoamphetamine (IMP) single-photon emission CT (SPECT) brain scans performed on cocaine users to investigate the effects of cocaine on the cerebral perfusion in a manner similar to previous CT, angiographic and positron-emission tomographic (PET) studies. Ten asymptomatic or mildly symptomatic cocaine users, two users with major neurovascular complications, and five normal subjects were studied with IMP SPECT. Rotating-brain images of the cerebral IMP uptake were displayed by using a distance-weighted surface-projection technique and were visually analyzed for focal cortical perfusion deficits. Eleven cocaine users had multiple scattered cortical IMP defects. Frontal lobe defects were most prominent. One user had confluent defects resembling swiss cheese. Concurrent CT scans available in nine patients were negative in seven and showed infarcts in two. No similar focal findings were visible in normals

  11. Topographic Brain Mapping: A Window on Brain Function?

    Science.gov (United States)

    Karniski, Walt M.

    1989-01-01

    The article reviews the method of topographic mapping of the brain's electrical activity. Multiple electroencephalogram (EEG) electrodes and computerized analysis of the EEG signal are used to generate maps of frequency and voltage (evoked potential). This relatively new technique holds promise in the evaluation of children with behavioral and…

  12. Effects of Marijuana Use on Brain Structure and Function: Neuroimaging Findings from a Neurodevelopmental Perspective

    Science.gov (United States)

    Brumback, T.; Castro, N.; Jacobus, J.; Tapert, S.

    2016-01-01

    Marijuana, behind only tobacco and alcohol, is the most popular recreational drug in America with prevalence rates of use rising over the past decade. A wide range of research has highlighted neurocognitive deficits associated with marijuana use, particularly when initiated during childhood or adolescence. Neuroimaging, describing alterations to brain structure and function, has begun to provide a picture of possible mechanisms associated with the deleterious effects of marijuana use. This chapter provides a neurodevelopmental framework from which recent data on brain structural and functional abnormalities associated with marijuana use is reviewed. Based on the current data, we provide aims for future studies to more clearly delineate the effects of marijuana on the developing brain and to define underlying mechanisms of the potential long-term negative consequences of marijuana use. PMID:27503447

  13. Effects of Marijuana Use on Brain Structure and Function: Neuroimaging Findings from a Neurodevelopmental Perspective.

    Science.gov (United States)

    Brumback, T; Castro, N; Jacobus, J; Tapert, S

    2016-01-01

    Marijuana, behind only tobacco and alcohol, is the most popular recreational drug in America with prevalence rates of use rising over the past decade. A wide range of research has highlighted neurocognitive deficits associated with marijuana use, particularly when initiated during childhood or adolescence. Neuroimaging, describing alterations to brain structure and function, has begun to provide a picture of possible mechanisms associated with the deleterious effects of marijuana use. This chapter provides a neurodevelopmental framework from which recent data on brain structural and functional abnormalities associated with marijuana use is reviewed. Based on the current data, we provide aims for future studies to more clearly delineate the effects of marijuana on the developing brain and to define underlying mechanisms of the potential long-term negative consequences of marijuana use. © 2016 Elsevier Inc. All rights reserved.

  14. Electrophysiologic consequences of KATP gain of function in the heart: Conduction abnormalities in Cantu syndrome.

    Science.gov (United States)

    Levin, Mark D; Zhang, Haixia; Uchida, Keita; Grange, Dorothy K; Singh, Gautam K; Nichols, Colin G

    2015-11-01

    Gain-of-function (GOF) mutations in the KATP channel subunits Kir6.1 and SUR2 cause Cantu syndrome (CS), a disease characterized by multiple cardiovascular abnormalities. The purpose of this study was to better determine the electrophysiologic consequences of such GOF mutations in the heart. We generated transgenic mice (Kir6.1-GOF) expressing ATP-insensitive Kir6.1[G343D] subunits under α-myosin heavy chain (α-MHC) promoter control, to target gene expression specifically in cardiomyocytes, and performed patch-clamp experiments on isolated ventricular myocytes and invasive electrophysiology on anesthetized mice. In Kir6.1-GOF ventricular myocytes, KATP channels showed decreased ATP sensitivity but no significant change in current density. Ambulatory ECG recordings on Kir6.1-GOF mice revealed AV nodal conduction abnormalities and junctional rhythm. Invasive electrophysiologic analyses revealed slowing of conduction and conduction failure through the AV node but no increase in susceptibility to atrial or ventricular ectopic activity. Surface ECGs recorded from CS patients also demonstrated first-degree AV block and fascicular block. The primary electrophysiologic consequence of cardiac KATP GOF is on the conduction system, particularly the AV node, resulting in conduction abnormalities in CS patients who carry KATP GOF mutations. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  15. [Rare abnormalities of parathyroid gland function and parathyroid hormone receptor action].

    Science.gov (United States)

    Krysiak, Robert; Bartecka, Anna; Okopień, Bogusław

    2014-01-01

    The parathyroid glands, located near or within the posterior surface of the thyroid gland and secreting parathyroid hormone, are essential organs for the regulation of calcium and phosphate metabolism. As they are necessary to sustain life and maintain homeostasis, undetected or misdiagnosed parathyroid disorders may pose a significant threat to health outcomes, as their presence may increase morbidity and mortality in affected individuals. The clinical picture of some disorders associated with abnormal parathyroid hormone secretion and receptor action is sometimes complicated by coexisting abnormalities, and in these cases establishing the correct diagnosis is challenging. The remarkable progress of recent years in the area of hormonal assessment, imaging procedures and molecular biology, has resulted in a great improvement in the identification, differentiation and treatment of various parathyroid disorders and has made it possible to identify several new clinical entities. In this paper, we discuss the present state-of-art on the etiopathogenesis, clinical manifestations, diagnosis and treatment of chosen rare abnormalities of parathyroid gland function and parathyroid hormone receptor action.

  16. 3D PATTERN OF BRAIN ABNORMALITIES IN WILLIAMS SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    OpenAIRE

    Chiang, Ming-Chang; Reiss, Allan L.; Lee, Agatha D.; Bellugi, Ursula; Galaburda, Albert M.; Korenberg, Julie R.; Mills, Debra L.; Toga, Arthur W.; Thompson, Paul M.

    2007-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of ~20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the complex pattern of gray/white matter reductions in WS, based on fluid registration of structural brain images.

  17. Abnormalities in Human Brain Creatine Metabolism in Gulf War Illness Probed with MRS

    Science.gov (United States)

    2013-10-01

    and Brain Sciences Board Chair Debbie Francis Board Vice Chair Bob Wilbur Founding Chair Shelia Schlosberg Leadership Council Sallie and...Frederic Asche, Jr. Claud ia and Dennis Berman Toni C. Brinker Jean Ann Brock Dianne Cash Cullum Clark Mary Anne Cree Teresa and David Disiere...Boone Pickens Terry and Bob Rowling Annette and Harold Simmons Jane and Bud Smith Jill Smith Claudia and Gerald Stool Dee and Charles Wyly The

  18. Electroencephalography Source Functional Connectivity Reveals Abnormal High-Frequency Communication Among Large-Scale Functional Networks in Depression.

    Science.gov (United States)

    Whitton, Alexis E; Deccy, Stephanie; Ironside, Manon L; Kumar, Poornima; Beltzer, Miranda; Pizzagalli, Diego A

    2018-01-01

    Functional magnetic resonance imaging studies of resting-state functional connectivity have shown that major depressive disorder (MDD) is characterized by increased connectivity within the default mode network (DMN) and between the DMN and the frontoparietal network (FPN). However, much remains unknown about abnormalities in higher frequency (>1 Hz) synchronization. Findings of abnormal synchronization in specific frequencies would contribute to a better understanding of the potential neurophysiological origins of disrupted functional connectivity in MDD. We used the high temporal resolution of electroencephalography to compare the spectral properties of resting-state functional connectivity in individuals with MDD (n = 65) with healthy control subjects (n = 79) and examined the extent to which connectivity disturbances were evident in a third sample of individuals in remission from depression (n = 30). Exact low resolution electromagnetic tomography was used to compute intracortical activity from regions within the DMN and FPN, and functional connectivity was computed using lagged phase synchronization. Compared to control subjects, the MDD group showed greater within-DMN beta 2 band (18.5-21 Hz) connectivity and greater beta 1 band (12.5-18 Hz) connectivity between the DMN and FPN. This hyperconnectivity was not observed in the remitted MDD group. However, greater beta 1 band DMN-FPN connectivity was associated with more frequent depressive episodes since first depression onset, even after controlling for current symptom severity. These findings extend our understanding of the neurophysiological basis of abnormal resting-state functional connectivity in MDD and indicate that elevations in high-frequency DMN-FPN connectivity may be a neural marker linked to a more recurrent illness course. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Infrared Imaging System for Studying Brain Function

    Science.gov (United States)

    Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

    2007-01-01

    A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be

  20. Should we look for celiac disease among all patients with liver function test abnormalities?

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Emami

    2012-01-01

    Full Text Available Background: Celiac disease (CD has been found in up to 10% of the patients presenting with unexplained abnormal liver function tests (LFT. As there is no precise data from our country in this regard, we investigated the prevalence of CD in patients presenting with abnormal LFT. Methods: From 2003 to 2008, we measured IgA anti-tissue transglutaminase (t-TG antibody (with ELISA technique within the first-level screening steps for all patients presenting with abnormal LFT to three outpatient gastroenterology clinics in Isfahan, IRAN. All subjects with an IgA anti-tTG antibody value of >10 μ/ml (seropositive were undergone upper gastrointestinal endoscopy and duodenal biopsy. Histopathological changes were assessed according to the Marsh classification. CD was defined as being seropositive with Marsh I or above in histopathology and having a good response to gluten free diet (GFD. Results: During the study, 224 patients were evaluated, out of which, 10 patients (4.4% were seropositive for CD. Duodenal biopsies were performed in eight patients and revealed six (2.7% cases of Marsh I or above (four Marsh IIIA, two Marsh I, all of them had good response to GFD. The overall prevalence of CD among patients with hypertransaminasemia, autoimmune hepatitis, and cryptogenic cirrhosis was determined as 10.7% (3/28, 3.4% (2/59, and 5.3% (1/19, respectively. Conclusion: Serological screening with IgA anti-tTG antibody test should be routinely performed in patients presenting with abnormal LFT and especially those with chronic liver diseases including hypertransaminasemia, autoimmune hepatitis, and cryptogenic cirrhosis.

  1. Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.

    Science.gov (United States)

    Zhao, Yu; Dong, Qinglin; Chen, Hanbo; Iraji, Armin; Li, Yujie; Makkie, Milad; Kou, Zhifeng; Liu, Tianming

    2017-12-01

    State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks' spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with

  2. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao

    1999-01-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  3. Differential impact of hyponatremia and hepatic encephalopathy on health-related quality of life and brain metabolite abnormalities in cirrhosis.

    Science.gov (United States)

    Ahluwalia, Vishwadeep; Wade, James B; Thacker, Leroy; Kraft, Kenneth A; Sterling, Richard K; Stravitz, R Todd; Fuchs, Michael; Bouneva, Iliana; Puri, Puneet; Luketic, Velimir; Sanyal, Arun J; Gilles, Hochong; Heuman, Douglas M; Bajaj, Jasmohan S

    2013-09-01

    Hyponatremia (HN) and hepatic encephalopathy (HE) together can impair health-related quality of life (HRQOL) and cognition in cirrhosis. We aimed at studying the effect of hyponatremia on cognition, HRQOL, and brain MR spectroscopy (MRS) independent of HE. Four cirrhotic groups (no HE/HN, HE alone, HN alone (sodium Impact Profile (SIP: higher score is worse; has psychosocial and physical sub-scores) and brain MRS (myoinositol (mI) and glutamate+glutamine (Glx)), which were compared across groups. A subset underwent HRQOL testing before/after diuretic withdrawal. 82 cirrhotics (30 no HE/HN, 25 HE, 17 HE+HN, and 10 HN, MELD 12, 63% hepatitis C) were included. Cirrhotics with HN alone and without HE/HN had better cognition compared to HE groups (median abnormal tests no-HE/HN: 3, HN: 3.5, HE: 6.5, HE+HN: 7, p=0.008). Despite better cognition, HN only patients had worse HRQOL in total and psychosocial SIP while both HN groups (with/without HE) had a significantly worse physical SIP (p<0.0001, all comparisons). Brain MRS showed the lowest Glx in HN and the highest in HE groups (p<0.02). mI levels were comparably decreased in the three affected (HE, HE+HN, and HN) groups compared to no HE/HN and were associated with poor HRQOL. Six HE+HN cirrhotics underwent diuretic withdrawal which improved serum sodium and total/psychosocial SIP scores. Hyponatremic cirrhotics without HE have poor HRQOL despite better cognition than those with concomitant HE. Glx levels were lowest in HN without HE but mI was similar across affected groups. HRQOL improved after diuretic withdrawal. Hyponatremia has a complex, non-linear relationship with brain Glx and mI, cognition and HRQOL. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  4. Brain structure and executive functions in children with cerebral palsy: a systematic review.

    Science.gov (United States)

    Weierink, Lonneke; Vermeulen, R Jeroen; Boyd, Roslyn N

    2013-05-01

    This systematic review aimed to establish the current knowledge about brain structure and executive function (EF) in children with cerebral palsy (CP). Five databases were searched (up till July 2012). Six articles met the inclusion criteria, all included structural brain imaging though no functional brain imaging. Study quality was assessed using the STROBE checklist. All articles scored between 58.7% and 70.5% for quality (100% is the maximum score). The included studies all reported poorer performance on EF tasks for children with CP compared to children without CP. For the selected EF measures non-significant effect sizes were found for the CP group compared to a semi-control group (children without cognitive deficits but not included in a control group). This could be due to the small sample sizes, group heterogeneity and lack of comparison of the CP group to typically developing children. The included studies did not consider specific brain areas associated with EF performance. To conclude, there is a paucity of brain imaging studies focused on EF in children with CP, especially of studies that include functional brain imaging. Outcomes of the present studies are difficult to compare as each study included different EF measures and cortical abnormality measures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Morphological and functional MRI, MRS, perfusion and diffusion changes after radiosurgery of brain metastasis

    International Nuclear Information System (INIS)

    Kang, Tae Wook; Kim, Sung Tae; Byun, Hong Sik; Jeon, Pyoung; Kim, Keonha; Kim, Hyungjin; Lee, Jung II

    2009-01-01

    Radiosurgery is a noninvasive procedure where spatially accurate and highly conformal doses of radiation are targeted at brain lesions with an ablative intent. Recently, radiosurgery has been established as an effective technique for local treatment of brain metastasis. After radiosurgery, magnetic resonance (MR) imaging plays an important role in the assessment of the therapeutic response and of any complications. The therapeutic approach depends on the imaging findings obtained after radiosurgery, which have a role in the decision making to perform additional invasive modalities (repeat resection, biopsy) to obtain a definite diagnosis and to improve the survival of patients. Conventional MR imaging findings are mainly based on morphological alterations of tumors. However, there are variable imaging findings of radiation-induced changes including radiation necrosis in the brain. Radiologists are sometimes confused by radiation-induced injuries, including radiation necrosis, that are seen on conventional MR imaging. The pattern of abnormal enhancement on follow-up conventional MR imaging closely mimics that of a recurrent brain metastasis. So, classifying newly developed abnormal enhancing lesions in follow-up of treated brain metastasis with correct diagnosis is one of the key goals in neuro-oncologic imaging. To overcome limitations of the use of morphology-based conventional MR imaging, several physiological-based functional MR imaging methods have been used, namely diffusion-weighted imaging, perfusion MR imaging, and proton MR spectroscopy, for the detection of hemodynamic, metabolic, and cellular alterations. These imaging modalities provide additional information to allow clinicians to make proper decisions regarding patient treatment.

  6. Insulin in the brain: sources, localization and functions.

    Science.gov (United States)

    Ghasemi, Rasoul; Haeri, Ali; Dargahi, Leila; Mohamed, Zahurin; Ahmadiani, Abolhassan

    2013-02-01

    Historically, insulin is best known for its role in peripheral glucose homeostasis, and insulin signaling in the brain has received less attention. Insulin-independent brain glucose uptake has been the main reason for considering the brain as an insulin-insensitive organ. However, recent findings showing a high concentration of insulin in brain extracts, and expression of insulin receptors (IRs) in central nervous system tissues have gathered considerable attention over the sources, localization, and functions of insulin in the brain. This review summarizes the current status of knowledge of the peripheral and central sources of insulin in the brain, site-specific expression of IRs, and also neurophysiological functions of insulin including the regulation of food intake, weight control, reproduction, and cognition and memory formation. This review also considers the neuromodulatory and neurotrophic effects of insulin, resulting in proliferation, differentiation, and neurite outgrowth, introducing insulin as an attractive tool for neuroprotection against apoptosis, oxidative stress, beta amyloid toxicity, and brain ischemia.

  7. GLIAL ABNORMALITIES IN MOOD DISORDERS

    OpenAIRE

    Öngür, Dost; Bechtholt, Anita J.; Carlezon, William A.; Cohen, Bruce M.

    2014-01-01

    Multiple lines of evidence indicate that mood disorders are associated with abnormalities in the brain's cellular composition, especially in glial cells. Considered inert support cells in the past, glial cells are now known to be important for brain function. Treatments for mood disorders enhance glial cell proliferation, and experimental stimulation of cell growth has antidepressant effects in animal models of mood disorders. These findings suggest that the proliferation and survival of glia...

  8. Whole-brain functional connectivity predicted by indirect structural connections

    DEFF Research Database (Denmark)

    Røge, Rasmus; Ambrosen, Karen Marie Sandø; Albers, Kristoffer Jon

    2017-01-01

    Modern functional and diffusion magnetic resonance imaging (fMRI and dMRI) provide data from which macro-scale networks of functional and structural whole brain connectivity can be estimated. Although networks derived from these two modalities describe different properties of the human brain, the...

  9. Bayesian Joint Modeling of Multiple Brain Functional Networks

    OpenAIRE

    Lukemire, Joshua; Kundu, Suprateek; Pagnoni, Giuseppe; Guo, Ying

    2017-01-01

    Brain function is organized in coordinated modes of spatio-temporal activity (functional networks) exhibiting an intrinsic baseline structure with variations under different experimental conditions. Existing approaches for uncovering such network structures typically do not explicitly model shared and differential patterns across networks, thus potentially reducing the detection power. We develop an integrative modeling approach for jointly modeling multiple brain networks across experimental...

  10. Brain function measurement using optical topography

    International Nuclear Information System (INIS)

    Koizumi, Hideaki; Maki, Atsushi; Yamamoto, Tsuyoshi; Kawaguchi, Hideo

    2003-01-01

    Optical topography is a completely non-invasive method to image the high brain function with the near infrared spectroscopy, does not need the restriction of human behavior for imaging and thereby is applicable even for infants. The principle is based on irradiation of the near infrared laser beam with the optical-fiber onto the head surface and detection with the fiber of the reflection, of which spectroscopy for blood-borne hemoglobin gives the local cerebral homodynamics related with the nerve activity. The infrared laser beam of 1-10 mW is found safe on direct irradiation to the human body. The topography is applicable in the fields of clinical medicine like internal neurology (an actual image of the activated Broca's and Welnicke's areas at writing is presented), neurosurgery, psychiatry and pedriatric neurology, of developmental cognitive neuroscience, of educational science and of communication. ''MIT Technology Reviews'' mentions that this technique is one of 4 recent promising innovative techniques in the world. (N.I.)

  11. Structural connectivity analysis reveals abnormal brain connections in agenesis of the corpus callosum in children.

    Science.gov (United States)

    Meoded, Avner; Katipally, Rohan; Bosemani, Thangamadhan; Huisman, Thierry A G M; Poretti, Andrea

    2015-05-01

    Structural connectivity analysis is an ideal tool to study connections in brain malformations. We aimed to characterize the topological network measures and study sub-networks in children with agenesis of the corpus callosum (AgCC). We hypothesized a more segregated structural network in children with AgCC. Structural connectivity analysis including topology analysis and network-based-statistics was applied in children with AgCC and age-matched controls. Probabilistic-tractography and brain segmentation into 108 regions were performed. For controls, structural connectivity has been analyzed after excluding the callosal connections ('virtual callosotomy'). Ten patients (six males, mean age 6.5 years, SD 4.5 years) and ten controls (mean age 5.9 years, SD 4.7 years) were included. In patients, topology analysis revealed higher clustering coefficient and transitivity and lower small world index and assortativity compared to controls. The bilateral insula were identified as hubs in patients, whereas the cerebellum was detected as a hub only in controls. Three sub-networks of increased connectivity were identified in patients. We found reduced global and increased local connectivity in children with AgCC compared to controls. Neural plasticity in AgCC may attempt to increase the interhemispheric connectivity through alternative decussating pathways other than the corpus callosum. • The structural connectivity analysis quantifies white-matter networks within the brain • In callosal agenesis there is reduced global and increased local connectivity • In callosal agenesis, alternative decussating pathways are used for interhemispheric connectivity.

  12. Altered intrinsic functional brain architecture in female patients with bulimia nervosa.

    Science.gov (United States)

    Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun'Ai; Correll, Christoph U; Mitchell, Philip B; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei

    2017-11-01

    Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities

  13. Effects of chronic and acute stimulants on brain functional connectivity hubs.

    Science.gov (United States)

    Konova, Anna B; Moeller, Scott J; Tomasi, Dardo; Goldstein, Rita Z

    2015-12-02

    The spatial distribution and strength of information processing 'hubs' are essential features of the brain׳s network topology, and may thus be particularly susceptible to neuropsychiatric disease. Despite growing evidence that drug addiction alters functioning and connectivity of discrete brain regions, little is known about whether chronic drug use is associated with abnormalities in this network-level organization, and if such abnormalities could be targeted for intervention. We used functional connectivity density (FCD) mapping to evaluate how chronic and acute stimulants affect brain hubs (i.e., regions with many short-range or long-range functional connections). Nineteen individuals with cocaine use disorders (CUD) and 15 healthy controls completed resting-state fMRI scans following a randomly assigned dose of methylphenidate (MPH; 20mg) or placebo. Short-range and long-range FCD maps were computed for each participant and medication condition. CUD participants had increased short-range and long-range FCD in the ventromedial prefrontal cortex, posterior cingulate/precuneus, and putamen/amygdala, which in areas of the default mode network correlated with years of use. Across participants, MPH decreased short-range FCD in the thalamus/putamen, and decreased long-range FCD in the supplementary motor area and postcentral gyrus. Increased density of short-range and long-range functional connections to default mode hubs in CUD suggests an overrepresentation of these resource-expensive hubs. While the effects of MPH on FCD were only partly overlapping with those of CUD, MPH-induced reduction in the density of short-range connections to the putamen/thalamus, a network of core relevance to habit formation and addiction, suggests that some FCD abnormalities could be targeted for intervention. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The connection between rhythmicity and brain function.

    Science.gov (United States)

    Thaut, M H; Kenyon, G P; Schauer, M L; McIntosh, G C

    1999-01-01

    endeavor with important ramifications for the study of brain function, sensory perception, and motor behavior. One of the most exciting findings in this research, however, may be the evidence that the interaction between auditory rhythm and physical response can be effectively harnessed for specific therapeutic purposes in the rehabilitation of persons with movement disorders.

  15. Brain structure abnormalities in first-episode psychosis patients with persistent apathy.

    Science.gov (United States)

    Mørch-Johnsen, Lynn; Nesvåg, Ragnar; Faerden, Ann; Haukvik, Unn K; Jørgensen, Kjetil N; Lange, Elisabeth H; Andreassen, Ole A; Melle, Ingrid; Agartz, Ingrid

    2015-05-01

    Apathy is an enduring and debilitating feature related to poor outcome in patients with first-episode psychosis (FEP). The biological underpinnings of apathy are unknown. We tested if FEP patients with persistent apathy (PA) differed from FEP patients without persistent apathy (NPA) in specific brain structure measures in the early phase of illness. A total of 70 Norwegian FEP patients were recruited within 1 year of first adequate treatment. They were defined as having PA (N=18) or NPA (N=52) based on Apathy Evaluation Scale score at baseline and 1 year later. MRI measures of cortical thickness and subcortical structure volumes were compared between the PA and NPA groups. The PA group had significantly thinner left orbitofrontal cortex and left anterior cingulate cortex. The results remained significant after controlling for depressive symptoms and antipsychotic medication. FEP patients with persistent apathy in the early phase of their illness show brain structural changes compared to FEP patients without persistent apathy. The changes are confined to regions associated with motivation, occur early in the disease course and appear selectively in PA patients when both groups are compared to healthy controls. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Structural and functional brain networks: from connections to cognition.

    Science.gov (United States)

    Park, Hae-Jeong; Friston, Karl

    2013-11-01

    How rich functionality emerges from the invariant structural architecture of the brain remains a major mystery in neuroscience. Recent applications of network theory and theoretical neuroscience to large-scale brain networks have started to dissolve this mystery. Network analyses suggest that hierarchical modular brain networks are particularly suited to facilitate local (segregated) neuronal operations and the global integration of segregated functions. Although functional networks are constrained by structural connections, context-sensitive integration during cognition tasks necessarily entails a divergence between structural and functional networks. This degenerate (many-to-one) function-structure mapping is crucial for understanding the nature of brain networks. The emergence of dynamic functional networks from static structural connections calls for a formal (computational) approach to neuronal information processing that may resolve this dialectic between structure and function.

  17. The exploration of the changes in bone metabolism in patients with abnormal thyroid function

    International Nuclear Information System (INIS)

    Chu Shaolin; Li Xiaohong; Lei Qiufang; Ye Peihong; Chai Luhua

    2001-01-01

    To explore the changes in bone metabolism with abnormal thyroid function, BGP and PTH in 91 patients with hyperthyroidism, 37 patients with hypothyroidism, 51 controls, were measured by means of IRMA, calcaneus heel bone density (BMD) was measured by means of 241 Am single photon absorptiometry. BGP levels in hyperthyroidism were significantly higher than those in controls (P < 0.001). BGP levels in hypothyroidism were significantly lower than those in controls (P < 0.001). PTH levels in hyperthyroidism were a little lower than those in controls (P < 0.05). PTH levels in hypothyroidism were significantly higher than those in controls (P < 0.001). The measurement of BMD showed that the prevalence rates of osteoporosis (OP) in hyperthyroidism and hypothyroidism were significantly higher than those in controls. In hyperthyroidism and hypothyroidism groups the age of OP tends to be younger. The patients with hyperthyroidism over 55 years of age were all suffered from OP. The changes in BGP and PTH were earlier than BMD, so BGP and PTH can be used as sensitive indicator of the changes in bone metabolism with abnormal thyroid function, especially for curative effect observations

  18. Physiologic abnormalities of cardiac function in progressive systemic sclerosis with diffuse scleroderma

    International Nuclear Information System (INIS)

    Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.; Steen, V.D.; Uretsky, B.F.; Owens, G.R.; Rodnan, G.P.

    1984-01-01

    To investigate cardiopulmonary function in progressive systemic sclerosis with diffuse scleroderma, we studied 26 patients with maximal exercise and redistribution thallium scans, rest and exercise radionuclide ventriculography, pulmonary-function testing, and chest roentgenography. Although only 6 patients had clinical evidence of cardiac involvement, 20 had abnormal thallium scans, including 10 with reversible exercise-induced defects and 18 with fixed defects (8 had both). Seven of the 10 patients who had exercise-induced defects and underwent cardiac catheterization had normal coronary angiograms. Mean resting left ventricular ejection fraction and mean resting right ventricular ejection fraction were lower in patients with post-exercise left ventricular thallium defect scores above the median (59 +/- 13 per cent vs. 69 +/- 6 per cent, and 36 +/- 12 per cent vs. 47 +/- 7 per cent, respectively). The authors conclude that in progressive systemic sclerosis with diffuse scleroderma, abnormalities of myocardial perfusion are common and appear to be due to a disturbance of the myocardial microcirculation. Both right and left ventricular dysfunction appear to be related to this circulatory disturbance, suggesting ischemically mediated injury

  19. Functional brain imaging in the dementias: role in early detection, differential diagnosis, and longitudinal studies

    Energy Technology Data Exchange (ETDEWEB)

    Devous, M.D. Sr. [Nuclear Medicine Center and Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX (United States)

    2002-12-01

    This review considers the role of functional brain imaging techniques in the dementias. The substantial assistance that especially single-photon emission tomography and positron emission tomography can play in the initial diagnosis of dementia and in the differential diagnosis of the specific dementing disorder is discussed. These techniques alone essentially match the sensitivity and specificity of clinical diagnoses in distinguishing Alzheimer's dementia (AD) from age-matched controls, from frontal lobe dementia and vascular dementia, and even from Lewy body dementia. Newer analytic techniques such as voxel-based correlational analyses and discriminant function analyses enhance the power of such differential diagnoses. Functional brain imaging techniques can also significantly assist in patient screening for clinical trials. The correlation of the observed deficits with specific patterns of cognitive abnormalities permits enhanced patient management and treatment planning and improved longitudinal assessment of outcome. It is also noteworthy that the classic abnormalities of temporoparietal and posterior cingulate hypoperfusion or hypometabolism appear to be present prior to symptom onset. These abnormalities predict progression to AD in the presence of the earliest of symptoms, and are present even in cognitively normal but at-risk subjects, with a severity proportional to the risk status. Even greater predictive ability for progression to AD is obtained by combining measures of perfusion or metabolism with risk factors, tau protein levels, hippocampal N-Acetyl aspartate concentrations, or hippocampal volume measures. (orig.)

  20. Eye and brain abnormalities in congenital muscular dystrophies caused by fukutin-related protein gene (FKRP) mutations.

    Science.gov (United States)

    Kava, Maina; Chitayat, David; Blaser, Susan; Ray, Peter N; Vajsar, Jiri

    2013-11-01

    Mutations in the fukutin-related protein gene account for a broad spectrum of phenotypes ranging from severe congenital muscular dystrophies to a much milder limb-girdle muscular dystrophy 2I. The involvement of the eyes is variable, with most patients having normal eye examination. We describe eye and brain abnormalities in a 16 month-old-boy with Walker-Warburg syndrome phenotype resulting from a novel fukutin-related protein gene mutation in exon 4 and compare these with other reported patients with fukutin-related protein gene mutation. All patients with reported fukutin-related protein gene mutations who had eye involvement were included. Their clinical features, brain magnetic resonance imaging, and eye findings were compared with our patient. Patients with fukutin-related protein gene mutation tend to have no or mild eye involvement (generally strabismus), with very few cases reported of moderate to severe eye involvement. Our patient with a novel mutation c.558dupC(p.Ala187fs) represents one of the most severe phenotypes described in regard to eye involvement. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality?

    Science.gov (United States)

    Wichmann, Thomas; DeLong, Mahlon R

    2016-04-01

    Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.

  2. Development of large-scale functional brain networks in children.

    Directory of Open Access Journals (Sweden)

    Kaustubh Supekar

    2009-07-01

    Full Text Available The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y and 22 young-adults (ages 19-22 y. Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  3. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    Science.gov (United States)

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Structural and Functional Brain Patterns of Non-Motor Syndromes in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Tino Prell

    2018-03-01

    Full Text Available Parkinson’s disease (PD is a common, progressive and multisystem neurodegenerative disorder characterized by motor and non-motor symptoms. Advanced magnetic resonance imaging, positron emission tomography, and functional magnetic resonance imaging can render the view toward understanding the neural basis of these non-motor syndromes, as they help to understand the underlying pathophysiological abnormalities. This review provides an up-to-date description of structural and functional brain alterations in patients with PD with cognitive deficits, visual hallucinations, fatigue, impulsive behavior disorders, sleep disorders, and pain.

  5. Loss of neuronal integrity: a cause of hypometabolism in patients with traumatic brain injury without MRI abnormality in the chronic stage

    International Nuclear Information System (INIS)

    Shiga, Tohru; Matsuyama, Tetsuaki; Kageyama, Hiroyuki; Kohno, Tomoya; Tamaki, Nagara; Ikoma, Katsunori; Isoyama, Hirotaka; Katoh, Chietsugu; Kuge, Yuji; Terae, Satoshi

    2006-01-01

    Traumatic brain injury (TBI) causes brain dysfunction in many patients. However, some patients have severe brain dysfunction but display no abnormalities on magnetic resonance imaging (MRI). There have been some reports of hypometabolism even in such patients. The purpose of this study was to investigate the relationship between metabolic abnormality and loss of neuronal integrity in TBI patients with some symptoms but without MRI abnormalities. The study population comprised ten patients with TBI and ten normal volunteers. All of the patients were examined at least 1 year after the injury. 15 O-labelled gas PET and [ 11 C]flumazenil (FMZ) positron emission tomography (PET) were carried out. The cerebral metabolic rate of oxygen (CMRO 2 ) and binding potential (BP) images of FMZ were calculated. Axial T2WI, T2*WI and FLAIR images were obtained. Coronal images were added in some cases. All of the patients had normal MRI findings, and all showed areas with abnormally low CMRO 2 . Low uptake on BP images was observed in six patients (60%). No lesions that showed low uptake on BP images were without low CMRO 2 . On the other hand, there were 14 lesions with low CMRO 2 but without BP abnormalities. These results indicate that there are metabolic abnormalities in TBI patients with some symptoms after brain injury but without abnormalities on MRI. Some of the hypometabolic lesions showed low BP, indicating a loss of neuronal integrity. Thus, FMZ PET may have potential to distinguish hypometabolism caused by neuronal loss from that caused by other factors. (orig.)

  6. Risk of vigabatrin-associated brain abnormalities on MRI in the treatment of infantile spasms is dose-dependent.

    Science.gov (United States)

    Hussain, Shaun A; Tsao, Jackie; Li, Menglu; Schwarz, Madeline D; Zhou, Raymond; Wu, Joyce Y; Salamon, Noriko; Sankar, Raman

    2017-04-01

    Although the link between vigabatrin (VGB) and retinotoxicity is well known, little attention has been focused on the risk of VGB-associated brain abnormalities on magnetic resonance imaging (MRI) (VABAM), namely reversible-and largely asymptomatic-signal changes in the thalami, basal ganglia, brainstem tegmentum, and cerebellar nuclei. Using a large infantile spasms cohort, we set out to identify predictors of these phenomena. Children with infantile spasms were retrospectively identified. Brain MRI reports were serially reviewed without knowledge of VGB exposure. Upon VABAM discovery, records were systematically reviewed to ascertain presence of symptoms attributable to VGB. Separately, progress notes were sequentially reviewed to identify and quantify VGB exposure. We identified 507 brain MRI studies among 257 patients with infantile spasms. VGB treatment was documented in 143 children, with detailed exposure data available for 104, of whom 45 had at least one MRI study during VGB treatment. Among the limited subset of asymptomatic children who underwent MRI (n = 40), 6 exhibited VABAM. Risk of asymptomatic VABAM was dose-dependent, as peak (but not cumulative) VGB dosage was strongly associated with asymptomatic VABAM (p = 0.0028). In an exploratory analysis, we encountered 4 children with symptomatic VABAM among 104 patients with detailed VGB exposure data. Risk of symptomatic VABAM was seemingly dose-independent, and potentially associated with concomitant hormonal therapy (i.e., prednisolone and adrenocorticotropic hormone [ACTH]) (p = 0.039). We have demonstrated dose-dependent risk of asymptomatic VABAM and uncovered a possible association between symptomatic VABAM and concomitant hormonal therapy. Caution should be exercised in the use of high VGB dosage (i.e., >175 mg/kg/day), and further study is warranted to confirm the potential impact of hormonal therapy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  7. Magnetic resonance imaging of functional connectivity in Parkinson disease in the resting brain

    International Nuclear Information System (INIS)

    Liu Xian; Liu Bo; Luo Xiaodong; Li Ningna; Chen Zhiguang; Chen Jun

    2009-01-01

    Objective: To investigate functional connectivity changes in Parkinson disease in the resting brain using functional magnetic resonance imaging. Methods: Nine patients with Parkinson disease and eight age-matched healthy volunteers were entered into the study. The bilateral globus pallidus were chosen as seed points, the functional MR data acquired in the resting state were processed to investigate functional connectivity in PD patients and the results were compared with those of the controls. Results: In age-matched healthy controls, there are regions which had functional connectivity with bilateral globus pallidus, including bilateral temporal poles, bilateral hippocampus, bilateral thalami, posterior cingulate cortex, right middle occipital gyms and right superior parietal gyms. In PD patients, brain regions including bilateral cerebellum, left hippocampus, bilateral superior temporal gyri, left inferior frontal gyrus, left middle frontal gyrus, left precentral gyrus, left inferior parietal gyrus and left superior parietal gyrus, had functional connectivity with bilateral globus pallidus. Compared to healthy controls, increased functional connectivity in bilateral cerebellum, bilateral temporal lobes, left frontal lobe and left parietal lobe, and decreased functional connectivity in bilateral thalami were observed in PD patients. Conclusion: Abnormal changes of brain functional connectivity exists in Parkinson's disease in the resting state. (authors)

  8. Decreased resting functional connectivity after traumatic brain injury in the rat.

    Directory of Open Access Journals (Sweden)

    Asht Mangal Mishra

    Full Text Available Traumatic brain injury (TBI contributes to about 10% of acquired epilepsy. Even though the mechanisms of post-traumatic epileptogenesis are poorly known, a disruption of neuronal networks predisposing to altered neuronal synchrony remains a viable candidate mechanism. We tested a hypothesis that resting state BOLD-fMRI functional connectivity can reveal network abnormalities in brain regions that are connected to the lesioned cortex, and that these changes associate with functional impairment, particularly epileptogenesis. TBI was induced using lateral fluid-percussion injury in seven adult male Sprague-Dawley rats followed by functional imaging at 9.4T 4 months later. As controls we used six sham-operated animals that underwent all surgical operations but were not injured. Electroencephalogram (EEG-functional magnetic resonance imaging (fMRI was performed to measure resting functional connectivity. A week after functional imaging, rats were implanted with bipolar skull electrodes. After recovery, rats underwent pentyleneterazol (PTZ seizure-susceptibility test under EEG. For image analysis, four pairs of regions of interests were analyzed in each hemisphere: ipsilateral and contralateral frontal and parietal cortex, hippocampus, and thalamus. High-pass and low-pass filters were applied to functional imaging data. Group statistics comparing injured and sham-operated rats and correlations over time between each region were calculated. In the end, rats were perfused for histology. None of the rats had epileptiform discharges during functional imaging. PTZ-test, however revealed increased seizure susceptibility in injured rats as compared to controls. Group statistics revealed decreased connectivity between the ipsilateral and contralateral parietal cortex and between the parietal cortex and hippocampus on the side of injury as compared to sham-operated animals. Injured animals also had abnormal negative connectivity between the ipsilateral and

  9. Age and sensory processing abnormalities predict declines in encoding and recall of temporally manipulated speech in high-functioning adults with ASD.

    Science.gov (United States)

    Mayer, Jennifer L; Heaton, Pamela F

    2014-02-01

    While temporal and perceptual processing abnormalities, identified in a number of electrophysiological and brain imaging studies of individuals with (ASD), are likely to impact on speech perception, surprisingly little is known about the behavioral outcomes of such abnormalities. It has been hypothesized that rapid temporal processing deficits may be linked to impaired language development through interference with acoustic information during speech perception. The present study aimed to investigate the impact of temporal changes on encoding and recall of speech, and the associated cognitive, clinical, and behavioral correlates in adults with ASD. Research carried out with typically developing (TD) adults has shown that word recall diminishes as the speed of speech increases, and it was predicted that the magnitude of this effect would be far greater in those with ASD because of a preexisting rapid temporal processing deficit. Nineteen high-functioning adults with ASD, and age- and intelligence-matched TD controls performed verbatim recall of temporally manipulated sentences. Reduced levels of word recall in response to increases in presentation speed were observed, and this effect was greater in the older participants in the ASD group than in the control group. This is the first study to show that both sensory abnormalities and aging impact on speech encoding in ASD. Auditory processing deficits in ASD may be indicative of an association with the sensory abnormalities and social and communication impairments characterizing the disorder. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  10. Evidence for hubs in human functional brain networks.

    Science.gov (United States)

    Power, Jonathan D; Schlaggar, Bradley L; Lessov-Schlaggar, Christina N; Petersen, Steven E

    2013-08-21

    Hubs integrate and distribute information in powerful ways due to the number and positioning of their contacts in a network. Several resting-state functional connectivity MRI reports have implicated regions of the default mode system as brain hubs; we demonstrate that previous degree-based approaches to hub identification may have identified portions of large brain systems rather than critical nodes of brain networks. We utilize two methods to identify hub-like brain regions: (1) finding network nodes that participate in multiple subnetworks of the brain, and (2) finding spatial locations in which several systems are represented within a small volume. These methods converge on a distributed set of regions that differ from previous reports on hubs. This work identifies regions that support multiple systems, leading to spatially constrained predictions about brain function that may be tested in terms of lesions, evoked responses, and dynamic patterns of activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Abnormal immune system development and function in schizophrenia helps reconcile diverse findings and suggests new treatment and prevention strategies.

    Science.gov (United States)

    Anders, Sherry; Kinney, Dennis K

    2015-08-18

    Extensive research implicates disturbed immune function and development in the etiology and pathology of schizophrenia. In addition to reviewing evidence for immunological factors in schizophrenia, this paper discusses how an emerging model of atypical immune function and development helps explain a wide variety of well-established - but puzzling - findings about schizophrenia. A number of theorists have presented hypotheses that early immune system programming, disrupted by pre- and perinatal adversity, often combines with abnormal brain development to produce schizophrenia. The present paper focuses on the hypothesis that disruption of early immune system development produces a latent immune vulnerability that manifests more fully after puberty, when changes in immune function and the thymus leave individuals more susceptible to infections and immune dysfunctions that contribute to schizophrenia. Complementing neurodevelopmental models, this hypothesis integrates findings on many contributing factors to schizophrenia, including prenatal adversity, genes, climate, migration, infections, and stress, among others. It helps explain, for example, why (a) schizophrenia onset is typically delayed until years after prenatal adversity, (b) individual risk factors alone often do not lead to schizophrenia, and (c) schizophrenia prevalence rates actually tend to be higher in economically advantaged countries. Here we discuss how the hypothesis explains 10 key findings, and suggests new, potentially highly cost-effective, strategies for treatment and prevention of schizophrenia. Moreover, while most human research linking immune factors to schizophrenia has been correlational, these strategies provide ethical ways to experimentally test in humans theories about immune function and schizophrenia. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Functional brain networks in Alzheimer's disease: EEG analysis based on limited penetrable visibility graph and phase space method

    Science.gov (United States)

    Wang, Jiang; Yang, Chen; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2016-10-01

    In this paper, EEG series are applied to construct functional connections with the correlation between different regions in order to investigate the nonlinear characteristic and the cognitive function of the brain with Alzheimer's disease (AD). First, limited penetrable visibility graph (LPVG) and phase space method map single EEG series into networks, and investigate the underlying chaotic system dynamics of AD brain. Topological properties of the networks are extracted, such as average path length and clustering coefficient. It is found that the network topology of AD in several local brain regions are different from that of the control group with no statistically significant difference existing all over the brain. Furthermore, in order to detect the abnormality of AD brain as a whole, functional connections among different brain regions are reconstructed based on similarity of clustering coefficient sequence (CCSS) of EEG series in the four frequency bands (delta, theta, alpha, and beta), which exhibit obvious small-world properties. Graph analysis demonstrates that for both methodologies, the functional connections between regions of AD brain decrease, particularly in the alpha frequency band. AD causes the graph index complexity of the functional network decreased, the small-world properties weakened, and the vulnerability increased. The obtained results show that the brain functional network constructed by LPVG and phase space method might be more effective to distinguish AD from the normal control than the analysis of single series, which is helpful for revealing the underlying pathological mechanism of the disease.

  13. Structural brain abnormalities in patients with inflammatory illness acquired following exposure to water-damaged buildings: a volumetric MRI study using NeuroQuant®.

    Science.gov (United States)

    Shoemaker, Ritchie C; House, Dennis; Ryan, James C

    2014-01-01

    Executive cognitive and neurologic abnormalities are commonly seen in patients with a chronic inflammatory response syndrome (CIRS) acquired following exposure to the interior environment of water-damaged buildings (WDB), but a clear delineation of the physiologic or structural basis for these abnormalities has not been defined. Symptoms of affected patients routinely include headache, difficulty with recent memory, concentration, word finding, numbness, tingling, metallic taste and vertigo. Additionally, persistent proteomic abnormalities in inflammatory parameters that can alter permeability of the blood-brain barrier, such as C4a, TGFB1, MMP9 and VEGF, are notably present in cases of CIRS-WDB compared to controls, suggesting a consequent inflammatory injury to the central nervous system. Findings of gliotic areas in MRI scans in over 45% of CIRS-WDB cases compared to 5% of controls, as well as elevated lactate and depressed ratios of glutamate to glutamine, are regularly seen in MR spectroscopy of cases. This study used the volumetric software program NeuroQuant® (NQ) to determine specific brain structure volumes in consecutive patients (N=17) seen in a medical clinic specializing in inflammatory illness. Each of these patients presented for evaluation of an illness thought to be associated with exposure to WDB, and received an MRI that was evaluated by NQ. When compared to those of a medical control group (N=18), statistically significant differences in brain structure proportions were seen for patients in both hemispheres of two of the eleven brain regions analyzed; atrophy of the caudate nucleus and enlargement of the pallidum. In addition, the left amygdala and right forebrain were also enlarged. These volumetric abnormalities, in conjunction with concurrent abnormalities in inflammatory markers, suggest a model for structural brain injury in "mold illness" based on increased permeability of the blood-brain barrier due to chronic, systemic inflammation

  14. Intraoperative Functional Ultrasound Imaging of Human Brain Activity

    OpenAIRE

    Imbault, Marion; Chauvet, Dorian; Gennisson, Jean-Luc; Capelle, Laurent; Tanter, Mickael

    2017-01-01

    International audience; The functional mapping of brain activity is essential to perform optimal glioma surgery and to minimize the risk of postoperative deficits. We introduce a new, portable neuroimaging modality of the human brain based on functional ultrasound (fUS) for deep functional cortical mapping. Using plane-wave transmissions at an ultrafast frame rate (1 kHz), fUS is performed during surgery to measure transient changes in cerebral blood volume with a high spatiotemporal resoluti...

  15. Functional connectivity and brain activation: a synergistic approach.

    Science.gov (United States)

    Tomasi, Dardo; Wang, Ruiliang; Wang, Gene-Jack; Volkow, Nora D

    2014-10-01

    Traditional functional magnetic resonance imaging (fMRI) studies exploit endogenous brain activity for mapping brain activation during "periodic" cognitive/emotional challenges or brain functional connectivity during the "resting state". Previous studies demonstrated that these approaches provide a limited view of brain function which can be complemented by each other. We hypothesized that graph theory functional connectivity density (FCD) mapping would demonstrate regional FCD decreases between resting-state scan and a continuous "task-state" scan. Forty-five healthy volunteers underwent functional connectivity MRI during resting-state as well as a continuous visual attention task, and standard fMRI with a blocked version of the visual attention task. High-resolution data-driven FCD mapping was used to measure task-related connectivity changes without a priori hypotheses. Results demonstrate that task performance was associated with FCD decreases in brain regions weakly activated/deactivated by the task. Furthermore, a pronounced negative correlation between blood oxygen level-dependent-fMRI activation and task-related FCD decreases emerged across brain regions that also suggest the disconnection of task-irrelevant networks during task performance. The correlation between improved accuracy and stronger FCD decreases further suggests the disconnection of task-irrelevant networks during task performance. Functional connectivity can potentiate traditional fMRI studies and offer a more complete picture of brain function. Published by Oxford University Press 2013. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Structural brain abnormalities in postural tachycardia syndrome: A VBM-DARTEL study

    Directory of Open Access Journals (Sweden)

    Satoshi eUmeda

    2015-03-01

    Full Text Available Postural tachycardia syndrome (PoTS, a form of dysautonomia, is characterized by orthostatic intolerance, and is frequently accompanied by a range of symptoms including palpitations, lightheadedness, clouding of thought, blurred vision, fatigue, anxiety and depression. Although the estimated prevalence of PoTS is approximately 5-10 times ascommon as the better-known condition orthostatic hypotension, the neural substrates of the syndrome are poorly characterized. In the present study, we used magnetic resonance imaging (MRI with voxel-based morphometry (VBM applying the diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL procedure to examine variation in regional brain structure associated with PoTS. We recruited eleven patients with established PoTS and twenty-three age-matched normal controls. Group comparison of grey matter volume revealed diminished grey matter volume within the left anterior insula, right middle frontal gyrus and right cingulate gyrus in the PoTS group. We also observed lower white matter volume beneath the precentral gyrus and paracentral lobule, right pre- and post-central gyrus, paracentral lobule and superior frontal gyrus in PoTS patients. Subsequent ROI analyses revealed significant negative correlations between left insula volume and trait anxiety and depression scores. Together, these findings of structural differences, particularly within insular and cingulate components of the salience network, suggest a link between dysregulated physiological reactions arising from compromised central autonomic control (and interoceptive representation and increased vulnerability to psychiatric symptoms in PoTS patients.

  17. Beyond localized and distributed accounts of brain functions. Comment on “Understanding brain networks and brain organization” by Pessoa

    Science.gov (United States)

    Cauda, Franco; Costa, Tommaso; Tamietto, Marco

    2014-09-01

    Recent evidence in cognitive neuroscience lends support to the idea that network models of brain architecture provide a privileged access to the understanding of the relation between brain organization and cognitive processes [1]. The core perspective holds that cognitive processes depend on the interactions among distributed neuronal populations and brain structures, and that the impact of a given region on behavior largely depends on its pattern of anatomical and functional connectivity [2,3].

  18. Analysis of abnormal findings observed on brain MRI T2 weighted image in a system for the detection of asymptomatic brain disease in 1,200 cases

    International Nuclear Information System (INIS)

    Horiguchi, Takashi; Yoshida, Kazunari; Sato, Syuzo; Kawase, Takeshi; Toya, Shigeo; Mizukami, Masahiro

    1998-01-01

    In this study we described the significance of asymptomatic cerebral infarction (ACI) and periventricular hyperintensity (PVH) observed on brain MRI in a system for detection of asymptomatic brain disease with 1,200 cases. The risk factors (RF), population in each age bracket of ACI and PVH, among groups with hypertension (HTG) and without RF (no-RFG), were investigated. The RF of ACI were hypertension (HT), diabetes mellitus (DM), and aging. Without DM, those are common RF of PVH. The population of PVH and ACI with PVH increased with aging in no-RFG. On the other hand, only the population of ACI with PVH increased with aging in HTG. The rate of these abnormal findings in HTG was significantly higher than that in no-RFG. In addition, HT accelerated the occurrence of these findings by 10-20 years. When patients were over 60 years old, ACI increased rapidly. Accordingly, we concluded that PVH and ACI had a common background. Long term follow up concerning the incidence of ACI in the group with only PVH was necessary. It was desirable that treatment for RF should be effected before the age of sixty. (author)

  19. Chemotherapeutic agents increase the risk for pulmonary function test abnormalities in patients with multiple myeloma.

    Science.gov (United States)

    Bruce, Jarrod T; Tran, Jerry M; Phillips, Gary; Elder, Pat; Mastronarde, John G; Devine, Steven M; Hofmeister, Craig C; Wood, Karen L

    2012-10-01

    Case reports of pulmonary toxicity have been published regarding bortezomib, lenalidomide, and thalidomide but there are no published reports looking at the possible long-term pulmonary effects of these medications. This article describes a possible relationship between the administration of bortezomib and thalidomide and the development of pulmonary function test (PFT) abnormalities. It also suggests that routine pulmonary function testing may be required in patients receiving these medications until larger studies can be performed to confirm this observation. Multiple myeloma is a common malignancy accounting for approximately 1% of all malignancies worldwide. Bortezomib, lenalidomide, and thalidomide are immunomodulatory derivatives that are used in the treatment of multiple myeloma (MM). There have been case reports of pulmonary disease associated with these agents, but the effect of these agents on pulmonary function test (PFT) results is unknown. We reviewed the records of 343 patients with MM who underwent PFTs before autologous stem cell transplantation. One hundred nine patients had not received any of the 3 medications, whereas 234 had received 1 or more of these agents. Patients exposed to bortezomib were more likely to have obstructive PFT results (P = .015) when compared with patients not exposed to this medication. Restrictive PFT results were more likely after exposure to thalidomide (P = .017). A logistic regression model was performed and when adjusted for age, sex, Durie-Salmon (DS) stage, body mass index (BMI), time from diagnosis to transplantation in days, and smoking history, the odds of obstruction were 1.96 times higher for patients who received bortezomib. The odds of restriction were 1.97 times higher after exposure to thalidomide. There appears to be a risk of PFT abnormalities developing in patients treated with bortezomib and thalidomide. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Impaired auditory-vestibular functions and behavioral abnormalities of Slitrk6-deficient mice.

    Directory of Open Access Journals (Sweden)

    Yoshifumi Matsumoto

    Full Text Available A recent study revealed that Slitrk6, a transmembrane protein containing a leucine-rich repeat domain, has a critical role in the development of the inner ear neural circuit. However, it is still unknown how the absence of Slitrk6 affects auditory and vestibular functions. In addition, the role of Slitrk6 in regions of the central nervous system, including the dorsal thalamus, has not been addressed. To understand the physiological role of Slitrk6, Slitrk6-knockout (KO mice were subjected to systematic behavioral analyses including auditory and vestibular function tests. Compared to wild-type mice, the auditory brainstem response (ABR of Slitrk6-KO mice indicated a mid-frequency range (8-16 kHz hearing loss and reduction of the first ABR wave. The auditory startle response was also reduced. A vestibulo-ocular reflex (VOR test showed decreased vertical (head movement-induced VOR gains and normal horizontal VOR. In an open field test, locomotor activity was reduced; the tendency to be in the center region was increased, but only in the first 5 min of the test, indicating altered adaptive responses to a novel environment. Altered adaptive responses were also found in a hole-board test in which head-dip behavior was increased and advanced. Aside from these abnormalities, no clear abnormalities were noted in the mood, anxiety, learning, spatial memory, or fear memory-related behavioral tests. These results indicate that the Slitrk6-KO mouse can serve as a model of hereditary sensorineural deafness. Furthermore, the altered responses of Slitrk6-KO mice to the novel environment suggest a role of Slitrk6 in some cognitive functions.

  1. The Role of Helicobacter pylori Seropositivity in Insulin Sensitivity, Beta Cell Function, and Abnormal Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Lou Rose Malamug

    2014-01-01

    Full Text Available Infection, for example, Helicobacter pylori (H. pylori, has been thought to play a role in the pathogenesis of type 2 diabetes mellitus (T2DM. Our aim was to determine the role of H. pylori infection in glucose metabolism in an American cohort. We examined data from 4,136 non-Hispanic white (NHW, non-Hispanic black (NHB, and Mexican Americans (MA aged 18 and over from the NHANES 1999-2000 cohort. We calculated the odds ratios for states of glucose tolerance based on the H. pylori status. We calculated and compared homeostatic model assessment insulin resistance (HOMA-IR and beta cell function (HOMA-B in subjects without diabetes based on the H. pylori status. The results were adjusted for age, body mass index (BMI, poverty index, education, alcohol consumption, tobacco use, and physical activity. The H. pylori status was not a risk factor for abnormal glucose tolerance. After adjustment for age and BMI and also adjustment for all covariates, no difference was found in either HOMA-IR or HOMA-B in all ethnic and gender groups except for a marginally significant difference in HOMA-IR in NHB females. H. pylori infection was not a risk factor for abnormal glucose tolerance, nor plays a major role in insulin resistance or beta cell dysfunction.

  2. Functional and Structural Abnormalities in Deferoxamine Retinopathy: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Maura Di Nicola

    2015-01-01

    Full Text Available Deferoxamine mesylate (DFO is the most commonly used iron-chelating agent to treat transfusion-related hemosiderosis. Despite the clear advantages for the use of DFO, numerous DFO-related systemic toxicities have been reported in the literature, as well as sight-threatening ocular toxicity involving the retinal pigment epithelium (RPE. The damage to the RPE can lead to visual field defects, color-vision defects, abnormal electrophysiological tests, and permanent visual deterioration. The purpose of this review is to provide an updated summary of the ocular findings, including both functional and structural abnormalities, in DFO-treated patients. In particular, we pay particular attention to analyzing results of multimodal technologies for retinal imaging, which help ophthalmologists in the early diagnosis and correct management of DFO retinopathy. Fundus autofluorescence, for example, is not only useful for screening patients at high-risk of DFO retinopathy, but is also a prerequisite for identify specific high-risk patterns of RPE changes that are relevant for the prognosis of the disease. In addition, optical coherence tomography may have a clinical usefulness in detecting extent and location of different retinal changes in DFO retinopathy. Finally, this review wants to underline the need for universally approved guidelines for screening and followup of this particular disease.

  3. The influence of abnormal thyroid function on sex hormones and bone metabolism in female patients

    International Nuclear Information System (INIS)

    Li Xiaohong; Chu Shaolin; Lei Qiufang; Ye Peihong; Chai Luhua

    2001-01-01

    Objectives: To explore the influence of hyperthyroidism and hypothyroidism on sex hormones and bone metabolism in female patients. Method: A single photon bone absorptiometry was used to measure calcareous bone mineral density (BMD) in 91 female patients with hyperthyroidism, and 37 female patients with hypothyroidism caused by Hashimoto's thyroiditis and 51 healthy female subjects with euthyroid. In addition the serum levels of BGP and PTH were determined by means of IRMA. Serum levels of FSH and E 2 were determined by RIA. Results: Serum levels of FSH , E 2 and BGP in hyperthyroidism group were significantly higher than those in control group. The serum levels of PTH were slightly lower than that in control group (P 2 and BGP were significantly lower than those in control group. The assessment of BMD showed that the prevalence rate of osteoporosis (OP) both in hyperthyroidism groups and in hypothyroidism groups was significantly higher than control group. The peak bone density in young and middle-aged female was decreased, and OP was more common in over 60-year-aged female with hypothyroidism. Conclusions: Female patients with abnormal thyroid function are often associated with abnormality of sex hormones. It leads to increasing the incidence of OP. The attack age of OP tends to be younger, especially aged patients with lymphocytic hypothyroidism increases more markedly. Therefore, BMD should be measured in all female patients with a variety of thyroid diseases

  4. Abnormal ventromedial prefrontal cortex function in children with psychopathic traits during reversal learning.

    Science.gov (United States)

    Finger, Elizabeth C; Marsh, Abigail A; Mitchell, Derek G; Reid, Marguerite E; Sims, Courtney; Budhani, Salima; Kosson, David S; Chen, Gang; Towbin, Kenneth E; Leibenluft, Ellen; Pine, Daniel S; Blair, James R

    2008-05-01

    Children and adults with psychopathic traits and conduct or oppositional defiant disorder demonstrate poor decision making and are impaired in reversal learning. However, the neural basis of this impairment has not previously been investigated. Furthermore, despite high comorbidity of psychopathic traits and attention-deficit/hyperactivity disorder, to our knowledge, no research has attempted to distinguish neural correlates of childhood psychopathic traits and attention-deficit/hyperactivity disorder. To determine the neural regions that underlie the reversal learning impairments in children with psychopathic traits plus conduct or oppositional defiant disorder. Case-control study. Government clinical research institute. Forty-two adolescents aged 10 to 17 years: 14 with psychopathic traits and oppositional defiant disorder or conduct disorder, 14 with attention-deficit/hyperactivity disorder only, and 14 healthy controls. Blood oxygenation level-dependent signal as measured via functional magnetic resonance imaging during a probabilistic reversal task. Children with psychopathic traits showed abnormal responses within the ventromedial prefrontal cortex (Brodmann area 10) during punished reversal errors compared with children with attention-deficit/hyperactivity disorder and healthy children (P children with psychopathic traits and demonstrates this dysfunction was not attributable to comorbid attention-deficit/hyperactivity disorder. These findings suggest that reversal learning impairments in patients with developmental psychopathic traits relate to abnormal processing of reinforcement information.

  5. A probabilistic approach to delineating functional brain regions

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Svarer, Claus; Frokjaer, Vibe G

    2009-01-01

    The purpose of this study was to develop a reliable observer-independent approach to delineating volumes of interest (VOIs) for functional brain regions that are not identifiable on structural MR images. The case is made for the raphe nuclei, a collection of nuclei situated in the brain stem known......-independent, reliable approach to delineating regions that can be identified only by functional imaging, here exemplified by the raphe nuclei. This approach can be used in future studies to create functional VOI maps based on neuroreceptor fingerprints retrieved through in vivo brain imaging Udgivelsesdato: 2009/6...

  6. Clinical manifestations that predict abnormal brain computed tomography (CT in children with minor head injury

    Directory of Open Access Journals (Sweden)

    Nesrin Alharthy

    2015-01-01

    Full Text Available Background: Computed tomography (CT used in pediatric pediatrics brain injury (TBI to ascertain neurological manifestations. Nevertheless, this practice is associated with adverse effects. Reports in the literature suggest incidents of morbidity and mortality in children due to exposure to radiation. Hence, it is found imperative to search for a reliable alternative. Objectives: The aim of this study is to find a reliable clinical alternative to detect an intracranial injury without resorting to the CT. Materials and Methods: Retrospective cross-sectional study was undertaken in patients (1-14 years with blunt head injury and having a Glasgow Coma Scale (GCS of 13-15 who had CT performed on them. Using statistical analysis, the correlation between clinical examination and positive CT manifestation is analyzed for different age-groups and various mechanisms of injury. Results: No statistically significant association between parameteres such as Loss of Consciousness, ′fall′ as mechanism of injury, motor vehicle accidents (MVA, more than two discrete episodes of vomiting and the CT finding of intracranial injury could be noted. Analyzed data have led to believe that GCS of 13 at presentation is the only important clinical predictor of intracranial injury. Conclusion: Retrospective data, small sample size and limited number of factors for assessing clinical manifestation might present constraints on the predictive rule that was derived from this review. Such limitations notwithstanding, the decision to determine which patients should undergo neuroimaging is encouraged to be based on clinical judgments. Further analysis with higher sample sizes may be required to authenticate and validate findings.

  7. Autism Spectrum Disorder as Early Neurodevelopmental Disorder: Evidence from the Brain Imaging Abnormalities in 2-3 Years Old Toddlers

    Science.gov (United States)

    Xiao, Zhou; Qiu, Ting; Ke, Xiaoyan; Xiao, Xiang; Xiao, Ting; Liang, Fengjing; Zou, Bing; Huang, Haiqing; Fang, Hui; Chu, Kangkang; Zhang, Jiuping; Liu, Yijun

    2014-01-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that occurs within the first 3 years of life, which is marked by social skills and communication deficits along with stereotyped repetitive behavior. Although great efforts have been made to clarify the underlying neuroanatomical abnormalities and brain-behavior relationships…

  8. Functional connectivity and temporal variability of brain connections in adults with attention deficit/hyperactivity disorder and bipolar disorder.

    Science.gov (United States)

    Barttfeld, Pablo; Petroni, Agustín; Báez, Sandra; Urquina, Hugo; Sigman, Mariano; Cetkovich, Marcelo; Torralva, Teresa; Torrente, Fernando; Lischinsky, Alicia; Castellanos, Xavier; Manes, Facundo; Ibañez, Agustín

    2014-01-01

    To assess brain functional connectivity and variability in adults with attention deficit/hyperactivity disorder (ADHD) or euthymic bipolar disorder (BD) relative to a control (CT) group. Electroencephalography (EEG) was measured in 35 participants (BD = 11; ADHD = 9; CT = 15) during an eyes-closed 10-min rest period, and connectivity and graph theory metrics were computed. A coefficient of variation (CV) computed also the connectivity's temporal variability of EEG. Multivariate associations between functional connectivity and clinical and neuropsychological profiles were evaluated. An enhancement of functional connectivity was observed in the ADHD (fronto-occipital connections) and BD (diffuse connections) groups. However, compared with CTs, intrinsic variability (CV) was enhanced in the ADHD group and reduced in the BD group. Graph theory metrics confirmed the existence of several abnormal network features in both affected groups. Significant associations of connectivity with symptoms were also observed. In the ADHD group, temporal variability of functional connections was associated with executive function and memory deficits. Depression, hyperactivity and impulsivity levels in the ADHD group were associated with abnormal intrinsic connectivity. In the BD group, levels of anxiety and depression were related to abnormal frontotemporal connectivity. In the ADHD group, we found that intrinsic variability was associated with deficits in cognitive performance and that connectivity abnormalities were related to ADHD symptomatology. The BD group exhibited less intrinsic variability and more diffuse long-range brain connections, and those abnormalities were related to interindividual differences in depression and anxiety. These preliminary results are relevant for neurocognitive models of abnormal brain connectivity in both disorders.

  9. The spectrum of structural and functional imaging abnormalities in temporal lobe epilepsy.

    Science.gov (United States)

    Bernhardt, Boris C; Bernasconi, Andrea; Liu, Min; Hong, Seok-Jun; Caldairou, Benoit; Goubran, Maged; Guiot, Marie C; Hall, Jeff; Bernasconi, Neda

    2016-07-01

    Although most temporal lobe epilepsy (TLE) patients show marked hippocampal sclerosis (HS) upon pathological examination, 40% present with no significant cell loss but gliotic changes only. To evaluate effects of hippocampal pathology on brain structure and functional networks, we aimed at dissociating multimodal magnetic resonance imaging (MRI) characteristics in patients with HS (TLE-HS) and those with gliosis only (TLE-G). In 20 TLE-HS, 19 TLE-G, and 25 healthy controls, we carried out a novel MRI-based hippocampal subfield surface analysis that integrated volume, T2 signal intensity, and diffusion markers with seed-based hippocampal functional connectivity. Compared to controls, TLE-HS presented with marked ipsilateral atrophy, T2 hyperintensity, and mean diffusivity increases across all subfields, whereas TLE-G presented with dentate gyrus hypertrophy, focal increases in T2 intensity and mean diffusivity. Multivariate assessment confirmed a more marked ipsilateral load of anomalies across all subfields in TLE-HS, whereas anomalies in TLE-G were restricted to the subiculum. A between-cohort dissociation was independently suggested by resting-state functional connectivity analysis, revealing marked hippocampal decoupling from anterior and posterior default mode hubs in TLE-HS, whereas TLE-G did not differ from controls. Back-projection connectivity analysis from cortical targets revealed consistently decreased network embedding across all subfields in TLE-HS, while changes in TLE-G were limited to the subiculum. Hippocampal disconnectivity strongly correlated to T2 hyperintensity and marginally to atrophy. Multimodal MRI reveals diverging structural and functional connectivity profiles across the TLE spectrum. Pathology-specific modulations of large-scale functional brain networks lend novel evidence for a close interplay of structural and functional disruptions in focal epilepsy. Ann Neurol 2016;80:142-153. © 2016 American Neurological Association.

  10. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional

  11. Pattern of mri brain abnormalities in rheumatic patients with neurological involvement: a tertiary care teaching hospital experience

    International Nuclear Information System (INIS)

    Parvez, K.; Arfaj, A.; Naseeb, F.; Daif, A.K.

    2015-01-01

    Objective: To explore the pattern of abnormalities seen on MRI in rheumatic patients with neurological manifestations and to interpret the findings in relation to clinical picture. Study Design: Descriptive study. Place and Duration of Study: Rheumatology unit, King Khalid University Hospital, Riyadh, Saudi Arabia from January 2013 to February 2014. Patients and Methods: We prospectively included rheumatic patients with neurological symptoms and signs. The clinical data were correlated with MRI findings by a team comprising of a rheumatologist, neurologist and neuro-radiologist. Data was analyzed using simple statistical analysis. Results: Fifty patients were recruited with a mean age of 36.4 ± 10.76 years (range 17-62). Among SLE patients with seizures, focal deficit and headache white matter hyperintensities were found in 9 (64.28%), 4 (50%), 4 (80%) patients respectively. Out of seven SLE patients with global dysfunction, 3 (42.85%) had brain atrophy and 2 (28.57%) normal MRI. In Behcet disease with focal deficit, 3 (75%) patients had white matter hyperintensities and 1 (25%) had brainstem involvement. In Behcet disease with headache, 2 (50%) had normal MRI, 1 (25%) brainstem hyper-intensities and 1 (25%) had subacute infarct. Two (66%) of three Primary APS patients had white matter hyperintensities while third (33%) had old infarct. Both patients of polyarteritisnodosa, had white matter hyperintensities. Out of two Wegener granulomatosis one had white matter hyperintensities and other had ischemic changes in optic nerves. The only one scleroderma patient had white matter hyperintensities. Conclusion: We found that white matter hyperintensities was the most common MRI abnormality in our study group which in most of the cases had poor clinical correlation. No distinct pattern of CNS involvement on MRI was observed in various rheumatic disorders. (author)

  12. Abnormal recovery function of somatosensory evoked potentials in patients with primary insomnia.

    Science.gov (United States)

    Huang, Zhaoyang; Zhan, Shuqin; Li, Ning; Ding, Yan; Wang, Yuping

    2012-08-15

    Neurobiological correlates underlying insomnia are poorly understood. The hyperarousal of the central nervous system indicates that cortical excitability may be abnormal in patients with insomnia. The purpose of the present study was to investigate changes in cortical excitability by examining the recovery function of median nerve somatosensory evoked potentials (SEPs) in patients with primary insomia (PI). We studied the recovery function of median nerve SEPs in 12 medication-naive PI patients and in 12 age- and sex-matched healthy subjects. SEPs in response to single stimulus and paired stimuli at interstimulus intervals (ISIs) of 20, 60, 100 and 150 ms were recorded. The recovery function of the cortical components of frontal P20 and parietal N20 showed significantly reduced suppression in PI patients as compared to healthy controls. In conclusion, this is the first study investigating changes in cortical excitability in PI patients by examining the recovery function of median nerve SEPs. The present study suggests that cortical excitability is increased in PI patients. Dysfunction of inhibitory GABAergic interneurons of the cerebral cortex might contribute to the increased cortical excitability in PI patients. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Abnormalities in Human Brain Creatine Metabolism in Gulf War Illness Probed with MRS

    Science.gov (United States)

    2014-12-01

    manufacturer specifications, but intermittent sensitivity issues led to several rounds of trouble-shooting and repairs of both the coil and the MR scanner...Lorentzian line and effectively suppressing water signal in the multiply oblique voxels, as well as time constraints, led to the conclusion that a...relaxation rate R2,CPMG measured as a function of the Carr-Purcell- Meiboom-Gill (CPMG) echo spacing τCPMG is given by the Luz -Meiboom (LM) equation (21

  14. Investigation of the abnormal nasal aerodynamics and trigeminal functions among empty nose syndrome patients.

    Science.gov (United States)

    Li, Chengyu; Farag, Alexander A; Maza, Guillermo; McGhee, Sam; Ciccone, Michael A; Deshpande, Bhakthi; Pribitkin, Edmund A; Otto, Bradley A; Zhao, Kai

    2017-11-22

    Abnormal nasal aerodynamics or trigeminal functions have been frequently implicated in the symptomology of empty nose syndrome (ENS), yet with limited evidence. Individual computed tomography (CT)-based computational fluid dynamics (CFD) was applied to 27 ENS patients to simulate their nasal aerodynamics and compared with 42 healthy controls. Patients' symptoms were confirmed with Empty Nose Syndrome 6-item Questionnaire (ENS6Q), 22-item Sino-Nasal Outcome Test (SNOT-22), and Nasal Obstruction Symptom Evaluation (NOSE) scores. Nasal trigeminal sensitivity was measured with menthol lateralization detection thresholds (LDTs). ENS patients had significantly lower (∼25.7%) nasal resistance and higher (∼2.8 times) cross-sectional areas compared to healthy controls (both p aerodynamics in a large cohort of ENS patients. The results indicated that a combination of loss of neural sensitivity and poorer inferior air-mucosal stimulation may potentially lead to ENS symptomology. © 2017 ARS-AAOA, LLC.

  15. Abnormal rectoanal function in children recovered from chronic constipation and encopresis.

    Science.gov (United States)

    Loening-Baucke, V A

    1984-12-01

    It is unknown if abnormal anal sphincter function as assessed by anorectal manometry is still present years after resolution of chronic constipation and encopresis. Twenty healthy controls, 12 children with constipation but no encopresis, and 20 children with chronic constipation and encopresis underwent anorectal manometric testing, using intraluminal pressure transducers and a balloon for rectal distention. Anorectal measurements were repeated in the 20 constipated and encopretic children 2.5-4 yr after treatment began; 11 children had recovered for at least 1 yr. The mean values of anal resting tone and of anal pull-through pressure were lower in the constipated and encopretic children than in the 20 control children (p less than 0.003). Percent relaxation of the rectosphincteric reflex after rectal distention of 30 and 60 ml was lower in constipated children with and without encopresis than in controls (p less than 0.003), whereas the means of rectosphincteric reflex threshold were comparable in the three groups of children. Three years after initiation of treatment with milk of magnesia, high-fiber diet, and bowel training techniques, the mean values of anal resting tone, anal pull-through pressure, and percent relaxation of rectosphincteric reflex remained significantly lower in both recovered and nonrecovered constipated and encopretic patients compared with controls. It was suggested that the underlying cause of chronic constipation is the decreased ability of the internal anal sphincter to relax with rectal distention, and the hypotonia of the anal canal is responsible for the encopresis. Abnormal anorectal functions were still present years after cessation of treatment and recovery and put the recovered patient at risk for recurrence of chronic constipation and encopresis.

  16. Hyper-connectivity of functional networks for brain disease diagnosis.

    Science.gov (United States)

    Jie, Biao; Wee, Chong-Yaw; Shen, Dinggang; Zhang, Daoqiang

    2016-08-01

    Exploring structural and functional interactions among various brain regions enables better understanding of pathological underpinnings of neurological disorders. Brain connectivity network, as a simplified representation of those structural and functional interactions, has been widely used for diagnosis and classification of neurodegenerative diseases, especially for Alzheimer's disease (AD) and its early stage - mild cognitive impairment (MCI). However, the conventional functional connectivity network is usually constructed based on the pairwise correlation among different brain regions and thus ignores their higher-order relationships. Such loss of high-order information could be important for disease diagnosis, since neurologically a brain region predominantly interacts with more than one other brain regions. Accordingly, in this paper, we propose a novel framework for estimating the hyper-connectivity network of brain functions and then use this hyper-network for brain disease diagnosis. Here, the functional connectivity hyper-network denotes a network where each of its edges representing the interactions among multiple brain regions (i.e., an edge can connect with more than two brain regions), which can be naturally represented by a hyper-graph. Specifically, we first construct connectivity hyper-networks from the resting-state fMRI (R-fMRI) time series by using sparse representation. Then, we extract three sets of brain-region specific features from the connectivity hyper-networks, and further exploit a manifold regularized multi-task feature selection method to jointly select the most discriminative features. Finally, we use multi-kernel support vector machine (SVM) for classification. The experimental results on both MCI dataset and attention deficit hyperactivity disorder (ADHD) dataset demonstrate that, compared with the conventional connectivity network-based methods, the proposed method can not only improve the classification performance, but also help

  17. Generating text from functional brain images.

    Science.gov (United States)

    Pereira, Francisco; Detre, Greg; Botvinick, Matthew

    2011-01-01

    Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., "Apartment'') while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., "door," "window" for "Apartment''). Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively.

  18. Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization

    Science.gov (United States)

    Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social…

  19. Immune responses at brain barriers and implications for brain development and neurological function in later life

    Directory of Open Access Journals (Sweden)

    Helen B. Stolp

    2013-08-01

    Full Text Available For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognised that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signalling, or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signalling at the brain barriers that may be an important part of the body’s response to damage or infection. This signalling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed.

  20. Neural substrate expansion for the restoration of brain function

    Directory of Open Access Journals (Sweden)

    Han-Chiao Isaac Chen

    2016-01-01

    Full Text Available Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks.

  1. Abnormal long- and short-range functional connectivity in adolescent-onset schizophrenia patients: A resting-state fMRI study.

    Science.gov (United States)

    Wang, Shuai; Zhan, Yajing; Zhang, Yan; Lyu, Luxian; Lyu, Hailong; Wang, Guodong; Wu, Renrong; Zhao, Jingping; Guo, Wenbin

    2018-02-02

    Human brain is a topologically complex network embedded in anatomical space, and anatomical distance may affect functional connectivity (FC) in schizophrenia. However, little is known if and how this effect occurs in adolescent-onset schizophrenia (AOS). We explored long- and short-range FC through resting-state functional magnetic resonance imaging in 48 first-episode, drug-naive AOS patients and 31 healthy controls, and we examined if these abnormalities could be utilized to separate patients from controls using receiver operating characteristic curves and support vector machines (SVM). Patients had increased long-range positive FC (lpFC) and short-range positive FC (spFC) in the right middle frontal gyrus and right superior medial prefrontal cortex within the anterior default mode network (DMN), decreased lpFC and spFC in several regions of the posterior DMN, and decreased lpFC within the important hubs of salience network (SN). The decreased lpFC in the left superior temporal gyrus was positively correlated with cognitive impairment. We found that SVM has high accuracy (up to 92.4%) in classifying patients and control. Disrupted anatomical distance would underlie network-level dysconnectivity, highlighting the importance of the DMN and SN in the neurodevelopment of schizophrenia. Abnormalities of long- and short-range FC in brain regions could discriminate patients from controls with high accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Brain activation studies with PET and functional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, Yoshiharu [Fukui Medical Univ., Matsuoka (Japan). Biomedical Imaging Research Center; Sadato, Norihiro [Okazaki National Research Inst., Aichi (Japan). National Inst. for Physiological Sciences

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H{sub 2}{sup 15}O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H{sub 2}{sup 15}O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  3. Abnormal functional connectivity of the amygdala in first-episode and untreated adult major depressive disorder patients with different ages of onset.

    Science.gov (United States)

    Ye, Jing; Shen, Zonglin; Xu, Xiufeng; Yang, Shuran; Chen, Wei; Liu, Xiaoyan; Lu, Yi; Liu, Fang; Lu, Jin; Li, Na; Sun, Xuejin; Cheng, Yuqi

    2017-03-01

    Major depressive disorder (MDD) is a common mental disorder with high morbidity. As a part of the limbic system, the amygdala is important in the processing of emotional information. Structural and functional connectivity (FC) abnormalities in the amygdala have been observed in MDD patients. The present study was carried out to identify the features of amygdala FC in adult MDD patients with different ages of onset. Sixty-nine first-episode and untreated MDD patients and 81 healthy controls (CTLs) were included in this study and underwent 3D structural imaging and resting-state functional MRI scanning. The patients and CTLs were divided into two groups according to age of onset: young adult (amygdala seeds to the whole brain of MDD patients and matched CTLs in these two different onset age groups were analysed. We found that the volume of the bilateral amygdala increased to a greater extent in young adult patients compared with old adult patients. We also observed a trend toward different amygdala FC by onset age in MDD patients. In young adult patients, the left amygdala showed more abnormal resting-state FC with other regions compared with matched controls. However, in old adult patients, compared with matched controls, the right amygdala showed more abnormal changes in the resting-state FC with other regions. MDD patients with different ages of onset showed different changes in the structure and FC of the amygdala. These results might help us to understand the high heterogeneity of MDD.

  4. Functional Imaging of Dolphin Brain Metabolism and Blood Flow

    National Research Council Canada - National Science Library

    Ridgway, Sam; Finneran, James; Carder, Don; Keogh, Mandy; Van Bonn, William; Smith, Cynthia; Scadeng, Miriam; Dubowitz, David; Mattrey, Robert; Hoh, Carl

    2006-01-01

    .... Diazepam has been shown to induce unihemispheric slow waves (USW), therefore we used functional imaging of dolphins with and without diazepam to observe hemispheric differences in brain metabolism and blood flow...

  5. Functional Imaging of Dolphin Brain Metabolism and Blood Flow

    National Research Council Canada - National Science Library

    Ridgway, Sam; Finneran, James; Carder, Don; Keogh, Mandy; Van Bonn, William; Smith, Cynthia; Scadeng, Miriam; Dubowitz, David; Mattrey, Robert; Hoh, Carl

    2006-01-01

    This report documents the first use of magnetic resonance images (MRls) of living dolphins to register functional brain scans, allowing for the exploration of potential mechanisms of unihemispheric sleep...

  6. Nasobronchial allergy and pulmonary function abnormalities among coir workers of Alappuzha.

    Science.gov (United States)

    Panicker, Venugopal; Karunakaran, Raseela; Ravindran, C

    2010-07-01

    Coir is a commercially important natural fiber obtained from the coconut husk. Coir can be woven into strong twine or rope, and is used for padding mattresses, upholstery, etc. Coir industry provides a major share of occupation to the natives of Alappuzha district of Kerala State. It has been noticed earlier that there is increased incidence of nasobronchial allergy among the population involved in this industry. This study was aimed at recognizing the symptomatology and pulmonary functional impairment among symptomatic coir workers. All coir workers who attended our institute over a period of three years were included in the study. Detailed occupational history was taken; symptom profile was studied in detail, clinical examination and pulmonary function tests conducted. Among the 624 symptomatic coir workers selected for this purpose, 64 patients had purely nasal symptoms, while 560 had symptoms of nasobronchial allergy. 357 patients had reversible obstruction on PFT, while 121 had only small airway obstruction. We conclude that coir work induced nasobronchial allergy and pulmonary function abnormalities. In absence of CT scan and bronchial challenge testing it may be inappropriate to label coir work as occupational hazard. However the present study may be used as thought provoking study to initiate further understanding.

  7. Neurological abnormalities and neurocognitive functions in healthy elder people: A structural equation modeling analysis

    Directory of Open Access Journals (Sweden)

    Chan Raymond CK

    2011-08-01

    Full Text Available Abstract Background/Aims Neurological abnormalities have been reported in normal aging population. However, most of them were limited to extrapyramidal signs and soft signs such as motor coordination and sensory integration have received much less attention. Very little is known about the relationship between neurological soft signs and neurocognitive function in healthy elder people. The current study aimed to examine the underlying relationships between neurological soft signs and neurocognition in a group of healthy elderly. Methods One hundred and eighty healthy elderly participated in the current study. Neurological soft signs were evaluated with the subscales of Cambridge Neurological Inventory. A set of neurocognitive tests was also administered to all the participants. Structural equation modeling was adopted to examine the underlying relationship between neurological soft signs and neurocognition. Results No significant differences were found between the male and female elder people in neurocognitive function performances and neurological soft signs. The model fitted well in the elderly and indicated the moderate associations between neurological soft signs and neurocognition, specifically verbal memory, visual memory and working memory. Conclusions The neurological soft signs are more or less statistically equivalent to capture the similar information done by conventional neurocognitive function tests in the elderly. The implication of these findings may serve as a potential neurological marker for the early detection of pathological aging diseases or related mental status such as mild cognitive impairment and Alzheimer's disease.

  8. Abnormalities in pulmonary function in infants with high-risk congenital diaphragmatic hernia.

    Science.gov (United States)

    Rygl, Michal; Rounova, Petra; Sulc, Jan; Slaby, Krystof; Stranak, Zbynek; Pycha, Karel; Svobodova, Tamara; Pohunek, Petr; Skaba, Richard

    2015-09-01

    The aim of the study was to analyze lung growth and abnormality of infant pulmonary function tests (IPFT) in congenital diaphragmatic hernia (CDH) survivors younger than three years of age with respect to unfavorable prognostic factors. Thirty high-risk CDH survivors at the age of 1.32±0.54 years, body weight 9.76±1.25 kg were examined using IPFT: tidal breathing analysis, baby resistance/compliance, whole baby body plethysmography and rapid thoraco-abdominal compression. Gore-Tex patch was used in 13% of patients (GORE group). Pulmonary hypertension was diagnosed and managed in 13% (iNO group). Standard protocols and appropriate reference values were used and obtained data were statistically analysed. High incidence of peripheral airway obstruction (70%), increased value of functional residual capacity (FRCp) 191.3±24.5 mL (126.5±36.9 % predicted; P GORE group (165.7±51.9 versus 120.4±31.2, P Gore-Tex patch, pulmonary hypertension) correlate with more severe alteration of pulmonary function in infants.

  9. Motor Abnormalities: From Neurodevelopmental to Neurodegenerative Through "Functional" (Neuro)Psychiatric Disorders.

    Science.gov (United States)

    Peralta, Victor; Cuesta, Manuel J

    2017-09-01

    Motor abnormalities (MAs) of severe mental disorders have been traditionally neglected both in clinical practice and research, although they are an increasing focus of attention because of their clinical and neurobiological relevance. For historical reasons, most of the literature on MAs has been focused to a great extent on schizophrenia, and as a consequence their prevalence and featural properties in other psychiatric or neuropsychiatric disorders are poorly known. In this article, we evaluated the extent to which catatonic, extrapyramidal and neurological soft signs, and their associated clinical features, are present transdiagnostically. We examined motor-related features in neurodevelopmental (schizophrenia, obsessive compulsive disorder, autism spectrum disorders), "functional" (nonschizophrenic nonaffective psychoses, mood disorders) and neurodegenerative (Alzheimer's disease) disorders. Examination of the literature revealed that there have been very few comparisons of motor-related features across diagnoses and we had to rely mainly in disorder-specific studies to compare it transdiagnostically. One or more motor domains had a substantial prevalence in all the diagnoses examined. In "functional" disorders, MAs, and particularly catatonic signs, appear to be markers of episode severity; in chronic disorders, although with different degree of strength or evidence, all motor domains are indicators of both disorder severity and poor outcome; lastly, in Alzheimer's disease they are also indicators of disorder progression. MAs appear to represent a true transdiagnostic domain putatively sharing neurobiological mechanisms of neurodevelopmental, functional or neurodegenerative origin.

  10. Regulation of brain insulin signaling: A new function for tau.

    Science.gov (United States)

    Gratuze, Maud; Planel, Emmanuel

    2017-08-07

    In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer's disease, impairment of brain insulin signaling might occur via tau loss of function. © 2017 Gratuze and Planel.

  11. Demonstration: A smartphone 3D functional brain scanner

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Stopczynski, Arkadiusz; Larsen, Jakob Eg

    We demonstrate a fully portable 3D real-time functional brain scanner consisting of a wireless 14-channel ‘Neuroheadset‘ (Emotiv EPOC) and a Nokia N900 smartphone. The novelty of our system is the ability to perform real-time functional brain imaging on a smartphone device, including stimulus...... tools are preferred. Source localization is implemented locally on the phone with a 3D brain model consisting of 1,028 vertices and 2,048 triangles stored in the mobile application. Our system design benefits from the possibility of being able to integrate with multiple hardware platforms (smartphones...

  12. Interrelationship of brain-functions with cardiovascular regulations

    International Nuclear Information System (INIS)

    Rahman, M.K.

    1993-03-01

    Neurotransmitters and neuropeptides are involved in the regulation of nervous function, behaviour, emotion, sex, sleep, mood of higher animals including the humans. They act and they occur simultaneously in the brain as neurotransmitters or neuromodulators and in plasma as circulating hormones. The direct regulatory interactions of a given substance in the blood and in the brain are still unknown, but some results have already been published regarding these relationships. The present paper briefly describes the systematic review-type studies on the interrelationship of the brain functions and the cardiovascular regulation. 35 refs, 7 figs, 1 tab

  13. Brain Gut Microbiome Interactions and Functional Bowel Disorders

    Science.gov (United States)

    Mayer, Emeran A.; Savidge, Tor; Shulman, Robert J.

    2014-01-01

    Alterations in the bidirectional interactions between the gut and the nervous system play an important role in IBS pathophysiology and symptom generation. A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. Characterizations of alterations of gut microbiota in unselected IBS patients, and assessment of changes in subjective symptoms associated with manipulations of the gut microbiota with prebiotics, probiotics and antibiotics support a small, but poorly defined role of dybiosis in overall IBS symptoms. It remains to be determined if the observed abnormalities are a consequence of altered top down signaling from the brain to the gut and microbiota, if they are secondary to a primary perturbation of the microbiota, and if they play a role in the development of altered brain gut interactions early in life. Different mechanisms may play role in subsets of patients. Characterization of gut microbiome alterations in large cohorts of well phenotyped patients as well as evidence correlating gut metabolites with specific abnormalities in the gut brain axis are required to answer these questions. PMID:24583088

  14. Maintaining older brain functionality: A targeted review.

    Science.gov (United States)

    Ballesteros, Soledad; Kraft, Eduard; Santana, Silvina; Tziraki, Chariklia

    2015-08-01

    The unprecedented growth in the number of older adults in our society is accompanied by the exponential increase in the number of elderly people who will suffer cognitive decline and dementia in the next decades. This will create an enormous cost for governments, families and individuals. Brain plasticity and its role in brain adaptation to the process of aging is influenced by other changes as a result of co-morbidities, environmental factors, personality traits (psychosocial variables) and genetic and epigenetic factors. This review summarizes recent findings obtained mostly from interventional studies that aim to prevent and/or delay age-related cognitive decline in healthy adults. There are a multitude of such studies. In this paper, we focused our review on physical activity, computerized cognitive training and social enhancement interventions on improving cognition, physical health, independent living and wellbeing of older adults. The methodological limitations of some of these studies, and the need for new multi-domain synergistic interventions, based on current advances in neuroscience and social-brain theories, are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Exploring brain function from anatomical connectivity

    Directory of Open Access Journals (Sweden)

    Gorka eZamora-López

    2011-06-01

    Full Text Available The intrinsic relationship between the architecture of the brain and the range of sensory and behavioral phenomena it produces is a relevant question in neuroscience. Here, we review recent knowledge gained on the architecture of the anatomical connectivity by means of complex network analysis. It has been found that corticocortical networks display a few prominent characteristics: (i modular organization, (ii abundant alternative processing paths and (iii the presence of highly connected hubs. Additionally, we present a novel classification of cortical areas of the cat according to the role they play in multisensory connectivity. All these properties represent an ideal anatomical substrate supporting rich dynamical behaviors, as-well-as facilitating the capacity of the brain to process sensory information of different modalities segregated and to integrate them towards a comprehensive perception of the real world. The result here exposed are mainly based in anatomical data of cats’ brain, but we show how further observations suggest that, from worms to humans, the nervous system of all animals might share fundamental principles of organization.

  16. Chromosome 15 structural abnormalities: effect on IGF1R gene expression and function

    Directory of Open Access Journals (Sweden)

    Rossella Cannarella

    2017-09-01

    Full Text Available Insulin-like growth factor 1 receptor (IGF1R, mapping on the 15q26.3 chromosome, is required for normal embryonic and postnatal growth. The aim of the present study was to evaluate the IGF1R gene expression and function in three unrelated patients with chromosome 15 structural abnormalities. We report two male patients with the smallest 15q26.3 chromosome duplication described so far, and a female patient with ring chromosome 15 syndrome. Patient one, with a 568 kb pure duplication, had overgrowth, developmental delay, mental and psychomotor retardation, obesity, cryptorchidism, borderline low testis volume, severe oligoasthenoteratozoospermia and gynecomastia. We found a 1.8-fold increase in the IGF1R mRNA and a 1.3-fold increase in the IGF1R protein expression (P < 0.05. Patient two, with a 650 kb impure duplication, showed overgrowth, developmental delay, mild mental retardation, precocious puberty, low testicular volume and severe oligoasthenoteratozoospermia. The IGF1R mRNA and protein expression was similar to that of the control. Patient three, with a 46,XX r(15 (p10q26.2 karyotype, displayed intrauterine growth retardation, developmental delay, mental and psychomotor retardation. We found a <0.5-fold decrease in the IGF1R mRNA expression and an undetectable IGF1R activity. After reviewing the previously 96 published cases of chromosome 15q duplication, we found that neurological disorders, congenital cardiac defects, typical facial traits and gonadal abnormalities are the prominent features in patients with chromosome 15q duplication. Interestingly, patients with 15q deletion syndrome display similar features. We speculate that both the increased and decreased IGF1R gene expression may play a role in the etiology of neurological and gonadal disorders.

  17. Human brain activity with functional NIR optical imager

    Science.gov (United States)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  18. Aging Effects on Whole-Brain Functional Connectivity in Adults Free of Cognitive and Psychiatric Disorders.

    Science.gov (United States)

    Ferreira, Luiz Kobuti; Regina, Ana Carolina Brocanello; Kovacevic, Natasa; Martin, Maria da Graça Morais; Santos, Pedro Paim; Carneiro, Camila de Godoi; Kerr, Daniel Shikanai; Amaro, Edson; McIntosh, Anthony Randal; Busatto, Geraldo F

    2016-09-01

    Aging is associated with decreased resting-state functional connectivity (RSFC) within the default mode network (DMN), but most functional imaging studies have restricted the analysis to specific brain regions or networks, a strategy not appropriate to describe system-wide changes. Moreover, few investigations have employed operational psychiatric interviewing procedures to select participants; this is an important limitation since mental disorders are prevalent and underdiagnosed and can be associated with RSFC abnormalities. In this study, resting-state fMRI was acquired from 59 adults free of cognitive and psychiatric disorders according to standardized criteria and based on extensive neuropsychological and clinical assessments. We tested for associations between age and whole-brain RSFC using Partial Least Squares, a multivariate technique. We found that normal aging is not only characterized by decreased RSFC within the DMN but also by ubiquitous increases in internetwork positive correlations and focal internetwork losses of anticorrelations (involving mainly connections between the DMN and the attentional networks). Our results reinforce the notion that the aging brain undergoes a dedifferentiation processes with loss of functional diversity. These findings advance the characterization of healthy aging effects on RSFC and highlight the importance of adopting a broad, system-wide perspective to analyze brain connectivity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Unique functional abnormalities in youth with combined marijuana use and depression: an fMRI study

    Directory of Open Access Journals (Sweden)

    Kristen A Ford

    2014-09-01

    Full Text Available Prior research has shown a relationship between early onset marijuana (MJ use and depression, however this relationship is complex and poorly understood. Here, we utilized passive music listening and fMRI to examine functional brain activation to a rewarding stimulus in 75 participants (healthy controls (HC, patients with Major Depressive Disorder (MDD, frequent MJ users (MJ, and the combination of MDD and MJ (MDD+MJ. For each participant a preferred and neutral piece of instrumental music was determined (utilizing ratings on a standardized scale, and each completed two 6-minute fMRI scans of a passive music listening task. Data underwent preprocessing and 61 participants were carried forward for analysis (17 HC, 15 MDD, 15 MJ, 14 MDD+MJ. Two statistical analyses were performed using SPM8, an ANCOVA with two factors (group x music-type and a whole brain, multiple regression analysis incorporating two predictors of interest (MJ use in past 28 days; and Beck Depression Inventory (BDI score. We identified a significant group x music-type interaction. Post hoc comparisons showed the preferred music had significantly greater activation in the MDD+MJ group in areas including the right middle and inferior frontal gyri extending into the claustrum and putamen and the anterior cingulate. No significant differences were identified in MDD, MJ or HC groups. Multiple regression analysis showed that activation in medial frontal cortex was positively correlated with amount of MJ use, and activation in areas including the insula was negatively correlated with BDI score. Results showed modulation in brain activation during passive music listening specific to MDD, frequent MJ users. This supports the suggestion that frequent MJ use, when combined with MDD, is associated with changes in neurocircuitry involved in reward-processing in ways that are absent with either frequent marijuana use or MDD alone. This could help inform clinical recommendations for youth with

  20. Association of formal thought disorder in schizophrenia with structural brain abnormalities in language-related cortical regions.

    Science.gov (United States)

    Sans-Sansa, B; McKenna, P J; Canales-Rodríguez, E J; Ortiz-Gil, J; López-Araquistain, L; Sarró, S; Dueñas, R M; Blanch, J; Salvador, R; Pomarol-Clotet, E

    2013-05-01

    Formal thought disorder (FTD) in schizophrenia has been found to be associated with volume reductions in the left superior temporal cortex. However, there have been negative findings and some studies have also found associations in other cortical regions. Fifty-one schizophrenic patients were evaluated for presence of FTD with the Thought, Language and Communication (TLC) scale and underwent whole-brain structural MRI using optimized voxel-based morphometry (VBM). Fifty-nine matched healthy controls were also scanned. Compared to 31 patients without FTD (global TLC rating 0 or 1), 20 patients with FTD (global TLC rating 2-5) showed clusters of volume reduction in the medial frontal and orbitofrontal cortex bilaterally, and in two left-sided areas approximating to Broca's and Wernicke's areas. The pattern of FTD-associated volume reductions was largely different from that found in a comparison between the healthy controls and the patients without FTD. Analysis of correlations within regions-of-interest based on the above clusters indicated that the 'fluent disorganization' component of FTD was correlated with volume reductions in both Broca's and Wernicke's areas, whereas poverty of content of speech was correlated with reductions in the medial frontal/orbitofrontal cortex. The findings point to a relationship between FTD in schizophrenia and structural brain pathology in brain areas involved in language and executive function. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Copine1 regulates neural stem cell functions during brain development.

    Science.gov (United States)

    Kim, Tae Hwan; Sung, Soo-Eun; Cheal Yoo, Jae; Park, Jae-Yong; Yi, Gwan-Su; Heo, Jun Young; Lee, Jae-Ran; Kim, Nam-Soon; Lee, Da Yong

    2018-01-01

    Copine 1 (CPNE1) is a well-known phospholipid binding protein in plasma membrane of various cell types. In brain cells, CPNE1 is closely associated with AKT signaling pathway, which is important for neural stem cell (NSC) functions during brain development. Here, we investigated the role of CPNE1 in the regulation of brain NSC functions during brain development and determined its underlying mechanism. In this study, abundant expression of CPNE1 was observed in neural lineage cells including NSCs and immature neurons in human. With mouse brain tissues in various developmental stages, we found that CPNE1 expression was higher at early embryonic stages compared to postnatal and adult stages. To model developing brain in vitro, we used primary NSCs derived from mouse embryonic hippocampus. Our in vitro study shows decreased proliferation and multi-lineage differentiation potential in CPNE1 deficient NSCs. Finally, we found that the deficiency of CPNE1 downregulated mTOR signaling in embryonic NSCs. These data demonstrate that CPNE1 plays a key role in the regulation of NSC functions through the activation of AKT-mTOR signaling pathway during brain development. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Gut Microbiota Interacts With Brain Microstructure and Function.

    Science.gov (United States)

    Fernandez-Real, José-Manuel; Serino, Matteo; Blasco, Gerard; Puig, Josep; Daunis-i-Estadella, Josep; Ricart, Wifredo; Burcelin, Remy; Fernández-Aranda, Fernando; Portero-Otin, Manuel

    2015-12-01

    Evidence from animals suggests that gut microbiota affects brain structure and function but evidence in humans is scarce. This study sought to evaluate potential interactions among gut microbiota composition, brain microstructure, and cognitive tests in obese and nonobese subjects. This was a cross-sectional study at a tertiary hospital including 20 consecutive obese and 19 nonobese subjects similar in age and sex. Gut microbiota (16S bacterial gene pyrosequencing), brain microstructure (diffusion tensor imaging of brain white and gray matter and R2* sequences in magnetic resonance imaging) and cognitive tests. Hierarchical clustering revealed a specific gut microbiota-brain map profile for obese individuals who could be discriminated from nonobese subjects (accuracy of 0.81). Strikingly, Shannon index was linked to R2* and fractional anisotropy of the hypothalamus, caudate nucleus, and hippocampus, suggesting sparing of these brain structures with increased bacterial biodiversity. Microbiota profile also clustered with cognitive function. The relative abundance of Actinobacteria phylum was linked not only to magnetic resonance imaging diffusion tensor imaging variables in the thalamus, hypothalamus, and amygdala but also to cognitive test scores related to speed, attention, and cognitive flexibility. In sum, obesity status affects microbiota-brain microstructure and function crosstalk.

  3. Abnormal metabolic brain network associated with Parkinson's disease: replication on a new European sample

    Energy Technology Data Exchange (ETDEWEB)

    Tomse, Petra; Jensterle, Luka; Grmek, Marko; Zaletel, Katja [University Medical Centre Ljubljana, Department of Nuclear Medicine, Ljubljana (Slovenia); Pirtosek, Zvezdan; Trost, Maja [University Medical Centre Ljubljana, Department of Neurology, 1000 Ljubljana (Slovenia); Dhawan, Vijay; Peng, Shichun; Eidelberg, David; Ma, Yilong [The Feinstein Institute for Medical Research, Center for Neurosciences, Manhasset, NY (United States)

    2017-05-15

    The purpose of this study was to identify the specific metabolic brain pattern characteristic for Parkinson's disease (PD): Parkinson's disease-related pattern (PDRP), using network analysis of [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) brain images in a cohort of Slovenian PD patients. Twenty PD patients (age 70.1 ± 7.8 years, Movement Disorder Society Unified Parkinson's Disease Motor Rating Scale (MDS-UPDRS-III) 38.3 ± 12.2; disease duration 4.3 ± 4.1 years) and 20 age-matched normal controls (NCs) underwent FDG-PET brain imaging. An automatic voxel-based scaled subprofile model/principal component analysis (SSM/PCA) was applied to these scans for PDRP-Slovenia identification. The pattern was characterized by relative hypermetabolism in pallidum, putamen, thalamus, brain stem, and cerebellum associated with hypometabolism in sensorimotor cortex, posterior parietal, occipital, and frontal cortices. The expression of PDRP-Slovenia discriminated PD patients from NCs (p < 0.0001) and correlated positively with patients' clinical score (MDS-UPDRS-III, p = 0.03). Additionally, its topography agrees well with the original PDRP (p