WorldWideScience

Sample records for abnormal biomechanical properties

  1. Biomechanical properties of four dermal substitutes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-an; NING Fang-gang; ZHAO Nan-ming

    2007-01-01

    @@ Many kinds of cell-free dermal substitutes have been developed during the past several years, however,their biomechanical properties, including hysteresis,stress relaxation, creep, and non-linear stress-strain, are still unknown. In this study, we tested these biomechanical characteristics of four dermal substitutes,and compared them with those of fresh human skin (FHS).

  2. Asymmetric cell-matrix and biomechanical abnormalities in elastin insufficiency induced aortopathy.

    Science.gov (United States)

    Krishnamurthy, Varun K; Evans, Ashlie N; Wansapura, Janaka P; Osinska, Hanna; Maddy, Kelsey E; Biechler, Stefanie V; Narmoneva, Daria A; Goodwin, Richard L; Hinton, Robert B

    2014-10-01

    Aortopathy is characterized by vascular smooth muscle cell (VSMC) abnormalities and elastic fiber fragmentation. Elastin insufficient (Eln (+/-)) mice demonstrate latent aortopathy similar to human disease. We hypothesized that aortopathy manifests primarily in the aorto-pulmonary septal (APS) side of the thoracic aorta due to asymmetric cardiac neural crest (CNC) distribution. Anatomic (aortic root vs. ascending aorta) and molecular (APS vs. non-APS) regions of proximal aorta tissue were examined in adult and aged wild type (WT) and mutant (Eln (+/-)) mice. CNC, VSMCs, elastic fiber architecture, proteoglycan expression, morphometrics and biomechanical properties were examined using histology, 3D reconstruction, micropipette aspiration and in vivo magnetic resonance imaging (MRI). In the APS side of Eln (+/-) aorta, Sonic Hedgehog (SHH) is decreased while SM22 is increased. Elastic fiber architecture abnormalities are present in the Eln (+/-) aortic root and APS ascending aorta, and biglycan is increased in the aortic root while aggrecan is increased in the APS aorta. The Eln (+/-) ascending aorta is stiffer than the aortic root, the APS side is thicker and stiffer than the non-APS side, and significant differences in the individual aortic root sinuses are observed. Asymmetric structure-function abnormalities implicate regional CNC dysregulation in the development and progression of aortopathy.

  3. Biomechanical Properties of Bone and Biomechanics of Age - Related Fractures - Review

    Directory of Open Access Journals (Sweden)

    Rezzan Günaydın

    2007-06-01

    Full Text Available From a biomechanical viewpoint, fractures are due to a structural failure of the bone. This failure occurs when the forces applied to the bone exceed its load – bearing capacity. The load – bearing capacity of a bone depends on the geometry (its size, shape and distribution of bone mass, and the material properties of a bone as well as the direction and magnitude of applied load. Bone fragility can be defined by biomechanical parameters such as strength, brittleness and work to failure. Strategies to reduce fracture risk must be based on a sound understanding of the cellular, molecular and biomechanical mechanisms that underlie the increased risk of fractures while aging. In this review biomechanics of bone and the etiology of age – related fractures from a biomechanical viewpoint have been discussed in the view of current literature. (From the World of Osteoporosis 2007;13:44-8

  4. Robotic palpation and mechanical property characterization for abnormal tissue localization.

    Science.gov (United States)

    Ahn, Bummo; Kim, Yeongjin; Oh, Cheol Kyu; Kim, Jung

    2012-09-01

    Palpation is an intuitive examination procedure in which the kinesthetic and tactile sensations of the physician are used. Although it has been widely used to detect and localize diseased tissues in many clinical fields, the procedure is subjective and dependent on the experience of the individual physician. Palpation results and biomechanics-based mechanical property characterization are possible solutions that can enable the acquisition of objective and quantitative information on abnormal tissue localization during diagnosis and surgery. This paper presents an integrated approach for robotic palpation combined with biomechanical soft tissue characterization. In particular, we propose a new palpation method that is inspired by the actual finger motions that occur during palpation procedures. To validate the proposed method, robotic palpation experiments on silicone soft tissue phantoms with embedded hard inclusions were performed and the force responses of the phantoms were measured using a robotic palpation system. Furthermore, we carried out a numerical analysis, simulating the experiments and estimating the objective and quantitative properties of the tissues. The results indicate that the proposed approach can differentiate diseased tissue from normal tissue and can characterize the mechanical information of diseased tissue, which means that this method can be applied as a means of abnormality localization to diagnose prostate cancers. PMID:22772733

  5. The biomechanical and structural properties of CS2 fimbriae

    CERN Document Server

    Mortezaei, Narges; Zakrisson, Johan; Bullitt, Esther; Andersson, Magnus

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrhea worldwide, and infection of children in underdeveloped countries often leads to high mortality rates. Isolated ETEC express a plethora of colonization factors (fimbriae/pili), of which CFA/I and CFA/II that are assembled via the alternate chaperone pathway (ACP), are amongst the most common. Fimbriae are filamentous structures, whose shafts are primarily composed of helically arranged single pilin-protein subunits, with a unique biomechanical capability allowing them to unwind and rewind. A sustained ETEC infection, under adverse conditions of dynamic shear forces, is primarily attributed to this biomechanical feature of ETEC fimbriae. Recent understandings about the role of fimbriae as virulence factors are pointing to an evolutionary adaptation of their structural and biomechanical features. In this work, we investigated the biophysical properties of CS2 fimbriae from the CFA/II group. Homology modelling its major structural subunit CotA ...

  6. Biomechanical abnormalities and ulcers of the great toe in patients with diabetes.

    Science.gov (United States)

    Boffeli, Troy J; Bean, Jeffrey K; Natwick, James R

    2002-01-01

    A prospective analysis was conducted to identify structural and biomechanical first ray abnormalities in consecutive diabetic patients presenting with their first great toe ulcer. Twenty-six patients (33 feet) met the inclusion criteria, with seven patients having bilateral hallux ulcers. There was no other history of ulcer, trauma, or surgery on the respective limb. Data were obtained during the patients' initial presentation with a great toe ulcer and included verbal history, standardized weight bearing radiographs, and standardized objective clinical measurements. Four patients (four feet) with subungual ulcers were included because of mechanical etiology. Twenty-four of the remaining 29 involved limbs exhibited gastrocnemius/soleus equinus and two other limbs had gastrocnemius equinus. Twenty-eight of 29 had structural hallux limitus. Twenty-four had hallux interphalangeal abductus. Twenty of the 33 ulcers were located plantar-medially at the interphalangeal joint area. Other frequent findings were first ray elevatus or dorsiflexion deformity (18 of 29), functional hallux limitus (14 of 29), interphalangeal joint sesamoid bone (13 of 29), hyperextended interphalangeal joint (13 of 29), and a prominent plantar-medial condyle of the proximalaspect of the distalphalanx (7 of 29). Halluxmalleus was less common (4 of 29), but consistently associated with plantar-distal tip ulceration. Metatarsus primus adductus was also infrequent (6 of 29). This study identifies and illustrates the importance of several biomechanical and structural factors present on initial presentation of great toe ulcers. Addressing these factors may improve the success of treatment and lessen the occurrence of this common and complex problem. PMID:12500786

  7. Biomechanical properties of peripheral nerve after acellular treatment

    Institute of Scientific and Technical Information of China (English)

    MA Xin-long; SUN Xiao-lei; YANG Zhao; LI Xiu-lan; MA Jian-xiong; ZHANG Yang; YUAN Zhen-zhen

    2011-01-01

    Background Peripheral nerve injury causes a high rate of disability and a huge economic burden,and is currently one of the serious health problems in the world.The use of nerve grafts plays a vital role in repairing nerve defects.Acellular nerve grafts have been widely used in many experimental models as a peripheral nerve substitute.The purpose of this study was to test the biomechanical properties of acellular nerve grafts.Methods Thirty-four fresh sciatic nerves were obtained from 17 adult male Wistar rats (age of 3 months) and randomly assigned to 3 groups:normal control group,nerve segments underwent no treatment and were put in phosphate buffered saline (pH 7.4) and stored at 4℃ until further use; physical method group,nerve segments were frozen at -196℃ and then thawed at 37℃; and chemical method group,nerve segments were chemically extracted with the detergents Triton X-200,sulfobetaine-10 (SB-10) and sulfobetaine-16 (SB-16).After the acellularization process was completed,the structural changes of in the sciatic nerves in each group were observed by hematoxylin-eosin staining and field emission scanning electron microscopy,then biomechanical properties were tested using a mechanical apparatus (Endura TEC ELF 3200,Bose,Boston,USA).Results Hematoxylin-eosin staining and field emission scanning electron microscopy demonstrated that the effects of acellularization,demyelination,and integrity of nerve fiber tube of the chemical method were better than that of the physical method.Biomechanical testing showed that peripheral nerve grafts treated with the chemical method resulted in some decreased biomechanical properties (ultimate load,ultimate stress,ultimate strain,and mechanical work to fracture) compared with normal control nerves,but the differences were not statistically significant (P >0.05).Conclusion Nerve treated with the chemical method may be more appropriate for use in implantation than nerve treated with the physical method.

  8. Effects of antibacterial nanostructured composite films on vascular stents: hemodynamic behaviors, microstructural characteristics, and biomechanical properties.

    Science.gov (United States)

    Cheng, Han-Yi; Hsiao, Wen-Tien; Lin, Li-Hsiang; Hsu, Ya-Ju; Sinrang, Andi Wardihan; Ou, Keng-Liang

    2015-01-01

    The purpose of this research was to investigate stresses resulting from different thicknesses and compositions of hydrogenated Cu-incorporated diamond-like carbon (a-C:H/Cu) films at the interface between vascular stent and the artery using three-dimensional reversed finite element models (FEMs). Blood flow velocity variation in vessels with plaques was examined by angiography, and the a-C:H/Cu films were characterized by transmission electron microscopy to analyze surface morphology. FEMs were constructed using a computer-aided reverse design system, and the effects of antibacterial nanostructured composite films in the stress field were investigated. The maximum stress in the vascular stent occurred at the intersections of net-like structures. Data analysis indicated that the stress decreased by 15% in vascular stents with antibacterial nanostructured composite films compared to the control group, and the stress decreased with increasing film thickness. The present results confirmed that antibacterial nanostructured composite films improve the biomechanical properties of vascular stents and release abnormal stress to prevent restenosis. The results of the present study offer the clinical benefit of inducing superior biomechanical behavior in vascular stents.

  9. Effects of cyclosporin-a on rat skeletal biomechanical properties

    Directory of Open Access Journals (Sweden)

    Wang Junfei

    2011-10-01

    of CsA can weaken the biomechanical properties and thus increase the fracture rate of the lumbar vertebra and the proximal femur. However, CsA therapy has less effect on the middle femur shaft. The effects of CsA on skeleton are site-specific.

  10. Biomechanical properties of acellular sciatic nerves treated with a modified chemical method

    Institute of Scientific and Technical Information of China (English)

    Xinlong Ma; Zhao Yang; Xiaolei Sun; Jianxiong Ma; Xiulan Li; Zhenzhen Yuan; Yang Zhang; Honggang Guo

    2011-01-01

    Nerve grafts are able to adapt to surrounding biomechanical environments if the nerve graft itself exhibits appropriate biomechanical properties (load, elastic modulus, etc.). The present study was designed to determine the differences in biomechanical properties between fresh and chemically acellularized sciatic nerve grafts. Two different chemical methods were used to establish acellular nerve grafts. The nerve was chemically extracted in the Sondell method with a combination of Triton X-100 (nonionic detergent) and sodium deoxycholate (anionic detergent), and in the modified method with a combination of Triton X-200 (anionic detergent), sulfobetaine-10 (SB-10, amphoteric detergents), and sulfobetaine-16 (SB-16, amphoteric detergents). Following acellularization, hematoxylin-eosin staining and scanning electron microscopy demonstrated that the effect of acellularization via the modified method was similar to the traditional Sondell method. However, effects of demyelination and nerve fiber tube integrity were superior to the traditional Sondell method. Biomechanical testing showed that peripheral nerve graft treated using the chemical method resulted in decreased biomechanical properties (ultimate load, ultimate stress, ultimate strain, and mechanical work to fracture) compared with fresh nerves, but the differences had no statistical significance (P > 0.05). These results demonstrated no significant effect on biomechanical properties of nerves treated using the chemical method. In conclusion, nerve grafts treated via the modified method removed Schwann cells, preserved neural structures, and ensured biomechanical properties of the nerve graft, which could be more appropriate for implantation studies.

  11. The biomechanical properties of F1C pili

    CERN Document Server

    Castelain, Mickaël; Klinth, Jeanna; Lindberg, Stina; Andersson, Magnus; Uhlin, Bernt Eric; Axner, Ove

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) express various kinds of organelles, so-called pili or fimbriae, that mediate adhesion to host tissue in the urinary tract through specific receptor-adhesin interactions. The biomechanical properties of these pili have been considered important for the ability of bacteria to withstand shear forces from rinsing urine flows. Force measuring optical tweezers have been used to characterize individual organelles of F1C type expressed by UPEC bacteria with respect to such properties. Qualitatively, the force-vs.-elongation response was found to be similar to that of other types of helix-like pili expressed by UPEC, i.e. type 1, P, and S, with force-induced elongation in three regions of which one represents the important uncoiling mechanism of the helix-like quaternary structure. Quantitatively, the steady-state uncoiling force was assessed to 26.4(1.4) pN, which is similar to those of other pili (which range from 21 pN for SI to 30 pN for type 1). The corner velocity for dynam...

  12. Impaired physical function, loss of muscle mass and assessment of biomechanical properties in critical ill patients

    DEFF Research Database (Denmark)

    Poulsen, Jesper Brøndum

    2012-01-01

    Intensive care unit (ICU) admission is associated with muscle weakness and ICU survivors report sustained limitation of physical capacity for years after discharge. Limited information is available on the underlying biomechanical properties responsible for this muscle function impairment. A plaus...

  13. Biomechanical properties of regenerated bone by mandibular distraction osteogenesis

    Institute of Scientific and Technical Information of China (English)

    李继华; 胡静; 王大章; 唐正龙; 高占巍

    2002-01-01

    Objective: To study the biomechanical properties of the new bone generated by mandibular distractionosteogenesis (DO).Methods: A total of 11 healthy adult goats wererandomly divided into 2 groups, the experimental group (n=9) and the control group (n = 2). For the goats in theexperimental group, the bilateral mandibles were graduallylengthened for 10 mm with distraction appliances. Threegoats were sacrificed respectively at 2, 4 and 8 weeks aftercompletion of distraction. Compressive, three-pointbending and shearing tests were conducted on the standardregenerated bone samples and the whole unilateralmandibular specimens. For the goats in the control group,no operation was made and the whole unilateral mandiblewas taken as the test specimen.Results: The compressive strength and bendingstiffness of the new bone reached the normal level at 4 and 8weeks after completion of distraction, respectively. But theshearing strength remained significantly weaker than that of the controls at 8 weeks after distraction.Conclusions: The distraction appliance can beremoved and the lengthened mandible should be exposed toadaptive functional exercise at 8 weeks after completion ofdistraction.

  14. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    OpenAIRE

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength we...

  15. Influence of Age on Ocular Biomechanical Properties in a Canine Glaucoma Model with ADAMTS10 Mutation

    OpenAIRE

    Palko, Joel R.; Morris, Hugh J.; Pan, Xueliang; Harman, Christine D.; Koehl, Kristin L.; Gelatt, Kirk N.; Plummer, Caryn E.; Komáromy, András M.; Liu, Jun

    2016-01-01

    Soft tissue often displays marked age-associated stiffening. This study aims to investigate how age affects scleral biomechanical properties in a canine glaucoma model with ADAMTS10 mutation, whose extracellular matrix is concomitantly influenced by the mutation and an increased mechanical load from an early age. Biomechanical data was acquired from ADAMTS10-mutant dogs (n = 10, 21 to 131 months) and normal dogs (n = 5, 69 to 113 months). Infusion testing was first performed in the whole glob...

  16. Spaceflight effects on biomechanical and biochemical properties of rat vertebrae

    Science.gov (United States)

    Zernicke, R. F.; Vailas, A. C.; Grindeland, R. E.; Kaplansky, A.; Salem, G. J.; Martinez, D. A.

    1990-01-01

    The biomechanical and biochemical responses of lumbar vertebral bodies during a 12.5-day spaceflight (Cosmos 1887 biosatellite) were determined for rapidly growing rats (90-day-old, Czechoslovakian-Wistar). By use of age-matched vivarium controls (normal cage environment) and synchronous controls (simulated flight conditions), as well as a basal control group (killed before lift-off on the 1st day of flight), the combined influences of growth and space-flight could be examined. Centra of the sixth lumbar vertebrae (L6) were compressed to 50% strain at a fast strain rate while immersed in physiological buffer (37 degrees C). The body masses of vivarium and synchronous controls were significantly heavier than either the flight or basal controls. The flight group had an L6 vertebral body compressional stiffness that was 39% less than the vivarium controls, 47% less than the synchronous control, and 16% less than the basal controls. In addition, the average initial maximum load of the flight L6 was 22% less than vivarium controls and 18% less than the synchronous controls, whereas the linear compressional load of the flight group averaged 34% less than the vivarium and 25% less than the synchronous groups. The structural properties of the vertebrae from the 12.5-day-younger basal group closely resembled the flight vertebrae. Calcium, phosphorous, and hydroxyproline concentrations were not significantly different among the groups. Nevertheless, the lack of strength and stiffness development in spaceflight, coupled with a smaller proportion of mature hydroxypyridinoline cross-links, suggested that the 12.5 days of spaceflight slowed the maturation of trabecular bone in the vertebral bodies of rapidly growing rats.

  17. Impaired Biomechanical Properties of Diabetic Skin Implications in Pathogenesis of Diabetic Wound Complications

    NARCIS (Netherlands)

    Bermudez, Dustin M.; Herdrich, Benjamin J.; Xu, Junwang; Lind, Robert; Beason, David P.; Mitchell, Marc E.; Soslowsky, Louis J.; Liechty, Kenneth W.

    2011-01-01

    Diabetic skin is known to have deficient wound healing properties, but little is known of its intrinsic biomeclhanical properties. We hypothesize that diabetic skin possesses inferior biomechanical properties at baseline, rendering it more prone to injury. Skin from diabetic and nondiabetic mice and

  18. Age-related changes in biomechanical properties of transgenic porcine pulmonary and aortic conduits

    International Nuclear Information System (INIS)

    The limitations associated with conventional valve prosthesis have led to a search for alternatives. One potential approach is tissue engineering. Most tissue engineering studies have described the biomechanical properties of heart valves derived from adult pigs. However, because one of the factors affecting the function of valve prosthesis after implantation is appropriate sizing for a given patient, it is important to evaluate the usefulness of a heart valve given the donor animal’s weight and age. The aim of this study was to evaluate how the age of a pig can influence the biomechanical and hemodynamical properties of porcine heart valve prosthesis after acellularization. Acellular porcine aortic and pulmonary valve conduits were used. Hearts were harvested from animals differing in weight and age. The biomechanical properties of the valves were then characterized using a uniaxial tensile test. Moreover, computer simulations based on the finite element method (FEM) were used to study the influence of biomechanical properties on the hemodynamic conditions. Studying biomechanical and morphological changes in porcine heart valve conduits according to the weight and age of the animals can be valuable for developing age-targeted therapy using tissue engineering techniques. (paper)

  19. Biomechanical Properties of In Vivo Human Skin From Dynamic Optical Coherence Elastography

    OpenAIRE

    Liang, Xing; Boppart, Stephen A.

    2009-01-01

    Dynamic optical coherence elastography is used to determine in vivo skin biomechanical properties based on mechanical surface wave propagation. Quantitative Young’s moduli are measured on human skin from different sites, orientations, and frequencies. Skin thicknesses, including measurements from different layers, are also measured simultaneously. Experimental results show significant differences among measurements from different skin sites, between directions parallel and orthogonal to Lange...

  20. Effect of estrogen on tendon collagen synthesis, tendon structural characteristics, and biomechanical properties in postmenopausal women

    DEFF Research Database (Denmark)

    Hansen, M.; Kongsgaard, M; Holm, Lars;

    2009-01-01

    and fibril characteristics were determined by MRI and transmission electron microscopy, whereas tendon biomechanical properties were measured during isometric maximal voluntary contraction by ultrasound recording. Tendon FSR was markedly higher in ERT users (P ... density, fibril volume fraction, and fibril mean area did not differ between groups. However, the percentage of medium-sized fibrils was higher in ERT users (P

  1. On the prospect of patient-specific biomechanics without patient-specific properties of tissues.

    Science.gov (United States)

    Miller, Karol; Lu, Jia

    2013-11-01

    This paper presents main theses of two keynote lectures delivered at Euromech Colloquium "Advanced experimental approaches and inverse problems in tissue biomechanics" held in Saint Etienne in June 2012. We are witnessing an advent of patient-specific biomechanics that will bring in the future personalized treatments to sufferers all over the world. It is the current task of biomechanists to devise methods for clinically-relevant patient-specific modeling. One of the obstacles standing before the biomechanics community is the difficulty in obtaining patient-specific properties of tissues to be used in biomechanical models. We postulate that focusing on reformulating computational mechanics problems in such a way that the results are weakly sensitive to the variation in mechanical properties of simulated continua is more likely to bear fruit in near future. We consider two types of problems: (i) displacement-zero traction problems whose solutions in displacements are weakly sensitive to mechanical properties of the considered continuum; and (ii) problems that are approximately statically determinate and therefore their solutions in stresses are also weakly sensitive to mechanical properties of constituents. We demonstrate that the kinematically loaded biomechanical models of the first type are applicable in the field of image-guided surgery where the current, intraoperative configuration of a soft organ is of critical importance. We show that sac-like membranes, which are prototypes of many thin-walled biological organs, are approximately statically determinate and therefore useful solutions for wall stress can be obtained without the knowledge of the wall's properties. We demonstrate the clinical applicability and effectiveness of the proposed methods using examples from modeling neurosurgery and intracranial aneurysms. PMID:23491073

  2. MR morphology of triangular fibrocartilage complex: correlation with quantitative MR and biomechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Won C.; Chang, Eric Y.; Chung, Christine B. [VA San Diego Healthcare System, Radiology Service, San Diego, CA (United States); University of California-San Diego, Department of Radiology, San Diego, CA (United States); Ruangchaijatuporn, Thumanoon [Mahidol University, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Rachathewi, Bangkok (Thailand); Biswas, Reni; Du, Jiang; Statum, Sheronda [University of California-San Diego, Department of Radiology, San Diego, CA (United States)

    2016-04-15

    To evaluate pathology of the triangular fibrocartilage complex (TFCC) using high-resolution morphologic magnetic resonance (MR) imaging, and compare with quantitative MR and biomechanical properties. Five cadaveric wrists (22-70 years) were imaged at 3 T using morphologic (proton density weighted spin echo, PD FS, and 3D spoiled gradient echo, 3D SPGR) and quantitative MR sequences to determine T2 and T1rho properties. In eight geographic regions, morphology of TFC disc and laminae were evaluated for pathology and quantitative MR values. Samples were disarticulated and biomechanical indentation testing was performed on the distal surface of the TFC disc. On morphologic PD SE images, TFC disc pathology included degeneration and tears, while that of the laminae included degeneration, degeneration with superimposed tear, mucinous transformation, and globular calcification. Punctate calcifications were highly visible on 3D SPGR images and found only in pathologic regions. Disc pathology occurred more frequently in proximal regions of the disc than distal regions. Quantitative MR values were lowest in normal samples, and generally higher in pathologic regions. Biomechanical testing demonstrated an inverse relationship, with indentation modulus being high in normal regions with low MR values. The laminae studied were mostly pathologic, and additional normal samples are needed to discern quantitative changes. These results show technical feasibility of morphologic MR, quantitative MR, and biomechanical techniques to characterize pathology of the TFCC. Quantitative MRI may be a suitable surrogate marker of soft tissue mechanical properties, and a useful adjunct to conventional morphologic MR techniques. (orig.)

  3. Changes in Corneal Biomechanical Properties after Long-Term Topical Prostaglandin Therapy.

    Directory of Open Access Journals (Sweden)

    Na Wu

    Full Text Available To compare corneal biomechanical properties, measured by a newly developed tonometer (Corneal Visualization Scheimpflug Technology, Corvis ST, in untreated primary open angle glaucoma (POAG patients, POAG patients with long-term topical prostaglandin analog (PGA therapy and in normal controls. Further is to investigate the potential effects of PGA on corneal biomechanics.In this case-control study, 35 consecutive medication naïve eyes with POAG, 34 POAG eyes with at least 2 years treatment by PGA and 19 normal eyes were included. Intraocular pressure (IOP, central corneal thickness (CCT and corneal biomechanical parameters, including deformation amplitude (DA, applanation time (AT1 and AT2, applanation length (AL1 and AL2, applanation velocity (AV1 and AV2, and peak distance and radius were measured using Corvis ST. Axial length and corneal curvature were measured with partial coherence interferometry (IOLMaster, Zeiss, Germany. General linear model analysis was performed to investigate the corneal biomechanical property changes among the normal controls, newly diagnosed POAG patients and POAG patients with long-term PGA treatment, and among the subgroups of different types of PGA treatment, including bimatoprost, latanoprost and travoprost. Furthermore, pairwise comparisons using Bonferroni correction for least squares means were employed.AT1 (p<0.0001, AV1 (p<0.0001, AT2 (p = 0.0001, AV2 (p<0.0001 and DA (p = 0.0004 in newly diagnosed glaucoma patients were significantly different from those in normal subjects and in patients underwent at least 2 years topical PGA therapy after adjusting for age and gender. After adjusting for age, gender, IOP, CCT, axial length and corneal curvature, a significant difference was detected for DA between glaucoma patients without PGA treatment and patients with long-term PGA therapy (p = 0.0387. Furthermore, there were no statistical significant differences in all of the corneal biomechanical parameters among

  4. Murine patellar tendon biomechanical properties and regional strain patterns during natural tendon-to-bone healing after acute injury

    OpenAIRE

    Gilday, Steven D.; Casstevens, E. Chris; Kenter, Keith; Jason T Shearn; David L Butler

    2013-01-01

    Tendon-to-bone healing following acute injury is generally poor and often fails to restore normal tendon biomechanical properties. In recent years, the murine patellar tendon (PT) has become an important model system for studying tendon healing and repair due to its genetic tractability and accessible location within the knee. However, the mechanical properties of native murine PT, specifically the regional differences in tissue strains during loading, and the biomechanical outcomes of natura...

  5. Impacts of Hematite Nanoparticle Exposure on Biomechanical, Adhesive, and Surface Electrical Properties of Escherichia coli Cells

    OpenAIRE

    Zhang, Wen; Hughes, Joseph; Chen, Yongsheng

    2012-01-01

    Despite a wealth of studies examining the toxicity of engineered nanomaterials, current knowledge on their cytotoxic mechanisms (particularly from a physical perspective) remains limited. In this work, we imaged and quantitatively characterized the biomechanical (hardness and elasticity), adhesive, and surface electrical properties of Escherichia coli cells with and without exposure to hematite nanoparticles (NPs) in an effort to advance our understanding of the cytotoxic impacts of nanomater...

  6. Effects of refrigeration and freezing on the electromechanical and biomechanical properties of articular cartilage.

    Science.gov (United States)

    Changoor, Adele; Fereydoonzad, Liah; Yaroshinsky, Alex; Buschmann, Michael D

    2010-06-01

    In vitro electromechanical and biomechanical testing of articular cartilage provide critical information about the structure and function of this tissue. Difficulties obtaining fresh tissue and lengthy experimental testing procedures often necessitate a storage protocol, which may adversely affect the functional properties of cartilage. The effects of storage at either 4°C for periods of 6 days and 12 days, or during a single freeze-thaw cycle at -20°C were examined in young bovine cartilage. Non-destructive electromechanical measurements and unconfined compression testing on 3 mm diameter disks were used to assess cartilage properties, including the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Cartilage disks were also examined histologically. Compared with controls, significant decreases in SPI (to 32.3±5.5% of control values, prefrigeration at 4°C, but no significant changes were detected at day 6. A trend toward detecting a decrease in SPI (to 94.2±6.2% of control values, p=0.083) was identified following a single freeze-thaw cycle, but no detectable changes were observed for any biomechanical parameters. All numbers are mean±95% confidence interval. These results indicate that fresh cartilage can be stored in a humid chamber at 4°C for a maximum of 6 days with no detrimental effects to cartilage electromechanical and biomechanical properties, while one freeze-thaw cycle produces minimal deterioration of biomechanical and electromechanical properties. A comparison to literature suggested that particular attention should be paid to the manner in which specimens are thawed after freezing, specifically by minimizing thawing time at higher temperatures. PMID:20887036

  7. The effect of bacterial infection on the biomechanical properties of biological mesh in a rat model.

    Directory of Open Access Journals (Sweden)

    Charles F Bellows

    Full Text Available BACKGROUND: The use of biologic mesh to repair abdominal wall defects in contaminated surgical fields is becoming the standard of practice. However, failure rates and infections of these materials persist clinically. The purpose of this study was to determine the mechanical properties of biologic mesh in response to a bacterial encounter. METHODS: A rat model of Staphylococcus aureus colonization and infection of subcutaneously implanted biologic mesh was used. Samples of biologic meshes (acellular human dermis (ADM and porcine small intestine submucosa (SIS were inoculated with various concentrations of methicillin-resistant Staphylococcus aureus [10(5, 10(9 colony-forming units] or saline (control prior to wound closure (n = 6 per group. After 10 or 20 days, meshes were explanted, and cultured for bacteria. Histological changes and bacterial recovery together with biomechanical properties were assessed. Data were compared using a 1-way ANOVA or a Mann-Whitney test, with p0.05. After inoculation with MRSA, a time, dose and material dependent decrease in the ultimate tensile strength and modulus of elasticity of SIS and ADM were noted compared to control values. CONCLUSION: The biomechanical properties of biologic mesh significantly decline after colonization with MRSA. Surgeons selecting a repair material should be aware of its biomechanical fate relative to other biologic materials when placed in a contaminated environment.

  8. In Vivo Corneal Biomechanical Properties with Corneal Visualization Scheimpflug Technology in Chinese Population

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2016-01-01

    Full Text Available Purpose. To determine the repeatability of recalculated corneal visualization Scheimpflug technology (CorVis ST parameters and to study the variation of biomechanical properties and their association with demographic and ocular characteristics. Methods. A total of 783 healthy subjects were included in this study. Comprehensive ophthalmological examinations were conducted. The repeatability of the recalculated biomechanical parameters with 90 subjects was assessed by the coefficient of variation (CV and intraclass correlation coefficient (ICC. Univariate and multivariate linear regression models were used to identify demographic and ocular factors. Results. The repeatability of the central corneal thickness (CCT, deformation amplitude (DA, and first/second applanation time (A1/A2-time exhibited excellent repeatability (CV% ≤ 3.312% and ICC ≥ 0.929 for all measurements. The velocity in/out (Vin/out, highest concavity- (HC- radius, peak distance (PD, and DA showed a normal distribution. Univariate linear regression showed a statistically significant correlation between Vin, Vout, DA, PD, and HC-radius and IOP, CCT, and corneal volume, respectively. Multivariate analysis showed that IOP and CCT were negatively correlated with Vin, DA, and PD, while there was a positive correlation between Vout and HC-radius. Conclusion. The ICCs of the recalculated parameters, CCT, DA, A1-time, and A2-time, exhibited excellent repeatability. IOP, CCT, and corneal volume significantly influenced the biomechanical properties of the eye.

  9. In Vivo Corneal Biomechanical Properties with Corneal Visualization Scheimpflug Technology in Chinese Population.

    Science.gov (United States)

    Wu, Ying; Tian, Lei; Huang, Yi-Fei

    2016-01-01

    Purpose. To determine the repeatability of recalculated corneal visualization Scheimpflug technology (CorVis ST) parameters and to study the variation of biomechanical properties and their association with demographic and ocular characteristics. Methods. A total of 783 healthy subjects were included in this study. Comprehensive ophthalmological examinations were conducted. The repeatability of the recalculated biomechanical parameters with 90 subjects was assessed by the coefficient of variation (CV) and intraclass correlation coefficient (ICC). Univariate and multivariate linear regression models were used to identify demographic and ocular factors. Results. The repeatability of the central corneal thickness (CCT), deformation amplitude (DA), and first/second applanation time (A1/A2-time) exhibited excellent repeatability (CV% ≤ 3.312% and ICC ≥ 0.929 for all measurements). The velocity in/out (V in/out), highest concavity- (HC-) radius, peak distance (PD), and DA showed a normal distribution. Univariate linear regression showed a statistically significant correlation between V in, V out, DA, PD, and HC-radius and IOP, CCT, and corneal volume, respectively. Multivariate analysis showed that IOP and CCT were negatively correlated with V in, DA, and PD, while there was a positive correlation between V out and HC-radius. Conclusion. The ICCs of the recalculated parameters, CCT, DA, A1-time, and A2-time, exhibited excellent repeatability. IOP, CCT, and corneal volume significantly influenced the biomechanical properties of the eye. PMID:27493965

  10. Comparison of Corneal Topographical and Biomechanical Properties in Cases with Atopic Dermatitis and Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Yusuf Yıldırım

    2013-06-01

    Full Text Available Pur po se: To compare the topographic, biomechanical, and thickness properties of corneas of patients with atopic dermatitis (AD and of healthy individuals. Ma te ri al and Met hod: In this prospective, cross-sectional, and comparative study, 28 healthy individuals (control group and 28 patients with AD (study group were enrolled. Corneal topographical measurements using Scheimpflug camera with a Placido disc topographer (Sirius, corneal biomechanical properties using Ocular Response Analyzer (ORA, and central corneal thickness (CCT using ultrasonic pachymeter were obtained for each participant. Re sults: Topographic parameters were not significantly different between both groups (p>0.05. Corneal hysteresis (CH and corneal resistance factor (CRF were found same in both groups. CCT measured with ultrasonic pachymeter was significantly lower in patients with AD compared to health controls (p<0.05. Dis cus si on: No significant difference was found between patients with AD and age-matched healthy individuals regarding the corneal topographic findings and corneal biomechanical parameters. CCT was found to be lower in cases with AD than in healthy controls. (Turk J Ophthalmol 2013; 43: 140-4

  11. An Atomic Force Microscopy based investigation of specific biomechanical properties for various types of neuronal cells

    Science.gov (United States)

    Spedden, Elise; White, James; Kaplan, David; Staii, Cristian

    2012-02-01

    Here we describe the use of Atomic Force Microscope (AFM) based techniques to characterize and explore the influence of biochemical and biomechanical cues on the growth and interaction of neuronal cells with surrounding guidance factors. Specifically, we use AFM topography and AFM force spectroscopy measurements to systematically investigate the morphology, elasticity, and real time growth of neuronal processes in the presence of different types of extracellular matrix proteins and growth factors. We therefore create a series of systems containing specified neuron densities where the type of the underlying growth promoting protein is different from sample to sample. For each system we measure key biomechanical parameters related to neuronal growth such as height and elastic modulus at multiple growth points on several types of neurons. We show that systematic measurements of these parameters yield fundamental information about the role played by substrate-plated guidance factors in determining elastic and morphological properties of neurons during growth.

  12. Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera

    Energy Technology Data Exchange (ETDEWEB)

    Papi, M. [Institute of Physics, Università Cattolica del Sacro Cuore, Largo F.Vito 1, 00168 Rome (Italy); Paoletti, P. [Centre for Engineering Dynamics, School of Engineering, Brownlow Hill, Liverpool, L69 3GH (United Kingdom); Geraghty, B.; Akhtar, R. [Centre for Materials and Structures, School of Engineering, Brownlow Hill, Liverpool, L69 3GH (United Kingdom)

    2014-03-10

    We apply the PeakForce Quantitative Nanomechanical Property Mapping (PFQNM) atomic force microscopy mode for the investigation of regional variations in the nanomechanical properties of porcine sclera. We examine variations in the collagen fibril diameter, adhesion, elastic modulus and dissipation in the posterior, equatorial and anterior regions of the sclera. The mean fibril diameter, elastic modulus and dissipation increased from the posterior to the anterior region. Collagen fibril diameter correlated linearly with elastic modulus. Our data matches the known macroscopic mechanical behavior of the sclera. We propose that PFQNM has significant potential in ocular biomechanics and biophysics research.

  13. Might axial myofascial properties and biomechanical mechanisms be relevant to ankylosing spondylitis and axial spondyloarthritis?

    Science.gov (United States)

    Masi, Alfonse T

    2014-01-01

    inflammatory mechanisms operate in both ankylosing spondylitis and degenerative disc disease but differ in relative degrees. The hypothesized biomechanical properties raised in this commentary require documentation of their association with the onset risk and course of ankylosing spondylitis and axial spondyloarthritis. If particular subsets of ankylosing spondylitis and axial spondyloarthritis patients are confirmed to have altered axial myofascial properties, their biological basis and underlying biomechanical mechanisms promise to become clarified. Understanding how biomechanical and physical properties can affect symptomatic and structural manifestations of these disorders could also improve their management.

  14. Using robotic systems in order to determine biomechanical properties of soft tissues.

    Science.gov (United States)

    Kunkel, M E; Moral, A; Westphal, R; Rode, D; Rilk, M; Wahl, F M

    2008-01-01

    Biomechanical properties of soft tissue are important not only during computer simulation for medical training but also for systems where tissue deformation must be estimated in real-time, for example, Robot Assisted Surgery. The purpose of this paper is to describe some biomechanical tests consisting in the measurement of contact forces and deformations in tissue phantoms and porcine soft tissues (liver, brain, stomach and intestine). During the measurements two different procedures were applied. First, we have used a 5DOF micromanipulator instrumented with a spherical probe and a 6-axis force/torque ATI sensor. In the second procedure instead of the micromanipulator a Stäubli RX60 robot was used to apply the force over the samples. During this last test a high noise-signal relationship was detected and in order to improve the accuracy of the experiments some results were obtained using a Stäubli TX40 robot. Major accuracy in research in the field of soft tissue could be reached using standard procedures. Robotic systems allow precise movements to carry on biomechanical tests, and also permit a wide range of tasks to be implemented. PMID:18376024

  15. Effects of heat treatment of wood on hydroxylapatite type mineral precipitation and biomechanical properties in vitro.

    Science.gov (United States)

    Rekola, J; Lassila, L V J; Hirvonen, J; Lahdenperä, M; Grenman, R; Aho, A J; Vallittu, P K

    2010-08-01

    Wood is a natural fiber reinforced composite. It structurally resembles bone tissue to some extent. Specially heat-treated birch wood has been used as a model material for further development of synthetic fiber reinforced composites (FRC) for medical and dental use. In previous studies it has been shown, that heat treatment has a positive effect on the osteoconductivity of an implanted wood. In this study the effects of two different heat treatment temperatures (140 and 200 degrees C) on wood were studied in vitro. Untreated wood was used as a control material. Heat treatment induced biomechanical changes were studied with flexural and compressive tests on dry birch wood as well as on wood after 63 days of simulated body fluid (SBF) immersion. Dimensional changes, SBF sorption and hydroxylapatite type mineral formation were also assessed. The results showed that SBF immersion decreases the biomechanical performance of wood and that the heat treatment diminishes the effect of SBF immersion on biomechanical properties. With scanning electron microscopy and energy dispersive X-ray analysis it was shown that hydroxylapatite type mineral precipitation formed on the 200 degrees C heat-treated wood. An increased weight gain of the same material during SBF immersion supported this finding. The results of this study give more detailed insight of the biologically relevant changes that heat treatment induces in wood material. Furthermore the findings in this study are in line with previous in vivo studies.

  16. Biomechanical Properties of a Novel Biodegradable Magnesium-Based Interference Screw.

    Science.gov (United States)

    Ezechieli, Marco; Meyer, Hanna; Lucas, Arne; Helmecke, Patrick; Becher, Christoph; Calliess, Tilman; Windhagen, Henning; Ettinger, Max

    2016-06-27

    Magnesium-based interference screws may be an alternative in anterior/posterior cruciate ligament reconstruction. The well-known osteoconductive effects of biodegradable magnesium alloys may be useful. It was the purpose of this study to evaluate the biomechanical properties of a magnesium based interference screw and compare it to a standard implant. A MgYREZr-alloy interference screw and a standard implant (Milagro®; De Puy Mitek, Raynham, MA, USA) were used for graft fixation. Specimens were placed into a tensile loading fixation of a servohydraulic testing machine. Biomechanical analysis included pretensioning of the constructs at 20 N for 1 min following cyclic pretensioning of 20 cycles between 20 and 60 N. Biomechanical elongation was evaluated with cyclic loading of 1000 cycles between 50 and 200 N at 0.5 Hz. Maximum load to failure was 511.3±66.5 N for the Milagro® screw and 529.0±63.3 N for magnesium-based screw (ns, P=0.57). Elongations after preload, during cyclical loading and during failure load were not different between the groups (ns, P>0.05). Stiffness was 121.1±13.8 N/mm for the magnesium-based screw and 144.1±18.4 for the Milagro® screw (ns, P=0.32). MgYREZr alloy interference screws show comparable results in biomechanical testing to standard implants and may be an alternative for anterior cruciate reconstruction in the future. PMID:27433303

  17. Biomechanical properties of a novel biodegradable magnesium-based interference screw

    Directory of Open Access Journals (Sweden)

    Marco Ezechieli

    2016-06-01

    Full Text Available Magnesium-based interference screws may be an alternative in anterior/posterior cruciate ligament reconstruction. The well-known osteoconductive effects of biodegradable magnesium alloys may be useful. It was the purpose of this study to evaluate the biomechanical properties of a magnesium based interference screw and compare it to a standard implant. A MgYREZr-alloy interference screw and a standard implant (Milagro®; De Puy Mitek, Raynham, MA, USA were used for graft fixation. Specimens were placed into a tensile loading fixation of a servohydraulic testing machine. Biomechanical analysis included pretensioning of the constructs at 20 N for 1 min following cyclic pretensioning of 20 cycles between 20 and 60 N. Biomechanical elongation was evaluated with cyclic loading of 1000 cycles between 50 and 200 N at 0.5 Hz. Maximum load to failure was 511.3±66.5 N for the Milagro® screw and 529.0±63.3 N for magnesium-based screw (ns, P=0.57. Elongations after preload, during cyclical loading and during failure load were not different between the groups (ns, P>0.05. Stiffness was 121.1±13.8 N/mm for the magnesiumbased screw and 144.1±18.4 for the Milagro® screw (ns, P=0.32. MgYREZr alloy interference screws show comparable results in biomechanical testing to standard implants and may be an alternative for anterior cruciate reconstruction in the future.

  18. Biomechanical properties of human thoracic spine disc segments

    Directory of Open Access Journals (Sweden)

    B D Stemper

    2010-01-01

    Full Text Available Background : The objective was to determine the age-dependent compressive and tensile properties of female and male thoracic spine segments using postmortem human subjects (PMHS. Materials and Methods : Forty-eight thoracic disc segments at T4-5, T6-7, T8-9, and T10-11 levels from 12 PMHS T3-T11 spinal columns were divided into groups A and B based on specimen age and loaded in compression and tension. Stiffness and elastic modulus were computed. Stiffness was defined as the slope in the linear region of the force-displacement response. Elastic modulus was defined as the slope of the stress strain curve. Analysis of Variance (ANOVA was used to determine significant differences (P< 0.05 in the disc cross-sectional area, stiffness, and elastic modulus based on gender, spinal level, and group. Results : Specimen ages in group A (28 ± 8 years were significantly lower than in group B (70 ± 7 years. Male discs had significantly greater area (7.2 ± 2.0 sq cm than female discs (5.9 ± 1.8 sq cm. Tensile and compressive stiffness values were significantly different between the two age groups, but not between gender and level. Specimens in group A had greater tensile (486 ± 108 N/mm and compressive (3300 ± 642 N/mm stiffness values compared to group B specimens (tension: 397 ± 124 N/mm, compression: 2527 ± 734 N/mm. Tensile and compressive elastic modulus values depended upon age group and gender, but not on level. Group A specimens had significantly greater tensile and compressive moduli (2.9 ± 0.8 MPa, 19.5 ± 4.1 MPa than group B specimens (1.7 ± 0.6 MPa, 10.6 ± 3.4 MPa. Female specimens showed significantly greater tensile and compressive moduli (2.6 ± 1.0 MPa, 16.6 ± 6.4 MPa than male specimens (2.0 ± 0.7 MPa, 13.7 ± 5.0 MPa. Discussion: Using the two groups to represent "young" and "old" specimens, this study showed that the mechanical response decreases in older specimens, and the decrease is greater in compressive than distractive

  19. Study the effects of radon inhalation on biomechanical properties of blood in rats

    Directory of Open Access Journals (Sweden)

    Mostafa Fawzy Eissa

    2015-09-01

    Full Text Available Purpose: To investigate the effect of inhalation radon gas (Rn on the biomechanical properties of red blood cell of rats. Methods: 20 young healthy adult male albino rats were divided into equally 4 groups. The first group (0 served as control group, while the other three groups (I, II and III were exposed to Rn gas inside a chamber for 3, 5 and 7 weeks. The biomechanical properties of red blood cell of rats was performed by determine the rheological properties of blood and the osmotic fragility of red blood cells (RBCs. Results: The Rn doses received by every group of rats were found to 34.84, 58.07 and 81.30 mSv for 3, 5 and 7 weeks respectively (based on 12 exposure hours per week. The obtained results indicate that the viscosity, consistency index, yield stress and aggregation index increase with Rn doses. The osmotic fragility curves of irradiated groups shift toward lower values of NaCl concentration. The dispersion of hemolysis (S increased, at the same time an average osmotic fragility (H50% decreased. Conclusion: The results indicates that the exposure to radon alters the mechanical properties of red blood cells membrane (permeability and elasticity reflecting a change in its physiological properties. This mean that low levels of Rn gas are harmful to biological systems and the degree of damage was dose-dependent.

  20. Assessment of Corneal Biomechanical Properties by CorVis ST in Patients with Dry Eye and in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Qin Long

    2015-01-01

    Full Text Available Purpose. To investigate corneal biomechanical properties in patients with dry eye and in healthy subjects using Corneal Visualization Scheimpflug Technology (CorVis ST. Methods. Biomechanical parameters were measured using CorVis ST in 28 eyes of 28 patients with dry eye (dry eye group and 26 normal subjects (control group. The Schirmer I test value, tear film break-up time (TBUT, and corneal staining score (CSS were recorded for each eye. Biomechanical properties were compared between the two groups and bivariate correlation analysis was used to assess the relationship between biomechanical parameters and dry eye signs. Results. Only one of the ten biomechanical parameters was significantly different between the two groups. Patients in the dry eye group had significantly lower highest concavity time (HC-time (P=0.02 than the control group. Correlation analysis showed a significant negative correlation between HC-time and CSS with marginal P value (ρ=-0.39, P=0.04 in the dry eye group. Conclusions. The corneal biomechanical parameter of HC-time is reduced in dry eyes compared to normal eyes. There was also a very weak but significant negative correlation between HC-time and CSS in the dry eye group, indicating that ocular surface damage can give rise to a more compliant cornea in dry eyes.

  1. Investigation of chemical and physical properties of carbon nanotubes and their effects on cell biomechanics

    Science.gov (United States)

    Dong, Chenbo

    Cerasela Zoica Dinu, Effects of acid treatment on structure, properties and biocompatibility of carbon nanotubes, Applied Surface Science, 2013, 268, 261-268.) Chapter two shows how exposure to CNTs changes the biomechanical properties of fixed human lung epithelial cells (BEAS-2B cells). Specifically, by using Atomic Force Microscopy (AFM) nanoindentation technology, we demonstrated that cellular exposure to multi-walled carbon nanotubes (MWCNTs) for 24h induces significant changes in cellular biomechanics leading to increased cellular stiffness. The MWCNTs incubation also seemed to alter the surface area of the cells. Consequently, measures of the mechanical properties of the exposed cell could be used as indicators of its biological state and could offer valuable insights into the mechanisms associated with CNTs-induced genetic instability. (Publication: Chenbo Dong, Linda Sargent, Michael L Kashon, David Lowry, Jonathan S. Dordick, Steven H. Reynolds, Yon Rojanasakul and Cerasela Zoica Dinu, Expose to carbon nanotubes leads to change in cellular biomechanics, Advanced Healthcare Materials, 2013, 7, 945-951.) Chapter three links together the MWCNTs exposure duration, internalization and induced biomechanical changes in fixed cells. Our findings indicated that changes in biomechanical properties of the fixed cells are a function of the uptake and internalization of the MWCNTs as well as their uptake time. Specifically, short exposure time did not seem to lead to considerable changes in the elastic properties in the cellular system. However, longer cellular exposure to CNTs leads to a higher uptake and internalization of the nanotubes and a larger effect on the cell mechanics. Such changes could be related to CNTs interactions with cellular elements and could bring information on the CNT intrinsic toxicity. Chapter four talks about the potential of purified forms of CNTs with increased hydrophilicity to affect live human lung epithelial cells when used at occupational

  2. Biomechanical properties of bone in a mouse model of Rett syndrome.

    Science.gov (United States)

    Kamal, Bushra; Russell, David; Payne, Anthony; Constante, Diogo; Tanner, K Elizabeth; Isaksson, Hanna; Mathavan, Neashan; Cobb, Stuart R

    2015-02-01

    Rett syndrome (RTT) is an X-linked genetic disorder and a major cause of intellectual disability in girls. Mutations in the methyl-CpG binding protein 2 (MECP2) gene are the primary cause of the disorder. Despite the dominant neurological phenotypes, MECP2 is expressed ubiquitously throughout the body and a number of peripheral phenotypes such as scoliosis, reduced bone mineral density and skeletal fractures are also common and important clinical features of the disorder. In order to explore whether MeCP2 protein deficiency results in altered structural and functional properties of bone and to test the potential reversibility of any defects, we have conducted a series of histological, imaging and biomechanical tests of bone in a functional knockout mouse model of RTT. Both hemizygous Mecp2(stop/y) male mice in which Mecp2 is silenced in all cells and female Mecp2(stop/+) mice in which Mecp2 is silenced in ~50% of cells as a consequence of random X-chromosome inactivation, revealed significant reductions in cortical bone stiffness, microhardness and tensile modulus. Microstructural analysis also revealed alterations in both cortical and cancellous femoral bone between wild-type and MeCP2-deficient mice. Furthermore, unsilencing of Mecp2 in adult mice cre-mediated stop cassette deletion resulted in a restoration of biomechanical properties (stiffness, microhardness) towards wild-type levels. These results show that MeCP2-deficiency results in overt, but potentially reversible, alterations in the biomechanical integrity of bone and highlights the importance of targeting skeletal phenotypes in considering the development of pharmacological and gene-based therapies.

  3. Comparative transcriptional analysis of three human ligaments with distinct biomechanical properties

    Science.gov (United States)

    Lorda-Diez, Carlos I; Canga-Villegas, Ana; Cerezal, Luis; Plaza, Santiago; Hurlé, Juan M; García-Porrero, Juan A; Montero, Juan A

    2013-01-01

    One major aim of regenerative medicine targeting the musculoskeletal system is to provide complementary and/or alternative therapeutic approaches to current surgical therapies, often involving the removal and prosthetic substitution of damaged tissues such as ligaments. For these approaches to be successful, detailed information regarding the cellular and molecular composition of different musculoskeletal tissues is required. Ligaments have often been considered homogeneous tissues with common biomechanical properties. However, advances in tissue engineering research have highlighted the functional relevance of the organisational and compositional differences between ligament types, especially in those with higher risks of injury. The aim of this study was to provide information concerning the relative expression levels of a subset of key genes (including extracellular matrix components, transcription factors and growth factors) that confer functional identity to ligaments. We compared the transcriptomes of three representative human ligaments subjected to different biomechanical demands: the anterior cruciate ligament (ACL); the ligamentum teres of the hip (LT); and the iliofemoral ligament (IL). We revealed significant differences in the expression of type I collagen, elastin, fibromodulin, biglycan, transforming growth factor β1, transforming growth interacting factor 1, hypoxia-inducible factor 1-alpha and transforming growth factor β-induced gene between the IL and the other two ligaments. Thus, considerable molecular heterogeneity can exist between anatomically distinct ligaments with differing biomechanical demands. However, the LT and ACL were found to show remarkable molecular homology, suggesting common functional properties. This finding provides experimental support for the proposed role of the LT as a hip joint stabiliser in humans. PMID:24128114

  4. Biomechanical properties of isolated fascicles of the Iliopsoas and Achilles tendons in African American and Caucasian men

    DEFF Research Database (Denmark)

    Hanson, P; Aagaard, P; Magnusson, S Peter

    2012-01-01

    OBJECTIVES: To investigate biomechanical properties of the Iliopsoas and Achilles tendons in young African American (AA) and Caucasian (CC) men, and attempt to clarify whether the difference in Achilles tendon ruptures between AA and CC can be explained by differences in material properties. METH...

  5. Biomechanical properties of ileum after systemic treatment with epithelial growth factor

    Institute of Scientific and Technical Information of China (English)

    Jian Yang; Jing-Bo Zhao; Yan-Jun Zeng; Hans Gregersen

    2003-01-01

    AIM:Systemic treatment with epidermal growth factor (EGF)leads to growth of all parts of the small intestine in normal functioning rats. In this study, we investigated the effect of this growth process on morphometric and biomechanical parameters of ileum.METHODS: Rats were treated with EGF (150 μg@kg-1day-1)or placebo via osmotic minipumps for 2, 4, 7, and 14 days.A segment of ileum was removed. The morphology at noload state and zero-stress state was measured and passive biomechanical properties were assessed using a biaxial test machine (combined inflation and axial stretching).RESULTS: The ileum weight increased after EGF administration. After 4 days' EGF treatment, the wall thickness was increased. Significantly smaller inner perimeters were seen in 4 day and 7 day EGF treatment groups. The opening angle and residual strain began to increase after 7 days' EGF treatment. Wall stiffness, evaluated from the stress-strain curves, showed a continuous decrease in circumferential direction during the first 7 days' EGF treatment. The longitudinal stiffness increased during the first 7 days. The stress-strain curves for both circumferential and longitudinal direction tended to shift back to normal 14days after starting EGF administration.CONCLUSION: EGF can cause significant changes both in the morphology and in the passive mechanical properties of the rat ileum.

  6. Individual typological variability of macro-microscopical and biomechanical properties of intracranial part of vertebral artery

    Directory of Open Access Journals (Sweden)

    Fomkina О.A.

    2012-12-01

    Full Text Available

    The purpose of the study is to reveal the features of individual typological variability of macro-microscopical and biomechanical properties of the wall of intracranial part of vertebral arteries (IPVA in adult people. Materials and methods: The research material of 228 samples of IPVA has been received by autopsy of 115 corpses of people aged 21-84 years. External diameter, thickness of the wall, diameter of lumen of artery have been measured. Biomechanical properties of IPVA have been studied by explosive carTira Test 28005 with a loading cell of 100 H. General strength (H, breaking point (H/mm2, Young»s modulus (H/mm2, absolute (mm and relative deformation (% of samples of arteries have been defined. Results: 3 groups of variants of arteries have been isolated: with average size of a sign (M±y, less than the average size (M+ y. The conclusion: The obtained data about functional anatomy of vascular bed of brain may be useful in blood flow modeling and optimization of extra — and intravascular interventions.

  7. Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties

    Directory of Open Access Journals (Sweden)

    Renato Ambrósio Jr

    2013-04-01

    Full Text Available OBJECTIVE: To describe a novel technique for clinical characterization of corneal biomechanics using non-invasive dynamic imaging. METHODS: Corneal deformation response during non contact tonometry (NCT is monitored by ultra-high-speed (UHS photography. The Oculus Corvis ST (Scheimpflug Technology; Wetzlar, Germany has a UHS Scheimpflug camera, taking over 4,300 frames per second and of a single 8mm horizontal slit, for monitoring corneal deformation response to NCT. The metered collimated air pulse or puff has a symmetrical configuration and fixed maximal internal pump pressure of 25 kPa. The bidirectional movement of the cornea in response to the air puff is monitored. RESULTS: Measurement time is 30ms, with 140 frames acquired. Advanced algorithms for edge detection of the front and back corneal contours are applied for every frame. IOP is calculated based on the first applanation moment. Deformation amplitude (DA is determined as the highest displacement of the apex in the highest concavity (HC moment. Applanation length (AL and corneal velocity (CVel are recorded during ingoing and outgoing phases. CONCLUSION: Corneal deformation can be monitored during non contact tonometry. The parameters generated provide clinical in vivo characterization of corneal biomechanical properties in two dimensions, which is relevant for different applications in Ophthalmology.

  8. Evaluation of corneal biomechanical properties following penetrating keratoplasty using ocular response analyzer

    Directory of Open Access Journals (Sweden)

    Vanathi Murugesan

    2014-01-01

    Full Text Available Purpose: To evaluate corneal biomechanical properties in eyes that has undergone penetrating keratoplasty (PK. Materials and Methods: Retrospective observational study in a tertiary care centre. Data recorded included ocular response analyzer (ORA values of normal and post-keratoplasty eyes [corneal hysteresis (CH, corneal resistance factor (CRF, Goldmann-correlated intraocular pressure (IOPg, and cornea-compensated intraocular pressure (IOPcc], corneal topography, and central corneal thickness (CCT. Wilcoxon signed rank test was used to analyze the difference in ORA parameter between post-PK eyes and normal eyes. Correlation between parameters was evaluated with Spearman′s rho correlation. Results: The ORA study of 100 eyes of 50 normal subjects and 54 post-keratoplasty eyes of 51 patients showed CH of 8.340 ± 1.85 and 9.923 ± 1.558, CRF of 8.846 ± 2.39 and 9.577 ± 1.631 in post-PK eyes and normal eyes, respectively. CH and CRF did not correlate with post-keratoplasty astigmatism (P = 0.311 and 0.276, respectively while a significant correlation was observed with IOPg (P = 0.004 and IOPcc (P < 0.001. Conclusion: Biomechanical profiles were significantly decreased in post-keratoplasty eyes with significant correlation with higher IOP as compared with that in normal eyes.

  9. Effect of the hydration on the biomechanical properties in a fibrin-agarose tissue-like model.

    Science.gov (United States)

    Scionti, Giuseppe; Moral, Monica; Toledano, Manuel; Osorio, Raquel; Durán, Juan D G; Alaminos, Miguel; Campos, Antonio; López-López, Modesto T

    2014-08-01

    The effect of hydration on the biomechanical properties of fibrin and fibrin-agarose (FA) tissue-like hydrogels is reported. Native hydrogels with approximately 99.5% of water content and hydrogels with water content reduced until 90% and 80% by means of plastic compression (nanostructuration) were generated. The biomechanical properties of the hydrogels were investigated by tensile, compressive, and shear tests. Experimental results indicate that nanostructuration enhances the biomechanical properties of the hydrogels. This improvement is due to the partial draining of the water that fills the porous network of fibers that the plastic compression generates, which produces a denser material, as confirmed by scanning electron microscopy. Results also indicate that the characteristic compressive and shear parameters increase with agarose concentration, very likely due to the high water holding capacity of agarose, which reduces the compressibility and gives consistency to the hydrogels. However, results of tensile tests indicate a weakening of the hydrogels as agarose concentration increases, which evidences the anisotropic nature of these biomaterials. Interestingly, we found that by adjusting the water and agarose contents it is possible to tune the biomechanical properties of FA hydrogels for a broad range, within which the properties of many native tissues fall. PMID:23963645

  10. Changes in biomechanical properties of the cornea after modified transepithelial crosslinking

    Directory of Open Access Journals (Sweden)

    I. B. Medvedev

    2016-01-01

    Full Text Available The aim of the study was to evaluate changes in biomechanical properties of the cornea after conducting transepithelial crosslinking with the prior application of a 40 % glucose solution.Materials and methods. Just studied the biomechanical properties of the corneas of six rabbits breed Chinchilla (12 eyes. 4 rabbit entered in the experimental group, in which in one eye glucose solution was applied on the cornea and allowed to stay for 10 minutes, followed by the instillation of 0.1 % Riboflavin solution for 30 minutes. On a couple of the rabbit eye was applied a solution of Riboflavin without prior instillation of glucose. Then carried out the procedure of irradiation according to the conventional technology with UV with a wavelength of 370 μm and a beam energy of 3.0 mW / cm2. Two rabbits (4 eyes were included in the control group, in which crosslinking was not performed. After 1 month the euthanasia of the animals was performed with subsequent enucleation for corneal research on a tensile testing machine. In the control and experimental group compared, the relaxation curves and the following parameters were analyzed: initial stress (MPa, equilibrium stress (MPa modulus of elasticity.Results and their discussion. After the crosslinking the rise of the initial stress (in the control group and 0.7+0.1 MPa, in the experimental and 1.5+0.2 1.3+0.3 MPa, respectively. The stress relaxation is fast (equilibrium stress value is reached after 250 sec. and after the administration of glucose for approximately 75 seconds, which means a greater rigidity of experimental group of samples. In the experimental groups significantly changed and the modulus of elasticity: its value has increased approximately in 2 times in comparison with control samples. The equilibrium stress values in the experimental groups were different from the zero value that also indicates a change in the chemical structure of the samples.Conclusions. Holding transepithelial of

  11. Effects of gamma irradiation on the biomechanical properties of peroneus tendons

    Directory of Open Access Journals (Sweden)

    Aguila CM

    2016-09-01

    Full Text Available Christopher M Aguila,1 Gaëtan J-R Delcroix,2–5 David N Kaimrajh,6 Edward L Milne,6 H Thomas Temple,5,7 Loren L Latta2,6 1Department of Biological Sciences, Florida International University, Miami, FL, USA; 2Department of Orthopaedics, Miller School of Medicine, University of Miami, Miami, FL, USA; 3Research Service & Geriatric Research, Education, and Clinical Center, Bruce W. Carter Veterans Affairs Medical Center, Miami, FL, USA; 4Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, USA; 5Vivex Biomedical Inc., Marietta, GA, USA; 6Max Biedermann Institute for Biomechanics, Miami Beach, FL, USA; 7Translational Research and Economic Development, Nova Southeastern University, Fort-Lauderdale, FL, USA Purpose: This study was designed to investigate the biomechanical properties of nonirradiated (NI and irradiated (IR peroneus tendons to determine if they would be suitable allografts, in regards to biomechanical properties, for anterior cruciate ligament reconstruction after a dose of 1.5–2.5 Mrad.Methods: Seven pairs of peroneus longus (PL and ten pairs of peroneus brevis (PB tendons were procured from human cadavers. The diameter of each allograft was measured. The left side of each allograft was IR at 1.5–2.5 Mrad, whereas the right side was kept aseptic and NI. The allografts were thawed, kept wet with saline, and attached in a single-strand fashion to custom freeze grips using liquid nitrogen. A preload of 10 N was then applied and, after it had reached steady state, the allografts were pulled at 4 cm/sec. The parameters recorded were the displacement and force.Results: The elongation at the peak load was 10.3±2.3 mm for the PB NI side and 13.5±3.3 mm for the PB IR side. The elongation at the peak load was 17.4±5.3 mm for the PL NI side and 16.3±2.0 mm for the PL IR side. For PL, the ultimate load was 2,091.6±148.7 N for NI and 2,122.8±380.0 N for IR. The ultimate load for the PB tendons was 1,485.7±209.3 N for

  12. Rapid characterization of the biomechanical properties of drug-treated cells in a microfluidic device

    International Nuclear Information System (INIS)

    Cell mechanics is closely related to many cell functions. Recent studies have suggested that the deformability of cells can be an effective biomarker to indicate the onset and progression of diseases. In this paper, a microfluidic chip is designed for rapid characterization of the mechanics of drug-treated cells through stretching with dielectrophoresis (DEP) force. This chip was fabricated using PDMS and micro-electrodes were integrated and patterned on the ITO layer of the chip. Leukemia NB4 cells were considered and the effect of all-trans retinoic acid (ATRA) drug on NB4 cells were examined via the microfluidic chip. To induce a DEP force onto the cell, a relatively weak ac voltage was utilized to immobilize a cell at one side of the electrodes. The applied voltage was then increased to 3.5 V pp and the cell started to be stretched along the applied electric field lines. The elongation of the cell was observed using an optical microscope and the results showed that both types of cells were deformed by the induced DEP force. The strain of the NB4 cell without the drug treatment was recorded to be about 0.08 (time t = 180 s) and the drug-treated NB4 cell was about 0.21 (time t = 180 s), indicating a decrease in the stiffness after drug treatment. The elastic modulus of the cell was also evaluated and the modulus changed from 140 Pa to 41 Pa after drug treatment. This microfluidic chip can provide a simple and rapid platform for measuring the change in the biomechanical properties of cells and can potentially be used as the tool to determine the biomechanical effects of different drug treatments for drug discovery and development applications. (paper)

  13. Assessment of Corneal Biomechanical Properties and Intraocular Pressure in Myopic Spanish Healthy Population

    Directory of Open Access Journals (Sweden)

    María A. del Buey

    2014-01-01

    Full Text Available Purpose. To examine biomechanical parameters of the cornea in myopic eyes and their relationship with the degree of myopia in a western healthy population. Methods. Corneal hysteresis (CH, corneal resistance factor (CRF, Goldmann correlated intraocular pressure (IOP, and corneal compensated IOP (IOPcc were measured using the ocular response analyzer (ORA in 312 eyes of 177 Spanish subjects aged between 20 and 56 years. Refraction was expressed as spherical equivalent (SE, which ranged from 0 to −16.50 diopters (D (mean: −3.88±2.90 D. Subjects were divided into four groups according to their refractive status: group 1 or control group: emmetropia (-0.50≤SE0.05; nevertheless, IOPcc was significantly higher in the moderately myopic (15.47±2.47 mmHg and highly myopic (16.14±2.59 mmHg groups than in the emmetropia (15.15±2.06 mmHg and low myopia groups (14.53±2.37 mmHg. No correlation between age and the measured parameters was found. CH and IOPcc were weakly but significantly correlated with SE (r=0.171, P=0.002 and r=-0.131, P=0.021, resp.. Conclusions. Present study showed only a very weak, but significant, correlation between CH and refractive error, with CH being lower in both moderately and highly myopic eyes than that in the emmetropic and low myopic eyes. These changes in biomechanical properties of the cornea may have an impact on IOP measurement, increasing the risk of glaucoma.

  14. Rapid characterization of the biomechanical properties of drug-treated cells in a microfluidic device

    Science.gov (United States)

    Zhang, Xiaofei; Chu, Henry K.; Zhang, Yang; Bai, Guohua; Wang, Kaiqun; Tan, Qiulin; Sun, Dong

    2015-10-01

    Cell mechanics is closely related to many cell functions. Recent studies have suggested that the deformability of cells can be an effective biomarker to indicate the onset and progression of diseases. In this paper, a microfluidic chip is designed for rapid characterization of the mechanics of drug-treated cells through stretching with dielectrophoresis (DEP) force. This chip was fabricated using PDMS and micro-electrodes were integrated and patterned on the ITO layer of the chip. Leukemia NB4 cells were considered and the effect of all-trans retinoic acid (ATRA) drug on NB4 cells were examined via the microfluidic chip. To induce a DEP force onto the cell, a relatively weak ac voltage was utilized to immobilize a cell at one side of the electrodes. The applied voltage was then increased to 3.5 V pp and the cell started to be stretched along the applied electric field lines. The elongation of the cell was observed using an optical microscope and the results showed that both types of cells were deformed by the induced DEP force. The strain of the NB4 cell without the drug treatment was recorded to be about 0.08 (time t = 180 s) and the drug-treated NB4 cell was about 0.21 (time t = 180 s), indicating a decrease in the stiffness after drug treatment. The elastic modulus of the cell was also evaluated and the modulus changed from 140 Pa to 41 Pa after drug treatment. This microfluidic chip can provide a simple and rapid platform for measuring the change in the biomechanical properties of cells and can potentially be used as the tool to determine the biomechanical effects of different drug treatments for drug discovery and development applications.

  15. Relationship among bone mineral density, collagen composition, and biomechanical properties of callus in the healing of osteoporotic fracture

    Institute of Scientific and Technical Information of China (English)

    SHEN Bin; MU Jian-xiong; PEI Fu-xing

    2007-01-01

    Objective: To study the change and relationship among bone mineral density (BMD), collagen composition and biomechanical properties of the callus in the healing process of osteoporotic fracture.Methods: The osteoporotic rat model and fracture model were established through bilateral ovariectomy(OVX) and osteotomy of the middle shaft of the right hind tibiae, respectively. Ninety female SD rats were randomly divided into OVX group and sham group. With the samples of blood and callus, roentgenoraphic and histological observation were performed for the assessment of the healing progress of the fracture, and the serum concentration of TRAP-5b, proportion of type Ⅰ collagen,BMD and biomechanical properties of the callus were measured.Results: The OVX group experienced a significant delay of fracture healing. The mean serum concentration of TRAP-5b of rats in the OVX group was much higher than that in the sham group after the operation (P < 0.05), but the difference at the same time point after fracture was smaller than that before fracture (P < 0.05 ). The BMD of the callus in both groups reached the peak value at the 6 th week after fracture while the proportion of the type Ⅰ collagen and the biomechanical strength reached the peak at the 8th week.Conclusions: The deficiency of estrogen after the ovariectomy could induce the up-regulation of the osteoclasts activities, whereas the potency of further activation after fracture was depressed. Although the synthesis of collagen together with its mineralization determines the biomechanical properties of new bone, the accumulation of collagen could be assessed as an index in the prediction of biomechanical strength of bones independent of the bone mineral deposition.

  16. Changes of calf muscle-tendon biomechanical properties induced by passive-stretching and active-movement training in children with cerebral palsy

    OpenAIRE

    Zhao, Heng; Wu, Yi-Ning; Hwang, Miriam; Ren, Yupeng; Gao, Fan; Gaebler-Spira, Deborah; Zhang, Li-Qun

    2011-01-01

    Biomechanical properties of calf muscles and Achilles tendon may be altered considerably in children with cerebral palsy (CP), contributing to childhood disability. It is unclear how muscle fascicles and tendon respond to rehabilitation and contribute to improvement of ankle-joint properties. Biomechanical properties of the calf muscle fascicles of both gastrocnemius medialis (GM) and soleus (SOL), including the fascicle length and pennation angle in seven children with CP, were evaluated usi...

  17. Effects of gamma irradiation on the biomechanical properties of peroneus tendons

    Science.gov (United States)

    Aguila, Christopher M; Delcroix, Gaëtan J-R; Kaimrajh, David N; Milne, Edward L; Temple, H Thomas; Latta, Loren L

    2016-01-01

    Purpose This study was designed to investigate the biomechanical properties of nonirradiated (NI) and irradiated (IR) peroneus tendons to determine if they would be suitable allografts, in regards to biomechanical properties, for anterior cruciate ligament reconstruction after a dose of 1.5–2.5 Mrad. Methods Seven pairs of peroneus longus (PL) and ten pairs of peroneus brevis (PB) tendons were procured from human cadavers. The diameter of each allograft was measured. The left side of each allograft was IR at 1.5–2.5 Mrad, whereas the right side was kept aseptic and NI. The allografts were thawed, kept wet with saline, and attached in a single-strand fashion to custom freeze grips using liquid nitrogen. A preload of 10 N was then applied and, after it had reached steady state, the allografts were pulled at 4 cm/sec. The parameters recorded were the displacement and force. Results The elongation at the peak load was 10.3±2.3 mm for the PB NI side and 13.5±3.3 mm for the PB IR side. The elongation at the peak load was 17.4±5.3 mm for the PL NI side and 16.3±2.0 mm for the PL IR side. For PL, the ultimate load was 2,091.6±148.7 N for NI and 2,122.8±380.0 N for IR. The ultimate load for the PB tendons was 1,485.7±209.3 N for NI and 1,318.4±296.9 N for the IR group. The ultimate stress calculations for PL were 90.3±11.3 MPa for NI and 94.8±21.0 MPa for IR. For the PB, the ultimate stress was 82.4±19.0 MPa for NI and 72.5±16.6 MPa for the IR group. The structural stiffness was 216.1±59.0 N/mm for the NI PL and 195.7±51.4 N/mm for the IR side. None of these measures were significantly different between the NI and IR groups. The structural stiffness was 232.1±45.7 N/mm for the NI PB and 161.9±74.0 N/mm for the IR side, and this was the only statistically significant difference found in this study (P=0.034). Conclusion Our statistical comparisons found no significant differences in terms of elongation, ultimate load, or ultimate stress between IR and NI

  18. Short-Term Effects of Overnight Orthokeratology on Corneal Epithelial Permeability and Biomechanical Properties

    Science.gov (United States)

    Yeh, Thao N.; Green, Harry M.; Zhou, Yixiu; Pitts, Julie; Kitamata-Wong, Britney; Lee, Sophia; Wang, Shiyin L.; Lin, Meng C.

    2013-01-01

    Purpose. To investigate the effects of 30 nights of overnight orthokeratology (OOK) on corneal epithelial permeability (Pdc) and corneal biomechanical properties. Methods. BE Retainer and Paragon CRT lenses were used. Visits were scheduled approximately 4 hours after awakening at baseline and after 1, 5, 10, 14, and 30 days of treatment. Pdc was measured at baseline and at day 30, whereas corneal biomechanical properties and visual acuities (VAs) were measured at all visits. Results. Thirty-nine neophytes and soft contact lens wearers completed the study. There was no difference in Pdc between baseline (ln[Pdc] [95% confidence interval (CI)] = −2.65 [−2.80 to −2.50]) and day 30 (ln[Pdc][CI] = −2.68 [−2.85 to −2.50]) (P = 0.88). Corneal hysteresis (CH) and corneal resistance factor (CRF) reduced significantly from baseline (CH [CI] = 10.89 [10.59–11.19] mm Hg and CRF [CI] = 10.35 [9.99–10.72] mm Hg) to day 30 (CH [CI] = 10.59 [10.31–10.87] mm Hg and CRF [CI] = 9.58 [9.26–9.89] mm Hg) (P = 0.001 for CH and P < 0.001 for CRF). Posttreatment VA did not reach baseline targets, and the difference was worse with low-contrast letters. Asian individuals (n = 18) had significantly worse VA than non-Asian individuals (n = 21) under most conditions through day 5, and the difference extended through day 14 with low-contrast letters under mesopic conditions. The percentage of participants who achieved 20/20 uncorrected was 17% Asian and 40% non-Asian individuals after day 1 and reached 69% Asian and 83% non-Asian individuals at day 30. Conclusions. Thirty nights of OOK did not alter Pdc when measured 4 hours after awakening. OOK caused CH and CRF to decrease, but the changes were not clinically significant compared with diseased and postsurgical cases. Asian individuals, who had lower baseline CH in this study, responded slower to OOK based on early uncorrected VA and overrefraction measurements. PMID:23652492

  19. Murine patellar tendon biomechanical properties and regional strain patterns during natural tendon-to-bone healing after acute injury

    Science.gov (United States)

    Gilday, Steven D.; Casstevens, E. Chris; Kenter, Keith; Shearn, Jason T.; Butler, David L.

    2014-01-01

    Tendon-to-bone healing following acute injury is generally poor and often fails to restore normal tendon biomechanical properties. In recent years, the murine patellar tendon (PT) has become an important model system for studying tendon healing and repair due to its genetic tractability and accessible location within the knee. However, the mechanical properties of native murine PT, specifically the regional differences in tissue strains during loading, and the biomechanical outcomes of natural PT-to-bone healing have not been well characterized. Thus, in this study, we analyzed the global biomechanical properties and regional strain patterns of both normal and naturally healing murine PT at three time points (2, 5, and 8 weeks) following acute surgical rupture of the tibial enthesis. Normal murine PT exhibited distinct regional variations in tissue strain, with the insertion region experiencing approximately 2.5 times greater strain than the midsubstance at failure (10.80 ± 2.52% vs. 4.11 ± 1.40%; mean ± SEM). Injured tendons showed reduced structural (ultimate load and linear stiffness) and material (ultimate stress and linear modulus) properties compared to both normal and contralateral sham-operated tendons at all healing time points. Injured tendons also displayed increased local strain in the insertion region compared to contralateral shams at both physiologic and failure load levels. 93.3% of injured tendons failed at the tibial insertion, compared to only 60% and 66.7% of normal and sham tendons, respectively. These results indicate that 8 weeks of natural tendon-to-bone healing does not restore normal biomechanical function to the murine PT following injury. PMID:24210849

  20. Dynamic observation of biomechanic properties of sciatic nerve at the suture site in rats following repairing.

    Science.gov (United States)

    Jiang, Baoguo; Zhang, Peixun; Yan, Jiazhi; Zhang, Hongbo

    2008-01-01

    To observe the biomechanic properties of the sciatic nerve at the suture site following repairing in rats. The right sciatic nerves of 40 white Sprague-Dawley 300~350 gm rats were exposed, cut and then repaired with 10-0 nylon sutures with four stitches, laced in the epineurium 0, 1, 3, and 6 weeks after operation, the tensile strength of the sciatic nerves were measured, and the data analyzed statistically. The load elongation curves for both the normal unoperated and operated nerves had similar shape. There were significant differences between the tensile strength of the 0th and the 1st, 3rd, and 6th weeks (P < 0.01). No significant difference was found among the 1st, 3rd, and 6th weeks. The tensile strength of the injured nerves recovered 48% of the normal nerve in the 1st week and 54% in 6 weeks after repairing. It may be concluded that the injured nerves can acquire mostly tensile strength stability in 1 week quickly and can maintain this relative tensile strength stability in 6 weeks. PMID:18293160

  1. Effect of Elastic Modulus on Biomechanical Properties of Lumbar Interbody Fusion Cage

    Institute of Scientific and Technical Information of China (English)

    Yue Zhu; Fusheng Li; Shujun Li; Yulin Hao; Rui Yang

    2009-01-01

    This work focuses on the influence of elastic modulus on biomechanical properties of lumbar interbody fusion cages by selecting two titanium alloys with different elastic modulus.They were made by a new β type alloy with chemical composition of Ti-24Nb-4Zr-7.6Sn having low Young's modulus ~50 GPa and by a conventional biomedical alloy Ti-6Al-4V having Young's modulus ~110 GPa.The results showed that the designed cages with low modulus (LMC) and high modulus (HMC) can keep identical compression load ~9.8 kN and endure fatigue cycles higher than 5× 106 without functional or mechanical failure under 2.0 kN axial compression.The anti-subsidence ability of both group cages were examined by axial compression of thoracic spine specimens (T9~T10) dissected freshly from the calf with averaged age of 6 months.The results showed that the LMC has better anti-subsidence ability than the HMC (p<0.05).The above results suggest that the cage with low elastic modulus has great potential for clinical applications.

  2. The influence of lead on the biomechanical properties of bone tissue in rats

    Directory of Open Access Journals (Sweden)

    Grazyna Olchowik

    2014-06-01

    Full Text Available introduction and objective. Environmental lead (Pb is a serious public health problem. At high levels, Pb is devastating to almost all organs. On the other hand, it is difficult to determine a safe level of exposure to Pb. More than 90% of the Pb in the adult human body and 70% in a child’s body is stored in the bones. In the presented study, the effects of lead exposure on bones were studied for rats treated orally with Pb acetate in drinking water for 14 days. The hypothesis was tested that lead exposure negatively affects bone structure. materials and methods. Femur strength was measured in a three-point bending test, whereas infrared spectroscopy (FTIR was used to measure molecular structural changes. results. Lead significantly decreased the ratio of area of two types of vibrational transitions, which are highly specific to mineral to matrix ratio. The results of the biomechanical study show that femurs of rats treated by Pb-acetate appeared to be weaker than bones of the control group, and may produce a condition for the development of higher risk of fractures. Additionally, a great difference in body mass was observed between control and the Pb acetate-treated groups. conclusions. The lower bone mineral content and the weaker mechanical properties of bones from Pb-treated rats are associated with the pathologic state dependent of the exposure of lead.

  3. The role of cryopreservation in the biomechanical properties of the intervertebral disc

    Directory of Open Access Journals (Sweden)

    SKL Lam

    2011-12-01

    Full Text Available Implantation of intervertebral disc (IVD allograft or tissue engineered disc constructs in the spine has emerged as an alternative to artificial disc replacement for the treatment of severe degenerative disc disease (DDD. Establishment of a bank of cryopreserved IVD allografts enables size matching and facilitates logistics for effective clinical management. However, the biomechanical properties of cryopreserved IVDs have not been previously reported. This study aimed to assess if cryopreservation with different concentrations of cryopreservant agents (CPA would affect the dynamic viscoelastic properties of the IVD. Whole porcine lumbar IVDs (n = 40 were harvested and processed using various concentrations of CPA, 0 % CPA, 10 % CPA and 20 % CPA. The discs were cryopreserved using a stepwise freezing protocol and stored in liquid nitrogen. After four weeks of storage, the cryopreserved IVDs were quickly thawed at 37 °C for dynamic viscoelastic testing. The apparent modulus, elastic modulus (G’, viscous modulus (G” and loss modulus (G”/G’ were calculated and compared to a fresh control group. Cryopreserved IVD without cryopreservants was significantly stiffer than the control. In the dynamic viscoelastic testing, cryopreservation with the use of CPA was able to preserve both G’ and G” of an IVD. No significant differences were found between fresh IVD and IVD cryopreserved with 10 % CPA or 20 % CPA. This study demonstrated that CPAs at an optimal concentration could preserve the mechanical properties of the IVD allograft and can provide further credence for the application of long-term storage of IVD allografts for disc transplantation or tissue engineered construct applications.

  4. Leaf biomechanical properties in Arabidopsis thaliana polysaccharide mutants affect drought survival.

    Science.gov (United States)

    Balsamo, Ronald; Boak, Merewyn; Nagle, Kayla; Peethambaran, Bela; Layton, Bradley

    2015-11-26

    Individual sugars are the building blocks of cell wall polysaccharides, which in turn comprise a plant׳s overall architectural structure. But which sugars play the most prominent role in maintaining a plant׳s mechanical stability during large cellular deformations induced by drought? We investigated the individual contributions of several genes that are involved in the synthesis of monosaccharides which are important for cell wall structure. We then measured drought tolerance and mechanical integrity during simulated drought in Arabidopsis thaliana. To assess mechanical properties, we designed a small-scale tensile tester for measuring failure strain, ultimate tensile stress, work to failure, toughness, and elastic modulus of 6-week-old leaves in both hydrated and drought-simulated states. Col-0 mutants used in this study include those deficient in lignin, cellulose, components of hemicellulose such as xylose and fucose, the pectic components arabinose and rhamnose, as well as mutants with enhanced arabinose and total pectin content. We found that drought tolerance is correlated to the mechanical and architectural stability of leaves as they experience dehydration. Of the mutants, S096418 with mutations for reduced xylose and galactose was the least drought tolerant, while the arabinose-altered CS8578 mutants were the least affected by water loss. There were also notable correlations between drought tolerance and mechanical properties in the diminished rhamnose mutant, CS8575 and the dehydrogenase-disrupted S120106. Our findings suggest that components of hemicellulose and pectins affect leaf biomechanical properties and may play an important role in the ability of this model system to survive drought.

  5. Regional variation in tissue composition and biomechanical properties of postmenopausal ovine and human vagina.

    Directory of Open Access Journals (Sweden)

    Daniela Ulrich

    Full Text Available OBJECTIVE: There are increasing numbers of reports describing human vaginal tissue composition in women with and without pelvic organ prolapse with conflicting results. The aim of this study was to compare ovine and human posterior vaginal tissue in terms of histological and biochemical tissue composition and to assess passive biomechanical properties of ovine vagina to further characterise this animal model for pelvic organ prolapse research. STUDY DESIGN: Vaginal tissue was collected from ovariectomised sheep (n = 6 and from postmenopausal women (n = 7 from the proximal, middle and distal thirds. Tissue histology was analyzed using Masson's Trichrome staining; total collagen was quantified by hydroxyproline assays, collagen III/I+III ratios by delayed reduction SDS PAGE, glycosaminoglycans by dimethylmethylene blue assay, and elastic tissue associated proteins (ETAP by amino acid analysis. Young's modulus, maximum stress/strain, and permanent strain following cyclic loading were determined in ovine vagina. RESULTS: Both sheep and human vaginal tissue showed comparable tissue composition. Ovine vaginal tissue showed significantly higher total collagen and glycosaminoglycan values (p<0.05 nearest the cervix. No significant differences were found along the length of the human vagina for collagen, GAG or ETAP content. The proximal region was the stiffest (Young's modulus, p<0.05, strongest (maximum stress, p<0.05 compared to distal region, and most elastic (permanent strain. CONCLUSION: Sheep tissue composition and mechanical properties showed regional differences along the postmenopausal vaginal wall not apparent in human vagina, although the absolute content of proteins were similar. Knowledge of this baseline variation in the composition and mechanical properties of the vaginal wall will assist future studies using sheep as a model for vaginal surgery.

  6. Effect of Biometric Characteristics on the Change of Biomechanical Properties of the Human Cornea due to Cataract Surgery

    Directory of Open Access Journals (Sweden)

    Xuefei Song

    2014-01-01

    Full Text Available Purpose. To determine the impact of biometric characteristics on changes of biomechanical properties of the human cornea due to standard cataract surgery using biomechanical analysis. Patients and Methods. This prospective consecutive cross-sectional study comprised 54 eyes with cataract in stages I or II that underwent phacoemulsification and IOL implantation. CH, CRF, IOPg, and IOPcc intraocular pressure were measured by biomechanical analysis preoperatively and at 1 month postoperatively. Changes (Δ were calculated as preoperative value versus postoperative value. Biometrical data were extracted from TMS-5 (CSI and SAI, IOLMaster (AL, and EM-3000 (CCT and ECC preoperatively. Results. The average values of the changes were ΔCH=-0.45±1.27 mmHg, ΔCRF=-0.88±1.1 mmHg, ΔIOPg=-1.58±3.15 mmHg, and ΔIOPcc=-1.45±3.93 mmHg. The higher the CSI the smaller the decrease in CH (r=0.302, P=0.028. The higher the CCT the larger the decrease in CRF (r=-0.371, P=0.013. The higher the AL the smaller the decrease in IOPg (r=0.417, P=0.005. The higher the AL, SAI, and EEC the smaller the decrease in IOPcc (r=0.351, P=0.001; r=-0.478, P<0.001; r=0.339, P=0.013. Conclusions. Corneal biomechanical properties were affected by comprehensive factors after cataract surgery, including corneal endothelium properties, biometry, and geometrical characteristics.

  7. Impacts of hematite nanoparticle exposure on biomechanical, adhesive, and surface electrical properties of Escherichia coli cells.

    Science.gov (United States)

    Zhang, Wen; Hughes, Joseph; Chen, Yongsheng

    2012-06-01

    Despite a wealth of studies examining the toxicity of engineered nanomaterials, current knowledge on their cytotoxic mechanisms (particularly from a physical perspective) remains limited. In this work, we imaged and quantitatively characterized the biomechanical (hardness and elasticity), adhesive, and surface electrical properties of Escherichia coli cells with and without exposure to hematite nanoparticles (NPs) in an effort to advance our understanding of the cytotoxic impacts of nanomaterials. Both scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that E. coli cells had noticeable deformation with hematite treatment for 45 min with a statistical significance. The hematite-treated cells became significantly harder or stiffer than untreated ones, as evidenced by indentation and spring constant measurements. The average indentation of the hematite-treated E. coli cells was 120 nm, which is significantly lower (P hematite-treated E. coli cells (0.28 ± 0.11 nN/nm) was about 20 times higher than that of untreated ones (0.01 ± 0.01 nN/nm). The zeta potential of E. coli cells, measured by dynamic light scattering (DLS), was shown to shift from -4 ± 2 mV to -27 ± 8 mV with progressive surface adsorption of hematite NPs, a finding which is consistent with the local surface potential measured by Kelvin probe force microscopy (KPFM). Overall, the reported findings quantitatively revealed the adverse impacts of nanomaterial exposure on physical properties of bacterial cells and should provide insight into the toxicity mechanisms of nanomaterials. PMID:22467500

  8. The Effect of Phospholipids (Surfactant on Adhesion and Biomechanical Properties of Tendon: A Rat Achilles Tendon Repair Model

    Directory of Open Access Journals (Sweden)

    T. Kursat Dabak

    2015-01-01

    Full Text Available Adhesion of the tendon is a major challenge for the orthopedic surgeon during tendon repair. Manipulation of biological environment is one of the concepts to prevent adhesion. Lots of biochemicals have been studied for this purpose. We aimed to determine the effect of phospholipids on adhesion and biomechanical properties of tendon in an animal tendon repair model. Seventy-two Wistar rats were divided into 4 groups. Achilles tendons of rats were cut and repaired. Phospholipids were applied at two different dosages. Tendon adhesion was determined histopathologically and biomechanical test was performed. At macroscopic evaluation of adhesion, there are statistically significant differences between multiple-dose phospholipid injection group and Control group and also hyaluronic acid group and Control group (p0.008. Ultimate strength was highest at hyaluronic acid injection group and lowest at multiple-dose phospholipid injection group. Single-dose phospholipids (surfactant application may have a beneficial effect on the tendon adhesion. Although multiple applications of phospholipids seem the most effective regime to reduce the tendon adhesion among groups, it deteriorated the biomechanical properties of tendon.

  9. Mineral density and biomechanical properties of bone tissue from male Arctic foxes (Vulpes lagopus) exposed to organochlorine contaminants and emaciation

    DEFF Research Database (Denmark)

    Sonne, Christian; Wolkers, Hans; Rigét, Frank F;

    2008-01-01

    We investigated the impact from dietary OC (organochlorine) exposure and restricted feeding (emaciation) on bone mineral density (BMD; g hydroxy-apatite cm(-2)) in femoral, vertebrate, skull and baculum osteoid tissue from farmed Arctic blue foxes (Vulpes lagopus). For femur, also biomechanical...... and 8 CON foxes were given restricted food rations for 6 months resulting in a body weight reduction (mean body mass=5.46 kg). The results showed that only BMD(skull) vs. BMD(vertebrae) were significantly correlated (R=0.68; p=0.03; n=10) probably due to a similar composition of trabecular and cortical......), energy absorption (J) and time (s) biomechanical properties than fat winter foxes (all p

  10. Effect of pathological myopia on biomechanical properties : a study by ocular response analyzer

    Institute of Scientific and Technical Information of China (English)

    Veysi; ?ner; Mehmet; Tas; Erdal; ?zkaya; Yavuz; Oru?

    2015-01-01

    AIM: To evaluate the ocular response analyzer(ORA)measurements of patients with pathological myopia in comparison with those of emmetropic control subjects,and to investigate the correlation between these ORA measurements and spherical equivalent(SE).METHODS: Measurements of 53 eyes of 53 subjects with pathological myopia(SE >-6.00 D) were compared with those of 60 eyes of 60 emmetropic controls. Corneal hysteresis(CH), corneal resistance factor(CRF),noncontact tonometer intraocular pressure(IOPg), and corneal-compensated IOP(IOPcc) were obtained for each subject. The refractive error value was determined as SE via a cycloplegic refraction test.RESULTS: The mean age was 54.1±18.9y(ranging from5 to 88) in the pathological myopic group and 56.2±19.0y(ranging from 6 to 89) in the control group. There were no significant differences between the groups concerning age and sex. CH and CRF were significantly lower in the pathological myopic group than in the control group(P <0.001, P =0.005, respectively). IOPcc and IOPg were significantly higher in the pathological myopic group than in the control group(P <0.001, P =0.009,respectively). There were significantly positive correlations between CH and SE(r =0.565, P <0.001) and between CRF and SE(r =0.364, P =0.007). There were significantly negative correlations between IOPcc and SE(r =-0.432, P =0.001) and between IOPg and SE(r =-0.401,P =0.003).CONCLUSION: The present study displayed that pathological myopia affected biomechanical properties measured by ORA. The results of corneal biomechanicalproperties measured by ORA may need to be appreciated by taking refraction into account. Further, pathological myopia might be related with the increased IOP.

  11. Abnormal white matter properties in adolescent girls with anorexia nervosa

    OpenAIRE

    Travis, Katherine E.; Neville H. Golden; FELDMAN, HEIDI M.; Murray Solomon; Jenny Nguyen; Aviv Mezer; Yeatman, Jason D.; Dougherty, Robert F.

    2015-01-01

    Anorexia nervosa (AN) is a serious eating disorder that typically emerges during adolescence and occurs most frequently in females. To date, very few studies have investigated the possible impact of AN on white matter tissue properties during adolescence, when white matter is still developing. The present study evaluated white matter tissue properties in adolescent girls with AN using diffusion MRI with tractography and T1 relaxometry to measure R1 (1/T1), an index of myelin content. Fifteen ...

  12. Bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber composite: biomechanical properties and biocompatibility

    Directory of Open Access Journals (Sweden)

    Qiao B

    2014-03-01

    Full Text Available Bo Qiao,1 Jidong Li,2 Qingmao Zhu,1 Shuquan Guo,1 Xiaotong Qi,1 Weichao Li,1 Jun Wu,1 Yang Liu,3 Dianming Jiang1 1Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 2Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 3Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China Abstract: An ideal bone plate for internal fixation of bone fractures should have good biomechanical properties and biocompatibility. In this study, we prepared a new nondegradable bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber (n-HA/PA66/GF composite. A breakage area on the n-HA/PA66/GF plate surface was characterized by scanning electron microscopy. Its mechanical properties were investigated using bone-plate constructs and biocompatibility was evaluated in vitro using bone marrow-derived mesenchymal stem cells. The results confirmed that adhesion between the n-HA/PA66 matrix and the glass fibers was strong, with only a few fibers pulled out at the site of breakage. Fractures fixed by the n-HA/PA66/GF plate showed lower stiffness and had satisfactory strength compared with rigid fixation using a titanium plate. Moreover, the results with regard to mesenchymal stem cell morphology, MTT assay, Alizarin Red S staining, enzyme-linked immunosorbent assay, and reverse transcription polymerase chain reaction for alkaline phosphatase and osteocalcin showed that the n-HA/PA66/GF composite was suitable for attachment and proliferation of mesenchymal stem cells, and did not have a negative influence on matrix mineralization or osteogenic differentiation of mesenchymal stem cells. These observations indicate that the n-HA/PA66/GF plate has good biomechanical properties and biocompatibility, and may be considered a new option for internal fixation in orthopedic surgery. Keywords: nano

  13. Abnormal white matter properties in adolescent girls with anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Katherine E. Travis

    2015-01-01

    Full Text Available Anorexia nervosa (AN is a serious eating disorder that typically emerges during adolescence and occurs most frequently in females. To date, very few studies have investigated the possible impact of AN on white matter tissue properties during adolescence, when white matter is still developing. The present study evaluated white matter tissue properties in adolescent girls with AN using diffusion MRI with tractography and T1 relaxometry to measure R1 (1/T1, an index of myelin content. Fifteen adolescent girls with AN (mean age = 16.6 years ± 1.4 were compared to fifteen age-matched girls with normal weight and eating behaviors (mean age = 17.1 years ± 1.3. We identified and segmented 9 bilateral cerebral tracts (18 and 8 callosal fiber tracts in each participant's brain (26 total. Tract profiles were generated by computing measures for fractional anisotropy (FA and R1 along the trajectory of each tract. Compared to controls, FA in the AN group was significantly decreased in 4 of 26 white matter tracts and significantly increased in 2 of 26 white matter tracts. R1 was significantly decreased in the AN group compared to controls in 11 of 26 white matter tracts. Reduced FA in combination with reduced R1 suggests that the observed white matter differences in AN are likely due to reductions in myelin content. For the majority of tracts, group differences in FA and R1 did not occur within the same tract. The present findings have important implications for understanding the neurobiological factors underlying white matter changes associated with AN and invite further investigations examining associations between white matter properties and specific physiological, cognitive, social, or emotional functions affected in AN.

  14. Bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber composite: biomechanical properties and biocompatibility.

    Science.gov (United States)

    Qiao, Bo; Li, Jidong; Zhu, Qingmao; Guo, Shuquan; Qi, Xiaotong; Li, Weichao; Wu, Jun; Liu, Yang; Jiang, Dianming

    2014-01-01

    An ideal bone plate for internal fixation of bone fractures should have good biomechanical properties and biocompatibility. In this study, we prepared a new nondegradable bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber (n-HA/PA66/GF) composite. A breakage area on the n-HA/PA66/GF plate surface was characterized by scanning electron microscopy. Its mechanical properties were investigated using bone-plate constructs and biocompatibility was evaluated in vitro using bone marrow-derived mesenchymal stem cells. The results confirmed that adhesion between the n-HA/PA66 matrix and the glass fibers was strong, with only a few fibers pulled out at the site of breakage. Fractures fixed by the n-HA/PA66/GF plate showed lower stiffness and had satisfactory strength compared with rigid fixation using a titanium plate. Moreover, the results with regard to mesenchymal stem cell morphology, MTT assay, Alizarin Red S staining, enzyme-linked immunosorbent assay, and reverse transcription polymerase chain reaction for alkaline phosphatase and osteocalcin showed that the n-HA/PA66/GF composite was suitable for attachment and proliferation of mesenchymal stem cells, and did not have a negative influence on matrix mineralization or osteogenic differentiation of mesenchymal stem cells. These observations indicate that the n-HA/PA66/GF plate has good biomechanical properties and biocompatibility, and may be considered a new option for internal fixation in orthopedic surgery. PMID:24669191

  15. Effect of age on the biomechanical and microcirculatory properties of the skin in healthy individuals and during venous ulceration

    Directory of Open Access Journals (Sweden)

    Essam H Mattar

    2011-01-01

    Full Text Available Background: With aging there is alteration of elastic properties of the skin and skin-blood flow. Aim: The purpose of this study was to compare age-related changes in selected biomechanical parameters of the skin (skin hardness, skin extensibility, relaxation time constant, τ and subcutaneous microcirculatory quality (SMQ in individuals with and without venous diseases. Materials and Methods: Two groups were studied: the first group was of asymptomatic healthy individuals and the second group included patients with chronic venous insufficiency (CVI and venous ulceration, without edema. Both groups were subdivided to three age categories (21-40, 41-60 and 61-90 years old. Skin hardness was measured by durometer, extensibility and τ were measured using extensometer and SQM was assessed via postural vasoconstrictive response (LDF. Results: Results showed that skin hardness, extensibility, and τ-values were increased, whereas LDF was decreased in the older groups as compared with younger groups. These changes are attributed to alterations in the skin structure and reduced capillaries density networks. Similar behavior was found in the biomechanical and microcirculatory changes in patients with venous ulceration and CVI, but these changes were more increased further in older patients with venous ulceration as compared with older patients with CVI and that can be attribute to more intense response against tissue injury. Conclusions: Since aging elevated skin hardness and extensibility, but lowered vasoconstrictive response in individuals, with and without, venous diseases, we conclude that aging process is likely to cause an accumulation of damaged skin tissues and that could induce an apparent antigen-driven response that altered skin structure and the subsequent biomechanical properties obtained in this study.

  16. On the prospect of patient-specific biomechanics without patient-specific properties of tissues

    OpenAIRE

    Miller, Karol; Lu, Jia

    2013-01-01

    This paper presents main theses of two keynote lectures delivered at Euromech Colloquium “Advanced experimental approaches and inverse problems in tissue biomechanics” held in Saint Etienne in June 2012. We are witnessing an advent of patient-specific biomechanics that will bring in the future personalized treatments to sufferers all over the world. It is the current task of biomechanists to devise methods for clinically-relevant patient-specific modeling. One of the obstacles standing before...

  17. Effects of Mechanical Properties and Atherosclerotic Artery Size on Biomechanical Plaque Disruption - Mouse versus Human

    OpenAIRE

    Riou, Laurent M.; Broisat, Alexis; Ghezzi, Catherine; Finet, Gérard; Rioufol, Gilles; Gharib, Ahmed M.; Pettigrew, Roderic I.; Ohayon, Jacques

    2014-01-01

    Mouse models of atherosclerosis are extensively being used to study the mechanisms of atherosclerotic plaque development and the results are frequently extrapolated to humans. However, major differences have been described between murine and human atherosclerotic lesions and the determination of similarities and differences between these species has been largely addressed recently. This study takes over and extends previous studies performed by our group and related to the biomechanical chara...

  18. Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis

    Science.gov (United States)

    Maher, Jason R.; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.

    2011-08-01

    Although glucocorticoids are frequently prescribed for the symptomatic management of inflammatory disorders such as rheumatoid arthritis, extended glucocorticoid exposure is the leading cause of physician-induced osteoporosis and leaves patients at a high risk of fracture. To study the biochemical effects of glucocorticoid exposure and how they might affect biomechanical properties of the bone, Raman spectra were acquired from ex vivo tibiae of glucocorticoid- and placebo-treated wild-type mice and a transgenic mouse model of rheumatoid arthritis. Statistically significant spectral differences were observed due to both treatment regimen and mouse genotype. These differences are attributed to changes in the overall bone mineral composition, as well as the degree of phosphate mineralization in tibial cortical bone. In addition, partial least squares regression was used to generate a Raman-based prediction of each tibia's biomechanical strength as quantified by a torsion test. The Raman-based predictions were as accurate as those produced by microcomputed tomography derived parameters, and more accurate than the clinically-used parameter of bone mineral density. These results suggest that Raman spectroscopy could be a valuable tool for monitoring bone biochemistry in studies of bone diseases such as osteoporosis, including tests of drugs being developed to combat these diseases.

  19. The Corneoscleral Shell of the Eye: an Age-Related Analysis of Structural Biomechanical Properties. Literature review

    Directory of Open Access Journals (Sweden)

    E. N. Iomdina

    2016-01-01

    Full Text Available Structural biomechanical properties of the ocular corneoscleral shell largely determine its anatomic and optical parameters and its supporting and protective function. Therefore, changes related to age restructuring processes may affect the state of the cornea and the sclera, which should be taken into account in diagnosing eye diseases, especially age-related. According to actual literary data, age-related changes of the corneoscleral shell affecting its biomechanical properties involve all connective tissue components of the extracellular matrix: fibrous proteins (collagen and elastin and intermediate substance components (proteoglycans and glycosaminoglycans. Aged patients have a larger diameter of elastic fiber fibrils in the external part of the sclera and a lower density of fibrils in the center as compared to young patients, which is an evidence of elastin damage at the molecular level and fibril degeneration. Age-related changes of proteoglycans are primarilymanifested in hydration loss, which leads to an increase in corneal and sclera density and regional thinning of tissues. Agerelated changes of collagen are less expressed than those of elastin and proteoglycans. Yet, the distance between collagen fibrils in the cornea becomes smaller with age; they are subject to destruction, and small spaces devoid of collagen tend to appear in the posterior stroma. The most pronounced age-related degenerative changes of collagen in the deeper layers of the corneal stroma occur in the limb, which accumulates more cross striated collagen fibrils. Recent years of research have shown that the formation of cross-linked chemical bonds, i.e. intra- and intermolecular cross links of collagen is the most important structural factor. It is this particular process that is responsible for structural stability of the corneal and scleral tissue, which tends to change with age or due to certain eye diseases, such as keratoconus or progressive myopia

  20. Biomechanics of chiasmal compression: Sensitivity of the mechanical behaviors of nerve fibers to variations in material property and geometry

    Science.gov (United States)

    Wang, Xiaofei; Neely, Andrew J.; McIlwaine, Gawn G.; Lueck, Christian J.

    2016-05-01

    The mechanism of bitemporal hemianopia is still unclear. Previous research suggested that the nerve fiber packing pattern may contribute to the selective damage of nasal (crossed) nerve fibers. Numerical models were built using finite element modeling to study the biomechanics of optic nerve fibers. The sensitivity of the mechanical behaviors of the nerve fibers to variations of five parameters in the nerve fiber model were investigated using design of experiments (DOE). Results show that the crossing angle is a very significant factor that affects a wide range of responses of the model. The strain difference between the crossed and the uncrossed nerve fibers may account for the phenomenon of bitemporal hemianopia. This work also highlights the need for more accurate material properties of the tissues in the model and an improved understanding of the microstructure of the optic chiasm.

  1. Prediction of biomechanical properties of trabecular bone in MR images with geometric features and support vector regression.

    Science.gov (United States)

    Huber, Markus B; Lancianese, Sarah L; Nagarajan, Mahesh B; Ikpot, Imoh Z; Lerner, Amy L; Wismuller, Axel

    2011-06-01

    Whole knee joint MR image datasets were used to compare the performance of geometric trabecular bone features and advanced machine learning techniques in predicting biomechanical strength properties measured on the corresponding ex vivo specimens. Changes of trabecular bone structure throughout the proximal tibia are indicative of several musculoskeletal disorders involving changes in the bone quality and the surrounding soft tissue. Recent studies have shown that MR imaging also allows non-invasive 3-D characterization of bone microstructure. Sophisticated features like the scaling index method (SIM) can estimate local structural and geometric properties of the trabecular bone and may improve the ability of MR imaging to determine local bone quality in vivo. A set of 67 bone cubes was extracted from knee specimens and their biomechanical strength estimated by the yield stress (YS) [in MPa] was determined through mechanical testing. The regional apparent bone volume fraction (BVF) and SIM derived features were calculated for each bone cube. A linear multiregression analysis (MultiReg) and a optimized support vector regression (SVR) algorithm were used to predict the YS from the image features. The prediction accuracy was measured by the root mean square error (RMSE) for each image feature on independent test sets. The best prediction result with the lowest prediction error of RMSE = 1.021 MPa was obtained with a combination of BVF and SIM features and by using SVR. The prediction accuracy with only SIM features and SVR (RMSE = 1.023 MPa) was still significantly better than BVF alone and MultiReg (RMSE = 1.073 MPa). The current study demonstrates that the combination of sophisticated bone structure features and supervised learning techniques can improve MR-based determination of trabecular bone quality. PMID:21356612

  2. The Analysis of Biomechanical Properties of Proximal Femur after Implant Removal

    Science.gov (United States)

    Yang, Jae Hyuk; Jung, Tae Gon; Honnurappa, Arjun Rupanagudi; Cha, Jae Min; Ham, Chang Hwa; Kim, Tae Yoon

    2016-01-01

    Introduction. To compare the biomechanical stability of the femur following the removal of proximal femoral nail antirotation (PFNA-II) and dynamic hip screw (DHS). Material and Methods. 56 paired cadaveric femurs were used as experimental and control groups. In the experimental group, PFNA-II and DHS were randomly inserted into femurs on both sides and then removed. Thereafter, compression load was applied until fracture occurred; biomechanical stability of the femurs and associated fracture patterns were studied. Results. The ultimate load and stiffness of the control group were 6227.8 ± 1694.1 N and 990.5 ± 99.8 N/mm, respectively. These were significantly higher than experimental group (p = 0.014, <0.001) following the removal of PFNA-II (4085.6 ± 1628.03 N and 656.3 ± 155.3 N/mm) and DHS (4001.9 ± 1588.3 N and 656.3 ± 155.3 N/mm). No statistical differences in these values were found between the 2 device groups (p = 0.84, 0.71), regardless of age groups. However, fracture patterns were different between two devices, intertrochanteric and subtrochanteric fractures. Conclusions. Mechanical stability of the proximal femurs does not differ after the removal of 2 different of fixation devices regardless of the age. However, it was significantly lower compared to an intact femur. Different fracture patterns have been shown following the removal of different fixation devices as there are variations in the site of stress risers for individual implants. PMID:27597807

  3. Detection of the early keratoconus based on corneal biomechanical properties in the refractive surgery candidates

    Directory of Open Access Journals (Sweden)

    Zofia Pniakowska

    2016-01-01

    Full Text Available Context: Subclinical keratoconus is contraindication to refractive surgery. The currently used methods of preoperative screening do not always allow differentiating between healthy eyes and those with subclinical keratoconus. Aim: To evaluate biomechanical parameters of the cornea, waveform score (WS, and intraocular pressure (IOP as potentially useful adjuncts to the diagnostic algorithm for precise detection of the early keratoconus stages and selection of refractive surgery candidates. Settings and Design: Department of Ophthalmology and prospective cross-sectional study. Patients and Methods: Patients enrolled in the study were diagnosed with refractive disorders. We assessed parameters of corneal biomechanics such as corneal hysteresis (CH, corneal resistance factor (CRF, Goldman-correlated IOP (IOPg, corneal compensated IOP, WS, and keratoconus match index (KMI. They were classified into one of three groups based on the predefined KMI range: Group 1 (from 0.352 to 0.757 – 45 eyes, Group 2 (from −0.08 to 0.313 – 52 eyes, and Group 0 - control group (from 0.761 to 1.642 – 80 eyes. Results: In both study groups, IOPg, CRF, and CH were decreased when compared to control (P < 0.0001. In control group, there was positive correlation between CH and KMI (P < 0.05, with no correlations in any of the two study groups. CRF correlated positively with KMI in control (P < 0.0001 and in Group 2 (P < 0.05. Conclusions: CH and CRF, together with WS and IOPg, consist a clinically useful adjunct to detect subclinical keratoconus in patients referred for refractive surgery when based on KMI staging.

  4. Foraging on individual leaves by an intracellular feeding insect is not associated with leaf biomechanical properties or leaf orientation.

    Directory of Open Access Journals (Sweden)

    Justin Fiene

    Full Text Available Nearly all herbivorous arthropods make foraging-decisions on individual leaves, yet systematic investigations of the adaptive significance and ecological factors structuring these decisions are rare with most attention given to chewing herbivores. This study investigated why an intracellular feeding herbivore, Western flower thrips (WFT Frankliniella occidentalis Pergande, generally avoids feeding on the adaxial leaf surface of cotton cotyledons. WFT showed a significant aversion to adaxial-feeding even when excised-cotyledons were turned up-side (abaxial-side 'up', suggesting that negative-phototaxis was not a primary cause of thrips foraging patterns. No-choice bioassays in which individual WFT females were confined to either the abaxial or adaxial leaf surface showed that 35% fewer offspring were produced when only adaxial feeding was allowed, which coincided with 32% less plant feeding on that surface. To test the hypothesis that leaf biomechanical properties inhibited thrips feeding on the adaxial surface, we used a penetrometer to measure two variables related to the 'toughness' of each leaf surface. Neither variable negatively co-varied with feeding. Thus, while avoiding the upper leaf surface was an adaptive foraging strategy, the proximate cause remains to be elucidated, but is likely due, in part, to certain leaf properties that inhibit feeding.

  5. Effect of Extension and Type of Composite-Restored Class II Cavities on Biomechanical Properties of Teeth: A Three Dimensional Finite Element Analysis

    OpenAIRE

    Azam Valian; Elham Moravej-Salehi; Allahyar Geramy; Elham Faramarzi

    2015-01-01

    Objectives: Controversy exists regarding cavity preparation for restoration of interproximal caries in posterior teeth in terms of preserving the tooth structure and suitable stress distribution. This study aimed to assess the effect of extension and type of class II cavities and the remaining tooth structure in maxillary premolars restored with composite resin on the biomechanical properties of teeth using finite element method (FEM). Materials and Methods: Using FEM, eight three-dimensional...

  6. Abnormal Photoluminescence Properties of Polycrystalline ZnO Nanowire Arrays Synthesized by Electrodeposition

    Institute of Scientific and Technical Information of China (English)

    XUE De-Sheng; GONG Yu

    2006-01-01

    @@ Large-scale ZnO nanowire arrays are synthesized by electrodeposition with subsequent heat treatment in atmosphere ambient at 450-650℃. Photoluminescence (PL) is investigated at 295K. Abnormal PL properties of an unusual sharp emission at 485nm and a broad ultraviolet emission which are different from the other works of ZnO PL before are observed. Field emission scanning electronic microscopy and transmission electron microscopy results show that the length of ZnO nanowires is nearly 5μm and their diameter is about 70 nm. X-ray diffraction and electron diffraction results reveal that the ZnO nanowires are a polycrystalline structure.

  7. Dynamic Observation on the Effects of Different Suture Techniques on the Biomechanical Properties in the Healing of Tendons

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To identify the best suture techniques for the tendon repair, the biomechanical properties of tendons sutured by different methods were dynamically examined. 140 chickens were divided into 2 groups equally: group A and group B. The tendon of the right side was subjected to injury-repair process, and the tendons of the left sides served as controls in both groups. In group A, "figure-of8" suture, modified Kessler suture and Bunnell suture were used for the 2nd to 4th paws respectively, while in group B, Kleinert suture, Tsuge suture and Ikuta suture were used. On the day 0, 3,7, 14, 21, 28, 42 after operation, 10 animals were sacrificed and the flexor tendons of both sides were harvested for strength test. The results showed that the initial strength of the repaired tendons and the strength after 6 weeks following tendon cut were far below those of intact tendons, irrespective of suture techniques used. With the 6 techniques, the Pmax of tendons repaired by Tsuge suture was increased continually, reaching the highest value on the 42nd day. The Pmax of tendons sutured by the modified Kessler suture was slightly lower than that by Tsuge suture, but it was increased steadily in healing. The tendons repaired by figure-of-8 suture yielded the lowest Pmax. It was concluded that Tsuge suture and modified Kessler suture were the best techniques for tendon repair.

  8. Exogenous normal lymph alleviates microcirculation disturbances and abnormal hemorheological properties in rats with disseminated intravascular coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Chun-Yu; Zhao, Zi-Gang; Zhang, Yu-Ping [Institute of Microcirculation, Hebei North University, Zhangjiakou (China); Hou, Ya-Li [Department of Clinical Laboratory, First Affiliated Hospital, Hebei North University, Zhangjiakou (China); Li, Jun-Jie; Jiang, Hua; Zhang, Jing [Institute of Microcirculation, Hebei North University, Zhangjiakou (China)

    2013-02-01

    Disturbances of the microcirculation and abnormal hemorheological properties are important factors that play an important role in disseminated intravascular coagulation (DIC) and result in organ dysfunction or failure. In the present study, we established an animal model of DIC using intravenous Dextran 500 in rats, and used exogenous normal lymph corresponding to 1/15 of whole blood volume for injection through the left jugular vein. We found that normal lymph could improve the blood pressure and survival time of rats with DIC. The results regarding the mesenteric microcirculation showed that the abnormality of the diameter of mesenteric microvessels and micro-blood flow speed in the DIC+lymph group was significantly less than in the DIC+saline group. Whole blood viscosity, relative viscosity, plasma viscosity, hematocrit (Hct), erythrocyte sedimentation rate (ESR), and electrophoresis time of erythrocytes were significantly increased in the DIC+saline group compared to the control group. The electrophoretic length and migration of erythrocytes from the DIC+saline and DIC+lymph groups were significantly slower than the control group. Blood relative viscosity, Hct, ESR, and electrophoretic time of erythrocytes were significantly increased in the DIC+lymph group compared to the control group. Whole blood viscosity, relative viscosity and reduced viscosity were significantly lower in the DIC+lymph group than in the DIC+saline group, and erythrocyte deformability index was also significantly higher than in the DIC+saline and control groups. These results suggest that exogenous normal lymph could markedly improve the acute microcirculation disturbance and the abnormal hemorheological properties in rats with DIC induced by Dextran 500.

  9. Experimental investigation into biomechanical and biotribological properties of a real intestine and their significance for design of a spiral-type robotic capsule.

    Science.gov (United States)

    Zhou, Hao; Alici, Gursel; Than, Trung D; Li, Weihua

    2014-03-01

    This article reports on the results and implications of our experimental investigation into the biomechanical and biotribological properties of a real intestine for the optimal design of a spiral-type robotic capsule. Dynamic shear experiments were conducted to evaluate how the storage and loss moduli and damping factor of the small intestine change with the speed or the angular frequency. The sliding friction between differently shaped test pieces, with a topology similar to that of the spirals, and the intestine sample was experimentally determined. Our findings demonstrate that the intestine's biomechanical and biotribological properties are coupled, suggesting that the sliding friction is strongly related to the internal friction of the intestinal tissue. The significant implication of this finding is that one can predict the reaction force between the capsule with a spiral-type traction topology and the intestine directly from the intestine's biomechanical measurements rather than employing complicated three-dimensional finite element analysis or an inaccurate analytical model. Sliding friction experiments were also conducted with bar-shaped solid samples to determine the sliding friction between the samples and the small intestine. This sliding friction data will be useful in determining spiral material for an optimally designed robotic capsule. PMID:24519417

  10. Predictive Models with Patient Specific Material Properties for the Biomechanical Behavior of Ascending Thoracic Aneurysms.

    Science.gov (United States)

    Trabelsi, Olfa; Duprey, Ambroise; Favre, Jean-Pierre; Avril, Stéphane

    2016-01-01

    The aim of this study is to identify the patient-specific material properties of ascending thoracic aortic aneurysms (ATAA) using preoperative dynamic gated computed tomography (CT) scans. The identification is based on the simultaneous minimization of two cost functions, which define the difference between model predictions and gated CT measurements of the aneurysm volume at respectively systole and cardiac mid-cycle. The method is applied on five patients who underwent surgical repair of their ATAA at the University Hospital Center of St. Etienne. For these patients, the aneurysms were collected and tested mechanically using an in vitro bench. For the sake of validation, the mechanical properties found using the in vivo approach and the in vitro bench were compared. We eventually performed finite-element stress analyses based on each set of material properties. Rupture risk indexes were estimated and compared, showing promising results of the patient-specific identification method based on gated CT. PMID:26178871

  11. Study of biomechanical, anatomical, and physiological properties of scorpion stingers for developing biomimetic materials.

    Science.gov (United States)

    Zhao, Zi-Long; Shu, Tao; Feng, Xi-Qiao

    2016-01-01

    Through natural selection, many animal organs have evolved superior mechanical properties and elegant hierarchical structures adaptive to their multiple biological functions. We combine experiments and theory to investigate the composition-structure-property-function relations of scorpion stingers. Their hierarchical structures and functionally gradient mechanical properties were revealed. Slow motion analysis of the penetration process of a scorpion stinger was performed to examine the refined survival skills of scorpions. An experiment-based mechanics model of the stinger was proposed, the results of which revealed an optimized range of penetration angle in an insertion event. Both theoretical and numerical results are in good agreement with our experimental measurements. The analysis method and physical insights of this work are potentially important for investigating a general class of sharp-edge biological materials, e.g., cattle horns, spider fangs, cat claws, and plant thorns. PMID:26478411

  12. Biomechanics of pelvic system: Towards a definition of the required mechanical properties of implants

    Directory of Open Access Journals (Sweden)

    Brieu M.

    2013-11-01

    Full Text Available Genital prolapse is a prevalent pelvic disorder inducing hypermobility of organs. Its physiopathology is not well understood as highlighted by the high rate of failure of the surgical treatments. A better definition of the pelvic tissues properties is needed to design more functional prostheses. Image registration is first used to describe the structure of the pelvic system. Experimental characterization is done to have a map of the mechanical properties of pelvic soft tissues and compare healthy and pathologic tissues behaviour. Then a model based on macromolecular approach and histologic composition is proposed.

  13. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.

    Science.gov (United States)

    Bagheri, Zahra S; El Sawi, Ihab; Schemitsch, Emil H; Zdero, Rad; Bougherara, Habiba

    2013-04-01

    This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composite material had a "sandwich structure", in which two thin sheets of CF/epoxy were attached to each outer surface of the flax/epoxy core, which resulted in a unique structure compared to other composite plates for bone plate applications. Mechanical properties were determined using tension, three-point bending, and Rockwell hardness tests. Also, scanning electron microscopy (SEM) was used to characterize the failure mechanism of specimens in tension and three-point bending tests. The results of mechanical tests revealed a considerably high ultimate strength in both tension (399.8MPa) and flexural loading (510.6MPa), with a higher elastic modulus in bending tests (57.4GPa) compared to tension tests (41.7GPa). The composite material experienced brittle catastrophic failure in both tension and bending tests. The SEM images, consistent with brittle failure, showed mostly fiber breakage and fiber pull-out at the fractured surfaces with perfect bonding at carbon fibers and flax plies. Compared to clinically-used orthopaedic metal plates, current CF/flax/epoxy results were closer to human cortical bone, making the material a potential candidate for use in long bone fracture fixation.

  14. Characterization of biomechanical properties of aged human and ovine mitral valve chordae tendineae.

    Science.gov (United States)

    Zuo, Keping; Pham, Thuy; Li, Kewei; Martin, Caitlin; He, Zhaoming; Sun, Wei

    2016-09-01

    The mitral valve (MV) is a highly complex cardiac valve consisting of an annulus, anterior and posterior leaflets, chordae tendineae (chords) and two papillary muscles. The chordae tendineae mechanics play a pivotal role in proper MV function: the chords help maintain proper leaflet coaptation and rupture of the chordae tendineae due to disease or aging can lead to mitral valve insufficiency. Therefore, the aim of this study was to characterize the mechanical properties of aged human and ovine mitral chordae tendineae. The human and ovine chordal specimens were categorized by insertion location (i.e., marginal, basal and strut) and leaflet type (i.e., anterior and posterior). The results show that human and ovine chords of differing types vary largely in size but do not have significantly different elastic and failure properties. The excess fibrous tissue layers surrounding the central core of human chords added thickness to the chords but did not contribute to the overall strength of the chords. In general, the thinner marginal chords were stiffer than the thicker basal and strut chords, and the anterior chords were stiffer and weaker than the posterior chords. The human chords of all types were significantly stiffer than the corresponding ovine chords and exhibited much lower failure strains. These findings can be explained by the diminished crimp pattern of collagen fibers of the human mitral chords observed histologically. Moreover, the mechanical testing data was modeled with the nonlinear hyperelastic Ogden strain energy function to facilitate accurate computational modeling of the human MV. PMID:27315372

  15. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.

    Science.gov (United States)

    Bagheri, Zahra S; El Sawi, Ihab; Schemitsch, Emil H; Zdero, Rad; Bougherara, Habiba

    2013-04-01

    This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composite material had a "sandwich structure", in which two thin sheets of CF/epoxy were attached to each outer surface of the flax/epoxy core, which resulted in a unique structure compared to other composite plates for bone plate applications. Mechanical properties were determined using tension, three-point bending, and Rockwell hardness tests. Also, scanning electron microscopy (SEM) was used to characterize the failure mechanism of specimens in tension and three-point bending tests. The results of mechanical tests revealed a considerably high ultimate strength in both tension (399.8MPa) and flexural loading (510.6MPa), with a higher elastic modulus in bending tests (57.4GPa) compared to tension tests (41.7GPa). The composite material experienced brittle catastrophic failure in both tension and bending tests. The SEM images, consistent with brittle failure, showed mostly fiber breakage and fiber pull-out at the fractured surfaces with perfect bonding at carbon fibers and flax plies. Compared to clinically-used orthopaedic metal plates, current CF/flax/epoxy results were closer to human cortical bone, making the material a potential candidate for use in long bone fracture fixation. PMID:23499250

  16. Using 3D fluid-structure interaction model to analyse the biomechanical properties of erythrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Chee, C.Y. [Institute of High Performance Computing, 1 Science Park Road, Capricorn S117528 (Singapore)], E-mail: cheecy@ihpc.a-star.edu.sg; Lee, H.P. [Institute of High Performance Computing, 1 Science Park Road, Capricorn S117528 (Singapore); Department of Mechanical Engineering, National University of Singapore, Singapore 119260 (Singapore); Lu, C. [Institute of High Performance Computing, 1 Science Park Road, Capricorn S117528 (Singapore)

    2008-02-25

    This Letter presents a newly developed three-dimensional fluid-structure interaction model of the red blood cell (RBC). The model consists of a deformable liquid capsule modelled as Newtonian fluid enclosed by a hyperelastic membrane with viscoelastic property. Numerical results show that viscosity in the cytoplasm affects the deformed shape of RBC under loading. This observation is contrary to the earlier belief that viscosity of the cytoplasm can be neglected. Numerical simulations carried out to investigate large deformation induced on the RBC model using direct tensile forces show significant improvement in terms of correlation with experimental results. The membrane shear modulus estimated from the model ranges between 3.7 to 9.0 {mu}Nm{sup -1} compares well with results obtained from micropipette aspiration experiments.

  17. Waves and high nutrient loads jointly decrease survival and separately affect morphological and biomechanical properties in the seagrass

    NARCIS (Netherlands)

    La Nafie, Y.A.; de los Santos, C.B.; Brun, F.G.; van Katwijk, M.M.; Bouma, T.J.

    2012-01-01

    In an 8-week aquarium experiment, we investigated the interactive effects of waves (present vs. absent) and water-column nutrient level (high vs. low) on the survival, growth, morphology, and biomechanics of the seagrass, Zostera noltii. Survival was reduced when plants were exposed to both waves an

  18. Impact of oral contraceptive use and menstrual phases on patellar tendon morphology, biochemical composition and biomechanical properties in female athletes

    DEFF Research Database (Denmark)

    Hansen, Mette; Couppe, Christian; Hansen, Christina S;

    2013-01-01

    Introduction: Gender differences exist with regards to ligament and tendon injuries. Lower collagen synthesis has been observed in exercising females vs. males, and in users of oral contraceptives (OC) vs non-users, but it is unknown if OC will influence tendon biomechanics of females undergoing...

  19. Sterilization with electron beam irradiation influences the biomechanical properties and the early remodeling of tendon allografts for reconstruction of the anterior cruciate ligament (ACL).

    Science.gov (United States)

    Schmidt, Tanja; Hoburg, Arnd; Broziat, Christine; Smith, Mark D; Gohs, Uwe; Pruss, Axel; Scheffler, Sven

    2012-08-01

    Although allografts for anterior cruciate ligament (ACL) replacement have shown advantages compared to autografts, their use is limited due to the risk of disease transmission and the limitations of available sterilization methods. Gamma sterilization has shown detrimental effects on graft properties at the high doses required for sufficient pathogen inactivation. In our previous in vitro study on human patellar tendon allografts, Electron beam (Ebeam) irradiation showed less detrimental effects compared to gamma sterilization (Hoburg et al. in Am J Sports Med 38(6):1134-1140, 2010). To investigate the biological healing and restoration of the mechanical properties of a 34 kGy Ebeam treated tendon allograft twenty-four sheep underwent ACL replacement with either a 34 kGy Ebeam treated allograft or a non-sterilized fresh frozen allograft. Biomechanical testing of stiffness, ultimate failure load and AP-laxity as well as histological analysis to investigate cell, vessel and myofibroblast-density were performed after 6 and 12 weeks. Native sheep ACL and hamstring tendons (HAT, each n = 9) served as controls. The results of a previous study analyzing the remodeling of fresh frozen allografts (n = 12) and autografts (Auto, n = 18) with the same study design were also included in the analysis. Statistics were performed using Mann-Whitney U test followed by Bonferroni-Holm correction. Results showed significantly decreased biomechanical properties during the early remodeling period in Ebeam treated grafts and this was accompanied with an increased remodeling activity. There was no recovery of biomechanical function from 6 to 12 weeks in this group in contrast to the results observed in fresh frozen allografts and autografts. Therefore, high dose Ebeam irradiation investigated in this paper cannot be recommended for soft tissue allograft sterilization.

  20. Biomechanics in Schools.

    Science.gov (United States)

    Vincent, J. F. V.

    1980-01-01

    Examines current usage of the term "biomechanics" and emphasizes the importance of differentiating between structure and material. Describes current prolects in biomechanics and lists four points about the educational significance of the field. (GS)

  1. Fruit biomechanics based on anatomy: a review

    Science.gov (United States)

    Li, Zhiguo; Yang, Hongling; Li, Pingping; Liu, Jizhan; Wang, Jizhang; Xu, Yunfeng

    2013-01-01

    Fruit biomechanics is needed for quality determination, multiscale modelling and engineering design of fruit processes and equipments. However, these determined fruit biomechanics data often have obvious differences for the same fruit or tissue. In order to investigate it, the fruit biomechanics based on anatomy was reviewed in this paper. First, the anatomical characteristics of fruit biomaterials were described at the macroscopic `tissue' level and microscopic `cellular' level. Subsequently, the factors affecting fruit biomechanics based on anatomy and the relationships between fruit biomechanics, texture and mechanical damage were summarised according to the published literature. Fruit biomechanics is mainly affected by size, number and arrangement of cells, quantity and volume of intracellular spaces, structure, thickness, chemical composition and permeability of cell walls, and pectin degradation level and turgor pressure within cells based on microanatomy. Four test methods and partial determined results of fruit biomechanics were listed and reviewed. The determined mechanical properties data of fruit are only approximate values by using the existing four test methods, owing to the fruit biomaterials being non-homogeneous and living. Lastly, further aspects for research on fruit biomechanics were proposed for the future.

  2. Research Techniques in Biomechanics.

    Science.gov (United States)

    Ward, Terry

    Biomechanics involves the biological human beings interacting with his/her mechanical environment. Biomechanics research is being done in connection with sport, physical education, and general motor behavior, and concerns mechanics independent of implements. Biomechanics research falls in the following two general categories: (1) that specific…

  3. Effects of strontium malonate (NB S101) on the compositional, structural and biomechanical properties of calcified tissues in rats and dogs

    DEFF Research Database (Denmark)

    Raffalt, Anders Christer

    with postmenopausal osteoporosis. Strontium malonate (SrM) is currently being developed as a novel pharmaceutical for the treatment and prevention of osteoporosis. SrM potentially provides considerable advantages over SrR with respect to Sr content, bioavailability and ease of administration. SrM was tested in three...... were examined for treatment-related changes in concentrations of Sr, Ca, Mg and P using inductively coupled mass spectrometry (ICP-MS). Bone mineral density (BMD) was determined using dual energy X-ray absorptiometry (DEXA), and the biomechanical properties of the bones were assessed using bending...... cross-flow nebuliser. Rh was found to be a suitable internal standard for all four analytes. Reliable estimates of the measurement uncertainties were achieved by pooling calibration data obtained on different days. Treatment with SrM resulted in a dose-dependent increase in Sr contents in all analysed...

  4. 髌骨骨折内固定板的生物力学性能%Biomechanical properties of internal fixation plate for patellar fracture

    Institute of Scientific and Technical Information of China (English)

    管志海; 王勤业; 王以进; 罗亚平; 常小波; 冯夏莺

    2014-01-01

    背景:目前治疗髌骨骨折的各种手术方法均有优缺点,不能更好地满足患者的需求。  目的:评价髌骨内固定板固定髌骨骨折的生物力学性能,为临床应用提供基础理论依据。  方法:根据国人髌骨数据,采用钛合金制成蜘蛛形内固定板。采集6具新鲜尸体膝关节标本,随机分为两组,制成粉碎性骨折模型,分别采用髌骨内固定板和NiTi聚髌器固定,行生物力学实验,比较两种内固定物的生物力学性能。  结果与结论:两种不同内固定方法均能满足1 kN股四头肌收缩力,髌骨内固定板固定后髌骨的分离位移、肌力和关节力以及髌骨关节接触面力学特征均优于常用聚髌器内固定,统计两者力学指标差异有显著性意义(P OBJECTIVE:To evaluate biomechanical properties of internal fixation plate to treat patel ar fracture and to provide theoretical evidence for clinical application. METHODS:According to the statistics of patel a in the Chinese population, a titanium al oy spider internal fixation plate was designed and manufactured for the treatment of patel ar fractures. Knee joint specimens in six fresh cadavers were randomly divided into two groups and the comminuted fracture model of patel a were established. The models were fixed with internal fixation plate of patel a and NiTi patel ar concentrator. Biomechanical tests were carried out to compare the biomechanical properties. RESULTS AND CONCLUSION:Both the two fixation methods could meet the 1-kN quadriceps femoris contraction. The internal fixation plate of patel a was superior to NiTi patel ar concentrator in the patel ar isolation shift, muscle strength and joint strength, as wel as mechanical properties of patel a-point surface. There were significant differences between the two groups (P<0.05). The internal fixation plate of patel a is designed in accordance with the anatomical and biomechanical properties of the

  5. FUNDAMENTALS OF BIOMECHANICS

    Directory of Open Access Journals (Sweden)

    Duane Knudson

    2007-09-01

    Full Text Available DESCRIPTION This book provides a broad and in-depth theoretical and practical description of the fundamental concepts in understanding biomechanics in the qualitative analysis of human movement. PURPOSE The aim is to bring together up-to-date biomechanical knowledge with expert application knowledge. Extensive referencing for students is also provided. FEATURES This textbook is divided into 12 chapters within four parts, including a lab activities section at the end. The division is as follows: Part 1 Introduction: 1.Introduction to biomechanics of human movement; 2.Fundamentals of biomechanics and qualitative analysis; Part 2 Biological/Structural Bases: 3.Anatomical description and its limitations; 4.Mechanics of the musculoskeletal system; Part 3 Mechanical Bases: 5.Linear and angular kinematics; 6.Linear kinetics; 7.Angular kinetics; 8.Fluid mechanics; Part 4 Application of Biomechanics in Qualitative Analysis :9.Applying biomechanics in physical education; 10.Applying biomechanics in coaching; 11.Applying biomechanics in strength and conditioning; 12.Applying biomechanics in sports medicine and rehabilitation. AUDIENCE This is an important reading for both student and educators in the medicine, sport and exercise-related fields. For the researcher and lecturer it would be a helpful guide to plan and prepare more detailed experimental designs or lecture and/or laboratory classes in exercise and sport biomechanics. ASSESSMENT The text provides a constructive fundamental resource for biomechanics, exercise and sport-related students, teachers and researchers as well as anyone interested in understanding motion. It is also very useful since being clearly written and presenting several ways of examples of the application of biomechanics to help teach and apply biomechanical variables and concepts, including sport-related ones

  6. Next generation covered stents made from nanocomposite materials: A complete assessment of uniformity, integrity and biomechanical properties.

    Science.gov (United States)

    Farhatnia, Yasmin; Pang, Jun Hon; Darbyshire, Arnold; Dee, Ryan; Tan, Aaron; Seifalian, Alexander M

    2016-01-01

    Covered stents are stents wrapped with a thin polymeric membrane, and are typically used to treat vessel aneurysms and seal perforated arteries. Current covered stents suffer from restenosis due to limitations in material and fabrication methods which leaves metallic struts directly exposed to blood. We have developed a biocompatible and haemocompatible nanocomposite polymer, polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU). We devised a novel combination of ultrasonic spray atomisation system and dip-coating process to produce small calibre covered stents with metal struts fully embedded within the membrane, which also yields greater coating uniformity. Stent-polymer bonding was enhanced via silanisation and coating of reactive pre-polymer. Platelet studies supported the non-thrombogenicity of POSS-PCU. Biomechanical performances including diametrical compliance, bending strength, radial strength and recoil were evaluated and optimised. This proof-of-principle manufacturing technique could lead to the development of next-generation small calibre adult and paediatric covered stents. These stents are currently undergoing preclinical trial. From the Clinical Editor: The use of stents to treat vascular diseases is now the standard of care in the clinical setting. Nonetheless, a major problem of the current stents is the risk of restenosis and thrombosis. The authors developed a nanocomposite material using polyhedral oligomeric silsesquioxane and poly(carbonate-urea) urethane (POSS-PCU) and incorporated into metallic stents. Preliminary data have already shown promising results. It is envisaged that this would further lead to better stent technology in the future. PMID:26238080

  7. Biomechanics principles and practices

    CERN Document Server

    Peterson, Donald R

    2014-01-01

    Presents Current Principles and ApplicationsBiomedical engineering is considered to be the most expansive of all the engineering sciences. Its function involves the direct combination of core engineering sciences as well as knowledge of nonengineering disciplines such as biology and medicine. Drawing on material from the biomechanics section of The Biomedical Engineering Handbook, Fourth Edition and utilizing the expert knowledge of respected published scientists in the application and research of biomechanics, Biomechanics: Principles and Practices discusses the latest principles and applicat

  8. Implications of combined ovariectomy and glucocorticoid (dexamethasone) treatment on mineral, microarchitectural, biomechanical and matrix properties of rat bone.

    Science.gov (United States)

    Govindarajan, Parameswari; Khassawna, Thaqif; Kampschulte, Marian; Böcker, Wolfgang; Huerter, Britta; Dürselen, Lutz; Faulenbach, Miriam; Heiss, Christian

    2013-12-01

    Osteoporosis is one of the deleterious side effects of long-term glucocorticoid therapy. Since the condition is particularly aggressive in postmenopausal women who are on steroid therapy, in this study we have attempted to analyse the combined effect of glucocorticoid (dexamethasone) treatment and cessation of oestrogen on rat bone. The dual aim was to generate osteoporotic bone status in a short time scale and to characterise the combination of glucocorticoid-postmenopausal osteoporotic conditions. Sprague Dawley rats (N = 42) were grouped randomly into three groups: untreated control, sham-operated and ovariectomized-steroid (OVX-Steroid) rats. Control animals were euthanized with no treatment [Month 0 (M0)], while sham and OVX-Steroid rats were monitored up to 1 month (M1) and 3 months (M3) post laparotomy/post OVX-Steroid treatment. Histology, dual-energy X-ray absorptiometry (DXA), micro-computed tomography (micro-CT), and biomechanical and mRNA expression analysis of collagenous, non-collagenous matrix proteins and osteoclast markers were examined. The study indicated enhanced osteoclastogenesis and significantly lower bone mineral density (BMD) in the OVX-Steroid rats with Z-scores below -2.5, reduced torsional strength, reduced bone volume (BV/TV%), significantly enhanced trabecular separation (Tb.S), and less trabecular number (Tb.N) compared with sham rats. Osteoclast markers, cathepsin K and MMP 9 were upregulated along with Col1α1 and biglycan with no significant expression variation in fibronectin, MMP 14, LRP-5, Car II and TNC. These results show higher bone turnover with enhanced bone resorption accompanied with reduced torsional strength in OVX-Steroid rats; and these changes were attained within a short timeframe. This could be a useful model which mimics human postmenopausal osteoporosis that is associated with steroid therapy and could prove of value both in disease diagnosis and for testing generating and testing biological agents which could

  9. Changes in the histomorphometric and biomechanical properties of the proximal femur of ovariectomized rat after treatment with the phytoestrogens genistein and equol.

    Science.gov (United States)

    Tezval, Mohammad; Sehmisch, Stephan; Seidlová-Wuttke, Dana; Rack, Thomas; Kolios, Leila; Wuttke, Wolfgang; Stuermer, Klaus Michael; Stuermer, Ewa Klara

    2010-02-01

    The isoflavonoids found in soy have attracted great interest as dietary phytoestrogens that might be effective for postmenopausal hormone replacement therapy. Special attention has been devoted to the hormonal effects of various isoflavonoids, like genistein (GEN) and daidzein's (DAID) potent metabolite, equol (EQ). Here we aimed to investigate the short-term effects of genistein and equol on the proximal femur of ovariectomized (OVX) rats. Forty-eight, 3-month-old female Sprague-Dawley rats were ovarectomized; after eight weeks the bilateral osteotomy and osteosynthesis (OS) of their tibiae was performed and the rats were randomly divided into the following four groups: OVX control group (C), treated with estradiol-17beta (E2) -benzoate (E; daily intake 0.086 mg/d per animal), genistein (GEN; daily intake 12.7 mg/d per animal) and equol (EQ; daily intake 4.65 mg/d per animal). At 5 weeks postoperatively (OS), the breaking test was performed on the trochanteric region of femur. Additionally, histomorphometric assessment, and trabecular and cortical bone microstructure analyses were performed. The relative gain of body weight (BW) in the EQ (24 %) group was significantly (p max)) and yield load (yL) were higher (p Wi) among the four groups. The treatment with EQ resulted in improved biomechanical and histomorphometric properties as compared to the treatment with GEN. Thus, of the studied substances, EQ seems to be a possible alternative to hormone replacement therapy, but further studies are needed.

  10. Effect of Extension and Type of Composite-Restored Class II Cavities on Biomechanical Properties of Teeth: A Three Dimensional Finite Element Analysis.

    Directory of Open Access Journals (Sweden)

    Azam Valian

    2015-04-01

    Full Text Available Controversy exists regarding cavity preparation for restoration of interproximal caries in posterior teeth in terms of preserving the tooth structure and suitable stress distribution. This study aimed to assess the effect of extension and type of class II cavities and the remaining tooth structure in maxillary premolars restored with composite resin on the biomechanical properties of teeth using finite element method (FEM.Using FEM, eight three-dimensional (3D models of class II cavities in maxillary premolars with variable mesiodistal (MD dimensions, variable thickness of the residual wall in-between the mesial and distal cavities and different locations of the wall were designed. Other dimensions were the same in all models. Cavities were restored with composite resin. A load equal to the masticatory force (200N was applied to the teeth. Finite element analysis (FEA was used to calculate the von Mises stress.Stress in the enamel margin increased by increasing the MD dimensions of the cavities. Deviation of the residual wall between the mesial and distal cavities from the tooth center was found to be an important factor in increasing stress concentration in the enamel. Increasing the MD dimensions of the cavity did not cause any increase in stress concentration in dentin.Increasing the MD dimensions of the cavities, decreasing the thickness of the residual wall between the mesial and distal cavities and its deviation from the tooth center can increase stress concentration in the enamel but not in dentin.

  11. 部分腕关节韧带的生物力学特性%Biomechanical properties of partial carpal ligaments

    Institute of Scientific and Technical Information of China (English)

    徐永清; 钟世镇; 赵卫东; 徐达传

    2005-01-01

    背景:以腕关节不稳定为主的腕部疾病正受到手外科医生的重视,但是中国人腕韧带的相关生物力学特性尚待研究.目的:了解部分腕关节韧带生物力学特性,为临床手外科发展提供实验依据.设计:单一样本研究.单位:解放军成都军区昆明总医院骨科,解放军第一军医大学临床解剖学研究所.对象:中国成人新鲜腕关节标本16侧,由第一军医大学解剖教研室提供,在生物力学实验室完成测试.干预:在SWD-10型材料试验机上以5 mm/min的定速率拉伸部分腕关节韧带至韧带断裂,测定腕关节部分韧带生物力学特性.主要观察指标:桡舟韧带、桡舟头韧带、桡月韧带、尺月韧带、尺三角韧带、尺侧囊结构、舟月骨间韧带、月三角骨间韧带断裂时承受的最大拉伸力和刚度.结果:在桡尺骨远端与腕骨连接的韧带中,尺月韧带的最大拉伸力和刚度最大为(219.2±55.4)N和(65.5±19.6)N/mm2,尺三角韧带和尺侧囊结构的最大拉伸力和刚度最小分别为(54.0±25.5)N,(17.8±6.0)N/mm2和(58.7±17.6)N,(13 4±4.7)N/mm2.舟月骨间韧带的最大拉伸力和刚度较大为(286.1±90.8)N,(95.5±40.0)N/mm2,但月三角骨间韧带更大为(375.3±52.6)N,(179.0±39.0)N/mm2.结论:腕关节韧带中近排腕骨间韧带的最大拉伸力和刚度较桡尺骨远端与腕骨连接的韧带大,近排腕骨间韧带中月三角骨间韧带的最大拉伸力和刚度较舟月骨间韧带大,在桡尺骨远端与腕骨连接的韧带中,尺月韧带的最大拉伸力和刚度最大.%BACKGROUND: Although hand urgical doctors have drawn the attentions to carpal diseases mainly manifesting as carpalinstability, it is still expected to carry on the researches on biomechanical properties of Chinese carpal ligaments. OBJECTIVE: To understand the biomechanical properties of partial carpal ligaments so as to provide experimental evidence for the development ofclinical hand surgery. DESIGN: A

  12. Microstructure, mechanical properties and wetting behavior of F: Si–C–N films as bio-mechanical coating grown by DC unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhifeng, E-mail: scut0533@126.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wang, Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Huang, Nan [Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, 610031 Chengdu (China); Ning, Chengyun; Wang, Lin [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China)

    2013-03-05

    Highlights: ► The F: Si–C–N film coating on Co–Cr alloy as bio-mechanical coating was put forward. ► Significant role of F and C doped on structure and properties in the film was observed. ► The as-deposited F: Si–C–N films are amphipathic nature. ► F: Si–C–N coatings show improvement in the tribological behavior over the uncoated Co–Cr–Mo. ► Compared with Co–Cr alloy, F: Si–C–N films could improve hardness enhances 1.7 times. -- Abstract: A systematic structure and properties investigation on the deposition of fluorinated silicon–carbon–nitride (Si–C–N) films under varying CF{sub 4} flows was carried out by direct current unbalanced magnetron sputtering techniques. Significant role of fluorine and carbon-doped on growth characteristics and mechanical properties in the film was observed. The chemical bonding configurations, surface topography and mechanical properties were characterized by means of X-ray photoelectron spectroscopy (XPS), Raman and infrared spectroscopies, atomic force microscopy (AFM) and nano-indentation technique and CSM pin-on-disk tribometer. It was found that the as-deposited F: Si–C–N films are amphipathic nature, and large variations took place these films’ deposition rate, composition, microstructure and mechanical properties when CF{sub 4} flows varied from 0 to 9 sccm. At CF{sub 4} gas flow rate 9 sccm, the F: Si–C–N coatings demonstrated a fluorine content of 5.95 at.% and a moderate friction coefficient of 0.03. It is obvious from the hardness results that the F: Si–C–N coating enhances the hardness of the Co–Cr–Mo alloy to approximately 16.3 GPa on a smoother surface. The tribological characterization of Co–Cr–Mo alloy with F: Si–C–N coating sliding against ultrahigh molecular weight polyethylene (UHMWPE) counter-surface in fetal bovine serum, shows that the wear resistance of the F: Si–C–N coated Co–Cr–Mo alloy/UHMWPE sliding pair show much obviously

  13. Microstructure, mechanical properties and wetting behavior of F: Si–C–N films as bio-mechanical coating grown by DC unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Highlights: ► The F: Si–C–N film coating on Co–Cr alloy as bio-mechanical coating was put forward. ► Significant role of F and C doped on structure and properties in the film was observed. ► The as-deposited F: Si–C–N films are amphipathic nature. ► F: Si–C–N coatings show improvement in the tribological behavior over the uncoated Co–Cr–Mo. ► Compared with Co–Cr alloy, F: Si–C–N films could improve hardness enhances 1.7 times. -- Abstract: A systematic structure and properties investigation on the deposition of fluorinated silicon–carbon–nitride (Si–C–N) films under varying CF4 flows was carried out by direct current unbalanced magnetron sputtering techniques. Significant role of fluorine and carbon-doped on growth characteristics and mechanical properties in the film was observed. The chemical bonding configurations, surface topography and mechanical properties were characterized by means of X-ray photoelectron spectroscopy (XPS), Raman and infrared spectroscopies, atomic force microscopy (AFM) and nano-indentation technique and CSM pin-on-disk tribometer. It was found that the as-deposited F: Si–C–N films are amphipathic nature, and large variations took place these films’ deposition rate, composition, microstructure and mechanical properties when CF4 flows varied from 0 to 9 sccm. At CF4 gas flow rate 9 sccm, the F: Si–C–N coatings demonstrated a fluorine content of 5.95 at.% and a moderate friction coefficient of 0.03. It is obvious from the hardness results that the F: Si–C–N coating enhances the hardness of the Co–Cr–Mo alloy to approximately 16.3 GPa on a smoother surface. The tribological characterization of Co–Cr–Mo alloy with F: Si–C–N coating sliding against ultrahigh molecular weight polyethylene (UHMWPE) counter-surface in fetal bovine serum, shows that the wear resistance of the F: Si–C–N coated Co–Cr–Mo alloy/UHMWPE sliding pair show much obviously improvement over that of

  14. Keratoconus and Normal-Tension Glaucoma: A Study of the Possible Association with Abnormal Biomechanical Properties as Measured by Corneal Hysteresis (An AOS Thesis)

    Science.gov (United States)

    Cohen, Elisabeth J.

    2009-01-01

    Purpose: To test the hypothesis that keratoconus and pellucid patients who have glaucoma or are suspected of having glaucoma have lower corneal hysteresis (CH) and/or corneal resistance factor (CRF) measurements compared to controls. Methods: A prospective study at a tertiary eye center of keratoconus and pellucid patients with glaucoma or suspected of having glaucoma, and age-matched keratoconus and pellucid controls, was performed. After informed consent was obtained, corneal topography, ocular response analyzer measurements, pachymetry, intraocular pressure, A-scan measurements, Humphrey visual fields (VFs), and disc photos were done. Analyses compared cases to controls on primary (CH and CRF) and secondary variables. Disc photos and VFs were rated in a masked fashion. Results: The mean CH (8.2, SD=1.6, vs 8.3, SD=1.5) and CRF (7.3, SD=2.0, vs 6.9, SD=2.1) were low and did not differ significantly between 20 study patients (29 eyes) and 40 control patients (61 eyes), respectively. CH had a negative, significant correlation with maximum corneal curvature by topography (P < .002) and positive, significant correlation with central corneal thickness (P < .003). The mean cup-disc ratio was larger among cases than controls (0.54, SD=0.20, vs 0.38, SD=0.20; P = .003). VFs were suggestive of glaucoma more often among the study eyes than controls (11 of 29, 37.9%, vs 8 of 60, 13.3%; P =.019). Conclusions: CH was low in study and control patients and was correlated with severity of keratoconus/pellucid, but not with glaucoma/suspected glaucoma or control status. Evidence of glaucoma was more common in study eyes than controls, but was present in both. PMID:20126503

  15. Muscle-skeletal model of the thigh: a tool for understanding the biomechanics of gait in patients with cerebral palsy

    Science.gov (United States)

    Ravera, Emiliano Pablo; Catalfamo Formento, Paola Andrea; José Crespo, Marcos; Andrés Braidot, Ariel

    2011-12-01

    Cerebral Palsy represents the most common cause of physical disability in modern world and within the pediatrics orthopedics units. The gait analysis provides great contributions to the understanding of gait disorders in CP. Giving a more comprehensive treatment plan, including or excluding surgical procedures that can potentially decrease the number of surgical interventions in the life of these patients. Recommendations for orthopedic surgery may be based on a quantitative description of how to alter the properties probably muscle force generation, and how this affects the action of the muscle to determine how these muscles, impaired by disease or surgery, contributing to the movement of the segments of the limb during crouch gait. So the causes and appropriate treatment of gait abnormalities are difficult to determine because the movements generated by the muscular forces of these patients are not clearly understood. A correct determination of the etiology of abnormal patterns of the knee is the key to select the appropriate therapy, presenting a major challenge at present since there is no theoretical basis to determine the biomechanical causes of abnormal gait of these patients. The potential and necessity of using correct biomechanical models that consistently study the abnormalities becomes clear. Reinforcing and correcting a simple gait analysis and eliminating the unknowns when selecting the appropriate treatment is crucial in clinical settings. In this paper a computer muscle-skeletal model is proposed. The model represents a person's thigh simulating the six most representative muscles and joints of the hip and knee. In this way you can have a better understanding of gait abnormalities present in these patients. So the quality of these estimates of individual muscle dynamics facilitate better understanding of the biomechanics of gait pathologies helping to reach better diagnosis prior to surgery and rehabilitation treatments.

  16. Muscle-skeletal model of the thigh: a tool for understanding the biomechanics of gait in patients with cerebral palsy

    International Nuclear Information System (INIS)

    Cerebral Palsy represents the most common cause of physical disability in modern world and within the pediatrics orthopedics units. The gait analysis provides great contributions to the understanding of gait disorders in CP. Giving a more comprehensive treatment plan, including or excluding surgical procedures that can potentially decrease the number of surgical interventions in the life of these patients. Recommendations for orthopedic surgery may be based on a quantitative description of how to alter the properties probably muscle force generation, and how this affects the action of the muscle to determine how these muscles, impaired by disease or surgery, contributing to the movement of the segments of the limb during crouch gait. So the causes and appropriate treatment of gait abnormalities are difficult to determine because the movements generated by the muscular forces of these patients are not clearly understood. A correct determination of the etiology of abnormal patterns of the knee is the key to select the appropriate therapy, presenting a major challenge at present since there is no theoretical basis to determine the biomechanical causes of abnormal gait of these patients. The potential and necessity of using correct biomechanical models that consistently study the abnormalities becomes clear. Reinforcing and correcting a simple gait analysis and eliminating the unknowns when selecting the appropriate treatment is crucial in clinical settings. In this paper a computer muscle-skeletal model is proposed. The model represents a person's thigh simulating the six most representative muscles and joints of the hip and knee. In this way you can have a better understanding of gait abnormalities present in these patients. So the quality of these estimates of individual muscle dynamics facilitate better understanding of the biomechanics of gait pathologies helping to reach better diagnosis prior to surgery and rehabilitation treatments.

  17. Biomechanics of the brain

    CERN Document Server

    Miller, Karol

    2011-01-01

    With contributions from scientists at major institutions, this book presents an introduction to brain anatomy for engineers and scientists. It provides, for the first time, a comprehensive resource in the field of brain biomechanics.

  18. Computational modeling in biomechanics

    CERN Document Server

    Mofrad, Mohammad

    2010-01-01

    This book provides a glimpse of the diverse and important roles that modern computational technology is playing in various areas of biomechanics. It includes unique chapters on ab initio quantum mechanical, molecular dynamic and scale coupling methods..

  19. 谷子秸秆生物力学性质试验研究%Experimental study on the biomechanical properties of millet stem

    Institute of Scientific and Technical Information of China (English)

    武翠卿; 李楠; 张帅; 武新慧; 郭玉明

    2016-01-01

    Millet stem can be used as forage to fed livestock directly such as horse and mule.It also can be used as bur-den of the mixed feed.The biomechanical properties of millet stem should be studied to provide the selection of some design parameters on processing equipment like crushing process,dissection process,pulverization process and its process parameters optimization.In this paper,biomechanical properties of natural drying millet stem have been stud-ied,mainly testing its bending strength,shear strength,tensile strength and elastic modulus.The results showed that the bending strength of millet stem was superior,with its tensile strength closing to wooden materials.While its shear-ing strength varied along different internodes,greater in the root and lower in the upper.What the bending strength reflects on was the limit value of bending failure of integral tubular section.Elastic modulus hardly change,manifesting its integration was uniform.All of these provide the beneficial reference for many sides such as the millet stem reaping, processing and utilization as well as the designing of agricultural equipment and facilities.%谷子茎秆自然干燥后可作为饲草直接饲喂骡马类大牲畜,或应用于混合饲料的配料。在粉碎、切段、揉丝等加工装备参数优化中,需要研究其秸秆材料的生物力学性质。本文试验研究了自然干燥后的谷子秸秆材料的生物力学性质,主要测试了弯曲强度、剪切强度、拉伸强度、弹性模量等力学性质指标。试验结果表明,谷子茎秆的拉伸强度较高,抗拉能力接近木质类材料;剪切强度沿节间有变化,根部较强,上面节较低;弯曲强度值反映出的是整体管状截面皱褶弯折失效的极限值;弹性模量随节间位置的变化不大,表明谷子茎秆材料整体比较均匀。结果可为谷子茎秆收获、加工及利用装备设计和农业设施材料利用提供参考。

  20. 牛肌腱冻干脱细胞支架的生物力学特性%Biomechanical properties of a decellularized scaffold of lyophilized bovine tendon

    Institute of Scientific and Technical Information of China (English)

    钱闯; 陈雄生; 周盛源; 朱巍

    2015-01-01

    背景:目前的脱细胞方法在去除细胞的同时对细胞外基质存在一定的损伤,降低了脱细胞支架的生物力学性能.目的:分析冻干牛肌腱脱细胞支架的生物力学特性.方法:取新鲜小牛趾伸屈肌腱,去除小牛肌腱表面的滑膜、腱膜及软组织,双蒸水冲洗干净后低压冻干,通过物理方法制备肌腱纤维束60个,随机均分为两组,实验组于无菌操作下置入丝氨酸蛋白酶抑制剂,室温下持续24 h,无菌PBS冲洗后,再移入低浓度胰酶+乙醇混合溶液中,在不破坏细胞外基质的情况下去除细胞壁,室温下持续5 h,再将纤维束移入脱氧核糖核酸酶溶液中持续5 h,最后将已完成脱细胞步骤的支架使用PBS冲洗48 h,无菌室内室温下干燥;对照组不做处置.检测两组材料的弹性模量、耐久性及最大应力.结果与结论:两组耐久性相似,但实验组在相同位移处的应力小于对照组;两组弹性模量比较差异无显著性意义,但实验组最大应力低于对照组(P < 0.01).说明冻干脱细胞支架能够在一定程度上模仿牛肌腱的生物力学功能.%BACKGROUND:Current decelularized methods have the certain damage to the extracelular matrix and reduce the biomechanical properties of acelular scaffolds. OBJECTIVE:To explore the biomechanical properties of decelularized scaffold of lyophilized bovine tendon. METHODS:Sixty lyophilized fiber bundles from fresh flexion tendon of calf toes were randomly divided into two groups: control group and experimental group. In the experimental group, serine protease inhibitors were placed asepticaly for 24 hours at room temperature, then the samples were rinsed with PBS and transferred to the low concentration of trypsin+ethanol mixed solution to remove the cel wal without destruction of the extracelular matrix at room temperature for 5 hours; after that, the fiber bundles were cultured in DNA enzyme solution for 5 hours, finaly the acelular scaffold was

  1. Chimpanzees preferentially select sleeping platform construction tree species with biomechanical properties that yield stable, firm, but compliant nests.

    Science.gov (United States)

    Samson, David R; Hunt, Kevin D

    2014-01-01

    The daily construction of a sleeping platform or "nest" is a universal behavior among large-bodied hominoids. Among chimpanzees, most populations consistently select particular tree species for nesting, yet the principles that guide species preferences are poorly understood. At Semliki, Cynometra alexandri constitutes only 9.6% of all trees in the gallery forest in which the study populations ranges, but it was selected for 73.6% of the 1,844 chimpanzee night beds we sampled. To determine whether physical properties influence nesting site selection, we measured the physical characteristics of seven common tree species at the Toro-Semliki Wildlife Reserve, Uganda. We determined stiffness and bending strength for a sample of 326 branches from the seven most commonly used tree species. We selected test-branches with diameters typically used for nest construction. We measured internode distance, calculated mean leaf surface area (cm2) and assigned a tree architecture category to each of the seven species. C. alexandri fell at the extreme of the sample for all four variables and shared a tree architecture with only one other of the most commonly selected species. C. alexandri was the stiffest and had the greatest bending strength; it had the smallest internode distance and the smallest leaf surface area. C. alexandri and the second most commonly selected species, Cola gigantea, share a 'Model of Koriba' tree architecture. We conclude that chimpanzees are aware of the structural properties of C. alexandri branches and choose it because its properties afford chimpanzees sleeping platforms that are firm, stable and resilient. PMID:24740283

  2. Chimpanzees preferentially select sleeping platform construction tree species with biomechanical properties that yield stable, firm, but compliant nests.

    Directory of Open Access Journals (Sweden)

    David R Samson

    Full Text Available The daily construction of a sleeping platform or "nest" is a universal behavior among large-bodied hominoids. Among chimpanzees, most populations consistently select particular tree species for nesting, yet the principles that guide species preferences are poorly understood. At Semliki, Cynometra alexandri constitutes only 9.6% of all trees in the gallery forest in which the study populations ranges, but it was selected for 73.6% of the 1,844 chimpanzee night beds we sampled. To determine whether physical properties influence nesting site selection, we measured the physical characteristics of seven common tree species at the Toro-Semliki Wildlife Reserve, Uganda. We determined stiffness and bending strength for a sample of 326 branches from the seven most commonly used tree species. We selected test-branches with diameters typically used for nest construction. We measured internode distance, calculated mean leaf surface area (cm2 and assigned a tree architecture category to each of the seven species. C. alexandri fell at the extreme of the sample for all four variables and shared a tree architecture with only one other of the most commonly selected species. C. alexandri was the stiffest and had the greatest bending strength; it had the smallest internode distance and the smallest leaf surface area. C. alexandri and the second most commonly selected species, Cola gigantea, share a 'Model of Koriba' tree architecture. We conclude that chimpanzees are aware of the structural properties of C. alexandri branches and choose it because its properties afford chimpanzees sleeping platforms that are firm, stable and resilient.

  3. Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite

    Directory of Open Access Journals (Sweden)

    Mathias Sorieul

    2016-07-01

    Full Text Available Plant cell walls form an organic complex composite material that fulfils various functions. The hierarchical structure of this material is generated from the integration of its elementary components. This review provides an overview of wood as a composite material followed by its deconstruction into fibres that can then be incorporated into biobased composites. Firstly, the fibres are defined, and their various origins are discussed. Then, the organisation of cell walls and their components are described. The emphasis is on the molecular interactions of the cellulose microfibrils, lignin and hemicelluloses in planta. Hemicelluloses of diverse species and cell walls are described. Details of their organisation in the primary cell wall are provided, as understanding of the role of hemicellulose has recently evolved and is likely to affect our perception and future study of their secondary cell wall homologs. The importance of the presence of water on wood mechanical properties is also discussed. These sections provide the basis for understanding the molecular arrangements and interactions of the components and how they influence changes in fibre properties once isolated. A range of pulping processes can be used to individualise wood fibres, but these can cause damage to the fibres. Therefore, issues relating to fibre production are discussed along with the dispersion of wood fibres during extrusion. The final section explores various ways to improve fibres obtained from wood.

  4. Exploring the biomechanical properties of brain malignancies and their pathologic determinants in vivo with magnetic resonance elastography.

    Science.gov (United States)

    Jamin, Yann; Boult, Jessica K R; Li, Jin; Popov, Sergey; Garteiser, Philippe; Ulloa, Jose L; Cummings, Craig; Box, Gary; Eccles, Suzanne A; Jones, Chris; Waterton, John C; Bamber, Jeffrey C; Sinkus, Ralph; Robinson, Simon P

    2015-04-01

    Malignant tumors are typically associated with altered rigidity relative to normal host tissue. Magnetic resonance elastography (MRE) enables the noninvasive quantitation of the mechanical properties of deep-seated tissue following application of an external vibrational mechanical stress to that tissue. In this preclinical study, we used MRE to quantify (kPa) the elasticity modulus Gd and viscosity modulus Gl of three intracranially implanted glioma and breast metastatic tumor models. In all these brain tumors, we found a notable softness characterized by lower elasticity and viscosity than normal brain parenchyma, enabling their detection on Gd and Gl parametric maps. The most circumscribed tumor (U-87 MG glioma) was the stiffest, whereas the most infiltrative tumor (MDA-MB-231 metastatic breast carcinoma) was the softest. Tumor cell density and microvessel density correlated significantly and positively with elasticity and viscosity, whereas there was no association with the extent of collagen deposition or myelin fiber entrapment. In conclusion, although malignant tumors tend to exhibit increased rigidity, intracranial tumors presented as remarkably softer than normal brain parenchyma. Our findings reinforce the case for MRE use in diagnosing and staging brain malignancies, based on the association of different tumor phenotypes with different mechanical properties.

  5. Mineral density and biomechanical properties of bone tissue from male Arctic foxes (Vulpes lagopus) exposed to organochlorine contaminants and emaciation

    DEFF Research Database (Denmark)

    Sonne, Christian; Wolkers, Hans; Rigét, Frank F;

    2008-01-01

    properties during bending (displacement [mm], load [N], energy absorption [J] and stiffness [N/mm]) were measured. Sixteen foxes (EXP) were fed a wet food containing 7.7% OC-polluted minke whale (Balaenoptera acutorostrata) blubber in two periods of body fat deposition (Aug-Dec) and two periods of body fat...... mobilisation (Jan-July) in which the food contained less energy and only 2% blubber. SigmaOC food concentration in the food containing 7.7% whale blubber was 309 ng/g wet mass. This corresponded to a SigmaOC exposure of ca. 17 microg/kg body mass/d and a responding SigmaOC residue in subcutaneous adipose...... order to avoid confounding effects from body condition....

  6. Biomechanical properties of a structurally optimized carbon-fibre/epoxy intramedullary nail for femoral shaft fracture fixation.

    Science.gov (United States)

    Samiezadeh, Saeid; Fawaz, Zouheir; Bougherara, Habiba

    2016-03-01

    Intramedullary nails are the golden treatment option for diaphyseal fractures. However, their high stiffness can shield the surrounding bone from the natural physiologic load resulting in subsequent bone loss. Their stiff structure can also delay union by reducing compressive loads at the fracture site, thereby inhibiting secondary bone healing. Composite intramedullary nails have recently been introduced to address these drawbacks. The purpose of this study is to evaluate the mechanical properties of a previously developed composite IM nail made of carbon-fibre/epoxy whose structure was optimized based on fracture healing requirements using the selective stress shielding approach. Following manufacturing, the cross-section of the composite nail was examined under an optical microscope to find the porosity of the structure. Mechanical properties of the proposed composite intramedullary nail were determined using standard tension, compression, bending, and torsion tests. The failed specimens were then examined to obtain the modes of failure. The material showed high strength in tension (403.9±7.8MPa), compression (316.9±10.9MPa), bending (405.3±8.1MPa), and torsion (328.5±7.3MPa). Comparing the flexural modulus (41.1±0.9GPa) with the compressive modulus (10.0±0.2GPa) yielded that the material was significantly more flexible in compression than in bending. This customized flexibility along with the high torsional stiffness of the nail (70.7±2.0Nm(2)) has made it ideal as a fracture fixation device since this unique structure can stabilize the fracture while allowing for compression of fracture ends. Negligible moisture absorption (~0.5%) and low porosity of the laminate structure (flexible axially while being relatively rigid in bending and torsion and is strong enough in all types of physiologic loading, making it a potential candidate for use as an alternative to the conventional titanium-alloy intramedullary nails. PMID:26703226

  7. Biomechanical response of two fast-growing tropical seagrass species subjected to in situ shading and sediment fertilization

    NARCIS (Netherlands)

    La Nafie, Y.A.; de los Santos, C.B.; Brun, F.G.; Mashoreng, S.; van Katwijk, M.M.; Bouma, T.J.

    2013-01-01

    Although seagrasses experience strong hydrodynamic forces, little is known about their biomechanical response in spite of the potential importance for their ecological success. We investigated how light reduction and sediment-nutrient enrichment affect biomechanical and morphological properties of t

  8. Biomechanical properties of a structurally optimized carbon-fibre/epoxy intramedullary nail for femoral shaft fracture fixation.

    Science.gov (United States)

    Samiezadeh, Saeid; Fawaz, Zouheir; Bougherara, Habiba

    2016-03-01

    Intramedullary nails are the golden treatment option for diaphyseal fractures. However, their high stiffness can shield the surrounding bone from the natural physiologic load resulting in subsequent bone loss. Their stiff structure can also delay union by reducing compressive loads at the fracture site, thereby inhibiting secondary bone healing. Composite intramedullary nails have recently been introduced to address these drawbacks. The purpose of this study is to evaluate the mechanical properties of a previously developed composite IM nail made of carbon-fibre/epoxy whose structure was optimized based on fracture healing requirements using the selective stress shielding approach. Following manufacturing, the cross-section of the composite nail was examined under an optical microscope to find the porosity of the structure. Mechanical properties of the proposed composite intramedullary nail were determined using standard tension, compression, bending, and torsion tests. The failed specimens were then examined to obtain the modes of failure. The material showed high strength in tension (403.9±7.8MPa), compression (316.9±10.9MPa), bending (405.3±8.1MPa), and torsion (328.5±7.3MPa). Comparing the flexural modulus (41.1±0.9GPa) with the compressive modulus (10.0±0.2GPa) yielded that the material was significantly more flexible in compression than in bending. This customized flexibility along with the high torsional stiffness of the nail (70.7±2.0Nm(2)) has made it ideal as a fracture fixation device since this unique structure can stabilize the fracture while allowing for compression of fracture ends. Negligible moisture absorption (~0.5%) and low porosity of the laminate structure (carbon-fibre/epoxy intramedullary nail is flexible axially while being relatively rigid in bending and torsion and is strong enough in all types of physiologic loading, making it a potential candidate for use as an alternative to the conventional titanium-alloy intramedullary nails.

  9. Effects of methionine restriction and endurance exercise on bones of ovariectomized rats: a study of histomorphometry, densitometry, and biomechanical properties.

    Science.gov (United States)

    Huang, Tsang-Hai; Su, I-Hsiu; Lewis, Jack L; Chang, Ming-Shi; Hsu, Ar-Tyan; Perrone, Carmen E; Ables, Gene P

    2015-09-01

    To investigate the effects of dietary methionine restriction (MetR) and endurance exercise on bone quality under a condition of estrogen deficiency, female Sprague-Dawley rats (36-wk-old) were assigned to a sham surgery group or one of five ovariectomized groups subjected to interventions of no treatment (Ovx), endurance exercise (Exe), methionine restriction (MetR), methionine restriction plus endurance exercise (MetR + Exe), and estrogen treatment (Est). Rats in the exercise groups were subjected to a treadmill running regimen. MetR and control diets contained 0.172 and 0.86% methionine, respectively. After the 12-wk intervention, all animals were killed, and serum and bone tissues were collected for analyses. Compared with estrogen treatment, MetR diet and endurance exercise showed better or equivalent efficiency in reducing body weight gain caused by ovariectomy (P < 0.05). Whereas only the Est group showed evidence for reduced bone turnover compared with the Ovx group, MetR diet and/or endurance exercise demonstrated efficiencies in downregulating serum insulin, leptin, triglyceride, and thiobarbituric acid reactive substances (P < 0.05). Both the Exe and MetR groups showed higher femoral cortical and total volumetric bone mineral density (vBMD), but only the Exe and Est groups preserved cancellous bone volume and/or vBMD of distal femora (P < 0.05) compared with the Ovx group. After being normalized to body mass, femora of the MetR and MetR + Exe groups had relatively higher bending strength and dimension values followed by the Sham, Exe, and Est groups (P < 0.05). In conclusion, both MetR diet and endurance exercise improved cortical bone properties, but only endurance exercise preserved cancellous bone under estrogen deficiency.

  10. Corneal biomechanics: a review.

    Science.gov (United States)

    Piñero, David P; Alcón, Natividad

    2015-03-01

    Biomechanics is often defined as 'mechanics applied to biology'. Due to the variety and complexity of the behaviour of biological structures and materials, biomechanics is better defined as the development, extension and application of mechanics for a better understanding of physiology and physiopathology and consequently for a better diagnosis and treatment of disease and injury. Different methods for the characterisation of corneal biomechanics are reviewed in detail, including those that are currently commercially available (Ocular Response Analyzer and CorVis ST). The clinical applicability of the parameters provided by these devices are discussed, especially in the fields of glaucoma, detection of ectatic disorders and orthokeratology. Likewise, other methods are also reviewed, such as Brillouin microscopy or dynamic optical coherence tomography and others with potential application to clinical practice but not validated for in vivo measurements, such as ultrasonic elastography. Advantages and disadvantages of all these techniques are described. Finally, the concept of biomechanical modelling is revised as well as the requirements for developing biomechanical models, with special emphasis on finite element modelling. PMID:25470213

  11. 角膜塑形术后角膜生物力学属性研究%The short-term influence of orthokeratology on corneal biomechanical properties

    Institute of Scientific and Technical Information of China (English)

    毛欣杰; 周杭帅; 刘然; 吴从霞

    2012-01-01

    目的 观察角膜塑形术后1天角膜形态变化和角膜生物力学变化.设计 前瞻性病例系列.研究对象 等效球镜度-1.50~-6.00 D的青少年近视患者15例(30眼).方法 双眼配戴夜戴型角膜塑形镜,配戴前、配戴一夜摘镜时和摘镜后4小时分别测量等效球镜度、Pentacam分析系统测量角膜平坦、陡峭K值和中央角膜厚度,眼反应分析仪测量角膜生物力学特性.主要指标 等效球镜度,角膜曲率,中央角膜厚度,角膜黏滞性CH值,角膜阻力因子CRF值.结果 配戴角膜塑形镜一夜后等球镜效度由配戴前(-3.72± 1.82)D下降到(-2.12± 1.93)D,角膜曲率平坦K1值从(41.95±1.12)D下降到(41.22±1.34)D,摘镜4小时后等效球镜度回升到(-2.59±1.98)D,角膜曲率平坦K1值回升到(41.44±40.10)D.中央角膜厚度在配戴一夜后由(535.9±34.5)μm增加到(553.3±36.6)μm(P=0.000),摘镜4小时恢复至(535.0±40.3) μm.配戴一夜后CRF值由(10.0±1.4)mm Hg升高至(10.7±1.5)mm Hg(P=0.037).CH值由(10.6±1.4)mm Hg略有升高至(10.7±1.3) mm Hg(P=0.208).摘镜后4小时,与刚摘镜时比CRF值回降至(9.6± 1.2)mm Hg(P=0.000),与配戴前比差异无统计学意义(P=0.148).CH与配戴后的差异无统计学意义(P=0.163).结论 配戴角膜塑形镜后1天角膜生物力学随角膜形态变化而改变,角膜生物力学测量可作为配戴角膜塑形镜后角膜微观结构变化的一种观察手段.%Objective To investigate the short term influence of orthokeratology on corneal biomechanical properties. Design Prospective case series. Participants 30 eyes of 15 subjects with -1.50~-6.00 D myopia. Methods All subjects wore overnight orthokeratology for 1 night. Corneal resistance factor (CRF) and corneal hysteresis (CH) were measured with ocular response analyzer and corneal thickness and corneal curvature were measured with Pentacam analysis system at pre-wearing, just after contact lens removal and 4 hours after lens removal. Main

  12. Gingival Recessions and Biomechanics

    DEFF Research Database (Denmark)

    Laursen, Morten Godtfredsen

    Gingival recessions and biomechanics “Tissue is the issue, but bone sets the tone.“ A tooth outside the cortical plate can result in loss of bone and development of a gingival recession. The presentation aims to show biomechanical considerations in relation to movement of teeth with gingival...... recessions. Gingival recession is a problem often in the region of the lower incisors. A micro-CT study on human autopsy material, performed at the University of Aarhus, confirmed that the anterior mandibular alveolar envelope is indeed very thin. The prognosis of a gingival recession can be improved...

  13. Mathematical foundations of biomechanics.

    Science.gov (United States)

    Niederer, Peter F

    2010-01-01

    The aim of biomechanics is the analysis of the structure and function of humans, animals, and plants by means of the methods of mechanics. Its foundations are in particular embedded in mathematics, physics, and informatics. Due to the inherent multidisciplinary character deriving from its aim, biomechanics has numerous connections and overlapping areas with biology, biochemistry, physiology, and pathophysiology, along with clinical medicine, so its range is enormously wide. This treatise is mainly meant to serve as an introduction and overview for readers and students who intend to acquire a basic understanding of the mathematical principles and mechanics that constitute the foundation of biomechanics; accordingly, its contents are limited to basic theoretical principles of general validity and long-range significance. Selected examples are included that are representative for the problems treated in biomechanics. Although ultimate mathematical generality is not in the foreground, an attempt is made to derive the theory from basic principles. A concise and systematic formulation is thereby intended with the aim that the reader is provided with a working knowledge. It is assumed that he or she is familiar with the principles of calculus, vector analysis, and linear algebra. PMID:21303323

  14. Low-level laser therapy, at 60 J/cm2 associated with a Biosilicate® increase in bone deposition and indentation biomechanical properties of callus in osteopenic rats

    Science.gov (United States)

    Fangel, Renan; Sérgio Bossini, Paulo; Cláudia Renno, Ana; Araki Ribeiro, Daniel; Chenwei Wang, Charles; Luri Toma, Renata; Okino Nonaka, Keico; Driusso, Patrícia; Antonio Parizotto, Nivaldo; Oishi, Jorge

    2011-07-01

    We investigate the effects of a novel bioactive material (Biosilicate®) and low-level laser therapy (LLLT), at 60 J/cm2, on bone-fracture consolidation in osteoporotic rats. Forty female Wistar rats are submitted to the ovariectomy, to induce osteopenia. Eight weeks after the ovariectomy, the animals are randomly divided into four groups, with 10 animals each: bone defect control group; bone defect filled with Biosilicate group; bone defect irradiated with laser at 60 J/cm2 group; bone defect filled with Biosilicate and irradiated with LLLT, at 60 J/cm2 group. Laser irradiation is initiated immediately after surgery and performed every 48 h for 14 days. Histopathological analysis points out that bone defects are predominantly filled with the biomaterial in specimens treated with Biosilicate. In the 60-J/cm2 laser plus Biosilicate group, the biomaterial fills all bone defects, which also contained woven bone and granulation tissue. Also, the biomechanical properties are increased in the animals treated with Biosilicate associated to lasertherapy. Our results indicate that laser therapy improves bone repair process in contact with Biosilicate as a result of increasing bone formation as well as indentation biomechanical properties.

  15. Single Cell Biomechanical Phenotyping using Microfluidics and Nanotechnology

    OpenAIRE

    Babahosseini, Hesam

    2016-01-01

    Cancer progression is accompanied with alterations in the cell biomechanical phenotype, including changes in cell structure, morphology, and responses to microenvironmental stress. These alterations result in an increased deformability of transformed cells and reduced resistance to mechanical stimuli, enabling motility and invasion. Therefore, single cell biomechanical properties could be served as a powerful label-free biomarker for effective characterization and early detection of single ca...

  16. Biomechanics of Rowing

    Science.gov (United States)

    Hase, Kazunori; Andrews, Brian J.; Zavatsky, Amy B.; Halliday, Suzanne E.

    A new control model for the study of biomechanical simulation of human movement was investigated using rowing as an example. The objectives were to explore biological and mechanical alternatives to optimal control methods. The simulation methods included simple control mechanisms based on proportional and derivative (PD) control, consideration of a simple neural model, introduction of an inverse dynamics system for feedback, and computational adjustment of control parameters by using an evaluative criterion and optimization method. By using simulation, appropriate rowing motions were synthesized. The generated rowing motion was periodic, continuous, and adaptable so that the pattern was stable against the mechanical force and independent of the initial condition. We believe that the simulation model is not only practical as a computational research tool from a biomechanical-engineering viewpoint but also significant from the point of view of fundamental biological theories of movement.

  17. Biomechanics of Tendon Transfers.

    Science.gov (United States)

    Livermore, Andrew; Tueting, Jonathan L

    2016-08-01

    The transfer of tendons in the upper extremity is a powerful technique to restore function to a partially paralyzed hand. The biomechanical principles of muscle tension and tendon excursion dictate motor function both in the native as well as transferred states. Appropriately tensioning transferred tendons to maximize the function of the associated muscle remains an area of focused research. Newer methods of tendon coaptation have proven similar in strength to the standard Pulvertaft weave, affording more options to the surgeon. PMID:27387073

  18. Biomechanics of the Gastrointestinal Tract in Health and Disease

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Liao, Donghua; Gregersen, Hans

    2010-01-01

    The gastrointestinal (GI) tract is functionally subjected to dimensional changes. Hence, biomechanical properties such as the stress-strain relationships are of particularly importance. These properties vary along the normal GI tract and remodel in response to growth, aging and disease. The biome......The gastrointestinal (GI) tract is functionally subjected to dimensional changes. Hence, biomechanical properties such as the stress-strain relationships are of particularly importance. These properties vary along the normal GI tract and remodel in response to growth, aging and disease...

  19. Homogenization of biomechanical models for plant tissues

    OpenAIRE

    Piatnitski, Andrey; Ptashnyk, Mariya

    2015-01-01

    In this paper homogenization of a mathematical model for plant tissue biomechanics is presented. The microscopic model constitutes a strongly coupled system of reaction-diffusion-convection equations for chemical processes in plant cells, the equations of poroelasticity for elastic deformations of plant cell walls and middle lamella, and Stokes equations for fluid flow inside the cells. The chemical process in cells and the elastic properties of cell walls and middle lamella are coupled becau...

  20. Morphology and biomechanics of human heart

    Science.gov (United States)

    Chelnokova, Natalia O.; Golyadkina, Anastasiya A.; Kirillova, Irina V.; Polienko, Asel V.; Ivanov, Dmitry V.

    2016-03-01

    Object of study: A study of the biomechanical characteristics of the human heart ventricles was performed. 80 hearts were extracted during autopsy of 80 corpses of adults (40 women and 40 men) aged 31-70 years. The samples were investigated in compliance with the recommendations of the ethics committee. Methods: Tension and compression tests were performed with help of the uniaxial testing machine Instron 5944. Cardiometry was also performed. Results: In this work, techniques for human heart ventricle wall biomechanical properties estimation were developed. Regularities of age and gender variability in deformative and strength properties of the right and left ventricle walls were found. These properties were characterized by a smooth growth of myocardial tissue stiffness and resistivity at a relatively low strain against reduction in their strength and elasticity from 31-40 to 61-70 years. It was found that tissue of the left ventricle at 61-70 years had a lower stretchability and strength compared with tissues of the right ventricle and septum. These data expands understanding of the morphological organization of the heart ventricles, which is very important for the development of personalized medicine. Taking into account individual, age and gender differences of the heart ventricle tissue biomechanical characteristics allows to rationally choosing the type of patching materials during reconstructive operations on heart.

  1. Biological and biomechanical properties of reconstructing anterior cruciate ligament of knee joint%膝关节前交叉韧带重建的生物学及生物力学特性

    Institute of Scientific and Technical Information of China (English)

    李俊敏; 李增炎

    2005-01-01

    目的:通过总结前交叉韧带重建的生物学及生物力学特性,探讨早期锻炼对膝关节前交叉韧带重建后移植物愈合及膝关节运动功能恢复的作用.资料来源:应用计算机检索MEDLINE1970-01/2004-01期间有关膝关节前交叉韧带重建及其生物力学特征的文献,检索词"anterior cruciate ligament,knee ioint,biomechanics",并限定文章语言种类为英文.资料选择:对资料进行初审,选择有关膝关节前交叉韧带重建及其生物力学特征的文献,开始查找全文.选择随机对照类文章,当同一作者有多篇文章时,选择病例数最多的予以纳入;排除综述类及Mete分析类文章.质量评价主要考察资料的真实性,调查、实施过程是否严密.资料提炼:共检索到46篇有关膝关节前交叉韧带重建及其生物力学特征的文章,29篇符合以上纳入标准,排除的17篇文章中,9篇为小样本分析,8篇为综述类或Mete分析类文章.资料综合:通过了解正常前交叉韧带的生物力学特征制定重建措施及康复计划指导.重建后前交叉韧带动物实验提示膝关节运动功能恢复均不理想,而人体实验结果优于动物.随机对照实验表明,前交叉韧带重建后立即持重不增加膝关节的松弛性,反而有利于减轻髌骨疼痛.结论:前交叉韧带损伤重建后固定膝关节,限制关节周围肌肉收缩活动,导致韧带、关节及周围肌肉运动功能受限.早期康复锻炼可以减轻疼痛,改善关节软骨代谢,防止关节囊挛缩,有助于重建后膝关节前交叉韧带运动功能的恢复.%OBJECTIVE: To probe into the function of early exercises on healing of grafts after anterior cruciate ligament (ACL) reconstruction and on motor function recovery of knee joint by summarizing biology and biomechanical properties of ACL reconstruction.DATA SOURCES: The relevant literatures on ACL reconstruction of knee joint and its biomechanical properties were looked up in

  2. Effect of knee physiological anatomy environment on knee biomechanical properties%膝关节生理解剖环境对膝关节生物力学特性的影响

    Institute of Scientific and Technical Information of China (English)

    张美娟

    2012-01-01

    背景:了解膝关节的生物力学特点对理解人工膝关节假体的设计原理和手术操作原则是至关重要的.目的:分析膝关节周围的力学环境及与膝关节生物力学的关系,进一步探索膝关节的稳定性及损伤机制.方法:应用计算机检索CNKI和PubMed数据库中1998-01/2011-08关于膝关节生物力学方面的文章,在标题和摘要中以"膝关节,韧带,半月板,关节软骨,生物力学"或"knee joints,ligament,meniscus,cartilage,biomechanical"为检索词进行检索.选择文章内容与膝关节生物力学有关者,同一领域文献则选择近期发表或发表在权威杂志文章.初检得到163篇文献,根据纳入标准选择关于膝关节损伤生物力学特性方面的25篇文献进行综述.结果与结论:膝关节的稳定除了依赖膝关节骨以外,还以依赖前后交叉韧带的制约、内外副韧带的平衡、以及伸膝装置与股四头肌及腘绳肌的力量均衡,尤其是内外侧副韧带的平衡和稳定作用.说明膝关节的解剖环境决定了膝关节在负荷、运动及稳定等生物力学特性上的复杂性,因此,了解膝关节生理结构和解剖特点有利于掌握膝关节的生物力学特点,因此此方面的研究对膝关节疼痛、损伤及组织工程研究至关重要.%BACKGROUND: The understanding of the knee biomechanical properties is critical to understand the design and operative principles of the knee prosthesis.OBJECTIVE: To summarize the relationship between peripheral mechanics environment and biomechanics of the knee joint, and to investigate the stability and injury mechanism of the knee joint.METHODS: The CNKI database and PubMed database (1998-01/2011-08) were used to search the related articles about biomechanics of the knee joint. The keywords of “knee joints, ligament, meniscus, cartilage, biomechanical” in English and Chinese were put into the title and the abstract to search the articles. The articles that related to

  3. Abnormal Calcium Handling Properties Underlie Familial Hypertrophic Cardiomyopathy Pathology in Patient-Specific Induced Pluripotent Stem Cells

    OpenAIRE

    Lan, Feng; Lee, Andrew S.; Liang, Ping; Sanchez-Freire, Veronica; Nguyen, Patricia K; Wang, Li; Han, Leng; Yen, Michelle; Wang, Yongming; Sun, Ning; Abilez, Oscar J.; Hu, Shijun; Ebert, Antje D.; Navarrete, Enrique G.; Simmons, Chelsey S.

    2013-01-01

    Familial hypertrophic cardiomyopathy (HCM) is a prevalent hereditary cardiac disorder linked to arrhythmia and sudden cardiac death. While the causes of HCM have been identified as genetic mutations in the cardiac sarcomere, the pathways by which sarcomeric mutations engender myocyte hypertrophy and electrophysiological abnormalities are not understood. To elucidate the mechanisms underlying HCM development, we generated patient-specific induced pluripotent stem cell cardiomyocytes (iPSC-CMs)...

  4. Biomedical Imaging and Computational Modeling in Biomechanics

    CERN Document Server

    Iacoviello, Daniela

    2013-01-01

    This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and iomedical imaging and computational modeling in cardiovascular disease.   The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis.

  5. Formation of abnormal high pressure and its application in the study of oil-bearing property of lithologic hydrocarbon reservoirs in the Dongying Sag

    Institute of Scientific and Technical Information of China (English)

    ZHANG ShanWen; ZHANG LinYe; ZHANG ShouChun; LIU Qing; ZHU RiFang; BAO YouShu

    2009-01-01

    The mechanisms of abnormal high pressures are studied in this paper, and it is concluded that the undercompaction, hydrocarbon generation and stratum denudation are obviously effective to fluid pressure buildup. Because of the episodic difference, the hydrocarbon generation and stratum denu-dation are the main factors influencing oil-gas migration. On the basis of basin evolutionary analysis in the Dongying Sag, it is considered that the undercompaction mainly caused the abnormal pressure before the first denudation by the uplift in Late Paleogene, while hydrocarbon generation was the main factor of abnormal pressure after the denudation. The second denudation occurred in Late Neogene, which changed the pressure field and induced the fluid migration. The development of overpressures is the necessary condition to the formation of lithologic hydrocarbon reservoirs, which have positive correlations to overpressures. According to the fullness of the present reservoirs, the quantitative re-lations between oil-bearing property and driving forces of reservoir formation were determined, the latter were decided by dynamic source, reservoir capillary pressure, fluid pressure of surrounding rocks and the dynamic attenuation in different conducting systems.

  6. Biomechanical strain of goldsmiths.

    Science.gov (United States)

    Cândido, Paula Emanuela Fernandes; Teixeira, Juliana Vieira Schmidt; Moro, Antônio Renato Pereira; Gontijo, Leila Amaral

    2012-01-01

    The work of the goldsmiths consists in the manufacture of jewelry. The piece, be it an earring, bracelet or necklace, is hand-assembled. This task requires precision, skill, kindness and patience. In this work, we make use of tools such as cuticle clippers and rounded tip, beads or precious stones and also pieces of metal. This type of activity requires a biomechanical stress of hands and wrists. In order to quantify the biomechanical stress, we performed a case study to measure the movements performed by an assembly of pieces of jewelry. As method for research, filming was done during assembly of parts to a paste, using a Nikon digital camera, for 1 (one) hour. The film was edited by Kinovea software, and the task was divided into cycles, each cycle corresponds to a complete object. In one cycle, there are four two movements of supination and pronation movements of the forearm. The cycle lasts approximately sixteen seconds, totaling 1800 cycles in eight hours. Despite the effort required of the wrists, the activity shows no complaints from the employees, but this fact does not mischaracterizes the ability of employees to acquire repetitive strain injuries and work-related musculoskeletal disorders. PMID:22317096

  7. The Contributions of the Amino and Carboxy Terminal Domains of Flightin to the Biomechanical Properties of Drosophila Flight Muscle Thick Filaments.

    Science.gov (United States)

    Gasek, Nathan S; Nyland, Lori R; Vigoreaux, Jim O

    2016-01-01

    Flightin is a myosin binding protein present in Pancrustacea. In Drosophila, flightin is expressed in the indirect flight muscles (IFM), where it is required for the flexural rigidity, structural integrity, and length determination of thick filaments. Comparison of flightin sequences from multiple Drosophila species revealed a tripartite organization indicative of three functional domains subject to different evolutionary constraints. We use atomic force microscopy to investigate the functional roles of the N-terminal domain and the C-terminal domain that show different patterns of sequence conservation. Thick filaments containing a C-terminal domain truncated flightin (fln(ΔC44)) are significantly shorter (2.68 ± 0.06 μm; p thick filaments containing a full length flightin (fln⁺; 3.21 ± 0.05 μm) and thick filaments containing an N-terminal domain truncated flightin (fln(ΔN62); 3.21 ± 0.06 μm). Persistence length was significantly reduced in fln(ΔN62) (418 ± 72 μm; p thick filament bending propensity. Our results indicate that the flightin amino and carboxy terminal domains make distinct contributions to thick filament biomechanics. We propose these distinct roles arise from the interplay between natural selection and sexual selection given IFM's dual role in flight and courtship behaviors.

  8. Biomechanical Remodeling of the Diabetic Gastrointestinal Tract

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Liao, Donghua; Yang, Jian;

    2010-01-01

    in diabetes mellitus is complex in nature, multi-factorial (motor dysfunction, autonomic neuropathy, glycemic control, psychological factors, etc.) and is not well understood. Histologically, many studies have demonstrated prominent proliferation of different GI wall layers during diabetes. During the past......Gastrointestinal tract sensory-motor abnormalities are common in patients with diabetes mellitus with symptoms arising from the whole GI tract. Common complaints include dysphasia, early satiety, reflux, constipation, abdominal pain, nausea, vomiting, and diarrhea. The pathogenesis of GI symptoms...... several years, several studies demonstrated that experimental diabetes induces GI morphological and biomechanical remodeling. Following the development of diabetes, the GI wall becomes thicker and the stiffness of the GI wall increases in a time-dependent manner. It is well known that mechanosensitive...

  9. Biomechanical conditions of walking

    CERN Document Server

    Fan, Y F; Luo, L P; Li, Z Y; Han, S Y; Lv, C S; Zhang, B

    2015-01-01

    The development of rehabilitation training program for lower limb injury does not usually include gait pattern design. This paper introduced a gait pattern design by using equations (conditions of walking). Following the requirements of reducing force to the injured side to avoid further injury, we developed a lower limb gait pattern to shorten the stride length so as to reduce walking speed, to delay the stance phase of the uninjured side and to reduce step length of the uninjured side. This gait pattern was then verified by the practice of a rehabilitation training of an Achilles tendon rupture patient, whose two-year rehabilitation training (with 24 tests) has proven that this pattern worked as intended. This indicates that rehabilitation training program for lower limb injury can rest on biomechanical conditions of walking based on experimental evidence.

  10. Biomechanical analysis of plate stabilization on cervical part of spine

    Directory of Open Access Journals (Sweden)

    M. Kiel

    2009-07-01

    Full Text Available Purpose: The main aim of the work was determination of biomechanical analysis of cervical spine – stabilizer system made of stainless steel (Cr-Ni-Mo and Ti-6Al-4V alloy.Design/methodology/approach: To define biomechanical characteristic of the system the finite elements method (FEM was applied. Geometric model of part of spine C5-C7 and stabilizer were discretized by SOLID95 element. Appropriate boundary conditions imitating phenomena in real system with appropriate accuracy were established.Findings: The result of biomechanical analysis was calculation of displacements and stresses in the vertebras and the stabilizer in a function of the applied loading: 50-300 N for the stabilizer made of stainless steel (Cr-Ni-Mo and Ti-6Al-4V alloy.Research limitations/implications: The result of biomechanical analysis for plate stabilizer obtained by FEM can be use to determine a construction features of the stabilizer, and to select mechanical properties of metallic biomaterial and estimation of stabilization quality. The calculation of displacements for part C5-C7 show that the proposed type of stabilizer enables correct stabilization used to clinical apply.Practical implications: The results of biomechanical analysis showed correct mechanical properties used to made the plate stabilizer.Originality/value: The obtained numerical results should be verified in “in vitro” tests.

  11. Systems biomechanics of the cell

    CERN Document Server

    Maly, Ivan V

    2013-01-01

    Systems Biomechanics of the Cell attempts to outline systems biomechanics of the cell as an emergent and promising discipline. The new field owes conceptually to cell mechanics, organism-level systems biomechanics, and biology of biochemical systems. Its distinct methodology is to elucidate the structure and behavior of the cell by analyzing the unintuitive collective effects of elementary physical forces that interact within the heritable cellular framework. The problematics amenable to this approach includes the variety of cellular activities that involve the form and movement of the cell body and boundary (nucleus, centrosome, microtubules, cortex, and membrane). Among the elementary system effects in the biomechanics of the cell, instability of symmetry, emergent irreversibility, and multiperiodic dissipative motion can be noted. Research results from recent journal articles are placed in this unifying framework. It is suggested that the emergent discipline has the potential to expand the spectrum of ques...

  12. Structural differences in cortical shell properties between upper and lower human fibula as described by pQCT serial scans. A biomechanical interpretation.

    Science.gov (United States)

    Cointry, Gustavo R; Nocciolino, Laura; Ireland, Alex; Hall, Nicolas M; Kriechbaumer, Andreas; Ferretti, José L; Rittweger, Jörn; Capozza, Ricardo F

    2016-09-01

    This study describes the structural features of fibula cortical shell as allowed by serial pQCT scans in 10/10 healthy men and women aged 20-40years. Indicators of cortical mass (mineral content -BMC-, cross-sectional area -CSA-), mineralization (volumetric BMD, vBMD), design (perimeters, thickness, moments of inertia -MIs-) and strength (Bone Strength Indices, BSIs; polar Strength-Strain Index, pSSI) were determined. All cross-sectional shapes and geometrical or strength indicators suggested a sequence of five different regions along the bone, which would be successively adapted to 1. transmit loads from the articular surface to the cortical shell (near the proximal tibia-fibular joint), 2. favor lateral bending (central part of upper half), 3. resist lateral bending (mid-diaphysis), 4. favor lateral bending again (central part of the lower half), and 5. resist bending/torsion (distal end). Cortical BMC and the cortical/total CSA ratio were higher at the midshaft than at both bone ends (peffect, plocal tissue stiffness) was higher at proximal than distal bone regions (p<0.001). The results from the study suggest that human fibula is primarily adapted to resist bending and torsion rather than compression stresses, and that fibula's bending strength is lower at the center of its proximal and distal halves and higher at the mid-shaft and at both bone's ends. This would favor, proximally, the elastic absorption of energy by the attached muscles that rotate or evert the foot, and distally, the widening of the heel joint and the resistance to excessive lateral bending. Results also suggest that biomechanical control of structural stiffness differs between proximal and distal fibula. PMID:27302664

  13. Abnormal mechanical property evolution induced by heat treatment for a semi-solid forming hypereutectic Al-Fe base alloy

    Directory of Open Access Journals (Sweden)

    Run-xia Li

    2015-05-01

    Full Text Available In the present study, Al-5.5Fe-4Cu-2Zn-0.4Mg-0.5Mn alloy samples were prepared by electromagnetic stirring and semi-solid forming processing, and then the effects of T6 and T1 heat treatments on the microstructures and mechanical properties of the semi-solid forming samples were investigated. The results indicate that after semi-solid forming, the mechanical properties of the sample improved significantly compared to that of the merely electromagnetically stirred sample. The grains of semi-solid forming alloy became almost fine equiaxed; big long strip-shaped Al3Fe phases became short rod-like morphology and distributed uniformly in the matrix. However, the mechanical properties of the T6-treated semi-solid forming sample decreased significantly instead of increasing and, with solution temperature rising, the tensile strength of the alloy decreased further. The results of EDS show that after high temperature solid-solution treatment, the Cu element in the semi-solid forming alloy sample is mainly concentrated at the boundaries of the Al3Fe phases instead of being dissolved in the matrix. At the same time, the grains of the semi-solid forming sample grew slightly after solid-solution treatment. Therefore, the growth of the grains and the accumulation of Cu element at Al3Fe phase boundaries during solution treatment of the semi-solid forming alloy were the main reasons for the mechanical properties decreasing after T6 treatment. The mechanical properties of the alloy were improved after T1 heat treatment due to aging strengthening phase being precipitated in the matrix.

  14. Biomechanics of whiplash injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-bin; King H YANG; WANG Zheng-guo

    2009-01-01

    Despite a large number of rear-end collisions on the road and a high frequency of whiplash injuries reported, the mechanism of whiplash injuries is not completely understood. One of the reasons is that the injury is not necessarily accompanied by obvious tissue damage detectable by X-ray or MRI. An extensive series of biomechanics studies, including injury epidemiology, neck kinematics,facet capsule ligament mechanics, injury mechanisms and injury criteria, were undertaken to help elucidate these whiplash injury mechanisms and gain a better understanding of cervical facet pain. These studies provide the following evidences to help explain the mechanisms of the whiplash injury: (1) Whiplash injuries are generally considered to be a soft tissue injury of the neck with symptoms such as neck pain and stiffness, shoulder weakness, dizziness, headache and memory loss, etc. (2) Based on kinematical studies on the cadaver and volunteers, there are three distinct periods that have the potential to cause injury to the neck. In the first stage, flexural deformation of the neck is observed along with a loss of cervical lordosis; in the second stage, the cervical spine assumes an S-shaped curve as the lower vertebrae begin to extend and gradually cause the upper vertebrae to extend; during the final stage, the entire neck is extended due to the extension moments at both ends. (3)The in vivo environment afforded by rodent models of injury offers particular utility for linking mechanics, nociception and behavioral outcomes. Experimental findings have examined strains across the facet joint as a mechanism of whiplash injury, and suggested a capsular strain threshold or a vertebral distraction threshold for whiplash-related injury,potentially producing neck pain. (4) Injuries to the facet capsule region of the neck are a major source of post-crash pain. There are several hypotheses on how whiplash-associated injury may occur and three of these injuries are related to strains within

  15. The characteristics of keratoconus biomechanical properties measuring by Corvis ST and ORA%圆锥角膜生物力学在Corvis ST与ORA下的变化特点

    Institute of Scientific and Technical Information of China (English)

    李勇; 魏升升; 李晶; 刘建国; 叶璐; 万雅群; 李娟; 杜婧

    2015-01-01

    数均有改变.可视化角膜生物力学分析仪(Corvis ST)和眼反应分析仪(ORA)均能较好反映圆锥角膜生物力学改变特点,多项参数具有明显的相关性.%Objective To investigate the characteristics of keratoconus biomechanical properties by comparing normal eyes.Methods In this case control study,patients from March 2009 to June 2014 were included.The corneal biomechanical properties of 34 keratoconus patients (42 eyes) and 61 normal patients (61 eyes) were measured with Corneal Visualization Scheimpflug Technology (Corvis ST) and Ocular Response Analyze (ORA).The Length of Appl 1 (lst A length),Velocity of Appl 1 (Vin),Length of Appl 2 (2nd A length),Velocity of Appl 2 (Vout),Deformation Amplitude (DA),P.Dist and Radius were measured with Corvis ST.CH and CRF were measured with ORA.Comparison of keratoconic and normal eye's measurement values from ORA and Corvis ST were performed using Paired t test or Two independent tests.Pearson or Spearman correlations were used to evaluate the relationship between Corvis ST and ORA in measurement of keratoconus biomechanical.Results Comparing normal eye's biomechanical properties measurement values,the l stA length and Radius significantly decreased in keratoconus eyes,and there were significantly statistical difference (t =-0.51,-6.54;P =0.01,0.00),however,the Vout absolute value and Def.Ampl increased in keratoconus eyes,and there were significantly statistical difference (Z =-2.25,t =4.27;P =0.03,0.00).The CH and CRF of ORA also decreased in keratoconus eyes,and there were significantly statistical difference (t =-5.20,-7.06;P =0.00,0.00).There were significant correlations between CH of ORA and 1stA length,Vout,Def.Ampl and Radius of Corvis ST (P =0.00,0.04,0.03,0.00).There were significant correlations between CRF of ORA and lstA length,Vout,Def.Ampl and Radius of Corvis ST (P =0.02,0.03,0.00,0.00).Conclusions Comparing normal eyes,the biomechanical properties parameters changed obviously in

  16. New Trends in Dental Biomechanics with Photonics Technologies

    Directory of Open Access Journals (Sweden)

    Lídia Carvalho

    2015-11-01

    Full Text Available Engineering techniques used to evaluate strain-stress fields, materials’ mechanical properties, and load transfer mechanisms, among others, are useful tools in the study of biomechanical applications. These engineering tools, as experimental and numerical ones, were imported to biomechanics, in particular in dental biomechanics, a few decades ago. Several experimental techniques have been used in dental biomechanics, like photoelasticity, ESPI (Electronic Speckle Pattern Interferometry, strain gages, and other kinds of transducers. However, these techniques have some limitations. For instance, photoelasticity and ESPI give the overall field pattern of the strain, showing the stress-strain concentration points. These methods cannot give an accurate measurement at all points. On the contrary, strain gages can be used to perform local measurements. However, as they use electrical resistances, their use is limited to perform in vivo measurements. Optical fiber sensors have already been used in dentistry, for diagnostic and therapeutic purposes, and in dental biomechanics studies. Lasers have also been used in clinical dentistry for a few decades. Other optical technologies, like optical coherence tomography (OCT, became suitable for dental practice and nowadays it is perhaps one that has had more development in dentristry, along with lasers.

  17. Judo Biomechanical Optimization

    CERN Document Server

    Sacripanti, Attilio

    2016-01-01

    In this paper, for the first time, there is comprehensively tackling the problem of biomechanical optimization of a sport of situation such as judo. Starting from the optimization of more simple sports, optimization of this kind of complex sports is grounded on a general physics tool such as the analysis of variation. The objective function is divided for static and dynamic situation of Athletes couple, and it is proposed also a sort of dynamic programming problem Strategic Optimization. A dynamic programming problem is an optimization problem in which decisions have to be taken sequentially over several time periods linked in some fashion. A strategy for a dynamic programming problem is just a contingency plan, a plan that specifies what is to be done at each stage as a function of all that has transpired up to that point. It is possible to demonstrate, under some conditions, that a Markovian optimal strategy is an optimal strategy for the dynamic programming problem under examination. At last we try to appr...

  18. Biomechanics of Wheat/Barley Straw and Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens; Eric D. Steffler; J. Richard Hess; Thomas H. Ulrich

    2005-03-01

    The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such a manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.

  19. A study on the effect of the corneal biomechanical properties undergoing overnight orthokeratology%角膜塑形术治疗近视眼安全性的探讨

    Institute of Scientific and Technical Information of China (English)

    毛欣杰; 黄橙赤; 陈琳; 吕帆

    2010-01-01

    Objective To evaluate the changes of corneal biomechanical properties and corneal topography undergoing overnight orthokeratology treatment. Methods Thirty teenagers with low andmoderate myopia with age of 11.67±1.63,myopia(-2.56±0.86)D,were included and were fitted with Ortho-K CL. The corneal biomechanical properties,including corneal hysteresis (CH),corneal resistance factor(CRF),goldmann-correlated lOP(IOPg) and corneal-compensated intraocular pressure(IOPcc) were measured with ocular response analyzer(ORA).Corneal topography,central corneal thickness(CCT) and corneal endothelium density were measured with computerized corneal topography,optical coherence tomography(OCT) and non contact specular microscope respectively.The measurements were taken at pre-wear,1 day and 7,30,90,180 days after orthokeratology.Only data from the right eyes were analysed.Results All subjects were significantly reduced the myopia amount after 1 day of lens Wear.The corneal curvature flattening(F=38.837,P<0.01)became slightly down to stable after the first week.There were significant decrease in CH and CRF after the orthokeratology treatment within the first week,and CH and CRF reversed and thereafeter into the original level at 3-month and 6-month follow up.IOPg and IOPcc decreased and reached the lowwest level at 1-week visit and after then became down to stable.There were significant reduction in CCT after 1 week(F=4.739,P<0.05).There were no significant changes in corneal endothelium density during orthokeratology treatment for 6 months.Conclusions The amount of myopia reduction with orthokeratology occurred mostly within 1 week while the corneal biomechanical properties such as CH and CRF were decreased. However the corneal biomechanical properties are reversal to the original level thereafter and remain unchanged within the 6 months follow up visits.It proves that orthokeratology does not demage corneal microsturcture.The early sign of reduction may due to the temporal

  20. 脊柱腰骶段生物力学特性及内固定材料的应用%Biomechanical properties of the lumbosacral spine and application of internal fixation materials

    Institute of Scientific and Technical Information of China (English)

    孙弘昊; 郭庆升; 朱志勇

    2016-01-01

    steel, titanium and titanium aloys have been widely used in rigid internal fixation, but metal sedimentation, non-transparency, stress shielding and osteoporosis after internal fixation impact the fusion effects and imaging observation. Absorbable materials as newly-developing materials have good biocompatibility and biodegradability in orthopedic internal fixation. To select the appropriate material for internal fixation, the biomechanical properties of internal fixation materials wil be investigated according to the degree of vertebral damage and lumbosacral stability.

  1. 振动训练对大鼠跟腱生物力学性能影响的实验研究%The Experimental Research of Vibration Training on Biomechanical properties of Rat Achilles’Tendon

    Institute of Scientific and Technical Information of China (English)

    古福明

    2014-01-01

    The purpose of this study was to investigate different frequencies of vibration training effect on biomechanical properties of rat Achilles tendon,and to discuss functional adaptation of rat Achil-les tendon. 60 male rats 3-month-old were randomly divided into quiet control group,low,mid-dle and high frequency training group,with 15 for each group. Rats were trained twice a day with longitudinal vibration. Every time,the training time is 15 min,two training intermittent 5 min. The vibration frequency is 25Hz respectively,35Hz,45Hz,amplitude are 3 mm,5 days a week,a total of 8 weeks. After 8 weeks,the rat′s left Achilles tendon was cut out. The biomechanical parameters of rat Achilles tendon were measured by AGIS-MS material testing machine of the SHIMADZU Cor-poration. The results showed that:compared with quiet control group,in 25Hz group,the strain de-creased significantly( P 0. 05). In 45Hz group,the strain is no significant difference(P>0. 05),elastic modulus increased very significant-ly( P0 . 05 ). It concludes that 25 Hz frequency of vibration training can signally improve the biomechanical parameters of rat Achilles’tendon,and cause func-tional adaptation.%目的:探讨不同频率的振动训练对大鼠跟腱生物力学性能的影响和功能适应性。方法:60只3月龄健康雄性SD大鼠随机分成对照组、低频组、中频组和高频组,每组15只。训练组的大鼠每天接受纵向振动训练2次,每次训练时间为15 min,两次训练间歇5 min,振动频率分别为25 Hz、35 Hz、45 Hz,振幅均为3 mm,每周训练5天,共8周。8周后,取大鼠的左下肢跟腱,使用日本岛津公司的AGIS-MS型电子万能试验机测试其生物力学性能参数。结果:与对照组相比,低频组的应变有显著的减小(P0.05);高频组的应变无显著性差异(P>0.05),弹性模量有非常显著的增加(P0.05)。结论:25 Hz的振动训练能显著地提高大鼠跟腱的生物力

  2. Pharmacological Effect of EPF on Biomechanical Properties among Ovariectomized Rats%淫羊藿黄酮对去势大鼠骨生物力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    陈鹏; 刘文和; 颜林淋; 陈家玉; 胡伟文; 曹锡文; 李杨

    2014-01-01

    物力学性能的降低,使其维持在较高水平。%This study was aimed to explore pharmacological effects of epimedium pubescen flavonoid (EPF) on biomechanical properties among ovariectomized rats. Sixty female Sprague-Dawley (SD) rats (aged 2-month-old) were randomly divided into six groups (n = 10), which were the sham control group (Group A), the model group (GroupB), the standard group (Group C), the treated 1 group (Group D), the treated 2 group (Group E), and the treated 3 group (Group F). Except the sham control group (Group A), rats in other groups had been ovariectomized. All rats were given the same feedstuff. Meanwhile, Group C was given calcium 75 mg·kg-1 combined with VitD3 21 IU·kg-1 by gastrogavage every day for 4 months; Group D was given EPF 75 mg·kg-1; Group E was given EPF 150 mg·kg-1;Group F was given EPF 300 mg·kg-1. At the end of the 4th month, all rats were sacrificed. Bones, which included tibia, femur and humerus of both sides and all lumbar vertebra bodies, had been taken out. Measurement was made on the elastic modulus, maximum loading capability, maximum stress, potential energy of deformation, and structural rigidity of biomechanical properties of the fourth lumbar vertebra body (LV4); the maximum loading capability, bone break load, potential energy of deformation, structural rigidity of the structural dynamics properties of the femur com-pact bone; the elastic modulus, maximum stress, maximum inherent strain, bone break stress, and bone break strain of the mechanical properties of a material of the femur compact bone in the experimental rats. The results showed that compared with Group B, the elastic modulus, maximum loading capability, maximum stress, potential energy of deformation, and structural rigidity of LV4; the maximum loading capability, bone break load, potential energy of de-formation, structural rigidity of the structural dynamics properties of the femur compact bone; the elastic modulus, maximum stress

  3. Abnormal physiological properties and altered cell wall composition in Streptococcus pneumoniae grown in the presence of clavulanic acid.

    Science.gov (United States)

    Severin, A; Severina, E; Tomasz, A

    1997-01-01

    Subinhibitory concentrations of clavulanate caused premature induction of stationary-phase autolysis, sensitization to lysozyme, and reductions in the MICs of deoxycholate and penicillin for Streptococcus pneumoniae. In the range of clavulanate concentrations producing these effects, this beta-lactam compound was selectively bound to PBP 3. Cell walls isolated from pneumococci grown in the presence of clavulanate showed increased sensitivity to the hydrolytic action of purified pneumococcal autolysin in vitro. High-performance liquid chromatography analysis of the peptidoglycan isolated from the clavulanate-grown cells showed major qualitative and quantitative changes in stem peptide composition, the most striking feature of which was the accumulation of peptide species carrying intact D-alanyl-D-alanine residues at the carboxy termini. The altered biological and biochemical properties of the clavulanate-grown pneumococci appear to be the consequences of suppressed D,D-carboxypeptidase activity. PMID:9055983

  4. Kinesiology/Biomechanics: Perspectives and Trends.

    Science.gov (United States)

    Atwater, Anne E.

    1980-01-01

    Past and recent developments and future directions in kinesiology and biomechanics are reviewed. Similarities and differences between these two areas are clarified. The areas of kinesiology and biomechanics have distinct unique qualities and should be treated as separate disciplines. (CJ)

  5. Radiologic evaluation of structural abnormalities of the foot

    International Nuclear Information System (INIS)

    This exhibit concentrates on often overlooked, unfamiliar biomechanical or structural abnormalities of the foot. Pericalcaneal pathology and its correlation with the presence of heel spurs is illustrated. In the tarsal area, coalitions, prehallux, and their relationships to abnormalities of the longitudinal arch are discussed. Distally, medial, dorsal and tailor's bunions are demonstrated. Pain and disability often precede obvious deformity, and a radiologist familiar with the early findings on x-ray studies may be the first member of the medical team to identify structural abnormalities. Diagnosis allows prompt institution of appropriate therapy, reducing the period of patient discomfort and disability

  6. Problems of Sport Biomechanics and Robotics

    OpenAIRE

    Erdmann, Wlodzimierz S.

    2013-01-01

    This paper presents many common areas of interest of different specialists. There are problems described from sport, biomechanics, sport biomechanics, sport engineering, robotics, biomechanics and robotics, sport biomechanics and robotics. There are many approaches to sport from different sciences and engineering. Robotics is a relatively new area and has had moderate attention from sport specialists. The aim of this paper is to present several areas necessary to develop sport robots based on...

  7. Biomechanical Properties of Hemlocks: A Novel Approach to Evaluating Physical Barriers of the Plant–Insect Interface and Resistance to a Phloem-Feeding Herbivore

    OpenAIRE

    Paul Ayayee; Fuqian Yang; Lynne K. Rieske

    2014-01-01

    Micromechanical properties that help mediate herbivore access may be particularly important when considering herbivorous insects that feed with piercing-sucking stylets. We used microindentation to quantify the micromechanical properties of hemlock, Tsuga spp., to quantify the hardness of the feeding site of the invasive hemlock woolly adelgid, Adelges tsugae. We measured hardness of the hemlock leaf cushion, the stylet insertion point of the adelgid, across four seasons in a 1 y period for...

  8. 肋软骨生物力学性能及在耳廓再造手术时机选择中的意义%Biomechanical properties of the costal cartilage and its significance in the timing of ear reconstruction

    Institute of Scientific and Technical Information of China (English)

    杨庆华; 庄洪兴; 曾衍均; 郭碧云; 郭万厚; 谢祥

    2008-01-01

    目的 探讨不同年龄组肋软骨的生物力学特性的变化,以期为肋软骨作为耳廓再造的支架材料应用于整形外科的最佳手术时机提供理论参考.方法 将5~25岁行耳廓再造的患者按年龄分为3组.对不同年龄组肋软骨的应力-应变、应力松弛、蠕变和极限抗拉强度等各项生物力学性能指标进行测试,对测试结果进行统计学分析处理.结果 儿童组肋软骨的极限抗拉强度、应力-应变、应力松弛及蠕变等生物力学指标明显优于青少年组和成人组,3组当中以青少年组的力学性能最差,经统计学分析,差异具有统计学意义(P<0.05).结论 鉴于肋软骨的生物力学性能随年龄发生变化,综合各方面因素,在利用肋软骨进行耳廓再造手术时,应优先考虑在肋软骨生物力学性能最佳的儿童期进行.%Objective To investigate the age-related change in biomechanical properties of the costal cartilage and its relevance to the timing of ear reconstruction with costal cartilage framework.Methods The patients of 5 to 25 years old were divided into three groups according to their age.The biomechanical properties of costal cartilage harvested from these patients during ear reconstruction were tested,including stree-strain relationship,stress relaxation and creep,tensile strength.All the results were analyzed statistically.Results The costal cartilage from children group had the best biomechanical properties,while the costal cartilage from the adolescent group had the worst.The difference had a statistically significance(P<0.05).Conclusions The biomechanical properties of costal cartilage are age-related.So it is recommended that ear reconstruction with costal cartilage framework should be performed in childhood when the costal cartilage has the best biomechanical properties.

  9. Laryngeal biomechanics of the singing voice.

    Science.gov (United States)

    Koufman, J A; Radomski, T A; Joharji, G M; Russell, G B; Pillsbury, D C

    1996-12-01

    By transnasal fiberoptic laryngoscopy, patients with functional voice often demonstrate abnormal laryngeal biomechanics, commonly supraglottic contraction. Appropriately, such conditions are sometimes termed muscle tension dysphonias. Singers working at the limits of their voice may also transiently demonstrate comparable tension patterns. However, the biomechanics of normal singing, particularly for different singing styles, have not been previously well characterized. We used transnasal fiberoptic laryngoscopy to study 100 healthy singers to assess patterns of laryngeal tension during normal singing and to determine whether factors such as sex, occupation, and style of singing influence laryngeal muscle tension. Thirty-nine male and 61 female singers were studied; 48 were professional singers, and 52 were amateurs. Examinations of study subjects performing standardized and nonstandardized singing tasks were recorded on a laser disk and subsequently analyzed in a frame-by-frame fashion by a blinded otolaryngologist. Each vocal task was graded for muscle tension by previously established criteria, and objective muscle tension scores were computed. The muscle tension score was expressed as a percentage of frames for each task with one of the laryngeal muscle tension patterns shown. The lowest muscle tension scores were seen in female professional singers, and the highest muscle tension scores were seen in amateur female singers. Male singers (professional and amateur) had intermediate muscle tension scores. Classical singers had lower muscle tension scores than nonclassical singers, with the lowest muscle tension scores being seen in those singing choral music (41%), art song (47%), and opera (57%), and the highest being seen in those singing jazz/pop (65%), musical theater (74%), bluegrass/country and western (86%), and rock/gospel (94%). Analyzed also were the influences of vocal nodules, prior vocal training, number of performance and practice hours per week

  10. 司坦唑醇对实验性骨质疏松大鼠骨密度和力学性能的影响%Effects of stanozolol on bone mineral density and bone biomechanical properties of osteoporotic rats

    Institute of Scientific and Technical Information of China (English)

    廖进民; 吴铁; 李青南; 胡彬; 黄连芳; 李忠华; 王原林; 钟世镇

    2003-01-01

    Objective To evaluate the effects of stanozolol on the bone mineral density (BMD) and bone biomechanical prop-erties of rats with glucocorticoid (GC)-induced osteoporosis (OP). Methods Twenty-eight male Sprague-Dawley rats of3-month old were randomly divided into Group A (the basal control group), Group B (the age-matched control group), GroupC (GC-induced OP group) and Group D (stanozolol-administtated group), 7 in each group. The rats in Group A were killedwhen experiment commenced, and those in Group B were given normal saline ig., while those in Groups C and D received theprednisone acetate (4.5 mg/kg, twice a week) alone and in combination with stanozolol (0.5 mg/kg, 6 times a week), respec-tively. Ninety days later, the bilateral femur and the 5th lumbar vertebra of the rats were isolated for BMD test using dual-en-ergy X-ray absorptiometry scanner, and the torsion test, three-point bending test and compression test using electronic testingdevice. Results Compared with Group B, the mean BMD of the femur and the 5th lumbar vertebra in Group C decreased by14.64% (P<0.01), the BMD of the bilateral distal femoral segment and the 5th lumbar vertebra decreased by 21.42% (P<0.01),19.62% (P<0.05) and 23.48% (P<0.01) respectively. The load that the femur withstood in three-point bending test decreasedby 17.1% (P<0.05), and the other biomechanical parameters also declined. When compared with Group C, the BMD in GroupD increased, the torsional angle of the femur increased by 72.5% (P<0.05) and the other biomechanical parameters also tendedto increase. Conclusions BMD and biomechanical properties of the rat femur and the 5th lumbar vertebra decrease in re-sponse to a long-term GC administration, which can be prevented by stanozolol.%目的:探讨司坦唑醇对糖皮质激素(GC)所致大鼠骨质疏松的骨密度和力学性能影响.方法28只3月龄雄性SD大鼠,体质量(226±12)g,随机等分为基础对照(A)组、年龄对照(B)组、

  11. 骨水泥加固椎弓根螺钉的生物力学特性%Biomechanical properties of bone cement injectable canulated pedicle screw

    Institute of Scientific and Technical Information of China (English)

    隆海滨; 孙桂森; 王卫国

    2015-01-01

    BACKGROUND:Bony and structural feature often cause pulout strength decrease of pedicle screw, which induces loosening and pulout, and finaly results in fixation failure. Thus, it is very important to elevate the stability of pedicle screw. OBJECTIVE:To detect the biomechanical stability of bone cement injectable canulated pedicle screw, and to provide reference for bone cement dosage. METHODS: We selected T11-L4 samples of seven fresh adult corpses, containing 40 vertebral bodies. They were randomly divided into bone cement injectable canulated pedicle screw group and DTPSTM pedicle screw group (n=20). After screw implantation, 1, 2, 3 and 5 mL bone cement was injected. The diffuse distribution of bone cement was observed by imaging. The maximum axial pulout strength was measured. RESULTS AND CONCLUSION:When the dose of bone cement was 1-3 mL, the average maximum axial pulout strength was significantly greater in the bone cement injectable canulated pedicle screw group than in the DTPSTM pedicle screw group (P 0.05). The regression equation was Y=25.269X+133.681 (R2=0.837) in the bone cement injectable canulated pedicle screw, and Y=32.039X+99.251 (R2=0.936) in the DTPSTM pedicle screw group. When the dosage of bone cement was 1-5 mL, the maximum axial pulout strength was highly positively correlated with bone cement dosage (|R| > 0.8). These results suggested that bone cement augmentation pedicle screw could apparently elevate the stability of the screw. The maximum axial pulout strength of the pedicle screw was positively correlated with bone cement dosage. After reaching the satisfactory fixation effects, the bone cement injectable canulated pedicle screw can reduce bone cement dosage, diminish the risk of bone cement leakage, and have more advantages than DTPSTM pedicle screw.%背景:由于骨质原因及结构特点导致椎弓根螺钉经常出现把持力下降,从而发生松动、拔出,导致内固定失败,因此提高椎弓根螺钉的稳定

  12. Surface modification of PCL-TCP scaffolds in rabbit calvaria defects : Evaluation of scaffold degradation profile, biomechanical properties and bone healing patterns

    NARCIS (Netherlands)

    Yeo, Alvin; Wong, Wah Jie; Teoh, Swee-Hin

    2010-01-01

    Traditionally, polycaprolactone (PG.) based scaffolds tend to degrade at a slow rate. Pretreatment of polycaprolactone-20% tricalcium phosphate (PCL-TCP) scaffolds under alkaline conditions can be utilized to increase the degradation rate and improve mechanical properties. Three groups of PCL-TCP sc

  13. Assessment and characterization of in situ rotator cuff biomechanics

    Science.gov (United States)

    Trent, Erika A.; Bailey, Lane; Mefleh, Fuad N.; Raikar, Vipul P.; Shanley, Ellen; Thigpen, Charles A.; Dean, Delphine; Kwartowitz, David M.

    2013-03-01

    Rotator cuff disease is a degenerative disorder that is a common, costly, and often debilitating, ranging in severity from partial thickness tear, which may cause pain, to total rupture, leading to loss in function. Currently, clinical diagnosis and determination of disease extent relies primarily on subjective assessment of pain, range of motion, and possibly X-ray or ultrasound images. The final treatment plan however is at the discretion of the clinician, who often bases their decision on personal experiences, and not quantitative standards. The use of ultrasound for the assessment of tissue biomechanics is established, such as in ultrasound elastography, where soft tissue biomechanics are measured. Few studies have investigated the use of ultrasound elastography in the characterization of musculoskeletal biomechanics. To assess tissue biomechanics we have developed a device, which measures the force applied to the underlying musculotendentious tissue while simultaneously obtaining the related ultrasound images. In this work, the musculotendinous region of the infraspinatus of twenty asymptomatic male organized baseball players was examined to access the variability in tissue properties within a single patient and across a normal population. Elastic moduli at percent strains less than 15 were significantly different than those above 15 percent strain within the normal population. No significant difference in tissue properties was demonstrated within a single patient. This analysis demonstrated elastic moduli are variable across individuals and incidence. Therefore threshold elastic moduli will likely be a function of variation in local-tissue moduli as opposed to a specific global value.

  14. Fibrillin: from microfibril assembly to biomechanical function.

    Science.gov (United States)

    Kielty, Cay M; Baldock, Clair; Lee, David; Rock, Matthew J; Ashworth, Jane L; Shuttleworth, C Adrian

    2002-02-28

    Fibrillins form the structural framework of a unique and essential class of extracellular microfibrils that endow dynamic connective tissues with long-range elasticity. Their biological importance is emphasized by the linkage of fibrillin mutations to Marfan syndrome and related connective tissue disorders, which are associated with severe cardiovascular, ocular and skeletal defects. These microfibrils have a complex ultrastructure and it has proved a major challenge both to define their structural organization and to relate it to their biological function. However, new approaches have at last begun to reveal important insights into their molecular assembly, structural organization and biomechanical properties. This paper describes the current understanding of the molecular assembly of fibrillin molecules, the alignment of fibrillin molecules within microfibrils and the unique elastomeric properties of microfibrils.

  15. Acute and Stress-related Injuries of Bone and Cartilage: Pertinent Anatomy, Basic Biomechanics, and Imaging Perspective.

    Science.gov (United States)

    Pathria, Mini N; Chung, Christine B; Resnick, Donald L

    2016-07-01

    Bone or cartilage, or both, are frequently injured related to either a single episode of trauma or repetitive overuse. The resulting structural damage is varied, governed by the complex macroscopic and microscopic composition of these tissues. Furthermore, the biomechanical properties of both cartilage and bone are not uniform, influenced by the precise age and activity level of the person and the specific anatomic location within the skeleton. Of the various histologic components that are found in cartilage and bone, the collagen fibers and bundles are most influential in transmitting the forces that are applied to them, explaining in large part the location and direction of the resulting internal stresses that develop within these tissues. Therefore, thorough knowledge of the anatomy, physiology, and biomechanics of normal bone and cartilage serves as a prerequisite to a full understanding of both the manner in which these tissues adapt to physiologic stresses and the patterns of tissue failure that develop under abnormal conditions. Such knowledge forms the basis for more accurate assessment of the diverse imaging features that are encountered following acute traumatic and stress-related injuries to the skeleton. (©) RSNA, 2016.

  16. Biomechanical analysis of rollator walking

    DEFF Research Database (Denmark)

    Alkjaer, T; Larsen, Peter K; Pedersen, Gitte;

    2006-01-01

    The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects....

  17. Clinical applications of biomechanics cinematography.

    Science.gov (United States)

    Woodle, A S

    1986-10-01

    Biomechanics cinematography is the analysis of movement of living organisms through the use of cameras, image projection systems, electronic digitizers, and computers. This article is a comparison of cinematographic systems and details practical uses of the modality in research and education. PMID:2946390

  18. Structural and biomechanical properties of accelular dermal matrix derived from human scar tissue%人瘢痕组织脱细胞真皮基质的组织结构和生物力学性能

    Institute of Scientific and Technical Information of China (English)

    徐静静; 蔡景龙; 王黔; 李毅; 焦虎; 宗宪磊

    2015-01-01

    优于增生性瘢痕ADM.%Objective To explore the structural and biomechanical properties of acellular dermal matrix (ADM) of human scar tissue.Methods Randomly choose 8 human mature scar tissue,8 human hypertrophic scar tissue,and 4 normal human tissue as.experimental samples respectively.Then 0.5 mm split-thickness skin grafts were obtained by drum-type scalpel,further acellularized by 2.5 g/L trypsin-0.5% TritonX-l00.Structural analyses were performed by macroscopic observation,hematoxylin and eosin histological staining and scanning electron microscope.Then human epithelial stern cells were inoculated,cultured on those materials and observe their adhesive properties.Finally the biomechanical properties of ADM were analyzed through the detection of stress-strain relation,stress relaxation,creep and ultimate stress strength to distinguish different origins.Results Prepared ADM was milky white in color despite their distinct origins,physiological and mature scar tissue derived ADM was soft and flexible in texture while ADM from hypertrophic scar showed a more tenacious character.Optical microscopic and electron microscopic analyses showed no sign of visible cellular structures.ADM from physiological group had relatively homogeneous and inerratic collagenous fibers,ADM from hypertrophic group presented with fibers of various diameters and arrayed in a compact and disordered manner.ADM from mature scar tissue possessed traits between the other two groups.Adhesion growth could be observed 2 weeks after inoculating human epithelial stem cells on ADM and cells grew in a cohesive fashion on ADM both from normal skin and mature scar tissue and in an adhesive fashion on hypertrophic scar tissue ADM.Stress-strain 3 value (3.024 ±0.413,2.595 ±0.443,2.590 ± 0.366),creep slope (0.018 ± 0.003,0.019 ± 0.009,0.023 ± 0.010) and ultimate stress strength (8.971 ± 2.434,11.011 ± 1.492,15.567 ± 2.931) of ADM showed no significant differences in hypertrophic scar,mature scar and normal skin tissues (all P

  19. Biomechanical properties of monosegmental pedicle screw fixation via the fractured thoracolumbar vertebrae%经胸腰段伤椎单节段椎弓根螺钉固定后的生物力学特性

    Institute of Scientific and Technical Information of China (English)

    刘上楼; 徐军; 倪卓民; 张云庆; 周枫; 姜雪峰

    2013-01-01

    背景:临床常采用经伤椎椎弓根螺钉内固定治疗胸腰椎骨折,研究已证实经伤椎双侧椎弓根螺钉固定后脊柱稳定性加强,但也有研究认为经伤椎单节段椎弓根螺钉固定足以增加脊柱的稳定性,但此结论缺乏生物力学结果支持。  目的:观察胸腰段椎体骨折经伤椎单节段固定的相关生物力学特性。  方法:取扬州大学医学院解剖教研室提供8具中国人新鲜胸腰段标本(T11-L3),锯条横断2/3椎体,制成完整胸腰段椎体实验标本,将8具标本等分成跨伤椎固定组和单节段经伤椎固定组,分别在跨伤椎临近椎体四钉固定和临近椎体四钉固定+经伤椎单侧椎弓根固定。  结果与结论:胸腰段椎体骨折后经跨伤椎固定与经单节段伤椎固定的载荷-应变关系相差12%、载荷-位移关系相差11%、强度相差18%、轴向刚度相差11%、扭转力相差11%及拔出力相差1.8%,两组差异有显著性意义(P OBJECTIVE:To evaluate the biomechanical properties of monosegmental pedicle screws fixation via fractured vertebrae for thoracolumbar fracture. METHODS:Eight cadavers’ thoracolumbar specimens (T11-L3) were provided by the Department of Anatomy, Yangzhou University School of Medicine. Saw was used to transect 2/3 of the vertebrae in order to make complete experimental thoracolumbar specimens. Eight specimens were divided into two group;beyond-fractured vertebrae fixation group and monosegmental fixation via fracture vertebrae group. The specimens in the two groups were treated with adjacent vertebral four screw fixation beyond fractured vertebrae and adjacent vertebral four screw fixation+monosegmental pedicle screw fixation via fractured vertebrae respectively. RESULTS AND CONCLUSION:After thoracolumbar fracture, the differences between beyond fractured vertebrae fixation and monosegmental pedicle screw fixation via fractured vertebrae were as fol ows

  20. Anatomical and biomechanical traits of broiler chickens across ontogeny. Part II. Body segment inertial properties and muscle architecture of the pelvic limb

    Directory of Open Access Journals (Sweden)

    Heather Paxton

    2014-07-01

    Full Text Available In broiler chickens, genetic success for desired production traits is often shadowed by welfare concerns related to musculoskeletal health. Whilst these concerns are clear, a viable solution is still elusive. Part of the solution lies in knowing how anatomical changes in afflicted body systems that occur across ontogeny influence standing and moving. Here, to demonstrate these changes we quantify the segment inertial properties of the whole body, trunk (legs removed and the right pelvic limb segments of five broilers at three different age groups across development. We also consider how muscle architecture (mass, fascicle length and other properties related to mechanics changes for selected muscles of the pelvic limb. All broilers used had no observed lameness, but we document the limb pathologies identified post mortem, since these two factors do not always correlate, as shown here. The most common leg disorders, including bacterial chondronecrosis with osteomyelitis and rotational and angular deformities of the lower limb, were observed in chickens at all developmental stages. Whole limb morphology is not uniform relative to body size, with broilers obtaining large thighs and feet between four and six weeks of age. This implies that the energetic cost of swinging the limbs is markedly increased across this growth period, perhaps contributing to reduced activity levels. Hindlimb bone length does not change during this period, which may be advantageous for increased stability despite the increased energetic costs. Increased pectoral muscle growth appears to move the centre of mass cranio-dorsally in the last two weeks of growth. This has direct consequences for locomotion (potentially greater limb muscle stresses during standing and moving. Our study is the first to measure these changes in the musculoskeletal system across growth in chickens, and reveals how artificially selected changes of the morphology of the pectoral apparatus may cause

  1. Biomechanical design considerations for transradial prosthetic interface: A review.

    Science.gov (United States)

    Sang, Yuanjun; Li, Xiang; Luo, Yun

    2016-03-01

    Traditional function and comfort assessment of transradial prostheses pay scant attention to prosthetic interface. With better understanding of the biomechanics of prosthetic interface comes better efficiency and safety for interface design; in this way, amputees are more likely to accept prosthetic usage. This review attempts to provide design and selection criteria of transradial interface for prosthetists and clinicians. Various transradial socket types in the literature were chronologically reviewed. Biomechanical discussion of transradial prosthetic interface design from an engineering point of view was also done. Suspension control, range of motion, stability, as well as comfort and safety of socket designs have been considered in varying degrees in the literature. The human-machine interface design should change from traditional "socket design" to new "interface design." From anatomy and physiology to biomechanics of the transradial residual limb, the force and motion transfer, together with comfort and safety, are the two main aspects in prosthetic interface design. Load distribution and transmission should mainly rely on achieving additional skeletal control through targeted soft tissue relief. Biomechanics of the residual limb soft tissues should be studied to find the relationship between mechanical properties and the comfort and safety of soft tissues.

  2. Comparison of biomechanical properties of different internal fixation methods for the treatment of posterior ankle fractures%后踝关节骨折不同内固定方式的生物力学性能对比

    Institute of Scientific and Technical Information of China (English)

    万全会

    2015-01-01

    BACKGROUND:Different fixtures can be used for the internal fixation treatment of patients with posterior ankle fractures in clinic, however, different internal fixation methods wil produce different biomechanical effect. OBJECTIVE:To compare and analyze the biomechanical properties of mini steel plate internal fixation and tension screw internal fixation in the treatment of posterior ankle fracture. METHODS:The clinical data of 95 patients with posterior ankle fractures were retrospectively analyzed. Al patients were treated with internal fixation. Mini steel plate group (n=48 cases) and tension screw group (n=47 cases) were divided according to the internal fixation methods. RESULTS AND CONCLUSION:The fixation effect of these two groups was simulated and analyzed using three-dimensional finite element model. The results showed that when the posterior ankle joint fracture block spreaded to the distal tibial articular surface of more than 25%, the mean pressure of internal fixation failure of tension screw group was significantly less than that of the mini steel plate group (P  目的:比较分析后踝关节骨折行微型钢板内固定以及拉力螺钉内固定治疗的生物力学性能。  方法:回顾性分析95例后踝关节骨折患者的临床资料,均接受内固定治疗,按照内固定方法分为微型钢板组48例和拉力螺钉组47例。  结果与结论:对两组的固定效果进行三维有限元模型模拟和分析,经分析发现,在后踝关节骨折块波及到胫骨远端关节面25%以上的情况下,在内固定失效平均压力方面,拉力螺钉组显著小于微型钢板组(P<0.05);而当后踝关节骨折块波及到胫骨远端关节面25%以下的情况下,在内固定失效平均压力方面,拉力螺钉组显著大于微型钢板组(P <0.05)。拉力螺钉组的踝关节内固定优良率显著高于微型钢板组(P <0.05)。两组治疗过程中均未出现任何内固定材料相关不

  3. 有氧运动配合雷洛昔芬对骨生物力学性能影响的研究%Aerobic Exercise Combined with Effects of Raloxifene on Bone Biomechanical Properties

    Institute of Scientific and Technical Information of China (English)

    谢江涛; 罗珊

    2014-01-01

    目的:通过对去势大鼠骨生物力学指标的检测,探讨有氧运动与雷洛昔芬联合作用对去势大鼠骨生物力学性能的影响。方法:将50只雌性SD大鼠随机分为5组:假手术组、模型组、有氧运动组、雷洛昔芬组、有氧运动+雷洛昔芬组。假手术组不去卵巢,其余各组去卵巢造模;有氧运动组、雷洛昔芬组、有氧运动+雷洛昔芬组分别在去卵巢的基础上进行有氧运动训练和(或)灌胃选择性雌激素受体调节剂雷洛昔芬。8周后比较各组大鼠股骨结构力学和材料力学指标的变化。结果:(1)与模型组相比,有氧运动组、雷洛昔芬组、有氧运动+雷洛昔芬组大鼠的各项指标都显著优于模型组(P<0.05),部分指标出现显著性差异(P<0.01)。(2)模型组各项指标都与假手术组有显著性差别(P<0.05)。结论:有氧运动配合雷洛昔芬治疗联合应用预防废用性骨质疏松比单独应用能获得更好的效果;并且更加安全易行。%Objective: ovariectomized rats bone biomechanical indicators detect, investigate the combined effects of aerobic exercise and raloxifene on ovariectomized rats bone biomechanical properties. Methods: 50 female SD rats were randomly divided into five groups: sham operation group, model group, aerobic exercise group, the raloxifene group, aerobic exercise + raloxifene group. Sham group only surgery but not ovariectomy, the rest of the group of ovariectomized modeling; aerobic exercise group, the raloxifene group aerobic exercise + raloxifene groups, respectively, based on ovariectomized aerobic exercise training and (or) orally selective estrogen receptor modulator raloxifene. After eight weeks, comparing changes in the rat femur structural mechanics and material mechanics index. Results: (1) Compared with model group, the aerobic exercise group, raloxifene group, the indicators of aerobic exercise + raloxifene rats

  4. Challenging the in-vivo assessment of biomechanical properties of the uterine cervix: A critical analysis of ultrasound based quasi-static procedures.

    Science.gov (United States)

    Maurer, M M; Badir, S; Pensalfini, M; Bajka, M; Abitabile, P; Zimmermann, R; Mazza, E

    2015-06-25

    Measuring the stiffness of the uterine cervix might be useful in the prediction of preterm delivery, a still unsolved health issue of global dimensions. Recently, a number of clinical studies have addressed this topic, proposing quantitative methods for the assessment of the mechanical properties of the cervix. Quasi-static elastography, maximum compressibility using ultrasound and aspiration tests have been applied for this purpose. The results obtained with the different methods seem to provide contradictory information about the physiologic development of cervical stiffness during pregnancy. Simulations and experiments were performed in order to rationalize the findings obtained with ultrasound based, quasi-static procedures. The experimental and computational results clearly illustrate that standardization of quasi-static elastography leads to repeatable strain values, but for different loading forces. Since force cannot be controlled, this current approach does not allow the distinction between a globally soft and stiff cervix. It is further shown that introducing a reference elastomer into the elastography measurement might overcome the problem of force standardization, but a careful mechanical analysis is required to obtain reliable stiffness values for cervical tissue. In contrast, the maximum compressibility procedure leads to a repeatable, semi-quantitative assessment of cervical consistency, due to the nonlinear nature of the mechanical behavior of cervical tissue. The evolution of cervical stiffness in pregnancy obtained with this procedure is in line with data from aspiration tests.

  5. 几种组织工程支架材料生物力学性能的研究%Study on biomechanical properties of several scaffold materials for tissue engineering

    Institute of Scientific and Technical Information of China (English)

    徐志强; 刘彬; 王艳萍; 徐世荣; 麻开旺; 戴小珍; 徐志玲; 付小兵; 李校堃; 蔡绍皙

    2007-01-01

    的断裂强度最低,介于1.16~1.40 MPa.同时,与PLGA共混后的脱细胞血管的断裂强度明显低于脱细胞血管,差异有显著性意义(P<0.05).③杨氏模量:明胶的杨氏模量及硬度最大,而且远远大于其他各种材料.脱细胞猪皮的杨氏模量及硬度最低.与PLGA共混后的脱细胞血管及脱细胞猪皮的硬度均增大,差异有显著性意义(P<0.05),并于PLGA相当.除明胶以外,其他各材料硬度由大到小的排列顺序依次是:脱细胞血管-PLGA、PLGA、脱细胞猪皮-PLGA、脱细胞血管、壳聚糖、海藻酸钠、胶原、脱细胞猪皮.结论:①脱细胞血管及脱细胞猪皮具有良好的力学性质.②与组织来源的材料即脱细胞血管及脱细胞猪皮相比,PLGA的韧性较好,强度较低,硬度偏高.③海藻酸钠、明胶、壳聚糖的力学性质有望通过与PLGA的复合而得到改善.%BACKGROUND:It is still a research focus on constructing substitution of the human tissues and organs, or producing the alliance for grafting by engineering methods in tissue engineering. Among these researches, it is pivotal to choose appropriate materials. The prepared scaffolds should have suitable tensile strength and mechanical toughness to withstand the various outside forces without being damaged. So, it is very necessary to evaluate the biomechanical properties of candidated materials in tissue engineering, which can supply the references for selecting materials for tissue scaffolds and their designation.OBJECTIVE: To investigate the biomechanical properties of nine kinds of scaffold materials, in order to supply a biomechanical basis for the selection and design of scaffold materials for tissue engineering.DESIGN: A repetitive measurement study.SETTING: College of Bioengineering, Chongqing University.MATERIALS: The materials involved in this study were poly (DL-lactic-co - glycolic acid) (PLGA), sodium polymannuronate, gelatine, chitosan, collagen, acellular porcine dermis (APD), acellular vascular

  6. Cell biomechanics and its applications in human disease diagnosis

    Science.gov (United States)

    Nematbakhsh, Yasaman; Lim, Chwee Teck

    2015-04-01

    Certain diseases are known to cause changes in the physical and biomechanical properties of cells. These include cancer, malaria, and sickle cell anemia among others. Typically, such physical property changes can result in several fold increases or decreases in cell stiffness, which are significant and can result in severe pathology and eventual catastrophic breakdown of the bodily functions. While there are developed biochemical and biological assays to detect the onset or presence of diseases, there is always a need to develop more rapid, precise, and sensitive methods to detect and diagnose diseases. Biomechanical property changes can play a significant role in this regard. As such, research into disease biomechanics can not only give us an in-depth knowledge of the mechanisms underlying disease progression, but can also serve as a powerful tool for detection and diagnosis. This article provides some insights into opportunities for how significant changes in cellular mechanical properties during onset or progression of a disease can be utilized as useful means for detection and diagnosis. We will also showcase several technologies that have already been developed to perform such detection and diagnosis.

  7. The role of light in measuring ocular biomechanics.

    Science.gov (United States)

    Wilson, A; Marshall, J; Tyrer, J R

    2016-02-01

    The cornea is a highly specialised tissue with a unique set of biomechanical properties determined by its complex structure. The maintenance of these mechanical properties is fundamental to maintain clear vision as the cornea provides the majority of the focussing power of the eye. Changes to the biomechanics of the cornea can occur during ageing, disease, and trauma, or as a result of surgery. Recently there has been increased interest in the mechanical properties of the cornea as knowledge of these properties has significant implications for the improvement of current ocular treatments including PRK and LASIK, and for the diagnosis and tracking of corneal diseases and therapy such as keratoconus and crosslinking. Biomechanics are also important for the development of artificial corneal replacements. This paper describes the use of a novel, non-destructive lateral electronic speckle pattern shearing interferometer (ESPSI). The data generated via this technique give a full-field view of the mechanical response of the cornea under simulated physiological loading conditions, and enables strain and displacement to be determined in three planes. The technique allows corneal stiffness to be quantified and enables changes and non-homogeneities that occur due to surgery or disease to be detected. PMID:26768916

  8. Structural and biomechanical aspects of equine sacroiliac joint function and their relationship to clinical disease.

    Science.gov (United States)

    Goff, L M; Jeffcott, L B; Jasiewicz, J; McGowan, C M

    2008-06-01

    Pain originating from the sacroiliac joint (SIJ) in horses has long been associated with poor performance, yet specific diagnosis of sacroiliac dysfunction (SID) has been difficult to achieve. Clinical presentation of SID appears to fall into two categories. The first, presenting as pain and poor performance, is responsive to local analgesia of periarticular structures with poorly defined pathology. The second presents primarily as poor performance with bony pathological changes as a result of chronic instability. Diagnostic tests based on biomechanics as well as manual provocation for SIJ pain have formed the basis of tests currently used to diagnose SIJ dysfunction in humans. This review summarises the anatomy and biomechanics of the equine SIJ and current biomechanical, innervation and motor control concepts in human SID. The relationship between abnormal SIJ motion and altered neuromotor control with clinical disease of the equine SIJ are discussed. Future utilisation of these principles to develop new diagnostic and management tools for the equine SID is promising. PMID:17493851

  9. Structural and biomechanical aspects of equine sacroiliac joint function and their relationship to clinical disease.

    Science.gov (United States)

    Goff, L M; Jeffcott, L B; Jasiewicz, J; McGowan, C M

    2008-06-01

    Pain originating from the sacroiliac joint (SIJ) in horses has long been associated with poor performance, yet specific diagnosis of sacroiliac dysfunction (SID) has been difficult to achieve. Clinical presentation of SID appears to fall into two categories. The first, presenting as pain and poor performance, is responsive to local analgesia of periarticular structures with poorly defined pathology. The second presents primarily as poor performance with bony pathological changes as a result of chronic instability. Diagnostic tests based on biomechanics as well as manual provocation for SIJ pain have formed the basis of tests currently used to diagnose SIJ dysfunction in humans. This review summarises the anatomy and biomechanics of the equine SIJ and current biomechanical, innervation and motor control concepts in human SID. The relationship between abnormal SIJ motion and altered neuromotor control with clinical disease of the equine SIJ are discussed. Future utilisation of these principles to develop new diagnostic and management tools for the equine SID is promising.

  10. Small Animal Bone Biomechanics

    OpenAIRE

    Vashishth, Deepak

    2008-01-01

    Animal models, in particular mice, offer the possibility of naturally achieving or genetically engineering a skeletal phenotype associated with disease and conducting destructive fracture tests on bone to determine the resulting change in bone’s mechanical properties. Several recent developments, including nano- and micro- indentation testing, microtensile and microcompressive testing, and bending tests on notched whole bone specimens, offer the possibility to mechanically probe small animal ...

  11. Sport and Exercise Biomechanics (Bios Instant Notes)

    OpenAIRE

    Paul Grimshaw; Adrian Lees; Neil Fowler; Adrian Burden

    2007-01-01

    DESCRIPTION Instant Notes on Sport and Exercise Biomechanics provides a broad overview of the fundamental concepts in exercise and sport biomechanics. PURPOSE The book aims to provide instant notes on essential information about biomechanics, and is designed to help undergraduate students to grasp the corresponding subjects in physical effort rapidly and easily. AUDIENCE The book provides a useful resource for undergraduate and graduate students as a fundamental reference book. For the resear...

  12. Modeling spinal cord biomechanics

    Science.gov (United States)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  13. Propiedades biomecánicas y proceso de esterilización de las matrices alodérmicas usadas en periodoncia Biomechanical properties and sterilization process of allodermics matrix used on periodontic

    Directory of Open Access Journals (Sweden)

    C.M. Ardila Medina

    2011-12-01

    . Due to the increased use of allografts on periodontics and other areas of health sciences, has brought more focus to the safety of allogenic tissue and the efficacy of various sterilization techniques. Unfortunately, these sterilization techniques could produce deleterious effects on the biomechanical properties of allogenic tissues, causing undesirable results on the interventions. Moreover, it has been suggested that despite the thoroughness of the evaluation processes and tissue donors, in addition to the processing of the matrices, there is possibility of retention of genetic material on allografts commercially available

  14. Biomechanical properties of the biceps-labral complex submitted to mechanical stress Propriedades biomecânicas do complexo labrum-glenóide bicipital superior submetido ao estresse mecânico

    Directory of Open Access Journals (Sweden)

    Adson do Socorro Sá Costa

    2006-08-01

    Full Text Available PURPOSE: To determine biomechanical properties of the superior labrum-biceps tendon complex submitted to continuous and sudden mechanical strain. METHODS: Eighteen shoulder specimens from 15 unclaimed corpses, ages ranging from 20 to 40 years, were submitted to continuous or sudden tensile tests using 3 different traction machines. Shoulders presenting signs of degenerative diseases or preexisting traumatic lesions were excluded. RESULTS: Rupture of the distal portion of the long hand of the biceps occurred when stretching forces reached 290N in continuous traction and 384N in sudden traction. No labral-complex lesions were observed. CONCLUSION: Either a simple continuous or a sudden uniaxial traction of the arm do not play a role in the genesis of superior labrum anterior-posterior (SLAP lesions in the shoulder joint. produceOBJETIVO: Determinar as propriedades biomecânicas do complexo labrum-glenóide bicipital superior submetido ao estresse mecânico contínuo ou repetitivo (repentino. MÉTODOS: Dezoito ombros provenientes de 15 cadáveres não reclamados, idades na faixa de 20 a 40 anos, foram submetidos aos testes de tração contínua ou repentina usando três diferentes máquinas de tração. Foram excluídos do estudo os ombros que apresentavam lesões degenerativas ou evidências de lesões traumáticas pré-existentes. RESULTADOS: Ocorreu ruptura da porção distal do tendão do bíceps sob a tensão contínua de 290 N e de 348N na tração repentina. Não foram observadas lesões no complexo labrum-bicipital. CONCLUSÃO: A simples tração contínua ou súbita do braço não produz lesões do complexo Labrum Glenóide Bicipital Superior (SLAP na articulação do ombro.

  15. Tibiofemoral cartilage contact biomechanics in patients after reconstruction of a ruptured anterior cruciate ligament.

    Science.gov (United States)

    Hosseini, Ali; Van de Velde, Samuel; Gill, Thomas J; Li, Guoan

    2012-11-01

    We investigated the in vivo cartilage contact biomechanics of the tibiofemoral joint in patients after reconstruction of a ruptured anterior cruciate ligament (ACL). A dual fluoroscopic and MR imaging technique was used to investigate the cartilage contact biomechanics of the tibiofemoral joint during in vivo weight-bearing flexion of the knee in eight patients 6 months following clinically successful reconstruction of an acute isolated ACL rupture. The location of tibiofemoral cartilage contact, size of the contact area, cartilage thickness at the contact area, and magnitude of the cartilage contact deformation of the ACL-reconstructed knees were compared with those previously measured in intact (contralateral) knees and ACL-deficient knees of the same subjects. Contact biomechanics of the tibiofemoral cartilage after ACL reconstruction were similar to those measured in intact knees. However, at lower flexion, the abnormal posterior and lateral shift of cartilage contact location to smaller regions of thinner tibial cartilage that has been described in ACL-deficient knees persisted in ACL-reconstructed knees, resulting in an increase of the magnitude of cartilage contact deformation at those flexion angles. Reconstruction of the ACL restored some of the in vivo cartilage contact biomechanics of the tibiofemoral joint to normal. Clinically, recovering anterior knee stability might be insufficient to prevent post-operative cartilage degeneration due to lack of restoration of in vivo cartilage contact biomechanics. PMID:22528687

  16. Urine - abnormal color

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  17. A review of biomechanics of the shoulder and biomechanical concepts of rotator cuff repair

    Directory of Open Access Journals (Sweden)

    Nobuyuki Yamamoto

    2015-01-01

    Full Text Available In this article, we describe the basic knowledge about shoulder biomechanics, which is thought to be useful for surgeons. Some clinical reports have described that the excellent outcome after cuff repair without acromioplasty and a limited acromioplasty might be enough for subacromial decompression. It was biomechanically demonstrated that a 10-mm medial shift of the tendon repair site has a minimum effect on biomechanics. Many biomechanical studies reported that the transosseous equivalent repair was superior to other techniques, although the tendon may lose its inherent elasticity. We herein introduce our recent experiment data and latest information on biomechanics.

  18. Aortic biomechanics in hypertrophic cardiomyopathy

    Science.gov (United States)

    Badran, Hala Mahfouz; Soltan, Ghada; Faheem, Nagla; Elnoamany, Mohamed Fahmy; Tawfik, Mohamed; Yacoub, Magdi

    2015-01-01

    Background: Ventricular-vascular coupling is an important phenomenon in many cardiovascular diseases. The association between aortic mechanical dysfunction and left ventricular (LV) dysfunction is well characterized in many disease entities, but no data are available on how these changes are related in hypertrophic cardiomyopathy (HCM). Aim of the work: This study examined whether HCM alone is associated with an impaired aortic mechanical function in patients without cardiovascular risk factors and the relation of these changes, if any, to LV deformation and cardiac phenotype. Methods: 141 patients with HCM were recruited and compared to 66 age- and sex-matched healthy subjects as control group. Pulse pressure, aortic strain, stiffness and distensibility were calculated from the aortic diameters measured by M-mode echocardiography and blood pressure obtained by sphygmomanometer. Aortic wall systolic and diastolic velocities were measured using pulsed wave Doppler tissue imaging (DTI). Cardiac assessment included geometric parameters and myocardial deformation (strain and strain rate) and mechanical dyssynchrony. Results: The pulsatile change in the aortic diameter, distensibility and aortic wall systolic velocity (AWS') were significantly decreased and aortic stiffness index was increased in HCM compared to control (P < .001) In HCM AWS' was inversely correlated to age(r = − .32, P < .0001), MWT (r = − .22, P < .008), LVMI (r = − .20, P < .02), E/Ea (r = − .16, P < .03) LVOT gradient (r = − 19, P < .02) and severity of mitral regurg (r = − .18, P < .03) but not to the concealed LV deformation abnormalities or mechanical dyssynchrony. On multivariate analysis, the key determinant of aortic stiffness was LV mass index and LVOT obstruction while the role LV dysfunction in aortic stiffness is not evident in this population. Conclusion: HCM is associated with abnormal aortic mechanical properties. The severity of cardiac

  19. Clinical study on the influence of corneal biomechanical properties on early-stage orthokeratology%角膜生物力学性能对角膜塑形术早期疗效的影响

    Institute of Scientific and Technical Information of China (English)

    周佳奇; 李梅; 钟元园; 周行涛; 褚仁远

    2014-01-01

    Objective To investigate the correlation between corneal biomechanical properties and the changes in corneal curvature when undergoing orthokeratology.Methods Fifty-seven eyes of 29 subjects with-1.00--4.75 D of myopia wore overnight reverse-geometry rigid gas-permeable lenses were included in this prospective study.The clinical examination included refractive error,uncorrected and best corrected visual acuity,and slit-lamp examination and were recorded in detail.Corneal resistance factor (CRF) and corneal hysteresis (CH) were measured with an ocular response analyzer.Corneal topography was measured with an Oculus Pentacam analysis system at pre-wear.Keratometric curvature (steep and fiat K values) was measured pre-wear,and 1 day and 7 days post-wear.A one-way ANOVA and correlation analysis were used for statistical analysis.Results The fiat keratornetric curvatures (K1) were significantly reduced from 42.76±0.78 D (baseline) to 41.78±0.86 D after one night of wear,and 40.52±1.26 D after 7 nights of wear (F=71.962,P<0.01).The steep keratometric curvatures (K2) were significantly reduced from 43.91±0.81 D (baseline) to 43.34±0.89 D after one night of wear,and 42.14±1.44 D after 7 nights of wear (F=40.602,P<0.01).CRF and CH did not correlate significantly with the reduction of K1 and K2,respectively,after 1 and 7 nights of wear.Conclusion This study indicates that the biomechanical properties CRF and CH did not correlate with the changes in corneal curvature while undergoing orthokeratology.%目的 探讨角膜生物力学性能与角膜塑形术后角膜曲率变化的相关性.方法 前瞻性研究.选取复旦大学附属眼耳鼻喉科医院接触镜室就诊的青少年近视患者29例(57眼),平均年龄(9.7±2.1)岁,等效球镜度范围-1.00~-4.75 D,验配前进行眼科常规检查、屈光检查、Oculus Pentacam 三维眼前节分析仪测量角膜地形图、Canon角膜曲率计测量角膜平坦K1及陡峭K2、眼反应分析仪测量角

  20. Applied Biomechanics in an Instructional Setting

    Science.gov (United States)

    Hudson, Jackie L.

    2006-01-01

    Biomechanics is the science of how people move better, meaning more skillfully and more safely. This article places more emphasis on skill rather than safety, though there are many parallels between them. It shares a few features of the author's paradigm of applied biomechanics and discusses an integrated approach toward a middle school football…

  1. Effects of lovastatin on bone mass and biomechanical property in tail-suspended rats%洛伐他汀对尾悬吊大鼠骨量及生物力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    何余庆; 郑杰; 赵嘉懿

    2012-01-01

    目的 通过尾悬吊法制作拟失重大鼠骨质疏松动物模型,观察洛伐他汀体内给药对尾悬吊大鼠骨量、微观结构、生物力学性能的作用潜能.方法 将24只10周龄雄性SD大鼠随机分成3组,每组各8只:正常对照组(G1组,8只,每日予蒸馏水灌胃)、尾悬吊组(G2组,将大鼠在悬吊笼中尾部悬吊,后肢离地,使躯干与地面成40°角,同时每日予每天蒸馏水灌胃)、尾悬吊加洛伐他汀组(G3组,在尾部悬吊基础上,每日予20mg/kg洛伐他汀灌胃);4周后处死所有大鼠,取大鼠右侧股骨用双能X线骨密度仪测量骨密度,并取胫骨近端进行骨组织形态计量学测定;同时取大鼠左侧股骨行生物力学检测.结果 G1组的右股骨各段骨密度和骨小梁相对体积、左股骨最大载荷量显著高于G2、G3组(均P<0.05),G1组的骨小梁分离度及骨吸收周长百分数、破骨细胞数、类骨质周长百分数显著低于G2、G3组(均P<0.05),且G2、G3组上述指标的差异均无统计学意义(均P >0.05).结论 尾悬吊4周可导致大鼠骨量丢失;洛伐他汀体内给药不能阻止尾悬吊大鼠股骨骨量丢失.%To investigate the effects of lovastatin on bone mass,microarchitecture and biomechanical property,and to observe the potential protective effect of lovastatin on unloading-induced osteoporosis.MethodsTwenty-four 10-week-old male Sprague-Dawley rats were randomized into three groups of eight animals each: G1, control group; G2, the tail-suspended group with vehicle; G3, the tail-suspended group and administered daily with 20 mg/kg of lovastatin by gavage. The experiment was lasted for four weeks, and all animals were sacrificed one day after the final lovastatin administration. The right femurs were harvested for the measurement of bone histomorphometry, and bone mineral density (BMD) measured by dual-energy X-ray absorptiometry.The left femurs were collected for biomechanical test.ResultsThe tBMD,pBMD and dBMD of

  2. Biomechanical properties of relevant blood vessels in the heterogeneic heart transplantation from swine to human%猪→人异种心脏移植中相关血管的生物力学特性

    Institute of Scientific and Technical Information of China (English)

    张一飞; 余明华; 唐杰; 黄铁柱

    2006-01-01

    BACKGROUND: The source of conspecific heart transplantation organ is very limited and deficiency becomes more and more obvious.OBJECTIVE: To observe the mechanical properties of ascending aorta at one-dimensional loading between healthy persons and swine of different months, so as to provide necessary biomechanical experimental basis for anastomosing blood vessel in heterogeneic heart transplantation from swine to human.DESIGN: Open design SETTING: Staff Room of Anatomy, Yunyang Medical College MATERIALS: This experiment was carried out at the Laboratory of Biomechanics, Yunyang Medical College from April 2002 to July 2003.Ascending aortas of human were obtained from the 6 adult male corpses without cardiovascular diseases, aged 18 to 30 years, who died for accident and donated by Yunyang Medical College. Totally 42 conspecific swine of 1 month old, with certification number of QN0202, were provided by Animal Experimental Center of Yunyang Medical College. They were raised with common foodstuff. The 42 swine were butchered respectively at 1,2,3,4,5,6 and 7 months, 6 swine once. After anatomical isolation and in situ measurement of respective in vivo length, ascending aorta from aorta valve ring base plane to initiation part of innominate artery was taken out (Artherosclerosis was not presented in all the samples) and divided into five equal segments, and the second and fourth segments were used for mechanical test of one-dimensional loading.METHODS: Six adult male corpses and ascending aorta of 42 swine of 1 to 7 months were performed mechanical test of one-dimensional loading.All the blood segments were pre-treated ten times with the same strain rate at room temperature 32 ℃(loading range from 0 to 0.5 N). Hysteresis disappeared after blood vessel was given periodic permanent loading and unloading, and repeated force-deformed data were obtained. Blood vessel was given loading and unloading once with the same loading range and strain rate. The recorded force

  3. Biomechanics of cross-sectional size and shape in the hominoid mandibular corpus.

    Science.gov (United States)

    Daegling, D J

    1989-09-01

    Mandibular cross sections of Pan, Pongo, Gorilla, Homo, and two fossil specimens of Paranthropus were examined by computed tomography (CT) to determine the biomechanical properties of the hominoid mandibular corpus. Images obtained by CT reveal that while the fossil hominids do not differ significantly from extant hominoids in the relative contribution of compact bone to total subperiosteal area, the shape of the Paranthropus corpora indicates that the mechanical design of the robust australopithecine mandible is fundamentally distinct from that of modern hominoids in terms of its ability to resist transverse bending and torsion. It is also apparent that, among the modern hominoids, interspecific and sexual differences in corpus shape are not significant from a biomechanical perspective. While ellipse models have been used previously to describe the size, shape, and subsequent biomechanical properties of the corpus, the present study shows that such models do not predict the biomechanical properties of corpus cross-sectional geometry in an accurate or reliable manner. The traditional "robusticity" index of the mandibular corpus is of limited utility for biomechanical interpretations. The relationship of compact bone distribution in the corpus to dimensions such as mandibular length and arch width may provide a more functionally meaningful definition of mandibular robusticity. PMID:2508480

  4. Effects of exogenous IGF-1 on bone mineral density and biomechanical properties of ovariectomized rats%IGF-1对去卵巢大鼠骨密度及骨力学强度的影响

    Institute of Scientific and Technical Information of China (English)

    赵荣兰; 刘新宇; 孙蓓; 梁东春; 郭刚; 张镜宇

    2008-01-01

    Objective To study the effects of exogenous IGF-1 on bone mineral density,bone turnover and bone biomechanical properties of ovariectomized (OVX) rats.Methods Sprague-Dawley rats were either ovariectomized (n=60) or sham operated (n=10).Three months after the operation,the existence of osteoporosis in OVX rats was confirmed by bone mineral densitometry.OVX rats were randomly separated into 5 groups,subjected to the treatment of PTH1-34,three different-dosage of IGF-1 or normal saline (NS) respectively.Sham rats,treated with NS,was established as sham control.Eight weeks alter the treatment,serum levels of Ca,P,steocalcin concentration and alkaline phosphatase (ALP) activity were assayed.The bone mineral density of lumbar spine and the mechanical strength of the femur were determined.The bone thick-ness of distal femur was determined by histological staining.Results IGF-1 did not improve the bone miner-81 density of lumbar spine in OVX rats,but significantly improved their mechanical strength.Serological test results showed that IGF-1 could lower serum calcium,phosphorus,calcium levels and ALP activity;histological staining showed that IGF-1 could significantly increase the femur bone thickness of OVX rats.Conclusion IGF-1 Can increase the mechanical strength of the femug in OVX rats through reconstructing bone architee-ture rather than increasing bone mineral density.%目的 研究外源性胰岛素样生长因子-1(IGF-1)对去卵巢(OVX)骨质疏松大鼠骨密度、骨转换率、骨力学强度等方面的影响.方法 对大鼠施行双侧卵巢摘除术,术后3个月以骨密度测定证实骨质疏松的存在后,随机分为5组,分别以生理盐水、甲状旁腺激素1-34及3种不同剂量IGF-1进行干预.同时设立生理盐水干预的假手术大鼠作为对照.8周后检测血清钙、磷、骨钙素水平及碱性磷酸酶活性;测定腰椎骨密度、股骨力学强度;组织学染色测定股骨远端骨皮质厚度.结果 IGF-1虽未提

  5. Graphic-based musculoskeletal model for biomechanical analyses and animation.

    Science.gov (United States)

    Chao, Edmund Y S

    2003-04-01

    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the 'Virtual Human' reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. This paper details the design, capabilities, and features of the VIMS development at Johns Hopkins University, an effort possible only through academic and commercial collaborations. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of this unique database and simulation technology. This integrated system will impact on medical education, basic research, device development and application, and clinical patient care related to musculoskeletal diseases, trauma, and rehabilitation.

  6. Biomechanical performance of new cardiovascular needles.

    Science.gov (United States)

    Thacker, J G; Ferguson, R E; Rodeheaver, G T; Edlich, R F

    2001-01-01

    Cardiovascular needles are now being manufactured from new stainless steel alloys containing high concentrations of nickel, Surgalloy and Ethalloy. The purpose of this study was to compare the biomechanical performance of a cardiovascular needle made of Surgalloy with a comparably sized needle made of Ethalloy. The parameters of biomechanical performance included sharpness, maintenance of sharpness, resistance to bending, and ductility. Because the biomechanical performance of these needles was remarkably similar, cardiovascular needles made of either the Surgalloy or Ethalloy alloys are recommended for cardiovascular surgery. PMID:11495105

  7. Occupational biomechanics of athletes and dancers: a comparative approach.

    Science.gov (United States)

    Bejjani, F J

    1987-07-01

    Muscle strains represent more than a third of all injuries in both dancers and athletes. Although often overlooked, anatomic variations play an important role in the etiology of these injuries, as does strength imbalance between agonists and antagonists. The incidence of spondylolysis is unusually high in ballet dancers and certain athletic groups, such as gymnasts, javelin throwers, and weight-lifters. Mechanical factors play a major role and can be exacerbated by congenital abnormalities. Various permanent adaptive musculoskeletal changes have been described both in dancers and athletes, especially those that start at a very young age. Task-related adaptive changes can also be seen in isokinetic strength measurements of various muscle groups, such as the spine muscles of Flamenco dancers. Shoes and floor surfaces can be directly responsible in part or in whole for many sports and dance injuries. "Vibration-pressure" diagrams are suggested as an objective way to document their effect on biomechanical behavior. PMID:2886209

  8. [Biomechanics of the ankle joint].

    Science.gov (United States)

    Zwipp, H

    1989-03-01

    According to Fick, the tree-dimensional patterns of foot motion are best characterized as jawlike movement. Anatomically and biomechanically, this process represents conjoined, synchronous motion within the three mobile segments of the hindfoot: the ankle joint, the posterior subtalar joint, and the anterior subtalar joint. Foot kinematics can be described more completely if the anterior subtalar joint is defined not only as the talocalcaneal navicular joint, but as including the calcaneocuboid joint, thus representing the transverse joint of the tarsus, i.e., the Chopart joint. The axes of these three joints can be defined precisely. In some parts they represent a screwlike motion, clockwise or counter-clockwise, around the central ligamentous structures (fibulotibial ligament, talocalcaneal interosseous ligament, bifurcate ligament). The individual anatomy and structure of these ligaments provide variations in the degree and direction of foot motion. A precise knowledge of foot kinematics is important in surgical ligament and joint reconstruction and in selective foot arthrodeses.

  9. Biomechanics of knife stab attacks.

    Science.gov (United States)

    Chadwick, E K; Nicol, A C; Lane, J V; Gray, T G

    1999-10-25

    Equipment, materials and methods for the measurement of the biomechanical parameters governing knife stab attacks have been developed and data have been presented that are relevant to the improvement of standards for the testing of stab-resistant materials. A six-camera Vicon motion analysis system was used to measure velocity, and derive energy and momentum during the approach phase of the attack and a specially developed force-measuring knife was used to measure three-dimensional forces and torque during the impact phase. The body segments associated with the knife were modelled as a series of rigid segments: trunk, upper arm, forearm and hand. The velocities of these segments, together with knowledge of the mass distribution from biomechanical tables, allowed the calculation of the individual segment energy and momentum values. The instrumented knife measured four components of load: axial force (along the length of the blade), cutting force (parallel to the breadth of the blade), lateral force (across the blade) and torque (twisting action) using foil strain gauges. Twenty volunteers were asked to stab a target with near maximal effort. Three styles of stab were used: a short thrust forward, a horizontal style sweep around the body and an overhand stab. These styles were chosen based on reported incidents, providing more realistic data than had previously existed. The 95th percentile values for axial force and energy were 1885 N and 69 J, respectively. The ability of current test methods to reproduce the mechanical parameters measured in human stab attacks has been assessed. It was found that current test methods could reproduce the range of energy and force values measured in the human stab attacks, although the simulation was not accurate in some respects. Non-axial force and torque values were also found to be significant in the human tests, but these are not reproduced in the standard mechanical tests.

  10. [Dynamics of hip joint biomechanics in patients with coxarthrosis at the time of hippotherapy].

    Science.gov (United States)

    Nareklishvili, T M

    2008-02-01

    The problems of degenerative-dystrophic abnormalities stimulate the development of new skills and methods of treatment and rehabilitation of the diseases. The goal of the study was to determine the efficacy of hippotherapy in patients with coxarthrosis, according to functional and biomechanical parameters. Hippotherapy involves the utilization of horseback riding to stimulate the patient's normal reactions and locomotion; to improve the balance and coordination of movement, normalize muscle tension, and eliminate pathological reflexes. The advantage of the hippotherapy is in the specific posture, which is adopted by hip joint at the time of riding and in movement, which is accomplished by rider, at different paces of the horse. 10 female patients from 14 to 32 years old with coxarthrosis were under the observation. The rehabilitation of the patients was carried out by means of hippotherapy, which consisted of three months riding three times a week. To evaluate the efficacy of treatment, a new method of biomechanical registration of hip joint movement during hippotherapy on pacing horse was developed. The dynamics of biomechanical curves before and after the treatment, as well as the clinical and functional parameters of the patients allowed the authors to conclude: hippotherapy improves a hip joint functional state in patients with coxarthrosis; improves the muscle-tendineous component of hip joint movement. Hippotherapy may be considered as the pathogenetic method of treatment of coxarthrosis. Drawing the biomechanical curve of hip joint movement at the time of riding is the objective method of studying its function. PMID:18401052

  11. Towards a Biomechanical Understanding of Tempo in the Golf Swing

    CERN Document Server

    Grober, R D; Cholewicki, Jacek; Grober, Robert D.

    2006-01-01

    It is proposed that aspects of the tempo of the golf swing can be understood in terms of a biomechanical clock. This model explains several aspects of tempo in the golf swing; including total duration of the golf swing, the ratio of backswing to downswing time, and the relative insensitivity of tempo on the length of the golf shot. We demonstrate that this clock and the resulting tempo are defined by of the rotational inertia of the body/club system and the elastic properties of the body, yielding a system which can be modeled as a simple harmonic oscillator.

  12. Chromosomal Abnormalities in ADHD

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-07-01

    Full Text Available The prevalence of fragile X syndrome, velocardiofacial syndrome (VCFS, and other cytogenetic abnormalities among 100 children (64 boys with combined type ADHD and normal intelligence was assessed at the NIMH and Georgetown University Medical Center.

  13. Chromosomal abnormalities and autism

    Directory of Open Access Journals (Sweden)

    Farida El-Baz

    2016-01-01

    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  14. Abnormal protein aggregationand neurodegenerativediseases

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Abnormal protein aggregation or amyloid is the major cause ofmany neurodegenerative disorders. The present review focuses on the correlation between sequence and structure features of proteins related to the diseases and abnormal protein aggregation. Recent progress has improved our knowledge on understand-ing the mechanism of amyloid formation. We suggest a nucleation model for ordered protein aggregation, which can also explain pathogenesis mechanisms of these neurodegenerative diseases in vivo.

  15. Biomechanical and nonfunctional assessment of physical capacity in male ICU survivors

    DEFF Research Database (Denmark)

    Poulsen, Jesper Brøndum; Rose, Martin Høyer; Jensen, Bente Rona;

    2013-01-01

    : ICU admission is associated with decreased physical function for years after discharge. The underlying mechanisms responsible for this muscle function impairment are undescribed. The aim of this study was to describe the biomechanical properties of the quadriceps muscle in ICU survivors 12 months...... after ICU discharge....

  16. [Hoarseness: biomechanisms and quantitative laryngoscopy].

    Science.gov (United States)

    Eysholdt, U

    2014-07-01

    Every phonosurgical procedure alters endolaryngeal anatomy; be it by removing tissue, or injection or implantation of autologous or foreign material. However, the effect that an altered airflow cross section and changed soft tissue elasticity will have on the voice cannot be predicted. With the aim of promoting rational indications for phonosurgery, the current article explains the biomechanisms of the normal and the disordered voice, including the complex interdependence of tissue viscoelasticity, glottal airstream and sound production. According to European Laryngological Society (ELS) recommendations, five - not entirely mutually independent - evaluation criteria form the basis of indication assessments: self-rating (by the patient), proxy rating (by the physician), technical signal analysis (computerized), aerodynamics (spirometry) and vibration analysis (stroboscopy). The ELS evaluation standards agreed upon in 2001 enable indications and - by virtue of pre- and postoperative comparisons - therapeutic successes to be assessed. The 10-year-old ELS protocol has been updated by a real-time method for visualizing vocal fold vibrations: the phonovibrogram (PVG) has replaced stroboscopy. Independently of the morphological anatomic details of the larynx, PVG visualizes the symmetry and regularity of vocal fold motion, thus allowing preoperative estimation of tissue elasticity. PMID:25056650

  17. Biomechanical evaluation of wrist-driven flexor hinge orthosis in persons with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yeoun-Seung Kang, MD, PhD, CPO

    2013-11-01

    Full Text Available The wrist-driven flexor hinge orthosis (WDFHO is a device used to restore hand function in persons with tetraplegic spinal cord injury by furnishing three-point prehension. We assessed the effectiveness and biomechanical properties of the WDFHO in 24 persons with cervical 6 or 7 tetraplegia who have severely impaired hand function. This study introduces a mechanical operating model to assess the efficiency of the WDFHO. Experimental results showed that pinch force increased significantly (p < 0.001 after using the WDFHO and was found to positively correlate with the strength of wrist extensor muscles (r = 0.41, p < 0.001. However, when the strength of the wrist extensors acting on the WDFHO was greater, the reciprocal wrist and finger motion that generates three-point prehension was less effective (r = 0.79, p < 0.001. Reliable and valid biomechanical evaluation of the WDFHO could improve our understanding of its biomechanics.

  18. A Novel Fixation System for Acetabular Quadrilateral Plate Fracture: A Comparative Biomechanical Study

    Directory of Open Access Journals (Sweden)

    Guo-Chun Zha

    2015-01-01

    Full Text Available This study aims to assess the biomechanical properties of a novel fixation system (named AFRIF and to compare it with other five different fixation techniques for quadrilateral plate fractures. This in vitro biomechanical experiment has shown that the multidirectional titanium fixation (MTF and pelvic brim long screws fixation (PBSF provided the strongest fixation for quadrilateral plate fracture; the better biomechanical performance of the AFRIF compared with the T-shaped plate fixation (TPF, L-shaped plate fixation (LPF, and H-shaped plate fixation (HPF; AFRIF gives reasonable stability of treatment for quadrilateral plate fracture and may offer a better solution for comminuted quadrilateral plate fractures or free floating medial wall fracture and be reliable in preventing protrusion of femoral head.

  19. Pilot biomechanical design of biomaterials for artificial nucleus prosthesis using 3D finite-element modeling

    Institute of Scientific and Technical Information of China (English)

    Qijin Huang; Guoquan Liu; Yong Li; Jin Gao; Zhengqiu Gu; Yuanzheng Ma; Haibin Xue

    2004-01-01

    Pilot biomechanical design of biomaterials for artificial nucleus prosthesis was carried out based on the 3D finite-element method. Two 3D models of lumbar intervertebral disc respectively with a real human nucleus and with the nucleus removed were developed and validated using published experimental and clinical data. Then the models with a stainless steel nucleus prosthesis implanted and with polymer nucleus prostheses of various properties implanted were used for the 3D finite-element biomechanical analysis. All the above simulation and analysis were carried out for the L4/L5 disc under a human worst-daily compression load of 2000 N. The results show that the polymer materials with Young's modulus of elasticity E = 0.1-100 MPa and Poisson's ratio v=0.35-0.5 are suitable to produce artificial nucleus prosthesis in view of biomechanical consideration.

  20. Lower limb biomechanics during running in individuals with achilles tendinopathy: a systematic review

    Directory of Open Access Journals (Sweden)

    Munteanu Shannon E

    2011-05-01

    Full Text Available Abstract Background Abnormal lower limb biomechanics is speculated to be a risk factor for Achilles tendinopathy. This study systematically reviewed the existing literature to identify, critique and summarise lower limb biomechanical factors associated with Achilles tendinopathy. Methods We searched electronic bibliographic databases (Medline, EMBASE, Current contents, CINAHL and SPORTDiscus in November 2010. All prospective cohort and case-control studies that evaluated biomechanical factors (temporospatial parameters, lower limb kinematics, dynamic plantar pressures, kinetics [ground reaction forces and joint moments] and muscle activity associated with mid-portion Achilles tendinopathy were included. Quality of included studies was evaluated using the Quality Index. The magnitude of differences (effect sizes between cases and controls was calculated using Cohen's d (with 95% CIs. Results Nine studies were identified; two were prospective and the remaining seven case-control study designs. The quality of 9 identified studies was varied, with Quality Index scores ranging from 4 to 15 out of 17. All studies analysed running biomechanics. Cases displayed increased eversion range of motion of the rearfoot (d = 0.92 and 0.67 in two studies, reduced maximum lower leg abduction (d = -1.16, reduced ankle joint dorsiflexion velocity (d = -0.62 and reduced knee flexion during gait (d = -0.90. Cases also demonstrated a number of differences in dynamic plantar pressures (primarily the distribution of the centre of force, ground reaction forces (large effects for timing variables and also showed reduced peak tibial external rotation moment (d = -1.29. Cases also displayed differences in the timing and amplitude of a number of lower limb muscles but many differences were equivocal. Conclusions There are differences in lower limb biomechanics between those with and without Achilles tendinopathy that may have implications for the prevention and management of

  1. SPORT AND EXERCISE BIOMECHANICS (BIOS INSTANT NOTES

    Directory of Open Access Journals (Sweden)

    Paul Grimshaw

    2007-06-01

    Full Text Available DESCRIPTION Instant Notes on Sport and Exercise Biomechanics provides a broad overview of the fundamental concepts in exercise and sport biomechanics. PURPOSE The book aims to provide instant notes on essential information about biomechanics, and is designed to help undergraduate students to grasp the corresponding subjects in physical effort rapidly and easily. AUDIENCE The book provides a useful resource for undergraduate and graduate students as a fundamental reference book. For the researcher and lecturer it would be a starting point to plan and prepare more detailed experimental designs or lecture and/or laboratory classes in the field of exercise and sport biomechanics. It would also be interest to anyone who wonders the concepts like momentum possessed, whole body angular momentum, opposite parallel forces, superman position, parabolic flight path, joint/normal reaction force, etc. FEATURES This textbook is divided into following sections from A to F: kinematics of motion, kinetics of linear motion, kinetics of angular motion, special topics, applications and measurement techniques, respectively. In sub-sections the kinematics of motion are reviewed in detail, outlining the physics of motion. Furthermore, the discussions of mechanical characteristics of motion, the mechanisms of injury, and the analysis of the sport technique provide a source of valuable information for both students and lecturers in appropriate fields. ASSESSMENT This book is an important reading for biomechanics students, teachers and even researchers as well as anyone interested in understanding motion.

  2. Biomechanics and physiology in active manual wheelchair propulsion

    NARCIS (Netherlands)

    van der Woude, L H; Veeger, DirkJan (H. E. J.); Dallmeijer, A J; Janssen, T W; Rozendaal, L A

    2001-01-01

    Manual wheelchair propulsion in daily life and sports is increasingly being studied. Initially, an engineering and physiological perspective was taken. More recently a concomitant biomechanics interest is seen. Themes of biomechanical and physiological studies today are performance enhancing aspects

  3. Are cranial biomechanical simulation data linked to known diets in extant taxa? A method for applying diet-biomechanics linkage models to infer feeding capability of extinct species.

    Directory of Open Access Journals (Sweden)

    Zhijie Jack Tseng

    Full Text Available Performance of the masticatory system directly influences feeding and survival, so adaptive hypotheses often are proposed to explain craniodental evolution via functional morphology changes. However, the prevalence of "many-to-one" association of cranial forms and functions in vertebrates suggests a complex interplay of ecological and evolutionary histories, resulting in redundant morphology-diet linkages. Here we examine the link between cranial biomechanical properties for taxa with different dietary preferences in crown clade Carnivora, the most diverse clade of carnivorous mammals. We test whether hypercarnivores and generalists can be distinguished based on cranial mechanical simulation models, and how such diet-biomechanics linkages relate to morphology. Comparative finite element and geometric morphometrics analyses document that predicted bite force is positively allometric relative to skull strain energy; this is achieved in part by increased stiffness in larger skull models and shape changes that resist deformation and displacement. Size-standardized strain energy levels do not reflect feeding preferences; instead, caniform models have higher strain energy than feliform models. This caniform-feliform split is reinforced by a sensitivity analysis using published models for six additional taxa. Nevertheless, combined bite force-strain energy curves distinguish hypercarnivorous versus generalist feeders. These findings indicate that the link between cranial biomechanical properties and carnivoran feeding preference can be clearly defined and characterized, despite phylogenetic and allometric effects. Application of this diet-biomechanics linkage model to an analysis of an extinct stem carnivoramorphan and an outgroup creodont species provides biomechanical evidence for the evolution of taxa into distinct hypercarnivorous and generalist feeding styles prior to the appearance of crown carnivoran clades with similar feeding preferences.

  4. Are cranial biomechanical simulation data linked to known diets in extant taxa? A method for applying diet-biomechanics linkage models to infer feeding capability of extinct species.

    Science.gov (United States)

    Tseng, Zhijie Jack; Flynn, John J

    2015-01-01

    Performance of the masticatory system directly influences feeding and survival, so adaptive hypotheses often are proposed to explain craniodental evolution via functional morphology changes. However, the prevalence of "many-to-one" association of cranial forms and functions in vertebrates suggests a complex interplay of ecological and evolutionary histories, resulting in redundant morphology-diet linkages. Here we examine the link between cranial biomechanical properties for taxa with different dietary preferences in crown clade Carnivora, the most diverse clade of carnivorous mammals. We test whether hypercarnivores and generalists can be distinguished based on cranial mechanical simulation models, and how such diet-biomechanics linkages relate to morphology. Comparative finite element and geometric morphometrics analyses document that predicted bite force is positively allometric relative to skull strain energy; this is achieved in part by increased stiffness in larger skull models and shape changes that resist deformation and displacement. Size-standardized strain energy levels do not reflect feeding preferences; instead, caniform models have higher strain energy than feliform models. This caniform-feliform split is reinforced by a sensitivity analysis using published models for six additional taxa. Nevertheless, combined bite force-strain energy curves distinguish hypercarnivorous versus generalist feeders. These findings indicate that the link between cranial biomechanical properties and carnivoran feeding preference can be clearly defined and characterized, despite phylogenetic and allometric effects. Application of this diet-biomechanics linkage model to an analysis of an extinct stem carnivoramorphan and an outgroup creodont species provides biomechanical evidence for the evolution of taxa into distinct hypercarnivorous and generalist feeding styles prior to the appearance of crown carnivoran clades with similar feeding preferences. PMID:25923776

  5. Integrative biomechanics for tree ecology: beyond wood density and strength.

    Science.gov (United States)

    Fournier, M; Dlouhá, J; Jaouen, G; Almeras, T

    2013-11-01

    Functional ecology has long considered the support function as important, but its biomechanical complexity is only just being elucidated. We show here that it can be described on the basis of four biomechanical traits, two safety traits against winds and self-buckling, and two motricity traits involved in sustaining an upright position, tropic motion velocity (MV) and posture control (PC). All these traits are integrated at the tree scale, combining tree size and shape together with wood properties. The assumption of trait constancy has been used to derive allometric scaling laws, but it was more recently found that observing their variations among environments and functional groups, or during ontogeny, provides more insights into adaptive syndromes of tree shape and wood properties. However, oversimplified expressions have often been used, possibly concealing key adaptive drivers. An extreme case of oversimplification is the use of wood basic density as a proxy for safety. Actually, as wood density is involved in stiffness, loads, and construction costs, the impact of its variations on safety is non-trivial. Moreover, other wood features, especially the microfibril angle (MFA), are also involved. Furthermore, wood is not only stiff and strong, but it also acts as a motor for MV and PC. The relevant wood trait for this is maturation strain asymmetry. Maturation strains vary with cell-wall characteristics such as MFA, rather than with wood density. Finally, the need for further studies about the ecological relevance of branching patterns, motricity traits, and growth responses to mechanical loads is discussed.

  6. 4th International Plant Biomechanics Conference Proceedings (Abstracts)

    Energy Technology Data Exchange (ETDEWEB)

    Frank W. Telewski; Lothar H. Koehler; Frank W. Ewers

    2003-07-20

    The 4th International Plant Biomechanics Conference facilitated an interdisciplinary exchange between scientists, engineers, and educators addressing the major questions encountered in the field of Plant Biomechanics. Subjects covered by the conference include: Evolution; Ecology; Mechanoreception; Cell Walls; Genetic Modification; Applied Biomechanics of Whole Plants, Plant Products, Fibers & Composites; Fluid Dynamics; Wood & Trees; Fracture Mechanics; Xylem Pressure & Water Transport; Modeling; and Introducing Plant Biomechanics in Secondary School Education.

  7. Sixth Computational Biomechanics for Medicine Workshop

    CERN Document Server

    Nielsen, Poul MF; Miller, Karol; Computational Biomechanics for Medicine : Deformation and Flow

    2012-01-01

    One of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. This book is an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. Computational Biomechanics for Medicine: Deformation and Flow collects the papers from the Sixth Computational Biomechanics for Medicine Workshop held in Toronto in conjunction with the Medical Image Computing and Computer Assisted Intervention conference. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, and medical robotics.

  8. Multiscale modeling in biomechanics and mechanobiology

    CERN Document Server

    Hwang, Wonmuk; Kuhl, Ellen

    2015-01-01

    Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models.   Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these...

  9. [Hair shaft abnormalities].

    Science.gov (United States)

    Itin, P H; Düggelin, M

    2002-05-01

    Hair shaft disorders may lead to brittleness and uncombable hair. In general the hair feels dry and lusterless. Hair shaft abnormalities may occur as localized or generalized disorders. Genetic predisposition or exogenous factors are able to produce and maintain hair shaft abnormalities. In addition to an extensive history and physical examination the most important diagnostic examination to analyze a hair shaft problem is light microscopy. Therapy of hair shaft disorders should focus to the cause. In addition, minimizing traumatic influences to hair shafts, such as dry hair with an electric dryer, permanent waves and dyes is important. A short hair style is more suitable for such patients with hair shaft disorders.

  10. Neurological abnormalities predict disability

    DEFF Research Database (Denmark)

    Poggesi, Anna; Gouw, Alida; van der Flier, Wiesje;

    2014-01-01

    was performed. MRI assessment included age-related white matter changes (ARWMC) grading (mild, moderate, severe according to the Fazekas' scale), count of lacunar and non-lacunar infarcts, and global atrophy rating. Of the 633 (out of the 639 enrolled) patients with follow-up information (mean age 74.1 ± 5......, presence and number of neurological examination abnormalities predicted global functional decline independent of MRI lesions typical of the aging brain and other determinants of disability in the elderly. Systematically checking for neurological examination abnormalities in older patients may be cost...

  11. Biomechanical Analysis of a Filiform Mechanosensory Hair Socket of Crickets.

    Science.gov (United States)

    Joshi, Kanishka; Mian, Ahsan; Miller, John

    2016-08-01

    Filiform mechanosensory hairs of crickets are of great interest to engineers because of the hairs' highly sensitive response to low-velocity air-currents. In this study, we analyze the biomechanical properties of filiform hairs of the cercal sensory system of a common house cricket. The cercal sensory system consists of two antennalike appendages called cerci that are situated at the rear of the cricket's abdomen. Each cercus is covered with 500-750 flow sensitive filiform mechanosensory hairs. Each hair is embedded in a complex viscoelastic socket that acts as a spring and dashpot system and guides the movement of the hair. When a hair deflects due to the drag force induced on its length by a moving air-current, the spiking activity of the neuron that innervates the hair changes and the combined spiking activity of all hairs is extracted by the cercal sensory system. Filiform hairs have been experimentally studied by researchers, though the basis for the hairs' biomechanical characteristics is not fully understood. The socket structure has not been analyzed experimentally or theoretically from a mechanical standpoint, and the characterization that exists is mathematical in nature and only provides a very rudimentary approximation of the socket's spring nature. This study aims to understand and physically characterize the socket's behavior and interaction with the filiform hair by examining hypotheses about the hair and socket biomechanics. A three-dimensional computer-aided design (CAD) model was first created using confocal microscopy images of the hair and socket structure of the cricket, and then finite-element analyses (FEAs) based on the physical conditions that the insect experiences were simulated. The results show that the socket can act like a spring; however, it has two-tier rotational spring constants during pre- and postcontacts of iris and hair bulge due to its constitutive nonstandard geometric shapes.

  12. Biomechanical Analysis of a Filiform Mechanosensory Hair Socket of Crickets.

    Science.gov (United States)

    Joshi, Kanishka; Mian, Ahsan; Miller, John

    2016-08-01

    Filiform mechanosensory hairs of crickets are of great interest to engineers because of the hairs' highly sensitive response to low-velocity air-currents. In this study, we analyze the biomechanical properties of filiform hairs of the cercal sensory system of a common house cricket. The cercal sensory system consists of two antennalike appendages called cerci that are situated at the rear of the cricket's abdomen. Each cercus is covered with 500-750 flow sensitive filiform mechanosensory hairs. Each hair is embedded in a complex viscoelastic socket that acts as a spring and dashpot system and guides the movement of the hair. When a hair deflects due to the drag force induced on its length by a moving air-current, the spiking activity of the neuron that innervates the hair changes and the combined spiking activity of all hairs is extracted by the cercal sensory system. Filiform hairs have been experimentally studied by researchers, though the basis for the hairs' biomechanical characteristics is not fully understood. The socket structure has not been analyzed experimentally or theoretically from a mechanical standpoint, and the characterization that exists is mathematical in nature and only provides a very rudimentary approximation of the socket's spring nature. This study aims to understand and physically characterize the socket's behavior and interaction with the filiform hair by examining hypotheses about the hair and socket biomechanics. A three-dimensional computer-aided design (CAD) model was first created using confocal microscopy images of the hair and socket structure of the cricket, and then finite-element analyses (FEAs) based on the physical conditions that the insect experiences were simulated. The results show that the socket can act like a spring; however, it has two-tier rotational spring constants during pre- and postcontacts of iris and hair bulge due to its constitutive nonstandard geometric shapes. PMID:27322099

  13. Analysis of Biomechanical Factors in Bend Running

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2013-03-01

    Full Text Available Sprint running is the demonstration of comprehensive abilities of technology and tactics, under various conditions. However, whether it is just to allocate the tracks for short-distance athletes from different racetracks has been the hot topic. This study analyzes its forces, differences in different tracks and winding influences, in the aspects of sport biomechanics. The results indicate, many disadvantages exist in inner tracks, middle tracks are the best and outer ones are inferior to middle ones. Thus it provides references for training of short-distance items in biomechanics and psychology, etc.

  14. Comparison of biomechanical property on Suture-Button and conventional screw fixating the distal tibiofibular syndesmosis injury%Suture-Button与常规螺钉固定下胫腓联合对胫距关节的力学影响比较

    Institute of Scientific and Technical Information of China (English)

    肖刚; 徐亚林; 汪宗保; 匡光志; 陈朝晖; 姚长风

    2014-01-01

    目的 比较Suture-Button与常规螺钉固定下胫腓联合对胫距关节的力学影响.方法 8具新鲜冷冻尸体小腿,切断下胫腓联合韧带及三角韧带后,每组4具分别以Suture-Button(Suture-Button组)与常规螺钉(螺钉组)固定下胫腓联合,运用生物力学测试方法和应力应变传感技术,测量两组内固定胫距关节内的接触面积和峰值压力变化.结果 两组在矢状面上不同屈伸角度下所测得的接触面积(t=3.52、4.49、5.93、4.75)、峰值压力(t=3.61、3.97、4.68、2.41)差异均无统计学意义(均P>0.05),但指标呈改善趋势.结论 Suture-Button与常规螺钉固定在力学上具有相似作用,而且下胫腓联合损伤固定后的效果比不固定有好转趋势.%Objective To explore the biomechanical property on Suture-Button and conventional screw fixating the distal tibiofibular syndesmosis injury.Methods The distal tibiofibular syndesmosis injury models were made by cutting the anteroinferior tibiofibular ligaments,posteroinferior tibiofibular ligaments,interosseous tibiofibular ligaments or deltoid ligaments of 8 fresh frozen calves.These models were randomly and equally divided into the two groups.The two groups were respectively fixed by Suture-Button and conventional screw.The contact area and peak intra-articular pressure of tibiatalar joint were measured by biomechanical testing methods and the stress and strain sensing technology.Results The maximal contact area and peak intra-articular pressure of Suture-Button fixation group had no significant differences with the conventional screw group by the four kinds of ankle flexion-extension angles in the sagittal plane (t =3.52,4.49,5.93,4.75,all P > 0.05),peak intra-articular pressure was also similarly improved (t =3.61,3.97,4.68,2.41,all P > 0.05).But biomechanical markers of two fixation groups had an improvement trend.Conclusion Suture-Button fixing the distal tibiofibular syndesmosis injury had similar

  15. Biomechanical comparison of the human cadaveric pelvis with a fourth generation composite model.

    Science.gov (United States)

    Girardi, Brandon L; Attia, Tarik; Backstein, David; Safir, Oleg; Willett, Thomas L; Kuzyk, Paul R T

    2016-02-29

    The use of cadavers for orthopaedic biomechanics research is well established, but presents difficulties to researchers in terms of cost, biosafety, availability, and ease of use. High fidelity composite models of human bone have been developed for use in biomechanical studies. While several studies have utilized composite models of the human pelvis for testing orthopaedic reconstruction techniques, few biomechanical comparisons of the properties of cadaveric and composite pelves exist. The aim of this study was to compare the mechanical properties of cadaveric pelves to those of the 4th generation composite model. An Instron ElectroPuls E10000 mechanical testing machine was used to load specimens with orientation, boundary conditions and degrees of freedom that approximated those occurring during the single legged phase of walking, including hip abductor force. Each specimen was instrumented with strain gauge rosettes. Overall specimen stiffness and principal strains were calculated from the test data. Composite specimens showed significantly higher overall stiffness and slightly less overall variability between specimens (composite K=1448±54N/m, cadaver K=832±62N/m; pcomposite models and cadavers were similar (but did differ) only when the applied load was scaled to overall construct stiffness. This finding regarding strain distribution and the difference in overall stiffness must be accounted for when using these composite models for biomechanics research. Altering the cortical wall thickness or tuning the elastic moduli of the composite material may improve future generations of the composite model.

  16. Measurement system for an in-vitro characterization of the biomechanics and hemodynamics of arterial bifurcations

    Science.gov (United States)

    Suárez-Bagnasco, D.; Balay, G.; Cymberknop, L.; Armentano, R. L.; Negreira, C. A.

    2013-03-01

    Arterial behaviour in-vivo is influenced, amongst other factors, by the interaction between blood flow and the arterial wall endothelium, and the biomechanical properties of the arterial wall. This interaction plays an important role in pathogenic mechanisms of cardiovascular diseases such as atherosclerosis and arteriosclerosis. To quantify these interactions both from biomechanical and hemodynamical standpoints, a complete characterization and modelling of the arterial wall, blood flow, shear wall and circumferential wall stresses are needed. The development of a new multi-parameter measurement system (distances, pressures, flows, velocity profiles, temperature, viscosity) for an in-vitro characterization of the biomechanics and hemodynamics in arterial bifurcations (specially in carotid bifurcations) is described. This set-up represents an improvement relative to previous set-ups developed by the group FCIEN-FMED and is presently under development. Main subsystems interactions and environment-system interactions were identified and compensated to improve system's performance. Several interesting problems related with signal acquisition using a variety of sensors and some experimental results are shown and briefly discussed. Experimental data allow construction of meshes and parameter estimation of the biomechanical properties of the arterial wall, as well as boundary conditions, all suitable to be employed in CFD and FSI numerical simulation.

  17. A Biomechanical Analysis of the Karate Chop.

    Science.gov (United States)

    Cavanagh, Peter R.; Landa, Jean

    Although the sport of karate has been somewhat neglected by scientists, the following two isolated biomechanical studies exist in literature: (1) tracings of a karate chop in two planes were presented, but no data was given concerning the rates of movement of the limb segments, and (2) pre- and postimpact phenomena of five subjects were studied,…

  18. Biomechanics of Pediatric Manual Wheelchair Mobility.

    Science.gov (United States)

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Tarima, Sergey; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI. PMID:26442251

  19. Interdisciplinary Vertical Integration: The Future of Biomechanics

    Science.gov (United States)

    Gregor, Robert J.

    2008-01-01

    The field of biomechanics has grown rapidly in the past 30 years in both size and complexity. As a result, the term might mean different things to different people. This article addresses the issues facing the field in the form of challenges biomechanists face in the future. Because the field is so diverse, strength within the different areas of…

  20. Expose Mechanical Engineering Students to Biomechanics Topics

    Science.gov (United States)

    Shen, Hui

    2011-01-01

    To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…

  1. The biomechanical interaction between horse and rider

    NARCIS (Netherlands)

    Cocq, de P.

    2012-01-01

    The forces exerted by a rider on a horse have a direct influence on the mechanical load experienced by the horse and consequently on its motion pattern. The aim of this thesis is to explore the biomechanical interaction between rider, saddle and horse in order to get insight in the loading of the ho

  2. Ultrasonographic assessment of carpal tunnel biomechanics

    NARCIS (Netherlands)

    van Doesburg, M.H.M.

    2012-01-01

    In this thesis, we searched for a way to assess flexor tendon and median nerve biomechanics, as well as subsynovial connective tissue thickness (SSCT) in the carpal tunnel with ultrasound, and tried to see if these patterns would give a clue towards understanding the etiology of carpal tunnel syndro

  3. The Value of Biomechanical Research in Dance.

    Science.gov (United States)

    Ranney, D. A.

    Simple observation of dance movement, while very useful, can lead to misconceptions, about the physical realities of dance movement, that make learning difficult. This gap between reality and understanding can be reduced by the application of biomechanical techniques such as cinematography, electromyography, and force-plate analysis. Biomechanical…

  4. Effect of ultraviolet A (UVA) plus riboflavin induced collagen cross-linking on biomechanical properties of the sclera in guinea pigs%紫外光-核黄素交联法对豚鼠巩膜生物力学特性的影响

    Institute of Scientific and Technical Information of China (English)

    吕雅平; 周浩; 夏文涛; 褚仁远; 周行涛; 戴锦晖

    2012-01-01

    目的 探索紫外光-核黄素交联法对巩膜织张力和强度的影响.方法 交联组和对照组皆选右眼为实验眼,交联组采用波长为(370±5)nm、辐射强度定为3.0 mW/cm2的紫外线和0.1%核黄素为光敏剂对豚鼠赤道部巩膜面进行胶原交联,对照组不进行交联处理.术后一个月取交联组交联区巩膜条带和对照组相应区域的巩膜条带,进行生物力学测试,并对眼球各组织进行HE染色光镜和透射电镜检测.结果 交联组巩膜的生物力学特性增强,赤道部交联组巩膜试件断裂时的极限应力增加了147%,弹性模量显著增加了193%,极限应变降低了21.9%;后极部交联组巩膜试件断裂时的极限应力增加了108%,弹性模量显著增加了191%,极限应变降低了40.42%.HE染色光镜检查结果显示形态学无病理改变,透射电镜结果显示交联组交联区的巩膜成纤维细胞增生活跃.结论 紫外光-核黄素交联法可以有效地提高巩膜的生物力学特性,增强巩膜组织的张力和强度,有望作为治疗高度病理性近视的一种方法.%Objective To study the effect of collagen cross-linking induced by riboflavin and ultraviolet A ( UVA ) on biomechanical properties of the sclera in guinea pigs. Methods The changes of biomechanical properties of the sclera induced by riboflavin and ultraviolet A ( UVA)-induced collagen crosslinking were examined in ten guinea pigs and compared with those of ten non-treated guinea pigs. Histological and ultrastructural changes of the sclera were examined to evaluate the side-effects. Results At one month after the UVA plus riboflavin treatment, the ultimate stress increased by 147% , elastic modulus increased by 193% , ultimate strain reduced by 21.9% in the equatorial sclera and significantly changed by 108% , 191% , 40.42% in the posterior sclera, respectively. Light microscopy showed no pathological alterations. Transmission electron microscopy showed active

  5. Abnormal ionization in sonoluminescence

    Institute of Scientific and Technical Information of China (English)

    张文娟; 安宇

    2015-01-01

    Sonoluminescence is a complex phenomenon, the mechanism of which remains unclear. The present study reveals that an abnormal ionization process is likely to be present in the sonoluminescing bubble. To fit the experimental data of previous studies, we assume that the ionization energies of the molecules and atoms in the bubble decrease as the gas density increases and that the decrease of the ionization energy reaches about 60%–70%as the bubble flashes, which is difficult to explain by using previous models.

  6. Ultrasonography of splenic abnormalities

    Institute of Scientific and Technical Information of China (English)

    Ming-Jen Chen; Ming-Jer Huang; Wen-Hsiung Chang; Tsang-En Wang; Horng-Yuan Wang; Cheng-Hsin Chu; Shee-Chan Lin; Shou-Chuan Shih

    2005-01-01

    AIM: This report gives a comprehensive overview of ultrasonography of splenic abnormalities. Certain ultrasonic features are also discussed with pathologic correlation.METHODS: We review the typical ultrasonic characteristics of a wide range of splenic lesions, illustrating them with images obtained in our institution from 2000 to 2003.One hundred and three patients (47 men, 56 women),with a mean age of 54 years (range 9-92 years), were found to have an abnormal ultrasonic pattern of spleen.RESULTS: We describe the ultrasonic features of various splenic lesions such as accessory spleen, splenomegaly,cysts, cavernous hemangiomas, lymphomas, abscesses,metastatic tumors, splenic infarctions, hematomas, and rupture, based on traditional gray-scale and color Doppler sonography.CONCLUSION: Ultrasound is a widely available, noninvasive,and useful means of diagnosing splenic abnormalities. A combination of ultrasonic characteristics and clinical data may provide an accurate diagnosis. If the US appearance alone is not enough, US may also be used to guide biopsy of suspicious lesions.

  7. The biomechanics of solids and fluids: the physics of life

    Science.gov (United States)

    Alexander, David E.

    2016-09-01

    Biomechanics borrows and extends engineering techniques to study the mechanical properties of organisms and their environments. Like physicists and engineers, biomechanics researchers tend to specialize on either fluids or solids (but some do both). For solid materials, the stress-strain curve reveals such useful information as various moduli, ultimate strength, extensibility, and work of fracture. Few biological materials are linearly elastic so modified elastic moduli are defined. Although biological materials tend to be less stiff than engineered materials, biomaterials tend to be tougher due to their anisotropy and high extensibility. Biological beams are usually hollow cylinders; particularly in plants, beams and columns tend to have high twist-to-bend ratios. Air and water are the dominant biological fluids. Fluids generate both viscous and pressure drag (normalized as drag coefficients) and the Reynolds number (Re) gives their relative importance. The no-slip conditions leads to velocity gradients (‘boundary layers’) on surfaces and parabolic flow profiles in tubes. Rather than rigidly resisting drag in external flows, many plants and sessile animals reconfigure to reduce drag as speed increases. Living in velocity gradients can be beneficial for attachment but challenging for capturing particulate food. Lift produced by airfoils and hydrofoils is used to produce thrust by all flying animals and many swimming ones, and is usually optimal at higher Re. At low Re, most swimmers use drag-based mechanisms. A few swimmers use jetting for rapid escape despite its energetic inefficiency. At low Re, suspension feeding depends on mechanisms other than direct sieving because thick boundary layers reduce effective porosity. Most biomaterials exhibit a combination of solid and fluid properties, i.e., viscoelasticity. Even rigid biomaterials exhibit creep over many days, whereas pliant biomaterials may exhibit creep over hours or minutes. Instead of rigid materials

  8. The biomechanics of solids and fluids: the physics of life

    Science.gov (United States)

    Alexander, David E.

    2016-09-01

    Biomechanics borrows and extends engineering techniques to study the mechanical properties of organisms and their environments. Like physicists and engineers, biomechanics researchers tend to specialize on either fluids or solids (but some do both). For solid materials, the stress–strain curve reveals such useful information as various moduli, ultimate strength, extensibility, and work of fracture. Few biological materials are linearly elastic so modified elastic moduli are defined. Although biological materials tend to be less stiff than engineered materials, biomaterials tend to be tougher due to their anisotropy and high extensibility. Biological beams are usually hollow cylinders; particularly in plants, beams and columns tend to have high twist-to-bend ratios. Air and water are the dominant biological fluids. Fluids generate both viscous and pressure drag (normalized as drag coefficients) and the Reynolds number (Re) gives their relative importance. The no-slip conditions leads to velocity gradients (‘boundary layers’) on surfaces and parabolic flow profiles in tubes. Rather than rigidly resisting drag in external flows, many plants and sessile animals reconfigure to reduce drag as speed increases. Living in velocity gradients can be beneficial for attachment but challenging for capturing particulate food. Lift produced by airfoils and hydrofoils is used to produce thrust by all flying animals and many swimming ones, and is usually optimal at higher Re. At low Re, most swimmers use drag-based mechanisms. A few swimmers use jetting for rapid escape despite its energetic inefficiency. At low Re, suspension feeding depends on mechanisms other than direct sieving because thick boundary layers reduce effective porosity. Most biomaterials exhibit a combination of solid and fluid properties, i.e., viscoelasticity. Even rigid biomaterials exhibit creep over many days, whereas pliant biomaterials may exhibit creep over hours or minutes. Instead of rigid materials

  9. Role of Aquaporin 0 in lens biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Sindhu Kumari, S.; Gupta, Neha [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); Shiels, Alan [Washington University School of Medicine, St. Louis, MO (United States); FitzGerald, Paul G. [Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA (United States); Menon, Anil G. [University of Cincinnati College of Medicine, Cincinnati, OH (United States); Mathias, Richard T. [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, NY (United States); Varadaraj, Kulandaiappan, E-mail: kulandaiappan.varadaraj@stonybrook.edu [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, NY (United States)

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5{sup −/−}), AQP0 KO (heterozygous KO: AQP0{sup +/−}; homozygous KO: AQP0{sup −/−}; all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0{sup +/−} lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and

  10. Evaluation of Corneal Topography and Biomechanical Parameters after Use of Systemic Isotretinoin in Acne Vulgaris

    Directory of Open Access Journals (Sweden)

    Yusuf Yildirim

    2014-01-01

    Full Text Available Purpose. We report the effect of isotretinoin on corneal topography, corneal thickness, and biomechanical parameters in patients with acne vulgaris. Method. Fifty-four eyes of 54 patients who received oral isotretinoin for treatment of acne vulgaris were evaluated. All patients underwent a corneal topographical evaluation with a Scheimpflug camera combined with Placido-disk (Sirius, ultrasonic pachymetry measurements, and corneal biomechanical evaluation with an ocular response analyzer at baseline, in the 1st, 3rd, and 6th months of treatment, and 6 months after isotretinoin discontinuation. Results. The thinnest corneal thickness measured with Sirius differed significantly in the 1st, 3rd, and 6th months compared with the baseline measurement; there was no significant change in ultrasonic central corneal thickness measurements and biomechanical parameters (corneal hysteresis and corneal resistance factor throughout the study. Average simulated keratometry and surface asymmetry index increased significantly only in the first month of treatment according to the baseline. All changes disappeared 6 months after the end of treatment. Conclusion. Basal tear secretion and corneal morphologic properties were significantly influenced during the systemic isotretinoin treatment and the changes were reversible after discontinuation. No statistical important biomechanical differences were found to be induced by isotretinoin.

  11. Hemorheological abnormalities in human arterial hypertension

    Science.gov (United States)

    Lo Presti, Rosalia; Hopps, Eugenia; Caimi, Gregorio

    2014-05-01

    Blood rheology is impaired in hypertensive patients. The alteration involves blood and plasma viscosity, and the erythrocyte behaviour is often abnormal. The hemorheological pattern appears to be related to some pathophysiological mechanisms of hypertension and to organ damage, in particular left ventricular hypertrophy and myocardial ischemia. Abnormalities have been observed in erythrocyte membrane fluidity, explored by fluorescence spectroscopy and electron spin resonance. This may be relevant for red cell flow in microvessels and oxygen delivery to tissues. Although blood viscosity is not a direct target of antihypertensive therapy, the rheological properties of blood play a role in the pathophysiology of arterial hypertension and its vascular complications.

  12. Abnormal Optical Properties in ZnO Mircorods Introduced by Graphene%石墨烯对ZnO微米棒光学特性的影响

    Institute of Scientific and Technical Information of China (English)

    吴春霞; 苏龙兴; 何自娟; 宋刑; 孙青峰

    2015-01-01

    High crystal quality and ( 002 ) orientation preferred ZnO microrods were grown by the method of chemical vapor deposition ( CVD) . The optical properties of ZnO microrod on graphene substrate were investigated. The photoluminescence ( PL) spectra revealed that the luminous intensi-ty of ZnO microrod on graphene substrate was enhanced as twice as that without graphene substrate. The distribution of light field in ZnO microrod was also restricted by graphene. These are all caused by grapheme surface plasmon. In the case of ZnO microrod on the graphene substrate, E2 ( L) and E2 ( H) Raman intensity decreased dramatically by comparing with which of the ZnO microrod with-out graphene substrate. This further indicates that there is stronger light-matter interaction at the in-terface. Hence, the lattice vibration of ZnO microrod was restricted by the graphene.%采用化学气相沉积(CVD)方法制备了具有良好结晶质量和(002)择优取向的ZnO微米棒。在此基础上,选取单根ZnO微米棒,将其部分搁置于单层石墨烯表面。光致发光( PL)谱结果表明,石墨烯不仅增强了ZnO微米棒的紫外发光强度,同时也对光场在ZnO微米棒中的分布有很大的限域作用。分析认为这是由于石墨烯的表面等离子效应引起了ZnO微米棒与石墨烯之间的光-物质相互作用导致的。在拉曼( Raman)光谱中,石墨烯对ZnO微米棒的E2( L)声子振动模和E2( H)声子振动模的强度具有明显的减弱效应,这进一步证明二者之间存在光子的传输和电荷的转移,从而导致其晶格振动受到抑制。

  13. Abnormal ionization in sonoluminescence

    Science.gov (United States)

    Zhang, Wen-Juan; An, Yu

    2015-04-01

    Sonoluminescence is a complex phenomenon, the mechanism of which remains unclear. The present study reveals that an abnormal ionization process is likely to be present in the sonoluminescing bubble. To fit the experimental data of previous studies, we assume that the ionization energies of the molecules and atoms in the bubble decrease as the gas density increases and that the decrease of the ionization energy reaches about 60%-70% as the bubble flashes, which is difficult to explain by using previous models. Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120002110031) and the National Natural Science Foundation of China (Grant No. 11334005).

  14. Complex dental structure and wear biomechanics in hadrosaurid dinosaurs.

    Science.gov (United States)

    Erickson, Gregory M; Krick, Brandon A; Hamilton, Matthew; Bourne, Gerald R; Norell, Mark A; Lilleodden, Erica; Sawyer, W Gregory

    2012-10-01

    Mammalian grinding dentitions are composed of four major tissues that wear differentially, creating coarse surfaces for pulverizing tough plants and liberating nutrients. Although such dentition evolved repeatedly in mammals (such as horses, bison, and elephants), a similar innovation occurred much earlier (~85 million years ago) within the duck-billed dinosaur group Hadrosauridae, fueling their 35-million-year occupation of Laurasian megaherbivorous niches. How this complexity was achieved is unknown, as reptilian teeth are generally two-tissue structures presumably lacking biomechanical attributes for grinding. Here we show that hadrosaurids broke from the primitive reptilian archetype and evolved a six-tissue dental composition that is among the most sophisticated known. Three-dimensional wear models incorporating fossilized wear properties reveal how these tissues interacted for grinding and ecological specialization. PMID:23042891

  15. Computer Models in Biomechanics From Nano to Macro

    CERN Document Server

    Kuhl, Ellen

    2013-01-01

    This book contains a collection of papers that were presented at the IUTAM Symposium on “Computer Models in Biomechanics: From Nano to Macro” held at Stanford University, California, USA, from August 29 to September 2, 2011. It contains state-of-the-art papers on: - Protein and Cell Mechanics: coarse-grained model for unfolded proteins, collagen-proteoglycan structural interactions in the cornea, simulations of cell behavior on substrates - Muscle Mechanics: modeling approaches for Ca2+–regulated smooth muscle contraction, smooth muscle modeling using continuum thermodynamical frameworks, cross-bridge model describing the mechanoenergetics of actomyosin interaction, multiscale skeletal muscle modeling - Cardiovascular Mechanics: multiscale modeling of arterial adaptations by incorporating molecular mechanisms, cardiovascular tissue damage, dissection properties of aortic aneurysms, intracranial aneurysms, electromechanics of the heart, hemodynamic alterations associated with arterial remodeling followin...

  16. Supplementing biomechanical modeling with EMG analysis

    Science.gov (United States)

    Lewandowski, Beth; Jagodnik, Kathleen; Crentsil, Lawton; Humphreys, Bradley; Funk, Justin; Gallo, Christopher; Thompson, William; DeWitt, John; Perusek, Gail

    2016-01-01

    It is well established that astronauts experience musculoskeletal deconditioning when exposed to microgravity environments for long periods of time. Spaceflight exercise is used to counteract these effects, and the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS) has been effective in minimizing musculoskeletal losses. However, the exercise devices of the new exploration vehicles will have requirements of limited mass, power and volume. Because of these limitations, there is a concern that the exercise devices will not be as effective as ARED in maintaining astronaut performance. Therefore, biomechanical modeling is being performed to provide insight on whether the small Multi-Purpose Crew Vehicle (MPCV) device, which utilizes a single-strap design, will provide sufficient physiological loading to maintain musculoskeletal performance. Electromyography (EMG) data are used to supplement the biomechanical model results and to explore differences in muscle activation patterns during exercises using different loading configurations.

  17. Degrees of freedom of tongue movements in speech may be constrained by biomechanics

    CERN Document Server

    Perrier, Pascal; Payan, Yohan; Zandipour, Majid; Guenther, Franck; Khalighi, Ali

    2007-01-01

    A number of studies carried out on different languages have found that tongue movements in speech are made along two primary degrees of freedom (d.f.s): the high-front to low-back axis and the high-back to low-front axis. We explore the hypothesis that these two main d.f.s could find their origins in the physical properties of the vocal tract. A large set of tongue shapes was generated with a biomechanical tongue model using a Monte-Carlo method to thoroughly sample the muscle control space. The resulting shapes were analyzed with PCA. The first two factors explain 84% of the variance, and they are similar to the two experimentally observed d.f.s. This finding suggests that the d.f.s. are not speech-specific, and that speech takes advantage of biomechanically based tongue properties to form different sounds.

  18. Biomechanics of pediatric manual wheelchair mobility

    Directory of Open Access Journals (Sweden)

    Brooke A. Slavens

    2015-09-01

    Full Text Available Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the hand-rim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces and moments of 14 children with spinal cord injury (SCI during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI.

  19. Analysis of Biomechanical Factors in Bend Running

    OpenAIRE

    Bing Zhang; Xinping You; Feng Li

    2013-01-01

    Sprint running is the demonstration of comprehensive abilities of technology and tactics, under various conditions. However, whether it is just to allocate the tracks for short-distance athletes from different racetracks has been the hot topic. This study analyzes its forces, differences in different tracks and winding influences, in the aspects of sport biomechanics. The results indicate, many disadvantages exist in inner tracks, middle tracks are the best and outer ones are inferior to midd...

  20. Computational Biomechanics Theoretical Background and BiologicalBiomedical Problems

    CERN Document Server

    Tanaka, Masao; Nakamura, Masanori

    2012-01-01

    Rapid developments have taken place in biological/biomedical measurement and imaging technologies as well as in computer analysis and information technologies. The increase in data obtained with such technologies invites the reader into a virtual world that represents realistic biological tissue or organ structures in digital form and allows for simulation and what is called “in silico medicine.” This volume is the third in a textbook series and covers both the basics of continuum mechanics of biosolids and biofluids and the theoretical core of computational methods for continuum mechanics analyses. Several biomechanics problems are provided for better understanding of computational modeling and analysis. Topics include the mechanics of solid and fluid bodies, fundamental characteristics of biosolids and biofluids, computational methods in biomechanics analysis/simulation, practical problems in orthopedic biomechanics, dental biomechanics, ophthalmic biomechanics, cardiovascular biomechanics, hemodynamics...

  1. Biomechanical analysis of sprinting: decathletes versus champions.

    Science.gov (United States)

    Kunz, H.; Kaufmann, D. A.

    1981-01-01

    The purpose of this study was to compare some biomechanical variables of decathletes and world class sprinters while running the 100 metre race. Sixteen Swiss national decathletes and three world class American sprinters were filmed by a 16 mm Locam (100 fps) camera at the 70 m mark of the race. The co-ordinates for a 26-point stick figure were digitised and then submitted to analysis by a computer programme which produced quantitative data for 12 biomechanical variables. The data indicated that world-class sprinters differed from decathletes in running the 100 m dash by having (1) an optimal combination of a larger stride length and higher stride frequency (2) a smaller thigh angle at contact which shortens the contact time (3) a larger stride landing angle (4) a greater average acceleration of the thigh angle was (5) a larger trunk angle which contributes to a larger trunk/thigh angle. Although other factors such as culture, training, physique and racial differences may influence differences in performance between American world-class sprinters and Swiss decathletes, these data do indicate that biomechanical variables may contribute to differences in 100 m dash performance. Images p177-a p177-b PMID:7272662

  2. An introduction to biomechanics solids and fluids, analysis and design

    CERN Document Server

    Humphrey, Jay D

    2004-01-01

    Designed to meet the needs of undergraduate students, Introduction to Biomechanics takes the fresh approach of combining the viewpoints of both a well-respected teacher and a successful student. With an eye toward practicality without loss of depth of instruction, this book seeks to explain the fundamental concepts of biomechanics. With the accompanying web site providing models, sample problems, review questions and more, Introduction to Biomechanics provides students with the full range of instructional material for this complex and dynamic field.

  3. Biomechanics of the elbow joint in tennis players.

    OpenAIRE

    Eygendaal, D.; Rahussen, F.T.; Diercks, R.L.

    2007-01-01

    Elbow injuries constitute a sizeable percentage of tennis injuries. A basic understanding of biomechanics of tennis and analysis of forces, loads and motions of the elbow during tennis can will improve the understanding of the pathophysiology of these injuries. All different strokes in tennis have a different repetitive biomechanical nature which can result in tennis related injuries. In this article a biomechanically based evaluation of tennis strokes is presented. This overview includes all...

  4. Homogenization of a system of elastic and reaction-diffusion equations modelling plant cell wall biomechanics

    OpenAIRE

    Ptashnyk, Mariya; Seguin, Brian

    2014-01-01

    In this paper we present a derivation and multiscale analysis of a mathematical model for plant cell wall biomechanics that takes into account both the microscopic structure of a cell wall coming from the cellulose microfibrils and the chemical reactions between the cell wall's constituents. Particular attention is paid to the role of pectin and the impact of calcium-pectin cross-linking chemistry on the mechanical properties of the cell wall. We prove the existence and uniqueness of the stro...

  5. Biomechanical and immunohistochemical analysis of high hydrostatic pressure-treated Achilles tendons

    International Nuclear Information System (INIS)

    Reconstruction of bone defects caused by malignant tumors is carried out in different ways. At present, tumor-bearing bone segments are devitalized mainly by extracorporeal irradiation or autoclaving, but both methods have substantial disadvantages. In this regard, high hydrostatic pressure (HHP) treatment of the bone is a new, advancing technology that has been used in preclinical testing to inactivate normal cells and tumor cells without altering the biomechanical properties of the bone. The aim of this study was to examine the biomechanical and immunohistochemical properties of tendons after exposure to HHP and to evaluate whether preservation of the bony attachment of tendons and ligaments is possible. For this, 19 paired Achilles tendons were harvested from both hindlimbs of 4-month-old pigs. After preparation, the cross-sectional area of each tendon was determined by magnetic resonance imaging (MRI). For each animal, one of the two tendons was taken at random and exposed to a pressure of 300 MPa (n=9) or 600 MPa (n=10). The contralateral tendon served as an untreated control. The biomechanical properties of the tendons remained unchanged with respect to the tested parameters: Young's modulus (MPa) and tensile strength (MPa). This finding is in line with immunohistochemical labeling results, as no difference in the labeling pattern of collagen I and versican was observed when comparing the HHP group (at 600 MPa) to the untreated control group. We anticipate that during orthopedic surgery HHP can serve as a novel, promising methodical approach to inactivate Achilles tendon and bone cells without altering the biomechanical properties of the tendons. This should allow one to preserve the attachment of tendon and ligaments to the devitalized bone and to facilitate functional reconstruction. (author)

  6. A Biomechanical Comparison between Taylor’s Spatial Frame and Ilizarov External Fixator

    OpenAIRE

    Tan, BB; Shanmugam, R; Gunalan, R; Chua, YP; Hossain, G; Saw, A.

    2014-01-01

    Abstract Taylor’s spatial frame (TSF) and Ilizarov external fixators (IEF) are two circular external fixator commonly used to address complex deformity and fractures. There is currently no data available comparing the biomechanical properties of these two external fixators. This study looks into the mechanical characteristics of each system. TSF rings with 6 oblique struts, 4 tube connectors, 4 threaded rods, and 6 threaded rods were compared to a standard IEF rings with 4 threaded rods. Comp...

  7. A scoping review of biomechanical testing for proximal humerus fracture implants

    OpenAIRE

    Cruickshank, David; Lefaivre, Kelly A.; Johal, Herman; MacIntyre, Norma J; Sprague, Sheila A; Scott, Taryn; Guy, Pierre; Cripton, Peter A.; McKee, Michael; Bhandari, Mohit; Slobogean, Gerard P

    2015-01-01

    Background Fixation failure is a relatively common sequela of surgical management of proximal humerus fractures (PHF). The purpose of this study is to understand the current state of the literature with regard to the biomechanical testing of proximal humerus fracture implants. Methods A scoping review of the proximal humerus fracture literature was performed, and studies testing the mechanical properties of a PHF treatment were included in this review. Descriptive statistics were used to summ...

  8. Recent microfluidic devices for studying gamete and embryo biomechanics.

    Science.gov (United States)

    Lai, David; Takayama, Shuichi; Smith, Gary D

    2015-06-25

    The technical challenges of biomechanic research such as single cell analysis at a high monetary cost, labor, and time for just a small number of measurements is a good match to the strengths of microfluidic devices. New scientific discoveries in the fertilization and embryo development process, of which biomechanics is a major subset of interest, is crucial to fuel the continual improvement of clinical practice in assisted reproduction. The following review will highlight some recent microfluidic devices tailored for gamete and embryo biomechanics where biomimicry arises as a major theme of microfluidic device design and function, and the application of fundamental biomechanic principles are used to improve outcomes of cryopreservation. PMID:25801423

  9. Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons

    Directory of Open Access Journals (Sweden)

    Jung Ho-Joong

    2009-05-01

    Full Text Available Abstract Ligaments and tendons are soft connective tissues which serve essential roles for biomechanical function of the musculoskeletal system by stabilizing and guiding the motion of diarthrodial joints. Nevertheless, these tissues are frequently injured due to repetition and overuse as well as quick cutting motions that involve acceleration and deceleration. These injuries often upset this balance between mobility and stability of the joint which causes damage to other soft tissues manifested as pain and other morbidity, such as osteoarthritis. The healing of ligament and tendon injuries varies from tissue to tissue. Tendinopathies are ubiquitous and can take up to 12 months for the pain to subside before one could return to normal activity. A ruptured medial collateral ligament (MCL can generally heal spontaneously; however, its remodeling process takes years and its biomechanical properties remain inferior when compared to the normal MCL. It is also known that a midsubstance anterior cruciate ligament (ACL tear has limited healing capability, and reconstruction by soft tissue grafts has been regularly performed to regain knee function. However, long term follow-up studies have revealed that 20–25% of patients experience unsatisfactory results. Thus, a better understanding of the function of ligaments and tendons, together with knowledge on their healing potential, may help investigators to develop novel strategies to accelerate and improve the healing process of ligaments and tendons. With thousands of new papers published in the last ten years that involve biomechanics of ligaments and tendons, there is an increasing appreciation of this subject area. Such attention has positively impacted clinical practice. On the other hand, biomechanical data are complex in nature, and there is a danger of misinterpreting them. Thus, in these review, we will provide the readers with a brief overview of ligaments and tendons and refer them to

  10. A Rare Stapes Abnormality

    Directory of Open Access Journals (Sweden)

    Hala Kanona

    2015-01-01

    Full Text Available The aim of this study is to increase awareness of rare presentations, diagnostic difficulties alongside management of conductive hearing loss and ossicular abnormalities. We report the case of a 13-year-old female reporting progressive left-sided hearing loss and high resolution computed tomography was initially reported as normal. Exploratory tympanotomy revealed an absent stapedius tendon and lack of connection between the stapes superstructure and footplate. The footplate was fixed. Stapedotomy and stapes prosthesis insertion resulted in closure of the air-bone gap by 50 dB. A review of world literature was performed using MedLine. Middle ear ossicular discontinuity can result in significant conductive hearing loss. This can be managed effectively with surgery to help restore hearing. However, some patients may not be suitable or decline surgical intervention and can be managed safely conservatively.

  11. Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications.

    Science.gov (United States)

    Hoh, Daniel J; Hoh, Brian L; Amar, Arun P; Wang, Michael Y

    2009-05-01

    SHAPE MEMORY ALLOYS possess distinct dynamic properties with particular applications in neurosurgery. Because of their unique physical characteristics, these materials are finding increasing application where resiliency, conformation, and actuation are needed. Nitinol, the most frequently manufactured shape memory alloy, responds to thermal and mechanical stimuli with remarkable mechanical properties such as shape memory effect, super-elasticity, and high damping capacity. Nitinol has found particular use in the biomedical community because of its excellent fatigue resistance and biocompatibility, with special interest in neurosurgical applications. The properties of nitinol and its diffusionless phase transformations contribute to these unique mechanical capabilities. The features of nitinol, particularly its shape memory effect, super-elasticity, damping capacity, as well as its biocompatibility and biomechanics are discussed herein. Current and future applications of nitinol and other shape memory alloys in endovascular, spinal, and minimally invasive neurosurgery are introduced. An understanding of the metallurgic properties of nitinol provides a foundation for further exploration of its use in neurosurgical implant design.

  12. Physical limits to biomechanical sensing

    CERN Document Server

    Beroz, Farzan; Münster, Stefan; Weitz, David A; Broedersz, Chase P; Wingreen, Ned S

    2016-01-01

    Cells actively probe and respond to the stiffness of their surroundings. Since mechanosensory cells in connective tissue are surrounded by a disordered network of biopolymers, their in vivo mechanical environment can be extremely heterogeneous. Here, we investigate how this heterogeneity impacts mechanosensing by modeling the cell as an idealized local stiffness sensor inside a disordered fiber network. For all types of networks we study, including experimentally-imaged collagen and fibrin architectures, we find that measurements applied at different points throughout a given network yield a strikingly broad range of local stiffnesses, spanning roughly two decades. We verify via simulations and scaling arguments that this broad range of local stiffnesses is a generic property of disordered fiber networks, and show that the range can be further increased by tuning specific network features, including the presence of long fibers and the proximity to elastic transitions. These features additionally allow for a h...

  13. Circadian Rhythm Abnormalities

    OpenAIRE

    Zee, Phyllis C.; Attarian, Hrayr; Videnovic, Aleksandar

    2013-01-01

    Purpose: This article reviews the recent advances in understanding of the fundamental properties of circadian rhythms and discusses the clinical features, diagnosis, and treatment of circadian rhythm sleep disorders (CRSDs).

  14. Spinal biomechanics and functional anatomy.

    Science.gov (United States)

    Denoix, J M

    1999-04-01

    Knowledge of the normal functional behavior and mechanical properties of the vertebral column is important to understand the pathogenesis of back lesions, to identify the clinical manifestations of back pain, and to ensure a rational approach to physical therapy. The purpose of this article is to present a synthesis of in vivo and in vitro data obtained from different but complementary investigations. Presently, in vivo studies are limited; few gait-specific kinematic and electromyographic investigations are in process. Higher stresses to reach the maximal range of intervertebral motion can be applied on the spine on anatomical specimens than in living horses, and anatomical functional data can be obtained at the level of intervertebral structures. For each movement of flexion, extension, lateroflexion, and rotation, regional and intervertebral mobility is presented with an emphasis on craniocaudal variations and their anatomical causes. Because of the location of their ICR, the dorsoventral movements of a thoracolumbar intervertebral joint can be defined as a rotation around the center of the more caudal vertebral body. This information supports the new concept of intervertebral mobility in the horse and provides additional elements to facilitate understanding of the pathogenesis of back problems in the horse. PMID:10218240

  15. Abnormal uterine bleeding.

    Science.gov (United States)

    Whitaker, Lucy; Critchley, Hilary O D

    2016-07-01

    Abnormal uterine bleeding (AUB) is a common and debilitating condition with high direct and indirect costs. AUB frequently co-exists with fibroids, but the relationship between the two remains incompletely understood and in many women the identification of fibroids may be incidental to a menstrual bleeding complaint. A structured approach for establishing the cause using the Fédération International de Gynécologie et d'Obstétrique (FIGO) PALM-COEIN (Polyp, Adenomyosis, Leiomyoma, Malignancy (and hyperplasia), Coagulopathy, Ovulatory disorders, Endometrial, Iatrogenic and Not otherwise classified) classification system will facilitate accurate diagnosis and inform treatment options. Office hysteroscopy and increasing sophisticated imaging will assist provision of robust evidence for the underlying cause. Increased availability of medical options has expanded the choice for women and many will no longer need to recourse to potentially complicated surgery. Treatment must remain individualised and encompass the impact of pressure symptoms, desire for retention of fertility and contraceptive needs, as well as address the management of AUB in order to achieve improved quality of life. PMID:26803558

  16. Ictal Cardiac Ryhthym Abnormalities.

    Science.gov (United States)

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic-clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  17. Communication and abnormal behaviour.

    Science.gov (United States)

    Crown, S

    1979-01-01

    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential).

  18. Communication and abnormal behaviour.

    Science.gov (United States)

    Crown, S

    1979-01-01

    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential). PMID:261653

  19. Long-latency reflexes account for limb biomechanics through several supraspinal pathways

    Directory of Open Access Journals (Sweden)

    Isaac Louis Kurtzer

    2015-01-01

    Full Text Available Accurate control of body posture is enforced by a multitude of corrective actions operating over a range of time scales. The earliest correction is the short-latency reflex which occurs between 20-45 ms following a sudden displacement of the limb and is generated entirely by spinal circuits. In contrast, voluntary reactions are generated by a highly distributed network but at a significantly longer delay after stimulus onset (greater than 100 ms. Between these two epochs is the long-latency reflex (around 50-100 ms which but acts more rapidly than of voluntary reactions but shares some supraspinal pathways and functional capabilities. In particular, the long-latency reflex accounts for the arm’s biomechanical properties rather than only responding to local muscle stretch like the short-latency reflex. This paper will review how the long-latency reflex accounts for the arm’s biomechanical properties and the supraspinal pathways supporting this ability. Relevant experimental paradigms include clinical studies, non-invasive brain stimulation, neural recordings in monkeys, and human behavioral studies. The sum of this effort indicates that primary motor cortex and reticular formation contribute to the the long-latency reflex either by generating or scaling its structured response appropriate for the arm’s biomechanics whereas the cerebellum scales the magnitude of the feedback response. Additional putative pathways are discussed as well as potential research lines.

  20. Biomechanics, Exercise Physiology, and the 75th Anniversary of RQES

    Science.gov (United States)

    Hamill, Joseph; Haymes, Emily M.

    2005-01-01

    The purpose of this paper is to review the biomechanics and exercise physiology studies published in the Research Quarterly for Exercise and Sport (RQES) over the past 75 years. Studies in biomechanics, a relatively new subdiscipline that evolved from kinesiology, first appeared in the journal about 40 years ago. Exercise physiology studies have…

  1. The Undergraduate Biomechanics Experience at Iowa State University.

    Science.gov (United States)

    Francis, Peter R.

    This paper discusses the objectives of a program in biomechanics--the analysis of sports skills and movement--and the evolution of the biomechanics program at Iowa State University. The primary objective of such a course is to provide the student with the basic tools necessary for adequate analysis of human movement, with special emphasis upon…

  2. Factors Related to Students' Learning of Biomechanics Concepts

    Science.gov (United States)

    Hsieh, ChengTu; Smith, Jeremy D.; Bohne, Michael; Knudson, Duane

    2012-01-01

    The purpose of this study was to replicate and expand a previous study to identify the factors that affect students' learning of biomechanical concepts. Students were recruited from three universities (N = 149) located in the central and western regions of the United States. Data from 142 students completing the Biomechanics Concept Inventory…

  3. Decreased trabecular bone biomechanical competence, apparent density, IGF-II and IGFBP-5 content in acromegaly

    DEFF Research Database (Denmark)

    Ueland, Thor; Ebbesen, Ebbe Nils; Thomsen, Jesper Skovhus;

    2002-01-01

    of these growth factors in relation to biomechanical properties in acromegaly. MATERIALS AND METHODS: Trabecular bone biomechanical competence (compression test), apparent density (peripheral quantitative computed tomography, pQCT), and bone matrix contents of calcium (HCl hydrolysis) and IGFs (guanidinium......-HCl extraction) were measured in iliac crest biopsies from 13 patients with active acromegaly (two women and 11 men, aged 21-61 years) and 21 age- and sex-matched controls (four women and 17 men, aged 23-64 years). RESULTS: Trabecular bone pQCT was reduced in acromegalic patients compared with controls (P = 0...... bone content of IGF-I, IGFBP-3, or osteocalcin. However, IGF-II and IGFBP-5 content was decreased (P acromegaly, supporting previous observations...

  4. Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico

    CERN Document Server

    Kononova, Olga; Theisen, Kelly E; Marx, Kenneth A; Dima, Ruxandra I; Ataullakhanov, Fazly I; Grishchuk, Ekaterina L; Barsegov, Valeri

    2015-01-01

    Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral non-covalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physico-chemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close match between the simulated and experimental force-deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversib...

  5. Distributed Data Acquisition For Biomechanics Research

    Science.gov (United States)

    Myklebust, J.; Geisler, M.; Prieto, T.; Weiss, R.

    1987-01-01

    Biomechanics research at the Medical College of Wisconsin is directed to the determination of the mechanisms of head and spine injury and the evaluation of surgical treatments for these injuries. This work involves mechanical testing of components of the spine (disks, vertebral bodies, and ligaments) as well as testing of composite spines and in situ evaluation of intact human cadavers (1,3). Other studies utilize experimental animals to measure neurologic and physiologic effects due to injury producing loads and accelerations (2). An integrated system has been developed to facilitate the acquisition and analysis of the diverse types of data from these experiments.

  6. Biomechanics aspects of technique of high jump

    OpenAIRE

    Adashevskiy V.M.; Iermakov S.S.; Marchenko A. A.

    2013-01-01

    The purpose of work consists in the theoretical ground of optimum biomechanics descriptions in high jumps. A mathematical model is developed for determination of influence on the height of jump: speed and corner of flight of centre-of-mass during pushing away, positions of centre-of-mass body of sportsman in the phases of pushing away and transition through a slat, forces of resistance of air environment, influences of moment of inertia of body. The basic technical run-time errors of sportsma...

  7. Estudo comparativo de propriedades biomecânicas da porção central do tendão calcâneo congelado e a fresco Comparative study on biomechanical properties of the central portion of frozen and fresh calcaneus tendon

    Directory of Open Access Journals (Sweden)

    Rodrigo Bezerra de Menezes Reiff

    2007-01-01

    Full Text Available Métodos de armazenamento de aloenxertos podem alterar certas características mecânicas dos tecidos. Com o objetivo de analisar a influência do fenômeno de congelamento e do tempo de armazenamento sobre as propriedades biomecânicas de tendões, os autores estudaram 40 tendões calcâneos obtidos de 20 cadáveres humanos com idade média de 41,95 anos, variando de 31 a 54 anos, sendo 17 do sexo masculino e três do sexo feminino. De cada cadáver foram retirados dois tendões, sendo que um foi testado a fresco e o contralateral congelado a - 85º C em freezer elétrico, durante um período de seis ou 12 semanas. Os corpos de prova foram submetidos a ensaios de tração em uma máquina de ensaios mecânicos Kratos K5002, fornecendo gráficos força-deformação. Foram analisados os parâmetros de força no limite de resistência máxima, rigidez, tensão no limite de resistência máxima, deformação relativa e módulo de elasticidade. Os resultados foram comparados e a analisados estatisticamente pelo método de "t-student", com índice de significância de 0,05, sendo que não houve diferença significativa nos valores obtidos entre os grupos. Concluímos que o congelamento a - 85º C não altera as propriedades biomecânicas de tendões, a despeito do tempo de armazenamento.Allograft storage methods can change some mechanical characteristics of tissues. With the objective of analyzing the influence of freezing phenomenon and storage time on tendons’ biomechanical properties, the authors studied 40 calcaneus tendons obtained from 20 human cadavers, with an average age of 41.95 years, ranging from 31 to 54 years old, being 17 males and three females. From each cadaver, two tendons were removed, one tested in its fresh state and the contralateral one frozen at -85º C in an electric freezer, during a period of six or 12 weeks. The bodies of evidence were submitted to traction assays in a Kratos K5002 mechanical assay machine, delivering

  8. Jet Methods in Time-Dependent Lagrangian Biomechanics

    CERN Document Server

    Ivancevic, Tijana T

    2009-01-01

    In this paper we propose the time-dependent generalization of an `ordinary' autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds associated to the extended musculo-skeletal configuration manifold, called the configuration bundle. We start with an ordinary configuration manifold of human body motion, given as a set of its all active degrees of freedom (DOF) for a particular movement. This is a Riemannian manifold with a material metric tensor given by the total mass-inertia matrix of the human body segments. This is the base manifold for standard autonomous biomechanics. To make its time-dependent generalization, we need to extend it with a real time axis. By this extension, using techniques from fibre bundles, we defined the biomechanical configuration bundle. On the biomechanical bundle we define vector-fields, differential forms and affine connections, as well as the associat...

  9. Biomechanical factors associated with the development of tibiofemoral knee osteoarthritis

    DEFF Research Database (Denmark)

    van Tunen, Joyce A C; Dell'Isola, Andrea; Juhl, Carsten;

    2016-01-01

    INTRODUCTION: Altered biomechanics, increased joint loading and tissue damage, might be related in a vicious cycle within the development of knee osteoarthritis (KOA). We have defined biomechanical factors as joint-related factors that interact with the forces, moments and kinematics in and around...... a synovial joint. Although a number of studies and systematic reviews have been performed to assess the association of various factors with the development of KOA, a comprehensive overview focusing on biomechanical factors that are associated with the development of KOA is not available. The aim...... of this review is (1) to identify biomechanical factors that are associated with (the development of) KOA and (2) to identify the impact of other relevant risk factors on this association. METHODS AND ANALYSIS: Cohort, cross-sectional and case-control studies investigating the association of a biomechanical...

  10. Systemic abnormalities in liver disease

    Institute of Scientific and Technical Information of China (English)

    Masami Minemura; Kazuto Tajiri; Yukihiro Shimizu

    2009-01-01

    Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases.

  11. Abnormal pressure in hydrocarbon environments

    Science.gov (United States)

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  12. Biomechanical Energy Harvester Design For Active Prostheses

    Directory of Open Access Journals (Sweden)

    Akın Oğuz Kaptı

    2012-06-01

    Full Text Available One of the factors restricting the functions of active prostheses is limited charge times and weights of the batteries. Therefore, some biomechanical energy harvesting studies are conducted for reducing the dependence on batteries and developing the systems that produce energy by utilizing one's own actions during daily living activities. In this study, as a new approach to meet energy needs of active-controlled lower limb prostheses, the design of a biomechanical energy harvester that produces electrical energy from the movements of the knee joint during gait were carried out. This harvester is composed of the generator, planetary gear system and one-way clutch that transmit just the knee extension. Low weight, low additional metabolic power consumption requirement and high electrical power generation are targeted in design process. The total reduction ratio of the transmission is 104, and the knee joint reaction torque applied by the system is 6 Nm. Average electrical powers that can be obtained are 17 W and 5,8 W for the swing extension phase and the entire cycle, respectively. These values seem to be sufficient for charging the battery units of many prostheses and similar medical systems, and portable electronic devices such as mobile phones, navigation devices and laptops.

  13. Integrated biomechanical and topographical surface characterization (IBTSC)

    Energy Technology Data Exchange (ETDEWEB)

    Löberg, Johanna, E-mail: Johanna.Loberg@dentsply.com [Dentsply Implants, Box 14, SE-431 21 Mölndal (Sweden); Mattisson, Ingela [Dentsply Implants, Box 14, SE-431 21 Mölndal (Sweden); Ahlberg, Elisabet [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg (Sweden)

    2014-01-30

    In an attempt to reduce the need for animal studies in dental implant applications, a new model has been developed which combines well-known surface characterization methods with theoretical biomechanical calculations. The model has been named integrated biomechanical and topographical surface characterization (IBTSC), and gives a comprehensive description of the surface topography and the ability of the surface to induce retention strength with bone. IBTSC comprises determination of 3D-surface roughness parameters by using 3D-scanning electron microscopy (3D-SEM) and atomic force microscopy (AFM), and calculation of the ability of different surface topographies to induce retention strength in bone by using the local model. Inherent in this integrated approach is the use of a length scale analysis, which makes it possible to separate different size levels of surface features. The IBTSC concept is tested on surfaces with different level of hierarchy, induced by mechanical as well as chemical treatment. Sequential treatment with oxalic and hydrofluoric acid results in precipitated nano-sized features that increase the surface roughness and the surface slope on the sub-micro and nano levels. This surface shows the highest calculated shear strength using the local model. The validity, robustness and applicability of the IBTSC concept are demonstrated and discussed.

  14. Integrative Structural Biomechanical Concepts of Ankylosing Spondylitis

    Directory of Open Access Journals (Sweden)

    Alfonse T. Masi

    2011-01-01

    Full Text Available Ankylosing spondylitis (AS is not fully explained by inflammatory processes. Clinical, epidemiological, genetic, and course of disease features indicate additional host-related risk processes and predispositions. Collectively, the pattern of predisposition to onset in adolescent and young adult ages, male preponderance, and widely varied severity of AS is unique among rheumatic diseases. However, this pattern could reflect biomechanical and structural differences between the sexes, naturally occurring musculoskeletal changes over life cycles, and a population polymorphism. During juvenile development, the body is more flexible and weaker than during adolescent maturation and young adulthood, when strengthening and stiffening considerably increase. During middle and later ages, the musculoskeletal system again weakens. The novel concept of an innate axial myofascial hypertonicity reflects basic mechanobiological principles in human function, tissue reactivity, and pathology. However, these processes have been little studied and require critical testing. The proposed physical mechanisms likely interact with recognized immunobiological pathways. The structural biomechanical processes and tissue reactions might possibly precede initiation of other AS-related pathways. Research in the combined structural mechanobiology and immunobiology processes promises to improve understanding of the initiation and perpetuation of AS than prevailing concepts. The combined processes might better explain characteristic enthesopathic and inflammatory processes in AS.

  15. Modeling the biomechanics of fetal movements.

    Science.gov (United States)

    Verbruggen, Stefaan W; Loo, Jessica H W; Hayat, Tayyib T A; Hajnal, Joseph V; Rutherford, Mary A; Phillips, Andrew T M; Nowlan, Niamh C

    2016-08-01

    Fetal movements in the uterus are a natural part of development and are known to play an important role in normal musculoskeletal development. However, very little is known about the biomechanical stimuli that arise during movements in utero, despite these stimuli being crucial to normal bone and joint formation. Therefore, the objective of this study was to create a series of computational steps by which the forces generated during a kick in utero could be predicted from clinically observed fetal movements using novel cine-MRI data of three fetuses, aged 20-22 weeks. A custom tracking software was designed to characterize the movements of joints in utero, and average uterus deflection of [Formula: see text] mm due to kicking was calculated. These observed displacements provided boundary conditions for a finite element model of the uterine environment, predicting an average reaction force of [Formula: see text] N generated by a kick against the uterine wall. Finally, these data were applied as inputs for a musculoskeletal model of a fetal kick, resulting in predicted maximum forces in the muscles surrounding the hip joint of approximately 8 N, while higher maximum forces of approximately 21 N were predicted for the muscles surrounding the knee joint. This study provides a novel insight into the closed mechanical environment of the uterus, with an innovative method allowing elucidation of the biomechanical interaction of the developing fetus with its surroundings. PMID:26534772

  16. Biomechanics of Counterweighted One-Legged Cycling.

    Science.gov (United States)

    Elmer, Steven J; McDaniel, John; Martin, James C

    2016-02-01

    One-legged cycling has served as a valuable research tool and as a training and rehabilitation modality. Biomechanics of one-legged cycling are unnatural because the individual must actively lift the leg during flexion, which can be difficult to coordinate and cause premature fatigue. We compared ankle, knee, and hip biomechanics between two-legged, one-legged, and counterweighted (11.64 kg) one-legged cycling. Ten cyclists performed two-legged (240 W), one-legged (120 W), and counterweighted one-legged (120 W) cycling (80 rpm). Pedal forces and limb kinematics were recorded to determine work during extension and flexion. During counterweighted one-legged cycling relative ankle dorsiflexion, knee flexion, and hip flexion work were less than one-legged but greater than two-legged cycling (all P one-legged cycling were greater than one-legged but less than two-legged cycling (all P one-legged cycling reduced but did not eliminate differences in joint flexion and extension actions between one- and two-legged cycling. Even with these differences, counterweighted one-legged cycling seemed to have advantages over one-legged cycling. These results, along with previous work highlighting physiological characteristics and training adaptations to counterweighted one-legged cycling, demonstrate that this exercise is a viable alternative to one-legged cycling.

  17. Integrated biomechanical and topographical surface characterization (IBTSC)

    Science.gov (United States)

    Löberg, Johanna; Mattisson, Ingela; Ahlberg, Elisabet

    2014-01-01

    In an attempt to reduce the need for animal studies in dental implant applications, a new model has been developed which combines well-known surface characterization methods with theoretical biomechanical calculations. The model has been named integrated biomechanical and topographical surface characterization (IBTSC), and gives a comprehensive description of the surface topography and the ability of the surface to induce retention strength with bone. IBTSC comprises determination of 3D-surface roughness parameters by using 3D-scanning electron microscopy (3D-SEM) and atomic force microscopy (AFM), and calculation of the ability of different surface topographies to induce retention strength in bone by using the local model. Inherent in this integrated approach is the use of a length scale analysis, which makes it possible to separate different size levels of surface features. The IBTSC concept is tested on surfaces with different level of hierarchy, induced by mechanical as well as chemical treatment. Sequential treatment with oxalic and hydrofluoric acid results in precipitated nano-sized features that increase the surface roughness and the surface slope on the sub-micro and nano levels. This surface shows the highest calculated shear strength using the local model. The validity, robustness and applicability of the IBTSC concept are demonstrated and discussed.

  18. Experimental techniques for single cell and single molecule biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Lim, C.T. [Nano Biomechanics Laboratory, Division of Bioengineering and Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)]. E-mail: ctlim@nus.edu.sg; Zhou, E.H. [Nano Biomechanics Laboratory, Division of Bioengineering and Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Li, A. [Nano Biomechanics Laboratory, Division of Bioengineering and Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Vedula, S.R.K. [Nano Biomechanics Laboratory, Division of Bioengineering and Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Fu, H.X. [Nano Biomechanics Laboratory, Division of Bioengineering and Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2006-09-15

    Stresses and strains that act on the human body can arise either from external physical forces or internal physiological environmental conditions. These biophysical interactions can occur not only at the musculoskeletal but also cellular and molecular levels and can determine the health and function of the human body. Here, we seek to investigate the structure-property-function relationship of cells and biomolecules so as to understand their important physiological functions as well as establish possible connections to human diseases. With the recent advancements in cell and molecular biology, biophysics and nanotechnology, several innovative and state-of-the-art experimental techniques and equipment have been developed to probe the structural and mechanical properties of biostructures from the micro- down to picoscale. Some of these experimental techniques include the optical or laser trap method, micropipette aspiration, step-pressure technique, atomic force microscopy and molecular force spectroscopy. In this article, we will review the basic principles and usage of these techniques to conduct single cell and single molecule biomechanics research.

  19. Teaching undergraduate biomechanics with Just-in-Time Teaching.

    Science.gov (United States)

    Riskowski, Jody L

    2015-06-01

    Biomechanics education is a vital component of kinesiology, sports medicine, and physical education, as well as for many biomedical engineering and bioengineering undergraduate programmes. Little research exists regarding effective teaching strategies for biomechanics. However, prior work suggests that student learning in undergraduate physics courses has been aided by using the Just-in-Time Teaching (JiTT). As physics understanding plays a role in biomechanics understanding, the purpose of study was to evaluate the use of a JiTT framework in an undergraduate biomechanics course. This two-year action-based research study evaluated three JiTT frameworks: (1) no JiTT; (2) mathematics-based JiTT; and (3) concept-based JiTT. A pre- and post-course assessment of student learning used the biomechanics concept inventory and a biomechanics concept map. A general linear model assessed differences between the course assessments by JiTT framework in order to evaluate learning and teaching effectiveness. The results indicated significantly higher learning gains and better conceptual understanding in a concept-based JiTT course, relative to a mathematics-based JiTT or no JiTT course structure. These results suggest that a course structure involving concept-based questions using a JiTT strategy may be an effective method for engaging undergraduate students and promoting learning in biomechanics courses.

  20. [Biomechanical characteristics of human fetal membranes. Preterm fetal membranes are stronger than term fetal membranes].

    Science.gov (United States)

    Rangaswamy, N; Abdelrahim, A; Moore, R M; Uyen, L; Mercer, B M; Mansour, J M; Kumar, D; Sawady, J; Moore, J J

    2011-06-01

    The purpose of this study was to determine the biomechanical characteristics of human fetal membranes (FM) throughout gestation. Biomechanical properties were determined for 115 FM of 23-41 weeks gestation using our previously described methodology. The areas of membrane immediately adjacent to the strongest and weakest tested spots were sampled for histomorphometric analysis. Clinical data on the patients whose FM were examined were also collected. FM less than 28 weeks gestation were associated with higher incidence of abruption and chorioamnionitis. Topographically FM at all gestations had heterogeneous biomechanical characteristics over their surfaces with distinct weak areas. The most premature membranes were the strongest. FM strength represented by rupture force and work to rupture decreased with increasing gestation in both weak and strong regions of FM. This decrease in FM strength was most dramatic at more than 38 weeks gestation. The FM component amnion-chorion sublayers were thinner in the weak areas compared to strong areas. Compared to term FM, preterm FM are stronger but have similar heterogeneous weak and strong areas. Following a gradual increase in FM weakness with increasing gestation, there is a major drop-off at term 38 weeks gestation. The FM weak areas are thinner than the stronger areas. Whether the difference in thickness is enough to account for the strength differences is unknown.

  1. Biomechanical and structural parameters of tendons in rats subjected to swimming exercise.

    Science.gov (United States)

    Bezerra, M A; Santos de Lira, K D; Coutinho, M P G; de Mesquita, G N; Novaes, K A; da Silva, R T B; de Brito Nascimento, A K; Inácio Teixeira, M F H B; Moraes, S R A

    2013-12-01

    The aim of this study was to evaluate the effect of swimming exercise, without overloading, on the biomechanical parameters of the calcaneal tendon of rats. 27 male Wistar rats (70 days) were distributed randomly into 2 groups, Control Group (CG; n=15) with restricted movements inside the cage and Swimming Group (SG; n=12), subjected to exercise training in a tank with a water temperature of 30±1°C, for 1 h/day, 5 days/week for 8 weeks. All animals were kept in a reversed light/dark cycle of 12 h with access to food and water ad libitum. After that, they were anesthetized and had their calcaneus tendons collected from their left rear paws. The tendon was submitted to a mechanical test on a conventional test machine. From the stress vs. strain curve, the biomechanical data were analyzed. For the statistical analysis, the Student-T test was used (pexercise training, without overloading, was an important stimulus for improving the biomechanical parameters and structural properties of the calcaneal tendon. PMID:23740340

  2. Structural and biomechanical changes in the Achilles tendon after chronic treatment with statins.

    Science.gov (United States)

    de Oliveira, L P; Vieira, C P; Guerra, F D; Almeida, M S; Pimentel, E R

    2015-03-01

    Cases of tendinopathy and tendon ruptures have been reported as side effects associated with statin therapy. This work assessed possible changes in the structural and biomechanical properties of the tendons after chronic treatment with statins. Wistar rats were divided into the following groups: treated with atorvastatin (A-20 and A-80), simvastatin (S-20 and S-80) and the group that received no treatment (C). The doses of statins were calculated using allometric scaling, based on the doses of 80 mg/day and 20 mg/day recommended for humans. The morphological aspect of the tendons in A-20, S-20 and S-80 presented signals consistent with degeneration. Both the groups A-80 and S-80 showed a less pronounced metachromasia in the compression region of the tendons. Measurements of birefringence showed that A-20, A-80 and S-80 groups had a lower degree of organization of the collagen fibers. In all of the groups treated with statins, the thickness of the epitenon was thinner when compared to the C group. In the biomechanical tests the tendons of the groups A-20, A-80 and S-20 were less resistant to rupture. Therefore, statins affected the organization of the collagen fibers and decreased the biomechanical strength of the tendons, making them more predisposed to ruptures. PMID:25544391

  3. Research of topographic ultra-structure and biomechanical properties of living chondrocytes cells with atomic force microscopy%运用原子力显微术磁驱动模式研究活软骨细胞形貌超微结构和力学特性

    Institute of Scientific and Technical Information of China (English)

    刘广源; 吴志宏; 陈佩佩; 李兵; 谢琳; 韩东; 邱贵兴

    2009-01-01

    目的 运用原子力显微镜(AFM)最新发展的磁驱动轻敲模式(MAC mode)研究体外培养的正常人软骨细胞表面形貌的结构特点及细胞力学特性.方法 体外培养正常人膝关节软骨细胞,运用MAC mode AFM在生理条件下对细胞表面形貌进行高分辨成像,并通过指定区域的力曲线操作,观察软骨细胞核区及胞质区的力学特性.结果 MAC mode AFM可实现生理条件下软骨细胞的表面形貌超微结构的高分辨成像,分辨率可达30 nm.软骨细胞呈现核区突出,胞质区平坦的形貌特点.同时,胞质区与核区对比表现出更高的应力状态及黏着力.结论 MAC mode AFM是研究活细胞微观结构和力学特性的有力工具.%Objective To evaluate the application of a novel tapping mode, magnetic AC mode (MAC mode) of atomic force microscopy (AFM) in observation of the topography and mechanical properties of living chondrocytes. Methods Specimens of normal knee joint was obtained from 5 patients during amputation due to severe trauma of shank. Chondrocytes were isolated and cultured. Cell slides were prepared, underwent immunohistochemical staining, and observed under AFM by MAC mode. Force curve operation was performed at different regions, nuclear and eytoplsamic, to compare the topographic features. Results High-resolution images of the ultra-structure of cell surface were obtained under physiological condition with a resolution level to 30 nm. The cells presented a topical profile, I. E. , the protuberant nuclear region and relatively flatten cell body. The force curve showed much higher stress and adhesion in the cell body region than in the nuclear region. Conclusion MAC mode AFM is very useful in research of the ultra-structure and biomechanical properties of cells.

  4. Diabetic foot and exercise therapy: step by step the role of rigid posture and biomechanics treatment.

    Science.gov (United States)

    Francia, Piergiorgio; Gulisano, Massimo; Anichini, Roberto; Seghieri, Giuseppe

    2014-03-01

    Lower extremity ulcers represent a serious and costly complication of diabetes mellitus. Many factors contribute to the development of diabetic foot. Peripheral neuropathy and peripheral vascular disease are the main causes of foot ulceration and contribute in turn to the growth of additional risk factors such as limited joint mobility, muscular alterations and foot deformities. Moreover, a deficit of balance, posture and biomechanics can be present, in particular in patients at high risk for ulceration. The result of this process may be the development of a vicious cycle which leads to abnormal distribution of the foot's plantar pressures in static and dynamic postural conditions. This review shows that some of these risk factors significantly improve after a few weeks of exercise therapy (ET) intervention. Accordingly it has been suggested that ET can be an important weapon in the prevention of foot ulcer. The aim of ET can relate to one or more alterations typically found in diabetic patients, although greater attention should be paid to the evaluation and possible correction of body balance, rigid posture and biomechanics. Some of the most important limitations of ET are difficult access to therapy, patient compliance and the transitoriness of the results if the training stops. Many proposals have been made to overcome such limitations. In particular, it is important that specialized centers offer the opportunity to participate in ET and during the treatment the team should work to change the patient's lifestyle by improving the execution of appropriate daily physical activity.

  5. Biomechanical risk factors of non-contact ACL injuries:A stochastic biomechanical modeling study

    Institute of Scientific and Technical Information of China (English)

    Cheng-Feng; Lin; Hui; Liu; Michael; T.Gros; Paul; Weinhold; William; E.Garrett; Bing; Yu

    2012-01-01

    <正>Background:Significant efforts have been made to identify modifiable risk factors of non-contact anterior cruciate ligament(ACL) injuries in male and female athletes.However,current literature on the risk factors for ACL injury are purely descriptive.An understanding of biomechanical relationship between risk and risk factors of the non-contact ACL injury is necessary to develop effective prevention programs. Purpose:To compare lower extremity kinematics and kinetics between trials with and without non-contact ACL injuries and to determine if any difference exists between male and female trials with non-contact ACL injuries regarding the lower extremity motion patterns. Methods:In this computer simulation study,a stochastic biomechanical model was used to estimate the ACL loading at the time of peak posterior ground reaction force(GRF) during landing of the stop-jump task.Monte Carlo simulations were performed to simulate the ACL injuries with repeated random samples of independent variables.The distributions of independent variables were determined from in vivo laboratory data of 40 male and 40 female recreational athletes. Results:In the simulated injured trials,both male and female athletes had significantly smaller knee flexion angles,greater normalized peak posterior and vertical GRF.greater knee valgus moment,greater patella tendon force,greater quadriceps force,greater knee extension moment. and greater proximal tibia anterior shear force in comparison to the simulated uninjured trials.No significant difference was found between genders in any of the selected biomechanical variables in the trials with simulated non-contact ACL injuries. Conclusion:Small knee flexion angle,large posterior GRF.and large knee valgus moment are risk factors of non-contact ACL injury determined by a stochastic biomechanical model with a cause-and-effect relationship.

  6. A multi-scale biomechanical model based on the physiological structure and lignocellulose components of wheat straw.

    Science.gov (United States)

    Chen, Longjian; Li, Aiwei; He, Xueqin; Han, Lujia

    2015-11-20

    Biomechanical behavior is a fundamental property for the efficient utilization of wheat straw in such applications as fuel and renewable materials. Tensile experiments and lignocellulose analyses were performed on three types of wheat straw. A multi-scale finite element model composed of the microscopic model of the microfibril equivalent volume element and the macroscopic model of straw tissue was proposed based on the physiological structure and lignocellulose components of wheat straw. The tensile properties of wheat straw were simulated by ANSYS software. The predicted stress-strain data were compared with the observed data, and good correspondence was achieved for all three types of wheat straw. The validated multi-scale finite-element (FE) model was then used to investigate the effect of the lignocellulose components on the biomechanical properties of wheat straw. More than 80% of stress is carried by the cellulose fiber, whereas the strain is mainly carried by the amorphous cellulose. PMID:26344265

  7. Do Cells Contribute to Tendon and Ligament Biomechanics?

    Science.gov (United States)

    Hammer, Niels; Huster, Daniel; Fritsch, Sebastian; Hädrich, Carsten; Koch, Holger; Schmidt, Peter; Sichting, Freddy; Wagner, Martin Franz-Xaver; Boldt, Andreas

    2014-01-01

    Introduction Acellular scaffolds are increasingly used for the surgical repair of tendon injury and ligament tears. Despite this increased use, very little data exist directly comparing acellular scaffolds and their native counterparts. Such a comparison would help establish the effectiveness of the acellularization procedure of human tissues. Furthermore, such a comparison would help estimate the influence of cells in ligament and tendon stability and give insight into the effects of acellularization on collagen. Material and Methods Eighteen human iliotibial tract samples were obtained from nine body donors. Nine samples were acellularized with sodium dodecyl sulphate (SDS), while nine counterparts from the same donors remained in the native condition. The ends of all samples were plastinated to minimize material slippage. Their water content was adjusted to 69%, using the osmotic stress technique to exclude water content-related alterations of the mechanical properties. Uniaxial tensile testing was performed to obtain the elastic modulus, ultimate stress and maximum strain. The effectiveness of the acellularization procedure was histologically verified by means of a DNA assay. Results The histology samples showed a complete removal of the cells, an extensive, yet incomplete removal of the DNA content and alterations to the extracellular collagen. Tensile properties of the tract samples such as elastic modulus and ultimate stress were unaffected by acellularization with the exception of maximum strain. Discussion The data indicate that cells influence the mechanical properties of ligaments and tendons in vitro to a negligible extent. Moreover, acellularization with SDS alters material properties to a minor extent, indicating that this method provides a biomechanical match in ligament and tendon reconstruction. However, the given protocol insufficiently removes DNA. This may increase the potential for transplant rejection when acellular tract scaffolds are used in

  8. Do cells contribute to tendon and ligament biomechanics?

    Directory of Open Access Journals (Sweden)

    Niels Hammer

    Full Text Available Acellular scaffolds are increasingly used for the surgical repair of tendon injury and ligament tears. Despite this increased use, very little data exist directly comparing acellular scaffolds and their native counterparts. Such a comparison would help establish the effectiveness of the acellularization procedure of human tissues. Furthermore, such a comparison would help estimate the influence of cells in ligament and tendon stability and give insight into the effects of acellularization on collagen.Eighteen human iliotibial tract samples were obtained from nine body donors. Nine samples were acellularized with sodium dodecyl sulphate (SDS, while nine counterparts from the same donors remained in the native condition. The ends of all samples were plastinated to minimize material slippage. Their water content was adjusted to 69%, using the osmotic stress technique to exclude water content-related alterations of the mechanical properties. Uniaxial tensile testing was performed to obtain the elastic modulus, ultimate stress and maximum strain. The effectiveness of the acellularization procedure was histologically verified by means of a DNA assay.The histology samples showed a complete removal of the cells, an extensive, yet incomplete removal of the DNA content and alterations to the extracellular collagen. Tensile properties of the tract samples such as elastic modulus and ultimate stress were unaffected by acellularization with the exception of maximum strain.The data indicate that cells influence the mechanical properties of ligaments and tendons in vitro to a negligible extent. Moreover, acellularization with SDS alters material properties to a minor extent, indicating that this method provides a biomechanical match in ligament and tendon reconstruction. However, the given protocol insufficiently removes DNA. This may increase the potential for transplant rejection when acellular tract scaffolds are used in soft tissue repair. Further research

  9. Biomechanical ToolKit: Open-source framework to visualize and process biomechanical data.

    Science.gov (United States)

    Barre, Arnaud; Armand, Stéphane

    2014-04-01

    C3D file format is widely used in the biomechanical field by companies and laboratories to store motion capture systems data. However, few software packages can visualize and modify the integrality of the data in the C3D file. Our objective was to develop an open-source and multi-platform framework to read, write, modify and visualize data from any motion analysis systems using standard (C3D) and proprietary file formats (used by many companies producing motion capture systems). The Biomechanical ToolKit (BTK) was developed to provide cost-effective and efficient tools for the biomechanical community to easily deal with motion analysis data. A large panel of operations is available to read, modify and process data through C++ API, bindings for high-level languages (Matlab, Octave, and Python), and standalone application (Mokka). All these tools are open-source and cross-platform and run on all major operating systems (Windows, Linux, MacOS X). PMID:24548899

  10. Biomechanical properties of a titanium alloy pelvic prosthesis individually manufactured by 3D printing: a finite element analysis%3D打印钛合金个性化骨盆假体生物力学的初步有限元分析

    Institute of Scientific and Technical Information of China (English)

    叶堃; 王金武; 胡志刚; 王成焘; 干耀凯; 韦建和; 江川; 邓源; 李雨

    2015-01-01

    Objective To evaluate the biomechanical properties of a titanium alloy pelvic prosthesis individually manufactured by 3D printing through finite element analysis.Methods A male patient with a huge chondrosarcoma at the right ilium was recruited for the present study who had been arranged for hemipelvectomy and artificial hemi-pelvic replacement.After the patient underwent CT and MRI examinations before operation,scope of tumor invasion around the ilium,surgical margins and plane for osteotomy were determined using the 3D image fusion technique.A finite element model of the pelvis of the patient was established on the basis of the defective area after pelvic osteotomy using computer aided design (CAD).After the finite element analysis,a customized titanium alloy pelvic prosthesis was manufactured using 3D printing technology.The software Abaqus was used to conduct finite element analysis of the model of the pelvic prosthesis manufactured by 3D printing.The von Mises stress,relative displacement and stress concentration point in the finite element model of the pelvis were measured and analyzed.Results The maximum von Mises stress in the titanium alloy pelvic prosthesis manufactured by 3D printing was 25.29 MPa,far smaller than the yield strength of titanium alloy (950 MPa).The stress concentration area was near the nail holes where the prosthesis and the sacrum were connected.The patient was able to walk without crutches 3 months post-surgery.After half a year,the implant was stable and the patient could perform normal activities.Conclusions The titanium alloy pelvic prosthesis individually manufactured by 3D printing based on the results of finite element analysis met the biomechanical requirements of a pelvis.The calculation results of finite element analysis were consistent with the postoperative follow-up outcomes of the patient.This method can provide biomechanical evidence for clinical application of 3D printing implants in orthopedics.%目的 通过

  11. Biomechanics/risk management (Working Group 2)

    DEFF Research Database (Denmark)

    Sanz, Mariano; Naert, Ignace; Gotfredsen, Klaus

    2009-01-01

    INTRODUCTION: The remit of this workgroup was to update the existing knowledge base in biomechanical factors, navigation systems and medications that may affect the outcome of implant therapy. MATERIAL AND METHODS: The literature was systematically searched and critically reviewed. Five manuscrip...... of anticoagulants on patients undergoing oral implant therapy?...... in the following papers, together with the group consensus statements, clinical implications and directions for future research: * To what extent do cantilevers affect survival and complications of implant supported restorations in partially dentate patients? * To what extent does the crown-implant ratio affect...... survival and complications of implant supported restorations? * A systematic review on the accuracy and the clinical outcome of computer-guided template based implant dentistry. * What is the impact of systemic bisphosphonates on patients undergoing oral implant therapy? * What is the impact...

  12. Biomechanics of Posterior Dynamic Stabilization Systems

    Directory of Open Access Journals (Sweden)

    D. U. Erbulut

    2013-01-01

    Full Text Available Spinal rigid instrumentations have been used to fuse and stabilize spinal segments as a surgical treatment for various spinal disorders to date. This technology provides immediate stability after surgery until the natural fusion mass develops. At present, rigid fixation is the current gold standard in surgical treatment of chronic back pain spinal disorders. However, such systems have several drawbacks such as higher mechanical stress on the adjacent segment, leading to long-term degenerative changes and hypermobility that often necessitate additional fusion surgery. Dynamic stabilization systems have been suggested to address adjacent segment degeneration, which is considered to be a fusion-associated phenomenon. Dynamic stabilization systems are designed to preserve segmental stability, to keep the treated segment mobile, and to reduce or eliminate degenerative effects on adjacent segments. This paper aimed to describe the biomechanical aspect of dynamic stabilization systems as an alternative treatment to fusion for certain patients.

  13. Integrative Role Of Cinematography In Biomechanics Research

    Science.gov (United States)

    Zernicke, Ronald F.; Gregor, Robert J.

    1982-02-01

    Cinematography is an integral element in the interdisciplinary biomechanics research conducted in the Department of Kinesiology at the University of California, Los Angeles. For either an isolated recording of a movement phenomenon or as a recording component which is synchronized with additional transducers and recording equipment, high speed motion picture film has been effectively incorporated into resr'arch projects ranging from two and three dimensional analyses of human movements, locomotor mechanics of cursorial mammals and primates, to the structural responses and dynamic geometries of skeletal muscles, tendons, and ligaments. The basic equipment used in these studies includes three, 16 mm high speed, pin-registered cameras which have the capacity for electronic phase-locking. Crystal oscillators provide the generator pulses to synchronize the timing lights of the cameras and the analog-to-digital recording equipment. A rear-projection system with a sonic digitizer permits quantification of film coordinates which are stored on computer disks. The capacity for synchronizing the high speed films with additional recording equipment provides an effective means of obtaining not only position-time data from film, but also electromyographic, force platform, tendon force transducer, and strain gauge recordings from tissues or moving organisms. During the past few years, biomechanics research which comprised human studies has used both planar and three-dimensional cinematographic techniques. The studies included planar analyses which range from the gait characteristics of lower extremity child amputees to the running kinematics and kinetics of highly skilled sprinters and long-distance runners. The dynamics of race cycling and kinetics of gymnastic maneuvers were studied with cinematography and either a multi-dimensional force platform or a bicycle pedal with strain gauges to determine the time histories of the applied forces. The three-dimensional technique

  14. Pathogenesis of varicose veins - lessons from biomechanics.

    Science.gov (United States)

    Pfisterer, Larissa; König, Gerd; Hecker, Markus; Korff, Thomas

    2014-03-01

    The development of varicose veins or chronic venous insufficiency is preceded by and associated with the pathophysiological remodelling of the venous wall. Recent work suggests that an increase in venous filling pressure is sufficient to promote varicose remodelling of veins by augmenting wall stress and activating venous endothelial and smooth muscle cells. In line with this, known risk factors such as prolonged standing or an obesity-induced increase in venous filling pressure may contribute to varicosis. This review focuses on biomechanically mediated mechanisms such as an increase in wall stress caused by venous hypertension or alterations in blood flow, which may be involved in the onset of varicose vein development. Finally, possible therapeutic options to counteract or delay the progress of this venous disease are discussed.

  15. Biomechanical Analysis of T2 Exercise

    Science.gov (United States)

    DeWitt, John K.; Ploutz-Snyder, Lori; Everett, Meghan; Newby, Nathaniel; Scott-Pandorf, Melissa; Guilliams, Mark E.

    2010-01-01

    Crewmembers regularly perform treadmill exercise on the ISS. With the implementation of T2 on ISS, there is now the capacity to obtain ground reaction force (GRF) data GRF data combined with video motion data allows biomechanical analyses to occur that generate joint torque estimates from exercise conditions. Knowledge of how speed and load influence joint torque will provide quantitative information on which exercise prescriptions can be based. The objective is to determine the joint kinematics, ground reaction forces, and joint kinetics associated with treadmill exercise on the ISS. This study will: 1) Determine if specific exercise speed and harness load combinations are superior to others in exercise benefit; and 2) Aid in the design of exercise prescriptions that will be most beneficial in maintaining crewmember health.

  16. Biomechanics of knee joint — A review

    Science.gov (United States)

    Madeti, Bhaskar Kumar; Chalamalasetti, Srinivasa Rao; Bolla Pragada, S. K. Sundara siva rao

    2015-06-01

    The present paper is to know how the work is carried out in the field of biomechanics of knee. Various model formulations are discussed and further classified into mathematical model, two-dimensional model and three-dimensional model. Knee geometry is a crucial part of human body movement, in which how various views of knee is shown in different planes and how the forces act on tibia and femur are studied. It leads to know the forces acting on the knee joint. Experimental studies of knee geometry and forces acting on knee shown by various researchers have been discussed, and comparisons of results are made. In addition, static and dynamic analysis of knee has been also discussed respectively to some extent.

  17. Skin - abnormally dark or light

    Science.gov (United States)

    ... ency/article/003242.htm Skin - abnormally dark or light To use the sharing features on this page, ... the hands. The bronze color can range from light to dark (in fair-skinned people) with the ...

  18. Propriedades biomecânicas da fáscia lata e do ligamento cruzado cranial de cães Biomechanical properties of canine fascia lata and cranial cruciate ligament

    Directory of Open Access Journals (Sweden)

    A.P. Brendolan

    2001-02-01

    properties were found for the strips of fascia lata straight and twisted, although twisted strips presented a higher deformation than straight ones. External and internal tibial rotation did not influence the maximum force and maximum stress of the cranial cruciate ligament, that were of about 660 Newtons and 75 Megapascal, respectively. Fascia lata strips reached 44% of ligaments maximum force and 37% of maximum strain, and twisted strips reached 70% of ligaments maximum deformation, deserving straight strips to be recommended for cranial cruciate ligament substitution in dogs.

  19. Development of a biomechanical energy harvester

    Directory of Open Access Journals (Sweden)

    Donelan J Maxwell

    2009-06-01

    Full Text Available Abstract Background Biomechanical energy harvesting–generating electricity from people during daily activities–is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with an emphasis on new analyses. Methods Effectively harvesting energy from walking requires a small lightweight device that efficiently converts intermittent, bi-directional, low speed and high torque mechanical power to electricity, and selectively engages power generation to assist muscles in performing negative mechanical work. To achieve this, our device used a one-way clutch to transmit only knee extension motions, a spur gear transmission to amplify the angular speed, a brushless DC rotary magnetic generator to convert the mechanical power into electrical power, a control system to determine when to open and close the power generation circuit based on measurements of knee angle, and a customized orthopaedic knee brace to distribute the device reaction torque over a large leg surface area. Results The device selectively engaged power generation towards the end of swing extension, assisting knee flexor muscles by producing substantial flexion torque (6.4 Nm, and efficiently converted the input mechanical power into electricity (54.6%. Consequently, six subjects walking at 1.5 m/s generated 4.8 ± 0.8 W of electrical power with only a 5.0 ± 21 W increase in metabolic cost. Conclusion Biomechanical energy harvesting is capable of generating substantial amounts of electrical power from walking with little additional user effort making future versions of this technology particularly promising for charging portable medical devices.

  20. Wheelchair propulsion biomechanics: implications for wheelchair sports.

    Science.gov (United States)

    Vanlandewijck, Y; Theisen, D; Daly, D

    2001-01-01

    The aim of this article is to provide the reader with a state-of-the-art review on biomechanics in hand rim wheelchair propulsion, with special attention to sport-specific implications. Biomechanical studies in wheelchair sports mainly aim at optimising sport performance or preventing sport injuries. The sports performance optimisation question has been approached from an ergonomic, as well as a skill proficiency perspective. Sports medical issues have been addressed in wheelchair sports mainly because of the extremely high prevalence of repetitive strain injuries such as shoulder impingement and carpal tunnel syndrome. Sports performance as well as sports medical reflections are made throughout the review. Insight in the underlying musculoskeletal mechanisms of hand rim wheelchair propulsion has been achieved through a combination of experimental data collection under realistic conditions, with a more fundamental mathematical modelling approach. Through a synchronised analysis of the movement pattern, force generation pattern and muscular activity pattern, insight has been gained in the hand rim wheelchair propulsion dynamics of people with a disability, varying in level of physical activity and functional potential. The limiting environment of a laboratory, however, has hampered the drawing of sound conclusions. Through mathematical modelling, simulation and optimisation (minimising injury and maximising performance), insight in the underlying musculoskeletal mechanisms during wheelchair propulsion is sought. The surplus value of inverse and forward dynamic simulation of hand rim stroke dynamics is addressed. Implications for hand rim wheelchair sports are discussed. Wheelchair racing, basketball and rugby were chosen because of the significance and differences in sport-specific movement dynamics. Conclusions can easily be transferred to other wheelchair sports where movement dynamics are fundamental. PMID:11347685

  1. Biomechanics of sprint running. A review.

    Science.gov (United States)

    Mero, A; Komi, P V; Gregor, R J

    1992-06-01

    Understanding of biomechanical factors in sprint running is useful because of their critical value to performance. Some variables measured in distance running are also important in sprint running. Significant factors include: reaction time, technique, electromyographic (EMG) activity, force production, neural factors and muscle structure. Although various methodologies have been used, results are clear and conclusions can be made. The reaction time of good athletes is short, but it does not correlate with performance levels. Sprint technique has been well analysed during acceleration, constant velocity and deceleration of the velocity curve. At the beginning of the sprint run, it is important to produce great force/power and generate high velocity in the block and acceleration phases. During the constant-speed phase, the events immediately before and during the braking phase are important in increasing explosive force/power and efficiency of movement in the propulsion phase. There are no research results available regarding force production in the sprint-deceleration phase. The EMG activity pattern of the main sprint muscles is described in the literature, but there is a need for research with highly skilled sprinters to better understand the simultaneous operation of many muscles. Skeletal muscle fibre characteristics are related to the selection of talent and the training-induced effects in sprint running. Efficient sprint running requires an optimal combination between the examined biomechanical variables and external factors such as footwear, ground and air resistance. Further research work is needed especially in the area of nervous system, muscles and force and power production during sprint running. Combining these with the measurements of sprinting economy and efficiency more knowledge can be achieved in the near future.

  2. Biomechanical research in dance: a literature review.

    Science.gov (United States)

    Krasnow, Donna; Wilmerding, M Virginia; Stecyk, Shane; Wyon, Matthew; Koutedakis, Yiannis

    2011-03-01

    The authors reviewed the literature, published from 1970 through December 2009, on biomechanical research in dance. To identify articles, the authors used search engines, including PubMed and Web of Science, five previous review articles, the Dance Medicine and Science Bibliography, and reference lists of theses, dissertations, and articles being reviewed. Any dance research articles (English language) involving the use of electromyography, forceplates, motion analysis using photography, cinematography or videography, and/or physics analysis were included. A total of 89 papers, theses/dissertations, and abstracts were identified and reviewed, grouped by the movement concept or specialized movements being studied: alignment (n = 8), plié (8), relevé (8), passé (3), degagé (3), développé (7), rond de jambe (3), grand battement (4), arm movements (1), forward stepping (3), turns (6), elevation work (28), falls (1), and dance-specific motor strategies (6). Several recurring themes emerged from these studies: that elite dancers demonstrate different and superior motor strategies than novices or nondancers; that dancers perform differently when using a barre as opposed to without a barre, both in terms of muscle activation patterns and weight shift strategies; that while skilled dancers tend to be more consistent across multiple trials of a task, considerable variability is seen among participants, even when matched for background, years of training, body type, and other variables; and that dance teachers recommend methods of achieving movement skills that are inconsistent with optimal biomechanical function, as well as inconsistent with strategies employed by elite dancers. Measurement tools and the efficacy of study methodologies are also discussed. PMID:21442132

  3. The corneoscleral shell of the eye: potentials of assessing biomechanical parameters in normal and pathological conditions

    Directory of Open Access Journals (Sweden)

    E. N. Iomdina

    2016-01-01

    Full Text Available The paper reviews modern methods of evaluating the biomechanical properties of the corneoscleral shell of the eye that can be used both in the studies of the pathogenesis of various ophthalmic pathologies and in clinical practice. The biomechanical parameters of the cornea and the sclera have been shown to be diagnostically significant in assessing the risk of complications and the effectiveness of keratorefractive interventions, in the diagnosis and the prognosis of keratoconus, progressive myopia, or glaucoma. In clinical practice, a special device, Ocular Response Analyzer (ORA, has been used on a large scale. The analyzer is used to assess two parameters that characterize viscoelastic properties of the cornea — corneal hysteresis (CH and corneal resistance factor (CRF. Reduced levels of CH and CRF have been noted after eximer laser surgery, especially that administered to patients who demonstrate a regression in the refraction effect or suffer from keratoconus. This fact justifies the use of these biomechanical parameters as additional diagnostic criteria in the evaluation of the state of the cornea. At the same time, ORA data are shown to reflect the biomechanical response to the impact of the air pulse not only from the cornea alone but also from the whole corneoscleral capsule. This is probably the cause of reduced CH in children with progressive myopia and a weakened supportive function of the sclera, as well as such reduction in glaucomatous adult patients. It is hypothesized that a low CH value is a result of remodeling of the connective tissue matrix of the corneoscleral shell of the eye and can be an independent factor testifying to a risk of glaucoma progression. Reduced CH in primary open-angle glaucoma occurs in parallel with the development of pathological structural changes of the optic disc, and deterioration of visual fields, which is an evidence of a specific character and sensitivity of this parameter. The

  4. On seed physiology, biomechanics and plant phenology in Eragrostis tef

    NARCIS (Netherlands)

    Delden, van S.H.

    2011-01-01

    • Key words: Teff (Eragrostis tef (Zuccagni) Trotter), germination, temperature, model, leaf appearance, phyllochron, development rate, lodging, biomechanics, safety factor, flowering, heading, day length, photoperiod. • Background Teff (Eragrostis tef (Zuccagni) Trotter) is a C4 annual g

  5. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery

    CERN Document Server

    2012-01-01

      This volume focuses on the biomechanical modeling of biological tissues in the context of Computer Assisted Surgery (CAS). More specifically, deformable soft tissues are addressed since they are the subject of the most recent developments in this field. The pioneering works on this CAS topic date from the 1980's, with applications in orthopaedics and biomechanical models of bones. More recently, however, biomechanical models of soft tissues have been proposed since most of the human body is made of soft organs that can be deformed by the surgical gesture. Such models are much more complicated to handle since the tissues can be subject to large deformations (non-linear geometrical framework) as well as complex stress/strain relationships (non-linear mechanical framework). Part 1 of the volume presents biomechanical models that have been developed in a CAS context and used during surgery. This is particularly new since most of the soft tissues models already proposed concern Computer Assisted Planning, with ...

  6. Keratoconus: A biomechanical perspective on loss of corneal stiffness

    Directory of Open Access Journals (Sweden)

    Abhijit Sinha Roy

    2013-01-01

    Full Text Available Keratoconus (KC is progressive disease of corneal thinning, steepening and collagen degradation. Biomechanics of the cornea is maintained by the intricate collagen network, which is responsible for its unique shape and function. With the disruption of this collagen network, the cornea loses its shape and function, resulting in progressive visual degradation. While KC is essentially a stromal disease, there is evidence that the epithelium undergoes significant thinning similar to the stroma. Several topographical approaches have been developed to detect KC early. However, it is now hypothesized that biomechanical destabilization of the cornea may precede topographic evidence of KC. Biomechanics of KC has been investigated only to a limited extent due to lack of in vivo measurement techniques and/or devices. In this review, we focus on recent work performed to characterize the biomechanical characteristics of KC.

  7. Cosmos caudatus enhances fracture healing in ovariectomised rats: A preliminary biomechanical evaluation

    Directory of Open Access Journals (Sweden)

    Pamela Godspower Rufus

    2015-01-01

    Full Text Available Summary. Osteoporotic fractures occur in osteoporotic states and affect patients’ quality of life. Cosmos caudatus (ulam raja is a local plant known for its high calcium content and anti-oxidant properties. The present study aimed to investigate the fracture healing properties of C. caudatus water extract in ovariectomised rats by studying the biomechanical properties of tibia. Twenty-four female Sprague-Dawley rats were divided into 4 groups: (i sham operated (ii ovariectomised control (iii ovariectomised + estrogen (100µg/kg/day and (iv ovariectomised + C. caudatus (500mg/kg. Following six weeks of sham operation or ovariectomy, the right tibia of the rats were fractured. Rats were then given their respective treatment for 8 weeks with body weight monitored weekly. Biomechanical analysis indicated that the maximum load, stress and Young’s modulus of the ovariectomised control group (36.2 ± 4.7N, 10.01 ± 1.41MPa, 29.2 ± 9.39MPa respectively were significantly lower compared to sham operated (150.32 ± 32. 6N, 36.75 ± 7.98MPa, 183 ± 53.2MPa respectively and the C. caudatus treated group (136.86 ± 16.95N, 33.45 ± 4.14MPa, 155.13± 58.58MPa respectively. Therefore, C. caudatus extract improved the biomechanical property of the healed bone and may be beneficial for fracture healing in the estrogen deficient state.Industrial Relevance. Post-menopausal osteoporosis is a debilitating disease affecting women worldwide. Hormone replacement therapy (HRT, commonly used for the prevention and treatment of post-menopausal osteoporosis has been associated with several side effects. Thus, in finding alternatives in the treatment of osteoporosis, C. caudatus is a plant of interest. Previous study showed that C. caudatus improved bone histomorphometry in ovariectomized rats by increasing double-labeled surface (dLS/BS, mineral appositional rate (MAR, osteoid volume (OV/BV and osteoblast surface (Ob.S/BS. Therefore, the present study aimed to assess

  8. Effects of spaceflight on rat humerus geometry, biomechanics, and biochemistry

    Science.gov (United States)

    Vailas, A. C.; Zernicke, R. F.; Grindeland, R. E.; Kaplansky, A.; Durnova, G. N.; Li, K. C.; Martinez, D. A.

    1990-01-01

    The effects of a 12.5-day spaceflight (Cosmos 1887 biosatellite) on the geometric, biomechanical, and biochemical characteristics of humeri of male specific pathogen-free rats were examined. Humeri of age-matched basal control, synchronous control, and vivarium control rats were contrasted with the flight bones to examine the influence of growth and space environment on bone development. Lack of humerus longitudinal growth occurred during the 12.5 days in spaceflight. In addition, the normal mid-diaphysial periosteal appositional growth was affected; compared with their controls, the spaceflight humeri had less cortical cross-sectional area, smaller periosteal circumferences, smaller anterior-posterior periosteal diameters, and smaller second moments of area with respect to the bending and nonbending axes. The flexural rigidity of the flight humeri was comparable to that of the younger basal control rats and significantly less than that of the synchronous and vivarium controls; the elastic moduli of all four groups, nonetheless, were not significantly different. Generally, the matrix biochemistry of the mid-diaphysial cross sections showed no differences among groups. Thus, the spaceflight differences in humeral mechanical strength and flexural rigidity were probably a result of the differences in humeral geometry rather than material properties.

  9. Why do woodpeckers resist head impact injury: a biomechanical investigation.

    Directory of Open Access Journals (Sweden)

    Lizhen Wang

    Full Text Available Head injury is a leading cause of morbidity and death in both industrialized and developing countries. It is estimated that brain injuries account for 15% of the burden of fatalities and disabilities, and represent the leading cause of death in young adults. Brain injury may be caused by an impact or a sudden change in the linear and/or angular velocity of the head. However, the woodpecker does not experience any head injury at the high speed of 6-7 m/s with a deceleration of 1000 g when it drums a tree trunk. It is still not known how woodpeckers protect their brain from impact injury. In order to investigate this, two synchronous high-speed video systems were used to observe the pecking process, and the force sensor was used to measure the peck force. The mechanical properties and macro/micro morphological structure in woodpecker's head were investigated using a mechanical testing system and micro-CT scanning. Finite element (FE models of the woodpecker's head were established to study the dynamic intracranial responses. The result showed that macro/micro morphology of cranial bone and beak can be recognized as a major contributor to non-impact-injuries. This biomechanical analysis makes it possible to visualize events during woodpecker pecking and may inspire new approaches to prevention and treatment of human head injury.

  10. Biomechanical Dynamics of Cranial Sutures during Simulated Impulsive Loading.

    Science.gov (United States)

    Zhang, Z Q; Yang, J L

    2015-01-01

    Background. Cranial sutures are deformable joints between the bones of the skull, bridged by collagen fibres. They function to hold the bones of the skull together while allowing for mechanical stress transmission and deformation. Objective. The aim of this study is to investigate how cranial suture morphology, suture material property, and the arrangement of sutural collagen fibres influence the dynamic responses of the suture and surrounding bone under impulsive loads. Methods. An idealized bone-suture-bone complex was analyzed using a two-dimensional finite element model. A uniform impulsive loading was applied to the complex. Outcome variables of von Mises stress and strain energy were evaluated to characterize the sutures' biomechanical behavior. Results. Parametric studies revealed that the suture strain energy and the patterns of Mises stress in both the suture and surrounding bone were strongly dependent on the suture morphologies. Conclusions. It was concluded that the higher order hierarchical suture morphology, lower suture elastic modulus, and the better collagen fiber orientation must benefit the stress attenuation and energy absorption. PMID:27019589

  11. Linking suckling biomechanics to the development of the palate

    Science.gov (United States)

    Li, Jingtao; Johnson, Chelsey A.; Smith, Andrew A.; Hunter, Daniel J.; Singh, Gurpreet; Brunski, John B.; Helms, Jill A.

    2016-02-01

    Skulls are amongst the most informative documents of evolutionary history but a complex geometry, coupled with composite material properties and complicated biomechanics, have made it particularly challenging to identify mechanical principles guiding the skull’s morphogenesis. Despite this challenge, multiple lines of evidence, for example the relationship between masticatory function and the evolution of jaw shape, nonetheless suggest that mechanobiology plays a major role in skull morphogenesis. To begin to tackle this persistent challenge, cellular, molecular and tissue-level analyses of the developing mouse palate were coupled with finite element modeling to demonstrate that patterns of strain created by mammalian-specific oral behaviors produce complementary patterns of chondrogenic gene expression in an initially homogeneous population of cranial neural crest cells. Neural crest cells change from an osteogenic to a chondrogenic fate, leading to the materialization of cartilaginous growth plate-like structures in the palatal midline. These growth plates contribute to lateral expansion of the head but are transient structures; when the strain patterns associated with suckling dissipate at weaning, the growth plates disappear and the palate ossifies. Thus, mechanical cues such as strain appear to co-regulate cell fate specification and ultimately, help drive large-scale morphogenetic changes in head shape.

  12. Linking suckling biomechanics to the development of the palate.

    Science.gov (United States)

    Li, Jingtao; Johnson, Chelsey A; Smith, Andrew A; Hunter, Daniel J; Singh, Gurpreet; Brunski, John B; Helms, Jill A

    2016-01-01

    Skulls are amongst the most informative documents of evolutionary history but a complex geometry, coupled with composite material properties and complicated biomechanics, have made it particularly challenging to identify mechanical principles guiding the skull's morphogenesis. Despite this challenge, multiple lines of evidence, for example the relationship between masticatory function and the evolution of jaw shape, nonetheless suggest that mechanobiology plays a major role in skull morphogenesis. To begin to tackle this persistent challenge, cellular, molecular and tissue-level analyses of the developing mouse palate were coupled with finite element modeling to demonstrate that patterns of strain created by mammalian-specific oral behaviors produce complementary patterns of chondrogenic gene expression in an initially homogeneous population of cranial neural crest cells. Neural crest cells change from an osteogenic to a chondrogenic fate, leading to the materialization of cartilaginous growth plate-like structures in the palatal midline. These growth plates contribute to lateral expansion of the head but are transient structures; when the strain patterns associated with suckling dissipate at weaning, the growth plates disappear and the palate ossifies. Thus, mechanical cues such as strain appear to co-regulate cell fate specification and ultimately, help drive large-scale morphogenetic changes in head shape. PMID:26842915

  13. Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Fang-Yen, Christopher; Wyart, Matthieu; Xie, Julie; Kawai, Risa; Kodger, Tom; Chen, Sway; Wen, Quan; Samuel, Aravinthan D T

    2010-11-23

    To navigate different environments, an animal must be able to adapt its locomotory gait to its physical surroundings. The nematode Caenorhabditis elegans, between swimming in water and crawling on surfaces, adapts its locomotory gait to surroundings that impose approximately 10,000-fold differences in mechanical resistance. Here we investigate this feat by studying the undulatory movements of C. elegans in Newtonian fluids spanning nearly five orders of magnitude in viscosity. In these fluids, the worm undulatory gait varies continuously with changes in external load: As load increases, both wavelength and frequency of undulation decrease. We also quantify the internal viscoelastic properties of the worm's body and their role in locomotory dynamics. We incorporate muscle activity, internal load, and external load into a biomechanical model of locomotion and show that (i) muscle power is nearly constant across changes in locomotory gait, and (ii) the onset of gait adaptation occurs as external load becomes comparable to internal load. During the swimming gait, which is evoked by small external loads, muscle power is primarily devoted to bending the worm's elastic body. During the crawling gait, evoked by large external loads, comparable muscle power is used to drive the external load and the elastic body. Our results suggest that C. elegans locomotory gait continuously adapts to external mechanical load in order to maintain propulsive thrust.

  14. Biomechanical evaluation of an expansive pedicle screw in calf vertebrae

    Institute of Scientific and Technical Information of China (English)

    雷伟; 吴子祥

    2005-01-01

    Objective: To obtain a comprehensive understanding of the effect of the improvement of fixation strength of a newly designed expansive pedicle screw through biomechanical analyses.Metheds: 100 (200 pedicles) fresh calf lumber vertebrae were used. A total of four instrumentation systems were tested including CDH (CD Horizon), USS (Universal Spine System pedicle screw), Tenor (Sofamor Denek) and expansive pedicle screw (EPS). Pullout and turning-back tests were performed to compare the holding strength of the expansive pedicle screw with conventional screws, i.e. USS, CDH and Tenor. Revision tests were performed to evaluate the mechanical properties of the expansive pedicle screw as a "rescue" revision screw. A fatigue simulation using perpendicular load up to 1 500 000 cycles was carried out.Results: The turning back torque (Tmax) and pull-out force (Fmax) of EPS were significantly greater than those of USS, Tenor and CDH screws (6.5 mm×40 mm). In revision tests, the Fmax of both kinds of EPS (6.5 mm×40 mm; 7.0 mm×40 mm) were greater than that of CDH, USS and Tenor screws significantly (P<0.05). No screws were broken or bent at the end of fatigue tests.Conclusions: EPS can significantly improve the bone purchase and the pull-out strength compared to USS, Tenor and CDH screws with similar dimensions before and after failure simulation. The fatigue characteristic of EPS is similar to that of CDH, USS and Tenor screws.

  15. Iliotibial Band Syndrome in Runners: Biomechanical Implications and Exercise Interventions.

    Science.gov (United States)

    Baker, Robert L; Fredericson, Michael

    2016-02-01

    Iliotibial band syndrome (ITBS) has known biomechanical factors with an unclear explanation based on only strength and flexibility deficits. Neuromuscular coordination has emerged as a likely reason for kinematic faults guiding research toward motor control. This article discusses ITBS in relation to muscle performance factors, fascial considerations, epidemiology, functional anatomy, strength deficits, kinematics, iliotibial strain and strain rate, and biomechanical considerations. Evidence-based exercise approaches are reviewed for ITBS, including related methods used to train the posterior hip muscles.

  16. BIOMECHANICAL PRINCIPLES PHYSICAL REHABILITATION OF CHILDREN WITH CEREBRAL PALSY

    OpenAIRE

    S. D. Korshunov; K. V. Davletyarova; L. V. Kapilevich

    2016-01-01

    Aim. We studied the basic biomechanical principles of physical rehabilitation of children with cerebral palsy.Materials and methods. Methods of Motion Tracking and electromyography investigated the biomechanical characteristics of gait in children with cerebral palsy. It is shown that the main differences between dynamic stereotype walk pediatric patients is to delay moving forward center of gravity and the disorganization of the lower limb movements (especially knee) in the vertical plane. P...

  17. Iliotibial Band Syndrome in Runners: Biomechanical Implications and Exercise Interventions.

    Science.gov (United States)

    Baker, Robert L; Fredericson, Michael

    2016-02-01

    Iliotibial band syndrome (ITBS) has known biomechanical factors with an unclear explanation based on only strength and flexibility deficits. Neuromuscular coordination has emerged as a likely reason for kinematic faults guiding research toward motor control. This article discusses ITBS in relation to muscle performance factors, fascial considerations, epidemiology, functional anatomy, strength deficits, kinematics, iliotibial strain and strain rate, and biomechanical considerations. Evidence-based exercise approaches are reviewed for ITBS, including related methods used to train the posterior hip muscles. PMID:26616177

  18. Integrative biomechanics for tree ecology: beyond wood density and strength

    OpenAIRE

    Fournier, Mériem; Dlouhà, Jana; Jaouen, Gaëlle; Almeras, Tancrède

    2013-01-01

    International audience; Functional ecology has long considered the support function as important, but its biomechanical complexity is only just being elucidated. We show here that it can be described on the basis of four biomechanical traits, two safety traits against winds (SW) and self-buckling (SB), and two motricity traits involved in sustaining an upright position, tropic motion velocity (MV) and posture control (PC). All these traits are integrated at the tree scale, combining tree size...

  19. Memetics clarification of abnormal behavior

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: Biological medicine is hard to fully and scientifically explain the etiological factor and pathogenesis of abnormal behaviors; while, researches on philosophy and psychology (including memetics) are beneficial to better understand and explain etiological factor and pathogenesis of abnormal behaviors. At present, the theory of philosophy and psychology is to investigate the entity of abnormal behavior based on the views of memetics.METHODS: Abnormal behavior was researched in this study based on three aspects, including instinctive behavior disorder, poorly social-adapted behavior disorder and mental or body disease associated behavior disorder. Most main viewpoints of memetics were derived from "The Meme Machine", which was written by Susan Blackmore. When questions about abnormal behaviors induced by mental and psychological diseases and conduct disorder of teenagers were discussed, some researching achievements which were summarized by authors previously were added in this study, such as aggressive behaviors, pathologically aggressive behaviors, etc.RESULTS: The abnormal behaviors mainly referred to a part of people's substandard behaviors which were not according with the realistic social environment, culture background and the pathologic behaviors resulted from people's various psychological diseases. According to the theory of "meme", it demonstrated that the relevant behavioral obstacles of various psychological diseases, for example, the unusual behavior of schizophrenia, were caused, because the old meme was destroyed thoroughly but the new meme was unable to establish; psychoneurosis and personality disorder were resulted in hard establishment of meme; the behavioral obstacles which were ill-adapted to society, for example, various additional and homosexual behaviors, were because of the selfish replications and imitations of "additional meme" and "homosexual meme"; various instinct behavioral and congenital intelligent obstacles were not significance

  20. Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model

    Directory of Open Access Journals (Sweden)

    Howell David S

    2003-02-01

    Full Text Available Abstract Background Classical homocystinuria is an autosomal recessive disorder caused by cystathionine β-synthase (CBS deficiency and characterized by distinctive alterations of bone growth and skeletal development. Skeletal changes include a reduction in bone density, making it a potentially attractive model for the study of idiopathic osteoporosis. Methods To investigate this aspect of hyperhomocysteinemia, we supplemented developing chicks (n = 8 with 0.6% dl-homocysteine (hCySH for the first 8 weeks of life in comparison to controls (n = 10, and studied biochemical, biomechanical and morphologic effects of this nutritional intervention. Results hCySH-fed animals grew faster and had longer tibiae at the end of the study. Plasma levels of hCySH, methionine, cystathionine, and inorganic sulfate were higher, but calcium, phosphate, and other indices of osteoblast metabolism were not different. Radiographs of the lower limbs showed generalized osteopenia and accelerated epiphyseal ossification with distinct metaphyseal and suprametaphyseal lucencies similar to those found in human homocystinurics. Although biomechanical testing of the tibiae, including maximal load to failure and bone stiffness, indicated stronger bone, strength was proportional to the increased length and cortical thickness in the hCySH-supplemented group. Bone ash weights and IR-spectroscopy of cortical bone showed no difference in mineral content, but there were higher Ca2+/PO43- and lower Ca2+/CO32- molar ratios than in controls. Mineral crystallization was unchanged. Conclusion In this chick model, hyperhomocysteinemia causes greater radial and longitudinal bone growth, despite normal indices of bone formation. Although there is also evidence for an abnormal matrix and altered bone composition, our finding of normal biomechanical bone strength, once corrected for altered morphometry, suggests that any increase in the risk of long bone fracture in human hyperhomocysteinemic

  1. Biomechanics of occlusion--implications for oral rehabilitation.

    Science.gov (United States)

    Peck, C C

    2016-03-01

    The dental occlusion is an important aspect of clinical dentistry; there are diverse functional demands ranging from highly precise tooth contacts to large crushing forces. Further, there are dogmatic, passionate and often diverging views on the relationship between the dental occlusion and various diseases and disorders including temporomandibular disorders, non-carious cervical lesions and tooth movement. This study provides an overview of the biomechanics of the masticatory system in the context of the dental occlusion's role in function. It explores the adaptation and precision of dental occlusion, its role in bite force, jaw movement, masticatory performance and its influence on the oro-facial musculoskeletal system. Biomechanics helps us better understand the structure and function of biological systems and consequently an understanding of the forces on, and displacements of, the dental occlusion. Biomechanics provides insight into the relationships between the dentition, jaws, temporomandibular joints, and muscles. Direct measurements of tooth contacts and forces are difficult, and biomechanical models have been developed to better understand the relationship between the occlusion and function. Importantly, biomechanical research will provide knowledge to help correct clinical misperceptions and inform better patient care. The masticatory system demonstrates a remarkable ability to adapt to a changing biomechanical environment and changes to the dental occlusion or other components of the musculoskeletal system tend to be well tolerated. PMID:26371622

  2. ARTIFICIAL INTELLIGENCE IN SPORTS BIOMECHANICS: NEW DAWN OR FALSE HOPE?

    Directory of Open Access Journals (Sweden)

    Roger Bartlett

    2006-12-01

    Full Text Available This article reviews developments in the use of Artificial Intelligence (AI in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques' and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics.

  3. Thyroid abnormality in perimenopausal women with abnormal uterine bleeding

    Directory of Open Access Journals (Sweden)

    Prasanna Byna

    2015-11-01

    Full Text Available Background: AUB is a common but complicated clinical presentation and occurs in 15-20% of women between menarche to menopause and significantly affects the women's health. Women with thyroid dysfunction often have menstrual irregularities, infertility and increased morbidity during pregnancy. The objective of present study is to find the correlation between thyroid disorders and AUB in perimenopausal women attending gynecology OPD. Methods: In the present study, fifty five patients with AUB were included and were evaluated for the cause including thyroid abnormality. Thyroid function tests were done in all patients. Results: Among 55 patients, 12 patients were diagnosed as hypothyroidism and 7 as hyperthyroidism, women with AUB 36 (65.4% were euthyroid. Among 19 women with thyroid abnormality, heavy menstrual bleeding was seen in 8 (42% women, 6 (31.57% had polymenorrhagia, 5 (26.31% had oligomenorrhoea. The frequent menstrual abnormality in women with hypothyroidism (12 women was heavy menstrual bleeding in 5 (41.6% women, 3 (25% had oligomennorhoea, 4 (33.3% had polymenorrhagia. Out of 7 women with hyperthyroidism, 2 (28.57% had oligomenorrhoea, 3 (42.8% had heavy menstrual bleeding, 2 (28.57% had polymenorrhagia. In a total of 55 patients with AUB, 11 (20% had structural abnormalities in uterus and ovaries. 5 (9% had adenomyosis, 3 (5.4% had ovarian cysts, 3 (5.4% had fibroids. Conclusions: It is important to screen all women for thyroid abnormality who are presenting with AUB especially with non-structural causes of AUB. Correction of thyroid abnormalities also relieves AUB. This will avoid unnecessary hormonal treatment and surgery. [Int J Res Med Sci 2015; 3(11.000: 3250-3253

  4. Biomechanical study of patellofemoral joint instability

    Science.gov (United States)

    Senavongse, Wongwit

    2005-04-01

    Patellofemoral joint instability is a complex clinical problem. It may be a consequence of pre-existing anatomical abnormality or trauma. The objectives of this study were to use experimental mechanics to measure patellar stability and to quantify the effects of pathological abnormalities on patellar stability in vitro. Eight fresh-frozen cadaver knees were studies. The patellar stability was measured using an Instron material testing machine. A total load of 175N was applied to the quadriceps muscles. Patellar force-displacement was tested at different knee flexion angles as the patella was cyclically displaced 10mm laterally and medially. Three pathological abnormalities were applied; VMO malfunction, flat lateral trochlea, and medial retinacular structure rupturing. For the first time, this study has shown comparative and quantitative influence of pathological abnormalities on patellar stability. It was found that a flat lateral trochlea has greater effect than the medial retinacular rupturing whereas the medial retinacular rupturing has greater effect than VMO malfunction on patellar lateral stability. These results are important for future investigations on the treatment of patellofemoral instability.

  5. Biomechanical characteristics of polymeric UHMWPE composites with hybrid matrix and dispersed fillers

    Science.gov (United States)

    Panin, Sergey; Kornienko, Lyudmila; Shilko, Sergey; Thuc, Nguyen Xuan; Korchagin, Mikhail; Chaikina, Marina

    2015-11-01

    In order to develop artificial joint implants some biomechanical properties of composites with UHMWPE and hybrid (polymer-polymeric) "UHMWPE+PTFE" matrix with dispersed fillers were studied. A comparative analysis of the effectiveness of adding hydroxyapatite micron- and nanopowders as a biocompatible filler was carried out. It was shown that under dry sliding friction the wear rate of nanocomposites with the hybrid matrix is lower as compared with composites with the non-hybrid one. Mechanical activation of components further enhances the durability of nano- and microcomposites to almost double it without any significant reduction in the strength characteristics.

  6. Degrees of freedom of tongue movements in speech may be constrained by biomechanics

    OpenAIRE

    Perrier, Pascal; Perkell, Joseph; Payan, Yohan; Zandipour, Majid; Guenther, Franck; Khalighi, Ali

    2007-01-01

    International audience A number of studies carried out on different languages have found that tongue movements in speech are made along two primary degrees of freedom (d.f.s): the high-front to low-back axis and the high-back to low-front axis. We explore the hypothesis that these two main d.f.s could find their origins in the physical properties of the vocal tract. A large set of tongue shapes was generated with a biomechanical tongue model using a Monte-Carlo method to thoroughly sample ...

  7. Biomechanical metrics of aesthetic perception in dance.

    Science.gov (United States)

    Bronner, Shaw; Shippen, James

    2015-12-01

    The brain may be tuned to evaluate aesthetic perception through perceptual chunking when we observe the grace of the dancer. We modelled biomechanical metrics to explain biological determinants of aesthetic perception in dance. Eighteen expert (EXP) and intermediate (INT) dancers performed développé arabesque in three conditions: (1) slow tempo, (2) slow tempo with relevé, and (3) fast tempo. To compare biomechanical metrics of kinematic data, we calculated intra-excursion variability, principal component analysis (PCA), and dimensionless jerk for the gesture limb. Observers, all trained dancers, viewed motion capture stick figures of the trials and ranked each for aesthetic (1) proficiency and (2) movement smoothness. Statistical analyses included group by condition repeated-measures ANOVA for metric data; Mann-Whitney U rank and Friedman's rank tests for nonparametric rank data; Spearman's rho correlations to compare aesthetic rankings and metrics; and linear regression to examine which metric best quantified observers' aesthetic rankings, p < 0.05. The goodness of fit of the proposed models was determined using Akaike information criteria. Aesthetic proficiency and smoothness rankings of the dance movements revealed differences between groups and condition, p < 0.0001. EXP dancers were rated more aesthetically proficient than INT dancers. The slow and fast conditions were judged more aesthetically proficient than slow with relevé (p < 0.0001). Of the metrics, PCA best captured the differences due to group and condition. PCA also provided the most parsimonious model to explain aesthetic proficiency and smoothness rankings. By permitting organization of large data sets into simpler groupings, PCA may mirror the phenomenon of chunking in which the brain combines sensory motor elements into integrated units of behaviour. In this representation, the chunk of information which is remembered, and to which the observer reacts, is the elemental mode shape of

  8. Knee loading for abnormal gait

    OpenAIRE

    Hutchison, J.; Madsen, D.; Norman, T. L.; -Blaha, J. D.

    2014-01-01

    The purpose of the study was to develop a mathematical model for determining knee loads for abnormal gait. Abnormal gait was defined as a person with varus, i.e. “bowleggedness”, or a person who had an external rotation of the femur (or the inability to internally rotate the femur) which caused an indirect varus in the forward positions of gait. Conditions such as these have been observed clinically to result in increased wear on the medial condyle of total knee replacements. This problem was...

  9. Biomechanical evaluation of the locking titanium cable in the fixture of distal tibiofibular syndesmosis injury

    Directory of Open Access Journals (Sweden)

    Shu-zhi YAO

    2016-08-01

    Full Text Available Objective  The article aims at evaluating the biological properties of tibiofibular titanium cable fixation device in terms of both anti-separation and stress shielding by comparison to the interior fixation with lag screw based on experimental observation. Methods  Six corpse ankle specimens were first tested of pressure-separation and stress measurement, the data from which were compared to the normal group, and then a syndesmosis injury model was established. All the samples are randomly divided into 2 groups of 3 specimens each, which were treated with tibiofibula locked titanium cable and lag screw fixation respectively for syndesmosis injury. Then, the samples were tested for pressure-separation and stress measurement. The biomechanical properties as anti-separation ability and stress shielding were analyzed and compared between the two fixation method. Results  Both tibiofibula locked titanium cables and lag screws were able to provide enough strong lateral anti-separation ability, but strong fixation screws were inferior to tibiofibular titanium cable fixation device in fibular longitudinal stress transduction. Conclusion  Tibiofibular titanium cable fixation device not only provide sufficient lateral anti-separation, but also reduces the tibial and fibular longitudinal stress shielding, thus being superior to the traditional lag screw in biomechanical properties. DOI: 10.11855/j.issn.0577-7402.2016.07.09

  10. Comparative biomechanics: life's physical world (second edition)

    CERN Document Server

    Vogel, Steven

    2013-01-01

    Why do you switch from walking to running at a specific speed? Why do tall trees rarely blow over in high winds? And why does a spore ejected into air at seventy miles per hour travel only a fraction of an inch? Comparative Biomechanics is the first and only textbook that takes a comprehensive look at the mechanical aspects of life--covering animals and plants, structure and movement, and solids and fluids. An ideal entry point into the ways living creatures interact with their immediate physical world, this revised and updated edition examines how the forms and activities of animals and plants reflect the materials available to nature, considers rules for fluid flow and structural design, and explores how organisms contend with environmental forces. Drawing on physics and mechanical engineering, Steven Vogel looks at how animals swim and fly, modes of terrestrial locomotion, organism responses to winds and water currents, circulatory and suspension-feeding systems, and the relationship between size and mech...

  11. The biomechanics of throwing: simplified and cogent.

    Science.gov (United States)

    Weber, Alexander E; Kontaxis, Andreas; O'Brien, Stephen J; Bedi, Asheesh

    2014-06-01

    The majority of shoulder injuries occur due to repetitive overhead movements, with baseball pitching being the most common mechanism for overuse injury. Before studying the treatment of these shoulder injuries, it is paramount that the health professional have an understanding of the etiology of and the underlying mechanisms for shoulder pathology. The act of overhead throwing is an eloquent full-body motion that requires tremendous coordination from the time of force generation to follow-through. The shoulder complex is a crucial component of the upper body kinetic chain as it transmits force created in the lower body to the arm and hand to produce velocity and accuracy with ball release. The focus of this article is on the biomechanics of the throwing motion, with emphasis on the kinematics of the shoulder. The established phases of the throwing motion will be reviewed in a stepwise manner and the contributions of osseous and soft-tissue structures to the successful completion of each phase will be discussed. PMID:24787720

  12. Anterior-segment morphology and corneal biomechanical characteristics in pigmentary glaucoma

    Directory of Open Access Journals (Sweden)

    Klingenstein A

    2013-12-01

    Full Text Available Annemarie Klingenstein, Marcus Kernt, Florian Seidensticker, Anselm Kampik, Christoph HirneissDepartment of Ophthalmology, University of Munich Hospital, Ludwig-Maximilians University, Munich, GermanyPurpose: The aim of the study reported here was to evaluate characteristics of the anterior-segment via anterior-segment optical coherence tomography (AS-OCT and corneal biomechanical properties using an ocular response analyzer and their changes by peripheral laser iridotomy (PI in patients with pigmentary glaucoma (PG.Materials and methods: Seventeen eyes with PG were included consecutively. AS-OCT and ocular response analyzer measurements were taken before and 3 months after PI. Baseline morphology and change in morphology were analyzed by correlation and multiple linear regression analysis. The main parameters assessed were anterior-chamber (AC angles and volume as well as corneal hysteresis (CH and corneal resistance factor.Results: AC angles were found to have decreased significantly in each quadrant after PI (P<0.001, with the highest effect seen in the temporal quadrant, which decreased from 57.0°±9.6° to 44.1°±5.2° (± standard deviation. Mean AC volume decreased significantly from 213.1±36.4 to 187.0±23.4 mm3 (P<0.001. CH and corneal resistance factor did not change after PI. CH was found to correlate with the preoperative superior and inferior angle width (Spearman's rho 0.553 and 0.615, respectively, P<0.05. Biomechanical parameters showed no predictive value on the change of AC angles or volume.Conclusion: PI in eyes with PG results in a highly significant reduction in the AC angles and volume as visualized by AS-OCT, with the largest effect seen in the temporal quadrant. CH is strongly positively correlated with the superior and inferior preoperative AC angles, emphasizing the importance of the biomechanical properties of the cornea for glaucoma pathogenesis in PG, but corneal biomechanical properties cannot predict PI

  13. Cardiac abnormalities after subarachnoid hemorrhage

    NARCIS (Netherlands)

    Bilt, I.A.C. van der

    2016-01-01

    Aneurysmal subarachnoid hemorrhage(aSAH) is a devastating neurological disease. During the course of the aSAH several neurological and medical complications may occur. Cardiac abnormalities after aSAH are observed often and resemble stress cardiomyopathy or Tako-tsubo cardiomyopathy(Broken Heart Syn

  14. Congenital abnormalities in methylmercury poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Gilani, S.H.

    1975-04-01

    This study was undertaken to determine the teratogenic potential of methylmercury on chick embryogenesis. Methylmercuric chloride was dissolved in sodium bicarbonate (0.2%) and administered to the chick embryos at doses ranging from 0.0009 to 0.010 mg per egg. The injections were made at days 2 and 3 on incubation (Groups A and B). All the embryos including controls were examined on the 7th day of incubation. Methylmercury poisoning was observed to be both embryolethal and teratogenic. Within the two groups, embryolethality was higher in Group A. The following congenital abnormalities were observed: exencephaly, shortened and twisted limbs, microphthalmia, shortened and twisted neck, beak abnormalities, everted viscera, reduced body size and hemorrhage all over the body. Exencephaly and limb abnormalities were very common. No differences in the incidence and types of gross abnormalities within both the groups (A and B) were noted. The incidence of malformations among the controls was low. The results of present investigation show that methylmercury poisoning is both embryolethal and teratogenic to early chick embryogenesis. (auth)

  15. A selection of biomechanical research problems: From modeling to experimentation

    Science.gov (United States)

    Abbasi, Cyrus Omid

    The research undertakings within this manuscript illustrate the importance of biomechanics in today's science. Without doubt, biomechanics can be utilized to obtain a better understanding of many unsolved mysteries involved in the field of medicine. Moreover, biomechanics can be used to develop better prosthetic or surgical devices as well. Chapter 2 represents a medical problem, which has not been solved for more than a century. With the use of fundamental principles of biomechanics', a better insight of this problem and its possible causes were obtained. Chapter 3 investigates the mechanical interaction between the human teeth and some processed food products during mastication, which is a routine but crucial daily activity of a human being. Chapter 4 looks at a problem within the field of surgery. In this chapter the stability and reliability of two different Suturing-Techniques are explored. Chapters 5 and 6 represent new patent designs as a result of the investigations made in Chapter 4. Chapter 7 studies the impact and load transfer patterns during the collision between a child's head and the ground. All of the above mentioned chapters show the significance of biomechanics in solving a range of different medical problems that involve physical and or mechanical characters.

  16. Effects of G6PD activity inhibition on the viability, ROS generation and mechanical properties of cervical cancer cells.

    Science.gov (United States)

    Fang, Zishui; Jiang, Chengrui; Feng, Yi; Chen, Rixin; Lin, Xiaoying; Zhang, Zhiqiang; Han, Luhao; Chen, Xiaodan; Li, Hongyi; Guo, Yibin; Jiang, Weiying

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency has been revealed to be involved in the efficacy to anti-cancer therapy but the mechanism remains unclear. We aimed to investigate the anti-cancer mechanism of G6PD deficiency. In our study, dehydroepiandrosterone (DHEA) and shRNA technology were used for inhibiting the activity of G6PD of cervical cancer cells. Peak Force QNM Atomic Force Microscopy was used to assess the changes of topography and biomechanical properties of cells and detect the effects on living cells in a natural aqueous environment. Flow cytometry was used to detect the apoptosis and reactive oxygen species (ROS) generation. Scanning electron microscopy was used to observe cell morphology. Moreover, a laser scanning confocal microscope was used to observe the alterations in cytoskeleton to explore the involved mechanism. When G6PD was inhibited by DHEA or RNA interference, the abnormal Young's modulus and increased roughness of cell membrane were observed in HeLa cells, as well as the idioblasts. Simultaneously, G6PD deficiency resulted in decreased HeLa cells migration and proliferation ability but increased ROS generation inducing apoptosis. What's more, the inhibition of G6PD activity caused the disorganization of microfilaments and microtubules of cytoskeletons and cell shrinkage. Our results indicated the anti-cervix cancer mechanism of G6PD deficiency may be involved with the decreased cancer cells migration and proliferation ability as a result of abnormal reorganization of cell cytoskeleton and abnormal biomechanical properties caused by the increased ROS. Suppression of G6PD may be a promising strategy in developing novel therapeutic methods for cervical cancer. PMID:27217331

  17. Ti-Ni Rods with Variable Stiffness for Spine Stabilization: Manufacture and Biomechanical Evaluation

    Science.gov (United States)

    Brailovski, Vladimir; Facchinello, Yann; Brummund, Martin; Petit, Yvan; Mac-Thiong, Jean-Marc

    2016-03-01

    A new concept of monolithic spinal rods with variable flexural stiffness is proposed to reduce the risk of adjacent segment degeneration and vertebral fracture, while providing adequate stability to the spine. The variability of mechanical properties is generated by locally annealing Ti-Ni shape memory alloy rods. Ten-minute Joule effect annealing allows the restoration of the superelasticity in the heated portion of the rod. Such processing also generates a mechanical property gradient between the heated and the unheated zones. A numerical model simulating the annealing temperature and the distributions of the mechanical properties was developed to optimize the Joule-heating strategy and to modulate the rod's overall flexural stiffness. Subsequently, the rod model was included in a finite element model of a porcine lumbar spine to study the effect of the rod's stiffness profiles on the spinal biomechanics.

  18. Anthropometry and Biomechanics Facility Spring 2016 Internship

    Science.gov (United States)

    Boppana, Abhishektha

    2016-01-01

    The Anthropometry and Biomechanics Facility (ABF) at Johnson Space Center supports the Space Human Factors Engineering portfolio of the Human Research Program. ABF provides capability to verify the accommodation and comfort of crewmembers through anthropometry and biomechanics analyses. Anthropometric measurements are derived from three-dimensional (3D) whole body scan images. The scans are currently taken by a Human Solutions Vitus 3D Laser Scanning System. ABF has purchased a 3dMD photogrammetry scanner system to speed up the process of collecting 3D scans. The photogrammetry scanner system features a faster data collection time, as well as fewer holes in the scans. This internship was mainly focused on developing calibration, measurement, data acquisition, and analysis processes for the new system. In addition, I also participated in a project to validate the use of a pressure mat sensor on the shoulder during in-suit testing. My duties for the scanner validation project started with identifying and documenting a calibration process. The calibration process proved vital to using the system as the quality of the scans was directly related to the success of the calibration. In addition, the calibration process suggested by the system vendor required the user to hold a large calibration board at precise locations. To aid in this, I built a calibration stand which held a calibration board at constant positions throughout numerous calibration process. The calibration process was tested extensively until proven acceptable. The standardized process reduced calibration time from over 10 minutes to just below three minutes. As a result, the calibration process could be completed painlessly and precisely, and scan quality was constant between sessions. After standardizing the calibration process, I proceeded to modify the locations of the cameras in order to capture the full volume of a person. The scanning system needed to capture a full T-pose of a person in one scan

  19. Hangman's fracture: a historical and biomechanical perspective.

    Science.gov (United States)

    Rayes, Mahmoud; Mittal, Monika; Rengachary, Setti S; Mittal, Sandeep

    2011-02-01

    The execution technique of hanging, introduced by the Angle, Saxon, and Jute Germanic tribes during their invasions of the Roman Empire and Britain in the 5th century, has remained largely unchanged over time. The earliest form of a gallows was a tree on which prisoners were hanged. Despite the introduction of several modifications such as a trap door, the main mechanism of death remained asphyxiation. This created the opportunity for attempted revival after the execution, and indeed several well-known cases of survival following judicial hanging have been reported. It was not until the introduction of the standard drop by Dr. Samuel Haughton in 1866, and the so-called long drop by William Marwood in 1872 that hanging became a standard, humane means to achieve instantaneous death. Hangmen, however, fearing knot slippage, started substituting the subaural knot for the traditional submental knot. Subaural knots were not as effective, and cases of decapitation were recorded. Standardization of the long drop was further propagated by John Berry, an executioner who used mathematical calculations to estimate the correct drop length for each individual to be hanged. A British committee on capital sentences, led by Lord Aberdare, studied the execution method, and advocated for the submental knot. However, it was not until Frederic Wood-Jones published his seminal work in 1913 that cervical fractures were identified as the main mechanism of death following hanging in which the long drop and a submental knot were used. Schneider introduced the term "hangman's fracture" in 1965, and reported on the biomechanics and other similarities of the cervical fractures seen following judicial hangings and those caused by motor vehicle accidents.

  20. Theoretical Considerations and a Mathematical Model for the Analysis of the Biomechanical Response of Human Keratinized Oral Mucosa

    Science.gov (United States)

    Tsaira, Aikaterini; Karagiannidis, Panagiotis; Sidira, Margarita; Kassavetis, Spyros; Kugiumtzis, Dimitris; Logothetidis, Stergios; Naka, Olga; Pissiotis, Argirios; Michalakis, Konstantinos

    2016-01-01

    Removable complete and partial dentures are supported by the residual alveolar ridges consisting of mucosa, submucosa, periosteum, and bone. An understanding of the biomechanical behavior of the oral mucosa is essential in order to improve the denture-bearing foundations for complete and partially edentulous patients. The purpose of this paper was to examine the biomechanical behavior of the soft tissues supporting a removable denture and develop a model for that reason. Keratinized oral mucosa blocks with their underlying bone were harvested from the maxillary palatal area adjacent to the edentulous ridges of a cadaver. The compressive response of the oral mucosa was tested by using atomic force microscopy. The specimens were first scanned in order their topography to be obtained. The mechanical properties of the specimens were tested using a single crystal silicon pyramidal tip, which traversed toward the keratinized oral mucosa specimens. Loading-unloading cycles were registered and four mathematical models were tested using MATLAB to note which one approximates the force-displacement curve as close as possible: a. spherical, b. conical, c. third order polynomial, d. Murphy (fourth order polynomial, non-linear Hertzian based). The third order polynomial model showed the best accuracy in representing the force-displacement data of the tested specimens. A model was developed in order to analyze the biomechanical behavior of the human oral keratinized mucosa and obtain information about its mechanical properties.

  1. Theoretical Considerations and a Mathematical Model for the Analysis of the Biomechanical Response of Human Keratinized Oral Mucosa

    Directory of Open Access Journals (Sweden)

    Aikaterini Tsaira

    2016-08-01

    Full Text Available Removable complete and partial dentures are supported by the residual alveolar ridges consisting of mucosa, submucosa, periosteum and bone. An understanding of the biomechanical behavior of the oral mucosa is essential in order to improve the denture-bearing foundations for complete and partially edentulous patients. The purpose of this paper was to examine the biomechanical behavior of the soft tissues supporting a removable denture and develop a model for that reason. Keratinized oral mucosa blocks with their underlying bone were harvested from the maxillary palatal area adjacent to the edentulous ridges of a cadaver. The compressive response of the oral mucosa was tested by using atomic force microscopy. The specimens were first scanned in order their topography to be obtained. The mechanical properties of the specimens were tested using a single crystal silicon pyramidal tip, which traversed towards the keratinized oral mucosa specimens. Loading-unloading cycles were registered and four mathematical models were tested using MATLAB to note which one approximates the force-displacement curve as close as possible: a. spherical, b. conical, c. third order polynomial, d. Murphy (fourth order polynomial, non-linear Hertzian based. The third order polynomial model showed the best accuracy in representing the force-displacement data of the tested specimens. A model was developed in order to analyze the biomechanical behavior of the human oral keratinized mucosa and obtain information about its mechanical properties.

  2. Theoretical Considerations and a Mathematical Model for the Analysis of the Biomechanical Response of Human Keratinized Oral Mucosa.

    Science.gov (United States)

    Tsaira, Aikaterini; Karagiannidis, Panagiotis; Sidira, Margarita; Kassavetis, Spyros; Kugiumtzis, Dimitris; Logothetidis, Stergios; Naka, Olga; Pissiotis, Argirios; Michalakis, Konstantinos

    2016-01-01

    Removable complete and partial dentures are supported by the residual alveolar ridges consisting of mucosa, submucosa, periosteum, and bone. An understanding of the biomechanical behavior of the oral mucosa is essential in order to improve the denture-bearing foundations for complete and partially edentulous patients. The purpose of this paper was to examine the biomechanical behavior of the soft tissues supporting a removable denture and develop a model for that reason. Keratinized oral mucosa blocks with their underlying bone were harvested from the maxillary palatal area adjacent to the edentulous ridges of a cadaver. The compressive response of the oral mucosa was tested by using atomic force microscopy. The specimens were first scanned in order their topography to be obtained. The mechanical properties of the specimens were tested using a single crystal silicon pyramidal tip, which traversed toward the keratinized oral mucosa specimens. Loading-unloading cycles were registered and four mathematical models were tested using MATLAB to note which one approximates the force-displacement curve as close as possible: a. spherical, b. conical, c. third order polynomial, d. Murphy (fourth order polynomial, non-linear Hertzian based). The third order polynomial model showed the best accuracy in representing the force-displacement data of the tested specimens. A model was developed in order to analyze the biomechanical behavior of the human oral keratinized mucosa and obtain information about its mechanical properties. PMID:27621708

  3. [Angle-fixed plate fixation or double-plate osteosynthesis in fractures of the proximal humerus: a biomechanical study].

    Science.gov (United States)

    Hessmann, Martin H; Korner, Jan; Hofmann, Alexander; Sternstein, Werner; Rommens, Pol M

    2008-06-01

    Internal fixation of fractures of the proximal humerus needs a high stability of fixation to avoid secondary loss of fixation. This is especially important in osteoporotic bone. In an experimental study, the biomechanical properties of the angle-fixed Philos plate (internal fixator) and a double-plate osteosynthesis using two one-third tubular plates were assessed. The fracture model was an unstable three-part fracture (AO type B2). Eight pairs of human cadaveric humeri were submitted to axial load and torque. In the first part of the study, it was assessed to which degree the original stiffness of the humeri could be restored after the osteotomy by the osteosynthesis procedure. Subsequently, subsidence during 200 cycles of axial loading and torque was analysed. During axial loading, the Philos plate was significantly stiffer and showed less irreversible deformation. Two double-plate fixations, but none of the Philos plate osteosynthesis, failed. During torsion, there were no significant differences between the two implants. From the biomechanical point of view, the angle-fixed Philos plate represents the implant of choice for the surgical fixation of highly unstable three-part fractures of the proximal humerus, as the internal fixator system is characterised by superior biomechanical properties.

  4. The increasing importance of the biomechanics of impact trauma

    Indian Academy of Sciences (India)

    Murray Mackay

    2007-08-01

    The evolution of experimental biomechanics and crash injury research is summarized briefly to show that they both play a major role in mitigating traffic deaths and injuries. Historically, the subject has been based largely in western countries and thus focused on vehicle occupants, whereas some 80% of traffic casualties in the world are outside the vehicle as pedestrians, cyclists and motorcyclists. The subject is close to the regulatory process which controls vehicle design and is thus heavily influenced by government and industry, yet it is now in an expanding period because of new techniques to replicate the human frame’s response to impact forces. New knowledge is likely to emerge from addressing population variations and combining real world accident investigations with experimental biomechanics. The application of impact biomechanics to the vulnerable road users is of particular importance.

  5. Computational biomechanics for medicine imaging, modeling and computing

    CERN Document Server

    Doyle, Barry; Wittek, Adam; Nielsen, Poul; Miller, Karol

    2016-01-01

    The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This volume comprises eighteen of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, UK, Switzerland, Scotland, France and Russia. Some of the interesting topics discussed are: tailored computational models; traumatic brain injury; soft-tissue mechanics; medical image analysis; and clinically-relevant simulations. One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.

  6. Computational biomechanics for medicine new approaches and new applications

    CERN Document Server

    Miller, Karol; Wittek, Adam; Nielsen, Poul

    2015-01-01

    The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologiesand advancements. Thisvolumecomprises twelve of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, France, Spain and Switzerland. Some of the interesting topics discussed are:real-time simulations; growth and remodelling of soft tissues; inverse and meshless solutions; medical image analysis; and patient-specific solid mechanics simulations. One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.

  7. Biomechanical analysis technique choreographic movements (for example, "grand battman jete"

    Directory of Open Access Journals (Sweden)

    Batieieva N.P.

    2015-04-01

    Full Text Available Purpose : biomechanical analysis of the execution of choreographic movement "grand battman jete". Material : the study involved students (n = 7 of the department of classical choreography faculty of choreography. Results : biomechanical analysis of choreographic movement "grand battman jete" (classic exercise, obtained kinematic characteristics (path, velocity, acceleration, force of the center of mass (CM bio parts of the body artist (foot, shin, thigh. Built bio kinematic model (phase. The energy characteristics - mechanical work and kinetic energy units legs when performing choreographic movement "grand battman jete". Conclusions : It was found that the ability of an athlete and coach-choreographer analyze the biomechanics of movement has a positive effect on the improvement of choreographic training of qualified athletes in gymnastics (sport, art, figure skating and dance sports.

  8. Biomechanics of Kuzushi-Tsukuri and Interaction in Competition

    CERN Document Server

    Sacripanti, Attilio

    2010-01-01

    In this paper it is performed the comparative biomechanical analysis of the Kuzushi (Unbalance) -Tsukuri (the entry and proper fitting of Tori's body into the position taken just before throwing) phases of Judo Throwing techniques. The whole effective movement is without separation, as already stated by old Japanese biomechanical studies (1972 -1978), only one skilled connected action, but the biomechanical analysis is able to separate the whole in didactic steps called Action Invariants. The first important finding singled out is the existence of two classes of Action Invariants the first the General one' connected to the whole body motion is specific of shortening distance in the Kuzushi Tsukuri Phase. The second one, the Specific Action Invariants is connected to the superior and inferior kinetic chains motion and right positioning connected both to Kuzushi and Tsukuri phases. Some interesting findings derive from this analysis: among throwing techniques, couple techniques could be independent from Kuzushi...

  9. Radiological appearances of sinonasal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    El-Beltagi, A.H.; Sobeih, A.A.; Valvoda, M.; Dahniya, M.H.; Badr, S.S

    2002-08-01

    The aim of this pictorial review is to present a variety of abnormalities of the sinonasal cavities to emphasize the diversity of lesions occurring in this region. These include congenital, neoplastic and granulomatous disorders and some allergic and inflammatory lesions with uncommon radiological appearances, as well as expanding lesions of the facial bones or of dental origin with secondary involvement of the related sinus(es). El-Beltagi, A.H. et al. (2002). Clinical Radiology 57, 702-718.

  10. Is Dark Energy Abnormally Weighting?

    OpenAIRE

    Fuzfa, A.; Alimi, J. -M.

    2006-01-01

    We present a new interpretation of dark energy in terms of an \\textit{Abnormally Weighting Energy} (AWE). This means that dark energy does not couple to gravitation in the same way as ordinary matter, yielding a violation of the weak and strong equivalence principles on cosmological scales. The resulting cosmological mechanism accounts for the Hubble diagram of type Ia supernovae in terms of both cosmic acceleration and variation of the gravitational constant while still accounting for the pr...

  11. Biomechanics of Load Carriage--Historical Perspectives and Recent Insights.

    Science.gov (United States)

    Seay, Joseph F

    2015-11-01

    Loads carried by the warfighter have increased substantially throughout recorded history, with the typical U.S. ground soldier carrying external loads averaging 45 kg during operations in Afghanistan. Incidence of disability in the U.S. Army has also increased sixfold since the 1980s, predominantly driven by increases in musculoskeletal injuries, with load carriage implicated as a possible mechanism. This article will provide a brief overview of the biomechanics of load carriage and will provide some recent insights into how the stress of the loads carried by military personnel can affect the musculoskeletal system. Studies into the biomechanics of load carriage have documented motion-related differences such as increased step rate, decreased stride length, and more trunk lean with increases in pack-borne loads. However, there is a paucity of literature on the relationship between load carriage and biomechanical mechanisms of overuse injury. Findings of recent studies will be presented, which add mechanistic information to increased stresses on the lower extremity. This was particularly true at the knee, where in one study, peak knee extension moment increased 115% when carrying a 55 kg load (0.87 ± 0.16 Nm·kg⁻¹) vs. no external load (0.40 ± 0.13 Nm·kg⁻¹). Efforts to model injury mechanisms require continued biomechanical measurements in humans while carrying occupationally relevant loads to be validated. Specifically, imaging technologies (e.g., bone geometry scans) should be incorporated to produce higher fidelity model of the stresses and strains experienced by the load carrier. In addition to laboratory-based biomechanics, data are needed to further explore the mechanistic relationship between load magnitude and injury; to this end, wearable sensors should continue to be exploited to accurately quantify biomechanical stresses related to load carriage in the field.

  12. Study on diagnosis of micro-biomechanical structure using optical coherence tomography

    Science.gov (United States)

    Saeki, Souichi; Hashimoto, Youhei; Saito, Takashi; Hiro, Takafumi; Matsuzaki, Masunori

    2007-02-01

    Acute coronary syndromes, e.g. myocardial infarctions, are caused by the rupture of unstable plaques on coronary arteries. The stability of plaque, which depends on biomechanical properties of fibrous cap, should be diagnosed crucially. Recently, Optical Coherence Tomography (OCT) has been developed as a cross-sectional imaging method of microstructural biological tissue with high resolution 1~10 μm. Multi-functional OCT system has been promising, e.g. an estimator of biomechanical characteristics. It has been, however, difficult to estimate biomechanical characteristics, because OCT images have just speckle patterns by back-scattering light from tissue. In this study, presented is Optical Coherence Straingraphy (OCS) on the basis of OCT system, which can diagnose tissue strain distribution. This is basically composed of Recursive Cross-correlation technique (RC), which can provide a displacement vector distribution with high resolution. Furthermore, Adjacent Cross-correlation Multiplication (ACM) is introduced as a speckle noise reduction method. Multiplying adjacent correlation maps can eliminate anomalies from speckle noise, and then can enhance S/N in the determination of maximum correlation coefficient. Error propagation also can be further prevented by introducing to the recursive algorithm (RC). In addition, the spatial vector interpolation by local least square method is introduced to remove erroneous vectors and smooth the vector distribution. This was numerically applied to compressed elastic heterogeneous tissue samples to carry out the accuracy verifications. Consequently, it was quantitatively confirmed that its accuracy of displacement vectors and strain matrix components could be enhanced, comparing with the conventional method. Therefore, the proposed method was validated by the identification of different elastic objects with having nearly high resolution for that defined by optical system.

  13. Quadriceps tendon allografts as an alternative to Achilles tendon allografts: a biomechanical comparison.

    Science.gov (United States)

    Mabe, Isaac; Hunter, Shawn

    2014-12-01

    Quadriceps tendon with a patellar bone block may be a viable alternative to Achilles tendon for anterior cruciate ligament reconstruction (ACL-R) if it is, at a minimum, a biomechanically equivalent graft. The objective of this study was to directly compare the biomechanical properties of quadriceps tendon and Achilles tendon allografts. Quadriceps and Achilles tendon pairs from nine research-consented donors were tested. All specimens were processed to reduce bioburden and terminally sterilized by gamma irradiation. Specimens were subjected to a three phase uniaxial tension test performed in a custom environmental chamber to maintain the specimens at a physiologic temperature (37 ± 2 °C) and misted with a 0.9 % NaCl solution. There were no statistical differences in seven of eight structural and mechanical between the two tendon types. Quadriceps tendons exhibited a significantly higher displacement at maximum load and significantly lower stiffness than Achilles tendons. The results of this study indicated a biomechanical equivalence of aseptically processed, terminally sterilized quadriceps tendon grafts with bone block to Achilles tendon grafts with bone block. The significantly higher displacement at maximum load, and lower stiffness observed for quadriceps tendons may be related to the failure mode. Achilles tendons had a higher bone avulsion rate than quadriceps tendons (86 % compared to 12 %, respectively). This was likely due to observed differences in bone block density between the two tendon types. This research supports the use of quadriceps tendon allografts in lieu of Achilles tendon allografts for ACL-R. PMID:24414293

  14. Fixation performance of an ultrasonically fused, bioresorbable osteosynthesis implant: A biomechanical and biocompatibility study.

    Science.gov (United States)

    Augat, P; Robioneck, P B; Abdulazim, A; Wipf, F; Lips, K S; Alt, V; Schnettler, R; Heiss, C

    2016-01-01

    Bioresorbable implants may serve as an alternative option for the fixation of bone fractures. Because of their minor inherent mechanical properties and insufficient anchorage within bone bioresorbable implants have so far been limited to mechanically nondemanding fracture types. By briefly liquefying the surface of the biomaterial during insertion, bioresorbable implants can be ultrasonically fused with bone to improve their mechanical fixation. The objective of this study was to investigate the biomechanical fixation performance and in vivo biocompatibility of an ultrasonically fused bioresorbable polymeric pin (SonicPin). First, we biomechanically compared the fused pin with press fitted metallic and bioresorbable polymeric implants for quasi-static and fatigue strength under shear and tensile loading in a polyurethane foam model. Second, fused implants were inserted into cancellous bovine bone and tested biomechanically to verify the reproducibility of their fusion behavior. Finally, the fused pins were tested in a lapine model of femoral condyle osteotomies and were histologically examined by light and transmission electron microscopy. While comparable under static shear loads, fixation performance of ultrasonically fused pins was significantly (p = 0.001) stronger under tensile loading than press fit implants and showed no pull-out. Both bioresorbable implants withstood comparable fatigue shear strength, but less than the K-wire. In bovine bone the ultrasonic fusion process worked highly reproducible and provided consistent mechanical fixation. In vivo, the polymeric pin produced no notable foreign body reactions or resorption layers. Ultrasonic fusion of polymeric pins achieved adequate and consistent mechanical fixation with high reproducibility and exhibits good short-term resorption and biocompatibility. PMID:25678144

  15. Quantification of collagen ultrastructure after penetrating keratoplasty - implications for corneal biomechanics.

    Directory of Open Access Journals (Sweden)

    Craig Boote

    Full Text Available PURPOSE: To quantify long-term changes in stromal collagen ultrastructure following penetrating keratoplasty (PK, and evaluate their possible implications for corneal biomechanics. METHODS: A pair of 16 mm post-mortem corneo-scleral buttons was obtained from a patient receiving bilateral penetrating keratoplasty 12 (left/28 (right years previously. Small-angle x-ray scattering quantified collagen fibril spacing, diameter and spatial order at 0.5 mm or 0.25 mm intervals along linear scans across the graft margin. Corresponding control data was collected from two corneo-scleral buttons with no history of refractive surgery. Wide-angle x-ray scattering quantified collagen fibril orientation at 0.25 mm (horizontal×0.25 mm (vertical intervals across both PK specimens. Quantification of orientation changes in the graft margin were verified by equivalent analysis of data from a 13 year post-operative right PK specimen obtained from a second patient in a previous study, and comparison made with new and published data from normal corneas. RESULTS: Marked changes to normal fibril alignment, in favour of tangentially oriented collagen, were observed around the entire graft margin in all PK specimens. The total number of meridional fibrils in the wound margin was observed to decrease by up to 40%, with the number of tangentially oriented fibrils increasing by up to 46%. As a result, in some locations the number of fibrils aligned parallel to the wound outnumbered those spanning it by up to five times. Localised increases in fibril spacing and diameter, with an accompanying reduction in matrix order, were also evident. CONCLUSIONS: Abnormal collagen fibril size and spatial order within the PK graft margin are indicative of incomplete stromal wound remodelling and the long term persistence of fibrotic scar tissue. Lasting changes in collagen fibril orientation in and around PK wounds may alter corneal biomechanics and compromise the integrity of the graft

  16. Biomechanically Excited SMD Model of a Walking Pedestrian

    DEFF Research Database (Denmark)

    Zhang, Mengshi; Georgakis, Christos T.; Chen, Jun

    2016-01-01

    of biomechanical forces, was used to model a pedestrian for application in vertical human-structure interaction (HSI). Tests were undertaken in a gait laboratory, where a three-dimensional motion-capture system was used to record a pedestrian's walking motions at various frequencies. The motion-capture system...... to be scattered and not closely related to walking frequency. A generalized extreme value distribution was fit to each of the amplitudes. Phases in the model for biomechanical forces were not related to pacing frequency, and a mean value of the phases is proposed....

  17. The modern biomechanics technology in practice of preparedness athletes.

    Directory of Open Access Journals (Sweden)

    Akhmetov R.F.

    2011-01-01

    Full Text Available The generalized information about directions of application of biomechanics technologies in modern sport is resulted. Some aspects of the use of biomechanics ergogenical tools of the moved delayed action in the system of preparation of athletes-jumpers are considered. Presents the possibility of using training complex «easy leading» for perfection of structure of motive actions of sportsmen, specialized in high jumps. The introduction of a vast arsenal of technical tools in practice the training process open new prospects associated with increased efficiency in the preparation of athletes.

  18. The Abnormal Choroidal Vessels in Aged Patients

    Institute of Scientific and Technical Information of China (English)

    Shizhou Huang; Feng Wen; Dezheng Wu; Guangwei Luo; Caijiao Liu

    2002-01-01

    Background: To show the abnormal choroidal vessels in aged patients with indocyanine-green angiography (ICGA).Methods: ICGA was performed in 350 patients with TOPCON TRC-50IA fundus camera.The images were recorded and retrospectively reviewed.Results: Five aged patients out of 350 cases were found to have abnormal choroidalvessels. The incidence was 1.43%. The abnormal choroidal vessels showed round- shapet,focal enlargement, abnormal shape and entrance, satellite appearance, and vascularloops. These might be due to congenital abnormality of choroid.Conclusion: ICGA could be used to observe the abnormal choroidal vessels.

  19. Biomechanical exploration on dynamic modes of lifting.

    Science.gov (United States)

    Gagnon, M; Smyth, G

    1992-03-01

    Whatever the lifting method used, dynamic factors appear to have an effect on the safe realization of movement, and NIOSH guidelines recommend smooth lifting with no sudden acceleration effects. On the other hand, inertial forces may play an important role in the process of transfer of momentum to the load. The direction by which these inertial forces may affect the loadings on body structures and processes of energy transfers cannot be determined a priori. A biomechanical experiment was performed to examine if there were differences in the execution processes between a slow-continuous lift and an accelerated-continuous lift, and also between accelerated lifts either executed continuously or interrupted with a pause. The lifts were executed from a height of 15 cm to a height of 185 cm above the head and with two different loads (6.4 and 11.6 kg). Five experienced workers in manual materials handling were used as subjects. Films and force platforms recordings supplied the data; dynamic segmental analyses were performed to calculate net muscular moments at each joint; a planar single-muscle equivalent was used to estimate compression loadings at L5/S1; total mechanical work, joint work distribution, and energy transfers were determined from a kinetic approach based on the integration of joint power as a function of time. Analyses of variance with repeated measures were applied to the three treatments. The results showed that joint muscular moments, spinal loadings, mechanical work, and muscular utilization ratios were generally increased by the presence of acceleration without inducing benefits of improved energy transfers; therefore slower lifts with reduced acceleration may be safer when handling moderately heavy loads. The maximum values of kinematic and kinetic factors were generally not affected by the pause, but the occurrence of jerks in the movement (acceleration, ground forces, and muscular moments) suggests that the pause may not be indicated when

  20. Expandable intramedullary nail - experimental biomechanical evaluation

    Directory of Open Access Journals (Sweden)

    A. Kajzer

    2010-01-01

    Full Text Available Purpose: The paper presents results of experimental analysis of femur and femur – expandable intramedullary nail system. The aim of the work was to determine displacement in three models. In addition, the torsion of the system aiming at determining the moments depending on the torsional angle of the bone was carried out.Design/methodology/approach: Three femurs were selected for studies. The analysis was carried out on the femur – expandable intramedullary nail system. The influence of the loads and displacements on the bone – nail system on the results of experimental analysis was analysed. In order to carry out calculations, three models were selected: model I – bone without fracture gap, model II and III – femur with expansion intramedullary nails – fracture gap was located 100 mm under greater trochanter. The studies were performed on femur models produced by Swedish company Sawbones. The intramedullary „Fixion IM” nails (Ti-6Al-4V alloy were implanted into the bone. Displacements of determinated models were being recorded from the sensors every 100 N from 10 N to 2000 N.Findings: The analyses showed the difference in displacements, depending on the selected models.Research limitations/implications: The limitations were connected with simplification of boundary conditions during analysis which were the result of the simplification of the models. While studying, muscles and ligaments supporting the bone in anatomic position were not taken into consideration. Instead, the system has been loaded with the axial force (compression.Practical implications: The obtained results can be useful in clinical practice. They can be applied in selection of stabilization methods or rehabilitation as well as in describing the biomechanical conditions connected with type of bone fracture obtained from medical imaging.Originality/value: . The work compares the values of displacement of characteristic points of femur (healthy – model I with the

  1. Amelioration of biomechanical property of cortical bone in osteoporotic model rats with the kidney tonifying compound of traditional Chinese medicine%补肾中药复方改善骨质疏松模型大鼠皮质骨生物力学性能的实验

    Institute of Scientific and Technical Information of China (English)

    朱太咏; 杜天信; 张国梁; 周亚; 杜志谦; 李根林; 刘又文

    2005-01-01

    BACKGROUND: The biomechanical property(BP) of the bone is decided by its geometric structure and component material. Merely pursuing increase of the bone mineral density(BMD) might lead to deterioration of bone BP.However at present, some researohes on therapeutic action on osteoporosis emphasize excessively medical influence to BMD, and the change in the holistic BP of the bone in osteoporotic zone and its mechanism still need to investigate deeply.OBJECTIVE: To probe into the action and its mechanism of "the kidney tonifying compound of the Traditional Chinese Medical (TCM) "on BP of cortical bone in ovariectomized osteoporotic model rats.DESIGN: Completely randomized controlled experiment based on experimental animals.SETTING: Laboratory of Biomedical Engineering, Luoyang Hospital and Institute of Traditional Chinese Orthopedics and Traumatology in Henan Province.MATERIALS: The experiment was completed from November 2000 to July 2001 at Research Laboratory of Biomedical Engineering,Luoyang Institute of Traditional Chinese Orthopedics and Traumatology of Henan Province. The healthy Wistar female rats aged 10 months,weighing(350±20) g.METHODS: Fifty Whistar female rats aged 10 months were randomly divided into 5 groups: the normal, model, premarin-treated, xianling gubao-treated and migu capsule-treated with 10 in each group. The normal group was only given sham operation and the other four groups were ovariectomized. The rats after operation were fed normally for ninety days.Since the 91st day after operation,the rats had been given the medicines for 90 days and then killed. The thighbones were taken out,then BMD,femoral geometry sizes and BP were determined.MAIN OUTCOME MEASURES: ① The primary sequel was the comparison of the parameters of femoral BP. ② The secondary sequel was the changes in parameters of femoral geometric structure, area of cortical bone and BMD of every midsectional fomur.RESULTS: Femoral BP worsened significantly,its mechanical

  2. Ankyrin-B in lens architecture and biomechanics: Just not tethering but more.

    Science.gov (United States)

    Rao, Ponugoti Vasantha; Maddala, Rupalatha

    2016-01-01

    The ankyrins are a family of well-characterized metazoan adaptor proteins that play a key role in linking various membrane-spanning proteins to the underlying spectrin-actin cytoskeleton; a mechanistic understanding of their role in tissue architecture and mechanics, however, remains elusive. Here we comment on a recent study demonstrating a key role for ankyrin-B in maintaining the hexagonal shape and radial alignment of ocular lens fiber cells by regulating the membrane organization of periaxin, dystrophins/dystroglycan, NrCAM and spectrin-actin network of proteins, and revealing that ankyrin-B deficiency impairs fiber cell shape and mechanical properties of the ocular lens. These observations indicate that ankyrin-B plays an important role in maintaining tissue cytoarchitecture, cell shape and biomechanical properties via engaging in key protein: protein interactions required for membrane anchoring and organization of the spectrin-actin skeleton, scaffolding proteins and cell adhesive proteins. PMID:27044909

  3. [Biomechanical test study of rat femurs growing under different stress environment].

    Science.gov (United States)

    Liu, Yingxi; Zhao, Wenzhi; Zhang, Jun; Li, Shouju; Li, Jingnian; Sun, Xiaojiang

    2005-06-01

    By creating two kinds of stress environment in the same animal model, we performed a three-point bending test and a compressing test on the rat femurs growing under different stress conditions to characterize the effect of stress on bone mechanical properties. The right hindlimbs were subjected to sciatic nerve resection to become cripple and were used as unloading group; the left hindlimbs bore excess load and made up the overloading group; the normal rats were used as control group. The animals were encouraged to exercise for half an hour everyday in the morning, noon and evening. The experiment observation finished in four weeks. The biomechanical parameters of femur diaphyses were measured. The experiment results showed that stress environment may change several mechanical parameters of rat femurs. This study indicated that bone tissues can adapt to its stress environment by changing its mechanical properties. The experimental model in this article is practical and reliable.

  4. Failure modes and materials design for biomechanical layer structures

    Science.gov (United States)

    Deng, Yan

    Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa

  5. CHROMOSOMAL ABNORMALITIES IN PATIENTS WITH SPERM DISORDERS

    OpenAIRE

    L. Y. Pylyp; L. A. Spinenko; V. D. Zukin; N. M. Bilko

    2013-01-01

    Chromosomal abnormalities are among the most common genetic causes of spermatogenic disruptions. Carriers of chromosomal abnormalities are at increased risk of infertility, miscarriage or birth of a child with unbalanced karyotype due to the production of unbalanced gametes. The natural selection against chromosomally abnormal sperm usually prevents fertilization with sperm barring in cases of serious chromosomal abnormalities. However, assisted reproductive technologies in general and intrac...

  6. Rabbit Achilles tendon full transection model - wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery.

    Science.gov (United States)

    Meier Bürgisser, Gabriella; Calcagni, Maurizio; Bachmann, Elias; Fessel, Gion; Snedeker, Jess G; Giovanoli, Pietro; Buschmann, Johanna

    2016-01-01

    After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand. PMID:27635037

  7. Rabbit Achilles tendon full transection model – wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery

    Science.gov (United States)

    Meier Bürgisser, Gabriella; Calcagni, Maurizio; Bachmann, Elias; Fessel, Gion; Snedeker, Jess G.; Giovanoli, Pietro

    2016-01-01

    ABSTRACT After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand. PMID:27635037

  8. Using Clinical Gait Case Studies to Enhance Learning in Biomechanics

    Science.gov (United States)

    Chester, Victoria

    2011-01-01

    Clinical case studies facilitate the development of clinical reasoning strategies through knowledge and integration of the basic sciences. Case studies have been shown to be more effective in developing problem-solving abilities than the traditional lecture format. To enhance the learning experiences of students in biomechanics, clinical case…

  9. How to Assess the Biomechanical Risk Levels in Beekeeping.

    Science.gov (United States)

    Maina, G; Rossi, F; Baracco, A

    2016-01-01

    Beekeepers are at particular risk of developing work-related musculoskeletal disorders, but many of the studies lack detailed exposure assessment. To evaluate the biomechanical overload exposure in a specific farming activity, a multitasking model has been developed through the characterization of 37 basic operational tasks typical of the beekeeping activity. The Occupational Repetitive Actions (OCRA) Checklist and the National Institute for Occupational Safety and Health (NIOSH) Lifting Index methodologies have been applied to these elementary tasks to evaluate the exposure, and the resulting risk indices have been time-weighted averaged. Finally, an easy access, computer-assisted toolkit has been developed to help the beekeepers in the biomechanical risk assessment process. The risk of biomechanical overload for the upper limbs ranges from acceptable (maintenance and recovery of woody material and honey packaging with dosing machine tasks) to high (distribution of the top supers) risk level. The risk for back injury is always borderline in women and increases with exposure time, whereas it ranges from acceptable to borderline in men. The definition of the biomechanical risk levels allows for planning of corrective actions aimed at preventing and reducing the risk of musculoskeletal disorders through engineering, administrative, and behavioral interventions. The methodology can be used for risk assessment in other mainly manual agricultural activities. PMID:26765780

  10. Biomechanics research in ski jumping, 1991-2006.

    Science.gov (United States)

    Schwameder, Hermann

    2008-01-01

    In this paper, I review biomechanics research in ski jumping with a specific focus on publications presented between 1991 and 2006 on performance enhancement, limiting factors of the take-off, specific training and conditioning, aerodynamics, and safety. The first section presents a brief description of ski jumping phases (in-run, take-off, early flight, stable flight, and landing) regarding the biomechanical and functional fundamentals. The most important and frequently used biomechanical methods in ski jumping (kinematics, ground reaction force analyses, muscle activation patterns, aerodynamics) are summarized in the second section. The third section focuses on ski jumping articles and research findings published after the establishment of the V-technique in 1991, as the introduction of this technique has had a major influence on performance enhancement, ski jumping regulations, and the construction of hill profiles. The final section proposes topics for future research in the biomechanics of ski jumping, including: take-off and early flight and the relative roles of vertical velocity and forward somersaulting angular momentum; optimal jumping patterns utilizing the capabilities of individual athletes; development of kinematic and kinetic feedback systems for hill jumps; comparisons of simulated and hill jumps; effect of equipment modifications on performance and safety enhancement.

  11. Unified Approach to the Biomechanics of Dental Implantology

    Science.gov (United States)

    Grenoble, D. E.; Knoell, A. C.

    1973-01-01

    The human need for safe and effective dental implants is well-recognized. Although many implant designs have been tested and are in use today, a large number have resulted in clinical failure. These failures appear to be due to biomechanical effects, as well as biocompatibility and surgical factors. A unified approach is proposed using multidisciplinary systems technology, for the study of the biomechanical interactions between dental implants and host tissues. The approach progresses from biomechanical modeling and analysis, supported by experimental investigations, through implant design development, clinical verification, and education of the dental practitioner. The result of the biomechanical modeling, analysis, and experimental phases would be the development of scientific design criteria for implants. Implant designs meeting these criteria would be generated, fabricated, and tested in animals. After design acceptance, these implants would be tested in humans, using efficient and safe surgical and restorative procedures. Finally, educational media and instructional courses would be developed for training dental practitioners in the use of the resulting implants.

  12. Quantitative modelling of the biomechanics of the avian syrinx

    DEFF Research Database (Denmark)

    Elemans, Coen P. H.; Larsen, Ole Næsbye; Hoffmann, Marc R.;

    2003-01-01

    We review current quantitative models of the biomechanics of bird sound production. A quantitative model of the vocal apparatus was proposed by Fletcher (1988). He represented the syrinx (i.e. the portions of the trachea and bronchi with labia and membranes) as a single membrane. This membrane acts...

  13. Focusing on the Hard parts: A Biomechanics Laboratory Exercise

    Science.gov (United States)

    Fingerut, Jonathan; Orbe, Kristina; Flynn, Daniel; Habdas, Piotr

    2013-01-01

    As part of a biomechanics course aimed at both upper-division Biology and Physics majors, this laboratory exercise introduces students to the ingenious ways in which organisms vary the composition and form of support and defensive structures such as bone and shell to maximize their strength while minimizing the energetic cost needed to produce…

  14. Pathobiology of obesity and osteoarthritis: integrating biomechanics and inflammation

    Directory of Open Access Journals (Sweden)

    Rita I. Issa

    2012-05-01

    Full Text Available Obesity is a significant risk factor for developing osteoarthritis in weight-bearing and non-weight-bearing joints. Although the pathogenesis of obesity-associated osteoarthritis is not completely understood, recent studies indicate that pro-inflammatory metabolic factors contribute to an increase in osteoarthritis risk. Adipose tissue, and in particular infrapatellar fat, is a local source of pro-inflammatory mediators that are increased with obesity and have been shown to increase cartilage degradation in cell and tissue culture models. One adipokine in particular, leptin, may be a critical mediator of obesity-associated osteoarthritis via synergistic actions with other inflammatory cytokines. Biomechanical factors may also increase the risk of osteoarthritis by activating cellular inflammation and promoting oxidative stress. However, some types of biomechanical stimulation, such as physiologic cyclic loading, inhibit inflammation and protect against cartilage degradation. A high percentage of obese individuals with knee osteoarthritis are sedentary, suggesting that a lack of physical activity may increase the susceptibility to inflammation. A more comprehensive approach to understanding how obesity alters daily biomechanical exposures within joint tissues may provide new insight into the protective and damaging effects of biomechanical factors on inflammation in osteoarthritis.

  15. The Biomechanical Implications of Obesity in K-12 Learners

    Science.gov (United States)

    Strohmeyer, Scott

    2007-01-01

    Few biomechanical studies have examined obese individuals as primary subjects. However, some mechanical differences have been identified between overweight or obese individuals and nonoverweight movers. It is not clear how obesity affects the onset of osteoarthritis, for example, but it is evident that obesity does place significant limitations on…

  16. LUMBAR SPINAL STENOSIS. A REVIEW OF BIOMECHANICAL STUDIES

    Institute of Scientific and Technical Information of China (English)

    戴力扬; 徐印坎

    1998-01-01

    ObjectS. To investigate the biomechanical aspects of etiology, pathology, clinical manifestation, diagnosis and surgical treatment of the lumbar spinal stenosis. Methods. A series of biomechanical methods, such as three-dimensional finite element models, threedimensional kinematic measurement, cadeveric evaluation, and imaging assessment was applied to correlate lumbar biomechanics and lumber spinal stenosls. Surgery of lumber spinal stenosis has been improved. Results.The stresses significantly concentrate on the posterolateral part of the annulus fibrcsms of disc, the posterior surface of vertebral body, the pedlcle, the interarticularis and the beet joints. This trend is intensified by disc degeneration and lumber backward extension. Posterior elcxnent resection has a definite effect upon the biomechanical behavior of lumbar vertebrae. The improved operations proved satisfactory. Conclusion. Stress concentration in the lumber vertebrae is of importance to the etiology of degenerative lumbar spinal stenosls, and disc degeneratkm is the initial key of this process. Than these will be aggravatnd by backward extension. Functloval radiography and myelography are of assistance to the diagnosis of the lumhar spinal stenosls. For the surgcal treatment of the lumber spinal stenosis, destruction of the posterior element should be avoid as far as possible based upon the thorough decmnpression. Maintaining the lumbar spine in flexion by fusion after decorapression has been proved a useftd method. When developmental spinal stenoals is combined with disc herniation, discectoray through laminotomy is recommend for decompression.

  17. Corneal biomechanical changes following toric soft contact lens wear

    Directory of Open Access Journals (Sweden)

    Somayeh Radaie-Moghadam

    2016-01-01

    Conclusion: CH and CRF decreased significantly one month after fitting toric soft contact lenses while CCT and K mean did not change significantly. Corneal biomechanical parameters may alter with toric soft contact lens use and such changes may have implications with long-term use such lenses.

  18. A highly versatile autonomous underwater vehicle with biomechanical propulsion

    NARCIS (Netherlands)

    Simons, D.G.; Bergers, M.M.C.; Henrion, S.; Hulzenga, J.I.J.; Jutte, R.W.; Pas, W.M.G.; Van Schravendijk, M.; Vercruyssen, T.G.A.; Wilken, A.P.

    2009-01-01

    An autonomous underwater vehicle with a biomechanical propulsion system is a possible answer to the demand for small, silent sensor platforms in many fields. The design of Galatea, a bio-mimetic AUV, involves four aspects: hydrodynamic shape, the propulsion, the motion control systems and payload. T

  19. Biomechanics of the elbow joint in tennis players.

    NARCIS (Netherlands)

    Eygendaal, D.; Rahussen, F.T.; Diercks, R.L.

    2007-01-01

    Elbow injuries constitute a sizeable percentage of tennis injuries. A basic understanding of biomechanics of tennis and analysis of forces, loads and motions of the elbow during tennis can will improve the understanding of the pathophysiology of these injuries. All different strokes in tennis have a

  20. Quantitative modelling of the biomechanics of the avian syrinx

    NARCIS (Netherlands)

    Elemans, C.P.H.; Larsen, O.N.; Hoffmann, M.R.; Leeuwen, van J.L.

    2003-01-01

    We review current quantitative models of the biomechanics of bird sound production. A quantitative model of the vocal apparatus was proposed by Fletcher (1988). He represented the syrinx (i.e. the portions of the trachea and bronchi with labia and membranes) as a single membrane. This membrane acts

  1. The biomechanical and physiological effect of two dynamic workstations

    NARCIS (Netherlands)

    Botter, J.; Burford, E.M.; Commissaris, D.; Könemann, R.; Mastrigt, S.H.V.; Ellegast, R.P.

    2013-01-01

    The aim of this research paper was to investigate the effect, both biomechanically and physiologically, of two dynamic workstations currently available on the commercial market. The dynamic workstations tested, namely the Treadmill Desk by LifeSpan and the LifeBalance Station by RightAngle, were com

  2. Early Specialization in Youth Sport: A Biomechanical Perspective

    Science.gov (United States)

    Mattson, Jeffrey M.; Richards, Jim

    2010-01-01

    This article examines, from a biomechanical perspective, three issues related to early specialization: overuse injuries, the developmental aspects, and the performance aspects. It concludes that "there is no evidence that early specialization causes overuse injuries or hinders growth and maturation." At the same time, early specialization has…

  3. Biomechanics Curriculum: Its Content and Relevance to Movement Sciences

    Science.gov (United States)

    Hamill, Joseph

    2007-01-01

    While the National Association for Sport and Physical Education (NASPE) has outlined a number of learning outcomes for undergraduate biomechanics, there are a number of factors that can influence the curriculum in such courses. These factors create a situation that indeed can influence students and their attitude towards these classes.…

  4. A biomechanical comparison of four different fixation methods for midshaft clavicle fractures.

    Science.gov (United States)

    Chen, Yang; Yang, Yang; Ma, Xinlong; Xu, Weiguo; Ma, Jianxiong; Zhu, Shaowen; Ma, Baoyi; Xing, Dan

    2016-01-01

    Clavicle fractures may occur in all age groups, and 70%-80% of clavicle fractures occur in the midshaft. Many methods for treating midshaft clavicular fractures have been reported and remain controversial. To provide some guidance for clinical treatment, 30 artificial polymethyl methacrylate models of the clavicle were sewn obliquely at the midshaft to simulate the most common type of clavicular fractures, and the fracture models were divided into five groups randomly and were fixed as follows: the reconstruction plates were placed at the superior position of the fracture model (R-S group), the reconstruction plates were placed at the anteroinferior position of the fracture model (R-AI group), the locking plates were placed at the superior position (L-S group), the locking plates were placed at the anteroinferior position (L-AI group); and the control models were unfixed (control group). The strain gauges were attached to the bone surface near the fracture fragments, and then, the biomechanical properties of the specimens were measured using the compression test, torsion test and three-point bending test. The results showed that plate fixation can provide a stable construct to help with fracture healing and is the preferred method in the treatment of clavicle fractures. The locking plate provides the best biomechanical stability when placed at the anteroinferior position, and this surgical method can reduce the operation time and postoperative complications; thus, it would be a better choice in clinical practice. PMID:26586526

  5. Computational biomechanics of bone's responses to dental prostheses - osseointegration, remodeling and resorption

    Science.gov (United States)

    Li, Wei; Rungsiyakull, Chaiy; Field, Clarice; Lin, Daniel; Zhang, Leo; Li, Qing; Swain, Michael

    2010-06-01

    Clinical and experimental studies showed that human bone has the ability to remodel itself to better adapt to its biomechanical environment by changing both its material properties and geometry. As a consequence of the rapid development and extensive applications of major dental restorations such as implantation and fixed partial denture (FPD), the effect of bone remodeling on the success of a dental restorative surgery is becoming critical for prosthetic design and pre-surgical assessment. This paper aims to provide a computational biomechanics framework to address dental bone's responses as a result of dental restoration. It explored three important issues of resorption, apposition and osseointegration in terms of remodeling simulation. The published remodeling data in long bones were regulated to drive the computational remodeling prediction for the dental bones by correlating the results to clinical data. It is anticipated that the study will provide a more predictive model of dental bone response and help develop a new design methodology for patient-specific dental prosthetic restoration.

  6. Biomechanical analyses of prosthetic mesh repair in a hiatal hernia model.

    Science.gov (United States)

    Alizai, Patrick Hamid; Schmid, Sofie; Otto, Jens; Klink, Christian Daniel; Roeth, Anjali; Nolting, Jochen; Neumann, Ulf Peter; Klinge, Uwe

    2014-10-01

    Recurrence rate of hiatal hernia can be reduced with prosthetic mesh repair; however, type and shape of the mesh are still a matter of controversy. The purpose of this study was to investigate the biomechanical properties of four conventional meshes: pure polypropylene mesh (PP-P), polypropylene/poliglecaprone mesh (PP-U), polyvinylidenefluoride/polypropylene mesh (PVDF-I), and pure polyvinylidenefluoride mesh (PVDF-S). Meshes were tested either in warp direction (parallel to production direction) or perpendicular to the warp direction. A Zwick testing machine was used to measure elasticity and effective porosity of the textile probes. Stretching of the meshes in warp direction required forces that were up to 85-fold higher than the same elongation in perpendicular direction. Stretch stress led to loss of effective porosity in most meshes, except for PVDF-S. Biomechanical impact of the mesh was additionally evaluated in a hiatal hernia model. The different meshes were used either as rectangular patches or as circular meshes. Circular meshes led to a significant reinforcement of the hiatus, largely unaffected by the orientation of the warp fibers. In contrast, rectangular meshes provided a significant reinforcement only when warp fibers ran perpendicular to the crura. Anisotropic elasticity of prosthetic meshes should therefore be considered in hiatal closure with rectangular patches.

  7. Cancellous Screws Are Biomechanically Superior to Cortical Screws in Metaphyseal Bone.

    Science.gov (United States)

    Wang, Tim; Boone, Christopher; Behn, Anthony W; Ledesma, Justin B; Bishop, Julius A

    2016-09-01

    Cancellous screws are designed to optimize fixation in metaphyseal bone environments; however, certain clinical situations may require the substitution of cortical screws for use in cancellous bone, such as anatomic constraints, fragment size, or available instrumentation. This study compares the biomechanical properties of commercially available cortical and cancellous screw designs in a synthetic model representing various bone densities. Commercially available, fully threaded, 4.0-mm outer-diameter cortical and cancellous screws were tested in terms of pullout strength and maximum insertion torque in standard-density and osteoporotic cancellous bone models. Pullout strength and maximum insertion torque were both found to be greater for cancellous screws than cortical screws in all synthetic densities tested. The magnitude of difference in pullout strength between cortical and cancellous screws increased with decreasing synthetic bone density. Screw displacement prior to failure and total energy absorbed during pullout strength testing were also significantly greater for cancellous screws in osteoporotic models. Stiffness was greater for cancellous screws in standard and osteoporotic models. Cancellous screws have biomechanical advantages over cortical screws when used in metaphyseal bone, implying the ability to both achieve greater compression and resist displacement at the screw-plate interface. Surgeons should preferentially use cancellous over cortical screws in metaphyseal environments where cortical bone is insufficient for fixation. [Orthopedics.2016; 39(5):e828-e832.].

  8. Biomechanical testing of a polymer-based biomaterial for the restoration of spinal stability after nucleotomy

    Directory of Open Access Journals (Sweden)

    Kaps Christian

    2009-07-01

    Full Text Available Abstract Background Surgery for disc herniations can be complicated by two major problems: painful degeneration of the spinal segment and re-herniation. Therefore, we examined an absorbable poly-glycolic acid (PGA biomaterial, which was lyophilized with hyaluronic acid (HA, for its utility to (a re-establish spinal stability and to (b seal annulus fibrosus defects. The biomechanical properties range of motion (ROM, neutral zone (NZ and a potential annulus sealing capacity were investigated. Methods Seven bovine, lumbar spinal units were tested in vitro for ROM and NZ in three consecutive stages: (a intact, (b following nucleotomy and (c after insertion of a PGA/HA nucleus-implant. For biomechanical testing, spinal units were mounted on a loading-simulator for spines. In three cycles, axial loading was applied in an excentric mode with 0.5 Nm steps until an applied moment of ± 7.5 Nm was achieved in flexion/extension. ROM and NZ were assessed. These tests were performed without and with annulus sealing by sewing a PGA/HA annulus-implant into the annulus defect. Results Spinal stability was significantly impaired after nucleotomy (p Conclusion PGA/HA biomaterial seems to be well suited for cell-free and cell-based regenerative treatment strategies in spinal surgery. Its abilities to restore spinal stability and potentially close annulus defects open up new vistas for regenerative approaches to treat intervertebral disc degeneration and for preventing implant herniation.

  9. On Regularity of Abnormal Subriemannian Geodesics

    CERN Document Server

    Tan, Kanghai

    2012-01-01

    We prove the smoothness of abnormal minimizers of subriemannian manifolds of step 3 with a nilpotent basis. We prove that rank 2 Carnot groups of step 4 admit no strictly abnormal minimizers. For any subriemannian manifolds of step less than 7, we show all abnormal minimizers have no corner type singularities, which partly generalize the main result of Leonardi-Monti.

  10. Energetics, Biomechanics, and Performance in Masters' Swimmers: A Systematic Review.

    Science.gov (United States)

    Ferreira, Maria I; Barbosa, Tiago M; Costa, Mário J; Neiva, Henrique P; Marinho, Daniel A

    2016-07-01

    Ferreira, MI, Barbosa, TM, Costa, MJ, Neiva, HP, and Marinho, DA. Energetics, biomechanics, and performance in masters' swimmers: a systematic review. J Strength Cond Res 30(7): 2069-2081, 2016-This study aimed to summarize evidence on masters' swimmers energetics, biomechanics, and performance gathered in selected studies. An expanded search was conducted on 6 databases, conference proceedings, and department files. Fifteen studies were selected for further analysis. A qualitative evaluation of the studies based on the Quality Index (QI) was performed by 2 independent reviewers. The studies were thereafter classified into 3 domains according to the reported data: performance (10 studies), energetics (4 studies), and biomechanics (6 studies). The selected 15 articles included in this review presented low QI scores (mean score, 10.47 points). The biomechanics domain obtained higher QI (11.5 points), followed by energetics and performance (10.6 and 9.9 points, respectively). Stroke frequency (SF) and stroke length (SL) were both influenced by aging, although SF is more affected than SL. Propelling efficiency (ηp) decreased with age. Swimming performance declined with age. The performance declines with age having male swimmers deliver better performances than female counterparts, although this difference tends to be narrow in long-distance events. One single longitudinal study is found in the literature reporting the changes in performance over time. The remaining studies are cross-sectional designs focusing on the energetics and biomechanics. Overall, biomechanics parameters, such as SF, SL, and ηp, tend to decrease with age. This review shows the lack of a solid body of knowledge (reflected in the amount and quality of the articles published) on the changes in biomechanics, energetics, and performance of master swimmers over time. The training programs for this age-group should aim to preserve the energetics as much as possible and, concurrently, improve the

  11. Energetics, Biomechanics, and Performance in Masters' Swimmers: A Systematic Review.

    Science.gov (United States)

    Ferreira, Maria I; Barbosa, Tiago M; Costa, Mário J; Neiva, Henrique P; Marinho, Daniel A

    2016-07-01

    Ferreira, MI, Barbosa, TM, Costa, MJ, Neiva, HP, and Marinho, DA. Energetics, biomechanics, and performance in masters' swimmers: a systematic review. J Strength Cond Res 30(7): 2069-2081, 2016-This study aimed to summarize evidence on masters' swimmers energetics, biomechanics, and performance gathered in selected studies. An expanded search was conducted on 6 databases, conference proceedings, and department files. Fifteen studies were selected for further analysis. A qualitative evaluation of the studies based on the Quality Index (QI) was performed by 2 independent reviewers. The studies were thereafter classified into 3 domains according to the reported data: performance (10 studies), energetics (4 studies), and biomechanics (6 studies). The selected 15 articles included in this review presented low QI scores (mean score, 10.47 points). The biomechanics domain obtained higher QI (11.5 points), followed by energetics and performance (10.6 and 9.9 points, respectively). Stroke frequency (SF) and stroke length (SL) were both influenced by aging, although SF is more affected than SL. Propelling efficiency (ηp) decreased with age. Swimming performance declined with age. The performance declines with age having male swimmers deliver better performances than female counterparts, although this difference tends to be narrow in long-distance events. One single longitudinal study is found in the literature reporting the changes in performance over time. The remaining studies are cross-sectional designs focusing on the energetics and biomechanics. Overall, biomechanics parameters, such as SF, SL, and ηp, tend to decrease with age. This review shows the lack of a solid body of knowledge (reflected in the amount and quality of the articles published) on the changes in biomechanics, energetics, and performance of master swimmers over time. The training programs for this age-group should aim to preserve the energetics as much as possible and, concurrently, improve the

  12. Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation

    Science.gov (United States)

    Ho, Leon C.; Sigal, Ian A.; Jan, Ning-Jiun; Yang, Xiaoling; van der Merwe, Yolandi; Yu, Yu; Chau, Ying; Leung, Christopher K.; Conner, Ian P.; Jin, Tao; Wu, Ed X.; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.

    2016-01-01

    The microstructural organization and composition of the corneoscleral shell (CSS) determine the biomechanical behavior of the eye, and are important in diseases such as glaucoma and myopia. However, limited techniques can assess these properties globally, non-invasively and quantitatively. In this study, we hypothesized that multi-modal magnetic resonance imaging (MRI) can reveal the effects of biomechanical or biochemical modulation on CSS. Upon intraocular pressure (IOP) elevation, CSS appeared hyperintense in both freshly prepared ovine eyes and living rat eyes using T2-weighted MRI. Quantitatively, transverse relaxation time (T2) of CSS increased non-linearly with IOP at 0–40 mmHg and remained longer than unloaded tissues after being unpressurized. IOP loading also increased fractional anisotropy of CSS in diffusion tensor MRI without apparent change in magnetization transfer MRI, suggestive of straightening of microstructural fibers without modification of macromolecular contents. Lastly, treatments with increasing glyceraldehyde (mimicking crosslinking conditions) and chondroitinase-ABC concentrations (mimicking glycosaminoglycan depletion) decreased diffusivities and increased magnetization transfer in cornea, whereas glyceraldehyde also increased magnetization transfer in sclera. In summary, we demonstrated the changing profiles of MRI contrast mechanisms resulting from biomechanical or biochemical modulation of the eye non-invasively. Multi-modal MRI may help evaluate the pathophysiological mechanisms in CSS and the efficacy of corneoscleral treatments. PMID:27561353

  13. Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation.

    Science.gov (United States)

    Ho, Leon C; Sigal, Ian A; Jan, Ning-Jiun; Yang, Xiaoling; van der Merwe, Yolandi; Yu, Yu; Chau, Ying; Leung, Christopher K; Conner, Ian P; Jin, Tao; Wu, Ed X; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S; Chan, Kevin C

    2016-01-01

    The microstructural organization and composition of the corneoscleral shell (CSS) determine the biomechanical behavior of the eye, and are important in diseases such as glaucoma and myopia. However, limited techniques can assess these properties globally, non-invasively and quantitatively. In this study, we hypothesized that multi-modal magnetic resonance imaging (MRI) can reveal the effects of biomechanical or biochemical modulation on CSS. Upon intraocular pressure (IOP) elevation, CSS appeared hyperintense in both freshly prepared ovine eyes and living rat eyes using T2-weighted MRI. Quantitatively, transverse relaxation time (T2) of CSS increased non-linearly with IOP at 0-40 mmHg and remained longer than unloaded tissues after being unpressurized. IOP loading also increased fractional anisotropy of CSS in diffusion tensor MRI without apparent change in magnetization transfer MRI, suggestive of straightening of microstructural fibers without modification of macromolecular contents. Lastly, treatments with increasing glyceraldehyde (mimicking crosslinking conditions) and chondroitinase-ABC concentrations (mimicking glycosaminoglycan depletion) decreased diffusivities and increased magnetization transfer in cornea, whereas glyceraldehyde also increased magnetization transfer in sclera. In summary, we demonstrated the changing profiles of MRI contrast mechanisms resulting from biomechanical or biochemical modulation of the eye non-invasively. Multi-modal MRI may help evaluate the pathophysiological mechanisms in CSS and the efficacy of corneoscleral treatments. PMID:27561353

  14. State-of-the-art research in lower-limb prosthetic biomechanics-socket interface: a review.

    Science.gov (United States)

    Mak, A F; Zhang, M; Boone, D A

    2001-01-01

    Scientific studies have been conducted to quantify attributes that may be important in the creation of more functional and comfortable lower-limb prostheses. The prosthesis socket, a human-machine interface, has to be designed properly to achieve satisfactory load transmission, stability, and efficient control for mobility. The biomechanical understanding of the interaction between prosthetic socket and the residual limb is fundamental to such goals. The purpose of this paper is to review the recent research literature on socket biomechanics, including socket pressure measurement, friction-related phenomena and associated properties, computational modeling, and limb tissue responses to external mechanical loads and other physical conditions at the interface. There is no doubt that improved biomechanical understanding has advanced the science of socket fitting. However, the most recent advances in the understanding of stresses experienced at the residual limb have not yet led to enough clinical consensus that could fundamentally alter clinical practice. Efforts should be made to systematically identify the major discrepancies. Further research should be directed to address the critical controversies and the associated technical challenges. Developments should be guided to offer clinicians the quantification and visualization of the interaction between the residual limb and the prosthetic socket. An understanding of comfort and optimal load transfer as patterns of socket interface stress could culminate in socket design expert systems.

  15. Non-invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye upon Biomechanical or Biochemical Modulation.

    Science.gov (United States)

    Ho, Leon C; Sigal, Ian A; Jan, Ning-Jiun; Yang, Xiaoling; van der Merwe, Yolandi; Yu, Yu; Chau, Ying; Leung, Christopher K; Conner, Ian P; Jin, Tao; Wu, Ed X; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S; Chan, Kevin C

    2016-08-26

    The microstructural organization and composition of the corneoscleral shell (CSS) determine the biomechanical behavior of the eye, and are important in diseases such as glaucoma and myopia. However, limited techniques can assess these properties globally, non-invasively and quantitatively. In this study, we hypothesized that multi-modal magnetic resonance imaging (MRI) can reveal the effects of biomechanical or biochemical modulation on CSS. Upon intraocular pressure (IOP) elevation, CSS appeared hyperintense in both freshly prepared ovine eyes and living rat eyes using T2-weighted MRI. Quantitatively, transverse relaxation time (T2) of CSS increased non-linearly with IOP at 0-40 mmHg and remained longer than unloaded tissues after being unpressurized. IOP loading also increased fractional anisotropy of CSS in diffusion tensor MRI without apparent change in magnetization transfer MRI, suggestive of straightening of microstructural fibers without modification of macromolecular contents. Lastly, treatments with increasing glyceraldehyde (mimicking crosslinking conditions) and chondroitinase-ABC concentrations (mimicking glycosaminoglycan depletion) decreased diffusivities and increased magnetization transfer in cornea, whereas glyceraldehyde also increased magnetization transfer in sclera. In summary, we demonstrated the changing profiles of MRI contrast mechanisms resulting from biomechanical or biochemical modulation of the eye non-invasively. Multi-modal MRI may help evaluate the pathophysiological mechanisms in CSS and the efficacy of corneoscleral treatments.

  16. The Relationship between MR Parameters and Biomechanical Quantities of Loaded Human Articular Cartilage in Osteoarthritis: An In-Vitro Study

    Science.gov (United States)

    Juráš, V.; Szomolányi, P.; Gäbler, S.; Frollo, I.; Trattnig, S.

    2009-01-01

    The aim of this study was to assess the changes in MRI parameters during applied load directly in MR scanner and correlate these changes with biomechanical parameters of human articular cartilage. Cartilage explants from patients who underwent total knee replacement were examined in the micro-imaging system in 3T scanner. Respective MRI parameters (T1 without- and T1 with contrast agent as a marker of proteoglycan content, T2 as a marker of collagen network anisotropy and ADC as a measure of diffusivity) were calculated in pre- and during compression state. Subsequently, these parameters were compared to the biomechanical properties of articular cartilage, instantaneous modulus (I), equilibrium modulus (Eq) and time of tissue relaxation (τ). Significant load-induced changes of T2 and ADC were recorded. High correlation between T1Gd and I (r = 0.6324), and between ADC and Eq (r = -0.4884) was found. Multi-parametric MRI may have great potential in analyzing static and dynamic biomechanical behavior of articular cartilage in early stages of osteoarthritis (OA).

  17. Ventilation abnormalities in pulmonary embolus

    International Nuclear Information System (INIS)

    The ventilation scans of 11 patients with angiographically-proven PE were reviewed. All patients had one or more lung perfusion defects. The chest roentgenograph was abnormal in 11 of the patients. The ventilation studies were performed in the posterior positron prior to the perfusion lung scan using Xe-133. The ventilation study consists of washin, equilibrium, and washout images. In four patients with normal washin there was retention of the Xe-133 (delayed washout) at the site of the perfusion defect. All had roentgenographic abnormalities. Another pattern was observed at the sites of some perfusion defects in six patients. In these, there was decreased washin at the perfusion defect location. Two patients had both decreased washin and delayed washout. In only one case was the typical ventilation pattern of normal washin and normal washout. The method of retention is unclear, but may be due to decreased clearance of Xe-133 secondary to decreased blood flow in the area or deposition of some fat soluble component left at the site of embolization. The etiology of the reduced washin is unclear, but may be due to reduced surfactant production. This study suggests that more attention must be paid to the ventilation study, where there may be additional clues to the diagnosis of pulmonary embolus

  18. Chromosomal phenotypes and submicroscopic abnormalities

    Directory of Open Access Journals (Sweden)

    Devriendt Koen

    2004-01-01

    Full Text Available Abstract The finding, during the last decade, that several common, clinically delineated syndromes are caused by submicroscopic deletions or, more rarely, by duplications, has provided a powerful tool in the annotation of the human genome. Since most microdeletion/microduplication syndromes are defined by a common deleted/duplicated region, abnormal dosage of genes located within these regions can explain the phenotypic similarities among individuals with a specific syndrome. As such, they provide a unique resource towards the genetic dissection of complex phenotypes such as congenital heart defects, mental and growth retardation and abnormal behaviour. In addition, the study of phenotypic differences in individuals with the same microdeletion syndrome may also become a treasury for the identification of modifying factors for complex phenotypes. The molecular analysis of these chromosomal anomalies has led to a growing understanding of their mechanisms of origin. Novel tools to uncover additional submicroscopic chromosomal anomalies at a higher resolution and higher speed, as well as the novel tools at hand for deciphering the modifying factors and epistatic interactors, are 'on the doorstep' and will, besides their obvious diagnostic role, play a pivotal role in the genetic dissection of complex phenotypes.

  19. Biomechanical effect of vertebroplasty on the adjacent intervertebral levels using a three-dimensional finite element analysis

    Institute of Scientific and Technical Information of China (English)

    LU Sheng; XU Yong-qing; ZHANG Mei-chao; TANG Xun; WANG Yue-li; ZHONG Shi-zheng

    2007-01-01

    Objective: To investigate the biomechanical effect of different volume,distribution and leakage to adjacent disc of bone cement on the adjacent vertebral body by three-dimensional osteoporosis finite element model of lumbar.Methods: L4-L5 motion segment data of the cadaver of an old man who had no abnormal findings on roentgenograms were obtained from computed tomography (CT) scans. Three-dimensional model of L4-L5 was established with Mimics software, and finite element model of L4-L5 functional spinal unit (FSU) was established by Ansys 7.0 software. The effect of different loading conditions and distribution of bone cement after vertebroplasty on the adjacent vertebral body was investigated.Results: This study presented a validated finite element model of L4-L5 FSU with a simulated vertebroplasty augmentation to predict stresses and strains of adjacent untreated vertebral bodies. The findings from this FSU study suggested the endplate and disc stress of the adjacent vertebral body was not influenced by filling volume of bone cement but unipedicle injection and leakage to the disc of bone cement could concentrate the stress of adjacent endplate.Conclusions: Asymmetric distributions and leakage of cement into intervertebral disc can improve the stress of endplate in adjacent vertebral body. These results suggest that optimal biomechanical configuration should have symmetric placement and avoid leakage of cement in operation.

  20. CHROMOSOMAL ABNORMALITIES IN PATIENTS WITH RECURRENT MISCARRIAGE

    Directory of Open Access Journals (Sweden)

    Daniela Mierla

    2012-06-01

    Full Text Available Chromosomal abnormalities are involved in the etiology of recurrent spontaneous pregnancy loss and sub-fertility. The purpose of this study was to determine the frequency and contribution of chromosomal abnormalities in recurrent miscarriages. The results obtained and literature review are helpful in understanding the importance of cytogenetics analysis of female infertility. To investigate the distribution of chromosomal abnormalities in the Romanian population with recurrent miscarriage, karyotype analysis by G-banding was performed from peripheral blood in 967 women infertility. Results: Chromosomal abnormalities were found to 79 women (8,17%. The percentage of chromosomal abnormalities in the studied population correlates with the data in the literature. Chromosomal abnormalities could play the important role in etiology of infertility and are more frequently detected in this group of patients compared to general population. In the infertile couples balanced chromosomal abnormalities are the main cause of spontaneous abortions.

  1. Fatigue behavior of Ilizarov frame versus tibial interlocking nail in a comminuted tibial fracture model: a biomechanical study

    Directory of Open Access Journals (Sweden)

    Stahel Philip F

    2006-12-01

    Full Text Available Abstract Background Treatment options for comminuted tibial shaft fractures include plating, intramedullary nailing, and external fixation. No biomechanical comparison between an interlocking tibia nail with external fixation by an Ilizarov frame has been reported to date. In the present study, we compared the fatigue behaviour of Ilizarov frames to interlocking intramedullary nails in a comminuted tibial fracture model under a combined loading of axial compression, bending and torsion. Our goal was to determine the biomechanical characteristics, stability and durability for each device over a clinically relevant three month testing period. The study hypothesis was that differences in the mechanical properties may account for differing clinical results and provide information applicable to clinical decision making for comminuted tibia shaft fractures. Methods In this biomechanical study, 12 composite tibial bone models with a comminuted fracture and a 25 mm diaphyseal gap were investigated. Of these, six models were stabilized with a 180-mm four-ring Ilizarov frame, and six models were minimally reamed and stabilized with a 10 mm statically locked Russell-Taylor Delta™ tibial nail. After measuring the pre-fatigue axial compression bending and torsion stiffness, each model was loaded under a sinusoidal cyclic combined loading of axial compression (2.8/28 lbf; 12.46/124.6 N and torque (1.7/17 lbf-in; 0.19/1.92 Nm at a frequency of 3 Hz. The test was performed until failure (implant breakage or ≥ 5° angulations and/or 2 cm shortening occurred or until 252,000 cycles were completed, which corresponds to approximately three months testing period. Results In all 12 models, both the Ilizarov frame and the interlocking tibia nail were able to maintain fracture stability of the tibial defect and to complete the full 252,000 cycles during the entire study period of three months. A significantly higher stiffness to axial compression and torsion was

  2. Abnormal Returns and Contrarian Strategies

    Directory of Open Access Journals (Sweden)

    Ivana Dall'Agnol

    2003-12-01

    Full Text Available We test the hypothesis that strategies which are long on portfolios of looser stocks and short on portfolios of winner stocks generate abnormal returns in Brazil. This type of evidence for the US stock market was interpreted by The Bondt and Thaler (1985 as reflecting systematic evaluation mistakes caused by investors overreaction to news related to the firm performance. We found evidence of contrarian strategies profitability for horizons from 3 months to 3 years in a sample of stock returns from BOVESPA and SOMA from 1986 to 2000. The strategies are more profitable for shorter horizons. Therefore, there was no trace of the momentum effect found by Jagadeesh and Titman (1993 for the same horizons with US data. There are remaing unexplained positive returns for contrarian strategies after accounting for risk, size, and liquidity. We also found that the strategy profitability is reduced after the Real Plan, which suggests that the Brazilian stock market became more efficient after inflation stabilization.

  3. Inverse problems biomechanical imaging (Conference Presentation)

    Science.gov (United States)

    Oberai, Assad A.

    2016-03-01

    It is now well recognized that a host of imaging modalities (a list that includes Ultrasound, MRI, Optical Coherence Tomography, and optical microscopy) can be used to "watch" tissue as it deforms in response to an internal or external excitation. The result is a detailed map of the deformation field in the interior of the tissue. This deformation field can be used in conjunction with a material mechanical response to determine the spatial distribution of material properties of the tissue by solving an inverse problem. Images of material properties thus obtained can be used to quantify the health of the tissue. Recently, they have been used to detect, diagnose and monitor cancerous lesions, detect vulnerable plaque in arteries, diagnose liver cirrhosis, and possibly detect the onset of Alzheimer's disease. In this talk I will describe the mathematical and computational aspects of solving this class of inverse problems, and their applications in biology and medicine. In particular, I will discuss the well-posedness of these problems and quantify the amount of displacement data necessary to obtain a unique property distribution. I will describe an efficient algorithm for solving the resulting inverse problem. I will also describe some recent developments based on Bayesian inference in estimating the variance in the estimates of material properties. I will conclude with the applications of these techniques in diagnosing breast cancer and in characterizing the mechanical properties of cells with sub-cellular resolution.

  4. In vivo biomechanical properties of biodegradable polylactic acid-glycolic acid lumbar intertransverse fusion cage%可生物降解聚乳酸-乙醇酸共聚物腰椎横突间融合器的体内生物力学

    Institute of Scientific and Technical Information of China (English)

    姚豹; 李开南; 聂海

    2014-01-01

    BACKGROUND:To increase the fusion rate and further reduce complications, Li Kai-nan and co-workers designed an absorbable intertransverse fusion cage made from biodegradable polylactic acid-glycolic acid (PLGA) material (the patent number of State Intelectual Property Office of China: 200810148018.0). OBJECTIVE:To investigate the biomechanical variation of the biodegradable PLGA lumbar intertransverse fusion cage in vivo. METHODS:Ninety-six Boer goats were randomly divided into experimental and control groups. The biodegradable PLGA lumbar intertransverse fusion cage was placed in the L4/5 intertransverse segment in the experimental group; the same size lilac bone was placed in the same position in the control group. The whole lumbar vertebrae were taken to make specimens at 1, 3, 6, 9, 12, 18 months after operation. Three-dimensional spine motion measurement system was used to calculate the range of motion of the L4/5 segment in the anteflexion, rear extension, left/right lateral bending and rotation states. RESULTS AND CONCLUSION:Anteflexion, rear extension, lateral bending and rotation motions of both groups reduced successively at 1, 3, 6, 9, 12 and 18 months after operation. The range of anteflexion movements in the experimental group was lower than that of the control group at 3, 9, 12 postoperative months (P   目的:研究聚乳酸-乙醇酸共聚物腰椎横突间融合器在动物体内的生物力学变化情况。  方法:采用电脑将96只波尔山羊随机分均为实验组和对照组,咬除L4横突下缘和L5横突上缘的皮质骨,实验组在羊右侧L4、5横突间隙置入填有自体髂骨的聚乳酸-乙醇酸共聚物腰椎横突间融合器;对照组在相应位置植入同融合器大小相当的自体髂骨块,分别于术后1,3,6,9,12,18个月取整个腰椎制成标本,用脊柱三维运动测量系统测算各组标本L4、L5节段前屈、后伸、侧屈、旋转的运动范围。  结果与结

  5. Biomechanical properties of a novel pourable cement pedicle screw and its application to osteoporotic lumbar degeneration%新型可灌注骨水泥椎弓根螺钉的生物力学性能及在骨质疏松性腰椎退变中的应用

    Institute of Scientific and Technical Information of China (English)

    刘扬; 刘丹; 肖运祥; 陈海丹; 赵红卫

    2016-01-01

    背景:老年性骨质疏松患者由于机体骨质的脆弱,容易造成椎弓根螺钉固定能力得到进一步削弱。因此骨质疏松性腰椎退变患者采用椎弓根螺钉修复时骨水泥渗漏以及螺钉取出量等问题难以解决。目的:探讨新型可灌注骨水泥椎弓根螺钉的生物力学性能及在骨质疏松性腰椎退变患者中的应用效果。方法:选取完整浸润腰椎标本(T11-L5)6具,平均年龄(72.9±4.2)岁,共42个椎体,平均骨密度为0.696 g/cm2。所有椎体任意选取一侧椎弓根置入可灌注骨水泥椎弓根螺钉,采用水泥推杆和灌注筒在X射线透视下灌注2 mL骨水泥;在椎体标本对侧置入相同数目常规螺钉。对2种螺钉进行三点弯曲实验,对选取椎体进行最大轴向拔出力实验及最大旋出力矩实验,观察椎体的破坏情况及螺钉置入效果。结果与结论:①新型可灌注骨水泥椎弓根螺钉极限强度、屈服载荷均显著大于常规螺钉(P<0.05);极限位移和屈服位移均显著小于常规螺钉(P<0.05);②新型可灌注骨水泥椎弓根螺钉的轴向拔出力及最大旋出力矩均显著高于常规螺钉(P<0.05);③综上所述,新型可灌注骨水泥椎弓根螺钉操作简单,能够有效的控制骨水泥渗透,提高螺钉在骨质疏松椎体内的稳定性,且治疗后螺钉取出相对方便,不会对椎体和钉道产生明显的破坏,促进机体早期恢复。%BACKGROUND:Fragile bone in senile osteoporosis patients easily weakened pedicle screw fixation capacity. Therefore, bone cement leakage and screw removal cannot be solved during pedicle screw repair in osteoporotic patients with degenerative lumbar spine. OBJECTIVE:To investigate the biomechanical properties of novel pourable pedicle screws and bone cement application effect in osteoporotic patients with degenerative lumbar spine. METHODS:Six lumbar specimens (T11-L5) at the mean age of (72.9±4.2) years

  6. 后路单钉棒治疗骶髂关节脱位的生物力学特性及其有效性%Biomechanical properties and the effectiveness of posterior nail-rod for the treatment of sacroiliac joint dislocation

    Institute of Scientific and Technical Information of China (English)

    和利; 贾健; 梁彦; 葛振新; 马宝通

    2012-01-01

    BACKGROUND: Sacroiliac screw has been widely used in the treatment of the sacroiliac joint dislocation, but it cannot achieve strong mechanical intensity due to its poor biomechanical properties. OBJECTIVE: To explore the mechanical intensity and clinical efficacy of posterior nail-rod for the treatment of sacroiliac joint dislocation. METHODS: ㏕welve cadaveric pelvis specimens, six males and six females, were selected to make the sacroiliac joint dislocation model and pubic symphysis separation model by cutting off the sacroiliac joint ligaments and pubic symphysis structure. Specimens were randomly divided into two groups: iliosacral screw fixation group and pelvis posterior single nail-rod fixation group, specimens in the two groups were fixed with iliosacral screw and pelvis posterior single nail-rod respectively. ㏕he clinical indications of ingle nail-rod system were set up, and the clinical data of 16 sacroiliac joint dislocation patients were collected, Mears image evaluation standard and pelvic fractures Majeed curative effect were used to assess data statistics and score. RESULTS AND CONCLUSION: In the same load, the displacement, axial stiffness, ultimate-load and yield-load of the posterior single nail-rod group were larger than those of iliosacral screw group (P < 0.05). All the 16 patients were followed-up for an average of 23.2 months (3-45 months). According to Mears image standard, there were 13 cases of anatomical replacement, and 3 cases in satisfaction. Pelvic fractures Majeed score was 60 to 100 points, 82 points in average; the good rate of Ci type fracture was 82%, and good rate of C2 type fracture was 80%. Compared with iliosacral screw fixation, the single nail-rod fixation for the treatment of sacroiliac joint dislocation has reliable strength stiffness and clinical curative effect.%背景:目前骶髂螺钉广泛应用于治疗骶髂关节脱位,但是生物力学性能较差,不能达到坚强内固定.目的:探讨应用单钉棒治

  7. The use of fiber Bragg grating sensors in biomechanics and rehabilitation applications: the state-of-the-art and ongoing research topics.

    Science.gov (United States)

    Al-Fakih, Ebrahim; Abu Osman, Noor Azuan; Mahamd Adikan, Faisal Rafiq

    2012-01-01

    In recent years, fiber Bragg gratings (FBGs) are becoming increasingly attractive for sensing applications in biomechanics and rehabilitation engineering due to their advantageous properties like small size, light weight, biocompatibility, chemical inertness, multiplexing capability and immunity to electromagnetic interference (EMI). They also offer a high-performance alternative to conventional technologies, either for measuring a variety of physical parameters or for performing high-sensitivity biochemical analysis. FBG-based sensors demonstrated their feasibility for specific sensing applications in aeronautic, automotive, civil engineering structure monitoring and undersea oil exploration; however, their use in the field of biomechanics and rehabilitation applications is very recent and its practicality for full-scale implementation has not yet been fully established. They could be used for detecting strain in bones, pressure mapping in orthopaedic joints, stresses in intervertebral discs, chest wall deformation, pressure distribution in Human Machine Interfaces (HMIs), forces induced by tendons and ligaments, angles between body segments during gait, and many others in dental biomechanics. This article aims to provide a comprehensive overview of all the possible applications of FBG sensing technology in biomechanics and rehabilitation and the status of ongoing researches up-to-date all over the world, demonstrating the FBG advances over other existing technologies. PMID:23201977

  8. The Use of Fiber Bragg Grating Sensors in Biomechanics and Rehabilitation Applications: The State-of-the-Art and Ongoing Research Topics

    Directory of Open Access Journals (Sweden)

    Faisal Rafiq Mahamd Adikan

    2012-09-01

    Full Text Available In recent years, fiber Bragg gratings (FBGs are becoming increasingly attractive for sensing applications in biomechanics and rehabilitation engineering due to their advantageous properties like small size, light weight, biocompatibility, chemical inertness, multiplexing capability and immunity to electromagnetic interference (EMI. They also offer a high-performance alternative to conventional technologies, either for measuring a variety of physical parameters or for performing high-sensitivity biochemical analysis. FBG-based sensors demonstrated their feasibility for specific sensing applications in aeronautic, automotive, civil engineering structure monitoring and undersea oil exploration; however, their use in the field of biomechanics and rehabilitation applications is very recent and its practicality for full-scale implementation has not yet been fully established. They could be used for detecting strain in bones, pressure mapping in orthopaedic joints, stresses in intervertebral discs, chest wall deformation, pressure distribution in Human Machine Interfaces (HMIs, forces induced by tendons and ligaments, angles between body segments during gait, and many others in dental biomechanics. This article aims to provide a comprehensive overview of all the possible applications of FBG sensing technology in biomechanics and rehabilitation and the status of ongoing researches up-to-date all over the world, demonstrating the FBG advances over other existing technologies.

  9. Biomechanical investigation of colorectal cancer cells

    Science.gov (United States)

    Palmieri, Valentina; Lucchetti, Donatella; Maiorana, Alessandro; Papi, Massimiliano; Maulucci, Giuseppe; Ciasca, Gabriele; Svelto, Maria; De Spirito, Marco; Sgambato, Alessandro

    2014-09-01

    The nanomechanical properties of SW480 colon cancer cells were investigated using Atomic Force Microscopy. SW480 cells are composed of two sub-populations with different shape and invasiveness. These two cells populations showed similar adhesion properties while appeared significantly different in term of cells stiffness. Since cell stiffness is related to invasiveness and growth, we suggest elasticity as a useful parameter to distinguish invasive cells inside the colorectal tumor bulk and the high-resolution mechanical mapping as a promising diagnostic tool for the identification of malignant cells.

  10. History of spine biomechanics: part I--the pre-Greco-Roman, Greco-Roman, and medieval roots of spine biomechanics.

    Science.gov (United States)

    Naderi, Sait; Andalkar, Niteen; Benzel, Edward C

    2007-02-01

    The roots of spine biomechanics reside in the Antiquity and the Medieval and Renaissance periods. A review of historical treatises reveals detailed information regarding this often historically neglected discipline. Ancient medical, philosophical, and physical documents were reviewed, as they pertained to the historical foundation of spine biomechanics. These included medical case reports and observations of nature and motion by ancient philosophers and scientists. These documents heavily influenced the portion of the scientific literature that we now regard as "spine biomechanics" up through the Renaissance. The focus of Part I of this two-part series is placed on the ancient and medieval biomechanics-related literature and on associated literature that influenced the development of the field of modern spine biomechanics.

  11. Iliotibial band syndrome: soft tissue and biomechanical factors in evaluation and treatment.

    Science.gov (United States)

    Baker, Robert L; Souza, Richard B; Fredericson, Michael

    2011-06-01

    Muscle performance factors and altered loading mechanics have been linked to a variety of lower extremity musculoskeletal disorders. In this article, biomechanical risk factors associated with iliotibial band syndrome (ITBS) are described, and a strategy for incorporating these factors into the clinical evaluation of and treatment for that disorder is presented. Abnormal movement patterns in runners and cyclists with ITBS are discussed, and the pathophysiological characteristics of this syndrome are considered in light of prior and current studies in anatomy. Differential diagnoses and the use of imaging, medications, and injections in the treatment of ITBS are reviewed. The roles of hip muscle strength, kinematics, and kinetics are detailed, and the assessment and treatment of muscle performance factors are discussed, with emphasis on identifying and treating movement dysfunction. Various stages of rehabilitation, including strengthening progressions to reduce soft-tissue injury, are described in detail. ITBS is an extremely common orthopedic condition that presents with consistent dysfunctional patterns in muscle performance and movement deviation. Through careful assessment of lower quarter function, the clinician can properly identify individuals and initiate treatment.

  12. [Growth of the facial skeleton and biomechanics of the stomatognathic system].

    Science.gov (United States)

    Kubein-Meesenburg, D; Nägerl, H; Schwestka, R; Jäger, A

    1990-01-01

    Biomechanical analysis of the stomatognathic system yields that the linkage between posterior and anterior guidance can be modelled by a link quadrangle (throttle crank) with closed linkage. Within this gear system the biochemical ideal position of the couple-line (functional length of the mandible) possesses a special meaning in centric occlusion: Along this line the gear system can be stretched without altering its essential mechanical properties. Interindividual comparison of the arrangement of mandibulary and maxillary structures related to the ideal initial position of the couple-line presents interindividual constants of arrangement and of growth. It is possible to define an individual, non-orthogonal system of coordinates. Its origin represents the individual center of growth. During growth special skeletally defined points run along radius vectors of this center. The rate of growth can depend on the angle between radius vector and couple-line. PMID:2228211

  13. A 3D dynamical biomechanical tongue model to study speech motor control

    CERN Document Server

    Gérard, J M; Perrier, P; Payan, Y; Gerard, Jean-Michel; Wilhelms-Tricarico, Reiner; Perrier, Pascal; Payan, Yohan

    2003-01-01

    A 3D biomechanical dynamical model of human tongue is presented, that is elaborated in the aim to test hypotheses about speech motor control. Tissue elastic properties are accounted for in Finite Element Modeling (FEM). The FEM mesh was designed in order to facilitate the implementation of muscle arrangement within the tongue. Therefore, its structure was determined on the basis of accurate anatomical data about the tongue. Mechanically, the hypothesis of hyperelasticity was adopted with the Mooney-Rivlin formulation of the strain energy function. Muscles are modeled as general force generators that act on anatomically specified sets of nodes of the FEM structure. The 8 muscles that are known to be largely involved in the production of basic speech movements are modeled. The model and the solving of the Lagrangian equations of movement are implemented using the ANSYSTM software. Simulations of the influence of muscle activations onto the tongue shape are presented and analyzed.

  14. Quantification of Subjective Scaling of Friction Using a Fingertip Biomechanical Model

    Directory of Open Access Journals (Sweden)

    Mohammad Abdolvahab

    2012-01-01

    Full Text Available Subjective scaling of friction is important in many applications in haptic technology. A nonhomogeneous biomechanical finite element model of fingertip is proposed in order to predict neural response of sensitive mechanoreceptors to frictional stimuli (Slowly Adapting SAII receptors under the glabrous skin. In a guided psychophysical experiment, ten human subjects were asked to scale several standard surfaces based on the perception of their frictional properties. Contact forces deployed during the exploratory time of one of the participants were captured in order to estimate required parameters for the model of contact in the simulation procedure. Consequently, the strain energy density at the location of a selective mechanoreceptor in the finite element model as a measure of discharge rate of the neural unit was compared to the subject’s perceptual evaluation of the relevant stimuli. It was observed that the subject’s scores correlate with the discharge rate of the given receptor.

  15. Peripheral nerve: from the microscopic functional unit of the axon to the biomechanically loaded macroscopic structure.

    Science.gov (United States)

    Topp, Kimberly S; Boyd, Benjamin S

    2012-01-01

    Peripheral nerves are composed of motor and sensory axons, associated ensheathing Schwann cells, and organized layers of connective tissues that are in continuity with the tissues of the central nervous system. Nerve fiber anatomy facilitates conduction of electrical impulses to convey information over a distance, and the length of these polarized cells necessitates regulated axonal transport of organelles and structural proteins for normal cell function. Nerve connective tissues serve a protective function as the limb is subjected to the stresses of myriad limb positions and postures. Thus, the tissues are uniquely arranged to control the local nerve fiber environment and modulate physical stresses. In this brief review, we describe the microscopic anatomy and physiology of peripheral nerve and the biomechanical properties that enable nerve to withstand the physical stresses of everyday life. PMID:22133662

  16. Lithium treatment and thyroid abnormalities

    Directory of Open Access Journals (Sweden)

    Bocchetta Alberto

    2006-09-01

    autoimmunity do not much differ from those observed in the general population; h hyperthyroidism and thyroid cancer are observed rarely during lithium treatment. Recommendations Thyroid function tests (TSH, free thyroid hormones, specific antibodies, and ultrasonic scanning should be performed prior to starting lithium prophylaxis. A similar panel should be repeated at one year. Thereafter, annual measurements of TSH may be sufficient to prevent overt hypothyroidism. In the presence of raised TSH or thyroid autoimmunity, shorter intervals between assessments are advisable (4–6 months. Measurement of antibodies and ultrasonic scanning may be repeated at 2-to-3-year intervals. The patient must be referred to the endocrinologist if TSH concentrations are repeatedly abnormal, and/or goitre or nodules are detected. Thyroid function abnormalities should not constitute an outright contraindication to lithium treatment, and lithium should not be stopped if a patient develops thyroid abnormalities. Decisions should be made taking into account the evidence that lithium treatment is perhaps the only efficient means of reducing the excessive mortality which is otherwise associated with affective disorders.

  17. Meshless methods in biomechanics bone tissue remodelling analysis

    CERN Document Server

    Belinha, Jorge

    2014-01-01

    This book presents the complete formulation of a new advanced discretization meshless technique: the Natural Neighbour Radial Point Interpolation Method (NNRPIM). In addition, two of the most popular meshless methods, the EFGM and the RPIM, are fully presented. Being a truly meshless method, the major advantages of the NNRPIM over the FEM, and other meshless methods, are the remeshing flexibility and the higher accuracy of the obtained variable field. Using the natural neighbour concept, the NNRPIM permits to determine organically the influence-domain, resembling the cellulae natural behaviour. This innovation permits the analysis of convex boundaries and extremely irregular meshes, which is an advantage in the biomechanical analysis, with no extra computational effort associated.   This volume shows how to extend the NNRPIM to the bone tissue remodelling analysis, expecting to contribute with new numerical tools and strategies in order to permit a more efficient numerical biomechanical analysis.

  18. 3D printed guides for controlled alignment in biomechanics tests.

    Science.gov (United States)

    Verstraete, Matthias A; Willemot, Laurent; Van Onsem, Stefaan; Stevens, Cyriëlle; Arnout, Nele; Victor, Jan

    2016-02-01

    The bone-machine interface is a vital first step for biomechanical testing. It remains challenging to restore the original alignment of the specimen with respect to the test setup. To overcome this issue, we developed a methodology based on virtual planning and 3D printing. In this paper, the methodology is outlined and a proof of concept is presented based on a series of cadaveric tests performed on our knee simulator. The tests described in this paper reached an accuracy within 3-4° and 3-4mm with respect to the virtual planning. It is however the authors' belief that the method has the potential to achieve an accuracy within one degree and one millimeter. Therefore, this approach can aid in reducing the imprecisions in biomechanical tests (e.g. knee simulator tests for evaluating knee kinematics) and improve the consistency of the bone-machine interface. PMID:26810696

  19. Forward lunge knee biomechanics before and after partial meniscectomy

    DEFF Research Database (Denmark)

    Hall, Michelle; Nielsen, Jonas Høberg; Holsgaard-Larsen, Anders;

    2015-01-01

    BACKGROUND: Patients following meniscectomy are at increased risk of developing knee osteoarthritis in the tibiofemoral compartment and at the patellofemoral joint. As osteoarthritis is widely considered a mechanical disease, it is important to understand the potential effect of arthroscopic...... partial meniscectomy (APM) on knee joint mechanics. The purpose of this study was to evaluate changes in knee joint biomechanics during a forward lunge in patients with a suspected degenerative meniscal tear from before to three months after APM. METHODS: Twenty-two patients (35-55years old......) with a suspected degenerative medial meniscal tear participated in this study. Three dimensional knee biomechanics were assessed on the injured and contralateral leg before and three months after APM. The visual analogue scale was used to assess knee pain and the Knee Injury Osteoarthritis Outcome Score was used...

  20. Biomechanics (Communication arising): prey attack by a large theropod dinosaur.

    Science.gov (United States)

    Frazzetta, T H; Kardong, Kenneth V

    2002-03-28

    Prey-capture strategies in carnivorous dinosaurs have been inferred from the biomechanical features of their tooth structure, the estimated bite force produced, and their diet. Rayfield et al. have used finite-element analysis (FEA) to investigate such structure-function relationships in Allosaurus fragilis, and have found that the skull was designed to bear more stress than could be generated by simple biting. They conclude that this large theropod dinosaur delivered a chop-and-slash 'hatchet' blow to its prey, which it approached with its mouth wide open before driving its upper tooth row downwards. We argue that this mode of predation is unlikely, and that the FEA results, which relate to an 'overengineered' skull, are better explained by the biomechanical demands of prey capture. Understanding the mechanics of predation is important to our knowledge of the feeding habits of carnivorous dinosaurs and for accurate reconstruction their lifestyles.

  1. Smart Materials in Structural Health Monitoring, Control and Biomechanics

    CERN Document Server

    Soh, Chee-Kiong; Bhalla, Suresh

    2012-01-01

    "Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/ numerical), practical aspects (including software/ hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an A...

  2. Musculoskeletal demands on flamenco dancers: a clinical and biomechanical study.

    Science.gov (United States)

    Bejjani, F J; Halpern, N; Pio, A; Dominguez, R; Voloshin, A; Frankel, V H

    1988-04-01

    The flamenco dancer acts on the floor like a drummer. The percussive footwork and vibration patterns created during dancing impose unusual demands on the musculoskeletal system. This study investigated the clinical and biomechanical aspects of this task. Using the electrodynogram and skin-mounted accelerometers, foot pressures as well as hip and knee vibrations were recorded in 10 female dancers after a thorough clinical evaluation. A health questionnaire was also distributed to 29 dancers. Foot pressures and acceleration data reveal the percussive nature of the dance. Some clinical findings, like calluses, are related to pressure distribution. Urogenital disorders, as well as back and neck pain, may be related to the vibrations generated by the flamenco dance form. The hip joint seems to absorb most of the impacts. "Vibration-pressure" diagrams are suggested as a useful tool for evaluating a dancer's biomechanical behavior, as well as the effect of floors and footwear on this behavior. PMID:3366430

  3. Biomechanical bases of rehabilitation of children with cerebral palsy

    Science.gov (United States)

    Davlet'yarova, K. V.; Korshunov, S. D.; Kapilevich, L. V.

    2015-11-01

    Biomechanical analysis and the study results of children's with cerebral palsy (CP) muscles bioelectrical activity while walking on a flat surface are represented. Increased flexion in the hip and shoulder joints and extension in the elbow joint in children with cerebral palsy were observed, with the movement of the lower limbs had less smooth character in comparison with the control group. Herewith, the oscillation amplitude was significantly increased, and the frequency in the m. gastrocnemius and m. lateralis was decreased. It was shown, that the dynamic stereotype of walking in children with cerebral palsy was characterized by excessive involvement of m. gastrocnemius and m.latissimus dorsi in locomotion. Thus, resulting biomechanical and bioelectrical parameters of walking should be considered in the rehabilitation programs development.

  4. [Advances on biomechanics and kinematics of sprain of ankle joint].

    Science.gov (United States)

    Zhao, Yong; Wang, Gang

    2015-04-01

    Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint. PMID:26072625

  5. ABNORMAL CARDIOVASCULAR REFLEXES IN PATIENTS WITH ACHALASIA

    Institute of Scientific and Technical Information of China (English)

    戈峰; 李泽坚; 柯美云

    1994-01-01

    Using 3 non-invasive tests,abnormalities of cardiovascular reflex function were found in 7 of 15 patients with achalasia.Abnormalities of heart rate responses to the Valsalva maneuver,deep breathing ,and standing were moted in patients with autonomic neuropathy defect.The findings are consistent with the hypothesis that an abnormality of vagal function may contribute to the pathogenesis of achalasia.

  6. Do Stock Dividends Generate Abnormal Returns?

    OpenAIRE

    Torgal, Kishan

    2009-01-01

    In this paper I have studied and understood the concepts of stock dividends, stock splits and the announcement effects and the effective day effects by using the standard event studies methodology which measures the significance of the abnormal returns. The previous studies have significant positive abnormal returns. In my results its shown that the as there is some significant abnormal returns which are connected with the announcement and effective day of the stock splits but it changes...

  7. CHROMOSOMAL ABNORMALITIES IN PATIENTS WITH RECURRENT MISCARRIAGE

    OpenAIRE

    Daniela Mierla; Viorica Radoi; Veronica Stoian

    2012-01-01

    Chromosomal abnormalities are involved in the etiology of recurrent spontaneous pregnancy loss and sub-fertility. The purpose of this study was to determine the frequency and contribution of chromosomal abnormalities in recurrent miscarriages. The results obtained and literature review are helpful in understanding the importance of cytogenetics analysis of female infertility. To investigate the distribution of chromosomal abnormalities in the Romanian population with recurrent miscarriage, ka...

  8. Derivation, simulation and validation of poroelastic models in dental biomechanics

    OpenAIRE

    Favino, Marco; Krause, Rolf

    2015-01-01

    Poroelasticity and mechanics of growth are playing an increasingly relevant role in biomechanics. This work is a self- contained and holistic presentation of the modeling and simulation of non-linear poroelasticity with and without growth inhomogeneities. Balance laws of poroelasticity are derived in Cartesian coordinates. These allow to write the governing equations in a form that is general but also readily implementable. Closure relations are formally derived from the study of dissipati...

  9. Biomechanical simulation of thorax deformation using finite element approach

    OpenAIRE

    Zhang, Guangzhi; Chen, Xian; Ohgi, Junji; Miura, Toshiro; Nakamoto, Akira; Matsumura, Chikanori; Sugiura, Seiryo; Hisada, Toshiaki

    2016-01-01

    Background The biomechanical simulation of the human respiratory system is expected to be a useful tool for the diagnosis and treatment of respiratory diseases. Because the deformation of the thorax significantly influences airflow in the lungs, we focused on simulating the thorax deformation by introducing contraction of the intercostal muscles and diaphragm, which are the main muscles responsible for the thorax deformation during breathing. Methods We constructed a finite element model of t...

  10. Biomechanics and clinical implications of complete edentulous state

    OpenAIRE

    Lalit Kumar, MDS

    2014-01-01

    The edentulous state represents a compromise in the integrity of the masticatory system. It is frequently accompanied by adverse functional and esthetic sequelae, which are varyingly perceived by the affected patient. Perceptions of the edentulous state may range from feelings of inconvenience to feelings of severe handicap because many regard total loss of teeth as equivalent to the loss of a body part. Consequently, the required treatment addresses a range of biomechanical problems that inv...

  11. Three-Dimensional Biomechanical Analysis of the Bovine Humerus

    OpenAIRE

    Bouza-Rodríguez, José Benito; Miramontes-Sequeiros, Luz Calia

    2014-01-01

    There are few reports on the biomechanical analysis of the animal humerus. In this study, a three-dimensional finite element model of the bovine humerus was created, and loaded with the physiological forces acting when the cow is falling or jumping (weight and impact forces). Subsequently the corresponding stress and strain distribution in the humerus for different inclined positions of bone was determined.The highest stress concentration occurred in the distal humeral diaphysis, both when on...

  12. Biomechanical Evaluation of Capsulotomy and Capsular Repair in the Hip

    OpenAIRE

    Wuerz, Thomas H.; Song, Sang Hoon; Grzybowski, Jeffrey S.; Greenberg, Mitchell; Espinoza, Alejandro; Nho, Shane Jay

    2015-01-01

    Objectives: The use of hip arthroscopy has increased over recent years to treat various forms of hip pathologies including femoroacetabular impingement. While a capsulotomy facilitates adequate visualization and access for diagnostic and interventional purposes, the current literature remains divided over the use of routine capsular closure to address the iatrogenic instability that may be induced by an excessive or unclosed capsulotomy. The purpose of this biomechanical study was to determin...

  13. Application of optimal control to a biomechanics model

    OpenAIRE

    Krasovskii, A.

    2015-01-01

    A model of sport biomechanics describing short-distance running (sprinting) is developed by applying methods of optimal control. In the considered model, the motion of a sportsman is described by a second-order ordinary differential equation. Two interconnected optimal control problems are formulated and solved: the minimum energy and time-optimal control problems. Based on the comparison with real data, it is shown that the proposed approach to sprint modeling provides realistic results.

  14. Biomechanical evaluation of fixation degree of fragments by periosteal osteosynthesis

    Directory of Open Access Journals (Sweden)

    Barabash Yu.A.

    2010-09-01

    Full Text Available Expansion of indications for surgery and plate osteosynthesis of long bones points to increased number of complications caused by instability of fragments, that can be associated in their turn with constructive features or iatrogenic factors. Insufficient rigidity of fragment fixation is due to incorrect technical treatment and wrong choice of fixator. Biomechanical parameters of periosteal fixation rigidity have been experimentally proved, depending on fixator lever

  15. Structural and biomechanical basis of mitochondrial movement in eukaryotic cells

    OpenAIRE

    Wu M; Kalyanasundaram A; Zhu J

    2013-01-01

    Min Wu,1 Aruna Kalyanasundaram,2 Jie Zhu1 1Laboratory of Biomechanics and Engineering, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; 2College of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA Abstract: Mitochondria serve as energy-producing organelles in eukaryotic cells. In addition to providing the energy supply for cells, the mitochondria are also involved in other processes, such as...

  16. Corneal Structure and Biomechanics in Collagen Vascular Diseases

    OpenAIRE

    Colaço, Maria Luisa; Franco, Mónica; Pinto, Rita; Maia Sêco, José

    2015-01-01

    Purpose: The purpose of this study was to evaluate corneal biomechanics and structure in asymptomatic individuals with Collagen Vascular Diseases (CVD), and compare with an age- -matched control group. Methods: In this prospective study 23 patients with the diagnosis of CVD (46 eyes) and 17 healthy age and gender-matched controls (34 eyes) underwent Ocular Response Analyzer and Specular Microscopy measurements. CH and CRF were recorded for each eye using the ORA, pachymetry and endothelial ce...

  17. Biomechanical considerations on tooth-implant supported fixed partial dentures

    OpenAIRE

    Michalakis, Konstantinos X.; Calvani, Pasquale; Hirayama, Hiroshi

    2012-01-01

    This article discusses the connection of teeth to implants, in order to restore partial edentulism. The main problem arising from this connection is tooth intrusion, which can occur in up to 7.3% of the cases. The justification of this complication is being attempted through the perspective of biomechanics of the involved anatomical structures, that is, the periodontal ligament and the bone, as well as that of the teeth- and implant-supported fixed partial dentures.

  18. Dynamic biomechanics of the human head in lateral impacts

    OpenAIRE

    Zhang, Jiangyue; Yoganandan, Narayan; Pintar, Frank A.

    2009-01-01

    The biomechanical responses of human head (translational head CG accelerations, rotational head accelerations, and HIC) under lateral impact to the parietal-temporal region were investigated in the current study. Free drop tests were conducted at impact velocities ranging from 2.44 to 7.70 m/s with a 40 durometer, a 90 durometer flat padding, and a 90 durometer cylinder. Specimens were isolated from PMHS subjects at the level of occipital condyles, and the intracranial substance was replaced ...

  19. Dynamic biomechanics of the human head in lateral impacts.

    Science.gov (United States)

    Zhang, Jiangyue; Yoganandan, Narayan; Pintar, Frank A

    2009-10-01

    The biomechanical responses of human head (translational head CG accelerations, rotational head accelerations, and HIC) under lateral impact to the parietal-temporal region were investigated in the current study. Free drop tests were conducted at impact velocities ranging from 2.44 to 7.70 m/s with a 40 durometer, a 90 durometer flat padding, and a 90 durometer cylinder. Specimens were isolated from PMHS subjects at the level of occipital condyles, and the intracranial substance was replaced with brain simulant (Sylgard 527). Three tri-axial accelerometers were instrumented at the anterior, posterior, and vertex of the specimen, and a pyramid nine accelerometer package (pNAP) was used at the contra-lateral site. Biomechanical responses were computed by transforming accelerations measured at each location to the head CG. The results indicated significant "hoop effect" from skull deformation. Translational head CG accelerations were accurately measured by transforming the pNAP, the vertex accelerations, or the average of anterior/posterior acceleration to the CG. The material stiffness and structural rigidity of the padding changed the biomechanical responses of the head with stiffer padding resulting in higher head accelerations. At the skull fracture, HIC values were more than 2-3x higher than the frontal skull fracture threshold (HIC=1000), emphasizing the differences between frontal and lateral impact. Rotational head accelerations up to 42.1 krad/s(2) were observed before skull fracture, indicating possible severe brain injury without skull fracture in lateral head impact. These data will help to establish injury criteria and threshold in lateral impacts for improved automotive protection and help clinicians understand the biomechanics of lateral head impact from improved diagnosis.

  20. Biomechanical analysis of the camelid cervical intervertebral disc

    Directory of Open Access Journals (Sweden)

    Dean K. Stolworthy

    2015-01-01

    Full Text Available Chronic low back pain (LBP is a prevalent global problem, which is often correlated with degenerative disc disease. The development and use of good, relevant animal models of the spine may improve treatment options for this condition. While no animal model is capable of reproducing the exact biology, anatomy, and biomechanics of the human spine, the quality of a particular animal model increases with the number of shared characteristics that are relevant to the human condition. The purpose of this study was to investigate the camelid (specifically, alpaca and llama cervical spine as a model of the human lumbar spine. Cervical spines were obtained from four alpacas and four llamas and individual segments were used for segmental flexibility/biomechanics and/or morphology/anatomy studies. Qualitative and quantitative data were compared for the alpaca and llama cervical spines, and human lumbar specimens in addition to other published large animal data. Results indicate that a camelid cervical intervertebral disc (IVD closely approximates the human lumbar disc with regard to size, spinal posture, and biomechanical flexibility. Specifically, compared with the human lumbar disc, the alpaca and llama cervical disc size are approximately 62%, 83%, and 75% with regard to area, depth, and width, respectively, and the disc flexibility is approximately 133%, 173%, and 254%, with regard to range of motion (ROM in axial-rotation, flexion-extension, and lateral-bending, respectively. These results, combined with the clinical report of disc degeneration in the llama lower cervical spine, suggest that the camelid cervical spine is potentially well suited for use as an animal model in biomechanical studies of the human lumbar spine.

  1. Multiscale computer modeling in biomechanics and biomedical engineering

    CERN Document Server

    2013-01-01

    This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.

  2. Topological and metrical aspects of normal and abnormal grain growth

    Directory of Open Access Journals (Sweden)

    Paulo Rangel Rios

    2007-12-01

    Full Text Available Grain growth theories normally describe a grain using the concept of ‘grain radius’. However, this assumption bypasses all topological information relating to the grain, viz., the number of its faces, edges, etc. This study, by contrast, introduces a new methodology, treating normal and abnormal grain growth in three dimensions in terms of both metrical and topological properties of the grains.

  3. Abnormal Seedlings in Madhuca latifolia-An important biodiesel tree

    Directory of Open Access Journals (Sweden)

    sangram bhanudas chavan

    2014-09-01

    Full Text Available Mahua is one of the most important tree species for tribals in parts of central India for their livelihood security. It is promising oil yielding tree species for biodiesel production having properties that replaces diesel fuel. During the germination study of Madhuca latifolia conducted at NRCAF nursery, abnormalities in the form of twin and triplet seedlings were recorded. Reporting of this type of occurrence will be helpful for management of seedlings in nursery as well as for future breeding program.

  4. Possible Electromagnetic Effects on Abnormal Animal Behavior Before an Earthquake

    OpenAIRE

    Masashi Hayakawa

    2013-01-01

    Simple Summary Possible electromagnetic effects on abnormal animal behavior before earthquakes. Abstract The former statistical properties summarized by Rikitake (1998) on unusual animal behavior before an earthquake (EQ) have first been presented by using two parameters (epicentral distance (D) of an anomaly and its precursor (or lead) time (T)). Three plots are utilized to characterize the unusual animal behavior; (i) EQ magnitude (M) versus D, (ii) log T versus M, and (iii) occurrence hist...

  5. Skeletal Aging and Osteoporosis Biomechanics and Mechanobiology

    CERN Document Server

    2013-01-01

    The focus of this book is on mechanical aspects of skeletal fragility related to aging and osteoporosis. Topics include: Age-related changes in trabecular structure and strength; age-related changes in cortical material properties; age-related changes in whole-bone structure; predicting bone strength and fracture risk using image-based methods and finite element analysis; animal models of osteoporosis and aging; age-related changes in skeletal mechano responsiveness; exercise and physical interventions for osteoporosis.

  6. [Renal abnormalities in ankylosing spondylitis].

    Science.gov (United States)

    Samia, Barbouch; Hazgui, Faiçal; Abdelghani, Khaoula Ben; Hamida, Fethi Ben; Goucha, Rym; Hedri, Hafedh; Taarit, Chokri Ben; Maiz, Hedi Ben; Kheder, Adel

    2012-07-01

    We will study the epidemiologic, clinical, biological, therapeutic, prognostic characteristics and predictive factors of development of nephropathy in ankylosing spondylitis patients. We retrospectively reviewed the medical record of 32 cases with renal involvement among 212 cases of ankylosing spondylitis followed in our service during the period spread out between 1978 and 2006. The renal involvement occurred in all patients a mean of 12 years after the clinical onset of the rheumatic disease. Thirty-two patients presented one or more signs of renal involvement: microscopic hematuria in 22 patients, proteinuria in 23 patients, nephrotic syndrome in 11 patients and decreased renal function in 24 patients (75%). Secondary renal amyloidosis (13 patients), which corresponds to a prevalence of 6,1% and tubulointerstitial nephropathy (7 patients) were the most common cause of renal involvement in ankylosing spondylitis followed by IgA nephropathy (4 patients). Seventeen patients evolved to the end stage renal disease after an average time of 29.8 ± 46 months. The average follow-up of the patients was 4,4 years. By comparing the 32 patients presenting a SPA and renal disease to 88 with SPA and without nephropathy, we detected the predictive factors of occurred of nephropathy: tobacco, intense inflammatory syndrome, sacroileite stage 3 or 4 and presence of column bamboo. The finding of 75% of the patients presented a renal failure at the time of the diagnosis of renal involvement suggests that evidence of renal abnormality involvement should be actively sought in this disease. PMID:22520483

  7. Sensorial abnormalities: Smell and taste

    Directory of Open Access Journals (Sweden)

    Palheta Neto, Francisco Xavier

    2011-07-01

    Full Text Available Introduction: Taste and smell abnormalities have proven to be an extremely more complex subject than previously regarded. Wide-ranging nosologic entities arise along with smell and taste alterations, and they can be congenital or acquired. Objective: Analyze the main features of smell and taste dysfunctions. Method: Automated databases were used to collect data, by searching keywords like 'alteration', 'smell', and 'taste'. A non-systematic search was also made in scientific printings and medical books. Literature Review: Smell and taste dysfunctions have a vast etiology, the most significant of which are obstructive nasal and sinusal disease, infections of the upper respiratory tract, cranioencephalic trauma, aging, exposure to toxics and some drugs, nasal or intracranial neoplasias, psychiatric and neurological pathologies, iatrogenic disease, idiopathic and congenital causes. A detailed anamnesis, a careful physical examination and supplementary evaluations are important for the diagnosis of these alterations. Conclusion: As a rule, smell and taste dysfunctions occur in a combined way. The early discovery of such dysfunctions can lead to a more efficient treatment, making the progress of diseases causing them retard and the symptoms less severe. In many cases, treating these alterations is not easy and there needs to be a multidisciplinary cooperation among the otorhinolaryngologist, endocrinologist, neurologist, psychiatrist, among others.

  8. Evidence for biomechanics and motor learning research improving golf performance.

    Science.gov (United States)

    Keogh, Justin W L; Hume, Patria A

    2012-06-01

    The aim of this review was to determine how the findings of biomechanics and motor control/learning research may be used to improve golf performance. To be eligible, the biomechanics and motor learning studies had to use direct (ball displacement and shot accuracy) or indirect (clubhead velocity and clubface angle) golf performance outcome measures. Biomechanical studies suggested that reducing the radius path of the hands during the downswing, increasing wrist torque and/or range of motion, delaying wrist motion to late in the downswing, increasing downswing amplitude, improving sequential acceleration of body parts, improving weight transfer, and utilising X-factor stretch and physical conditioning programmes can improve clubhead velocity. Motor learning studies suggested that golf performance improved more when golfers focused on swing outcome or clubhead movement rather than specific body movements. A distributed practice approach involving multiple sessions per week of blocked, errorless practice may be best for improving putting accuracy of novice golfers, although variable practice may be better for skilled golfers. Video, verbal, or a combination of video and verbal feedback can increase mid-short iron distance in novice to mid-handicap (hcp) golfers. Coaches should not only continue to critique swing technique but also consider how the focus, structure, and types of feedback for practice may alter learning for different groups of golfers. PMID:22900408

  9. BIOMECHANIC EVALUATION OF CARPENTRY WORKERS IN THE DISTRITO FEDERAL, BRAZIL

    Directory of Open Access Journals (Sweden)

    Nilton Cesar Fiedler

    2010-08-01

    Full Text Available The aim of this study was the biomechanical assessment of carpentry woodworkers, located in Brasília, DF. It was filmed the profile of each worker during the performance of his activities in the carpentry and the forces involved in the work were assessed. The image of each woodworker was congealed to accomplish the measurement of articulation angles. The data were submitted to the software of posture analysis “Winowas” (OWAS Method and to the biomechanic model of posture prognosis and static forces, developed by Michigan University. The OWAS method showed that, for all machines and carpentries assessed, the worst posture occurred when the worker lifted and placed the pieces of wood on the floor and during the feeding in the smoother. The tridimensional biomechanic model registered the worst posture in different phases of the work cycle. In the first one, there were problems in all articulations, except the hips, when placing the pieces on the floor from the smoother. In the second one, there were problems in all articulations, except the elbows and the L5-S1 column disc, by feeding the surface planer. The third one, the ankles were the most injured when feeding the smoother, the surface planer, the circular saw and the band saw. According to the results, the woodworkers should try to eliminate the constant work standing upright, use auxiliary machinery to handle pieces of wood, reduce the load during feeding the machines and improve postures.

  10. The Use of Fiber Bragg Grating Sensors in Biomechanics and Rehabilitation Applications: The State-of-the-Art and Ongoing Research Topics

    OpenAIRE

    Faisal Rafiq Mahamd Adikan; Ebrahim Al-Fakih; Noor Azuan Abu Osman

    2012-01-01

    In recent years, fiber Bragg gratings (FBGs) are becoming increasingly attractive for sensing applications in biomechanics and rehabilitation engineering due to their advantageous properties like small size, light weight, biocompatibility, chemical inertness, multiplexing capability and immunity to electromagnetic interference (EMI). They also offer a high-performance alternative to conventional technologies, either for measuring a variety of physical parameters or for performing high-sensiti...

  11. Ontogenetic modulation of branch size, shape, and biomechanics produces diversity across habitats in the Bursera simaruba clade of tropical trees.

    Science.gov (United States)

    Rosell, Julieta A; Olson, Mark E; Aguirre-Hernández, Rebeca; Sánchez-Sesma, Francisco J

    2012-01-01

    Organismal size and shape inseparably interact with tissue biomechanical properties. It is therefore essential to understand how size, shape, and biomechanics interact in ontogeny to produce morphological diversity. We estimated within species branch length-diameter allometries and reconstructed the rates of ontogenetic change along the stem in mechanical properties across the simaruba clade in the tropical tree genus Bursera, measuring 376 segments from 97 branches in nine species in neotropical dry to rain forest. In general, species with stiffer materials had longer, thinner branches, which became stiffer more quickly in ontogeny than their counterparts with more flexible materials. We found a trend from short stature and flexible tissues to tall statures and stiff tissues across an environmental gradient of increasing water availability, likely reflecting a water storage-mechanical support tradeoff. Ontogenetic variation in size, shape, and mechanics results in diversity of habits, for example, rapid length extension, sluggish diameter expansion, and flexible tissues results in a liana, as in Bursera instabilis. Even species of similar habit exhibited notable changes in tissue mechanical properties with increasing size, illustrating the inseparable relationship between organismal proportions and their tissue mechanics in the ontogeny and evolution of morphological diversity.

  12. International Foot and Ankle Biomechanics Community (i-FAB: past, present and beyond

    Directory of Open Access Journals (Sweden)

    Rosenbaum Dieter

    2009-06-01

    Full Text Available Abstract The International Foot and Ankle Biomechanics Community (i-FAB is an international collaborative activity which will have an important impact on the foot and ankle biomechanics community. It was launched on July 2nd 2007 at the foot and ankle session of the International Society of Biomechanics (ISB meeting in Taipei, Taiwan. i-FAB is driven by the desire to improve our understanding of foot and ankle biomechanics as it applies to health, disease, and the design, development and evaluation of foot and ankle surgery, and interventions such as footwear, insoles and surfaces.

  13. Biomechanical Profile of Danish Elite and Sub-elite Soccer Goalkeepers

    DEFF Research Database (Denmark)

    Sørensen, Henrik; Thomassen, Martin; Zacho, Morten

    2008-01-01

    The purpose of this study was to define a biomechanical profile of the soccer goalkeeper. We tested whether the skill level of 6 goalkeepers correlated with a number of biomechanical tests. The skill level of each goalkeeper was defined as the league he played in. The biomechanical tests were...... of subjects, we conclude that the measured biomechanical parameters are of minor importance for assessment of the goalkeeper's skill level. We suggest that other skills as for example tactical understanding, positioning, perception and anticipation might be more important for the goalkeeper....

  14. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation

    Science.gov (United States)

    Rogers, Sean M.; Langerhans, R. Brian; Jamniczky, Heather A.; Lauder, George V.; Stewart, William J.; Martin, Christopher H.; Reznick, David N.

    2016-01-01

    Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator–prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process. PMID:27629033

  15. Quantifying the abnormal hemodynamics of sickle cell anemia

    Science.gov (United States)

    Lei, Huan; Karniadakis, George

    2012-02-01

    Sickle red blood cells (SS-RBC) exhibit heterogeneous morphologies and abnormal hemodynamics in deoxygenated states. A multi-scale model for SS-RBC is developed based on the Dissipative Particle Dynamics (DPD) method. Different cell morphologies (sickle, granular, elongated shapes) typically observed in deoxygenated states are constructed and quantified by the Asphericity and Elliptical shape factors. The hemodynamics of SS-RBC suspensions is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. Moreover, SS-RBCs exhibit abnormal adhesive interactions with both the vessel endothelium cells and the leukocytes. The effect of the abnormal adhesive interactions on the hemodynamics of sickle blood is investigated using the current model. It is found that both the SS-RBC - endothelium and the SS-RBC - leukocytes interactions, can potentially trigger the vicious ``sickling and entrapment'' cycles, resulting in vaso-occlusion phenomena widely observed in micro-circulation experiments.

  16. Low tendon stiffness and abnormal ultrastructure distinguish classic Ehlers-Danlos syndrome from benign joint hypermobility syndrome in patients

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Couppé, Christian; Jensen, Jacob Kildevang;

    2014-01-01

    's modulus were reduced to ∼50% of that in BJHS and Ctrl groups (Pbody weight, and physical activity, to compare outcomes. COL5A1 mutations led to structural tendon pathology and low tendon stiffness in cEDS, explaining...... (cEDS, n=7; BJHS, n=8) and controls (Ctrl, n=8), we measured patellar tendon ultrastructure (transmission electron microscopy), dimensions (magnetic resonance imaging), and biomechanical properties (force and ultrasonographic measurements during a ramped isometric knee extension). Mutation analyses...

  17. Complex radiation diagnosis of associated intracardiac abnormality

    International Nuclear Information System (INIS)

    It is shown that patients with congenital heart diseases having signs of cardiodismorphic complex in form of associated intercardiac abnormalities require special attention after surgical correction of the principal defect. It is connected with the fact that the associated abnormalities may become with time the basic factors influencing the progress and forecast of the disease

  18. An Abnormal Vibrational Mode of Torsion Pendulum

    Institute of Scientific and Technical Information of China (English)

    赵亮; 涂英; 顾邦明; 胡忠坤; 罗俊

    2003-01-01

    In the experiment for the determination of the gravitational constant G, we found an abnormal vibrational mode of the torsion pendulum. The abnormal mode disappeared as a magnetic damper was introduced to the torsion pendulum system. Our experimental results also show that the magnetic damper can be used to suppress the high frequency vibrational noises to torsion pendulums effectively.

  19. Abnormal Raman spectral phenomenon of silicon nanowires

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Raman spectra of two one-dimensional silicon nanowire samples with different excitation wavelengths were measured and an abnormal phenomenon was discovered that the Raman spectral features change with the wavelengths of excitation. Closer analysis of the crystalline structure of samples and the changes in Raman spectral features showed that the abnormal behavior is the result of resonance Raman scattering selection effect.

  20. Abnormal Event Detection Using Local Sparse Representation

    DEFF Research Database (Denmark)

    Ren, Huamin; Moeslund, Thomas B.

    2014-01-01

    measurement based on the difference between the normal space and local space. Specifically, we provide a reasonable normal bases through repeated K spectral clustering. Then for each testing feature we first use temporal neighbors to form a local space. An abnormal event is found if any abnormal feature...

  1. Nail abnormalities in patients with vitiligo*

    Science.gov (United States)

    Topal, Ilteris Oguz; Gungor, Sule; Kocaturk, Ozgur Emek; Duman, Hatice; Durmuscan, Mustafa

    2016-01-01

    Background Vitiligo is an acquired pigmentary skin disorder affecting 0.1-4% of the general population. The nails may be affected in patients with an autoimmune disease such as psoriasis, and in those with alopecia areata. It has been suggested that nail abnormalities should be apparent in vitiligo patients. Objective We sought to document the frequency and clinical presentation of nail abnormalities in vitiligo patients compared to healthy volunteers. We also examined the correlations between nail abnormalities and various clinical parameters. Methods This study included 100 vitiligo patients and 100 healthy subjects. Full medical histories were collected from the subjects, who underwent thorough general and nail examinations. All nail changes were noted. In the event of clinical suspicion of a fungal infection, additional mycological investigations were performed. Results Nail abnormalities were more prevalent in the patients (78%) than in the controls (55%) (p=0.001). Longitudinal ridging was the most common finding (42%), followed by (in descending order): leukonychia, an absent lunula, onycholysis, nail bed pallor, onychomycosis, splinter hemorrhage and nail plate thinning. The frequency of longitudinal ridging was significantly higher in patients than in controls (p<0.001). Conclusions Nail abnormalities were more prevalent in vitiligo patients than in controls. Systematic examination of the nails in such patients is useful because nail abnormalities are frequent. However, the causes of such abnormalities require further study. Longitudinal ridging and leukonychia were the most common abnormalities observed in this study. PMID:27579738

  2. [Abnormality in bone metabolism after burn].

    Science.gov (United States)

    Gong, X; Xie, W G

    2016-08-20

    Burn causes bone metabolic abnormality in most cases, including the changes in osteoblasts and osteoclasts, bone mass loss, and bone absorption, which results in decreased bone mineral density. These changes are sustainable for many years after burn and even cause growth retardation in burned children. The mechanisms of bone metabolic abnormality after burn include the increasing glucocorticoids due to stress response, a variety of cytokines and inflammatory medium due to inflammatory response, vitamin D deficiency, hypoparathyroidism, and bone loss due to long-term lying in bed. This article reviews the pathogenesis and regularity of bone metabolic abnormality after burn, the relationship between bone metabolic abnormality and burn area/depth, and the treatment of bone metabolic abnormality, etc. and discusses the research directions in the future. PMID:27562160

  3. The Effect of Contact Lens Usage on Corneal Biomechanical Parameters in Keratoconus Patients

    Directory of Open Access Journals (Sweden)

    Ali Bülent Çankaya

    2012-05-01

    Full Text Available Pur po se: To determine and compare the corneal biomechanical properties in keratoconus patients using rigid gas permeable contact lenses and keratoconus patients who do not use contact lenses. Ma te ri al and Met hod: The study consisted of 70 healthy controls (Group A, 27 ketatoconus subjects who do not use contact lens (Group B and 36 rigid gas permeable contact lens using keratoconic patients (Group C. Corneal viscoelastic parameters were measured with an Ocular response analyzer (ORA. Central corneal thickness was measured with an ultrasonic pachymeter. The differences in ORA parameters between the groups were compared. Re sults: The mean corneal hysteresis (CH in Groups A, B, and C were 10.3±1.5 mm Hg, 7.8±1.4 mm Hg, and 7.4±1.2 mm Hg, respectively. The differences in mean CH between Group A and the other two groups were statistically significant (p<0.01 for both comparisons, but no statistically significant difference was found between groups B and C in terms of mean CH (p=0.61. The mean corneal resistance factor (CRF was 10.7±1.9 in Group A compared with 6.6±1.6 in Group B and 6.1±1.5 in Group C. The differences in mean CRF between Group A and the other two groups were statistically significant (p<0.01 for both comparisons. There was no significant difference in CRF between the keratoconus eyes with or without rigid gas permeable contact lens usage (p=0.57. Dis cus si on: Our results suggest that ORA-generated parameters may be different in subjects with keratoconus. Corneal biomechanical parameters did not demonstrate a clear trend of change with rigid gas permeable contact lens usage. (Turk J Ophthalmol 2012; 42: 197-201

  4. Biomechanical corneal changes induced by different flap thickness created by femtosecond laser

    Directory of Open Access Journals (Sweden)

    Fabricio W. Medeiros

    2011-01-01

    Full Text Available OBJECTIVE: To evaluate the impact of the creation of corneal flaps at different thicknesses on the biomechanical properties of swine corneas. METHOD: Twelve swine eyes were obtained to form two groups: 100 μm flap thickness and 300 μm flap thickness. Each eye was submitted to the following examinations: raster topography to investigate corneal curvature alterations, ocular response analyzer to investigate corneal hysteresis change, optical coherence tomography to measure central corneal and flap thickness and sonic wave propagation velocity as a measure of stiffness, before and immediately after flap creation. After flap amputation, surface wave velocity measurements were repeated. RESULTS: Measured flap thicknesses were statistically different for thin and thick flap groups, with an average of 108.5 + 6.9 and 307.8 + 11.5 μm respectively. Hysteresis and corneal resistance factor did not change significantly after flap creation in the thin flap group. With thicker flaps, both parameters decreased significantly from 8.0 +1.0 to 5.1 +1.5 mmHg and from 8.2 + 1.6 to 4.1 +2.5 mmHg respectively. Simulated keratometry values increased in the thick flap group (from 39.5 + 1 D to 45.9+1.2 D after flap creation but not in the thin flap group (from 40.6 + 0.6 D to 41.4+ 1.0 D. Regarding surface wave velocity analysis, the surgical procedures induced statistically lower results in some positions. CONCLUSION: In the experimental conditions established by this model, thicker flaps presented a greater biomechanical impact on the cornea.

  5. Corneal biomechanics after rigid gas permeable contact lens wear in keratoconus eyes

    Institute of Scientific and Technical Information of China (English)

    Fereshteh Shokrollahzadeh; Hassan Hashemi; Ebrahim Jafarzadehpur; Ali Mirzajani; Mehdi Khabazkhoob; Soheila Asgari

    2016-01-01

    Background:Evaluation of corneal biomechanical properties 3 months after using rigid gas permeable (RGP) contact lenses in keratoconus. Methods: In this prospective trial study, cases were 32 keratoconic eyes with no history of RGP lens wear. All eyes were examined with the Ocular Response Analyzer (ORA) and the Corneal Visualization Scheimpflug Technology (CORVIS-ST) to measure corneal hysteresis (CH), corneal resistance factor (CRF), deformation amplitude (DA), applanation velocity (AV) 1 and 2, applanation length (AL) 1 and 2, and peak distance before and 3 months after iftting aspheric RGP lenses. The effect of the correlation between contralateral eyes and maximum keratometry were controlled for in the analysis. Results were compared using repeated measures analysis of covariance. Results:At 3 months, neither the increases in mean CH (0.14±2.77 mmHg, P=0.789), CRF (0.41±4.35 mmHg, P=0.612), AV1 (0.03±0.17 m/s, P=0.301), AV2 (0.11±0.59 m/s, P=0.299), AL1 (0.44±1.56 m/s, P=0.118), AL2 (1.16±5.06 m/s, P=0.211), and peak distance (0.19±1.29 m/s, P=0.409), nor the decrease in mean DA (0.03±0.17 mm, P=0.402) was statistically signiifcant. Conclusions: Results in our series of patients indicated that 3 months of RGP lens wear had no signiifcant impact on corneal biomechanics, and perhaps non progression of keratoconus. Therefore, RGP lenses can be regarded safe and appropriate in keratoconic patients.

  6. Chromosomal abnormalities in patients with sperm disorders

    Directory of Open Access Journals (Sweden)

    L. Y. Pylyp

    2013-02-01

    Full Text Available Chromosomal abnormalities are among the most common genetic causes of spermatogenic disruptions. Carriers of chromosomal abnormalities are at increased risk of infertility, miscarriage or birth of a child with unbalanced karyotype due to the production of unbalanced gametes. The natural selection against chromosomally abnormal sperm usually prevents fertilization with sperm barring in cases of serious chromosomal abnormalities. However, assisted reproductive technologies in general and intracytoplasmic sperm injection in particular, enable the transmission of chromosomal abnormalities to the progeny. Therefore, cytogenetic studies are important in patients with male factor infertility before assisted reproduction treatment. The purpose of the current study was to investigate the types and frequencies of chromosomal abnormalities in 724 patients with infertility and to estimate the risk of chromosomal abnormalities detection in subgroups of patients depending on the severity of spermatogenic disruption, aiming at identifying groups of patients in need of cytogenetic studies. Karyotype analysis was performed in 724 blood samples of men attending infertility clinic. Chromosomal preparation was performed by standard techniques. At least 20 GTG-banded metaphase plates with the resolution from 450 to 750 bands per haploid set were analysed in each case. When chromosomal mosaicism was suspected, this number was increased to 50. Abnormal karyotypes were observed in 48 (6.6% patients, including 67% of autosomal abnormalities and 33% of gonosomal abnormalities. Autosomal abnormalities were represented by structural rearrangements. Reciprocal translocations were the most common type of structural chromosomal abnormalities in the studied group, detected with the frequency of 2.6% (n = 19, followed by Robertsonian translocation, observed with the frequency of 1.2% (n = 9. The frequency of inversions was 0.6% (n = 4. Gonosomal abnormalities included 14 cases

  7. Biomechanics and the thermotolerance of development.

    Directory of Open Access Journals (Sweden)

    Michelangelo von Dassow

    Full Text Available Successful completion of development requires coordination of patterning events with morphogenetic movements. Environmental variability challenges this coordination. For example, developing organisms encounter varying environmental temperatures that can strongly influence developmental rates. We hypothesized that the mechanics of morphogenesis would have to be finely adjusted to allow for normal morphogenesis across a wide range of developmental rates. We formulated our hypothesis as a simple model incorporating time-dependent application of force to a viscoelastic tissue. This model suggested that the capacity to maintain normal morphogenesis across a range of temperatures would depend on how both tissue viscoelasticity and the forces that drive deformation vary with temperature. To test this model we investigated how the mechanical behavior of embryonic tissue (Xenopus laevis changed with temperature; we used a combination of micropipette aspiration to measure viscoelasticity, electrically induced contractions to measure cellular force generation, and confocal microscopy to measure endogenous contractility. Contrary to expectations, the viscoelasticity of the tissues and peak contractile tension proved invariant with temperature even as rates of force generation and gastrulation movements varied three-fold. Furthermore, the relative rates of different gastrulation movements varied with temperature: the speed of blastopore closure increased more slowly with temperature than the speed of the dorsal-to-ventral progression of involution. The changes in the relative rates of different tissue movements can be explained by the viscoelastic deformation model given observed viscoelastic properties, but only if morphogenetic forces increase slowly rather than all at once.

  8. Plate selection for fixation of extra-articular distal humerus fractures: a biomechanical comparison of three different implants.

    Science.gov (United States)

    Scolaro, John A; Hsu, Jason E; Svach, David J; Mehta, Samir

    2014-12-01

    Operative fixation of extra-articular distal humerus using a single posterolateral column plate has been described but the biomechanical properties or limits of this technique is undefined. The purpose of this study was to evaluate the mechanical properties of distal humerus fracture fixation using three standard fixation constructs. Two equal groups were created from forty sawbones humeri. Osteotomies were created at 80mm or 50mm from the tip of the trochlea. In the proximal osteotomy group, sawbones were fixed with an 8-hole 3.5mm LCP or with a 6-hole posterolateral plate. In the distal group, sawbones were fixed with 9-hole medial and lateral 3.5mm distal humerus plates and ten sawbones were fixed with a 6-hole posterolateral plate. Biomechanical testing was performed using a servohydraulic testing machine. Testing in extension as well as internal and external rotation was performed. Destructive testing was also performed with failure being defined as hardware pullout, sawbone failure or cortical contact at the osteotomy. In the proximal osteotomy group, the average bending stiffness and torsional stiffness was significantly greater with the posterolateral plate than with the 3.5mm LCP. In the distal osteotomy group, the average bending stiffness and torsional stiffness was significantly greater with the posterolateral plate than the 3.5mm LCP. In extension testing, the yield strength was significantly greater with the posterolateral plate in the proximal osteotomy specimens, and the dual plating construct in the distal osteotomy specimens. The yield strength of specimens in axial torsion was significantly greater with the posterolateral plate in the proximal osteotomy specimens, and the dual plating construct in the distal osteotomy specimens. Limited biomechanical data to support the use of a pre-contoured posterolateral distal humerus LCP for fixation of extra-articular distal humerus exists. We have found that this implant provided significantly greater

  9. Weightbath hydrotraction treatment: application, biomechanics, and clinical effects

    Directory of Open Access Journals (Sweden)

    Márta Kurutz

    2010-04-01

    Full Text Available Márta Kurutz1, Tamás Bender21Department of Structural Mechanics, Budapest University of Technology and Economics, Hungary; 2Department of Physical Medicine, Polyclinic and Hospital of the Hospitaller Brothers of St. John of God, Budapest, Medical University of Szeged, HungaryBackground and purpose: Weightbath hydrotraction treatment (WHT is a simple noninvasive effective method of hydro- or balneotherapy to stretch the spine or lower limbs, applied successfully in hospitals and health resort sanitaria in Hungary for more than fifty years. This study aims to introduce WHT with its biomechanical and clinical effects. History, development, equipment, modes of application, biomechanics, spinal traction forces and elongations, indications and contraindications of WHT are precented.Subjects and methods: The calculation of traction forces acting along the spinal column during the treatment is described together with the mode of suspension and the position of extra weight loads applied. The biomechanics of the treatment are completed by in vivo measured elongations of lumbar segments using a special underwater ultrasound measuring method. The clinical effects, indications, and contraindications of the treatment are also presented.Results: In the underwater cervical suspension of a human body, approximately 25 N stretching load occurs in the cervical spine, and about 11 N occurs in the lumbar spine. By applying extra weights, the above tensile forces along the spinal column can be increased. Thus, the traction effect can be controlled by applying such loads during the treatment. Elongations of segments L3–L4, L4–L5, and L5–S1 were measured during the usual WHT of patients suspended cervically in water for 20 minutes, loaded by 20–20 N lead weights on the ankles. The mean initial elastic elongations of spinal segments were about 0.8 mm for patients aged under 40 years, 0.5 mm between 40–60 years, and 0.2 mm for patients over 60 years. The mean

  10. A review of biomechanically informed breast image registration

    Science.gov (United States)

    Hipwell, John H.; Vavourakis, Vasileios; Han, Lianghao; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J.

    2016-01-01

    Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice.

  11. Biomechanics of the spine. Part I: Spinal stability

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, Roberto, E-mail: roberto1766@interfree.it [Neuroradiology Department, “A. Cardarelli” Hospital, Napoli (Italy); Guarnieri, Gianluigi, E-mail: gianluigiguarnieri@hotmail.it [Neuroradiology Department, “A. Cardarelli” Hospital, Napoli (Italy); Guglielmi, Giuseppe, E-mail: g.gugliemi@unifg.it [Department of Radiology, University of Foggia, Foggia (Italy); Muto, Mario, E-mail: mutomar@tiscali.it [Neuroradiology Department, “A. Cardarelli” Hospital, Napoli (Italy)

    2013-01-15

    Biomechanics, the application of mechanical principles to living organisms, helps us to understand how all the bony and soft spinal components contribute individually and together to ensure spinal stability, and how traumas, tumours and degenerative disorders exert destabilizing effects. Spine stability is the basic requirement to protect nervous structures and prevent the early mechanical deterioration of spinal components. The literature reports a number of biomechanical and clinical definitions of spinal stability, but a consensus definition is lacking. Any vertebra in each spinal motion segment, the smallest functional unit of the spine, can perform various combinations of the main and coupled movements during which a number of bony and soft restraints maintain spine stability. Bones, disks and ligaments contribute by playing a structural role and by acting as transducers through their mechanoreceptors. Mechanoreceptors send proprioceptive impulses to the central nervous system which coordinates muscle tone, movement and reflexes. Damage to any spinal structure gives rise to some degree of instability. Instability is classically considered as a global increase in the movements associated with the occurrence of back and/or nerve root pain. The assessment of spinal instability remains a major challenge for diagnostic imaging experts. Knowledge of biomechanics is essential in view of the increasing involvement of radiologists and neuroradiologists in spinal interventional procedures and the ongoing development of new techniques and devices. Bioengineers and surgeons are currently focusing on mobile stabilization systems. These systems represent a new frontier in the treatment of painful degenerative spine and aim to neutralize noxious forces, restore the normal function of spinal segments and protect the adjacent segments. This review discusses the current concepts of spine stability.

  12. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  13. Challenge-Based Instruction: The VaNTH Biomechanics Learning Modules

    Science.gov (United States)

    Barr, Ronald E.; Pandy, Marcus G.; Petrosino, Anthony J.; Roselli, Robert J.; Brophy, Sean; Freeman, Robert A.

    2007-01-01

    This paper presents the methodology and results of teaching an entire engineering course using challenge-based instruction. The challenges consisted of eight biomechanics multimedia learning modules developed by the authors as part of a broader NSF educational coalition. The biomechanics modules were presented in an undergraduate mechanical…

  14. How Can Sport Biomechanics Contribute to the Advance of World Record and Best Athletic Performance?

    Science.gov (United States)

    Li, Li

    2012-01-01

    Modern history has evidence that sport biomechanics provide valuable contribution in the pursuit of "faster, higher, and stronger." In this article, the contribution of sport biomechanics to the Olympic Games has been divided into three different categories: improve the physical capacity of the athletes, develop innovative techniques in a given…

  15. Training for Women's Basketball: A Biomechanical Emphasis for Preventing Anterior Cruciate Ligament Injury.

    Science.gov (United States)

    Pettitt, Robert W.; Bryson, Erin R.

    2002-01-01

    Summarizes proposed variables linked with higher incidences of anterior cruciate ligament tears in females and the biomechanical aspects of the lower extremity during the performance of common basketball skills, focusing on gender differences in knee joint stability and neuromuscular control, biomechanical aspects of lower extremity skills in…

  16. Diagnostic Assessment of Preparedness of Level One Sports Science Students for Biomechanics Modules

    Science.gov (United States)

    Dixon, Sharon J.

    2005-01-01

    The primary objective of this study was to investigate the use of a diagnostic test to assess the preparedness of level one students for a sports biomechanics module. During their first week at university, a cohort of 108 students completed a diagnostic test at the end of their first lecture in sports biomechanics, with no prior notice. Upon…

  17. Biomechanical analysis of cross-country skiing techniques.

    Science.gov (United States)

    Smith, G A

    1992-09-01

    The development of new techniques for cross-country skiing based on skating movements has stimulated biomechanical research aimed at understanding the various movement patterns, the forces driving the motions, and the mechanical factors affecting performance. Research methods have evolved from two-dimensional kinematic descriptions of classic ski techniques to three-dimensional analyses involving measurement of the forces and energy relations of skating. While numerous skiing projects have been completed, most have focused on either the diagonal stride or the V1 skating technique on uphill terrain. Current understanding of skiing mechanics is not sufficiently complete to adequately assess and optimize an individual skier's technique.

  18. Biofilm and saliva affect the biomechanical behavior of dental implants.

    Science.gov (United States)

    Bordin, Dimorvan; Cavalcanti, Indira M G; Jardim Pimentel, Marcele; Fortulan, Carlos A; Sotto-Maior, Bruno S; Del Bel Cury, Altair A; da Silva, Wander José

    2015-04-13

    Friction coefficient (FC) was quantified between titanium-titanium (Ti-Ti) and titanium-zirconia (Ti-Zr), materials commonly used as abutment and implants, in the presence of a multispecies biofilm (Bf) or salivary pellicle (Pel). Furthermore, FC was used as a parameter to evaluate the biomechanical behavior of a single implant-supported restoration. Interface between Ti-Ti and Ti-Zr without Pel or Bf was used as control (Ctrl). FC was recorded using tribometer and analyzed by two-way Anova and Tukey test (pbehavior of a single implant-supported restoration. PMID:25711169

  19. Interpretation Of Biomechanical Data To A Gymnastics Coach

    Science.gov (United States)

    Shierman, Gail

    1982-02-01

    Several trials of many different gymnastics skills on various pieces of apparatus were filmed and the results were studied with the coach. The time to accomplish the entire skill as well as the time for each segment of the skill was important to the coach. He was also interested in angle of release or push-off and the path of the center of gravity. Lastly, graphs of velocities and accelerations of limb segments were revealing to the coach. Biomechanical analysis has helped him see why the performances were good; he is more interested in working with the investigator in all the events in gymnastics through the medium of cinematography.

  20. Biomechanical Analysis of the Swim-Start: A Review

    OpenAIRE

    Julien Vantorre, Didier Chollet, Ludovic Seifert

    2014-01-01

    This review updates the swim-start state of the art from a biomechanical standpoint. We review the contribution of the swim-start to overall swimming performance, the effects of various swim-start strategies, and skill effects across the range of swim-start strategies identified in the literature. The main objective is to determine the techniques to focus on in swimming training in the contemporary context of the sport. The phases leading to key temporal events of the swim-start, like water e...