Sample records for abnormal axonal arborizations

  1. Increased stathmin1 expression in the dentate gyrus of mice causes abnormal axonal arborizations.

    Directory of Open Access Journals (Sweden)

    Kohei Yamada

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP is involved in multiple brain functions. To clarify the cause of abnormal behavior in PACAP deficient-mice, we attempted the identification of genes whose expression was altered in the dentate gyrus of PACAP-deficient mice using the differential display method. Expression of stathmin1 was up-regulated in the dentate gyrus at both the mRNA and protein levels. PACAP stimulation inhibited stathmin1 expression in PC12 cells, while increased stathmin1expression in neurons of the subgranular zone and in primary cultured hippocampal neurons induced abnormal arborization of axons. We also investigated the pathways involved in PACAP deficiency. Ascl1 binds to E10 box of the stathmin1 promoter and increases stathmin1 expression. Inhibitory bHLH proteins (Hes1 and Id3 were rapidly up-regulated by PACAP stimulation, and Hes1 could suppress Ascl1 expression and Id3 could inhibit Ascl1 signaling. We also detected an increase of stathmin1 expression in the brains of schizophrenic patients. These results suggest that up-regulation of stathmin1 in the dentate gyrus, secondary to PACAP deficiency, may create abnormal neuronal circuits that cause abnormal behavior.

  2. Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. (United States)

    Zheng, T; Wilson, C J


    The complete striatal axonal arborizations of 16 juxtacellularly stained cortical pyramidal cells were analyzed. Corticostriatal neurons were located in the medial agranular or anterior cingulate cortex of rats. All axons were of the extended type and formed synaptic contacts in both the striosomal and matrix compartments as determined by counterstaining for the mu-opiate receptor. Six axonal arborizations were from collaterals of brain stem-projecting cells and the other 10 from bilaterally projecting cells with no brain stem projections. The distribution of synaptic boutons along the axons were convolved with the average dendritic tree volume of spiny projection neurons to obtain an axonal innervation volume and innervation density map for each axon. Innervation volumes varied widely, with single axons occupying between 0.4 and 14.2% of the striatum (average = 4%). The total number of boutons formed by individual axons ranged from 25 to 2,900 (average = 879). Within the innervation volume, the density of innervation was extremely sparse but inhomogeneous. The pattern of innervation resembled matrisomes, as defined by bulk labeling and functional mapping experiments, superimposed on a low background innervation. Using this sample as representative of all corticostriatal axons, the total number of corticostriatal neurons was estimated to be 17 million, about 10 times the number of striatal projection neurons.

  3. ECEL1 mutation implicates impaired axonal arborization of motor nerves in the pathogenesis of distal arthrogryposis. (United States)

    Nagata, Kenichi; Kiryu-Seo, Sumiko; Tamada, Hiromi; Okuyama-Uchimura, Fumi; Kiyama, Hiroshi; Saido, Takaomi C


    The membrane-bound metalloprotease endothelin-converting enzyme-like 1 (ECEL1) has been newly identified as a causal gene of a specific type of distal arthrogryposis (DA). In contrast to most causal genes of DA, ECEL1 is predominantly expressed in neuronal cells, suggesting a unique neurogenic pathogenesis in a subset of DA patients with ECEL1 mutation. The present study analyzed developmental motor innervation and neuromuscular junction formation in limbs of the rodent homologue damage-induced neuronal endopeptidase (DINE)-deficient mouse. Whole-mount immunostaining was performed in DINE-deficient limbs expressing motoneuron-specific GFP to visualize motor innervation throughout the limb. Although DINE-deficient motor nerves displayed normal trajectory patterns from the spinal cord to skeletal muscles, they indicated impaired axonal arborization in skeletal muscles in the forelimbs and hindlimbs. Systematic examination of motor innervation in over 10 different hindlimb muscles provided evidence that DINE gene disruption leads to insufficient arborization of motor nerves after arriving at the skeletal muscle. Interestingly, the axonal arborization defect in foot muscles appeared more severe than in other hindlimb muscles, which was partially consistent with the proximal-distal phenotypic discordance observed in DA patients. Additionally, the number of innervated neuromuscular junction was significantly reduced in the severely affected DINE-deficient muscle. Furthermore, we generated a DINE knock-in (KI) mouse model with a pathogenic mutation, which was recently identified in DA patients. Axonal arborization defects were clearly detected in motor nerves of the DINE KI limb, which was identical to the DINE-deficient limb. Given that the encoded sequences, as well as ECEL1 and DINE expression profiles, are highly conserved between mouse and human, abnormal arborization of motor axons and subsequent failure of NMJ formation could be a primary cause of DA with ECEL1

  4. Adenomatous polyposis coli regulates axon arborization and cytoskeleton organization via its N-terminus.

    Directory of Open Access Journals (Sweden)

    Youjun Chen

    Full Text Available Conditional deletion of APC leads to marked disruption of cortical development and to excessive axonal branching of cortical neurons. However, little is known about the cell biological basis of this neuronal morphological regulation. Here we show that APC deficient cortical neuronal growth cones exhibit marked disruption of both microtubule and actin cytoskeleton. Functional analysis of the different APC domains revealed that axonal branches do not result from stabilized β-catenin, and that the C-terminus of APC containing microtubule regulatory domains only partially rescues the branching phenotype. Surprisingly, the N-terminus of APC containing the oligomerization domain and the armadillo repeats completely rescues the branching and cytoskeletal abnormalities. Our data indicate that APC is required for appropriate axon morphological development and that the N-terminus of APC is important for regulation of the neuronal cytoskeleton.

  5. Axonal abnormalities in cerebellar Purkinje cells of the Ts65Dn mouse. (United States)

    Necchi, Daniela; Lomoio, Selene; Scherini, Elda


    Ts65Dn mice are a genetic model for Down syndrome. Among others, these mice have cerebellar pathology features which parallel those seen in Down syndrome patients. Both individuals with Down syndrome and Ts65Dn mice have reduced cerebellar volume and numbers of granule and Purkinje cells. In this report, we describe morphological abnormalities of axons of Purkinje cells in the cerebellum of Ts65Dn mice, by using anti-calbindin immunocytochemistry. A consistent number of Purkinje cells shows axons bearing giant varicosities along their transit through the granular layer. The cerebellar arbor vitae made by fasciculated Purkinje cell axons has a patchy appearance, some tracks being devoid of calbindin staining. The infraganglionic plexus, formed by recurrent collaterals of Purkinje cell axons, has enormously increased density, which is evidence for a compensatory reaction to degeneration of distal segments of axons. These alterations are accompanied by strong glial reaction as evidenced by GFAP immunocytochemistry. Moreover, the alterations are more consistent in the anterior lobules of the vermis and intermediate cortex. The axonal pathology of Purkinje cells may explain the impairment in cerebellar functions observed in Ts65Dn mice at the adulthood.

  6. Terminal axonal arborization and synaptic bouton formation critically rely on abp1 and the arp2/3 complex.

    Directory of Open Access Journals (Sweden)

    Nicole Koch

    Full Text Available Neuronal network formation depends on properly timed and localized generation of presynaptic as well as postsynaptic structures. Although of utmost importance for understanding development and plasticity of the nervous system and neurodegenerative diseases, the molecular mechanisms that ensure the fine-control needed for coordinated establishment of pre- and postsynapses are still largely unknown. We show that the F-actin-binding protein Abp1 is prominently expressed in the Drosophila nervous system and reveal that Abp1 is an important regulator in shaping glutamatergic neuromuscular junctions (NMJs of flies. STED microscopy shows that Abp1 accumulations can be found in close proximity of synaptic vesicles and at the cell cortex in nerve terminals. Abp1 knock-out larvae have locomotion defects and underdeveloped NMJs that are characterized by a reduced number of both type Ib synaptic boutons and branches of motornerve terminals. Abp1 is able to indirectly trigger Arp2/3 complex-mediated actin nucleation and interacts with both WASP and Scar. Consistently, Arp2 and Arp3 loss-of-function also resulted in impairments of bouton formation and arborization at NMJs, i.e. fully phenocopied abp1 knock-out. Interestingly, neuron- and muscle-specific rescue experiments revealed that synaptic bouton formation critically depends on presynaptic Abp1, whereas the NMJ branching defects can be compensated for by restoring Abp1 functions at either side. In line with this presynaptic importance of Abp1, also presynaptic Arp2 and Arp3 are crucial for the formation of type Ib synaptic boutons. Interestingly, presynaptic Abp1 functions in NMJ formation were fully dependent on the Arp2/3 complex, as revealed by suppression of Abp1-induced synaptic bouton formation and branching of axon terminals upon presynaptic Arp2 RNAi. These data reveal that Abp1 and Arp2/3 complex-mediated actin cytoskeletal dynamics drive both synaptic bouton formation and NMJ branching. Our

  7. Abnormal morphology of myelin and axon pathology in murine models of multiple sclerosis. (United States)

    Bando, Yoshio; Nomura, Taichi; Bochimoto, Hiroki; Murakami, Koichi; Tanaka, Tatsuhide; Watanabe, Tsuyoshi; Yoshida, Shigetaka


    Demyelination and axonal damage are responsible for neurological deficits in multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. However, the pathology of axonal damage in MS is not fully understood. In this study, histological analysis of morphological changes of axonal organelles during demyelination in murine models was investigated by scanning electron microscopy (SEM) using an osmium-maceration method. In cuprizone-induced demyelination, SEM showed typical morphology of demyelination in the corpus callosum of mouse brain. In contrast, SEM displayed variations in ultrastructural abnormalities of myelin structures and axonal organelles in spinal cord white matter of experimental autoimmune encephalomyelitis (EAE) mice, an animal model of MS. Myelin detachment and excessive myelin formation were observed as typical morphological myelin abnormalities in EAE. In addition, well-developed axoplasmic reticulum-like structures and accumulated mitochondria were observed in tortuous degenerating/degenerated axons and the length of mitochondria in axons of EAE spinal cord was shorter compared with naïve spinal cord. Immunohistochemistry also revealed dysfunction of mitochondrial fusion/fission machinery in EAE spinal cord axons. Moreover, the number of Y-shaped mitochondria was significantly increased in axons of the EAE spinal cord. Axonal morphologies in myelin basic protein-deficient shiverer mice were similar to those in EAE. However, shiverer mice had "tortuous" (S-curve shaped mitochondria) and larger mitochondria compared with wild-type and EAE mice. Lastly, analysis of human MS patient autopsied brains also demonstrated abnormal myelin structures in demyelinating lesions. These results indicate that morphological abnormalities of myelin and axonal organelles play important role on the pathogenesis of axonal injury in demyelinating diseases.

  8. Morphology of axonal transport abnormalities in primate eyes. (United States)

    Radius, R L; Anderson, D R


    The ultrastructure of the retina and optic nerve head was studied in primate eyes after central retinal artery occlusion. Within 2 hours of the vascular occlusion the inner retinal layers undergo watery (isosmotic) swelling. This watery swelling of axons and astroglia extends into the nerve head as far back as the anterior boundary of the scleral lamina cribrosa. The swelling is increased 4 hours after the occlusion, and by 24 hours disintegration has occurred. At the optic nerve head mitochondria and vesicles of smooth endoplasmic reticulum begin to accumulate within 2 hours. The accumulation increases at 4 hours and persists to 24 hours. The watery swelling seems characteristic of ischaemic axons. Membranous organelles accumulate at the boundary of an ischaemic zone when material carried by axonal transport is brought via the healthy axon segment to the boundary, but they cannot proceed further into the ischaemic zone. Such accumulation is typical of locations where rapid orthograde axonal transport or retrograde axonal transport is blocked. In contrast, when slow axonal flow is impaired, the swelling is characterised by an excess of cytoplasmic gel without a marked accumulation of organelles. Rapid orthograde transport and retrograde transport seem to be closely related to one another, while slow axoplasmic flow seems fundamentally different. From morphological findings we suspect that, in experimental glaucoma, intraocular pressure first affects the intracellular physiological process of rapid orthograde and retrograde axonal transport. Watery swelling may not occur unless the ischaemic injury to cell metabolism is more advanced. In contrast, in experimental papilloedema, the swelling results predominantly from impaired slow axoplasmic flow.

  9. Optic nerve fast axonal transport abnormalities in primates. Occurrence after short posterior ciliary artery occlusion. (United States)

    Radius, R L


    Fast axonal transport abnormalities in primate (Aotus trivirgatus) optic nerve were studied in ten eyes at various intervals after occlusion of the lateral short posterior ciliary circulation. Evidence of focal axonal ischemia, as indicated by swelling of mitochondria and dissolution of cytoplasmic detail, was noted as early as one hour after occlusion. Accumulation of mitochondria, microvesicles, and dense bodies, indicating focal interruption of axonal transport mechanisms, was noted in eyes examined at 2, 4, and 6 hours. This accumulation of organelles was limited to the region of the lamina cribrosa. Nerve head abnormalities were not seen in two eyes studied at two weeks.

  10. Morphology of axonal transport abnormalities in primate eyes.


    Radius, R L; Anderson, D. R.


    The ultrastructure of the retina and optic nerve head was studied in primate eyes after central retinal artery occlusion. Within 2 hours of the vascular occlusion the inner retinal layers undergo watery (isosmotic) swelling. This watery swelling of axons and astroglia extends into the nerve head as far back as the anterior boundary of the scleral lamina cribrosa. The swelling is increased 4 hours after the occlusion, and by 24 hours disintegration has occurred. At the optic nerve head mitocho...

  11. Complete axon arborization of a single CA3 pyramidal cell in the rat hippocampus, and its relationship with postsynaptic parvalbumin-containing interneurons. (United States)

    Sik, A; Tamamaki, N; Freund, T F


    The complete axon arborization of a single CA3 pyramidal cell has been reconstructed from 32 (60 microns thick) sections from the rat hippocampus following in vivo intracellular injection of neurobiotin. The same sections were double-immunostained for parvalbumin--a calcium-binding protein selectively present in two types of GABAergic interneurons, the basket and chandelier cells--in order to map boutons of the pyramidal cell in contact with dendrites and somata of these specific subsets of interneurons visualized in a Golgi-like manner. The axon of the pyramidal cell formed 15,295 boutons, 63.8% of which were in stratum oriens, 15.4% in stratum pyramidale and 20.8% in stratum radiatum. Only 2.1% of the axon terminals contacted parvalbumin-positive neurons. Most of these were single contacts (84.7%), but double or triple contacts (15.3%) were also found. The majority of the boutons terminated on dendrites (84.1%) of parvalbumin-positive cells, less frequently on cell bodies (15.9%). In order to estimate the proportion of contacts representing synapses, 16 light microscopically identified contacts between boutons of the filled pyramidal cell axon and the parvalbumin-positive targets were examined by correlated electron microscopy. Thirteen of them were found to be asymmetrical synapses, and in the remaining three cases synapses between the labelled profiles could not be confirmed. We conclude that the physiologically effective excitatory connections between single pyramidal cells and postsynaptic inhibitory neurons are mediated by a small number of contacts, mostly by a single synapse. This results in a high degree of convergence and divergence in hippocampal networks.


    Directory of Open Access Journals (Sweden)

    Dost eOngur


    Full Text Available In this manuscript we present novel MRI approaches to dissecting axon vs. myelin abnormalities in psychiatric disorders. Existing DTI approaches are not able to provide specific information on these subcellular elements but novel approaches are beginning to do so. We review two approaches (magnetization transfer ratio - MTR; and diffusion tensor spectroscopy - DTS and the theoretical framework for interpreting data derived from these approaches. Work is ongoing to collect data that will answer some relevant questions using these techniques in schizophrenia and related conditions.

  13. Abnormally phosphorylated tau is associated with neuronal and axonal loss in experimental autoimmune encephalomyelitis and multiple sclerosis. (United States)

    Anderson, J M; Hampton, D W; Patani, R; Pryce, G; Crowther, R A; Reynolds, R; Franklin, R J M; Giovannoni, G; Compston, D A S; Baker, D; Spillantini, M G; Chandran, S


    The pathological correlate of clinical disability and progression in multiple sclerosis is neuronal and axonal loss; however, the underlying mechanisms are unknown. Abnormal phosphorylation of tau is a common feature of some neurodegenerative disorders, such as Alzheimer's disease. We investigated the presence of tau hyperphosphorylation and its relationship with neuronal and axonal loss in chronic experimental autoimmune encephalomyelitis (CEAE) and in brain samples from patients with secondary progressive multiple sclerosis. We report the novel finding of abnormal tau phosphorylation in CEAE. We further show that accumulation of insoluble tau is associated with both neuronal and axonal loss that correlates with progression from relapsing-remitting to chronic stages of EAE. Significantly, analysis of secondary progressive multiple sclerosis brain tissue also revealed abnormally phosphorylated tau and the formation of insoluble tau. Together, these observations provide the first evidence implicating abnormal tau in the neurodegenerative phase of tissue injury in experimental and human demyelinating disease.

  14. Pressure-induced fast axonal transport abnormalities and the anatomy at the lamina cribrosa in primate eyes. (United States)

    Radius, R L


    In ten owl monkey eyes (Aotus trivirgatus) the location of pressure-induced (perfusion pressure 35 mmHg) axonal transport abnormalities was determined by the examination of serial step cross-section tissue radio autographs from the optic nerve head. The degree of the local transport interruption did not correlate with the fiber bundle cross-section area, the shape of the laminar pores or the density of the inter-bundle septa in that region.

  15. Abnormal Axon Reflex-Mediated Sweating Correlates with High State of Anxiety in Atopic Dermatitis

    Directory of Open Access Journals (Sweden)

    Akiko Kijima


    Conclusions: Although the number of study subjects was little, abnormal AXR sweating in patients with AD was observed. Correlative analysis suggests possible involvement of continuous anxiety and the immune system in such abnormal sudomotor function.

  16. Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. (United States)

    Parker, J A; Connolly, J B; Wellington, C; Hayden, M; Dausset, J; Neri, C


    Huntington's disease (HD) is a dominant neurodegenerative disease caused by polyglutamine (polyQ) expansion in the protein huntingtin (htt). HD pathogenesis appears to involve the production of mutated N-terminal htt, cytoplasmic and nuclear aggregation of htt, and abnormal activity of htt interactor proteins essential to neuronal survival. Before cell death, neuronal dysfunction may be an important step of HD pathogenesis. To explore polyQ-mediated neuronal toxicity, we expressed the first 57 amino acids of human htt containing normal [19 Gln residues (Glns)] and expanded (88 or 128 Glns) polyQ fused to fluorescent marker proteins in the six touch receptor neurons of Caenorhabditis elegans. Expanded polyQ produced touch insensitivity in young adults. Noticeably, only 28 +/- 6% of animals with 128 Glns were touch sensitive in the tail, as mediated by the PLM neurons. Similar perinuclear deposits and faint nuclear accumulation of fusion proteins with 19, 88, and 128 Glns were observed. In contrast, significant deposits and morphological abnormalities in PLM cell axons were observed with expanded polyQ (128 Glns) and partially correlated with touch insensitivity. PLM cell death was not detected in young or old adults. These animals indicate that significant neuronal dysfunction without cell death may be induced by expanded polyQ and may correlate with axonal insults, and not cell body aggregates. These animals also provide a suitable model to perform in vivo suppression of polyQ-mediated neuronal dysfunction.

  17. Nuclear kinesis, neurite sprouting and abnormal axonal projections of cone photoreceptors in the aged and AMD-afflicted human retina. (United States)

    Pow, David V; Sullivan, Robert K P


    Tissues often respond to damage by recapitulating developmental programs. We have investigated whether anatomical signs of developmental recapitulation are evident in cone photoreceptors of the aged and AMD-afflicted human retina. Radial migration of cell nuclei mediated by microtubules is a characteristic feature of cells in the developing retina. Similarly, neurite outgrowth is a feature of developing neurons. We have examined whether nuclear kinesis and neurite outgrowth from cone photoreceptors is evident. Calbindin-positive cone photoreceptor nuclei are normally positioned as a single layer of somata at the outer border of the outer nuclear layer. In AMD-afflicted retinae, many nuclei are translocated, with some somata abutting the outer plexiform layer (OPL) and others outside the outer limiting membrane whilst many nuclei are present at intermediate levels. The axonal processes of many cones were also aberrant, displaying tortuous pathways as they projected to the OPL, with occasional evidence for bifurcation at points where the axon changed direction. We suggest that tangential extension of collateral neurites and the rapid retraction of the original process may give rise to the tortuous axonal projections observed. Since microtubules are key mediators of both neurite extension and nuclear kinesis we examined expression of microtubule associated protein 2 (MAP2) which is an important regulator of neurite extension. The strong expression of MAP2 observed in those cells with aberrant morphologies supports the notion that abnormal microtubule-mediated remodelling events are present in the AMD retina and to a lesser extent in normal aged retinas, allowing cone photoreceptors to recapitulate two key features of development.

  18. Distribution of pressure-induced fast axonal transport abnormalities in primate optic nerve. An autoradiographic study. (United States)

    Radius, R L


    The distribution of transport abnormalities in primate optic nerve from eyes subjected to five hours of pressure elevation (perfusion pressure of 35 mm Hg) was studied. Tissue autoradiography and electron microscopy were used to localize regions of the lamina cribrosa with increased transport interruption. A preferential involvement by this transport abnormality involved the superior, temporal, and inferior portions, to the exclusion of the nasal portion, of the optic nerve head. This observation supports the hypothesis that transport interruption seen in this model may be pertinent to the study of clinical glaucomatous neuropathy.

  19. Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts. (United States)

    Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I; Opal, Puneet; Goldman, Robert D


    Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility.

  20. Characterizing the Spatial Density Functions of Neural Arbors (United States)

    Teeter, Corinne Michelle

    Recently, it has been proposed that a universal function describes the way in which all arbors (axons and dendrites) spread their branches over space. Data from fish retinal ganglion cells as well as cortical and hippocampal arbors from mouse, rat, cat, monkey and human provide evidence that all arbor density functions (adf) can be described by a Gaussian function truncated at approximately two standard deviations. A Gaussian density function implies that there is a minimal set of parameters needed to describe an adf: two or three standard deviations (depending on the dimensionality of the arbor) and an amplitude. However, the parameters needed to completely describe an adf could be further constrained by a scaling law found between the product of the standard deviations and the amplitude of the function. In the following document, I examine the scaling law relationship in order to determine the minimal set of parameters needed to describe an adf. First, I find that the at, two-dimensional arbors of fish retinal ganglion cells require only two out of the three fundamental parameters to completely describe their density functions. Second, the three-dimensional, volume filling, cortical arbors require four fundamental parameters: three standard deviations and the total length of an arbor (which corresponds to the amplitude of the function). Next, I characterize the shape of arbors in the context of the fundamental parameters. I show that the parameter distributions of the fish retinal ganglion cells are largely homogenous. In general, axons are bigger and less dense than dendrites; however, they are similarly shaped. The parameter distributions of these two arbor types overlap and, therefore, can only be differentiated from one another probabilistically based on their adfs. Despite artifacts in the cortical arbor data, different types of arbors (apical dendrites, non-apical dendrites, and axons) can generally be differentiated based on their adfs. In addition, within

  1. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat. (United States)

    Xiao, W H; Zheng, H; Zheng, F Y; Nuydens, R; Meert, T F; Bennett, G J


    The dose-limiting side effect of the anti-neoplastic agent, paclitaxel, is a chronic distal symmetrical peripheral neuropathy that produces sensory dysfunction (hypoesthesia and neuropathic pain) but little or no distal motor dysfunction. Similar peripheral neuropathies are seen with chemotherapeutics in the vinca alkaloid, platinum-complex, and proteasome inhibitor classes. Studies in rats suggest that the cause is a mitotoxic effect on axonal mitochondria. If so, then the absence of motor dysfunction may be due to mitotoxicity that affects sensory axons but spares motor axons. To investigate this, paclitaxel exposure levels in the dorsal root, ventral root, dorsal root ganglion, peripheral nerve, and spinal cord were measured, and the ultrastructure and the respiratory function of mitochondria in dorsal roots and ventral roots were compared. Sensory and motor axons in the roots and nerve had comparably low exposure to paclitaxel and exposure in the spinal cord was negligible. However, sensory neurons in the dorsal root ganglion had a very high and remarkably persistent (up to 10 days or more after the last injection) exposure to paclitaxel. Paclitaxel evoked a significant increase in the incidence of swollen and vacuolated mitochondria in the myelinated and unmyelinated sensory axons of the dorsal root (as seen previously in the peripheral nerve) but not in the motor axons of the ventral root. Stimulated mitochondrial respiration in the dorsal root was significantly depressed in paclitaxel-treated animals examined 2-4 weeks after the last injection, whereas respiration in the ventral root was normal. We conclude that the absence of motor dysfunction in paclitaxel-evoked peripheral neuropathy may be due to the absence of a mitotoxic effect in motor neuron axons, whereas the sensory dysfunction may be due to a mitotoxic effect resulting from the primary afferent neuron's cell body being exposed to high and persistent levels of paclitaxel.

  2. Action-potential modulation during axonal conduction. (United States)

    Sasaki, Takuya; Matsuki, Norio; Ikegaya, Yuji


    Once initiated near the soma, an action potential (AP) is thought to propagate autoregeneratively and distribute uniformly over axonal arbors. We challenge this classic view by showing that APs are subject to waveform modulation while they travel down axons. Using fluorescent patch-clamp pipettes, we recorded APs from axon branches of hippocampal CA3 pyramidal neurons ex vivo. The waveforms of axonal APs increased in width in response to the local application of glutamate and an adenosine A(1) receptor antagonist to the axon shafts, but not to other unrelated axon branches. Uncaging of calcium in periaxonal astrocytes caused AP broadening through ionotropic glutamate receptor activation. The broadened APs triggered larger calcium elevations in presynaptic boutons and facilitated synaptic transmission to postsynaptic neurons. This local AP modification may enable axonal computation through the geometry of axon wiring.

  3. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. (United States)

    Calkins, Marcus J; Manczak, Maria; Mao, Peizhong; Shirendeb, Ulziibat; Reddy, P Hemachandra


    Increasing evidence suggests that the accumulation of amyloid beta (Aβ) in synapses and synaptic mitochondria causes synaptic mitochondrial failure and synaptic degeneration in Alzheimer's disease (AD). The purpose of this study was to better understand the effects of Aβ in mitochondrial activity and synaptic alterations in neurons from a mouse model of AD. Using primary neurons from a well-characterized Aβ precursor protein transgenic (AβPP) mouse model (Tg2576 mouse line), for the first time, we studied mitochondrial activity, including axonal transport of mitochondria, mitochondrial dynamics, morphology and function. Further, we also studied the nature of Aβ-induced synaptic alterations, and cell death in primary neurons from Tg2576 mice, and we sought to determine whether the mitochondria-targeted antioxidant SS31 could mitigate the effects of oligomeric Aβ. We found significantly decreased anterograde mitochondrial movement, increased mitochondrial fission and decreased fusion, abnormal mitochondrial and synaptic proteins and defective mitochondrial function in primary neurons from AβPP mice compared with wild-type (WT) neurons. Transmission electron microscopy revealed a large number of small mitochondria and structurally damaged mitochondria, with broken cristae in AβPP primary neurons. We also found an increased accumulation of oligomeric Aβ and increased apoptotic neuronal death in the primary neurons from the AβPP mice relative to the WT neurons. Our results revealed an accumulation of intraneuronal oligomeric Aβ, leading to mitochondrial and synaptic deficiencies, and ultimately causing neurodegeneration in AβPP cultures. However, we found that the mitochondria-targeted antioxidant SS31 restored mitochondrial transport and synaptic viability, and decreased the percentage of defective mitochondria, indicating that SS31 protects mitochondria and synapses from Aβ toxicity.

  4. Diverse modes of axon elaboration in the developing neocortex.

    Directory of Open Access Journals (Sweden)


    Full Text Available The development of axonal arbors is a critical step in the establishment of precise neural circuits, but relatively little is known about the mechanisms of axonal elaboration in the neocortex. We used in vivo two-photon time-lapse microscopy to image axons in the neocortex of green fluorescent protein-transgenic mice over the first 3 wk of postnatal development. This period spans the elaboration of thalamocortical (TC and Cajal-Retzius (CR axons and cortical synaptogenesis. Layer 1 collaterals of TC and CR axons were imaged repeatedly over time scales ranging from minutes up to days, and their growth and pruning were analyzed. The structure and dynamics of TC and CR axons differed profoundly. Branches of TC axons terminated in small, bulbous growth cones, while CR axon branch tips had large growth cones with numerous long filopodia. TC axons grew rapidly in straight paths, with frequent interstitial branch additions, while CR axons grew more slowly along tortuous paths. For both types of axon, new branches appeared at interstitial sites along the axon shaft and did not involve growth cone splitting. Pruning occurred via retraction of small axon branches (tens of microns, at both CR and TC axons or degeneration of large portions of the arbor (hundreds of microns, for TC axons only. The balance between growth and retraction favored overall growth, but only by a slight margin. Given the identical layer 1 territory upon which CR and TC axons grow, the differences in their structure and dynamics likely reflect distinct intrinsic growth programs for axons of long projection neurons versus local interneurons.

  5. Serum inducible kinase is a positive regulator of cortical dendrite development and is required for BDNF-promoted dendritic arborization

    Institute of Scientific and Technical Information of China (English)

    Shun-Ling Guo; Guo-He Tan; Shuai Li; Xue-Wen Cheng; Ya Zhou; Yun-Fang Jia; Hui Xiong; Jiong Tao; Zhi-Qi Xiong


    Serum inducible kinase (SNK),also known as (p)olo-(l)ike (k)inase 2 (PLK2),is a known regulator of mitosis,synaptogenesis and synaptic homeostasis.However,its role in early cortical development is unknown.Herein,we show that snk is expressed in the cortical plate from embryonic day 14,but not in the ventricular/subventricular zones (VZ/SVZ),and SNK protein localizes to the soma and dendrites of cultured immature cortical neurons.Loss of SNK impaired dendritic but not axonal arborization in a dose-dependent manner and overexpression had opposite effects,both in vitro and in vivo.Overexpression of SNK also caused abnormal branching of the leading process of migrating cortical neurons in electroporated cortices.The kinase activity was necessary for these effects.Extracellular signalregulated kinase (ERK) pathway activity downstream of brain-derived neurotrophic factor (BDNF) stimulation led to increases in SNK protein expression via transcriptional regulation,and this upregulation was necessary for the growth-promoting effect of BDNF on dendritic arborization.Taken together,our results indicate that SNK is essential for dendrite morphogenesis in cortical neurons.

  6. Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites.

    Directory of Open Access Journals (Sweden)

    Fabrice Ango


    Full Text Available The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1 is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation.

  7. Ascending Midbrain Dopaminergic Axons Require Descending GAD65 Axon Fascicles for Normal Pathfinding

    Directory of Open Access Journals (Sweden)

    Claudia Marcela Garcia-Peña


    Full Text Available The Nigrostriatal pathway (NSP is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold.

  8. Structural plasticity of axon terminals in the adult. (United States)

    Gogolla, Nadine; Galimberti, Ivan; Caroni, Pico


    There is now conclusive evidence for widespread ongoing structural plasticity of presynaptic boutons and axon side-branches in the adult brain. The plasticity complements that of postsynaptic spines, but axonal plasticity samples larger volumes of neuropil, and has a larger impact on circuit remodeling. Axons from distinct neurons exhibit unique ratios of stable (t1/2>9 months) and dynamic (t1/2 5-20 days) boutons, which persist as spatially intermingled subgroups along terminal arbors. In addition, phases of side-branch dynamics mediate larger scale remodeling guided by synaptogenesis. The plasticity is most pronounced during critical periods; its patterns and outcome are controlled by Hebbian mechanisms and intrinsic neuronal factors. Novel experience, skill learning, life-style, and age can persistently modify local circuit structure through axonal structural plasticity.

  9. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Christian Witzel


    Full Text Available Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection. ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005 and the number of arborizing axons (21% vs. 16% P = 0.008 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  10. Arboreal Burials in Nicrophorus spp. (Coleoptera: Silphidae

    Directory of Open Access Journals (Sweden)

    Amanda J. Lowe


    Full Text Available Nicrophorus beetles are well known for interring small vertebrates below ground for the purpose of rearing their young. However, the arboreal use of carrion has not been previously investigated. Nest boxes were suspended in the canopy of two forest habitats in Nova Scotia, Canada, to determine if this microhabitat fostered the same behaviour. Although four species of Nicrophorus as well as Oiceoptoma noveboracense (Forster were recorded in association with carrion, arboreal reproduction was recorded exclusively and for the first time in N. tomentosus Weber and N. defodiens Mannerheim. Both N. sayi Laporte and N. pustulatus Herschel were associated with the arboreal carrion but did not reproduce on it during these experiments.

  11. Fibrin glue repair leads to enhanced axonal elongation during early peripheral nerve regeneration in an in vivo mouse model

    Institute of Scientific and Technical Information of China (English)

    Georgios Koulaxouzidis; Gernot Reim; Christian Witzel


    Microsurgical suturing is the gold standard of nerve coaptation. Although literature on the usefulness of ifbrin glue as an alternative is becoming increasingly available, it remains contradic-tory. Furthermore, no data exist on how both repair methods might inlfuence the morphological aspects (arborization; branching) of early peripheral nerve regeneration. We used the sciatic nerve transplantation model in thy-1 yellow lfuorescent protein mice (YFP;n = 10). Pieces of nerve (1cm) were grafted from YFP-negative mice (n = 10) into those expressing YFP. We per-formed microsuture coaptations on one side and used ifbrin glue for repair on the contralateral side. Seven days after grafting, the regeneration distance, the percentage of regenerating and ar-borizing axons, the number of branches per axon, the coaptation failure rate, the gap size at the repair site and the time needed for surgical repair were all investigated. Fibrin glue repair resulted in regenerating axons travelling further into the distal nerve. It also increased the percentage of arborizing axons. No coaptation failure was detected. Gap sizes were comparable in both groups. Fibrin glue signiifcantly reduced surgical repair time. The increase in regeneration distance, even after the short period of time, is in line with the results of others that showed faster axonal regen-eration after ifbrin glue repair. The increase in arborizing axons could be another explanation for better functional and electrophysiological results after ifbrin glue repair. Fibrin glue nerve coap-tation seems to be a promising alternative to microsuture repair.

  12. Ann Arbor, Michigan: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)


    This brochure provides an overview of the challenges and successes of Ann Arbor, Michigan, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  13. Morphometry of Axons in Optic Nerves of Siamese's Twins

    Institute of Scientific and Technical Information of China (English)

    Xinzu Gu; Zhenping Zhang; Qi Lin; Jiongji Liang; Wenyu Lu; Xiulan Ye; A A Sadun


    Purpose: To observe the development of optic nerve, we examined four optic nerves from Siameses Twins by absolute counts of axons.Methods: Mean axon diameter, mean axon density, totally axonal population and optic nerve area were noted for each optic nerve. The mean axon diameter and the mean axon density were compared between paraxial (inner sectors)and cortical (outer sectors)areas of the nerves.Results: More myelinated axons were seen in the inner sectors as compared to the outer sectors(average 11 axons/1 000 μm2 in inner sectors and 34 axons/l 000 μm2 in outer sectors( P=0. 036) . The myelinated fibers were also smaller(63 microns) in the outer sectors as compared to the inner sectors(72 microns) ( P = 0. 001 ). The average cross sectors area for the four 40 week stage optical nerves of Siamese Twins was 3.32 × 103 as compared to 1 million axons for 32-week-old normals.Conclusion: Our finding of fewer axonal number and small myelinated fibers in the Siamese Twins suggests hypoplasia. Myelination was more abnormal in the paraxial optic nerve than that in the peripheral sectors, suggesting anomalous development of optic nerve peripherally and delayed developnent centrally. Axonal density is higher in inner sectors than that in outer sectors, suggesting delayed development of the outer nerve sector.

  14. Internodal function in normal and regenerated mammalian axons

    DEFF Research Database (Denmark)

    Moldovan, M; Krarup, C


    AIM: Following Wallerian degeneration, peripheral myelinated axons have the ability to regenerate and, given a proper pathway, establish functional connections with targets. In spite of this capacity, the clinical outcome of nerve regeneration remains unsatisfactory. Early studies have found...... that regenerated internodes remain persistently short though this abnormality did not seem to influence recovery in conduction. It remains unclear to which extent abnormalities in axonal function itself may contribute to the poor outcome of nerve regeneration. METHODS: We review experimental evidence indicating...... that internodes play an active role in axonal function. RESULTS: By investigating internodal contribution to axonal excitability we have found evidence that axonal function may be permanently compromised in regenerated nerves. Furthermore, we illustrate that internodal function is also abnormal in regenerated...

  15. Computing along the axon

    Institute of Scientific and Technical Information of China (English)

    Chen Haiming; Tseren-Onolt Ishdorj; Gheorghe Pǎun


    A special form of spiking neural P systems, called axon P systems, corresponding to the activity of Ranvier nodes of neuron axon, is considered and a class of SN-like P systems where the computation is done along the axon is introduced and their language generative power is investigated.

  16. Active tails enhance arboreal acrobatics in geckos


    Jusufi, Ardian; Goldman, Daniel I.; Revzen, Shai; Full, Robert J.


    Geckos are nature's elite climbers. Their remarkable climbing feats have been attributed to specialized feet with hairy toes that uncurl and peel in milliseconds. Here, we report that the secret to the gecko's arboreal acrobatics includes an active tail. We examine the tail's role during rapid climbing, aerial descent, and gliding. We show that a gecko's tail functions as an emergency fifth leg to prevent falling during rapid climbing. A response initiated by slipping causes the tail tip to p...

  17. Temporal effects of thyroid hormone (TH) and decabrominated diphenyl ether (BDE209) on Purkinje cell dendrite arborization. (United States)

    Ibhazehiebo, K; Koibuchi, N


    Thyroid hormones (TH) 3,3',4-tri-iodothyronine (T3) and 3,3',4,4'-tetra-iodothyronine (T4) plays crucial role in cerebellar development. Deficiency of TH consistently results in aberrant growth and development of the cerebellum including reduced growth and branching of the Purkinje cells. In rodents, the critical period of thyroid hormone action on cerebellum development is within the first two to three weeks, after which thyroid hormone replacement cannot fully reverse abnormal cerebellar development induced by thyroid hormone insult. Decabrominated diphenyl ether (BDE209) is an industrial reagent used as an additive flame retardant to reduce flammability of various commercial and household produce. BDE209 has bio-accumulative potential and is neurotoxic. Previously, we have shown that T4 (10-8 M) induced extensive dendrite arborization of Purkinje cells and low dose BDE209 (10-10 M) remarkably suppressed TH-induced Purkinje cell dendrite arborization. In the present study, we show that the critical period for TH-induced Purkinje cell growth and dendrite arborization in culture is much earlier than reported in animal models. Also, we show for the first time that low dose BDE209 suppressed TH-induced dendrite arborization in a time-dependent manner. Taken together, our study indicates that hypothyroidism and exposure to BDE209 during critical stage of cerebellar development can lead to impaired Purkinje cell growth and dendrite arborization and may consequently disrupt normal cerebellar functions.

  18. Art and Reality in The Arbor (2010

    Directory of Open Access Journals (Sweden)

    Mello Cecília


    Full Text Available This article offers an in-depth analysis of 2010 British film The Arbor by Clio Barnard. The director’s debut feature is a groundbreaking work dedicated to the lives of playwright Andrea Dunbar and her eldest daughter Lorraine. Dunbar grew up in the Buttershaw Estate in Bradford and drew on her own experiences to write her first play The Arbor at the age of 15, followed by Rita, Sue and Bob Too!. She struggled with alcoholism and died of a brain haemorrhage in 1990, at the age of 29. Lorraine’s life followed down a difficult path as she became a drug addict and was jailed for manslaughter for causing the death of her two-year old child by gross neglect. My aim is to explore how the film combines different media, namely theatre, television and radio, in a cinematic experience defined by multiple registers and multiple voices, and how this structure works towards creating as much as conserving individual and collective memories, highlighting the fictional nature of memories. This leads to a reflection on the lip-synching technique, employed as the main vehicle for memory in the film, which provokes as much empathy and compassion as it does critical thinking, thus turning Brecht’s binary equation reason-emotion in its head.1

  19. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)


    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  20. Fast axonal transport in early experimental disc edema. (United States)

    Radius, R L; Anderson, D R


    Previous work has documented impairment of slow axonal transport in papilledema, but the abnormalities in rapid transport were less certain. Therefore fast axonal transport was studied in 19 primate eyes subjected to ocular hypotony for 6 to 72 hr following surgical fistulization of the anterior chamber. Mild, irregular alterations in fast axonal transport were detected only after nerve head swelling was apparent. These changes in fast transport mechanisms in cases of nerve head edema occur after, and may be secondary to, impaired slow axoplasmic flow and the resultant axonal swelling. Furthermore, since prolonged complete interruption of axonal transport is theoretically inconsistent with the continued normal neuron function characteristic of papilledema and, moreover, since previous data shows a "slowdown" rather than complete blockade of axonal transport in papilledema, it is likely that in eyes with papilledema there does not exist a complete flock of axonal transport. Therefore we hypothesize that the swelling results when slow axoplasmic flow is locally slowed down but not totally stopped, with the axon distention producing secondary mild, irregular changes in fast axonal transport.

  1. Axonal GABAA receptors. (United States)

    Trigo, Federico F; Marty, Alain; Stell, Brandon M


    Type A GABA receptors (GABA(A)Rs) are well established as the main inhibitory receptors in the mature mammalian forebrain. In recent years, evidence has accumulated showing that GABA(A)Rs are prevalent not only in the somatodendritic compartment of CNS neurons, but also in their axonal compartment. Evidence for axonal GABA(A)Rs includes new immunohistochemical and immunogold data: direct recording from single axonal terminals; and effects of local applications of GABA(A)R modulators on action potential generation, on axonal calcium signalling, and on neurotransmitter release. Strikingly, whereas presynaptic GABA(A)Rs have long been considered inhibitory, the new studies in the mammalian brain mostly indicate an excitatory action. Depending on the neuron that is under study, axonal GABA(A)Rs can be activated by ambient GABA, by GABA spillover, or by an autocrine action, to increase either action potential firing and/or transmitter release. In certain neurons, the excitatory effects of axonal GABA(A)Rs persist into adulthood. Altogether, axonal GABA(A)Rs appear as potent neuronal modulators of the mammalian CNS.

  2. Dendritic Arborization Patterns of Small Juxtaglomerular Cell Subtypes within the Rodent Olfactory Bulb (United States)

    Bywalez, Wolfgang G.; Ona-Jodar, Tiffany; Lukas, Michael; Ninkovic, Jovica; Egger, Veronica


    Within the glomerular layer of the rodent olfactory bulb, numerous subtypes of local interneurons contribute to early processing of incoming sensory information. Here we have investigated dopaminergic and other small local juxtaglomerular cells in rats and mice and characterized their dendritic arborization pattern with respect to individual glomeruli by fluorescent labeling via patching and reconstruction of dendrites and glomerular contours from two-photon imaging data. Dopaminergic neurons were identified in a transgenic mouse line where the expression of dopamine transporter (DAT) was labeled with GFP. Among the DAT+ cells we found a small short-axon cell (SAC) subtype featuring hitherto undescribed dendritic specializations. These densely ramifying structures clasped mostly around somata of other juxtaglomerular neurons, which were also small, non-dopaminergic and to a large extent non-GABAergic. Clasping SACs were observed also in wild-type mice and juvenile rats. In DAT+ SAC dendrites, single backpropagating action potentials evoked robust calcium entry throughout both clasping and non-clasping compartments. Besides clasping SACs, most other small neurons either corresponded to the classical periglomerular cell type (PGCs), which was never DAT+, or were undersized cells with a small dendritic tree and low excitability. Aside from the presence of clasps in SAC dendrites, many descriptors of dendritic morphology such as the number of dendrites and the extent of branching were not significantly different between clasping SACs and PGCs. However, a detailed morphometric analysis in relation to glomerular contours revealed that the dendrites of clasping SACs arborized mostly in the juxtaglomerular space and never entered more than one glomerulus (if at all), whereas most PGC dendrites were restricted to their parent glomerulus, similar to the apical tufts of mitral cells. These complementary arborization patterns might underlie a highly complementary functional

  3. Axons take a dive (United States)

    Tong, Cheuk Ka; Cebrián-Silla, Arantxa; Paredes, Mercedes F; Huang, Eric J; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo


    In the walls of the lateral ventricles of the adult mammalian brain, neural stem cells (NSCs) and ependymal (E1) cells share the apical surface of the ventricular–subventricular zone (V–SVZ). In a recent article, we show that supraependymal serotonergic (5HT) axons originating from the raphe nuclei in mice form an extensive plexus on the walls of the lateral ventricles where they contact E1 cells and NSCs. Here we further characterize the contacts between 5HT supraependymal axons and E1 cells in mice, and show that suprependymal axons tightly associated to E1 cells are also present in the walls of the human lateral ventricles. These observations raise interesting questions about the function of supraependymal axons in the regulation of E1 cells. PMID:26413556

  4. Bimodal control of dendritic and axonal growth by the dual leucine zipper kinase pathway.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available Knowledge of the molecular and genetic mechanisms underlying the separation of dendritic and axonal compartments is not only crucial for understanding the assembly of neural circuits, but also for developing strategies to correct defective dendrites or axons in diseases with subcellular precision. Previous studies have uncovered regulators dedicated to either dendritic or axonal growth. Here we investigate a novel regulatory mechanism that differentially directs dendritic and axonal growth within the same neuron in vivo. We find that the dual leucine zipper kinase (DLK signaling pathway in Drosophila, which consists of Highwire and Wallenda and controls axonal growth, regeneration, and degeneration, is also involved in dendritic growth in vivo. Highwire, an evolutionarily conserved E3 ubiquitin ligase, restrains axonal growth but acts as a positive regulator for dendritic growth in class IV dendritic arborization neurons in the larva. While both the axonal and dendritic functions of highwire require the DLK kinase Wallenda, these two functions diverge through two downstream transcription factors, Fos and Knot, which mediate the axonal and dendritic regulation, respectively. This study not only reveals a previously unknown function of the conserved DLK pathway in controlling dendrite development, but also provides a novel paradigm for understanding how neuronal compartmentalization and the diversity of neuronal morphology are achieved.

  5. Axonal bleb recording

    Institute of Scientific and Technical Information of China (English)

    Wenqin Hu; Yousheng Shu


    Patch-clamp recording requires direct accessibility of the cell membrane to patch pipettes and allows the investigation of ion channel properties and functions in specific cellular compartments.The cell body and relatively thick dendrites are the most accessible compartments of a neuron,due to their large diameters and therefore great membrane surface areas.However,axons are normally inaccessible to patch pipettes because of their thin structure; thus studies of axon physiology have long been hampered by the lack of axon recording methods.Recently,a new method of patchclamp recording has been developed,enabling direct and tight-seal recording from cortical axons.These recordings are performed at the enlarged structure (axonal bleb) formed at the cut end of an axon after slicing procedures.This method has facilitated studies of the mechanisms underlying the generation and propagation of the main output signal,the action potential,and led to the finding that cortical neurons communicate not only in action potential-mediated digital mode but also in membrane potential-dependent analog mode.

  6. Final Technical Report, Wind Generator Project (Ann Arbor)

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Nathan [City of Ann Arbor, MI (United States)


    A Final Technical Report (57 pages) describing educational exhibits and devices focused on wind energy, and related outreach activities and programs. Project partnership includes the City of Ann Arbor, MI and the Ann Arbor Hands-on Museum, along with additional sub-recipients, and U.S. Department of Energy/Office of Energy Efficiency and Renewable Energy (EERE). Report relays key milestones and sub-tasks as well as numerous graphics and images of five (5) transportable wind energy demonstration devices and five (5) wind energy exhibits designed and constructed between 2014 and 2016 for transport and use by the Ann Arbor Hands-on Museum.

  7. Simplification of arboreal marsupial assemblages in response to increasing urbanization.

    Directory of Open Access Journals (Sweden)

    Bronwyn Isaac

    Full Text Available Arboreal marsupials play an essential role in ecosystem function including regulating insect and plant populations, facilitating pollen and seed dispersal and acting as a prey source for higher-order carnivores in Australian environments. Primarily, research has focused on their biology, ecology and response to disturbance in forested and urban environments. We used presence-only species distribution modelling to understand the relationship between occurrences of arboreal marsupials and eco-geographical variables, and to infer habitat suitability across an urban gradient. We used post-proportional analysis to determine whether increasing urbanization affected potential habitat for arboreal marsupials. The key eco-geographical variables that influenced disturbance intolerant species and those with moderate tolerance to disturbance were natural features such as tree cover and proximity to rivers and to riparian vegetation, whereas variables for disturbance tolerant species were anthropogenic-based (e.g., road density but also included some natural characteristics such as proximity to riparian vegetation, elevation and tree cover. Arboreal marsupial diversity was subject to substantial change along the gradient, with potential habitat for disturbance-tolerant marsupials distributed across the complete gradient and potential habitat for less tolerant species being restricted to the natural portion of the gradient. This resulted in highly-urbanized environments being inhabited by a few generalist arboreal marsupial species. Increasing urbanization therefore leads to functional simplification of arboreal marsupial assemblages, thus impacting on the ecosystem services they provide.

  8. Cyclophilin D Deficiency Rescues Axonal Mitochondrial Transport in Alzheimer’s Neurons


    Lan Guo; Heng Du; Shiqiang Yan; Xiaoping Wu; Guy M. McKhann; John Xi Chen; Shirley ShiDu Yan


    Normal axonal mitochondrial transport and function is essential for the maintenance of synaptic function. Abnormal mitochondrial motility and mitochondrial dysfunction within axons are critical for amyloid β (Aβ)-induced synaptic stress and the loss of synapses relevant to the pathogenesis of Alzheimer's disease (AD). However, the mechanisms controlling axonal mitochondrial function and transport alterations in AD remain elusive. Here, we report an unexplored role of cyclophilin D (CypD)-depe...

  9. Glia to axon RNA transfer. (United States)

    Sotelo, José Roberto; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José Roberto; Calliari, Aldo; Cal, Karina; Bresque, Mariana; Dipaolo, Andrés; Farias, Joaquina; Mercer, John A


    The existence of RNA in axons has been a matter of dispute for decades. Evidence for RNA and ribosomes has now accumulated to a point at which it is difficult to question, much of the disputes turned to the origin of these axonal RNAs. In this review, we focus on studies addressing the origin of axonal RNAs and ribosomes. The neuronal soma as the source of most axonal RNAs has been demonstrated and is indisputable. However, the surrounding glial cells may be a supplemental source of axonal RNAs, a matter scarcely investigated in the literature. Here, we review the few papers that have demonstrated that glial-to-axon RNA transfer is not only feasible, but likely. We describe this process in both invertebrate axons and vertebrate axons. Schwann cell to axon ribosomes transfer was conclusively demonstrated (Court et al. [2008]: J. Neurosci 28:11024-11029; Court et al. [2011]: Glia 59:1529-1539). However, mRNA transfer still remains to be demonstrated in a conclusive way. The intercellular transport of mRNA has interesting implications, particularly with respect to the integration of glial and axonal function. This evolving field is likely to impact our understanding of the cell biology of the axon in both normal and pathological conditions. Most importantly, if the synthesis of proteins in the axon can be controlled by interacting glia, the possibilities for clinical interventions in injury and neurodegeneration are greatly increased.

  10. The central role of mitochondria in axonal degeneration in multiple sclerosis. (United States)

    Campbell, Graham R; Worrall, Joseph T; Mahad, Don J


    Neurodegeneration in multiple sclerosis (MS) is related to inflammation and demyelination. In acute MS lesions and experimental autoimmune encephalomyelitis focal immune attacks damage axons by injuring axonal mitochondria. In progressive MS, however, axonal damage occurs in chronically demyelinated regions, myelinated regions and also at the active edge of slowly expanding chronic lesions. How axonal energy failure occurs in progressive MS is incompletely understood. Recent studies show that oligodendrocytes supply lactate to myelinated axons as a metabolic substrate for mitochondria to generate ATP, a process which will be altered upon demyelination. In addition, a number of studies have identified mitochondrial abnormalities within neuronal cell bodies in progressive MS, leading to a deficiency of mitochondrial respiratory chain complexes or enzymes. Here, we summarise the mitochondrial abnormalities evident within neurons and discuss how these grey matter mitochondrial abnormalities may increase the vulnerability of axons to degeneration in progressive MS. Although neuronal mitochondrial abnormalities will culminate in axonal degeneration, understanding the different contributions of mitochondria to the degeneration of myelinated and demyelinated axons is an important step towards identifying potential therapeutic targets for progressive MS.

  11. Axonal and dendritic density field estimation from incomplete single-slice neuronal reconstructions

    Directory of Open Access Journals (Sweden)

    Jaap evan Pelt


    Full Text Available Neuronal information processing in cortical networks critically depends on the organization of synaptic connectivity. Synaptic connections can form when axons and dendrites come in close proximity of each other. The spatial innervation of neuronal arborizations can be described by their axonal and dendritic density fields. Recently we showed that potential locations of synapses between neurons can be estimated from their overlapping axonal and dendritic density fields. However, deriving density fields from single-slice neuronal reconstructions is hampered by incompleteness because of cut branches.Here, we describe a method for recovering the lost axonal and dendritic mass. This so-called completion method is based on an estimation of the mass inside the slice and an extrapolation to the space outside the slice, assuming axial symmetry in the mass distribution. We validated the method using a set of neurons generated with our NETMORPH simulator. The model-generated neurons were artificially sliced and subsequently recovered by the completion method. Depending on slice thickness and arbor extent, branches that have lost their outside parents (orphan branches may occur inside the slice. Not connected anymore to the contiguous structure of the sliced neuron, orphan branches result in an underestimation of neurite mass. For 300 m thick slices, however, the validation showed a full recovery of dendritic and an almost full recovery of axonal mass.The completion method was applied to three experimental data sets of reconstructed rat cortical L2/3 pyramidal neurons. The results showed that in 300 m thick slices intracortical axons lost about 50% and dendrites about 16% of their mass. The completion method can be applied to single-slice reconstructions as long as axial symmetry can be assumed in the mass distribution. This opens up the possibility of using incomplete neuronal reconstructions from open-access data bases to determine population mean

  12. Retinoblastoma (Rb) regulates laminar dendritic arbor reorganization in retinal horizontal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Rodrigo [St. Jude Children' s Research Hospital; Davis, Denise [St. Jude Children' s Research Hospital; Dyer, Michael [St. Jude Children' s Research Hospital; Kerekes, Ryan A [ORNL; Zhang, Jiakun [St. Jude Children' s Research Hospital; Bayazitov, Ildar [St. Jude Children' s Research Hospital; Hiler, Daniel [St. Jude Children' s Research Hospital; Karakaya, Mahmut [ORNL; Frase, Sharon [St. Jude Children' s Research Hospital; Gleason, Shaun Scott [ORNL; Zakharenko, Stanislav S [ORNL; Johnson, Dianna [University of Tennessee Health Science Center, Memphis


    Neuronal differentiation with respect to the acquisition of synaptic competence needs to be regulated precisely during neurogenesis to ensure proper formation of circuits at the right place and time in development.This regulation is particularly important for synaptic triads among photoreceptors, horizontal cells (HCs), and bipolar cells in the retina, because HCs are among the rst cell types produced during development, and bipolar cells are among thel ast.HCs undergo a dramatic transition from vertically oriented neurites that form columnar arbors to overlapping laminar dendritic arbors with differentiation.However, how this process is regulated and coordinated with differentiation of photoreceptors and bipolar cells remains unknown. Previous studies have suggested that there tino-blastoma(Rb) tumor suppressor gene may play a role in horizontal cell differentiation and synaptogenesis. By combining genetic mosaic analysis of individual synaptictriads with neuroanatomic analyses and multiphoton live imaging of developing HCs, we found that Rb plays a cell-autonomous role in there organization of horizontal cell neurites as they differentiate. Aberrant vertical processes in Rb-de cient HCs form ectopic synapses with rods in the outer nuclear layer but lack bipolar dendrites. Although previous reports indicate that photoreceptor abnormalities can trigger formation of ectopic synapses, our studies now demonstrate that defects in a post synaptic partner contribute to the formation of ectopic photoreceptor synapses in the mammalian retina.

  13. MRI of the diffuse axonal injury

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Yang Gu; Woo, Young Hoon; Suh, Soo Jhi [Keimyung University School of Medicine, Daegu (Korea, Republic of)


    CT has facilitated early recognition and treatment of focal brain injuries in patients with head trauma. However, CT shows relatively low sensitivity in identifying non hemorrhage contusion and injuries of white matter. MR is known to be superior to CT in detection of white matter injuries, such as diffuse axonal injury. MR imaging in 14 cases of diffuse axonal injury on 2.0T was studied. The corpus callosum, especially the body portion, was the most commonly involved site. The lesions ranged from 5 to 20mm in size with ovoid to elliptical shape. T2WI was the most sensitive pulse sequence in detecting lesions such as white matter degeneration, hemorrhagic and non hemorrhagic contusion. The lesions were nonspecific as high and low signal intensities on T2WI and T1WI respectively. CT showed white matter abnormality in only 1 case of 14 cases. We propose MR imaging as the primary imaging procedure for the detection of diffuse axonal injury because of its multiplanar capabilities and higher sensitivity.

  14. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy. (United States)

    Sung, Jia-Ying; Tani, Jowy; Chang, Tsui-San; Lin, Cindy Shin-Yi


    This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr). Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (Pmotor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (Pdevelopment of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches.


    Directory of Open Access Journals (Sweden)



    Full Text Available Two species of the unusual archosauromorph Trilophosaurus, T. buettneri Case and T. jacobsi Murry, are known from diverse localities in the Upper Triassic Chinle Group in the southwestern USA. Both species likely occupied similar ecological niches, based on morphological similarities in the postcrania, which are essentially identical. Trilophosaurus occurrences in the Chinle Group are relatively rare, but individual sites are exceptionally rich, suggesting that Trilophosaurus lived in a different paleoenvironment than more typical Chinle vertebrates, which lived in or near streams (phytosaurs, metoposaurs or on floodplains (aetosaurs, rauisuchians, and dinosaurs. Two potential interpretations are that Trilophosaurus was either an arboreal climber or a fossorial digger. However, the gross skeletal features of Trilophosaurus are not compatible with a fossorial mode of life: the limbs are too long and gracile, proximal limb elements are longer than distal ones, and the claws are laterally compressed, not transversely broadened. The intermittent study of Trilophosaurus has caused the theory of it being arboreal, originally proposed by Gregory, to receive little mention in subsequent studies. We reexamined the functional morphology of Trilophosaurus using a qualitative functional morphological analysis of the skeleton, a quantitative examination of claw curvature, and a quantitative examination of manus/trunk and pes/trunk ratios. Claw morphology of Trilophosaurus shows similarities to the arboreal drepanosaurs Drepanosaurus and Megalancosaurus. Our analysis provides ample evidence to suggest that Trilophosaurus was arboreal

  16. A new genus of arboreal rat from West Java, Indonesia

    NARCIS (Netherlands)

    Musser, G.G.


    Kadarsanomys nov. gen. is proposed for Rattus sodyi Bartels, 1937, and contrasted with Rattus and Lenothrix, two genera with which sodyi has been closely connected in the past. Kadarsanomys sodyi is an arboreal rat associated with bamboo on the forested volcanoes of West Java. Kadarsanomys has no cl

  17. Estimation of arboreal lichen biomass available to woodland caribou in Hudson Bay lowland black spruce sites

    Directory of Open Access Journals (Sweden)

    Sarah K. Proceviat


    Full Text Available An arboreal lichen index to be utilized in assessing woodland caribou habitat throughout northeastern Ontario was developed. The "index" was comprised of 5 classes, which differentiated arboreal lichen biomass on black spruce trees, ranging from maximal quantities of arboreal lichen (class 5 to minimal amounts of arboreal lichen (class 1. This arboreal lichen index was subsequently used to estimate the biomass of arboreal lichen available to woodland caribou on lowland black spruce sites ranging in age from 1 year to 150 years post-harvest. A total of 39 sites were assessed and significant differences in arboreal lichen biomass were found, with a positive linear relationship between arboreal lichen biomass and forest age. It is proposed that the index be utilized by government and industry as a means of assessing the suitability of lowland black spruce habitat for woodland caribou in this region.

  18. Automated Sholl analysis of digitized neuronal morphology at multiple scales: Whole cell Sholl analysis versus Sholl analysis of arbor subregions. (United States)

    Langhammer, Christopher G; Previtera, Michelle L; Sweet, Eric S; Sran, Simranjeet S; Chen, Maxine; Firestein, Bonnie L


    The morphology of dendrites and the axon determines how a neuron processes and transmits information. Neurite morphology is frequently analyzed by Sholl analysis or by counting the total number of neurites and branch tips. However, the time and resources required to perform such analysis by hand is prohibitive for the processing of large data sets and introduces problems with data auditing and reproducibility. Furthermore, analyses performed by hand or using course-grained morphometric data extraction tools can obscure subtle differences in data sets because they do not store the data in a form that facilitates the application of multiple analytical tools. To address these shortcomings, we have developed a program (titled "Bonfire") to facilitate digitization of neurite morphology and subsequent Sholl analysis. Our program builds upon other available open-source morphological analysis tools by performing Sholl analysis on subregions of the neuritic arbor, enabling the detection of local level changes in dendrite and axon branching behavior. To validate this new tool, we applied Bonfire analysis to images of hippocampal neurons treated with 25 ng/ml brain-derived neurotrophic factor (BDNF) and untreated control neurons. Consistent with prior findings, conventional Sholl analysis revealed that global exposure to BDNF increases the number of neuritic intersections proximal to the soma. Bonfire analysis additionally uncovers that BDNF treatment affects both root processes and terminal processes with no effect on intermediate neurites. Taken together, our data suggest that global exposure of hippocampal neurons to BDNF results in a reorganization of neuritic segments within their arbors, but not necessarily a change in their number or length. These findings were only made possible by the neurite-specific Sholl data returned by Bonfire analysis.

  19. From the axons of the SNc dopamine neurons to their dendritic processes: further clues to susceptibility in Parkinson’s disease (PD?

    Directory of Open Access Journals (Sweden)

    Eleftheria Kyriaki Pissadaki


    Full Text Available Dopamine neurons of the substantia nigra pars compacta (SNc are uniquely sensitive to degeneration in Parkinson’s disease (PD and its models. Although a variety of molecular characteristics have been proposed to underlie this sensitivity, one possible contributory factor is their massive, unmyelinated, axonal arbor that is orders of magnitude larger than other neuronal types. In our previously published work, we examined the energetic impact imposed on SNc dopamine neurons by their extensive, unmyelinated axonal arbor and attempted to calculate the energy cost of action potential (AP propagation throughout the axonal arbors. Among our main findings were that a the energy demand associated with AP conduction is related in a supra-linear manner to the axonal size and complexity and, b that synaptic stimulation is necessary to ensure reliable propagation throughout the axonal arbors of neurons with higher levels of branching. Indeed, predictions of our biophysical model of SNc dopamine neurons suggest that tonic activity for the reliable propagation of APs throughout the axonal arbour of neurons with small-to-moderate size arbours, whereas synaptic stimulation is required for for reliable propagation in neurons with larger and more complex arbors (Pissadaki and Bolam 2013. SNc dopamine neurons may thus be classified into functionally distinct groups according to the size of their axonal arborisation. Furthermore, SNc dopamine neurons are divided into ventral tier neurons, which are more susceptible in PD and extend their dendrites in both SN pars reticulata (SNr and SNc, and dorsal tier neurons that restrict their dendrites within SNc. As SNr dendrites receive proportionally greater inhibitory input than SNc dendrites (Henny et al 2012, we examined the relationship between the dendritic compartmentalisation, synaptic input, burst generation and the extent of axonal arborisation. Because spatiotemporal interplay of synaptic stimulation has been

  20. Diffusion tensor imaging detects early cerebral cortex abnormalities in neuronal architecture induced by bilateral neonatal enucleation: An experimental model in the ferret

    Directory of Open Access Journals (Sweden)

    Andrew S Bock


    Full Text Available Diffusion tensor imaging (DTI is a technique that non-invasively provides quantitative measures of water translational diffusion, including fractional anisotropy (FA, that are sensitive to the shape and orientation of cellular elements, such as axons, dendrites and cell somas. For several neurodevelopmental disorders, histopathological investigations have identified abnormalities in the architecture of pyramidal neurons at early stages of cerebral cortex development. To assess the potential capability of DTI to detect neuromorphological abnormalities within the developing cerebral cortex, we compare changes in cortical FA with changes in neuronal architecture and connectivity induced by bilateral enucleation at postnatal day 7 (BEP7 in ferrets. We show here that the visual callosal pattern in BEP7 ferrets is more irregular and occupies a significantly greater cortical area compared to controls at adulthood. To determine whether development of the cerebral cortex is altered in BEP7 ferrets in a manner detectable by DTI, cortical FA was compared in control and BEP7 animals on postnatal day 31. Visual cortex, but not rostrally-adjacent non-visual cortex, exhibits higher FA than control animals, consistent with BEP7 animals possessing axonal and dendritic arbors of reduced complexity than age-matched controls. Subsequent to DTI, Golgi staining and analysis methods were used to identify regions, restricted to visual areas, in which the orientation distribution of neuronal processes is significantly more concentrated than in control ferrets. Together, these findings suggest that DTI can be of utility for detecting abnormalities associated with neurodevelopmental disorders at early stages of cerebral cortical development, and that the neonatally-enucleated ferret is a useful animal model system for systematically assessing the potential of this new diagnostic strategy.

  1. Inhibition of kinesin-5 improves regeneration of injured axons by a novel microtubule-based mechanism

    Institute of Scientific and Technical Information of China (English)

    Peter W. Baas; Andrew J. Matamoros


    Microtubules have been identiifed as a powerful target for augmenting regeneration of injured adult axons in the central nervous system. Drugs that stabilize microtubules have shown some promise, but there are concerns that abnormally stabilizing microtubules may have only limited beneifts for regeneration, while at the same time may be detrimental to the normal work that microtubules perform for the axon. Kinesin-5 (also called kif11 or Eg5), a molecular motor protein best known for its crucial role in mitosis, acts as a brake on microtubule movements by other motor proteins in the axon. Drugs that inhibit kinesin-5, originally developed to treat cancer, result in greater mobility of microtubules in the axon and an overall shift in the forces on the microtubule array. As a result, the axon grows faster, retracts less, and more readily enters environments that are inhibitory to axonal regeneration. Thus, drugs that inhibit kinesin-5 offer a novel microtubule-based means to boost axonal regeneration without the concerns that ac-company abnormal stabilization of the microtubule array. Even so, inhibiting kinesin-5 is not without its own caveats, such as potential problems with navigation of the regenerating axon to its target, as well as morphological effects on dendrites that could affect learning and memory if the drugs reach the brain.

  2. Inhibition of kinesin-5 improves regeneration of injured axons by a novel microtubule-based mechanism

    Directory of Open Access Journals (Sweden)

    Peter W Baas


    Full Text Available Microtubules have been identified as a powerful target for augmenting regeneration of injured adult axons in the central nervous system. Drugs that stabilize microtubules have shown some promise, but there are concerns that abnormally stabilizing microtubules may have only limited benefits for regeneration, while at the same time may be detrimental to the normal work that microtubules perform for the axon. Kinesin-5 (also called kif11 or Eg5, a molecular motor protein best known for its crucial role in mitosis, acts as a brake on microtubule movements by other motor proteins in the axon. Drugs that inhibit kinesin-5, originally developed to treat cancer, result in greater mobility of microtubules in the axon and an overall shift in the forces on the microtubule array. As a result, the axon grows faster, retracts less, and more readily enters environments that are inhibitory to axonal regeneration. Thus, drugs that inhibit kinesin-5 offer a novel microtubule-based means to boost axonal regeneration without the concerns that accompany abnormal stabilization of the microtubule array. Even so, inhibiting kinesin-5 is not without its own caveats, such as potential problems with navigation of the regenerating axon to its target, as well as morphological effects on dendrites that could affect learning and memory if the drugs reach the brain.

  3. Pili canaliculi as manifestation of giant axonal neuropathy* (United States)

    de Almeida Jr., Hiram Larangeira; Garcias, Gilberto; Silva, Ricardo Marques e; Batista, Stela Laner; Pasetto, Fernanda


    Giant axonal neuropathy is a rare autosomal recessive neurodegenerative disease. The condition is characterized by neurons with abnormally large axons due to intracellular filament accumulation. The swollen axons affect both the peripheral and central nervous system. A 6-year old female patient had been referred to a geneticist reporting problems with walking and hypotonia. At the age of 10, she became wheelchair dependent. Scanning electron microscopy of a curly hair classified it as pili canaliculi. GAN gene sequencing demonstrated mutation c.1456G>A (p.GLU486LYS). At the age of 12, the patient died due to respiratory complications. Dermatologists should be aware of this entity since hair changes are considered suggestive of GAN.

  4. Using quantum filters to process images of diffuse axonal injury (United States)

    Pineda Osorio, Mateo


    Some images corresponding to a diffuse axonal injury (DAI) are processed using several quantum filters such as Hermite Weibull and Morse. Diffuse axonal injury is a particular, common and severe case of traumatic brain injury (TBI). DAI involves global damage on microscopic scale of brain tissue and causes serious neurologic abnormalities. New imaging techniques provide excellent images showing cellular damages related to DAI. Said images can be processed with quantum filters, which accomplish high resolutions of dendritic and axonal structures both in normal and pathological state. Using the Laplacian operators from the new quantum filters, excellent edge detectors for neurofiber resolution are obtained. Image quantum processing of DAI images is made using computer algebra, specifically Maple. Quantum filter plugins construction is proposed as a future research line, which can incorporated to the ImageJ software package, making its use simpler for medical personnel.

  5. The genetics of axonal transport and axonal transport disorders.

    Directory of Open Access Journals (Sweden)

    Jason E Duncan


    Full Text Available Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases.

  6. Meiotic abnormalities

    Energy Technology Data Exchange (ETDEWEB)



    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  7. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy (United States)

    Sung, Jia-Ying; Tani, Jowy; Chang, Tsui-San; Lin, Cindy Shin-Yi


    This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr). Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05), shortened strength-duration time constant (P<0.01), increased superexcitability (P<0.01), decreased subexcitability (P<0.05), decreased accommodation to depolarizing current (P<0.01), and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1–8) and G2+3 (TNSr 9–24) groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01) in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches. PMID:28182728

  8. Functional polarity of dendrites and axons of primate A1 amacrine cells. (United States)

    Davenport, Christopher M; Detwiler, Peter B; Dacey, Dennis M


    The A1 cell is an axon-bearing amacrine cell of the primate retina with a diffusely stratified, moderately branched dendritic tree (approximately 400 microm diameter). Axons arise from proximal dendrites forming a second concentric, larger arborization (>4 mm diameter) of thin processes with bouton-like swellings along their length. A1 cells are ON-OFF transient cells that fire a brief high frequency burst of action potentials in response to light (Stafford & Dacey, 1997). It has been hypothesized that A1 cells receive local input to their dendrites, with action potentials propagating output via the axons across the retina, serving a global inhibitory function. To explore this hypothesis we recorded intracellularly from A1 cells in an in vitro macaque monkey retina preparation. A1 cells have an antagonistic center-surround receptive field structure for the ON and OFF components of the light response. Blocking the ON pathway with L-AP4 eliminated ON center responses but not OFF center responses or ON or OFF surround responses. Blocking GABAergic inhibition with picrotoxin increased response amplitudes without affecting receptive field structure. TTX abolished action potentials, with little effect on the sub-threshold light response or basic receptive field structure. We also used multi-photon laser scanning microscopy to record light-induced calcium transients in morphologically identified dendrites and axons of A1 cells. TTX completely abolished such calcium transients in the axons but not in the dendrites. Together these results support the current model of A1 function, whereby the dendritic tree receives synaptic input that determines the center-surround receptive field; and action potentials arise in the axons, which propagate away from the dendritic field across the retina.

  9. Transcellular degradation of axonal mitochondria. (United States)

    Davis, Chung-ha O; Kim, Keun-Young; Bushong, Eric A; Mills, Elizabeth A; Boassa, Daniela; Shih, Tiffany; Kinebuchi, Mira; Phan, Sebastien; Zhou, Yi; Bihlmeyer, Nathan A; Nguyen, Judy V; Jin, Yunju; Ellisman, Mark H; Marsh-Armstrong, Nicholas


    It is generally accepted that healthy cells degrade their own mitochondria. Here, we report that retinal ganglion cell axons of WT mice shed mitochondria at the optic nerve head (ONH), and that these mitochondria are internalized and degraded by adjacent astrocytes. EM demonstrates that mitochondria are shed through formation of large protrusions that originate from otherwise healthy axons. A virally introduced tandem fluorophore protein reporter of acidified mitochondria reveals that acidified axonal mitochondria originating from the retinal ganglion cell are associated with lysosomes within columns of astrocytes in the ONH. According to this reporter, a greater proportion of retinal ganglion cell mitochondria are degraded at the ONH than in the ganglion cell soma. Consistently, analyses of degrading DNA reveal extensive mtDNA degradation within the optic nerve astrocytes, some of which comes from retinal ganglion cell axons. Together, these results demonstrate that surprisingly large proportions of retinal ganglion cell axonal mitochondria are normally degraded by the astrocytes of the ONH. This transcellular degradation of mitochondria, or transmitophagy, likely occurs elsewhere in the CNS, because structurally similar accumulations of degrading mitochondria are also found along neurites in superficial layers of the cerebral cortex. Thus, the general assumption that neurons or other cells necessarily degrade their own mitochondria should be reconsidered.

  10. The natural history of the arboreal ant, Crematogaster ashmeadi

    Directory of Open Access Journals (Sweden)

    Walter R. Tschinkel


    Full Text Available The arboreal ant, Crematogaster ashmeadi Emery (Hymenoptera: Formicidae, is the most dominant arboreal ant in the pine forests of the coastal plain of northern Florida. The majority of pine trees harbor a colony of these ants. The colonies inhabit multiple chambers abandoned by bark-mining caterpillars, especially those of the family Cossidae, in the outer bark of living pines. They also inhabit ground level termite galleries in the bark, often locating the queen in galleries. The density of chambers and ants is highest in the base of the tree and drops sharply with height on the trunk. Because chambers are formed in the inner layer of bark, they gradually move outward as more bark layers are laid down, eventually sloughing off the tree's outer surface. Chambers have a mean lifetime of about 25 yr. The abundant chambers in pine bark are excavated by a small population of caterpillars and accumulate over decades. Ant colonies also inhabit abandoned galleries of woodboring beetles in dead branches in the crowns of pines. Because newly mated queens found colonies in abandoned woodboring beetle galleries in the first dead branches that form on pine saplings, C. ashmeadi is dependent on cavities made by other insects throughout its life cycle, and does little if any excavation of its own. Mature colonies nest preferentially in chambers greater than 10 cm2 in area, a relatively rare chamber size. In natural pine forests, this does not seem to limit the ant's populations.

  11. Leukocyte abnormalities. (United States)

    Gabig, T G


    Certain qualitative abnormalities in neutrophils and blood monocytes are associated with frequent, severe, and recurrent bacterial infections leading to fatal sepsis, while other qualitative defects demonstrated in vitro may have few or no clinical sequelae. These qualitative defects are discussed in terms of the specific functions of locomotion, phagocytosis, degranulation, and bacterial killing.

  12. In vivo impact of presynaptic calcium channel dysfunction on motor axons in episodic ataxia type 2. (United States)

    Tomlinson, Susan E; Tan, S Veronica; Burke, David; Labrum, Robyn W; Haworth, Andrea; Gibbons, Vaneesha S; Sweeney, Mary G; Griggs, Robert C; Kullmann, Dimitri M; Bostock, Hugh; Hanna, Michael G


    Ion channel dysfunction causes a range of neurological disorders by altering transmembrane ion fluxes, neuronal or muscle excitability, and neurotransmitter release. Genetic neuronal channelopathies affecting peripheral axons provide a unique opportunity to examine the impact of dysfunction of a single channel subtype in detail in vivo. Episodic ataxia type 2 is caused by mutations in CACNA1A, which encodes the pore-forming subunit of the neuronal voltage-gated calcium channel Cav2.1. In peripheral motor axons, this channel is highly expressed at the presynaptic neuromuscular junction where it contributes to action potential-evoked neurotransmitter release, but it is not expressed mid-axon or thought to contribute to action potential generation. Eight patients from five families with genetically confirmed episodic ataxia type 2 underwent neurophysiological assessment to determine whether axonal excitability was normal and, if not, whether changes could be explained by Cav2.1 dysfunction. New mutations in the CACNA1A gene were identified in two families. Nerve conduction studies were normal, but increased jitter in single-fibre EMG studies indicated unstable neuromuscular transmission in two patients. Excitability properties of median motor axons were compared with those in 30 age-matched healthy control subjects. All patients had similar excitability abnormalities, including a high electrical threshold and increased responses to hyperpolarizing (P ataxia type 2 thus has unexpected effects on axon excitability, which may reflect an indirect effect of abnormal calcium current fluxes during development.

  13. 78 FR 41993 - Ann Arbor Railroad, Inc.-Lease Exemption-Norfolk Southern Railway Company (United States)


    ... Surface Transportation Board Ann Arbor Railroad, Inc.--Lease Exemption--Norfolk Southern Railway Company... of exemption should be issued, and does so here. Notice Ann Arbor Railroad, Inc. (AARR), a Class III... Southern Railway Company (NSR) two rail lines totaling 3.69 miles: (1) A line of railroad between...

  14. Mechanisms of hyperpolarization in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian


    We found persistent abnormalities in the recovery of membrane excitability in long-term regenerated motor nerve fibres in the cat as indicated in the companion paper. These abnormalities could partly be explained by membrane hyperpolarization. To further investigate this possibility, we compared...... the changes in excitability in control nerves and long-term regenerated cat nerves (3-5 years after tibial nerve crush) during manoeuvres known to alter axonal membrane Na(+)-K(+) pump function: polarization, cooling to 20 degrees C, reperfusion after 10 min ischaemia, and up to 60 s of repetitive stimulation...... at 200 Hz. The abnormalities in excitability of regenerated nerves were reduced by depolarization and cooling and increased by hyperpolarization and during postischaemia. Moreover, the time course of recovery of excitability from repetitive stimulation and ischaemia was prolonged in regenerated nerves...

  15. Automated computation of arbor densities: a step toward identifying neuronal cell types

    Directory of Open Access Journals (Sweden)

    Uygar eSümbül


    Full Text Available The shape and position of a neuron convey information regarding its molecular and functional identity. The identification of cell types from structure, a classic method, relies on the time-consuming step of arbor tracing. However, as genetic tools and imaging methods make data-driven approaches to neuronal circuit analysis feasible, the need for automated processing increases. Here, we first establish that mouse retinal ganglion cell types can be as precise about distributing their arbor volumes across the inner plexiform layer as they are about distributing the skeletons of the arbors. Then, we describe an automated approach to computing the spatial distribution of the dendritic arbors, or arbor density, with respect to a global depth coordinate based on this observation. Our method involves three-dimensional reconstruction of neuronal arbors by a supervised machine learning algorithm, post-processing of the enhanced stacks to remove somata and isolate the neuron of interest, and registration of neurons to each other using automatically detected arbors of the starburst amacrine interneurons as fiducial markers. In principle, this method could be generalizable to other structures of the CNS, provided that they allow sparse labeling of the cells and contain a reliable axis of spatial reference.

  16. Automated computation of arbor densities: a step toward identifying neuronal cell types. (United States)

    Sümbül, Uygar; Zlateski, Aleksandar; Vishwanathan, Ashwin; Masland, Richard H; Seung, H Sebastian


    The shape and position of a neuron convey information regarding its molecular and functional identity. The identification of cell types from structure, a classic method, relies on the time-consuming step of arbor tracing. However, as genetic tools and imaging methods make data-driven approaches to neuronal circuit analysis feasible, the need for automated processing increases. Here, we first establish that mouse retinal ganglion cell types can be as precise about distributing their arbor volumes across the inner plexiform layer as they are about distributing the skeletons of the arbors. Then, we describe an automated approach to computing the spatial distribution of the dendritic arbors, or arbor density, with respect to a global depth coordinate based on this observation. Our method involves three-dimensional reconstruction of neuronal arbors by a supervised machine learning algorithm, post-processing of the enhanced stacks to remove somata and isolate the neuron of interest, and registration of neurons to each other using automatically detected arbors of the starburst amacrine interneurons as fiducial markers. In principle, this method could be generalizable to other structures of the CNS, provided that they allow sparse labeling of the cells and contain a reliable axis of spatial reference.

  17. Quantitative analysis of axon bouton distribution of subthalamic nucleus neurons in the rat by single neuron visualization with a viral vector. (United States)

    Koshimizu, Yoshinori; Fujiyama, Fumino; Nakamura, Kouichi C; Furuta, Takahiro; Kaneko, Takeshi


    The subthalamic nucleus (STN) of the basal ganglia plays a key role in motor control, and STN efferents are known to mainly target the external segment of the globus pallidus (GPe), entopeduncular nucleus (Ep), and substantia nigra (SN) with some axon collaterals to the other regions. However, it remains to be clarified how each STN neuron projects axon fibers and collaterals to those target nuclei of the STN. Here we visualized the whole axonal arborization of single STN neurons in the rat brain by using a viral vector expressing membrane-targeted green fluorescent protein, and examined the distribution of axon boutons in those target nuclei. The vast majority (8-9) of 10 reconstructed STN neurons projected to the GPe, SN, caudate-putamen (CPu), and Ep, which received, on average ± SD, 457 ± 425, 400 ± 347, 126 ± 143, and 106 ± 100 axon boutons per STN neuron, respectively. Furthermore, the density of axon boutons in the GPe was highest among these nuclei. Although these target nuclei were divided into calbindin-rich and -poor portions, STN projection showed no exclusive preference for those portions. Since STN neurons mainly projected not only to the GPe, SN, and Ep but also to the CPu, the subthalamostriatal projection might serve as a positive feedback path for the striato-GPe-subthalamic disinhibitory pathway, or work as another route of cortical inputs to the striatum through the corticosubthalamostriatal disynaptic excitatory pathway.

  18. Arborealities: The Tactile Ecology of Hardy’s Woodlanders

    Directory of Open Access Journals (Sweden)

    William A. Cohen


    Full Text Available This article asks what consequences two recent movements in scholarship - affect theory and environmental studies - might have for understanding the Victorian tactile imagination. Thomas Hardy's 1887 novel 'The Woodlanders' provides a means of addressing this question, for it shares with posthumanist critics a view that people are material things in a world of things, and that the world is itself a collection of vital agencies and networked actors. Hardy shows how a tactile modality provides a point of entry into discussions of both affect and ecology, situating the human in a proximate, contiguous relation to both bodily and environmental materialities. 'The Woodlanders' offers a world in which trees, in particular, work on - and are in turn worked on by - human objects; a world in which, one might say, the trees are people and the people are trees. This arboreality is far from a sentimental oneness with nature, nor is it an exercise in anthropomorphization. Instead, it provides a recognition of the inhuman, material, and sensate aspects of the human; or, perhaps better, of the human as rooted, budding, leafy, and abloom. Like some recent theoretical accounts, 'The Woodlanders' disperses agency among human and non-human elements alike, employing a tactile mode of representation to break down distinctions between them. Normal 0 false false false EN-US X-NONE X-NONE

  19. The arboreal component of a dry forest in Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    M. J. N. Rodal

    Full Text Available The dry forests of northeastern Brazil are found near the coastal zone and on low, isolated mountains inland amid semi-arid vegetation. The floristic composition of these dry montane forests, as well as their relationship to humid forests (Atlantic forest sensu stricto and to the deciduous thorn woodlands (Caatinga sensu stricto of the Brazilian northeast are not yet well known. This paper sought to determine if the arboreal plants in a dry forest growing on a low mountain in the semi-arid inland region (Serra Negra, 8° 35’ - 8° 38’ S and 38° 02’ - 38° 04’ W between the municipalities of Floresta and Inajá, state of Pernambuco have the same floristic composition and structure as that seen in other regional forests. In fifty 10 x 20 m plots all live and standing dead trees with trunk measuring > 5 cm diameter at breast height were measured. Floristic similarities between the forest studied and other regional forests were assessed using multivariate analysis. The results demonstrate that the dry forest studied can be classified into two groups that represent two major vegetational transitions: (1 a humid forest/dry forest transition; and (2 a deciduous thorn-woodland/ dry forest transition.

  20. Axonal Dysfunction Precedes Motor Neuronal Death in Amyotrophic Lateral Sclerosis.

    Directory of Open Access Journals (Sweden)

    Yuta Iwai

    Full Text Available Wide-spread fasciculations are a characteristic feature in amyotrophic lateral sclerosis (ALS, suggesting motor axonal hyperexcitability. Previous excitability studies have shown increased nodal persistent sodium conductances and decreased potassium currents in motor axons of ALS patients, both of the changes inducing hyperexcitability. Altered axonal excitability potentially contributes to motor neuron death in ALS, but the relationship of the extent of motor neuronal death and abnormal excitability has not been fully elucidated. We performed multiple nerve excitability measurements in the median nerve at the wrist of 140 ALS patients and analyzed the relationship of compound muscle action potential (CMAP amplitude (index of motor neuronal loss and excitability indices, such as strength-duration time constant, threshold electrotonus, recovery cycle and current-threshold relationships. Compared to age-matched normal controls (n = 44, ALS patients (n = 140 had longer strength-duration time constant (SDTC: a measure of nodal persistent sodium current; p 5mV. Regression analyses showed that SDTC (R = -0.22 and depolarizing threshold electrotonus (R = -0.22 increased with CMAP decline. These findings suggest that motor nerve hyperexcitability occurs in the early stage of the disease, and precedes motor neuronal loss in ALS. Modulation of altered ion channel function could be a treatment option for ALS.

  1. 77 FR 34991 - Notice of Inventory Completion: Museum of Anthropology, University of Michigan, Ann Arbor, MI... (United States)


    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: Museum of Anthropology, University of Michigan, Ann Arbor, MI; Correction AGENCY: National Park Service, Interior. ACTION: Notice; correction. Notice...

  2. Decreased expression of axon-guidance receptors in the anterior cingulate cortex in autism

    Directory of Open Access Journals (Sweden)

    Suda Shiro


    Full Text Available Abstract Background Axon-guidance proteins play a crucial role in brain development. As the dysfunction of axon-guidance signaling is thought to underlie the microstructural abnormalities of the brain in people with autism, we examined the postmortem brains of people with autism to identify any changes in the expression of axon-guidance proteins. Results The mRNA and protein expression of axon-guidance proteins, including ephrin (EFNA4, eEFNB3, plexin (PLXNA4, roundabout 2 (ROBO2 and ROBO3, were examined in the anterior cingulate cortex and primary motor cortex of autistic brains (n = 8 and n = 7, respectively and control brains (n = 13 and n = 8, respectively using real-time reverse-transcriptase PCR (RT-PCR and western blotting. Real-time RT-PCR revealed that the relative expression levels of EFNB3, PLXNA4A and ROBO2 were significantly lower in the autistic group than in the control group. The protein levels of these three genes were further analyzed by western blotting, which showed that the immunoreactive values for PLXNA4 and ROBO2, but not for EFNB3, were significantly reduced in the ACC of the autistic brains compared with control brains. Conclusions In this study, we found decreased expression of axon-guidance proteins such as PLXNA4 and ROBO2 in the brains of people with autism, and suggest that dysfunctional axon-guidance protein expression may play an important role in the pathophysiology of autism.

  3. Axonal degeneration and regeneration in rat uterus during the estrous cycle. (United States)

    Zoubina, E V; Smith, P G


    Uterine innervation of the adult virgin rat changes throughout the estrous cycle. Nerves immunoreactive for the pan-neuronal marker protein gene product 9.5 and the sympathetic marker dopamine beta-hydroxylase are maximal at diestrus and minimal at estrus, whereas presumptive sensory and parasympathetic axons are unchanged. In the present study, we used quantitative electron microscopy to determine if depletion of immunoreactive nerves from the myometrium is due to loss of structurally intact axons, and whether this occurs through degeneration or retraction. Numbers of intact myometrial axons per unit sectional area were greatest at diestrus and least at estrus, while myometrial area was smallest at diestrus and greatest at estrus. However, depletion of intact axons at estrus was evident even after correcting for changes in uterine size. Varicosities adjacent to smooth muscle cells did not vary significantly with respect to their ultrastructural features or distance to the nearest smooth muscle target cell. Because retracting axons show increases in organelle content and distances to target cells, retraction probably does not play a major role in reducing uterine innervation. In contrast, axons with ultrastructural features consistent with degeneration (organelle and axolemmal disintegration, abnormal electron opacity, dense inclusion bodies) were significantly increased at proestrus and estrus. Growth cones were observed only at metestrus and diestrus. We conclude that cyclical degeneration and regeneration of myometrial innervation is a normal feature of the virgin adult rat.

  4. Statins decrease dendritic arborization in rat sympathetic neurons by blocking RhoA activation


    Kim, Woo-Yang; Gonsiorek, Eugene A.; Barnhart, Chris; Davare, Monika A.; Engebose, Abby J.; Lauridsen, Holly; Bruun, Donald; Lesiak, Adam; Wayman, Gary; Bucelli, Robert; Higgins, Dennis; Lein, Pamela J.


    Clinical and experimental evidence suggest that statins decrease sympathetic activity, but whether peripheral mechanisms involving direct actions on post-ganglionic sympathetic neurons contribute to this effect is not known. Because tonic activity of these neurons is directly correlated with the size of their dendritic arbor, we tested the hypothesis that statins decrease dendritic arborization in sympathetic neurons. Oral administration of atorvastatin (20 mg/kg/day for 7 days) significantly...

  5. Axonal transport interruption and anatomy at the lamina cribrosa. (United States)

    Radius, R L; Bade, B


    Pressure-induced, focal axonal transport abnormalities were studied in 14 cat eyes by the examination of serial step-section tissue radioautogram. Although the patterns of the transport interruption at the lamina cribrosa varied from eye to eye, the temporal sectors of the nerve head were most often involved by this abnormality. The anatomy at the lamina cribrosa was studied in adjacent (6 micrometers) cross-sectional specimens. The thickness of the extra-bundle trabeculae and the nerve fiber bundle dimensions including the cross-sectional area and the number and the shape (the ratio of the major and the minor axis diameters) of the laminar pores were measured by computer-assisted perimeter analysis. There was no correlation between the location of the transport interruption and any of these anatomic measurements.

  6. Comparative morphology of dendritic arbors in populations of Purkinje cells in mouse sulcus and apex. (United States)

    Nedelescu, Hermina; Abdelhack, Mohamed


    Foliation divides the mammalian cerebellum into structurally distinct subdivisions, including the concave sulcus and the convex apex. Purkinje cell (PC) dendritic morphology varies between subdivisions and changes significantly ontogenetically. Since dendritic morphology both enables and limits sensory-motor circuit function, it is important to understand how neuronal architectures differ between brain regions. This study employed quantitative confocal microcopy to reconstruct dendritic arbors of cerebellar PCs expressing green fluorescent protein and compared arbor morphology between PCs of sulcus and apex in young and old mice. Arbors were digitized from high z-resolution (0.25 µm) image stacks using an adaptation of Neurolucida's (MBF Bioscience) continuous contour tracing tool, designed for drawing neuronal somata. Reconstructed morphologies reveal that dendritic arbors of sulcus and apex exhibit profound differences. In sulcus, 72% of the young PC population possesses two primary dendrites, whereas in apex, only 28% do. Spatial constraints in the young sulcus cause significantly more dendritic arbor overlap than in young apex, a distinction that disappears in adulthood. However, adult sulcus PC arbors develop a greater number of branch crossings. These results suggest developmental neuronal plasticity that enables cerebellar PCs to attain correct functional adult architecture under different spatial constraints.

  7. Geniposide Alleviates Amyloid-Induced Synaptic Injury by Protecting Axonal Mitochondrial Trafficking (United States)

    Zhang, Haijing; Zhao, Chunhui; Lv, Cui; Liu, Xiaoli; Du, Shijing; Li, Zhi; Wang, Yongyan; Zhang, Wensheng


    Synaptic and mitochondrial pathologies are early events in the progression of Alzheimer's disease (AD). Normal axonal mitochondrial function and transport play crucial roles in maintaining synaptic function by producing high levels of adenosine triphosphate and buffering calcium. However, there can be abnormal axonal mitochondrial trafficking, distribution, and fragmentation, which are strongly correlated with amyloid-β (Aβ)-induced synaptic loss and dysfunction. The present study examined the neuroprotective effect of geniposide, a compound extracted from gardenia fruit in Aβ-treated neurons and an AD mouse model. Geniposide alleviated Aβ-induced axonal mitochondrial abnormalities by increasing axonal mitochondrial density and length and improving mitochondrial motility and trafficking in cultured hippocampal neurons, consequently ameliorating synaptic damage by reversing synaptic loss, addressing spine density and morphology abnormalities, and ameliorating the decreases in synapse-related proteins in neurons and APPswe/PS1dE9 mice. These findings provide new insights into the effects of geniposide administration on neuronal and synaptic functions under conditions of Aβ enrichment. PMID:28179878

  8. A Stochastic Multiscale Model That Explains the Segregation of Axonal Microtubules and Neurofilaments in Neurological Diseases.

    Directory of Open Access Journals (Sweden)

    Chuan Xue


    Full Text Available The organization of the axonal cytoskeleton is a key determinant of the normal function of an axon, which is a long thin projection of a neuron. Under normal conditions two axonal cytoskeletal polymers, microtubules and neurofilaments, align longitudinally in axons and are interspersed in axonal cross-sections. However, in many neurotoxic and neurodegenerative disorders, microtubules and neurofilaments segregate apart from each other, with microtubules and membranous organelles clustered centrally and neurofilaments displaced to the periphery. This striking segregation precedes the abnormal and excessive neurofilament accumulation in these diseases, which in turn leads to focal axonal swellings. While neurofilament accumulation suggests an impairment of neurofilament transport along axons, the underlying mechanism of their segregation from microtubules remains poorly understood for over 30 years. To address this question, we developed a stochastic multiscale model for the cross-sectional distribution of microtubules and neurofilaments in axons. The model describes microtubules, neurofilaments and organelles as interacting particles in a 2D cross-section, and is built upon molecular processes that occur on a time scale of seconds or shorter. It incorporates the longitudinal transport of neurofilaments and organelles through this domain by allowing stochastic arrival and departure of these cargoes, and integrates the dynamic interactions of these cargoes with microtubules mediated by molecular motors. Simulations of the model demonstrate that organelles can pull nearby microtubules together, and in the absence of neurofilament transport, this mechanism gradually segregates microtubules from neurofilaments on a time scale of hours, similar to that observed in toxic neuropathies. This suggests that the microtubule-neurofilament segregation can be a consequence of the selective impairment of neurofilament transport. The model generates the

  9. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis. (United States)

    Zaimi, Aldo; Duval, Tanguy; Gasecka, Alicja; Côté, Daniel; Stikov, Nikola; Cohen-Adad, Julien


    Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface (GUI) and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-segmentation of axons over a cropped image and discriminant analysis (DA) to select the best parameters based on axon shape and intensity information; (iii) automatic axon and myelin segmentation over the full image; and (iv) atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM), SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at:

  10. Axonal interferon responses and alphaherpesvirus neuroinvasion (United States)

    Song, Ren

    Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore

  11. Cable energy function of cortical axons. (United States)

    Ju, Huiwen; Hines, Michael L; Yu, Yuguo


    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na(+)-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na(+)-counting method severely underestimates energy cost in the cable model by 20-70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship.

  12. Motor axon excitability during Wallerian degeneration

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez, Susana; Krarup, Christian


    , action potential propagation and structural integrity of the distal segment are maintained. The aim of this study was to investigate in vivo the changes in membrane function of motor axons during the 'latent' phase of Wallerian degeneration. Multiple indices of axonal excitability of the tibial nerve...

  13. Commissural axons of the mouse cochlear nucleus. (United States)

    Brown, M Christian; Drottar, Marie; Benson, Thane E; Darrow, Keith


    The axons of commissural neurons that project from one cochlear nucleus to the other were studied after labeling with anterograde tracer. Injections were made into the dorsal subdivision of the cochlear nucleus in order to restrict labeling only to the group of commissural neurons that gave off collaterals to, or were located in, this subdivision. The number of labeled commissural axons in each injection was correlated with the number of labeled radiate multipolar neurons, suggesting radiate neurons as the predominant origin of the axons. The radiate commissural axons are thick and myelinated, and they exit the dorsal acoustic stria of the injected cochlear nucleus to cross the brainstem in the dorsal half, near the crossing position of the olivocochlear bundle. They enter the opposite cochlear nucleus via the dorsal and ventral acoustic stria and at its medial border. Reconstructions of single axons demonstrate that terminations are mostly in the core and typically within a single subdivision of the cochlear nucleus. Extents of termination range from narrow to broad along both the dorsoventral (i.e., tonotopic) and the rostrocaudal dimensions. In the electron microscope, labeled swellings form synapses that are symmetric (in that there is little postsynaptic density), a characteristic of inhibitory synapses. Our labeled axons do not appear to include excitatory commissural axons that end in edge regions of the nucleus. Radiate commissural axons could mediate the broadband inhibition observed in responses to contralateral sound, and they may balance input from the two ears with a quick time course.

  14. Early events in axon/dendrite polarization. (United States)

    Cheng, Pei-lin; Poo, Mu-ming


    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure.

  15. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier


    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  16. Transient neuronal populations are required to guide callosal axons: a role for semaphorin 3C.

    Directory of Open Access Journals (Sweden)

    Mathieu Niquille


    Full Text Available The corpus callosum (CC is the main pathway responsible for interhemispheric communication. CC agenesis is associated with numerous human pathologies, suggesting that a range of developmental defects can result in abnormalities in this structure. Midline glial cells are known to play a role in CC development, but we here show that two transient populations of midline neurons also make major contributions to the formation of this commissure. We report that these two neuronal populations enter the CC midline prior to the arrival of callosal pioneer axons. Using a combination of mutant analysis and in vitro assays, we demonstrate that CC neurons are necessary for normal callosal axon navigation. They exert an attractive influence on callosal axons, in part via Semaphorin 3C and its receptor Neuropilin-1. By revealing a novel and essential role for these neuronal populations in the pathfinding of a major cerebral commissure, our study brings new perspectives to pathophysiological mechanisms altering CC formation.

  17. Cellular and Axonal Diversity in Molecular Layer Heterotopia of the Rat Cerebellar Vermis

    Directory of Open Access Journals (Sweden)

    Sarah E. Van Dine


    Full Text Available Molecular layer heterotopia of the cerebellar primary fissure are a characteristic of many rat strains and are hypothesized to result from defect of granule cells exiting the external granule cell layer during cerebellar development. However, the cellular and axonal constituents of these malformations remain poorly understood. In the present report, we use histochemistry and immunocytochemistry to identify neuronal, glial, and axonal classes in molecular layer heterotopia. In particular, we identify parvalbumin-expressing molecular layer interneurons in heterotopia as well as three glial cell types including Bergmann glia, Olig2-expressing oligodendrocytes, and Iba1-expressing microglia. In addition, we document the presence of myelinated, serotonergic, catecholaminergic, and cholinergic axons in heterotopia indicating possible spinal and brainstem afferent projections to heterotopic cells. These findings are relevant toward understanding the mechanisms of normal and abnormal cerebellar development.

  18. Ectopic expression of transcription factor AP-2δ in developing retina: effect on PSA-NCAM and axon routing. (United States)

    Li, Xiaodong; Monckton, Elizabeth A; Godbout, Roseline


    Retinal ganglion cells transmit the visual signal from the retina to the brain. We have previously shown that the activator protein 2 (AP-2)δ (TFAP2D) transcription factor is expressed in one third of ganglion cells in developing retina suggesting a specialized role for these AP-2δ-expressing cells. Here, we address the role of AP-2δ in retina by in ovo electroporation of RCAS/AP-2δ retroviral constructs into the eyes of chick embryos at day 2 of gestation. Ectopic expression of AP-2δ does not affect lineage differentiation in the developing retina. However, immunostaining of retinal tissue with markers associated with axonal growth such as growth-associated protein 43 and polysialic acid-neural cell adhesion molecule (PSA-NCAM) demonstrates axonal misrouting and abnormal axonal bundling. Treatment of AP-2δ-misexpressing retinal cell cultures with endoneuraminidase, an enzyme that removes PSA from NCAM, decreases AP-2δ-induced axonal bundling. Our data suggest a role for AP-2δ in polysialylation of NCAM, with ectopic expression of AP-2δ resulting in premature bundling of emerging axons and misrouting of axons. We propose that expression of AP-2δ in a subset of ganglion cells contributes to the fine-tuning of axonal growth in the developing retina.

  19. Abnormal calcium homeostasis in peripheral neuropathies. (United States)

    Fernyhough, Paul; Calcutt, Nigel A


    Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neurone function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation in both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies.

  20. Central control of information transmission through the intraspinal arborizations of sensory fibers examined 100 years after Ramón y Cajal. (United States)

    Rudomin, Pablo


    About 100 years ago, Santiago Ramón y Cajal reported that sensory fibers entering the spinal cord have ascending and descending branches, and that each of them sends collaterals to the gray matter where they have profuse ramifications. To him this was a fundamental discovery and proposed that the intraspinal branches of the sensory fibers were "centripetal conductors by which sensory excitation is propagated to the various neurons in the gray matter". In addition, he assumed that "conduction of excitation within the intraspinal arborizations of the afferent fibers would be proportional to the diameters of the conductors", and that excitation would preferentially flow through the coarsest branches. The invariability of some elementary reflexes such as the knee jerk would be the result of a long history of plastic adaptations and natural selection of the safest neuronal organizations. There is now evidence suggesting that in the adult cat, the intraspinal branches of sensory fibers are not hard wired routes that diverge excitation to spinal neurons in an invariable manner, but rather dynamic pathways where excitation flow can be centrally addressed to reach specific neuronal targets. This central control of information flow is achieved by means of specific sets of GABAergic interneurons that produce primary afferent depolarization (PAD) via axo-axonic synapses and reduce transmitter release (presynaptic inhibition). The PAD produced by single, or by small groups of GABAergic interneurons in group I muscle afferents, can remain confined to some sets of intraspinal arborizations of the afferent fibers and not spread to nearby collaterals. In muscle spindle afferents this local character of PAD allows cutaneous and descending inputs to differentially inhibit the PAD in segmental and ascending collaterals of individual fibers, which may be an effective way to decouple the information flow arising from common sensory inputs. This feature appears to play an important role

  1. Laser-based single-axon transection for high-content axon injury and regeneration studies.

    Directory of Open Access Journals (Sweden)

    Darío Kunik

    Full Text Available The investigation of the regenerative response of the neurons to axonal injury is essential to the development of new axoprotective therapies. Here we study the retinal neuronal RGC-5 cell line after laser transection, demonstrating that the ability of these cells to initiate a regenerative response correlates with axon length and cell motility after injury. We show that low energy picosecond laser pulses can achieve transection of unlabeled single axons in vitro and precisely induce damage with micron precision. We established the conditions to achieve axon transection, and characterized RGC-5 axon regeneration and cell body response using time-lapse microscopy. We developed an algorithm to analyze cell trajectories and established correlations between cell motility after injury, axon length, and the initiation of the regeneration response. The characterization of the motile response of axotomized RGC-5 cells showed that cells that were capable of repair or regrowth of damaged axons migrated more slowly than cells that could not. Moreover, we established that RGC-5 cells with long axons could not recover their injured axons, and such cells were much more motile. The platform we describe allows highly controlled axonal damage with subcellular resolution and the performance of high-content screening in cell cultures.

  2. ATP7A (Menkes protein) functions in axonal targeting and synaptogenesis. (United States)

    El Meskini, Rajaâ; Crabtree, Kelli L; Cline, Laura B; Mains, Richard E; Eipper, Betty A; Ronnett, Gabriele V


    Menkes disease (MD) is a neurodegenerative disorder caused by mutations in the copper transporter, ATP7A, a P-type ATPase. We previously used the olfactory system to demonstrate that ATP7A expression is developmentally, not constitutive, regulated, peaking during synaptogenesis when it is highly expressed in extending axons in a copper-independent manner. Although not known to be associated with axonal functions, we explored the possibility that the inability of mutant ATP7A to support axon outgrowth contributes to the neurodegeneration seen in MD. In vivo analysis of the olfactory system in mottled brindled (Atp7aMobr) mice, a rodent model for MD, demonstrates that ATP7A deficiency affects olfactory sensory neuron (OSN) maturation. Disrupted OSN axonal projections and mitral/tufted cell dendritic growth lead to altered synapse integrity and glomerular disorganization in the olfactory bulbs of Atp7aMobr mice. Our data indicate that the neuronal abnormalities observed in MD are a result of specific age-dependent developmental defects. This study demonstrates a role for ATP7A and/or copper in axon outgrowth and synaptogenesis, and will further help identify the cause of the neuropathology that characterizes MD.

  3. Activity-Dependent Callosal Axon Projections in Neonatal Mouse Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Yoshiaki Tagawa


    Full Text Available Callosal axon projections are among the major long-range axonal projections in the mammalian brain. They are formed during the prenatal and early postnatal periods in the mouse, and their development relies on both activity-independent and -dependent mechanisms. In this paper, we review recent findings about the roles of neuronal activity in callosal axon projections. In addition to the well-documented role of sensory-driven neuronal activity, recent studies using in utero electroporation demonstrated an essential role of spontaneous neuronal activity generated in neonatal cortical circuits. Both presynaptic and postsynaptic neuronal activities are critically involved in the axon development. Studies have begun to reveal intracellular signaling pathway which works downstream of neuronal activity. We also review several distinct patterns of neuronal activity observed in the developing cerebral cortex, which might play roles in activity-dependent circuit construction. Such neuronal activity during the neonatal period can be disrupted by genetic factors, such as mutations in ion channels. It has been speculated that abnormal activity caused by such factors may affect activity-dependent circuit construction, leading to some developmental disorders. We discuss a possibility that genetic mutation in ion channels may impair callosal axon projections through an activity-dependent mechanism.

  4. Trophic and tropic effects of striatal astrocytes on cografted mesencephalic dopamine neurons and their axons. (United States)

    Pierret, P; Quenneville, N; Vandaele, S; Abbaszadeh, R; Lanctôt, C; Crine, P; Doucet, G


    Astrocytes from the ventral mesencephalon and from the striatum respectively promote the dendritic and axonal arborization of dopamine (DA) neurons in vitro. To test this response in vivo, astrocytes in primary cultures from the neonatal cerebral cortex, ventral mesencephalon, or striatum were coimplanted with fetal ventral mesencephalic tissue into the intact or DA-denervated striatum of adult rats and these cografts examined after 3-6 months by tyrosine hydroxylase (TH) immunohistochemistry (intact recipients) or after 5-6 months by in vitro [3H]DA-uptake autoradiography (DA-denervated recipients). In contrast with single ventral mesencephalic grafts, all types of cograft displayed a rather uniform distribution of TH-immunoreactive perikarya. The average size of TH-immunoreactive cell bodies was not significantly different in cografts containing cortical or mesencephalic astrocytes and in single ventral mesencephalic grafts, but it was significantly larger in cografts containing striatal astrocytes. Nevertheless, the number of [3H]DA-labeled terminals in the DA-lesioned host striatum was clearly smaller with cografts of striatal astrocytes than with single mesencephalic grafts or with cografts containing cortical astrocytes. On the other hand, cografts of striatal astrocytes contained much higher numbers of [3H]DA-labeled terminals than the other types of graft or cograft. Thus, while cografted astrocytes in general influence the distribution of DA neurons within the graft, astrocytes from the neonatal striatum have a trophic effect on DA perikarya and a tropic effect on DA axons, keeping the latter within the graft.

  5. Evidence for Dysregulation of Axonal Growth and Guidance in the Etiology of ASD

    Directory of Open Access Journals (Sweden)

    Kathryn eMcFadden


    Full Text Available Current theories concerning the cause of autism spectrum disorders (ASDs have converged on the concept of abnormal development of brain connectivity. This concept is supported by accumulating evidence from functional imaging, DTI, and high definition fiber tracking (HDFT studies which suggest altered microstructure in the axonal tracts connecting cortical areas may underly many of the cognitive manifestations of ASD. Additionally, large-scale genomic studies implicate numerous gene candidates known or suspected to mediate neuritic outgrowth and axonal guidance in fetal and perinatal life. Neuropathological observations in postmortem ASD brain samples further support this model and include subtle disturbances of cortical lamination and subcortical axonal morphology. Of note is the relatively common finding of poor differentiation of the gray-white junction associated with an excess superficial white matter or interstitial neurons (INs. INs are thought to be remnants of the fetal subplate, a transient structure which plays a key role in the guidance and morphogenesis of thalamocortical and cortico-cortical connections and the organization of cortical columnar architecture. While not discounting the importance of synaptic dysfunction in the etiology of ASD, this paper will briefly review the cortical abnormalities and genetic evidence supporting a model of dysregulated axonal growth and guidance as key developmental processes underlying the clinical manifestations of ASD.


    Directory of Open Access Journals (Sweden)



    Full Text Available Bryophyte communities were compared between arboreal (trunk bases and terrestrialhabitats in primary forest Mount Halimun Salak National Park, West Java. The communitieswere analyzed based on species diversity, abundance, and biomass. A total of 150 bryophytesspecies were identified, including 67 species of mosses (Bryopsida and 83 of liverworts(Hepaticopsida. Both bryophyte groups varied in diversity and abundance between arborealand terrestrial communities as well as among different elevations. Species diversity of arborealhabitats (116 species was higher than that of terrestrial habitats (64 species. Moss species weremore abundant in terms of coverage in terrestrial habitats whereas liverworts species weremore abundant in arboreal habitats. Species richness in both terrestrial and arboreal habitatsdecreased towards higher elevation, whereas the abundance increased.

  7. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. (United States)

    Kole, Maarten H P; Letzkus, Johannes J; Stuart, Greg J


    Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action potential waveform in the axon initial segment (AIS) of layer 5 pyramidal neurons independent of the soma. Cell-attached recordings revealed a 10-fold increase in Kv1 channel density over the first 50 microm of the AIS. Inactivation of AIS and proximal axonal Kv1 channels, as occurs during slow subthreshold somatodendritic depolarizations, led to a distance-dependent broadening of axonal action potentials, as well as an increase in synaptic strength at proximal axonal terminals. Thus, Kv1 channels are strategically positioned to integrate slow subthreshold signals, providing control of the presynaptic action potential waveform and synaptic coupling in local cortical circuits.

  8. Axonal BACE1 dynamics and targeting in hippocampal neurons: a role for Rab11 GTPase


    Buggia-Prévot, Virginie; Fernandez, Celia G; Riordan, Sean; Vetrivel, Kulandaivelu S.; Roseman, Jelita; Waters, Jack; Bindokas, Vytautas P.; Vassar, Robert; Thinakaran, Gopal


    Background BACE1 is one of the two enzymes that cleave amyloid precursor protein to generate Alzheimer's disease (AD) beta amyloid peptides. It is widely believed that BACE1 initiates APP processing in endosomes, and in the brain this cleavage is known to occur during axonal transport of APP. In addition, BACE1 accumulates in dystrophic neurites surrounding brain senile plaques in individuals with AD, suggesting that abnormal accumulation of BACE1 at presynaptic terminals contributes to patho...

  9. Genetics Home Reference: giant axonal neuropathy (United States)

    ... R. Proteomic analysis in giant axonal neuropathy: new insights into disease mechanisms. Muscle Nerve. 2012 Aug;46( ... healthcare professional . About Genetics Home Reference Site Map Customer Support Selection Criteria for Links Copyright ...

  10. Genetic dissection of myelinated axons in zebrafish



    In the vertebrate nervous system, the myelin sheath allows for rapid and efficient conduction of action potentials along axons. Despite the essential function of myelin, many questions remain unanswered about the mechanisms that govern the development of myelinated axons. The fundamental properties of myelin are widely shared among vertebrates, and the zebrafish has emerged as a powerful system to study myelination in vivo. This review will highlight recent advances from genetic screens in ze...

  11. Movement patterns of three arboreal primates in a Neotropical moist forest explained by LiDAR-estimated canopy structure

    NARCIS (Netherlands)

    McLean, Kevin A.; Trainor, Anne M.; Asner, Gregory P.; Crofoot, Margaret C.; Hopkins, Mariah E.; Campbell, Christina J.; Martin, Roberta E.; Knapp, David E.; Jansen, Patrick A.


    Context: Many arboreal mammals in Neotropical forests are important seed dispersers that influence the spatial patterns of tree regeneration via their movement patterns, which in turn are determined by the canopy structure of the forest itself. However, the relationship between arboreal mammal mo

  12. Crossing axons in the third nerve nucleus. (United States)

    Bienfang, D C


    The research presented in this paper studied the pathway taken by the crossed fibers of the third nerve nucleus in an animal whose nucleus has been well mapped and found to correlate well with higher mammals and man. Autoradiography using tritiated amino acid labeled the cell bodies an axons of the left side of the oculomotor nucleus of the cat. Axons so labeled could be seen emerging from the ventral portion of the left nucleus through the median longitudinal fasciculus (mlf) to join the left oculomotor nerve. Labeled axons were also seen to emerge from the medial border of the caudal left nucleus, cross the midline, and pass through the right nucleus and the right mlf to join the right oculomotor nerve. These latter axons must be the crossed axons of the superior rectus and levator palpebrae subnuclei. Since the path of these crossed axons is through the caudal portion of the nucleus of the opposite side, the destruction of one lateral half of the oculomotor nucleus would result in a bilateral palsy of the crossed subnuclei. Bilateral palsy of the superior rectus and bilateral assymetrical palsy of the levator palpebrae muscles would result.

  13. Reaction of Leaf Weevil Phyllobius arborator (Coleoptera: Curculionidae) to Manganese Content in Diet. (United States)

    Martinek, P; Kula, E; Hedbávný, J


    Reaction of leaf weevil (Phyllobius arborator (Herbst)) to increased concentration of manganese in diet was investigated in laboratory rearing with controlled temperature, humidity, and light conditions. Food for leaf weevils in rearing (leaves of birch Betula pendula Roth) was contaminated by soaking the leaves in solutions of MnCl24H2O with graded concentration of manganese. Direct influence of food was characterized by the consumed amount of leaves, period of feeding, and weight of P. arborator adults. At the same time, the levels of manganese in unconsumed food, excrement, and bodies of adults were determined.Even very high content of manganese in food did not cause significantly different reaction of P. arborator adults in comparison to individuals in control treatment. No significant difference in the quantity of the consumed food, weight of adults, and duration of their feeding period was found between the treatments within the experiment. The content of manganese found in food, excrement, and adult beetles indicate that P. arborator avoided manganese intoxication through food by both-voiding manganese through the feces and sequestering it at relatively high concentrations in unspecified parts of their body.

  14. 78 FR 65376 - Notice of Inventory Completion: University of Michigan, Ann Arbor, MI (United States)


    ... Research, 4080 Fleming Building, 503 Thompson St., Ann Arbor, MI 48109-1340, telephone (734) 647-9085... the remains of two adult females, one adult, one adolescent, one child, one infant, and one neonate as... adults (one of whom had been cremated), seven infants/neonates, and six juveniles, along with...

  15. Reptile and arboreal marsupial response to replanted vegetation in agricultural landscapes. (United States)

    Cunningham, Ross B; Lindenmayer, David B; Crane, Mason; Michael, Damian; MacGregor, Christopher


    We report reptile and arboreal marsupial responses to vegetation planting and remnant native vegetation in agricultural landscapes in southeastern Australia. We used a hierarchical survey to select 23 landscapes that varied in the amounts of remnant native vegetation and planted native vegetation. We selected two farms within each landscape. In landscapes with plantings, we selected one farm with and one farm without plantings. We surveyed arboreal marsupials and reptiles on four sites on each farm that encompassed four vegetation types (plantings 7-20 years old, old-growth woodland, naturally occurring seedling regrowth woodland, and coppice [i.e., multistemmed] regrowth woodland). Reptiles and arboreal marsupials were less likely to occur on farms and in landscapes with comparatively large areas of plantings. Such farms and landscapes had less native vegetation, fewer paddock trees, and less woody debris within those areas of natural vegetation. The relatively large area of planting on these farms was insufficient to overcome the lack of these key structural attributes. Old-growth woodland, coppice regrowth, seedling regrowth, and planted areas had different habitat values for different reptiles and arboreal marsupials. We conclude that, although plantings may improve habitat conditions for some taxa, they may not effectively offset the negative effects of native vegetation clearing for all species, especially those reliant on old-growth woodland. Restoring suitable habitat for such species may take decades to centuries.

  16. 76 FR 80392 - Notice of Inventory Completion: University of Michigan Museum of Anthropology, Ann Arbor, MI (United States)


    ... Inventory Completion: University of Michigan Museum of Anthropology, Ann Arbor, MI AGENCY: National Park... Michigan officials and its Museum of Anthropology professional staff in consultation with representatives... accessioned into the Museum of Anthropology. Between 2007 and 2009 the remains were inventoried at...

  17. 76 FR 36151 - Notice of Inventory Completion: Museum of Anthropology, University of Michigan, Ann Arbor, MI (United States)


    ... National Park Service Notice of Inventory Completion: Museum of Anthropology, University of Michigan, Ann Arbor, MI AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Museum of Anthropology... affiliated with the human remains may contact the Museum of Anthropology, University of...

  18. Axon injury triggers EFA-6 mediated destabilization of axonal microtubules via TACC and doublecortin like kinase. (United States)

    Chen, Lizhen; Chuang, Marian; Koorman, Thijs; Boxem, Mike; Jin, Yishi; Chisholm, Andrew D


    Axon injury triggers a series of changes in the axonal cytoskeleton that are prerequisites for effective axon regeneration. In Caenorhabditis elegans the signaling protein Exchange Factor for ARF-6 (EFA-6) is a potent intrinsic inhibitor of axon regrowth. Here we show that axon injury triggers rapid EFA-6-dependent inhibition of axonal microtubule (MT) dynamics, concomitant with relocalization of EFA-6. EFA-6 relocalization and axon regrowth inhibition require a conserved 18-aa motif in its otherwise intrinsically disordered N-terminal domain. The EFA-6 N-terminus binds the MT-associated proteins TAC-1/Transforming-Acidic-Coiled-Coil, and ZYG-8/Doublecortin-Like-Kinase, both of which are required for regenerative growth cone formation, and which act downstream of EFA-6. After injury TAC-1 and EFA-6 transiently relocalize to sites marked by the MT minus end binding protein PTRN-1/Patronin. We propose that EFA-6 acts as a bifunctional injury-responsive regulator of axonal MT dynamics, acting at the cell cortex in the steady state and at MT minus ends after injury.

  19. Slit-Robo signals regulate pioneer axon pathfinding of the tract of the postoptic commissure in the mammalian forebrain. (United States)

    Ricaño-Cornejo, Itzel; Altick, Amy L; García-Peña, Claudia M; Nural, Hikmet Feyza; Echevarría, Diego; Miquelajáuregui, Amaya; Mastick, Grant S; Varela-Echavarría, Alfredo


    During early vertebrate forebrain development, pioneer axons establish a symmetrical scaffold descending longitudinally through the rostral forebrain, thus forming the tract of the postoptic commissure (TPOC). In mouse embryos, this tract begins to appear at embryonic day 9.5 (E9.5) as a bundle of axons tightly constrained at a specific dorsoventral level. We have characterized the participation of the Slit chemorepellants and their Robo receptors in the control of TPOC axon projection. In E9.5-E11.5 mouse embryos, Robo1 and Robo2 are expressed in the nucleus origin of the TPOC (nTPOC), and Slit expression domains flank the TPOC trajectory. These findings suggested that these proteins are important factors in the dorsoventral positioning of the TPOC axons. Consistently with this role, Slit2 inhibited TPOC axon growth in collagen gel cultures, and interfering with Robo function in cultured embryos induced projection errors in TPOC axons. Moreover, absence of both Slit1 and Slit2 or Robo1 and Robo2 in mutant mouse embryos revealed aberrant TPOC trajectories, resulting in abnormal spreading of the tract and misprojections into both ventral and dorsal tissues. These results reveal that Slit-Robo signaling regulates the dorsoventral position of this pioneer tract in the developing forebrain.

  20. BmRobo1a and BmRobo1b control axon repulsion in the silkworm Bombyx mori. (United States)

    Li, Xiao-Tong; Yu, Qi; Zhou, Qi-Sheng; Zhao, Xiao; Liu, Zhao-Yang; Cui, Wei-Zheng; Liu, Qing-Xin


    The development of the nervous system is based on the growth and connection of axons, and axon guidance molecules are the dominant regulators during this course. Robo, as the receptor of axon guidance molecule Slit, plays a key role as a conserved repellent cue for axon guidance during the development of the central nervous system. However, the function of Robo in the silkworm Bombyx mori is unknown. In this study, we cloned two novel robo genes in B. mori (Bmrobo1a and Bmrobo1b). BmRobo1a and BmRobo1b lack an Ig and a FNIII domain in the extracellular region and the CC0 and CC2 motifs in the intracellular region. BmRobo1a and BmRobo1b were colocalized with BmSlit in the neuropil. Knock-down of Bmrobo1a and Bmrobo1b by RNA interference (RNAi) resulted in abnormal development of axons. Our results suggest that BmRobo1a and BmRobo1b have repulsive function in axon guidance, even though their structures are different from Robo1 of other species.

  1. Peripheral neuropathy in the Twitcher mouse involves the activation of axonal caspase 3

    Directory of Open Access Journals (Sweden)

    Ernesto R Bongarzone


    Full Text Available Infantile Krabbe disease results in the accumulation of lipid-raft-associated galactosylsphingosine (psychosine, demyelination, neurodegeneration and premature death. Recently, axonopathy has been depicted as a contributing factor in the progression of neurodegeneration in the Twitcher mouse, a bona fide mouse model of Krabbe disease. Analysis of the temporal-expression profile of MBP (myelin basic protein isoforms showed unexpected increases of the 14, 17 and 18.5 kDa isoforms in the sciatic nerve of 1-week-old Twitcher mice, suggesting an abnormal regulation of the myelination process during early postnatal life in this mutant. Our studies showed an elevated activation of the pro-apoptotic protease caspase 3 in sciatic nerves of 15- and 30-day-old Twitcher mice, in parallel with increasing demyelination. Interestingly, while active caspase 3 was clearly contained in peripheral axons at all ages, we found no evidence of caspase accumulation in the soma of corresponding mutant spinal cord motor neurons. Furthermore, active caspase 3 was found not only in unmyelinated axons, but also in myelinated axons of the mutant sciatic nerve. These results suggest that axonal caspase activation occurs before demyelination and following a dying-back pattern. Finally, we showed that psychosine was sufficient to activate caspase 3 in motor neuronal cells in vitro in the absence of myelinating glia. Taken together, these findings indicate that degenerating mechanisms actively and specifically mediate axonal dysfunction in Krabbe disease and support the idea that psychosine is a pathogenic sphingolipid sufficient to cause axonal defects independently of demyelination.

  2. Peripheral Neuropathy in the Twitcher Mouse Involves the Activation of Axonal Caspase 3

    Directory of Open Access Journals (Sweden)

    Benjamin Smith


    Full Text Available Infantile Krabbe disease results in the accumulation of lipid-raft-associated galactosylsphingosine (psychosine, demyelination, neurodegeneration and premature death. Recently, axonopathy has been depicted as a contributing factor in the progression of neurodegeneration in the Twitcher mouse, a bona fide mouse model of Krabbe disease. Analysis of the temporal-expression profile of MBP (myelin basic protein isoforms showed unexpected increases of the 14, 17 and 18.5 kDa isoforms in the sciatic nerve of 1-week-old Twitcher mice, suggesting an abnormal regulation of the myelination process during early postnatal life in this mutant. Our studies showed an elevated activation of the pro-apoptotic protease caspase 3 in sciatic nerves of 15- and 30-day-old Twitcher mice, in parallel with increasing demyelination. Interestingly, while active caspase 3 was clearly contained in peripheral axons at all ages, we found no evidence of caspase accumulation in the soma of corresponding mutant spinal cord motor neurons. Furthermore, active caspase 3 was found not only in unmyelinated axons, but also in myelinated axons of the mutant sciatic nerve. These results suggest that axonal caspase activation occurs before demyelination and following a dying-back pattern. Finally, we showed that psychosine was sufficient to activate caspase 3 in motor neuronal cells in vitro in the absence of myelinating glia. Taken together, these findings indicate that degenerating mechanisms actively and specifically mediate axonal dysfunction in Krabbe disease and support the idea that psychosine is a pathogenic sphingolipid sufficient to cause axonal defects independently of demyelination.

  3. How Schwann Cells Sort Axons: New Concepts. (United States)

    Feltri, M Laura; Poitelon, Yannick; Previtali, Stefano Carlo


    Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons.

  4. Protein phosphorylation: Localization in regenerating optic axons

    Energy Technology Data Exchange (ETDEWEB)

    Larrivee, D. (Cornell Univ. Medical College, New York, NY (USA))


    A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration. (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of (3H)proline and 32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the (3H)proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the 32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To determine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced (3H)proline labeling of total protein by 88% and 32P labeling by 49%. Among the individual proteins (3H)proline labeling was reduced by 90% or more in 18 cases but 32P labeling was reduced only by 50% or less. (3) When 32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons.

  5. Wnt/planar cell polarity signaling controls the anterior-posterior organization of monoaminergic axons in the brainstem. (United States)

    Fenstermaker, Ali G; Prasad, Asheeta A; Bechara, Ahmad; Adolfs, Youri; Tissir, Fadel; Goffinet, Andre; Zou, Yimin; Pasterkamp, R Jeroen


    Monoaminergic neurons [serotonergic (5-HT) and dopaminergic (mdDA)] in the brainstem project axons along the anterior-posterior axis. Despite their important physiological functions and implication in disease, the molecular mechanisms that dictate the formation of these projections along the anterior-posterior axis remain unknown. Here we reveal a novel requirement for Wnt/planar cell polarity signaling in the anterior-posterior organization of the monoaminergic system. We find that 5-HT and mdDA axons express the core planar cell polarity components Frizzled3, Celsr3, and Vangl2. In addition, monoaminergic projections show anterior-posterior guidance defects in Frizzled3, Celsr3, and Vangl2 mutant mice. The only known ligands for planar cell polarity signaling are Wnt proteins. In culture, Wnt5a attracts 5-HT but repels mdDA axons, and Wnt7b attracts mdDA axons. However, mdDA axons from Frizzled3 mutant mice are unresponsive to Wnt5a and Wnt7b. Both Wnts are expressed in gradients along the anterior-posterior axis, consistent with their role as directional cues. Finally, Wnt5a mutants show transient anterior-posterior guidance defects in mdDA projections. Furthermore, we observe during development that the cell bodies of migrating descending 5-HT neurons eventually reorient along the direction of their axons. In Frizzled3 mutants, many 5-HT and mdDA neuron cell bodies are oriented abnormally along the direction of their aberrant axon projections. Overall, our data suggest that Wnt/planar cell polarity signaling may be a global anterior-posterior guidance mechanism that controls axonal and cellular organization beyond the spinal cord.

  6. Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase.

    Directory of Open Access Journals (Sweden)

    Gerardo A Morfini

    Full Text Available Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS associated with superoxide dismutase 1 (SOD1 mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS.

  7. Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis. (United States)

    Howell, Owain W; Rundle, Jon L; Garg, Anurag; Komada, Masayuki; Brophy, Peter J; Reynolds, Richard


    The complex manifestations of chronic multiple sclerosis (MS)are due in part to widespread axonal abnormalities that affect lesional and nonlesional areas in the central nervous system. We describe an association between microglial activation and axon/oligodendrocyte pathology at nodal and paranodal domains in normal-appearing white matter (NAWM) of MS cases and in experimental autoimmune encephalomyelitis (EAE). The extent of paranodal axoglial (neurofascin-155(+)/Caspr1(+)) disruption correlated with local microglial inflammation and axonal injury (expression of nonphosphorylated neurofilaments) in MS NAWM. These changes were independent of demyelinating lesions and did not correlate with the density of infiltrating lymphocytes. Similar axoglial alterations were seen in the subcortical white matter of Parkinson disease cases and in preclinical EAE, at a time point when there is microglial activation before the infiltration of immune cells. Disruption of the axoglial unit in adjuvant-immunized animals was reversible and coincided with the resolution of microglial inflammation; paranodal damage and microglial inflammation persisted in chronic EAE. Axoglial integrity could be preserved by the administration of minocycline, which inhibited microglial activation, in actively immunized animals. These data indicate that, in MS NAWM, permanent disruption to axoglial domains in an environment of microglial inflammation is an early indicator of axonal injury that likely affects nerve conduction and may contribute to physiologic dysfunction.

  8. Mechanisms of TSC-mediated control of synapse assembly and axon guidance.

    Directory of Open Access Journals (Sweden)

    Sarah Knox

    Full Text Available Tuberous sclerosis complex is a dominant genetic disorder produced by mutations in either of two tumor suppressor genes, TSC1 and TSC2; it is characterized by hamartomatous tumors, and is associated with severe neurological and behavioral disturbances. Mutations in TSC1 or TSC2 deregulate a conserved growth control pathway that includes Ras homolog enriched in brain (Rheb and Target of Rapamycin (TOR. To understand the function of this pathway in neural development, we have examined the contributions of multiple components of this pathway in both neuromuscular junction assembly and photoreceptor axon guidance in Drosophila. Expression of Rheb in the motoneuron, but not the muscle of the larval neuromuscular junction produced synaptic overgrowth and enhanced synaptic function, while reductions in Rheb function compromised synapse development. Synapse growth produced by Rheb is insensitive to rapamycin, an inhibitor of Tor complex 1, and requires wishful thinking, a bone morphogenetic protein receptor critical for functional synapse expansion. In the visual system, loss of Tsc1 in the developing retina disrupted axon guidance independently of cellular growth. Inhibiting Tor complex 1 with rapamycin or eliminating the Tor complex 1 effector, S6 kinase (S6k, did not rescue axon guidance abnormalities of Tsc1 mosaics, while reductions in Tor function suppressed those phenotypes. These findings show that Tsc-mediated control of axon guidance and synapse assembly occurs via growth-independent signaling mechanisms, and suggest that Tor complex 2, a regulator of actin organization, is critical in these aspects of neuronal development.

  9. Antipsychotic drugs alter neuronal development including ALM neuroblast migration and PLM axonal outgrowth in Caenorhabditis elegans. (United States)

    Donohoe, Dallas R; Weeks, Kathrine; Aamodt, Eric J; Dwyer, Donard S


    Antipsychotic drugs are increasingly being prescribed for children and adolescents, and are used in pregnant women without a clear demonstration of safety in these populations. Global effects of these drugs on neurodevelopment (e.g., decreased brain size) have been reported in rats, but detailed knowledge about neuronal effects and mechanisms of action are lacking. Here we report on the evaluation of a comprehensive panel of antipsychotic drugs in a model organism (Caenorhabditis elegans) that is widely used to study neuronal development. Specifically, we examined the effects of the drugs on neuronal migration and axonal outgrowth in mechanosensory neurons visualized with green fluorescent protein expressed from the mec-3 promoter. Clozapine, fluphenazine, and haloperidol produced deficits in the development and migration of ALM neurons and axonal outgrowth in PLM neurons. The defects included failure of neuroblasts to migrate to the proper location, and excessive growth of axons past their normal termination point, together with abnormal morphological features of the processes. Although the antipsychotic drugs are potent antagonists of dopamine and serotonin receptors, the neurodevelopmental deficits were not rescued by co-incubation with serotonin or the dopaminergic agonist, quinpirole. Other antipsychotic drugs, risperidone, aripiprazole, quetiapine, trifluoperazine and olanzapine, also produced modest, but detectable, effects on neuronal development. This is the first report that antipsychotic drugs interfere with neuronal migration and axonal outgrowth in a developing nervous system.

  10. Urine - abnormal color (United States)

    ... Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  11. Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ (United States)

    Zarei, Kasra; Scheetz, Todd E.; Christopher, Mark; Miller, Kathy; Hedberg-Buenz, Adam; Tandon, Anamika; Anderson, Michael G.; Fingert, John H.; Abràmoff, Michael David


    We have developed a publicly available tool, AxonJ, which quantifies the axons in optic nerve sections of rodents stained with paraphenylenediamine (PPD). In this study, we compare AxonJ’s performance to human experts on 100x and 40x images of optic nerve sections obtained from multiple strains of mice, including mice with defects relevant to glaucoma. AxonJ produced reliable axon counts with high sensitivity of 0.959 and high precision of 0.907, high repeatability of 0.95 when compared to a gold-standard of manual assessments and high correlation of 0.882 to the glaucoma damage staging of a previously published dataset. AxonJ allows analyses that are quantitative, consistent, fully-automated, parameter-free, and rapid on whole optic nerve sections at 40x. As a freely available ImageJ plugin that requires no highly specialized equipment to utilize, AxonJ represents a powerful new community resource augmenting studies of the optic nerve using mice.

  12. Neural Progenitor Cells Promote Axonal Growth and Alter Axonal mRNA Localization in Adult Neurons (United States)

    Merianda, Tanuja T.; Jin, Ying


    Abstract The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-restricted progenitors (NRPs) can provide a permissive microenvironment for axon growth. We have used cocultures of adult rat dorsal root ganglion (DRG) neurons together with NPCs, which have shown significant enhancement of axon growth by embryonic rat GRP and GRPs/NRPs, both in coculture conditions and when DRGs are exposed to conditioned medium from the NPC cultures. This growth-promoting effect of NPC-conditioned medium was also seen in injury-conditioned neurons. DRGs cocultured with GRPs/NRPs showed altered expression of regeneration-associated genes at transcriptional and post-transcriptional levels. We found that levels of GAP-43 mRNA increased in DRG cell bodies and axons. However, hepcidin antimicrobial peptide (HAMP) mRNA decreased in the cell bodies of DRGs cocultured with GRPs/NRPs, which is distinct from the increase in cell body HAMP mRNA levels seen in DRGs after injury conditioning. Endogenous GAP-43 and β-actin mRNAs as well as reporter RNAs carrying axonally localizing 3'UTRs of these transcripts showed significantly increased levels in distal axons in the DRGs cocultured with GRPs/NRPs. These results indicate that axon growth promoted by NPCs is associated not only with enhanced transcription of growth-associated genes but also can increase localization of some mRNAs into growing axons. PMID:28197547

  13. Cannabinoid Receptors Modulate Neuronal Morphology and AnkyrinG Density at the Axon Initial Segment (United States)

    Tapia, Mónica; Dominguez, Ana; Zhang, Wei; del Puerto, Ana; Ciorraga, María; Benitez, María José; Guaza, Carmen; Garrido, Juan José


    Neuronal polarization underlies the ability of neurons to integrate and transmit information. This process begins early in development with axon outgrowth, followed by dendritic growth and subsequent maturation. In between these two steps, the axon initial segment (AIS), a subcellular domain crucial for generating action potentials (APs) and maintaining the morphological and functional polarization, starts to develop. However, the cellular/molecular mechanisms and receptors involved in AIS initial development and maturation are mostly unknown. In this study, we have focused on the role of the type-1 cannabinoid receptor (CB1R), a highly abundant G-protein coupled receptor (GPCR) in the nervous system largely involved in different phases of neuronal development and differentiation. Although CB1R activity modulation has been related to changes in axons or dendrites, its possible role as a modulator of AIS development has not been yet explored. Here we analyzed the potential role of CB1R on neuronal morphology and AIS development using pharmacological and RNA interference approaches in cultured hippocampal neurons. CB1R inhibition, at a very early developmental stage, has no effect on axonal growth, yet CB1R activation can promote it. By contrast, subsequent dendritic growth is impaired by CB1R inhibition, which also reduces ankyrinG density at the AIS. Moreover, our data show a significant correlation between early dendritic growth and ankyrinG density. However, CB1R inhibition in later developmental stages after dendrites are formed only reduces ankyrinG accumulation at the AIS. In conclusion, our data suggest that neuronal CB1R basal activity plays a role in initial development of dendrites and indirectly in AIS proteins accumulation. Based on the lack of CB1R expression at the AIS, we hypothesize that CB1R mediated modulation of dendritic arbor size during early development indirectly determines the accumulation of ankyrinG and AIS development. Further studies

  14. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance (United States)

    Tischfield, Max A.; Baris, Hagit N.; Wu, Chen; Rudolph, Guenther; Van Maldergem, Lionel; He, Wei; Chan, Wai-Man; Andrews, Caroline; Demer, Joseph L.; Robertson, Richard L.; Mackey, David A.; Ruddle, Jonathan B.; Bird, Thomas D.; Gottlob, Irene; Pieh, Christina; Traboulsi, Elias I.; Pomeroy, Scott L.; Hunter, David G.; Soul, Janet S.; Newlin, Anna; Sabol, Louise J.; Doherty, Edward J.; de Uzcátegui, Clara E.; de Uzcátegui, Nicolas; Collins, Mary Louise Z.; Sener, Emin C.; Wabbels, Bettina; Hellebrand, Heide; Meitinger, Thomas; de Berardinis, Teresa; Magli, Adriano; Schiavi, Costantino; Pastore-Trossello, Marco; Koc, Feray; Wong, Agnes M.; Levin, Alex V.; Geraghty, Michael T.; Descartes, Maria; Flaherty, Maree; Jamieson, Robyn V.; Møller, H. U.; Meuthen, Ingo; Callen, David F.; Kerwin, Janet; Lindsay, Susan; Meindl, Alfons; Gupta, Mohan L.; Pellman, David; Engle, Elizabeth C.


    We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific β-tubulin isotype III, result in a spectrum of human nervous system disorders we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves, and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate normal TUBB3 is required for axon guidance and maintenance in mammals. PMID:20074521

  15. Arbor Networks获全球DDoS减灾市场领导奖

    Institute of Scientific and Technical Information of China (English)


    2015年12月10日,Arbor Networks宣布,其被Frost&Sullivan连续第二年授予全球DDoS减灾市场领导奖.Frost&Sullivan最近发布了其对分布式拒绝服务(DDoS)减灾市场的年度分析,研究关键市场驱动因素和不断发展的安全威胁,并推荐行业内顶尖DDoS减灾供应商.该报告将2015年全球DDoS减灾市场领导奖授予ArborNetworks.

  16. Gripping during climbing of arboreal snakes may be safe but not economical (United States)

    Byrnes, Greg; Jayne, Bruce C.


    On the steep surfaces that are common in arboreal environments, many types of animals without claws or adhesive structures must use muscular force to generate sufficient normal force to prevent slipping and climb successfully. Unlike many limbed arboreal animals that have discrete gripping regions on the feet, the elongate bodies of snakes allow for considerable modulation of both the size and orientation of the gripping region. We quantified the gripping forces of snakes climbing a vertical cylinder to determine the extent to which their force production favoured economy or safety. Our sample included four boid species and one colubrid. Nearly all of the gripping forces that we observed for each snake exceeded our estimate of the minimum required, and snakes commonly produced more than three times the normal force required to support their body weight. This suggests that a large safety factor to avoid slipping and falling is more important than locomotor economy. PMID:25142200

  17. Myelin-associated glycoprotein and its axonal receptors. (United States)

    Schnaar, Ronald L; Lopez, Pablo H H


    Myelin-associated glycoprotein (MAG) is expressed on the innermost myelin membrane wrap, directly apposed to the axon surface. Although it is not required for myelination, MAG enhances long-term axon-myelin stability, helps to structure nodes of Ranvier, and regulates the axon cytoskeleton. In addition to its role in axon-myelin stabilization, MAG inhibits axon regeneration after injury; MAG and a discrete set of other molecules on residual myelin membranes at injury sites actively signal axons to halt elongation. Both the stabilizing and the axon outgrowth inhibitory effects of MAG are mediated by complementary MAG receptors on the axon surface. Two MAG receptor families have been described, sialoglycans (specifically gangliosides GD1a and GT1b) and Nogo receptors (NgRs). Controversies remain about which receptor(s) mediates which of MAG's biological effects. Here we review the findings and challenges in associating MAG's biological effects with specific receptors.

  18. From Ann Arbor to Sheffield: Around the World in 80 Years. I

    CERN Document Server

    Hoover, William Graham


    Childhood and graduate school at Ann Arbor Michigan prepared Bill for an interesting and rewarding career in physics. Along the way came Carol and many joint discoveries with our many colleagues to whom we both owe this good life. This summary of Bill's early work prior to their marriage and sabbatical in Japan is Part I, prepared for Bill's 80th Birthday celebration at the University of Sheffield in July 2016.

  19. Effects of landscape matrix on population connectivity of an arboreal mammal, Petaurus breviceps


    Malekian, Mansoureh; Cooper, Steven J. B.; Saint, Kathleen M.; Lancaster, Melanie L.; Andrea C Taylor; Carthew, Susan M.


    Abstract Ongoing habitat loss and fragmentation is considered a threat to biodiversity as it can create small, isolated populations that are at increased risk of extinction. Tree‐dependent species are predicted to be highly sensitive to forest and woodland loss and fragmentation, but few studies have tested the influence of different types of landscape matrix on gene flow and population structure of arboreal species. Here, we examine the effects of landscape matrix on population structure of ...


    Directory of Open Access Journals (Sweden)

    Bikramjit Raychaudhury


    Full Text Available Medicinal plants have been used as a source of remedies since ancient times in India. Traditional medicine systems consist of large numbers of plants with medicinal and pharmacological importance and hence represent an invaluable reservoir of new bioactive molecules. Nyctanthes arbor-tristis is one of the well known medicinal plants commonly known as night-flowering jasmine. Different parts of this plant are used in Indian systems of medicine for various pharmacological actions and has been used for its hepatoprotective, antiviral and antifungal qualities and used in the treatment of various diseases such as sciatica, chronic fever, rheumatism, and internal worm infections. In an attempt to develop new indigenous drugs against leishmaniasis, we have screened aqueous leaf extract of Nyctanthes arbor-tristis and tested in vitro to assess its potential. The present study deals with the assessment ofthis plant to establish its antileishmanialactivity and mode of action for a potent chemotherapeutic agent against Leishmania pathogen. Aqueous extracts showed 100% inhibition in growth at a concentration of 6mg/ml. However at a lower concentration of 0.9 – 1.8 mg/ml, promastigote growth was inhibited by 60-80% with a IC50 of 0.6mg/ml. The action of Nyctanthes arbor-tristis as a chemotherapeutic agent is found to be mediated through inhibition of superoxide dismutase and simultaneous release of toxic superoxide radical. We propose that Nyctanthes arbor-tristis may be considered as a prospective candidate to establish a better line of therapeutic process against visceral leishmaniasis. The results of this study contribute to the promotion of traditional medicine products and are preliminary for the isolation of new natural molecules for the treatment of leishmaniasis.

  1. The pathophysiology of axonal transport in alzheimer’s disease


    Vicario Orri, Elena; Opazo, Carlos; Muñoz López, Francisco José, 1964-


    Neurons communicate in the nervous system by carrying out information along the length of their axons to finally transmit it at the synapse. Proper function of axons and axon terminals relies on the transport of proteins, organelles, vesicles, and other elements from the site of synthesis in the cell body. Conversely, neurotrophins secreted from axonal targets and other components at nerve terminals need to travel toward the cell body for clearance. Molecular motors, namely kinesins and dynei...

  2. Modeling molecular mechanisms in the axon (United States)

    de Rooij, R.; Miller, K. E.; Kuhl, E.


    Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena—both in isolation and in interaction—to explore emergent cellular-level features under physiological and pathological conditions.

  3. A Microfluidics Approach to Investigate Axon Guidance (United States)


    coat the substrate with PLL. The cells of one dissociated embryonic spinal cord was re-suspended in 3 µl of freshly-prepared Modified Frog Ringer’s...Surround repulsion of spinal sensory axons in higher vertebrate embryos . Neuron 18, 889-897 (1997). 8. Colamarino, S. & Tessier-Lavigne, M. The

  4. Mechanisms of axon degeneration: from development to disease. (United States)

    Saxena, Smita; Caroni, Pico


    Axon degeneration is an active, tightly controlled and versatile process of axon segment self-destruction. Although not involving cell death, it resembles apoptosis in its logics. It involves three distinct steps: induction of competence in specific neurons, triggering of degeneration at defined axon segments of competent neurons, and rapid fragmentation and removal of the segments. The mechanisms that initiate degeneration are specific to individual settings, but the final pathway of pruning is shared; it involves microtubule disassembly, axon swellings, axon fragmentation, and removal of the remnants by locally recruited phagocytes. The tight regulatory properties of axon degeneration distinguish it from passive loss phenomena, and confer significance to processes that involve it. Axon degeneration has prominent roles in development, upon lesions and in disease. In development, it couples the progressive specification of neurons and circuits to the removal of defined axon branches. Competence might involve transcriptional switches, and local triggering can involve axon guidance molecules and synaptic activity patterns. Lesion-induced Wallerian degeneration is inhibited in the presence of Wld(S) fusion protein in neurons; it involves early local, and later, distal degeneration. It has recently become clear that like in other settings, axon degeneration in disease is a rapid and specific process, which should not be confused with a variety of disease-related pathologies. Elucidating the specific mechanisms that initiate axon degeneration should open up new avenues to investigate principles of circuit assembly and plasticity, to uncover mechanisms of disease progression, and to identify ways of protecting synapses and axons in disease.

  5. Regulation of myelin genes implicated in psychiatric disorders by functional activity in axons

    Directory of Open Access Journals (Sweden)

    Philip R Lee


    Full Text Available Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between cortical regions carrying out higher level cognitive functions. Myelination can be altered by impulse activity in axons and by environmental experience. Psychiatric illness is treated by psychotherapy, behavioral modification, and drugs affecting neurotransmission, raising the possibility that myelinating glia may not only contribute to such disorders, but that activity-dependent effects on myelinating glia could provide one of the cellular mechanisms contributing to the therapeutic effects of these treatments. This review examines evidence showing that genes and gene networks important for myelination can be regulated by functional activity in axons.

  6. Aging-associated changes in motor axon voltage-gated Na(+) channel function in mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez, Susana


    Accumulating myelin abnormalities and conduction slowing occur in peripheral nerves during aging. In mice deficient of myelin protein P0, severe peripheral nervous system myelin damage is associated with ectopic expression of Nav1.8 voltage-gated Na(+) channels on motor axons aggravating...... the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice....... With aging, deviations during threshold electrotonus were attenuated and the resting current-threshold slope and early refractoriness were increased. Modeling indicated that, in addition to changes in passive membrane properties, motor fibers in aged WT mice were depolarized. An increased Nav1.8 isoform...

  7. Prognosis in prolonged coma patients with diffuse axonal injury assessed by somatosensory evoked potential

    Institute of Scientific and Technical Information of China (English)

    Xiujue Zheng; Mantao Chen; Jingqi Li; Fei Cao


    A total of 43 prolonged coma patients with diffuse axonal injury received the somatosensory evoked potential examination one month after injury in the First Affiliated Hospital, School of Medicine, Zhejiang University in China. Somatosensory evoked potentials were graded as normal, abnormal or absent (grades I–III) according to N20 amplitude and central conduction time. The outcome in patients with grade III somatosensory evoked potential was in each case unfavorable. The prognostic accuracy of grade III somatosensory evoked potential for unfavorable and non-awakening outcome was 100% and 80%, respectively. The prognostic accuracy of grade I somatosensory evoked potential for favorable and wakening outcome was 86% and 100%, respectively. These results suggest that somatosensory evoked potential grade is closely correlated with coma severity and degree of recovery. Somatosensory evoked potential is a valuable diagnostic tool to assess prognosis in prolonged coma patients with diffuse axonal injury.

  8. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2 (United States)

    Walker, Lauren J; Summers, Daniel W; Sasaki, Yo; Brace, EJ; Milbrandt, Jeffrey; DiAntonio, Aaron


    Injury-induced (Wallerian) axonal degeneration is regulated via the opposing actions of pro-degenerative factors such as SARM1 and a MAPK signal and pro-survival factors, the most important of which is the NAD+ biosynthetic enzyme NMNAT2 that inhibits activation of the SARM1 pathway. Here we investigate the mechanism by which MAPK signaling facilitates axonal degeneration. We show that MAPK signaling promotes the turnover of the axonal survival factor NMNAT2 in cultured mammalian neurons as well as the Drosophila ortholog dNMNAT in motoneurons. The increased levels of NMNAT2 are required for the axonal protection caused by loss of MAPK signaling. Regulation of NMNAT2 by MAPK signaling does not require SARM1, and so cannot be downstream of SARM1. Hence, pro-degenerative MAPK signaling functions upstream of SARM1 by limiting the levels of the essential axonal survival factor NMNAT2 to promote injury-dependent SARM1 activation. These findings are consistent with a linear molecular pathway for the axonal degeneration program. DOI: PMID:28095293

  9. Axonal diameter and density estimated with 7-Tesla hybrid diffusion imaging in transgenic Alzheimer rats (United States)

    Daianu, Madelaine; Jacobs, Russell E.; Town, Terrence; Thompson, Paul M.


    Diffusion-weighted MR imaging (DWI) is a powerful tool to study brain tissue microstructure. DWI is sensitive to subtle changes in the white matter (WM), and can provide insight into abnormal brain changes in diseases such as Alzheimer's disease (AD). In this study, we used 7-Tesla hybrid diffusion imaging (HYDI) to scan 3 transgenic rats (line TgF344-AD; that model the full clinico-pathological spectrum of the human disease) ex vivo at 10, 15 and 24 months. We acquired 300 DWI volumes across 5 q-sampling shells (b=1000, 3000, 4000, 8000, 12000 s/mm2). From the top three b-value shells with highest signal-to-noise ratios, we reconstructed markers of WM disease, including indices of axon density and diameter in the corpus callosum (CC) - directly quantifying processes that occur in AD. As expected, apparent anisotropy progressively decreased with age; there were also decreases in the intra- and extra-axonal MR signal along axons. Axonal diameters were larger in segments of the CC (splenium and body, but not genu), possibly indicating neuritic dystrophy - characterized by enlarged axons and dendrites as previously observed at the ultrastructural level (see Cohen et al., J. Neurosci. 2013). This was further supported by increases in MR signals trapped in glial cells, CSF and possibly other small compartments in WM structures. Finally, tractography detected fewer fibers in the CC at 10 versus 24 months of age. These novel findings offer great potential to provide technical and scientific insight into the biology of brain disease.

  10. AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage

    Directory of Open Access Journals (Sweden)

    Yang Li


    Full Text Available Published methods for imaging and quantitatively analyzing morphological changes in neuronal axons have serious limitations because of their small sample sizes, and their time-consuming and nonobjective nature. Here we present an improved microfluidic chamber design suitable for fast and high-throughput imaging of neuronal axons. We developed the AxonQuant algorithm, which is suitable for automatic processing of axonal imaging data. This microfluidic chamber-coupled algorithm allows calculation of an ‘axonal continuity index' that quantitatively measures axonal health status in a manner independent of neuronal or axonal density. This method allows quantitative analysis of axonal morphology in an automatic and nonbiased manner. Our method will facilitate large-scale high-throughput screening for genes or therapeutic compounds for neurodegenerative diseases involving axonal damage. When combined with imaging technologies utilizing different gene markers, this method will provide new insights into the mechanistic basis for axon degeneration. Our microfluidic chamber culture-coupled AxonQuant algorithm will be widely useful for studying axonal biology and neurodegenerative disorders. © 2014 S. Karger AG, Basel

  11. Neuronal development and axon growth are altered by glyphosate through a WNT non-canonical signaling pathway. (United States)

    Coullery, Romina P; Ferrari, María E; Rosso, Silvana B


    The growth and morphological differentiation of neurons are critical events in the establishment of proper neuronal connectivity and functioning. The developing nervous system is highly susceptible to damage caused by exposure to environmental contaminants. Glyphosate-containing herbicides are the most used agrochemicals in the world, particularly on genetically modified plants. Previous studies have demonstrated that glyphosate induces neurotoxicity in mammals. Therefore, its action mechanism on the nervous system needs to be determined. In this study, we report about impaired neuronal development caused by glyphosate exposure. Particularly, we observed that the initial axonal differentiation and growth of cultured neurons is affected by glyphosate since most treated cells remained undifferentiated after 1 day in culture. Although they polarized at 2 days in vitro, they elicited shorter and unbranched axons and they also developed less complex dendritic arbors compared to controls. To go further, we attempted to identify the cellular mechanism by which glyphosate affected neuronal morphology. Biochemical approaches revealed that glyphosate led to a decrease in Wnt5a level, a key factor for the initial neurite development and maturation, as well as inducing a down-regulation of CaMKII activity. This data suggests that the morphological defects would likely be a consequence of the decrease in both Wnt5a expression and CaMKII activity induced by glyphosate. Additionally, these changes might be reflected in a subsequent neuronal dysfunction. Therefore, our findings highlight the importance of establishing rigorous control on the use of glyphosate-based herbicides in order to protect mammals' health.

  12. Nerve excitability changes related to axonal degeneration in amyotrophic lateral sclerosis: Insights from the transgenic SOD1(G127X) mouse model

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Pinchenko, Volodymyr


    Motor nerve excitability studies by "threshold tracking" in amyotrophic lateral sclerosis (ALS) revealed heterogeneous abnormalities in motor axon membrane function possibly depending on disease stage. It remains unclear to which extent the excitability deviations reflect a pathogenic mechanism...... of the input conductance. These abnormalities progressed rapidly over a few days and were associated with morphological evidence of ongoing axonal degeneration. Presymptomatic mice with unaltered motor performance at rotor-rod measurement also had an increase in refractoriness at the expense...... of the superexcitability during the recovery cycle. This was, however, associated with smaller than normal deviations during threshold electrotonus, and a steeper resting current-threshold slope indicating slight axonal depolarization in agreement with motoneuronal hyperexcitability indicated by enhanced F-waves. Our data...

  13. Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI. (United States)

    Magnoni, Sandra; Mac Donald, Christine L; Esparza, Thomas J; Conte, Valeria; Sorrell, James; Macrì, Mario; Bertani, Giulio; Biffi, Riccardo; Costa, Antonella; Sammons, Brian; Snyder, Abraham Z; Shimony, Joshua S; Triulzi, Fabio; Stocchetti, Nino; Brody, David L


    Axonal injury is a major contributor to adverse outcomes following brain trauma. However, the extent of axonal injury cannot currently be assessed reliably in living humans. Here, we used two experimental methods with distinct noise sources and limitations in the same cohort of 15 patients with severe traumatic brain injury to assess axonal injury. One hundred kilodalton cut-off microdialysis catheters were implanted at a median time of 17 h (13-29 h) after injury in normal appearing (on computed tomography scan) frontal white matter in all patients, and samples were collected for at least 72 h. Multiple analytes, such as the metabolic markers glucose, lactate, pyruvate, glutamate and tau and amyloid-β proteins, were measured every 1-2 h in the microdialysis samples. Diffusion tensor magnetic resonance imaging scans at 3 T were performed 2-9 weeks after injury in 11 patients. Stability of diffusion tensor imaging findings was verified by repeat scans 1-3 years later in seven patients. An additional four patients were scanned only at 1-3 years after injury. Imaging abnormalities were assessed based on comparisons with five healthy control subjects for each patient, matched by age and sex (32 controls in total). No safety concerns arose during either microdialysis or scanning. We found that acute microdialysis measurements of the axonal cytoskeletal protein tau in the brain extracellular space correlated well with diffusion tensor magnetic resonance imaging-based measurements of reduced brain white matter integrity in the 1-cm radius white matter-masked region near the microdialysis catheter insertion sites. Specifically, we found a significant inverse correlation between microdialysis measured levels of tau 13-36 h after injury and anisotropy reductions in comparison with healthy controls (Spearman's r = -0.64, P = 0.006). Anisotropy reductions near microdialysis catheter insertion sites were highly correlated with reductions in multiple additional white matter

  14. Motor and dorsal root ganglion axons serve as choice points for the ipsilateral turning of dI3 axons. (United States)

    Avraham, Oshri; Hadas, Yoav; Vald, Lilach; Hong, Seulgi; Song, Mi-Ryoung; Klar, Avihu


    The axons of the spinal intersegmental interneurons are projected longitudinally along various funiculi arrayed along the dorsal-ventral axis of the spinal cord. The roof plate and the floor plate have a profound role in patterning their initial axonal trajectory. However, other positional cues may guide the final architecture of interneuron tracks in the spinal cord. To gain more insight into the organization of specific axonal tracks in the spinal cord, we focused on the trajectory pattern of a genetically defined neuronal population, dI3 neurons, in the chick spinal cord. Exploitation of newly characterized enhancer elements allowed specific labeling of dI3 neurons and axons. dI3 axons are projected ipsilaterally along two longitudinal fascicules at the ventral lateral funiculus (VLF) and the dorsal funiculus (DF). dI3 axons change their trajectory plane from the transverse to the longitudinal axis at two novel checkpoints. The axons that elongate at the DF turn at the dorsal root entry zone, along the axons of the dorsal root ganglion (DRG) neurons, and the axons that elongate at the VLF turn along the axons of motor neurons. Loss and gain of function of the Lim-HD protein Isl1 demonstrate that Isl1 is not required for dI3 cell fate. However, Isl1 is sufficient to impose ipsilateral turning along the motor axons when expressed ectopically in the commissural dI1 neurons. The axonal patterning of dI3 neurons, revealed in this study, highlights the role of established axonal cues-the DRG and motor axons-as intermediate guidepost cues for dI3 axons.

  15. Axon Membrane Skeleton Structure is Optimized for Coordinated Sodium Propagation

    CERN Document Server

    Zhang, Yihao; Li, He; Tzingounis, Anastasios V; Lykotrafitis, George


    Axons transmit action potentials with high fidelity and minimal jitter. This unique capability is likely the result of the spatiotemporal arrangement of sodium channels along the axon. Super-resolution microscopy recently revealed that the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under entropic tension. Sodium channels also exhibit a periodic distribution pattern, as they bind to ankyrin G, which associates with spectrin. Here, we elucidate the relationship between the axon membrane skeleton structure and the function of the axon. By combining cytoskeletal dynamics and continuum diffusion modeling, we show that spectrin filaments under tension minimize the thermal fluctuations of sodium channels and prevent overlap of neighboring channel trajectories. Importantly, this axon skeletal arrangement allows for a highly reproducible band-like activation of sodium channels leading to coordinated sodium propagation along the axon.

  16. Schwann cells-axon interaction in myelination. (United States)

    Taveggia, Carla


    The remarkable interaction between glial cells and axons is crucial for nervous system development and homeostasis. Alterations in this continuous communication can cause severe pathologies that can compromise the integrity of the nervous system. The most dramatic consequence of this interaction is the generation of the myelin sheath, made by myelinating glial cells: Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. In this review I will focus on signals coming from axons in the first part and then on those from Schwann cells that promote the formation and the maintenance of peripheral myelin. I will discuss their inter-relationship together with seminal and important advances recently made.

  17. Multifunctional Silk Nerve Guides for Axon Outgrowth (United States)

    Tupaj, Marie C.

    Peripheral nerve regeneration is a critical issue as 2.8% of trauma patients present with this type of injury, estimating a total of 200,000 nerve repair procedures yearly in the United States. While the peripheral nervous system exhibits slow regeneration, at a rate of 0.5 mm -- 9 mm/day following trauma, this regenerative ability is only possible under certain conditions. Clinical repairs have changed slightly in the last 30 years and standard methods of treatment include suturing damaged nerve ends, allografting, and autografting, with the autograft the gold standard of these approaches. Unfortunately, the use of autografts requires a second surgery and there is a shortage of nerves available for grafting. Allografts are a second option however allografts have lower success rates and are accompanied by the need of immunosuppressant drugs. Recently there has been a focus on developing nerve guides as an "off the shelf" approach. Although some natural and synthetic guidance channels have been approved by the FDA, these nerve guides are unfunctionalized and repair only short gaps, less than 3 cm in length. The goal of this project was to identify strategies for functionalizing peripheral nerve conduits for the outgrowth of neuron axons in vitro . To accomplish this, two strategies (bioelectrical and biophysical) were indentified for increasing axon outgrowth and promoting axon guidance. Bioelectrical strategies exploited electrical stimulation for increasing neurite outgrowth. Biophysical strategies tested a range of surface topographies for axon guidance. Novel methods were developed for integrating electrical and biophysical strategies into silk films in 2D. Finally, a functionalized nerve conduit system was developed that integrated all strategies for the purpose of attaching, elongating, and guiding nervous tissue in vitro. Future directions of this work include silk conduit translation into a rat sciatic nerve model in vivo for the purpose of repairing long

  18. Interspecies variation in axon-myelin relationships. (United States)

    Fraher, J P; O'Sullivan, A W


    The primary objective of this paper was to determine the extent and nature of interspecies differences in axon calibre and myelin sheath thickness and in the various relationships between these. Morphometric analysis of the axon perimeter-myelin sheath thickness relationship was performed on an equivalent nerve fibre population in a mammal, the rat, a bird, the chicken, an amphibian, the frog, a bony fish, the trout, and a cartilaginous fish, the dogfish. The abducent nerve was studied. It is especially suitable for this purpose because its fibres are closely similar in type and in peripheral distribution across the species studied. The relationship differed substantially between species. Differences were present in its setting, as described by the positions of the scatterplots, in the g ratio and in the regression and correlation data relating the parameters. Both parameters were markedly larger in the fish species than in all of the others. In addition, in rat, chicken, frog and trout, where large and small fibre classes could be differentiated clearly, the setting of the relationship between the two parameters was different for the two classes. In the main, variation in each of the parameters was greater between than within species. The larger fibres in the fish species were closely similar in axon perimeter and sheath thickness despite their long evolutionary separation. From this study and from others in the series, it may be concluded that there is no fixed or constant relationship between axon calibre and the thickness of the surrounding myelin sheath. Each nerve tends to have its own particular relationship and this differs between species.

  19. Hereditary urea cycle abnormality (United States)

    ... vitro so the specific genetic cause is known. Teamwork between parents, the affected child, and doctors can help prevent severe illness. Alternative Names Abnormality of the urea cycle - hereditary; Urea cycle - hereditary abnormality Images Male urinary system Urea cycle References Lichter-Konecki ...

  20. Retinoic acid signaling in axonal regeneration

    Directory of Open Access Journals (Sweden)

    Radhika ePuttagunta


    Full Text Available Following an acute central nervous system injury, axonal regeneration and functional recovery are extremely limited. This is due to an extrinsic inhibitory growth environment and the lack of intrinsic growth competence. Retinoic acid (RA signaling, essential in developmental dorsoventral patterning and specification of spinal motor neurons, has been shown through its receptor, the transcription factor RA receptor β2 (RARß2, to induce axonal regeneration following spinal cord injury (SCI. Recently, it has been shown that in dorsal root ganglia neurons, cAMP levels were greatly increased by lentiviral RARβ2 expression and contributed to neurite outgrowth. Moreover, RARβ agonists, in cerebellar granule neurons and in the brain in vivo, induced phosphoinositide 3-kinase dependent phosphorylation of AKT that was involved in RARβ-dependent neurite outgrowth. More recently, RA-RARß pathways were shown to directly transcriptionally repress a member of the inhibitory Nogo receptor complex, Lingo-1, under an axonal growth inhibitory environment in vitro as well as following spinal injury in vivo. This perspective focuses on these newly discovered molecular mechanisms and future directions in the field.

  1. Synaptic Democracy and Vesicular Transport in Axons (United States)

    Bressloff, Paul C.; Levien, Ethan


    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  2. Where does slow axonal transport go? (United States)

    Terada, Sumio


    Axonal transport is the specialized and well-developed intracellular transport system for regulated and/or long-distance transport based on generalized cellular machineries. Among them, slow axonal transport conveys cytoplasmic proteins. The motor molecule, the nature of transporting complex and the transport regulation mechanism for slow transport are still unclarified. There has been a dispute regarding the nature of transporting complex of cytoskeletal proteins, polymer-sliding hypothesis versus subunit-transport theory. Recent data supporting the hypothesis of polymer sliding in cultured neurons only reconfirm the previously reported structure and this inference suffers from the lack of ultrastructural evidence and the direct relevance to the physiological slow transport phenomenon in vivo. Observation of the moving cytoskeletal proteins in vivo using transgenic mice or squid giant axons revealed that subunits do move in a microtubule-dependent manner, strongly indicating the involvement of microtubule-based motor kinesin. If the slow transport rate reflects the intermittent fast transport dependent on kinesin motor, we have to investigate the molecular constituents of the transporting complex in more detail and evaluate why the motor and cargo interaction is so unstable. This kind of weak and fluctuating interaction between various molecular pairs could not be detected by conventional techniques, thus necessitating the establishment of a new experimental system before approaching the molecular regulation problem.

  3. Shh goes multidirectional in axon guidance

    Institute of Scientific and Technical Information of China (English)

    Paola Bovolenta; Luisa Sanchez-Arrones


    Shh and Wnts,secreted by the floor and roof plate of the spinal cord,direct longitudinal growth of the axons from the adjacent ventral funiculus and cortico-spinal tract.Whether these midline cues influencethe directionality of axons elongating in more lateral positions of the spinal cord is unexplored.Song and colleagues investigate this possibility and demonstrate that the location of descending raphe-spinal tract in the ventrolateral spinal cord is dictated by the simultaneous repellent activity of Shh gradients in both the anteriorto-posterior (A-P) and medial-tolateral (M-L) axis. The spinal cord is the main pathway for exchange of information between the brain and the rest of the body.Sensory information collected in the body periphery is conveyed to the brain by axonal tracts that ascend along the spinal cord whereas motor information travels from the brain to the periphery in descending tracts.Precise spatial organization of these fiber tracts is thus essential for animal behavior and survival.

  4. Axon-glial relations during regeneration of axons in the adult rat anterior medullary velum. (United States)

    Berry, M; Hunter, A S; Duncan, A; Lordan, J; Kirvell, S; Tsang, W L; Butt, A M


    The anterior medullary velum (AMV) of adult Wistar rats was lesioned in the midsagittal plane, transecting all decussating axons including those of the central projection of the IVth nerve. At selected times up to 200 days after transection, the degenerative and regenerative responses of axons and glia were analyzed using transmission and scanning electron microscopy and immunohistochemistry. In particular, both the capacity of oligodendrocytes to remyelinate regenerated fibers and the stability of the CNS/PNS junctional zone of the IVth nerve rootlet were documented. Transected central AMV axons exhibited four patterns of fiber regeneration in which fibers grew: rostrocaudally in the reactive paralesion neuropil (Group 1); randomly within the AMV (Group 2); into the ipsilateral IVth nerve rootlet, after turning at the lesion edge and growing recurrently through the old degenerated contralateral central trochlear nerve trajectory (Group 3); and ectopically through paralesion tears in the ependyma onto the surface of the IVth ventricle (Group 4). Group 1-3 axons regenerated unperturbed through degenerating central myelin, reactive astrocytes, oligodendrocytes, microglia, and large accumulations of hematogenous macrophages. Only Group 3 axons survived long term in significant numbers, and all became myelinated by oligodendrocytes, ultimately establishing thin sheaths with relatively normal nodal gaps and intersegmental myelin sheath lengths. Schwann cells at the CNS/PNS junction of the IVth nerve rootlet did not invade the CNS, but astrocyte processes grew across the junction into the PNS portion of the IVth nerve. The basal lamina of the junctional glia limitans remained stable throughout the experimental period.

  5. Genetic analyses of roundabout (ROBO) axon guidance receptors in autism. (United States)

    Anitha, A; Nakamura, Kazuhiko; Yamada, Kazuo; Suda, Shiro; Thanseem, Ismail; Tsujii, Masatsugu; Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Miyachi, Taishi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Kawai, Masayoshi; Sekine, Yoshimoto; Tsuchiya, Kenji; Sugihara, Gen-Ichi; Ouchi, Yasuomi; Sugiyama, Toshiro; Koizumi, Keita; Higashida, Haruhiro; Takei, Nori; Yoshikawa, Takeo; Mori, Norio


    Autism is a pervasive developmental disorder diagnosed in early childhood. Abnormalities of serotonergic neurotransmission have been reported in autism. Serotonin transporter (SERT) modulates serotonin levels, and is a major therapeutic target in autism. Factors that regulate SERT expression might be implicated in the pathophysiology of autism. One candidate SERT regulatory protein is the roundabout axon guidance molecule, ROBO. SerT expression in Drosophila is regulated by robo; it plays a vital role in mammalian neurodevelopment also. Here, we examined the associations of ROBO3 and ROBO4 with autism, in a trio association study using DNA from 252 families recruited to AGRE. Four SNPs of ROBO3 (rs3923890, P = 0.023; rs7925879, P = 0.017; rs4606490, P = 0.033; and rs3802905, P = 0.049) and a single SNP of ROBO4 (rs6590109, P = 0.009) showed associations with autism; the A/A genotype of rs3923890 showed lower ADI-R_A scores, which reflect social interaction. Significant haplotype associations were also observed for ROBO3 and ROBO4. We further compared the mRNA expressions of ROBO1, ROBO2, ROBO3, and ROBO4 in the lymphocytes of 19 drug-naïve autistic patients and 20 age- and sex-matched controls. Expressions of ROBO1 (P = 0.018) and ROBO2 (P = 0.023) were significantly reduced in the autistic group; the possibility of using the altered expressions of ROBO as peripheral markers for autism, may be explored. In conclusion, we suggest a possible role of ROBO in the pathogenesis of autism. Abnormalities of ROBO may lead to autism either by interfering with serotonergic system, or by disrupting neurodevelopment. To the best of our knowledge, this is the first report relating ROBO with autism.

  6. Assessing arboreal adaptations of bird antecedents: testing the ecological setting of the origin of the avian flight stroke.

    Directory of Open Access Journals (Sweden)

    T Alexander Dececchi

    Full Text Available The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding.

  7. Interactions with Astroglia Influence the Shape of the Developing Dendritic Arbor and Restrict Dendrite Growth Independent of Promoting Synaptic Contacts (United States)

    Farley, Jennifer R.; Sterritt, Jeffrey R.; Crane, Andrés B.; Wallace, Christopher S.


    Astroglia play key roles in the development of neurons, ranging from regulating neuron survival to promoting synapse formation, yet basic questions remain about whether astrocytes might be involved in forming the dendritic arbor. Here, we used cultured hippocampal neurons as a simple in vitro model that allowed dendritic growth and geometry to be analyzed quantitatively under conditions where the extent of interactions between neurons and astrocytes varied. When astroglia were proximal to neurons, dendrites and dendritic filopodia oriented toward them, but the general presence of astroglia significantly reduced overall dendrite growth. Further, dendritic arbors in partial physical contact with astroglia developed a pronounced pattern of asymmetrical growth, because the dendrites in direct contact were significantly smaller than the portion of the arbor not in contact. Notably, thrombospondin, the astroglial factor shown previously to promote synapse formation, did not inhibit dendritic growth. Thus, while astroglia promoted the formation of presynaptic contacts onto dendrites, dendritic growth was constrained locally within a developing arbor at sites where dendrites contacted astroglia. Taken together, these observations reveal influences on spatial orientation of growth as well as influences on morphogenesis of the dendritic arbor that have not been previously identified. PMID:28081563

  8. Aging-associated changes in motor axon voltage-gated Na(+) channel function in mice. (United States)

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez, Susana; Klein, Dennis; Martini, Rudolf; Krarup, Christian


    Accumulating myelin abnormalities and conduction slowing occur in peripheral nerves during aging. In mice deficient of myelin protein P0, severe peripheral nervous system myelin damage is associated with ectopic expression of Nav1.8 voltage-gated Na(+) channels on motor axons aggravating the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice. With aging, deviations during threshold electrotonus were attenuated and the resting current-threshold slope and early refractoriness were increased. Modeling indicated that, in addition to changes in passive membrane properties, motor fibers in aged WT mice were depolarized. An increased Nav1.8 isoform expression was found by immunohistochemistry. The depolarizing excitability features were absent in Nav1.8 null mice, and they were counteracted in WT mice by a Nav1.8 blocker. Our data suggest that alteration in voltage-gated Na(+) channel isoform expression contributes to changes in motor axon function during aging.

  9. Dynamics of axon fasciculation in the presence of neuronal turnover

    CERN Document Server

    Chaudhuri, Debasish; Mohanty, P K; Zapotocky, Martin


    We formulate and characterize a model aiming to describe the formation of fascicles of axons mediated by contact axon-axon interactions. The growing axons are represented as interacting directed random walks in two spatial dimensions. To mimic axonal turnover in the mammalian olfactory system, the random walkers are injected and removed at specified rates. In the dynamical steady state, the position-dependent distribution of fascicle sizes obeys a scaling law. We identify several distinct time scales that emerge from the dynamics, are sensitive functions of the microscopic parameters of the model, and can exceed the average axonal lifetime by orders of magnitude. We discuss our findings in terms of an analytically tractable, effective model of fascicle dynamics.

  10. Axonal localization of Ca2+-dependent activator protein for secretion 2 is critical for subcellular locality of brain-derived neurotrophic factor and neurotrophin-3 release affecting proper development of postnatal mouse cerebellum.

    Directory of Open Access Journals (Sweden)

    Tetsushi Sadakata

    Full Text Available Ca2+-dependent activator protein for secretion 2 (CAPS2 is a protein that is essential for enhanced release of brain-derived neurotrophic factor (BDNF and neurotrophin-3 (NT-3 from cerebellar granule cells. We previously identified dex3, a rare alternative splice variant of CAPS2, which is overrepresented in patients with autism and is missing an exon 3 critical for axonal localization. We recently reported that a mouse model CAPS2Δex3/Δex3 expressing dex3 showed autistic-like behavioral phenotypes including impaired social interaction and cognition and increased anxiety in an unfamiliar environment. Here, we verified impairment in axonal, but not somato-dendritic, localization of dex3 protein in cerebellar granule cells and demonstrated cellular and physiological phenotypes in postnatal cerebellum of CAPS2Δex3/Δex3 mice. Interestingly, both BDNF and NT-3 were markedly reduced in axons of cerebellar granule cells, resulting in a significant decrease in their release. As a result, dex3 mice showed developmental deficits in dendritic arborization of Purkinje cells, vermian lobulation and fissurization, and granule cell precursor proliferation. Paired-pulse facilitation at parallel fiber-Purkinje cell synapses was also impaired. Together, our results indicate that CAPS2 plays an important role in subcellular locality (axonal vs. somato-dendritic of enhanced BDNF and NT-3 release, which is indispensable for proper development of postnatal cerebellum.

  11. Muscarinic regulation of Kenyon cell dendritic arborizations in adult worker honey bees. (United States)

    Dobrin, Scott E; Herlihy, J Daniel; Robinson, Gene E; Fahrbach, Susan E


    The experience of foraging under natural conditions increases the volume of mushroom body neuropil in worker honey bees. A comparable increase in neuropil volume results from treatment of worker honey bees with pilocarpine, an agonist for muscarinic-type cholinergic receptors. A component of the neuropil growth induced by foraging experience is growth of dendrites in the collar region of the calyces. We show here, via analysis of Golgi-impregnated collar Kenyon cells with wedge arborizations, that significant increases in standard measures of dendritic complexity were also found in worker honey bees treated with pilocarpine. This result suggests that signaling via muscarinic-type receptors promotes the increase in Kenyon cell dendritic complexity associated with foraging. Treatment of worker honey bees with scopolamine, a muscarinic inhibitor, inhibited some aspects of dendritic growth. Spine density on the Kenyon cell dendrites varied with sampling location, with the distal portion of the dendritic field having greater total spine density than either the proximal or medial section. This observation may be functionally significant because of the stratified organization of projections from visual centers to the dendritic arborizations of the collar Kenyon cells. Pilocarpine treatment had no effect on the distribution of spines on dendrites of the collar Kenyon cells.


    Directory of Open Access Journals (Sweden)

    Sunggu eYang


    Full Text Available The process by which synaptic inputs separated in time and space are integrated by the dendritic arbor to produce a sequence of action potentials is among the most fundamental signal transformations that takes place within the central nervous system. Some aspects of this complex process, such as integration at the level of individual dendritic branches, have been extensively studied. But other aspects, such as how inputs from multiple branches are combined, and the kinetics of that integration have not been systematically examined. Using a 3D digital holographic photolysis technique to overcome the challenges posed by the complexities of the 3D anatomy of the dendritic arbor of CA1 pyramidal neurons for conventional photolysis, we show that integration on a single dendrite is fundamentally different from that on multiple dendrites. Multibranch integration occurring at oblique and basal dendrites allows somatic action potential firing of the cell to faithfully follow the driving stimuli over a significantly wider frequency range than what is possible with single branch integration. However, multibranch integration requires greater input strength to drive the somatic action potentials. This tradeoff between sensitivity and kinetics may explain the puzzling report of the predominance of multibranch, rather than single branch, integration from in vivo recordings during presentation of visual stimuli.

  13. Watering holes: The use of arboreal sources of drinking water by Old World monkeys and apes. (United States)

    Sharma, Narayan; Huffman, Michael A; Gupta, Shreejata; Nautiyal, Himani; Mendonça, Renata; Morino, Luca; Sinha, Anindya


    Water is one of the most important components of an animal's diet, as it is essential for life. Primates, as do most animals, procure water directly from standing or free-flowing sources such as pools, ponds and rivers, or indirectly by the ingestion of certain plant parts. The latter is frequently described as the main source of water for predominantly arboreal species. However, in addition to these, many species are known to drink water accumulated in tree-holes. This has been commonly observed in several arboreal New World primate species, but rarely reported systematically from Old World primates. Here, we report observations of this behaviour from eight great ape and Old World monkey species, namely chimpanzee, orangutan, siamang, western hoolock gibbon, northern pig-tailed macaque, bonnet macaque, rhesus macaque and the central Himalayan langur. We hypothesise three possible reasons why these primates drink water from tree-holes: (1) coping with seasonal or habitat-specific water shortages, (2) predator/human conflict avoidance, and (3) potential medicinal benefits. We also suggest some alternative hypotheses that should be tested in future studies. This behaviour is likely to be more prevalent than currently thought, and may have significant, previously unknown, influences on primate survival and health, warranting further detailed studies.

  14. The ecology and feeding habits of the arboreal trap-jawed ant Daceton armigerum.

    Directory of Open Access Journals (Sweden)

    Alain Dejean

    Full Text Available Here we show that Daceton armigerum, an arboreal myrmicine ant whose workers are equipped with hypertrophied trap-jaw mandibles, is characterized by a set of unexpected biological traits including colony size, aggressiveness, trophobiosis and hunting behavior. The size of one colony has been evaluated at ca. 952,000 individuals. Intra- and interspecific aggressiveness were tested and an equiprobable null model used to show how D. armigerum colonies react vis-à-vis other arboreal ant species with large colonies; it happens that D. armigerum can share trees with certain of these species. As they hunt by sight, workers occupy their hunting areas only during the daytime, but stay on chemical trails between nests at night so that the center of their home range is occupied 24 hours a day. Workers tend different Hemiptera taxa (i.e., Coccidae, Pseudococcidae, Membracidae and Aethalionidae. Through group-hunting, short-range recruitment and spread-eagling prey, workers can capture a wide range of prey (up to 94.12 times the mean weight of foraging workers.

  15. Unc-51/ATG1 controls axonal and dendritic development via kinesin-mediated vesicle transport in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Hiroaki Mochizuki

    Full Text Available BACKGROUND: Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II, an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM and No distributive disjunction (Nod, remains unaltered. Genetic analyses of kinesin light chain (Klc and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations. CONCLUSIONS/SIGNIFICANCE: Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules

  16. "Jeopardy" in Abnormal Psychology. (United States)

    Keutzer, Carolin S.


    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  17. Chromosomal Abnormalities in ADHD

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap


    Full Text Available The prevalence of fragile X syndrome, velocardiofacial syndrome (VCFS, and other cytogenetic abnormalities among 100 children (64 boys with combined type ADHD and normal intelligence was assessed at the NIMH and Georgetown University Medical Center.

  18. Abnormal menstrual periods (image) (United States)

    ... may have a variety of causes, such as endometrial hyperplasia, endometrial polyps, uterine fibroids, and abnormal thyroid or ... the endometrium becomes unusually thick it is called endometrial ... Hyperplasia may cause profuse or extended menstrual bleeding.

  19. Chromosomal abnormalities and autism

    Directory of Open Access Journals (Sweden)

    Farida El-Baz


    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  20. Persistent abnormalities of membrane excitability in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian


    The purpose of our study was to assess by threshold tracking internodal and nodal membrane excitability during the maturation process after tibial nerve crush in cat. Various excitability indices (EI) were computed non-invasively by comparing the threshold of a submaximal compound motor potential...

  1. Akt Regulates Axon Wrapping and Myelin Sheath Thickness in the PNS (United States)

    Baloui, Hasna; Meng, Xiaosong; Zhang, Yanqing; Deinhardt, Katrin; Dupree, Jeff L.; Einheber, Steven; Chrast, Roman


    The signaling pathways that regulate myelination in the PNS remain poorly understood. Phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, activated in Schwann cells by neuregulin and the extracellular matrix, has an essential role in the early events of myelination. Akt/PKB, a key effector of phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, was previously implicated in CNS, but not PNS myelination. Here we demonstrate that Akt plays a crucial role in axon ensheathment and in the regulation of myelin sheath thickness in the PNS. Pharmacological inhibition of Akt in DRG neuron-Schwann cell cocultures dramatically decreased MBP and P0 levels and myelin sheath formation without affecting expression of Krox20/Egr2, a key transcriptional regulator of myelination. Conversely, expression of an activated form of Akt in purified Schwann cells increased expression of myelin proteins, but not Krox20/Egr2, and the levels of activated Rac1. Transgenic mice expressing a membrane-targeted, activated form of Akt under control of the 2′,3′-cyclic nucleotide 3′-phosphodiesterase promoter, exhibited thicker PNS and CNS myelin sheaths, and PNS myelin abnormalities, such as tomacula and myelin infoldings/outfoldings, centered around the paranodes and Schmidt Lanterman incisures. These effects were corrected by rapamycin treatment in vivo. Importantly, Akt activity in the transgenic mice did not induce myelination of nonmyelinating Schwann cells in the sympathetic trunk or Remak fibers of the dorsal roots, although, in those structures, they wrapped membranes redundantly around axons. Together, our data indicate that Akt is crucial for PNS myelination driving axonal wrapping by unmyelinated and myelinated Schwann cells and enhancing myelin protein synthesis in myelinating Schwann cells. SIGNIFICANCE STATEMENT Although the role of the key serine/threonine kinase Akt in promoting CNS myelination has been demonstrated, its role in the PNS has not been established and remains

  2. Chlorpyrifos-Oxon Disrupts Zebrafish Axonal Growth and Motor Behavior


    Yang, Dongren; Lauridsen, Holly; Buels, Kalmia; Chi, Lai-Har; La Du, Jane; Bruun, Donald A.; Olson, James R.; Tanguay, Robert L.; Lein, Pamela J.


    Axonal morphology is a critical determinant of neuronal connectivity, and perturbation of the rate or extent of axonal growth during development has been linked to neurobehavioral deficits in animal models and humans. We previously demonstrated that the organophosphorus pesticide (OP) chlorpyrifos (CPF) inhibits axonal growth in cultured neurons. In this study, we used a zebrafish model to determine whether CPF, its oxon metabolite (CPFO), or the excreted metabolite trichloro-2-pyridinol (TCP...

  3. A unified cell biological perspective on axon-myelin injury


    Simons, Mikael; Misgeld, Thomas; Kerschensteiner, Martin


    Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon–myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a loc...

  4. Axon-glia interaction and membrane traffic in myelin formation



    In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is...

  5. Abnormal protein aggregationand neurodegenerativediseases

    Institute of Scientific and Technical Information of China (English)


    Abnormal protein aggregation or amyloid is the major cause ofmany neurodegenerative disorders. The present review focuses on the correlation between sequence and structure features of proteins related to the diseases and abnormal protein aggregation. Recent progress has improved our knowledge on understand-ing the mechanism of amyloid formation. We suggest a nucleation model for ordered protein aggregation, which can also explain pathogenesis mechanisms of these neurodegenerative diseases in vivo.

  6. Schizophyllum commune: The main cause of dying trees of the Banja Luka arbored walks and parks

    Directory of Open Access Journals (Sweden)

    Matavulj Milan N.


    Full Text Available In the frame of investigation of the main cause of dying trees of the main arbored walks (Mladena Stojanovića Aley and Park, the investigation of the presence and diversity of macrofungi in Banja Luka City were undertaken in the period 2006-2011. Relatively poor generic diversity of lignicolous (pathogenic or potentially pathogenic and saprotrophic macrofungi with only 16 species representing this group (13 basidiomycets: Schizophyllum commune, Fomes fomentarius, Stereum hirsutum, Coriolus versicolor, Flammulina velutipes, Pseudotrametes gibbosa, Ganoderma applanatum, G. lucidum, G. adspersum, Polyporus squamosus, Meripilus giganteus, Laetiporus sulphureus, Auricu­laria auricula-judae, and 3 ascomycets: Nectria cinnabarina, Xylaria hypoxylon, X. poly­morpha were recorded. Such a poor qualitative composition of this very important fungal group could be explained by the reduction in the number of plant species in arbored walks and alleys, as well as the reduction in the number of fungi resistant to heavy air pollution caused by nearby (1-5m fuel combustion in engines. Although only preliminary, our results pointed to the necessity of conservation and protection of the most beautiful features of Banja Luka and its alleys and arbored walks, by undertaking the measures of curing damaged trees and treating them with fungicides in order to wipe out the epiphytia caused in more than 95% of cases (dated May 2011 by Split-gill (Schizophyllum commune, present on dead wood but also on damaged trees of Aesculus hyppocastaneum (127 trees, Tilia cordata (124 trees, Tilia platyphyllos (36 trees, Tilia argentea (40 trees, Acer negundo (20 trees, Platanus acerifolia (2 trees, Robinia pseudoacacia (3 trees, Fraxinus ornus (1 tree, Betula pendula (1 tree, Catalpa sp. (2 trees, etc. Altogether, during the last decade, around 200 trees collapsed or were sanitary cut in Banja Luka arbored walk from the Malta site to the Green bridge, a total length around 5 km. The

  7. Diversity and nest site selection of social wasps along Guianese forest edges: assessing the influence of arboreal ants. (United States)

    Corbara, Bruno; Carpenter, J M; Céréghino, R; Leponce, M; Gibernau, M; Dejean, Alain


    We examined 424 nests belonging to 61 wasp species along 5 km of rainforest edges in French Guiana (ca. 15,235 plants monitored), and estimate that we recorded up to 73% of the local social wasp fauna. This baseline study was complemented by a long-term survey of the same area and the examination of isolated trees (permitting us to record two additional species, resulting in a total of 63 wasp species). Our results form a continuum from species avoiding nesting on any plant (6.5% of the wasp species) to species nesting on plants but avoiding those sheltering ant nests (82%), to, finally, wasps nesting in association with arboreal ants known to divert army ant raids (11.5%). Consequently, this study documents that most wasp species select plants possibly repulsive to arboreal ants, while associations with arboreal ants, although confirmed here, have been overrepresented in the literature.

  8. The planar cell polarity protein Vangl2 is required for retinal axon guidance. (United States)

    Leung, Vicki; Iliescu, Alexandra; Jolicoeur, Christine; Gravel, Michel; Apuzzo, Sergio; Torban, Elena; Cayouette, Michel; Gros, Philippe


    Vangl2 plays a critical role in the establishment of planar cell polarity (PCP). Previously, we detected expression of Vangl2 in the developing retina during late embryogenesis, which led us to investigate the possible role of Vangl2-mediated PCP signaling in eye development. We have generated a Vangl2(BGeo) knock-in mouse allowing us to evaluate Vangl2 mRNA expression during retinal development, and used an isoform-specific antibody to examine Vangl2 protein expression in cryosections. To investigate the role of Vangl2 in retinal development, we examined eyes taken from embryos homozygous for independent alleles of Looptail (Lp, Lp(m1jus) ) mutant mice. We found that Vangl2 mRNA and protein are dynamically expressed in the developing embryonic and postnatal retina, with Vangl2 expression becoming progressively restricted to the ganglion cell layer and optic nerve as the retina matures. The expression pattern of Vangl2 transcript and protein is most prominent in retinal ganglion cells (RGC), and their axons. Additionally, we show that Vangl2 is required for retinal and optic nerve development as Vangl2 (Lp/Lp) mutant embryos display a significantly reduced eye size, marked thickening of the retina, and striking abnormalities in the morphology of the optic nerve (significant hypoplasia, and aberrant exit trajectory). Notably, we identified a salient intraretinal axon guidance defect in Vangl2 (Lp/Lp) mutant embryos through which axon bundles traverse the entire thickness of the retina and become trapped within the subretinal space. Our observations identify a new and essential role for Vangl2-dependent PCP signaling in the intraretinal path-finding of RGC axons.

  9. Molecular analysis of axon repulsion by the notochord. (United States)

    Anderson, Christopher N G; Ohta, Kunimasa; Quick, Marie M; Fleming, Angeleen; Keynes, Roger; Tannahill, David


    During development of the amniote peripheral nervous system, the initial trajectory of primary sensory axons is determined largely by the action of axon repellents. We have shown previously that tissues flanking dorsal root ganglia, the notochord lying medially and the dermamyotomes lying laterally, are sources of secreted molecules that prevent axons from entering inappropriate territories. Although there is evidence suggesting that SEMA3A contributes to the repellent activity of the dermamyotome, the nature of the activity secreted by the notochord remains undetermined. We have employed an expression cloning strategy to search for axon repellents secreted by the notochord, and have identified SEMA3A as a candidate repellent. Moreover, using a spectrum of different axon populations to assay the notochord activity, together with neuropilin/Fc receptor reagents to block semaphorin activity in collagen gel assays, we show that SEMA3A probably contributes to notochord-mediated repulsion. Sympathetic axons that normally avoid the midline in vivo are also repelled, in part, by a semaphorin-based notochord activity. Although our results implicate semaphorin signalling in mediating repulsion by the notochord, repulsion of early dorsal root ganglion axons is only partially blocked when using neuropilin/Fc reagents. Moreover, retinal axons, which are insensitive to SEMA3A, are also repelled by the notochord. We conclude that multiple factors act in concert to guide axons in this system, and that further notochord repellents remain to be identified.

  10. Differences in excitability properties of FDI and ADM motor axons. (United States)

    Bae, Jong Seok; Sawai, Setsu; Misawa, Sonoko; Kanai, Kazuaki; Isose, Sagiri; Kuwabara, Satoshi


    The first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles are innervated by the same ulnar nerve, but studies have shown that the former is much more severely affected in amyotrophic lateral sclerosis. In this study, threshold tracking was used to investigate whether membrane properties differ between FDI and ADM motor axons. In 12 normal subjects, compound muscle action potentials were recorded from FDI and ADM after ulnar nerve stimulation at the wrist. The strength-duration time constant was significantly longer in the FDI axons than in the ADM axons, and latent addition studies showed greater threshold changes at the conditioning-test stimulus of 0.2 ms in FDI than in ADM axons. These findings suggest that nodal persistent sodium conductances are more prominent in FDI axons than in ADM axons, and therefore excitability is physiologically higher in FDI axons. Even in the same nerve at the same sites, membrane properties of FDI and ADM motor axons differ significantly, and thus their axonal/neuronal responses to disease may also differ.

  11. Axonal autophagy during regeneration of the rat sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    Kangrong Lu; Zhongxian Piao; Zhenxi Liu; Weiwang Gu; Wanshan Wang; Nngjie Piao


    BACKGROUND: The removal of degenerated axonal debris during Wallerian degeneration is very important for nerve regeneration. However, the mechanism by which debris is removed is not been completely understood. Considerable controversy remains as to the clearance pathway and cells that are involved. OBJECTIVE: To investigate axonal autophagy during removal of degenerated axonal debris by transecting the sciatic nerve in a rat Wallerian degeneration model.DESIGN, TIME AND SETTING: Experimental neuropathological analysis. The experiment was conducted at the Laboratory Animal Service Center of the Southern Medical University between January and June 2005. MATERIALS: Fifty-four adult, Wistar rats of either sex, weighing 180-250 g, were obtained from the Laboratory Animal Service Center of the Southern Medical University. Animals were randomly divided into nine groups of six rats. METHODS: Wallerian degeneration was induced by transecting the rat sciatic nerve, and tissue samples from the distal stump were obtained 0.2, 0.4, 1, 2, 3, 4, 7, 10, and 15 days post-transection. Ultrathin sections were prepared for electron microscopy to study ultrastructure and enzyme cytochemistry staining. MAIN OUTCOME MEASURES: Ultrastructure (axon body, autophagic body, and cystoskeleton) of axons and myelin sheaths observed with electron microscopy; acidic phosphatase activity detected by Gomori staining using electron microscopy. RESULTS: The major changes of degenerating axons after transection were axoplasm swelling and separation of axons from their myelin sheath between five hours and two days post-transection. At four days post-transection, the axoplasm condensed and axons were completely separated from the myelin sheath, forming dissociative axon bodies. Vacuoles of different sizes formed in axons during the early phase after lesion. Larger dissociative axon bodies were formed when the axons were completely separated from the myelin sheath during a late phase. The axolemma

  12. Crossing the Border: Molecular Control of Motor Axon Exit

    Directory of Open Access Journals (Sweden)

    Arlene Bravo-Ambrosio


    Full Text Available Living organisms heavily rely on the function of motor circuits for their survival and for adapting to ever-changing environments. Unique among central nervous system (CNS neurons, motor neurons (MNs project their axons out of the CNS. Once in the periphery, motor axons navigate along highly stereotyped trajectories, often at considerable distances from their cell bodies, to innervate appropriate muscle targets. A key decision made by pathfinding motor axons is whether to exit the CNS through dorsal or ventral motor exit points (MEPs. In contrast to the major advances made in understanding the mechanisms that regulate the specification of MN subtypes and the innervation of limb muscles, remarkably little is known about how MN axons project out of the CNS. Nevertheless, a limited number of studies, mainly in Drosophila, have identified transcription factors, and in some cases candidate downstream effector molecules, that are required for motor axons to exit the spinal cord. Notably, specialized neural crest cell derivatives, referred to as Boundary Cap (BC cells, pre-figure and demarcate MEPs in vertebrates. Surprisingly, however, BC cells are not required for MN axon exit, but rather restrict MN cell bodies from ectopically migrating along their axons out of the CNS. Here, we describe the small set of studies that have addressed motor axon exit in Drosophila and vertebrates, and discuss our fragmentary knowledge of the mechanisms, which guide motor axons out of the CNS.

  13. A unified cell biological perspective on axon-myelin injury. (United States)

    Simons, Mikael; Misgeld, Thomas; Kerschensteiner, Martin


    Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon-myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a local inflammatory disease process early in MS into the global progressive disorder seen during later stages. This mode of spreading could also apply to other neurological disorders.

  14. Present status of studies on diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    Jie Ma; Chonggong Zhang; Yi Li


    OBJECTIVE: To explain the present status of study on diffuse axonal injury,investigate its pathogenesis and pathophysiological changes ,and suggest principles for the diagnosis and treatment.DATA SOURCES: Articles about diffuse axonal injury published in English from January 1994 to October 2006 were searched in Pubmed database using the keywords of "diffuse axonal injury,pathogenesis,therapy".STUDY SELECTION: The collected articles were primarily screened to select those associated with diffuse axonal injury,the obviously irrelated articles were excluded,and the rest ones were retrieved manually,and the full-texes were searched.DATA EXTRACTION: Totally 98 articles were collected,41 of them were involved.and the other 57 were excluded.DATA SYNTHESIS: Diffuse axonal injury is mainly caused by acceleratory or deceleratory injury,and its pathophysiological change is a progressive duration,local axonal injury finally develops to axonal breakage,mainly includes inactivation of natrium channel,intracellular Ca2+ overloading,activation of calcium protease,caspase etc.,and mitochondrial injury.At present,there is still lack of effective therapeutic methods for diffuse axonal injury,so we should actively explore more effective methods to relieve the pain of patients and improve their prognosis.CONCLUSION: At present,diffuse axonal injury has not attracted enough attentions in China,the mechanisms for its diagnosis and attack are still unclear,and the treatments are mainly aiming at the symptoms.

  15. Dopaminergic axon guidance: which makes what?

    Directory of Open Access Journals (Sweden)

    Laetitia ePrestoz


    Full Text Available Mesotelencephalic pathways in the adult central nervous system have been studied in great detail because of their implication in major physiological functions as well as in psychiatric, neurological and neurodegenerative diseases. However, the ontogeny of these pathways and the molecular mechanisms that guide dopaminergic axons during embryogenesis have been only recently studied. This line of research is of crucial interest for the repair of lesioned circuits in adulthood following neurodegenerative diseases or common traumatic injuries. For instance, in the adult, the anatomic and functional repair of the nigrostriatal pathway following dopaminergic embryonic neuron transplantation suggests that specific guidance cues exist which govern embryonic fibers outgrowth, and suggests that axons from transplanted embryonic cells are able to respond to theses cues, which then guide them to their final targets. In this review, we first synthesize the work that has been performed in the last few years on developing mesotelencephalic pathways, and summarize the current knowledge on the identity of cellular and molecular signals thought to be involved in establishing mesotelencephalic dopaminergic neuronal connectivity during embryogenesis in the central nervous system of rodents. Then, we review the modulation of expression of these molecular signals in the lesioned adult brain and discuss their potential role in remodeling the mesotelencephalic dopaminergic circuitry, with a particular focus on Parkinson’s disease. Identifying guidance molecules involved in the connection of grafted cells may be useful for cellular therapy in Parkinsonian patients, as these molecules may help direct axons from grafted cells along the long distance they have to travel from the substantia nigra to the striatum.

  16. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy

    DEFF Research Database (Denmark)

    Fenrich, Keith K; Skelton, Nicole; MacDermid, Victoria E


    at 4-5 weeks post injury. The somata of axotomized CINs were identified by the presence of immunoreactivity for the axonal growth-associated protein-43 (GAP-43). Nearly half of the CINs had de novo axons that emerged from distal dendrites. These axons lacked immunoreactivity for the dendritic protein......Following proximal axotomy, several types of neurons sprout de novo axons from distal dendrites. These processes may represent a means of forming new circuits following spinal cord injury. However, it is not know whether mammalian spinal interneurons, axotomized as a result of a spinal cord injury......, develop de novo axons. Our goal was to determine whether spinal commissural interneurons (CINs), axotomized by 3-4-mm midsagittal transection at C3, form de novo axons from distal dendrites. All experiments were performed on adult cats. CINs in C3 were stained with extracellular injections of Neurobiotin...

  17. IMP2 axonal localization, RNA interactome, and function in the development of axon trajectories

    DEFF Research Database (Denmark)

    Preitner, Nicolas; Quan, Jie; Li, Xinmin


    RNA-based regulatory mechanisms play important roles in the development and plasticity of neural circuits and neurological disease. Developing axons provide a model well suited to the study of RNA-based regulation, and contain specific subsets of mRNAs that are locally translated and have roles i...

  18. White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis

    NARCIS (Netherlands)

    Cambron, Melissa; D'haeseleer, Miguel; Laureys, Guy; Clinckers, Ralph; Debruyne, Jan; De Keyser, Jacques


    In patients with multiple sclerosis (MS), a diffuse axonal degeneration occurring throughout the white matter of the central nervous system causes progressive neurologic disability. The underlying mechanism is unclear. This review describes a number of pathways by which dysfunctional astrocytes in M

  19. AxonPacking: An Open-Source Software to Simulate Arrangements of Axons in White Matter. (United States)

    Mingasson, Tom; Duval, Tanguy; Stikov, Nikola; Cohen-Adad, Julien


    HIGHLIGHTS AxonPacking: Open-source software for simulating white matter microstructure.Validation on a theoretical disk packing problem.Reproducible and stable for various densities and diameter distributions.Can be used to study interplay between myelin/fiber density and restricted fraction. Quantitative Magnetic Resonance Imaging (MRI) can provide parameters that describe white matter microstructure, such as the fiber volume fraction (FVF), the myelin volume fraction (MVF) or the axon volume fraction (AVF) via the fraction of restricted water (fr). While already being used for clinical application, the complex interplay between these parameters requires thorough validation via simulations. These simulations required a realistic, controlled and adaptable model of the white matter axons with the surrounding myelin sheath. While there already exist useful algorithms to perform this task, none of them combine optimisation of axon packing, presence of myelin sheath and availability as free and open source software. Here, we introduce a novel disk packing algorithm that addresses these issues. The performance of the algorithm is tested in term of reproducibility over 50 runs, resulting density, and stability over iterations. This tool was then used to derive multiple values of FVF and to study the impact of this parameter on fr and MVF in light of the known microstructure based on histology sample. The standard deviation of the axon density over runs was lower than 10(-3) and the expected hexagonal packing for monodisperse disks was obtained with a density close to the optimal density (obtained: 0.892, theoretical: 0.907). Using an FVF ranging within [0.58, 0.82] and a mean inter-axon gap ranging within [0.1, 1.1] μm, MVF ranged within [0.32, 0.44] and fr ranged within [0.39, 0.71], which is consistent with the histology. The proposed algorithm is implemented in the open-source software AxonPacking ( and can be useful for

  20. Distinct roles for Sema3A, Sema3F, and an unidentified trophic factor in controlling the advance of geniculate axons to gustatory lingual epithelium. (United States)

    Vilbig, Ryan; Cosmano, Jason; Giger, Roman; Rochlin, M William


    Geniculate ganglion axons arrive in the lingual mesenchyme on embryonic day 13 (E13), 3-4 days before penetrating fungiform papilla epithelium (E17). This latency may result from chemorepulsion by epithelial Sema3A (Dillon et al. (2004) Journal of Comparative Neurology 470, 13-24), or Sema3F, which we report is also expressed in this epithelium. Sema3A and Sema3F repelled or suppressed geniculate neurite outgrowth, respectively, and these effects were stage and neurotrophic factor dependent. BDNF-stimulated outgrowth is repelled by Sema3A until E17, but insensitive to Sema3F from E16. NT-4-stimulated neurite outgrowth is sensitive to Sema3A and Sema3F through E18, but NT-4 has not been detected in E15-18 tongue. E15-18 tongue explants did not exhibit net chemorepulsion of geniculate neurites, but the ability of tongue explants to support geniculate neurite outgrowth fluctuates: E12-13 (Rochlin et al. (2000), Journal of Comparative Neurology, 422, 579-593) and E17-18 explants promote and may attract geniculate neurites, but stages corresponding to intralingual arborization do not. The E18 trophic and tropic effects were evident even in the presence of BDNF or NT-4, suggesting that some other factor is responsible. Intrinsic neurite outgrowth capability (without exogenous neurotrophic factors) fluctuated similarly: ganglia deteriorated at E15, but exhibited moderate outgrowth at E18. The chemorepulsion studies are consistent with a role for Sema3A, not Sema3F, in restricting geniculate axons from the epithelium until E17, when axons penetrate the epithelium. The transient inability of tongue explants to promote geniculate neurite outgrowth may signify an alternative mechanism for restricting geniculate axons from the epithelium: limiting trophic factor access.

  1. Differential extraction of axonally transported proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Elam, J.S. (Florida State Univ., Tallahassee (USA))


    Axonally transported proteoglycans were differentially solubilized by a sequence of extractions designed to infer their relationship to nerve terminal membranes. Groups of goldfish were injected unilaterally with 35SO4 and contralateral optic tecta containing axonally transported molecules were removed 16 h later. Tecta were homogenized in isotonic buffer and centrifuged at 100,000 g for 60 min to create a total supernatant fraction. Subsequent homogenizations followed by recentrifugation were with hypotonic buffer (lysis extract), 1 M NaCl, Triton X-100 or alternatively Triton-1 M NaCl. Populations of proteoglycans in each extract were isolated on DEAE ion exchange columns and evaluated for content of glycosaminoglycans (GAGs). Results show the distribution of transported proteoglycans to be 26.3% total soluble, 13.7% lysis extract, 13.8% NaCl extract, 12.2% Triton extract, and 46.2% Triton-NaCl extract. Proteoglycans from all fractions contained heparan sulfate as the predominant GAG, with lesser amounts of chondroitin (4 or 6) sulfate. The possible localizations of transported proteoglycans suggested by the extraction results are discussed.

  2. [Hair shaft abnormalities]. (United States)

    Itin, P H; Düggelin, M


    Hair shaft disorders may lead to brittleness and uncombable hair. In general the hair feels dry and lusterless. Hair shaft abnormalities may occur as localized or generalized disorders. Genetic predisposition or exogenous factors are able to produce and maintain hair shaft abnormalities. In addition to an extensive history and physical examination the most important diagnostic examination to analyze a hair shaft problem is light microscopy. Therapy of hair shaft disorders should focus to the cause. In addition, minimizing traumatic influences to hair shafts, such as dry hair with an electric dryer, permanent waves and dyes is important. A short hair style is more suitable for such patients with hair shaft disorders.

  3. Neuronal Logistics : Axonal Transport in Development and Disease

    NARCIS (Netherlands)

    R. van den Berg (Robert)


    markdownabstractBrain cells are uniquely shaped among the many cell types of the body. While most cells are more or less rounded or square-shaped, neurons grow one or more long axons that can reach lengths of a meter or more. To keep these axons alive and functional, neurons are dependent on an intr

  4. Molecular Determinants Fundamental to Axon Regeneration after SCI (United States)


    TITLE: Molecular Determinants Fundamental to Axon Regeneration after SCI PRINCIPAL INVESTIGATOR: Jeffrey Alan Plunkett, Ph.D. Martin...TYPE FINAL 3. DATES COVERED (From - To) 1 Sept 2011 - 1 Sept 2014 4. TITLE AND SUBTITLE Molecular Determinants Fundamental to Axon Regeneration...available that restore motor impairments resulting fromspinal cord injury (SCI). Soldiers with SCI are permanently paralyzed and in needof lifelong care

  5. Molecular Determinants Fundamental to Axon Regeneration after SCI (United States)


    currently employed to investigate the evolution of the scar and the time course of axon regeneration after spinal cord injury. The data from these...Medicine, Pittsburgh, PA. It has been established in amphibians and fish that neurons can successfully regenerate their axons in the damaged central

  6. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard;


    Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total l...

  7. Inhibiting poly(ADP-ribosylation) improves axon regeneration (United States)

    Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc


    The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration. DOI:

  8. Axon guidance of rat cortical neurons by microcontact printed gradients. (United States)

    Fricke, Rita; Zentis, Peter D; Rajappa, Lionel T; Hofmann, Boris; Banzet, Marko; Offenhäusser, Andreas; Meffert, Simone H


    Substrate-bound gradients expressed in numerous spatio-temporal patterns play a crucial role during the development of complex neural circuits. A deeper understanding of the axon guidance mechanism is provided by studying the effect of a defined substrate-bound cue on a confined neural network. In this study, we constructed a discontinuous substrate-bound gradient to control neuronal cell position, the path of neurite growth, and axon directionality. A variety of gradient patterns, with slight changes in slope, width, and length were designed and fabricated by microcontact printing using laminin/poly-l-lysine (PLL) or PLL alone. The gradients were tested for neurite growth and their impact on axon guidance of embryonic rat cortical neurons. The neurite length was determined and the axon was evaluated by Tau-1 immunostaining. We found that the microgradients of laminin/PLL and PLL directed neurons' adhesion, differentially controlled the neurite growth, and guided up to 84% of the axons. The effect of the protein micropattern on axon guidance and neurite growth depended on the protein and geometric parameters used. Our approach proved to be very successful in guiding axons of single multipolar neurons with very high efficiency. It could thereby be useful to engineer defined neural networks for analyzing signal processing of functional circuits, as well as to unravel fundamental questions of the axon guidance mechanism.

  9. Arborizing vessels in a targetoid hemosiderotic hemangioma: mistaken dermoscopic diagnosis of basal cell carcinoma (United States)

    Enei, María L.; Paschoal, Francisco M.; Valdes, Rodrigo


    Targetoid hemosiderotic hemangioma (THH) or hobnail hemangioma (HH) is a benign vascular lesion that presents with the classical clinical presentation of a ring-shaped tumor having a targetoid appearance, with a central purple-brown papule surrounded by a thin pale area and an ecchymotic ring on the outside. Dermoscopic features and patterns of HH have been documented and have proven to be sufficient to establish a clinical diagnosis in many cases. We present a facial lesion in which both the clinical presentation and dermoscopy were atypical. The presence of arborizing vessels in the dermoscopic pattern, never before described for this lesion, led us to the diagnosis of basocellular carcinoma (BCC). We also report the changes in this pattern experienced over 12 months of progression and their correlation with the histopathologic findings.

  10. Anti-depressant activity of Nyctanthes arbor-tristis in mice

    Directory of Open Access Journals (Sweden)

    Sumeet Gupta


    Full Text Available The present study assesses the protective effect of Nyctanthes arbor-tristis (Nyctaginaceae extracts and in combination with fluoxetine on stress-induced depression in mice. Leaves were extracted using different solvents (petroleum ether, chloroform and hydroethanol and administered orally for 14 days. These extracts showed significant improvement in the mobility percentage but among these, hydroethanol extract showed better protective effect from day 1 to 14 in both forced swimming and tail suspension test model. Hydroethanol (100 mg/kg and chloroform (100 mg/kg extracts with fluoxetine showed synergistic effect when compared with fluoxetine treated group (10 mg/kg alone at day 7 and 14. Among monoamine levels only hydroethanol extract (400 mg/kg restored the 5-HT level near to level of fluoxetine-treated group. Hydroethanol extracts with two higher doses showed significant decrease in glucose and triglycerides levels. Clinically, it may useful as anti-depressant drug.

  11. Dynamic Remodeling of Dendritic Arbors in GABAergic Interneurons of Adult Visual Cortex.

    Directory of Open Access Journals (Sweden)


    Full Text Available Despite decades of evidence for functional plasticity in the adult brain, the role of structural plasticity in its manifestation remains unclear. To examine the extent of neuronal remodeling that occurs in the brain on a day-to-day basis, we used a multiphoton-based microscopy system for chronic in vivo imaging and reconstruction of entire neurons in the superficial layers of the rodent cerebral cortex. Here we show the first unambiguous evidence (to our knowledge of dendrite growth and remodeling in adult neurons. Over a period of months, neurons could be seen extending and retracting existing branches, and in rare cases adding new branch tips. Neurons exhibiting dynamic arbor rearrangements were GABA-positive non-pyramidal interneurons, while pyramidal cells remained stable. These results are consistent with the idea that dendritic structural remodeling is a substrate for adult plasticity and they suggest that circuit rearrangement in the adult cortex is restricted by cell type-specific rules.

  12. Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex.

    Directory of Open Access Journals (Sweden)

    Wei-Chung Allen Lee


    Full Text Available Despite decades of evidence for functional plasticity in the adult brain, the role of structural plasticity in its manifestation remains unclear. To examine the extent of neuronal remodeling that occurs in the brain on a day-to-day basis, we used a multiphoton-based microscopy system for chronic in vivo imaging and reconstruction of entire neurons in the superficial layers of the rodent cerebral cortex. Here we show the first unambiguous evidence (to our knowledge of dendrite growth and remodeling in adult neurons. Over a period of months, neurons could be seen extending and retracting existing branches, and in rare cases adding new branch tips. Neurons exhibiting dynamic arbor rearrangements were GABA-positive non-pyramidal interneurons, while pyramidal cells remained stable. These results are consistent with the idea that dendritic structural remodeling is a substrate for adult plasticity and they suggest that circuit rearrangement in the adult cortex is restricted by cell type-specific rules.

  13. Energetic costs of the winter arboreal microclimate: The gray squirrel in a tree (United States)

    Byman, D.; Hay, D. B.; Bakken, G. S.


    Heated taxidermic mounts of the gray squirrel were used to analyze the thermal environment of a small arboreal endotherm. Changes in the standard operative temperature ( T es) calculated from the temperatures of heated and unheated mounts agreed well with the power consumption ( M-E) of mounts on the ground and on the wind-ward side of a 48-cm diameter tree trunk. As wind speed ( u) rose and sky solar radiation ( Q r) decreased, the windward side of the tree trunk became an increasingly more stressful thermal environment than the leeward side of the trunk or the ground, producing M-E differences of more than 30%. Although the M-E of a ground mount and a limb mount 4 m in the air are dependent on Q ras well as u, the ratio of the two value of M-E is independent of Q r, poorly predicted by u and well predicted by u 1/2.

  14. A new arboreal frog of the genus Guibemantis from the southeast of Madagascar (Anura: Mantellidae). (United States)

    Vences, Miguel; Jovanovic, Olga; Safarek, Goran; Glaw, Frank; Köhler, Jörn


    We describe a new species of arboreal frog of the genus Guibemantis, subgenus Guibemantis, from low altitude rainforest in Manombo Special Reserve, south-eastern Madagascar. Previously published phylogenetic analyses of mitochondrial DNA sequences have placed Guibemantis diphonus sp. nov. sister to G. timidus. The new species is distinguished from G. timidus and all other species in the subgenus by a substantial genetic differentiation (≥ 4.4% uncorrected p-distance in the mitochondrial 16S rRNA gene), strongly divergent advertisement call, and some limited morphological differences. It is the smallest known species in the subgenus, with 34-36 mm snout-vent length in adult males. Its advertisement call is unique among other species in the subgenus in being composed of two distinctly different note types (only one note type in the other species).

  15. Disentangling the diversity of arboreal ant communities in tropical forest trees. (United States)

    Klimes, Petr; Fibich, Pavel; Idigel, Cliffson; Rimandai, Maling


    Tropical canopies are known for their high abundance and diversity of ants. However, the factors which enable coexistence of so many species in trees, and in particular, the role of foragers in determining local diversity, are not well understood. We censused nesting and foraging arboreal ant communities in two 0.32 ha plots of primary and secondary lowland rainforest in New Guinea and explored their species diversity and composition. Null models were used to test if the records of species foraging (but not nesting) in a tree were dependent on the spatial distribution of nests in surrounding trees. In total, 102 ant species from 389 trees occurred in the primary plot compared with only 50 species from 295 trees in the secondary forest plot. However, there was only a small difference in mean ant richness per tree between primary and secondary forest (3.8 and 3.3 sp. respectively) and considerably lower richness per tree was found only when nests were considered (1.5 sp. in both forests). About half of foraging individuals collected in a tree belonged to species which were not nesting in that tree. Null models showed that the ants foraging but not nesting in a tree are more likely to nest in nearby trees than would be expected at random. The effects of both forest stage and tree size traits were similar regardless of whether only foragers, only nests, or both datasets combined were considered. However, relative abundance distributions of species differed between foraging and nesting communities. The primary forest plot was dominated by native ant species, whereas invasive species were common in secondary forest. This study demonstrates the high contribution of foragers to arboreal ant diversity, indicating an important role of connectivity between trees, and also highlights the importance of primary vegetation for the conservation of native ant communities.

  16. Increased Human Wildtype Tau Attenuates Axonal Transport Deficits Caused by Loss of APP in Mouse Models


    Smith, Karen D.B.; Erica Peethumnongsin; Han Lin; Hui Zheng; Pautler, Robia G.


    Amyloid precursor protein (APP) is implicated in axonal elongation, synaptic plasticity, and axonal transport. However, the role of APP on axonal transport in conjunction with the microtubule associated protein tau continues to be debated. Here we measured in vivo axonal transport in APP knockout mice with Manganese Enhanced MRI (MEMRI) to determine whether APP is necessary for maintaining normal axonal transport. We also tested how overexpression and mutations of tau affect axonal transport ...

  17. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance

    Directory of Open Access Journals (Sweden)

    Jeffery Glen


    Full Text Available Abstract Background The transcription factor Pax6 is expressed by many cell types in the developing eye. Eyes do not form in homozygous loss-of-function mouse mutants (Pax6Sey/Sey and are abnormally small in Pax6Sey/+ mutants. Eyes are also abnormally small in PAX77 mice expressing multiple copies of human PAX6 in addition to endogenous Pax6; protein sequences are identical in the two species. The developmental events that lead to microphthalmia in PAX77 mice are not well-characterised, so it is not clear whether over- and under-expression of Pax6/PAX6 cause microphthalmia through similar mechanisms. Here, we examined the consequences of over-expression for the eye and its axonal connections. Results Eyes form in PAX77+/+ embryos but subsequently degenerate. At E12.5, we found no abnormalities in ocular morphology, retinal cell cycle parameters and the incidence of retinal cell death. From E14.5 on, we observed malformations of the optic disc. From E16.5 into postnatal life there is progressively more severe retinal dysplasia and microphthalmia. Analyses of patterns of gene expression indicated that PAX77+/+ retinae produce a normal range of cell types, including retinal ganglion cells (RGCs. At E14.5 and E16.5, quantitative RT-PCR with probes for a range of molecules associated with retinal development showed only one significant change: a slight reduction in levels of mRNA encoding the secreted morphogen Shh at E16.5. At E16.5, tract-tracing with carbocyanine dyes in PAX77+/+ embryos revealed errors in intraretinal navigation by RGC axons, a decrease in the number of RGC axons reaching the thalamus and an increase in the proportion of ipsilateral projections among those RGC axons that do reach the thalamus. A survey of embryos with different Pax6/PAX6 gene dosage (Pax6Sey/+, Pax6+/+, PAX77+ and PAX77+/+ showed that (1 the total number of RGC axons projected by the retina and (2 the proportions that are sorted into the ipsilateral and

  18. Large elapids and arboreality: the ecology of Jameson’s green mamba (Dendroaspis jamesoni) in an Afrotropical forested region

    NARCIS (Netherlands)

    Luiselli, Luca; Angelici, Francesco M.; Akani, Godfrey C.


    Several aspects of the ecology of Jameson’s green mamba Dendroaspis jamesoni jamesoni (Traill, 1843), a large-sized arboreal elapid snake, are studied in southern Nigeria. This species 18 common and widespread in the region studied. On the basis of the analysis of both the habitats of capture of the

  19. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  20. Signaling mechanisms in cortical axon growth, guidance and branching

    Directory of Open Access Journals (Sweden)

    Katherine eKalil


    Full Text Available Precise wiring of cortical circuits during development depends upon axon extension, guidance and branching to appropriate targets. Motile growth cones at axon tips navigate through the nervous system by responding to molecular cues, which modulate signaling pathways within axonal growth cones. Intracellular calcium signaling has emerged as a major transducer of guidance cues but exactly how calcium signaling pathways modify the actin and microtubule cytoskeleton to evoke growth cone behaviors and axon branching is still mysterious. Axons must often pause in their outgrowth while their branches extend into targets. Some evidence suggests a competition between growth of axons and branches but the mechanisms are poorly understood. Since it is difficult to study growing axons deep within the mammalian brain, much of what we know about signaling pathways and cytoskeletal dynamics has come from studies of axonal growth cones, in many cases from non-mammalian species, growing in tissue culture. Consequently it is not well understood how guidance cues relevant to mammalian neural development in vivo signal to the growth cone cytoskeleton during axon outgrowth and guidance. In this review we describe our recent work in dissociated cultures of developing rodent sensorimotor cortex in the context of the current literature on molecular guidance cues, calcium signaling pathways and cytoskeletal dynamics that regulate growth cone behaviors. A major challenge is to relate findings in tissue culture to mechanisms of cortical development in vivo. Toward this goal, we describe our recent work in cortical slices, which preserve the complex cellular and molecular environment of the mammalian brain but allow direct visualization of growth cone behaviors and calcium signaling. Findings from this work suggest that mechanisms regulating axon growth and guidance in dissociated culture neurons also underlie development of cortical connectivity in vivo.

  1. Abnormalities of gonadal differentiation. (United States)

    Berkovitz, G D; Seeherunvong, T


    Gonadal differentiation involves a complex interplay of developmental pathways. The sex determining region Y (SRY) gene plays a key role in testis determination, but its interaction with other genes is less well understood. Abnormalities of gonadal differentiation result in a range of clinical problems. 46,XY complete gonadal dysgenesis is defined by an absence of testis determination. Subjects have female external genitalia and come to clinical attention because of delayed puberty. Individuals with 46,XY partial gonadal dysgenesis usually present in the newborn period for the valuation of ambiguous genitalia. Gonadal histology always shows an abnormality of seminiferous tubule formation. A diagnosis of 46,XY true hermaphroditism is made if the gonads contain well-formed testicular and ovarian elements. Despite the pivotal role of the SRY gene in testis development, mutations of SRY are unusual in subjects with a 46,XY karyotype and abnormal gonadal development. 46,XX maleness is defined by testis determination in an individual with a 46,XX karyotype. Most affected individuals have a phenotype similar to that of Klinefelter syndrome. In contrast, subjects with 46,XX true hermaphroditism usually present with ambiguous genitalia. The majority of subjects with 46,XX maleness have Y sequences including SRY in genomic DNA. However, only rare subjects with 46,XX true hermaphroditism have translocated sequences encoding SRY. Mosaicism and chimaerism involving the Y chromosome can also be associated with abnormal gonadal development. However, the vast majority of subjects with 45,X/46,XY mosaicism have normal testes and normal male external genitalia.

  2. Cortical Abnormalities in ADHD

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap


    Full Text Available Grey-matter abnormalities at the cortical surface and regional brain size were mapped by high-resolution MRI and surface-based, computational image analytical techniques in a group of 27 children and adolescents with attention deficit hyperactivity disorder (ADHD and 46 controls, matched by age and sex, at the University of California at Los Angeles.

  3. Neurological abnormalities predict disability

    DEFF Research Database (Denmark)

    Poggesi, Anna; Gouw, Alida; van der Flier, Wiesje


    To investigate the role of neurological abnormalities and magnetic resonance imaging (MRI) lesions in predicting global functional decline in a cohort of initially independent-living elderly subjects. The Leukoaraiosis And DISability (LADIS) Study, involving 11 European centres, was primarily aimed...

  4. Lacrimal system abnormalities. (United States)

    Moore, B D


    This report outlines several of the more important abnormalities of the lacrimal system in infants and young children. Although rare, alacrima can be a very difficult clinical problem to treat. The most common cause of alacrima is the Riley-Day syndrome. Nasolacrimal duct obstruction is a very common anomaly in children. The clinical appearance and treatment of this disorder are discussed.

  5. The Relationship between Dyslipidemia and Acute Axonal Function in Type 2 Diabetes Mellitus In Vivo (United States)

    Kwai, Natalie C. G.; Nigole, William; Poynten, Ann M.; Brown, Christopher; Krishnan, Arun V.


    Objectives Diabetic peripheral neuropathy (DPN) is a common and debilitating complication of diabetes mellitus. Treatment largely consists of symptom alleviation and there is a need to identify therapeutic targets for prevention and treatment of DPN. The objective of this study was to utilise novel neurophysiological techniques to investigate axonal function in patients with type 2 diabetes and to prospectively determine their relationship to serum lipids in type 2 diabetic patients. Methods Seventy-one patients with type 2 diabetes were consecutively recruited and tested. All patients underwent thorough clinical neurological assessments including nerve conduction studies, and median motor axonal excitability studies. Studies were also undertaken in age matched normal control subjects(n = 42). Biochemical studies, including serum lipid levels were obtained in all patients. Patient excitability data was compared to control data and linear regression analysis was performed to determine the relationship between serum triglycerides and low density lipoproteins and excitability parameters typically abnormal in type 2 diabetic patients. Results Patient mean age was 64.2±2.3 years, mean glycosylated haemoglobin (HbA1c%) was 7.8±0.3%, mean triglyceride concentration was 1.6±0.1 mmol/L and mean cholesterol concentration was 4.1±0.2mmol/L. Compared to age matched controls, median motor axonal excitability studies indicated axonal dysfunction in type 2 diabetic patients as a whole (T2DM) and in a subgroup of the patients without DPN (T2DM-NN). These included reduced percentage threshold change during threshold electrotonus at 10–20ms depolarising currents (TEd10–20ms)(controls 68.4±0.8, T2DM63.9±0.8, T2DM-NN64.8±1.6%,P<0.05) and superexcitability during the recovery cycle (controls-22.5±0.9, T2DM-17.5±0.8, T2DM-NN-17.3±1.6%,P<0.05). Linear regression analysis revealed no associations between changes in axonal function and either serum triglyceride or low density

  6. Cellular source-specific effects of apolipoprotein (apo E4 on dendrite arborization and dendritic spine development.

    Directory of Open Access Journals (Sweden)

    Sachi Jain

    Full Text Available Apolipoprotein (apo E4 is the leading genetic risk factor for Alzheimer's disease (AD, and it has a gene dose-dependent effect on the risk and age of onset of AD. Although apoE4 is primarily produced by astrocytes in the brain, neurons can also produce apoE4 under stress conditions. ApoE4 is known to inhibit neurite outgrowth and spine development in vitro and in vivo, but the potential influence of apoE4's cellular source on dendritic arborization and spine development has not yet been investigated. In this study, we report impairments in dendritic arborization and a loss of spines, especially thin (learning and mushroom (memory spines, in the hippocampus and entorhinal cortex of 19-21-month-old female neuron-specific-enolase (NSE-apoE4 and apoE4-knockin (KI mice compared to their respective apoE3-expressing counterparts. In general, NSE-apoE4 mice had more severe and widespread deficits in dendritic arborization as well as spine density and morphology than apoE4-KI mice. The loss of dendritic spines, especially mushroom spines, occurred in NSE-apoE4 mice as early as 7-8 months of age. In contrast, glial fibrillary acidic protein (GFAP-apoE4 mice, which express apoE4 solely in astrocytes, did not have impairments in their dendrite arborization or spine density and morphology compared to GFAP-apoE3 mice at both ages. These results indicate that the effects of apoE4 on dendrite arborization, spine density, and spine morphology depend critically on its cellular source, with neuronal apoE4 having more detrimental effects than astrocytic apoE4.

  7. Cellular source-specific effects of apolipoprotein (apo) E4 on dendrite arborization and dendritic spine development. (United States)

    Jain, Sachi; Yoon, Seo Yeon; Leung, Laura; Knoferle, Johanna; Huang, Yadong


    Apolipoprotein (apo) E4 is the leading genetic risk factor for Alzheimer's disease (AD), and it has a gene dose-dependent effect on the risk and age of onset of AD. Although apoE4 is primarily produced by astrocytes in the brain, neurons can also produce apoE4 under stress conditions. ApoE4 is known to inhibit neurite outgrowth and spine development in vitro and in vivo, but the potential influence of apoE4's cellular source on dendritic arborization and spine development has not yet been investigated. In this study, we report impairments in dendritic arborization and a loss of spines, especially thin (learning) and mushroom (memory) spines, in the hippocampus and entorhinal cortex of 19-21-month-old female neuron-specific-enolase (NSE)-apoE4 and apoE4-knockin (KI) mice compared to their respective apoE3-expressing counterparts. In general, NSE-apoE4 mice had more severe and widespread deficits in dendritic arborization as well as spine density and morphology than apoE4-KI mice. The loss of dendritic spines, especially mushroom spines, occurred in NSE-apoE4 mice as early as 7-8 months of age. In contrast, glial fibrillary acidic protein (GFAP)-apoE4 mice, which express apoE4 solely in astrocytes, did not have impairments in their dendrite arborization or spine density and morphology compared to GFAP-apoE3 mice at both ages. These results indicate that the effects of apoE4 on dendrite arborization, spine density, and spine morphology depend critically on its cellular source, with neuronal apoE4 having more detrimental effects than astrocytic apoE4.

  8. Clinical features of diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)


    Objective: To analyze the mechanism of diffuse axonal injury (DAI) and study the relationship between DAI and brain concussion, brain contusion, and primary brain stem injury.Methods: The clinical data and iconographic characteristics of 56 patients with DAI were analyzed retrospectively.Results: Traffic accidents were the main cause of DAI. Among the 56 cases, 34 were injured for at least twice, and 71.43% of the patients were complicated with contusion.Conclusions: It is considered that DAI is a common pattern of primary brain injury, which is often underestimated. And DAI includes cerebral concussion and primary brain injury, and is often complicated by cerebral cortex contusion. Therefore, it is very simple and practical to divide primary brain injuries into local and diffuse injuries.

  9. The Mesoaccumbens Pathway: A Retrograde Labeling and Single-Cell Axon Tracing Analysis in the Mouse (United States)

    Rodríguez-López, Claudia; Clascá, Francisco; Prensa, Lucía


    Neurons in the ventral tegmental area (VTA) that innervate the nucleus accumbens (Acb) constitute the so-called mesoaccumbens system. Increased activity by these neurons is correlated with the expectation and achievement of reward. The mesoaccumbens projection neurons are regarded as a central node in the brain networks that regulate drive and hedonic experience, and their dysregulation is a common pathophysiological step in addictive behaviors as well as major depression. Despite previous anatomical studies that have analyzed the origin of the mesoaccumbens axons within the VTA, regarded as a unit, the exact contributions of the various cytoarchitectural subdivisions of the VTA to this innervation is still unexplored; understanding these contributions would help further our understanding of their precise anatomical organization. With the aim of deciphering the contribution of the various VTA subdivisions to accumbal innervation, the present study has used retrograde tracer microinjections in the Acb to map the location within the various VTA subdivisions of neurons targeting either the shell or core compartments of the Acb in mice. Furthermore, the dopaminergic nature of these projections has also been analyzed using tyrosine-hydroxylase immunohistochemistry. We demonstrate here that small territories of the Acb core and shell are innervated simultaneously by many VTA subdivisions, contributing dopaminergic as well as non-dopaminergic axons to the accumbal innervation. In fact, single VTA subdivisions harbor both dopaminergic and non-dopaminergic neurons that project to the same accumbal territory. The most medial VTA subnuclei, like the caudal linear nucleus, project abundantly to medial aspects of the Acb core, whereas more lateral territories of the Acb are preferentially targeted by neurons located in the parabrachial pigmented and paranigral nuclei. Overall, about half of the mesoaccumbens neurons are putatively dopaminergic in mice. Anterograde single

  10. Neuromuscular abnormality and autonomic dysfunction in patients with cerebrotendinous xanthomatosis

    Directory of Open Access Journals (Sweden)

    Huang Chi-Ren


    Full Text Available Abstract Background Cerebrotendinous xanthomatosis (CTX is a rare lipid-storage disease. Neuromuscular abnormality and autonomic system (ANS dysfuction in CTX are rarely examined in large-scale studies in the literature. We studied the peripheral nervous system, myopathology, and autonomic system of four CTX patients and performed a literature review of the reported CTX patients with peripheral neuropathy. Methods Four biochemically and genetically confirmed CTX patients, belonging to two families, were included for study and all received nerve conduction study (NCS, muscle biopsy for histopathologic and ultrastructural study, skin biopsy for intraepidermal nerve fiber (INEF density measurement, autonomic testings including sympathetic skin response, R-R interval variation and head-up tilt test using an automated tilt table to record the changes of blood pressure and heart rate in different postures. The Q-Sweat test was also applied for the detection of sweat amount and onset time of response. The clinical characteristics, study methods and results of 13 studies of peripheral neuropathy in CTX patients in the literature were also recorded for analysis. Results The results of NCS study showed axonal sensory-motor polyneuropathy in three CTX cases and mixed axonal and demyelinating sensor-motor polyneuropathy in one. The myopathological and histopathologic studies revealed mild denervation characteristics, but the ultrastructural study revealed changes of mitochondria and the membranous system, and increased amounts of glycogen, lipofuscin and lipid deposition. The ANS study revealed different degrees of abnormalities in the applied tests and the INEF density measurement showed small fiber neuropathy in three of the four CTX patients. The literature review of peripheral neuropathy in CTX revealed different types of peripheral neuropathy, of which axonal peripheral neuropathy was the most common. Conclusions Peripheral neuropathy, especially the

  11. Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration. (United States)

    Ma, Marek; Ferguson, Toby A; Schoch, Kathleen M; Li, Jian; Qian, Yaping; Shofer, Frances S; Saatman, Kathryn E; Neumar, Robert W


    In both the central nervous system (CNS) and peripheral nervous system (PNS), transected axons undergo Wallerian degeneration. Even though Augustus Waller first described this process after transection of axons in 1850, the molecular mechanisms may be shared, at least in part, by many human diseases. Early pathology includes failure of synaptic transmission, target denervation, and granular disintegration of the axonal cytoskeleton (GDC). The Ca(2+)-dependent protease calpains have been implicated in GDC but causality has not been established. To test the hypothesis that calpains play a causal role in axonal and synaptic degeneration in vivo, we studied transgenic mice that express human calpastatin (hCAST), the endogenous calpain inhibitor, in optic and sciatic nerve axons. Five days after optic nerve transection and 48 h after sciatic nerve transection, robust neurofilament proteolysis observed in wild-type controls was reduced in hCAST transgenic mice. Protection of the axonal cytoskeleton in sciatic nerves of hCAST mice was nearly complete 48 h post-transection. In addition, hCAST expression preserved the morphological integrity of neuromuscular junctions. However, compound muscle action potential amplitudes after nerve transection were similar in wild-type and hCAST mice. These results, in total, provide direct evidence that calpains are responsible for the morphological degeneration of the axon and synapse during Wallerian degeneration.

  12. Local erythropoietin signaling enhances regeneration in peripheral axons. (United States)

    Toth, C; Martinez, J A; Liu, W Q; Diggle, J; Guo, G F; Ramji, N; Mi, R; Hoke, A; Zochodne, D W


    Erythropoietin (EPO) and its receptor (EPO-R), mediate neuroprotection from axonopathy and apoptosis in the peripheral nervous system (PNS). We examined the impact and potential mechanisms of local EPO signaling on regenerating PNS axons in vivo and in vitro. As a consequence of injury, peripheral nerve axons and DRG neurons have a marked increase in the expression of EPO and EPO-R. Local delivery of EPO via conduit over 2 weeks to rat sciatic nerve following crush injury increased the density and maturity of regenerating myelinated axons growing distally from the crush site. In addition, EPO also rescued retrograde degeneration and atrophy of axons. EPO substantially increased the density and intensity of calcitonin gene-related peptide (CGRP) expression within outgrowing axons. Behavioral improvements in sensorimotor function also occurred in rats exposed to near nerve EPO delivery. EPO delivery led to decreased nuclear factor kappaB (NFkB) activation but increased phosphorylation of Akt and STAT3 within nerve and dorsal root ganglia neurons indicating rescue from an injury phenotype. Spinal cord explant studies also demonstrated a similar dose-dependent effect of EPO upon motor axonal outgrowth. Local EPO signaling enhances regenerating peripheral nervous system axons in addition to its known neuroprotection. Exogenous EPO may have a therapeutic role in a large number of peripheral nerve diseases through its impact on regeneration.

  13. Nitrofurantoin and congenital abnormalities

    DEFF Research Database (Denmark)

    Czeizel, A.E.; Rockenbauer, M.; Sørensen, Henrik Toft;


    Objective: To study human teratogenic potential of oral nitrofurantoin treatment during pregnancy. Materials and Methods: Pair analysis of cases with congenital abnormalities and matched population controls in the population-based dataset of the Hungarian Case-Control Surveillance of Congenital...... or fetuses with Down’s syndrome (patient controls), 23 (2.8%) pregnant women were treated with nitrofurantoin. The above differences between population controls and cases may be connected with recall bias, because the case-control pair analysis did not indicate a teratogenic potential of nitrofurantoin use...... during the second and the third months of gestation, i.e. in the critical period for major congenital abnormalities. Conclusion: Treatment with nitrofurantoin during pregnancy does not present detectable teratogenic risk to the fetus....

  14. Axon guidance and neuronal migration research in China

    Institute of Scientific and Technical Information of China (English)


    Proper migration of neuronal somas and axonal growth cones to designated locations in the developing brain is essential for the assembly of functional neuronal circuits.Rapid progress in research of axon guidance and neuronal migration has been made in the last twenty years.Chinese researchers began their exploration in this field ten years ago and have made significant contributions in clarifying the signal transduction of axon guidance and neuronal migration.Several unique experimental approaches,including the migration assay of single isolated neurons in response to locally delivered guidance cues,have been developed by Chinese neuroscientists to investigate the molecular machinery underlying these guidance events.

  15. Myosin isoform expression in the prehensile tails of didelphid marsupials: functional differences between arboreal and terrestrial opossums. (United States)

    Rupert, J E; Schmidt, E Cordero; Moreira-Soto, A; Herrera, B Rodríguez; Vandeberg, J L; Butcher, M T


    Prehensile tails are defined as having the ability to grasp objects and are commonly used as a fifth appendage during arboreal locomotion. Despite the independent evolution of tail prehensility in numerous mammalian genera, data relating muscle structure, physiology, and function of prehensile tails are largely incomplete. Didelphid marsupials make an excellent model to relate myosin heavy chain (MHC) isoform fiber type with structure/function of caudal muscles, as all opossums have a prehensile tail and tail use varies between arboreal and terrestrial forms. Expanding on our previous work in the Virginia opossum, this study tests the hypothesis that arboreal and terrestrial opossums differentially express faster versus slower MHC isoforms, respectively. MHC isoform expression and percent fiber type distribution were determined in the flexor caudae longus (FCL) muscle of Caluromys derbianus (arboreal) and Monodelphis domestica (terrestrial), using a combination of gel electrophoresis and immunohistochemistry analyses. C. derbianus expresses three MHC isoforms (1, 2A, 2X) that are distributed (mean percentage) as 8.2% MHC-1, 2.6% 1/2A, and 89.2% 2A/X hybrid fibers. M. domestica also expresses MHC-1, 2A, and 2X, in addition to the 2B isoform, distributed as 17.0% MHC-1, 1.3% 1/2A, 9.0% 2A, 75.2% 2A/X, and 0.3% 2X/B hybrid fibers. The distribution of similar isoform fiber types differed significantly between species (P derbianus was observed to have larger cross-sectional area (CSA) for each corresponding fiber type along with a greater amount of extra-cellular matrix. An overall faster fiber type composition (and larger fibers) in the tail of an arboreal specialist supports our hypothesis, and correlates with higher muscle force required for tail hanging and arboreal maneuvering on terminal substrates. Conversely, a broader distribution of highly oxidative fibers in the caudal musculature is well suited for tail nest building/remodeling behaviors of terrestrial

  16. Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. (United States)

    Foust, Amanda; Popovic, Marko; Zecevic, Dejan; McCormick, David A


    Purkinje neurons are the output cells of the cerebellar cortex and generate spikes in two distinct modes, known as simple and complex spikes. Revealing the point of origin of these action potentials, and how they conduct into local axon collaterals, is important for understanding local and distal neuronal processing and communication. By using a recent improvement in voltage-sensitive dye imaging technique that provided exceptional spatial and temporal resolution, we were able to resolve the region of spike initiation as well as follow spike propagation into axon collaterals for each action potential initiated on single trials. All fast action potentials, for both simple and complex spikes, whether occurring spontaneously or in response to a somatic current pulse or synaptic input, initiated in the axon initial segment. At discharge frequencies of less than approximately 250 Hz, spikes propagated faithfully through the axon and axon collaterals, in a saltatory manner. Propagation failures were only observed for very high frequencies or for the spikelets associated with complex spikes. These results demonstrate that the axon initial segment is a critical decision point in Purkinje cell processing and that the properties of axon branch points are adjusted to maintain faithful transmission.

  17. [Molecular abnormalities in lymphomas]. (United States)

    Delsol, G


    Numerous molecular abnormalities have been described in lymphomas. They are of diagnostic and prognostic value and are taken into account for the WHO classification of these tumors. They also shed some light on the underlying molecular mechanisms involved in lymphomas. Overall, four types of molecular abnormalities are involved: mutations, translocations, amplifications and deletions of tumor suppressor genes. Several techniques are available to detect these molecular anomalies: conventional cytogenetic analysis, multicolor FISH, CGH array or gene expression profiling using DNA microarrays. In some lymphomas, genetic abnormalities are responsible for the expression of an abnormal protein (e.g. tyrosine-kinase, transcription factor) detectable by immunohistochemistry. In the present review, molecular abnormalities observed in the most frequent B, T or NK cell lymphomas are discussed. In the broad spectrum of diffuse large B-cell lymphomas microarray analysis shows mostly two subgroups of tumors, one with gene expression signature corresponding to germinal center B-cell-like (GCB: CD10+, BCL6 [B-Cell Lymphoma 6]+, centerine+, MUM1-) and a subgroup expressing an activated B-cell-like signature (ABC: CD10-, BCL6-, centerine-, MUM1+). Among other B-cell lymphomas with well characterized molecular abnormalies are follicular lymphoma (BCL2 deregulation), MALT lymphoma (Mucosa Associated Lymphoid Tissue) [API2-MALT1 (mucosa-associated-lymphoid-tissue-lymphoma-translocation-gene1) fusion protein or deregulation BCL10, MALT1, FOXP1. MALT1 transcription factors], mantle cell lymphoma (cycline D1 [CCND1] overexpression) and Burkitt lymphoma (c-Myc expression). Except for ALK (anaplastic lymphoma kinase)-positive anaplastic large cell lymphoma, well characterized molecular anomalies are rare in lymphomas developed from T or NK cells. Peripheral T cell lymphomas not otherwise specified are a heterogeneous group of tumors with frequent but not recurrent molecular abnormalities

  18. Dynamics of locomotor transitions from arboreal to terrestrial substrates in Verreaux's sifaka (Propithecus verreauxi). (United States)

    Wunderlich, R E; Tongen, A; Gardiner, J; Miller, C E; Schmitt, D


    Most primates are able to move with equal facility on the ground and in trees, but most use the same quadrupedal gaits in both environments. A few specialized primates, however, use a suspensory or leaping mode of locomotion when in the trees but a bipedal gait while on the ground. This is a rare behavioral pattern among mammals, and the extent to which the bipedal gaits of these primates converge and are constrained by the anatomical and neurological adaptations associated with arboreal locomotion is poorly understood. Sifakas (Propithecus), primates living only in Madagascar, are highly committed vertical clingers and leapers that also spend a substantial amount of time on the ground. When moving terrestrially sifakas use a unique bipedal galloping gait seen in no other mammals. Little research has examined the mechanics of these gaits, and most of that research has been restricted to controlled captive conditions. The energetic costs associated with leaping and bipedal galloping are unknown. This study begins to fill that gap using triaxial accelerometry to characterize and compare the dynamics of sifakas' leaping and bipedal galloping behavior. As this is a relatively novel approach, the first goal of this article is to explore the feasibility of collecting such data on free-roaming animals and attempt to automate the identification of leaping and bipedal behavior within the output. The second goal is to compare the overall accelerations of the body and to use that as an approximation of aspects of energetic costs during leaping and bipedalism. To achieve this, a lightweight accelerometer was mounted on freely moving sifakas. The resulting acceleration profiles were processed, and sequences of leaps (bouts) were automatically extracted from the waveforms with 85% accuracy. Both vector dynamic body acceleration and overall dynamic body acceleration (ODBA) were used to characterize locomotor patterns and energy expenditure during leaping and bipedalism. The

  19. Snake venomics and antivenomics of the arboreal neotropical pitvipers Bothriechis lateralis and Bothriechis schlegelii. (United States)

    Lomonte, Bruno; Escolano, José; Fernández, Julián; Sanz, Libia; Angulo, Yamileth; Gutiérrez, José María; Calvete, Juan J


    We report the comparative proteomic characterization of the venoms of two related neotropical arboreal pitvipers from Costa Rica of the genus Bothriechis, B. lateralis (side-striped palm pit viper) and B. schlegelii (eyelash pit viper). The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venom proteomes of B. lateralis and B. schlegelii comprise similar number of distinct proteins belonging, respectively, to 8 and 7 protein families. The two Bothriechis venoms contain bradykinin-potentiating peptides (BPPs), and proteins from the phospholipase A 2 (PLA 2), serine proteinase, l-amino acid oxidase (LAO), cysteine-rich secretory protein (CRISP), and Zn (2+)-dependent metalloproteinase (SVMP) families, albeit each species exhibit different relative abundances. Each venom also contains unique components, for example, snake venom vascular endothelial growth factor (svVEGF) and C-type lectin-like molecules in B. lateralis, and Kazal-type serine proteinase inhibitor-like proteins in B. schlegelii. Using a similarity coefficient, we estimate that the similarity of the venom proteins between the two Bothriechis taxa may be venom compositions, in spite of the fact that both species have evolved to adapt to arboreal habits. The major toxin families of B. lateralis and B. schlegelii are SVMP (55% of the total venom proteins) and PLA 2 (44%), respectively. Their different venom toxin compositions provide clues for rationalizing the distinct signs of envenomation caused by B. schlegelii and B. lateralis. An antivenomic study of the immunoreactivity of the Instituto Clodomiro Picado (ICP) polyvalent antivenom toward Bothriechis venoms revealed that l-amino acid oxidase and SVMPs represent the major antigenic protein species in both venoms. Our results provide a ground for

  20. Synergistic effects of fire and elephants on arboreal animals in an African savanna. (United States)

    Pringle, Robert M; Kimuyu, Duncan M; Sensenig, Ryan L; Palmer, Todd M; Riginos, Corinna; Veblen, Kari E; Young, Truman P


    Disturbance is a crucial determinant of animal abundance, distribution and community structure in many ecosystems, but the ways in which multiple disturbance types interact remain poorly understood. The effects of multiple-disturbance interactions can be additive, subadditive or super-additive (synergistic). Synergistic effects in particular can accelerate ecological change; thus, characterizing such synergies, the conditions under which they arise, and how long they persist has been identified as a major goal of ecology. We factorially manipulated two principal sources of disturbance in African savannas, fire and elephants, and measured their independent and interactive effects on the numerically dominant vertebrate (the arboreal gekkonid lizard Lygodactylus keniensis) and invertebrate (a guild of symbiotic Acacia ants) animal species in a semi-arid Kenyan savanna. Elephant exclusion alone (minus fire) had negligible effects on gecko density. Fire alone (minus elephants) had negligible effects on gecko density after 4 months, but increased gecko density twofold after 16 months, likely because the decay of fire-damaged woody biomass created refuges and nest sites for geckos. In the presence of elephants, fire increased gecko density nearly threefold within 4 months of the experimental burn; this occurred because fire increased the incidence of elephant damage to trees, which in turn improved microhabitat quality for geckos. However, this synergistic positive effect of fire and elephants attenuated over the ensuing year, such that only the main effect of fire was evident after 16 months. Fire also altered the structure of symbiotic plant-ant assemblages occupying the dominant tree species (Acacia drepanolobium); this influenced gecko habitat selection but did not explain the synergistic effect of fire and elephants. However, fire-driven shifts in plant-ant occupancy may have indirectly mediated this effect by increasing trees' susceptibility to elephant damage. Our

  1. Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb.

    Directory of Open Access Journals (Sweden)

    Rosa-Eva Huettl


    Full Text Available The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1 in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG, we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.

  2. Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb. (United States)

    Huettl, Rosa-Eva; Soellner, Heidi; Bianchi, Elisa; Novitch, Bennett G; Huber, Andrea B


    The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1) in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG), we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.

  3. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses. (United States)

    Fernald, Charles D.


    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  4. Comparison of electrophysiological findings in axonal and demyelinating Guillain-Barre syndrome.

    Directory of Open Access Journals (Sweden)

    Samira Yadegari


    Full Text Available Incidence and predominant subtype of Guillain-Barre syndrome (GBS differs geographically. Electrophysiology has an important role in early diagnosis and prediction of prognosis. This study is conducted to determine the frequent subtype of GBS in a large group of patients in Iran and compare nerve conduction studies in axonal and demyelinating forms of GBS.We retrospectively evaluated the medical records and electrodiagnostic study (EDS of 121 GBS patients who were managed in our hospital during 11 years. After regarding the exclusion criteria, patients classified as three groups: acute inflammatory demyelinating polyneuropathy (AIDP, acute motor axonal neuropathy (AMAN, and acute motor sensory axonal neuropathy (AMSAN. The most frequent subtype and then electrophysiological characteristic based on the time of EDS and their cerebrospinal fluid (CSF profile were assessed.Among 70 patients finally included in the study, 67% were men. About 63%, 23%, and 14% had AIDP, AMAN, and AMSAN, respectively. AIDP patients represented a wider range of ages compared with other groups. Higher levels of CSF protein, abnormal late responses and sural sparing were more frequent in AIDP subtype. Five AMSAN patients also revealed sural sparing. Conduction block (CB was observed in one AMAN patient. Prolonged F-wave latency was observed only in AIDP cases. CB and inexcitable sensory nerves were more frequent after 2 weeks, but reduced F-wave persistency was more prominent in the early phase.AIDP was the most frequent subtype. Although the electrophysiology and CSF are important diagnostic tools, classification should not be made based on a distinct finding.

  5. Sodium Channels, Mitochondria, and Axonal Degeneration in Peripheral Neuropathy. (United States)

    Persson, Anna-Karin; Hoeijmakers, Janneke G J; Estacion, Mark; Black, Joel A; Waxman, Stephen G


    Peripheral neuropathy results from damage to peripheral nerves and is often accompanied by pain in affected limbs. Treatment represents an unmet medical need and a thorough understanding of the mechanisms underlying axonal injury is needed. Longer nerve fibers tend to degenerate first (length-dependence), and patients carrying pathogenic mutations throughout life usually become symptomatic in mid- or late-life (time-dependence). The activity of voltage-gated sodium channels can contribute to axonal injury and sodium channel gain-of-function mutations have been linked to peripheral neuropathy. Recent studies have implicated sodium channel activity, mitochondrial compromise, and reverse-mode Na(+)/Ca(2+) exchange in time- and length-dependent axonal injury. Elucidation of molecular mechanisms underlying axonal injury in peripheral neuropathy may provide new therapeutic strategies for this painful and debilitating condition.

  6. Russia: An Abnormal Country

    Directory of Open Access Journals (Sweden)

    Steven Rosefielde


    Full Text Available Andrei Shleifer and Daniel Treisman recently rendered a summary verdict on the post Soviet Russian transition experience finding that the Federation had become a normal country with the west's assistance, and predicting that it would liberalize and develop further like other successful nations of its type. This essay demonstrates that they are mistaken on the first count, and are likely to be wrong on the second too. It shows factually, and on the norms elaborated by Pareto, Arrow and Bergson that Russia is an abnormal political economy unlikely to democratize, westernize or embrace free enterprise any time soon

  7. Abnormal ionization in sonoluminescence (United States)

    Zhang, Wen-Juan; An, Yu


    Sonoluminescence is a complex phenomenon, the mechanism of which remains unclear. The present study reveals that an abnormal ionization process is likely to be present in the sonoluminescing bubble. To fit the experimental data of previous studies, we assume that the ionization energies of the molecules and atoms in the bubble decrease as the gas density increases and that the decrease of the ionization energy reaches about 60%-70% as the bubble flashes, which is difficult to explain by using previous models. Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120002110031) and the National Natural Science Foundation of China (Grant No. 11334005).

  8. Senescent stem-galls in trees of Eremanthus erythropappus as a resource for arboreal ants

    Directory of Open Access Journals (Sweden)

    Maria Fernanda B. de Almeida


    Full Text Available Senescent stem-galls in trees of Eremanthus erythropappus as a resource for arboreal ants. Members of the dipteran families Tephritidae and Cecidomyiidae are inducers of stem-galls in Eremanthus erythropappus (DC. MacLeish (Asteraceae, a tree common in the state of Minas Gerais, Brazil. When senescent, these galls become available to other organisms, such as ants. The present study describes a community of ants having benefitted from this process of ecosystem-engineering. The colonies in question inhabit the senescent stem-galls of trees of E. erythropappus and were examined in view of answering the following questions: i whether the presence of stem-galls had any bearing on the richness, composition, or size of the ant colonies therein; and ii whether the ants displayed any preferences regarding the shape and/or size of the galls. The study was conducted in populations of E. erythropappus trees near the city of Ouro Preto, MG. A total of 227 galls were collected, 14% of which were occupied by ants, belonging to eight different species. Half of the species occupied galls of both morphotypes (fusiform and globular, although we observed a marked preference for larger, globular shapes. Overall, our results showed the galls to be an effective and abundant resource, helping to maintain the diversity of the ants in the canopy. We also observed the occurrence of outstations and polydomic nests, although an in-depth examination of the influence of galls on this type of structuring has not been investigated.

  9. Arboreal ants use the "Velcro(R principle" to capture very large prey.

    Directory of Open Access Journals (Sweden)

    Alain Dejean

    Full Text Available Plant-ants live in a mutualistic association with host plants known as "myrmecophytes" that provide them with a nesting place and sometimes with extra-floral nectar (EFN and/or food bodies (FBs; the ants can also attend sap-sucking Hemiptera for their honeydew. In return, plant-ants, like most other arboreal ants, protect their host plants from defoliators. To satisfy their nitrogen requirements, however, some have optimized their ability to capture prey in the restricted environment represented by the crowns of trees by using elaborate hunting techniques. In this study, we investigated the predatory behavior of the ant Azteca andreae which is associated with the myrmecophyte Cecropia obtusa. We noted that up to 8350 ant workers per tree hide side-by-side beneath the leaf margins of their host plant with their mandibles open, waiting for insects to alight. The latter are immediately seized by their extremities, and then spread-eagled; nestmates are recruited to help stretch, carve up and transport prey. This group ambush hunting technique is particularly effective when the underside of the leaves is downy, as is the case for C. obtusa. In this case, the hook-shaped claws of the A. andreae workers and the velvet-like structure of the underside of the leaves combine to act like natural Velcro that is reinforced by the group ambush strategy of the workers, allowing them to capture prey of up to 13,350 times the mean weight of a single worker.

  10. Genetic consequences of forest fragmentation for a highly specialized arboreal mammal--the edible dormouse.

    Directory of Open Access Journals (Sweden)

    Joanna Fietz

    Full Text Available Habitat loss and fragmentation represent the most serious extinction threats for many species and have been demonstrated to be especially detrimental for mammals. Particularly, highly specialized species with low dispersal abilities will encounter a high risk of extinction in fragmented landscapes. Here we studied the edible dormouse (Glis glis, a small arboreal mammal that is distributed throughout Central Europe, where forests are mostly fragmented at different spatial scales. The aim of this study was to investigate the effect of habitat fragmentation on genetic population structures using the example of edible dormouse populations inhabiting forest fragments in south western Germany. We genotyped 380 adult individuals captured between 2001 and 2009 in four different forest fragments and one large continuous forest using 14 species-specific microsatellites. We hypothesised, that populations in small forest patches have a lower genetic diversity and are more isolated compared to populations living in continuous forests. In accordance with our expectations we found that dormice inhabiting forest fragments were isolated from each other. Furthermore, their genetic population structure was more unstable over the study period than in the large continuous forest. Even though we could not detect lower genetic variability within individuals inhabiting forest fragments, strong genetic isolation and an overall high risk to mate with close relatives might be precursors to a reduced genetic variability and the onset of inbreeding depression. Results of this study highlight that connectivity among habitat fragments can already be strongly hampered before genetic erosion within small and isolated populations becomes evident.

  11. The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus.

    Directory of Open Access Journals (Sweden)

    Deborah M Gordon

    Full Text Available The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4-8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony's trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.

  12. Tail loss and narrow surfaces decrease locomotor stability in the arboreal green anole lizard (Anolis carolinensis). (United States)

    Hsieh, Shi-Tong Tonia


    Tails play an important role in dynamic stabilization during falling and jumping in lizards. Yet tail autotomy (the voluntary loss of an appendage) is a common mechanism used for predator evasion in these animals. How tail autotomy has an impact on locomotor performance and stability remains poorly understood. The goal of this study was to determine how tail loss affects running kinematics and performance in the arboreal green anole lizard, Anolis carolinensis. Lizards were run along four surface widths (9.5 mm, 15.9 mm, 19.0 mm and flat), before and following 75% tail autotomy. Results indicate that when perturbed with changes in surface breadth and tail condition, surface breadth tends to have greater impacts on locomotor performance than tail loss. Furthermore, while tail loss does have a destabilizing effect during regular running in these lizards, its function during steady locomotion is minimal. Instead, the tail probably plays a more active role during dynamic maneuvers that require dramatic changes in whole body orientation or center of mass trajectories.

  13. Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis (United States)

    Basu, Shibani; Maji, Priyankar; Ganguly, Jhuma


    The present study explores that the aqueous extract of the seeds of Nyctanthes arbor-tristis (aka night jasmine) is very efficient for the synthesis of stable AgNPs from aqueous solution of AgNO3. The extract acts as both reducing (from Ag+ to Ag0) and capping agent in the aqueous phase. The constituents in extract are mainly biomolecules like carbohydrates and phenolic compounds, which are responsible for the preparation of stable AgNPs within 20 min of reaction time at 25 °C using without any severe conditions. The synthesized silver nanoparticles were characterized with UV-Visible spectroscopy, FT-IR, XRD and SEM. UV-Vis spectroscopy analysis showed peak at 420 nm, which corresponds to the surface plasmon resonance of AgNPs. XRD results showed peaks at (111), (200), (220), which confirmed the presence of AgNPs with face-centered cubic structure. The uniform spherical nature of the AgNPs and size (between 50 and 80 nm) were further confirmed by SEM analysis.

  14. Thuja occidentalis (Arbor vitae: A Review of its Pharmaceutical, Pharmacological and Clinical Properties

    Directory of Open Access Journals (Sweden)

    Belal Naser


    Full Text Available Arbor vitae (Thuja occidentalis L. is a native European tree widely used in homeopathy and evidence-based phytotherapy. Many reviews and monographs have been published on the herbal substance's description, mode of action and clinical use. However, no comprehensive evidence-based review is available. Therefore, our aim was to search MEDLINE databases and survey manufacturers for further details or unpublished data. This review presents the botany, ethnobotany and phytochemistry, especially the different contents of essential oil (Thujone in relation to different extraction procedures of this medicinal plant. Thuja's antiviral action and immunopharmacological potential, such as stimulatory and co-stimulatory effects on cytokine and antibody production and activation of macrophages and other immunocompetent cells, have been evaluated in numerous in vitro and in vivo investigations. Although no controlled trials have been conducted on Thuja occ alone, many clinical studies have been performed with a herbal medicinal product containing a special extract of Thuja occ and other immunostimulants, demonstrating its therapeutic efficacy and safety in respiratory tract infections.

  15. Effects of landscape matrix on population connectivity of an arboreal mammal, Petaurus breviceps. (United States)

    Malekian, Mansoureh; Cooper, Steven J B; Saint, Kathleen M; Lancaster, Melanie L; Taylor, Andrea C; Carthew, Susan M


    Ongoing habitat loss and fragmentation is considered a threat to biodiversity as it can create small, isolated populations that are at increased risk of extinction. Tree-dependent species are predicted to be highly sensitive to forest and woodland loss and fragmentation, but few studies have tested the influence of different types of landscape matrix on gene flow and population structure of arboreal species. Here, we examine the effects of landscape matrix on population structure of the sugar glider (Petaurus breviceps) in a fragmented landscape in southeastern South Australia. We collected 250 individuals across 12 native Eucalyptus forest remnants surrounded by cleared agricultural land or exotic Pinus radiata plantations and a large continuous eucalypt forest. Fifteen microsatellite loci were genotyped and analyzed to infer levels of population differentiation and dispersal. Genetic differentiation among most forest patches was evident. We found evidence for female philopatry and restricted dispersal distances for females relative to males, suggesting there is male-biased dispersal. Among the environmental variables, spatial variables including geographic location, minimum distance to neighboring patch, and degree of isolation were the most important in explaining genetic variation. The permeability of a cleared agricultural matrix to dispersing gliders was significantly higher than that of a pine matrix, with the gliders dispersing shorter distances across the latter. Our results added to previous findings for other species of restricted dispersal and connectivity due to habitat fragmentation in the same region, providing valuable information for the development of strategies to improve the connectivity of populations in the future.

  16. Guerrerostrongylus marginalis n. sp. (Trichostrongyloidea: Heligmonellidae from the Guianan arboreal mouse (Oecomys auyantepui from French Guiana

    Directory of Open Access Journals (Sweden)

    Weirich Jessica M.


    Full Text Available Based on the number and arrangement of cuticular ridges and configuration of the dorsal ray, nematode specimens collected from the small intestine of eight Guianan arboreal mice, Oecomys auyantepui (Rodentia: Sigmodontinae, in French Guiana are herein described and characterized. Guerrerostrongylus marginalis n. sp. (Heligmosomoidea: Heligmonellidae shows a synlophe consisting of more than 40 ridges and a unique bursal arrangement with ray 8 (externo-dorsal extending to the edge of the bursal margin, and appearing more prominent than the dorsal ray. This bursal arrangement is common in members of Hassalstrongylus Durette-Desset, 1971, but uncommon in the other four species in Guerrerostrongylus Sutton & Durette-Desset, 1991. The placement of the new species in Guerrerostrongylus is based on the number and nature of cuticular ridges and the ray arrangement and symmetry of the caudal bursa. Diagnostic characteristics of Guerrerostrongylus marginalis n. sp. include the length of ray 8 relative to bursal margin, the relative size of the spicules and vestibule, and the number of eggs in the uterus. We propose an amendment to the generic diagnosis of Guerrerostrongylus to modify the characters of the long rays 6 (postero-lateral, rays 8 (externo-dorsal, and dorsal ray as diagnostic, since at least ray 6 appears to be short in two different species in the genus, namely G. ulysi Digiani, Notarnicola & Navone, 2012 and G. marginalis n. sp.

  17. Citrus mealybug (Hemiptera: Pseudococcidae) movement and population dynamics in an arbor-trained vineyard. (United States)

    Cid, M; Pereiro, S; Cabaleiro, C; Segura, A


    The citrus mealybug, Planococcus citri (Risso) (Hemiptera: Pseudococcidae), is the main grapevine pest in vineyards in some countries, such as Spain and Brazil. In Galician vineyards (northwestern Spain), mealybug population levels are low because the accumulated degree-days are lower than in other grapevine-growing areas. The main problem caused by mealybugs is the transmission of viruses, even at low infestation levels. The active period of citrus mealybug in the study vineyard lasted from July until December, with an important movement peak at the end of July and August and a lower peak in November. The mealybug mainly moved upward along arbor-trained plants, and there were no important downward movements at the end of the season as has been described for other grapevine mealybugs. The mealybugs were normally restricted to the woody organs and were only present on leaves, branches, and green canes (always close to woody parts) in plants with high infestations. The movement of mealybugs between plants does not seem to take place by contact between green organs. Passive aerial transport and movement of pruning remains may play an important role in mealybug movement and thus in spread of the virus. The number of mealybugs carrying Grapevine leafroll-associated virus 3 (GLRaV-3) was found to represent approximately 75% of mealybugs caught in a GLRaV-3 infected vineyard.

  18. Inventory of epiphytic macrolichens on trees used in urban arborization in Curitiba, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Lucas Nogueira


    Full Text Available The floristic composition of epiphytic macrolichens on the following tree species used in urban arborization in Curitiba was analysed: Acer negundo, Lagerstroemia indica, Ligustrum lucidum, Parapiptadenia rigida, Cassia leptophylla, Syagrus romanzoffi ana, Tabebuia alba, Tabebuia chrysotricha, Tabebuia heptaphylla, and Tipuana tipu. A total of 84 species are reported, from which 14 are recorded for the fi rst time in Paraná State and Flavoparmelia soredians is recorded for the fi rst time in Brazil. Parmeliaceae was the best represented family, with 45 species distributed in nine genera, followed by Physciaceae with 24 species in six genera. The native tree species showed greater lichen species richness and a higher number of exclusive lichen species than the exotic tree species. The highest lichen species richness was found in Tabebuia chrysotricha with 62 taxa, followed by Syagrus romanzoffi ana with 47. Candelaria concolor, Canoparmelia crozalsiana, Canoparmelia texana, Dirinaria applanata, Dirinaria confl uens, Heterodermia obscurata, Myelochroa lindmanii, Parmotrema pilosum, Physcia poncinsii, Punctelia borreri, Punctelia reddenda, Pyxine subcinerea, Ramalina celastri and Ramalina peruviana are suggested as macrolichen species with the greatest potential for future biomonitoring studies of air quality in Curitiba.

  19. Mitochondrial fission protein Drp1 regulates mitochondrial transport and dendritic arborization in cerebellar Purkinje cells. (United States)

    Fukumitsu, Kansai; Hatsukano, Tetsu; Yoshimura, Azumi; Heuser, John; Fujishima, Kazuto; Kengaku, Mineko


    Mitochondria dynamically change their shape by repeated fission and fusion in response to physiological and pathological conditions. Recent studies have uncovered significant roles of mitochondrial fission and fusion in neuronal functions, such as neurotransmission and spine formation. However, the contribution of mitochondrial fission to the development of dendrites remains controversial. We analyzed the function of the mitochondrial fission GTPase Drp1 in dendritic arborization in cerebellar Purkinje cells. Overexpression of a dominant-negative mutant of Drp1 in postmitotic Purkinje cells enlarged and clustered mitochondria, which failed to exit from the soma into the dendrites. The emerging dendrites lacking mitochondrial transport remained short and unstable in culture and in vivo. The dominant-negative Drp1 affected neither the basal respiratory function of mitochondria nor the survival of Purkinje cells. Enhanced ATP supply by creatine treatment, but not reduced ROS production by antioxidant treatment, restored the hypomorphic dendrites caused by inhibition of Drp1 function. Collectively, our results suggest that Drp1 is required for dendritic distribution of mitochondria and thereby regulates energy supply in growing dendritic branches in developing Purkinje cells.

  20. Construction of arboreal nests by brown-nosed coatis, Nasua nasua (Carnivora: Procyonidae in the Brazilian Pantanal

    Directory of Open Access Journals (Sweden)

    Natalie Olifiers


    Full Text Available The construction of arboreal nests is rare among mammals in the order Carnivora. However, coatis (Procyonidae: Nasua Storr, 1780 build arboreal nests that are used for resting or birthing. Here we describe Nasua nasua (Linnaeus, 1766 nests located during a telemetry study of coatis in the Brazilian Pantanal. Coati nests were all "bird-like", that is, open nests having a semispherical shape. Nests were constructed of twigs, branches, and lianas sometimes interlaced with leaves. Nest volume was 30-50 cm³ and average nest height was approximately 9.5 m. Nests were found in open "cerrado" vegetation, along forest edges, or in interior "cordilheiras" forest. The reasons why coatis build such nests are unclear, but may relate to inter or intraspecific competition for nesting sites, litter size, thermoregulation, and predation avoidance.

  1. Modality-Specific Axonal Regeneration: Towards selective regenerative neural interfaces

    Directory of Open Access Journals (Sweden)

    Parisa eLotfi


    Full Text Available Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed submodality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type-specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF and neurotrophin-3 (NT-3, to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5 fold compared to that in saline or NT-3, whereas the number of branches increased 3 fold in the NT-3 channels. These results were confirmed using a 3-D Y-shaped in vitro assay showing that the arm containing NGF was able to entice a 5-fold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a Y-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted towards the sural nerve, while N-52+ large diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

  2. Electrophysiology of a nonmyelinated glutamatergic axon in rat hippocampus


    Alle, Henrik


    The common theme of the presented work on the nonmyelinated hippocampal mossy fiber (the axon of the granule cell in the dentate gyrus) is the generation of subthreshold and suprathreshold electrical signals. Subthreshold depolarizations in the axon can occur due to passive propagation of excitatory postsynaptic potentials, which are generated in the somato-dendritic domain. The remote passive propagation of these comparatively slow but transient signals is due to a space constant...

  3. 6-Sulphated chondroitins have a positive influence on axonal regeneration.

    Directory of Open Access Journals (Sweden)

    Rachel Lin

    Full Text Available Chondroitin sulphate proteoglycans (CSPGs upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs. Chondroitin 6-sulphotransferase-1 (C6ST-1 is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs. Using C6ST-1 knockout mice (KO, we studied post-injury changes in chondroitin sulphotransferase (CSST expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury.

  4. Fast and reliable identification of axons, axon initial segments and dendrites with local field potential recording

    DEFF Research Database (Denmark)

    Petersen, Anders V.; Johansen, Emil O.; Perrier, Jean-Francois


    The axon initial segment (AIS) is an essential neuronal compartment. It is usually where action potentials are initiated. Recent studies demonstrated that the AIS is a plastic structure that can be regulated by neuronal activity and by the activation of metabotropic receptors. Studying the AIS...... of neurons, we can detect sinks caused by inward currents flowing across the membrane. We determine the location of the AIS by comparing the timing of these events with the action potential. We demonstrate that this method allows the unequivocal identification of the AIS of different types of neurons from...

  5. Diversity of Mitochondrial Pathology in a Mouse Model of Axonal Degeneration in Synucleinopathies

    Directory of Open Access Journals (Sweden)

    Akio Sekigawa


    Full Text Available There is mounting evidence for a role of mitochondrial dysfunction in the pathogenesis of α-synucleinopathies such as Parkinson's disease (PD and dementia with Lewy bodies (DLB. In particular, recent studies have demonstrated that failure of mitochondrial quality control caused by loss of function of the PTEN-induced kinase 1 (PINK1, PARK6 Parkin (PARK2 pathway may be causative in some familial PD. In sporadic PD, α-synuclein aggregation may interfere with mitochondrial function, and this might be further exacerbated by leucine-rich repeat kinase 2 (LRRK2. The majority of these findings have been obtained in Drosophila and cell cultures, whereas the objective of this paper is to discuss our recent results on the axonal pathology of brains derived from transgenic mice expressing α-synuclein or DLB-linked P123H β-synuclein. In line with the current view of the pathogenesis of sporadic PD, mitochondria abnormally accumulated in α-synuclein/LRRK2-immunopositive axonal swellings in mice expressing α-synuclein. Curiously, neither mitochondria nor LRRK2 was present in the swellings of mice expressing P123H β-synuclein, suggesting that α- and β-synuclein might play differential roles in the mitochondrial pathology of α-synucleinopathies.

  6. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons

    DEFF Research Database (Denmark)

    Alvarez Herrero, Susana; Pinchenko, Volodymyr; Klein, Dennis


    reversible reduction of the electrically evoked muscle response and of the clinical function as indicated by the partial recovery of function at rotor-rod measurements. As a consequence of these findings of partially reversible dysfunction, we propose that the Na(V)1.8 voltage gated sodium channel should...... by pharmacologic block using the subtype-selective Na(V)1.8 blocker A-803467 and chronically in Na(V)1.8 knock-outs. We found that in the context of dysmyelination, abnormal potassium ion currents and membrane depolarization, the ectopic Na(V)1.8 channels further impair the motor axon excitability in protein zero...

  7. Overexpression of Fyn tyrosine kinase causes abnormal development of primary sensory neurons in Xenopus laevis embryos. (United States)

    Saito, R; Fujita, N; Nagata, S


    The expression and function of the Src family protein tyrosine kinase Fyn in Xenopus laevis embryos have been examined. In situ hybridization analysis demonstrated nervous system-specific expression of Fyn mRNA in tail-bud embryos. However, a class of primary sensory neurons; that is, Rohon-Beard (RB) neurons, which is positive for immunoglobulin superfamily cell adhesion molecules (CAM), neural cell adhesion molecule (N-CAM) and contactin, is devoid of Fyn expression. Injection of Fyn mRNA into one of the blastomeres at the 2-cell stage led to overexpression of Fyn in the injected half of the tail-bud embryos. Immunolabeling of the embryos with anti-HNK-1 antibody revealed that the peripheral axons of RB neurons were partially misguided and bound to each other to form abnormal subcutaneous fascicles. Similar abnormality was induced by injection of the Fyn overexpression vector. The incidence of abnormality appeared dose-dependent, being 68-92% of the injected embryos at 50-400 pg of mRNA. Co-injection of the contactin antisense vector depleted contactin mRNA accumulation without affecting Fyn overexpression and reduced the incidence of the abnormal RB-cell phenotype. However, the N-CAM antisense was ineffective in reducing this abnormality. These results suggest that Fyn can modify signals regulating axonal guidance or fasciculation in the developing X. laevis nervous system and that contactin may affect this action of Fyn.

  8. Axon-glia interaction and membrane traffic in myelin formation. (United States)

    White, Robin; Krämer-Albers, Eva-Maria


    In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasizing the central role of the Src-family kinase Fyn during central nervous system (CNS) myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of proteolipid protein (PLP) transport by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  9. Axon morphology at the lamina cribrosa in monkey eyes. (United States)

    Radius, R L; Klewin, K M


    The eyes of 8 monkeys (Aotus trivirgatus) were studied. The mean cross-section area and the least diameter of axon cylinders were calculated from measurements made by computer assisted planimetry of electron photomicrographs of sections through the optic nerve head at the level of the lamina cribrosa. The density of intrabundle connective tissue and glial cell elements in nerve fiber bundles was also calculated. The mean cross-section area and minimum diameter of axons in the temporal part were less than in the nasal part of the nerve. The values for axons in the superior and inferior parts of the nerve were intermediate. A similar pattern of increasing dimensions was seen in axons from the more axial nerve compared to neurons in the more circumferential nerve sectors. The density of the intrabundle, nonaxonal tissue elements did not differ significantly across the nerve. Although axon dimensions may play some role in defining the vulnerability of neuronal tissue to a pressure insult, the results of this anatomic investigation do not support the hypothesis that differences in axonal distribution by size across the nerve section define the regional vulnerability of the nerve head to elevated intraocular pressure.

  10. Axon-glia interaction and membrane traffic in myelin formation

    Directory of Open Access Journals (Sweden)

    Robin eWhite


    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  11. Perch size and structure have species-dependent effects on the arboreal locomotion of rat snakes and boa constrictors. (United States)

    Jayne, Bruce C; Herrmann, Michael P


    Arboreal habitats create diverse challenges for animal locomotion, but the numerical and phylogenetic diversity of snakes that climb trees suggest that their overall body plan is well suited for this task. Snakes have considerable diversity of axial anatomy, but the functional consequences of this diversity for arboreal locomotion are poorly understood because of the lack of comparative data. We simulated diverse arboreal surfaces to test whether environmental structure had different effects on the locomotion of snakes belonging to two distantly related species with differences in axial musculature and stoutness. On most cylindrical surfaces lacking pegs, both species used concertina locomotion, which always involved periodic stopping and gripping but was kinematically distinct in the two species. On horizontal cylinders that were a small fraction of body diameter, the boa constrictors used a balancing form of lateral undulation that was not observed for rat snakes. For all snakes the presence of pegs elicited lateral undulation and enhanced speed. For both species maximal speeds decreased with increased incline and were greatest on cylinders with intermediate diameters that approximated the diameter of the snakes. The frictional resistances that we studied had small effects compared with those of cylinder diameter, incline and the presence of pegs. The stouter and more muscular boa constrictors were usually faster than the rat snakes when using the gripping gait, whereas rat snakes were faster when using lateral undulation on the surfaces with pegs. Thus, variation in environmental structure had several highly significant effects on locomotor mode, performance and kinematics that were species dependent.


    Directory of Open Access Journals (Sweden)

    Anuj Modi


    Full Text Available Objective: To obtain a systematic record of the relative antioxidant activity of flavonoid and phenolic contents of Luffa echinata Roxb fruit and Nyctanthus arbor-tristis leaves extracts.Methods: Phenolic and flavonoid content were determined by using gallic acid  and quercetin as standard, antioxidant properties were evaluated by the methods, namely the Trolox equivalent antioxidant capacity assay (TEAC, Oxygen radical absorbance capacity (ORAC Assay and DPPH free radical scavenging activity assay.Results: Total phenolic content were found 76.34±0.44 and 45.53±0.65 mg/g, while flavonoid contents were found 65.98±0.83 and 34.92±0.76 mg/g in Luffa echinata Roxb and Nyctanthus arbor-tristis respectively. In the Trolox equivalent antioxidant capacity assay, TEAC value were found 0.34 mmole/g and 0.28 mmole/g, while in Oxygen radical absorbance capacity assay, ORAC value was found 253.7m moles TE #/ g and 221.6 m moles TE #/ g, where as DPPH free radical scavenging activity assay showed IC50 value 188±0.87 and 176±0.68 for Luffa echinata Roxb and Nyctanthus arbor-tristis extracts. Conclusion: The present studies suggest that both the plants have moderate to potent antioxidant activity.

  13. Ultrastructural observation of effect of moderate hypothermia on axonal damage in an animal model of diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    孙晓川; 唐文渊; 郑履平


    Objective: To investigate the effect of moderate hypothermia on responses of axonal cytoskeleton to axonal injury in the acute stage of injury. Methods: Of fifteen adult guinea pigs, twelve animals were subjected to stretch injury to the right optic nerves and divided into the normothermic group (n=6) in which the animal's core temperature was maintained at 36.0-37.5℃ and the hypothermia group (n=6) in which the core temperature was reduced to 32.0-32.5℃ after stretch injury. Remaining three animals sustained no injury to the right optic nerves and served as control group. Half of injured animals (n=3) of either normothermic group or hypothermic group were killed at either 2 hours or 4 hours after injury. The ultrastructural changes of axonal cytoskeleton of the right optic nerve fibers from the animals were examined under a transmission electron microscope and analyzed by quantitative analysis with a computer image analysis system. Results: At 2 hours after stretch injury, there was a significant reduction in the mean number of microtubules (P<0.001), and a significant increase in the mean intermicrotubule spacing (P<0.05 or P<0.01) in axons of all sizes in normothermic animals. The mean number of neurofilaments also decreased statistically (P<0.01) in large and medium subgroups of axons in the same experimental group at 2 hours. By 4 hours, the large subgroup of axons in normothermic animals still demonstrated a significant decline in the mean number of microtubules (P<0.01) and an increase in the mean intermicrotubule spacing (P<0.05), while the medium and small subgroups of axons displayed a significant increase in the mean number of neurofilaments (P<0.05) and reduction in the mean interneurofilament spacing (P<0.05). On the contrary, either the mean number of microtubules and the mean intermicrotubule spacing, or the mean number of neurofilaments and interneurofilament spacing in axons of all sizes in hypothermic stretch-injured animals was not

  14. White matter involvement after TBI: Clues to axon and myelin repair capacity. (United States)

    Armstrong, Regina C; Mierzwa, Amanda J; Marion, Christina M; Sullivan, Genevieve M


    Impact-acceleration forces to the head cause traumatic brain injury (TBI) with damage in white matter tracts comprised of long axons traversing the brain. White matter injury after TBI involves both traumatic axonal injury (TAI) and myelin pathology that evolves throughout the post-injury time course. The axon response to initial mechanical forces and secondary insults follows the process of Wallerian degeneration, which initiates as a potentially reversible phase of intra-axonal damage and proceeds to an irreversible phase of axon fragmentation. Distal to sites of axon disconnection, myelin sheaths remain for prolonged periods, which may activate neuroinflammation and inhibit axon regeneration. In addition to TAI, TBI can cause demyelination of intact axons. These evolving features of axon and myelin pathology also represent opportunities for repair. In experimental TBI, demyelinated axons exhibit remyelination, which can serve to both protect axons and facilitate recovery of function. Myelin remodeling may also contribute to neuroplasticity. Efficient clearance of myelin debris is a potential target to attenuate the progression of chronic pathology. During the early phase of Wallerian degeneration, interventions that prevent the transition from reversible damage to axon disconnection warrant the highest priority, based on the poor regenerative capacity of axons in the CNS. Clinical evaluation of TBI will need to address the challenge of accurately detecting the extent and stage of axon damage. Distinguishing the complex white matter changes associated with axons and myelin is necessary for interpreting advanced neuroimaging approaches and for identifying a broader range of therapeutic opportunities to improve outcome after TBI.

  15. Patterns and distribution of presynaptic and postsynaptic elements within serial electron microscopic reconstructions of neuronal arbors from the medicinal leech Hirudo verbana. (United States)

    Pipkin, Jason E; Bushong, Eric A; Ellisman, Mark H; Kristan, William B


    Microscale connectomics involves the large-scale acquisition of high-resolution serial electron micrographs from which neuronal arbors can be reconstructed and synapses can be detected. In addition to connectivity information, these data sets are also rich with structural information, including vesicle types, number of postsynaptic partners at a given presynaptic site, and spatial distribution of synaptic inputs and outputs. This study uses serial block-face scanning electron microscopy (EM) to collect two volumes of serial EM data from ganglia of the medicinal leech. For the first volume, we sampled a small fraction of the neuropil belonging to an adult ganglion. From this data set we measured the proportion of arbors that contained vesicles and the types of vesicles contained and developed criteria to identify synapses and to measure the number of apparent postsynaptic partners in apposition to presynaptic boutons. For the second data set, we sampled an entire juvenile ganglion, which included the somata and arbors of all the neurons. We used this data set to placd our findings from mature tissue in the context of fully reconstructed arbors and to explore the spatial distribution of synaptic inputs and outputs on these arbors. We observed that some neurons segregated their arbors into input only and mixed input/output zones, that other neurons contained exclusively mixed input/output zones, and that still others contained only input zones. These results provide the groundwork for future behavioral studies. J. Comp. Neurol. 524:3677-3695, 2016. © 2016 Wiley Periodicals, Inc.

  16. Changes in species diversity of arboreal spiders in Mexican coffee agroecosystems: untangling the web of local and landscape influences driving diversity. (United States)

    Hajian-Forooshani, Zachary; Gonthier, David J; Marín, Linda; Iverson, Aaron L; Perfecto, Ivette


    Agricultural intensification is implicated as a major driver of global biodiversity loss. Local management and landscape scale factors both influence biodiversity in agricultural systems, but there are relatively few studies to date looking at how local and landscape scales influence biodiversity in tropical agroecosystems. Understanding what drives the diversity of groups of organisms such as spiders is important from a pragmatic point of view because of the important biocontrol services they offer to agriculture. Spiders in coffee are somewhat enigmatic because of their positive or lack of response to agricultural intensification. In this study, we provide the first analysis, to our knowledge, of the arboreal spiders in the shade trees of coffee plantations. In the Soconusco region of Chiapas, Mexico we sampled across 38 sites on 9 coffee plantations. Tree and canopy connectedness were found to positively influence overall arboreal spider richness and abundance. We found that different functional groups of spiders are responding to different local and landscape factors, but overall elevation was most important variable influencing arboreal spider diversity. Our study has practical management applications that suggest having shade grown coffee offers more suitable habitat for arboreal spiders due to a variety of the characteristics of the shade trees. Our results which show consistently more diverse arboreal spider communities in lower elevations are important in light of looming global climate change. As the range of suitable elevations for coffee cultivation shrinks promoting arboreal spider diversity will be important in sustaining the viability of coffee.

  17. Changes in species diversity of arboreal spiders in Mexican coffee agroecosystems: untangling the web of local and landscape influences driving diversity

    Directory of Open Access Journals (Sweden)

    Zachary Hajian-Forooshani


    Full Text Available Agricultural intensification is implicated as a major driver of global biodiversity loss. Local management and landscape scale factors both influence biodiversity in agricultural systems, but there are relatively few studies to date looking at how local and landscape scales influence biodiversity in tropical agroecosystems. Understanding what drives the diversity of groups of organisms such as spiders is important from a pragmatic point of view because of the important biocontrol services they offer to agriculture. Spiders in coffee are somewhat enigmatic because of their positive or lack of response to agricultural intensification. In this study, we provide the first analysis, to our knowledge, of the arboreal spiders in the shade trees of coffee plantations. In the Soconusco region of Chiapas, Mexico we sampled across 38 sites on 9 coffee plantations. Tree and canopy connectedness were found to positively influence overall arboreal spider richness and abundance. We found that different functional groups of spiders are responding to different local and landscape factors, but overall elevation was most important variable influencing arboreal spider diversity. Our study has practical management applications that suggest having shade grown coffee offers more suitable habitat for arboreal spiders due to a variety of the characteristics of the shade trees. Our results which show consistently more diverse arboreal spider communities in lower elevations are important in light of looming global climate change. As the range of suitable elevations for coffee cultivation shrinks promoting arboreal spider diversity will be important in sustaining the viability of coffee.

  18. A Rare Stapes Abnormality

    Directory of Open Access Journals (Sweden)

    Hala Kanona


    Full Text Available The aim of this study is to increase awareness of rare presentations, diagnostic difficulties alongside management of conductive hearing loss and ossicular abnormalities. We report the case of a 13-year-old female reporting progressive left-sided hearing loss and high resolution computed tomography was initially reported as normal. Exploratory tympanotomy revealed an absent stapedius tendon and lack of connection between the stapes superstructure and footplate. The footplate was fixed. Stapedotomy and stapes prosthesis insertion resulted in closure of the air-bone gap by 50 dB. A review of world literature was performed using MedLine. Middle ear ossicular discontinuity can result in significant conductive hearing loss. This can be managed effectively with surgery to help restore hearing. However, some patients may not be suitable or decline surgical intervention and can be managed safely conservatively.

  19. Atomic Force Microscopy Reveals Important Differences in Axonal Resistance to Injury (United States)

    Magdesian, Margaret H.; Sanchez, Fernando S.; Lopez, Monserratt; Thostrup, Peter; Durisic, Nela; Belkaid, Wiam; Liazoghli, Dalinda; Grütter, Peter; Colman, David R.


    Axonal degeneration after traumatic brain injury and nerve compression is considered a common underlying cause of temporary as well as permanent disability. Because a proper functioning of neural network requires phase coherence of all components, even subtle changes in circuitry may lead to network failure. However, it is still not possible to determine which axons will recover or degenerate after injury. Several groups have studied the pressure threshold for axonal injury within a nerve, but difficulty accessing the injured region; insufficient imaging methods and the extremely small dimensions involved have prevented the evaluation of the response of individual axons to injury. We combined microfluidics with atomic force microscopy and in vivo imaging to estimate the threshold force required to 1), uncouple axonal transport without impairing axonal survival, and 2), compromise axonal survival in both individual and bundled axons. We found that rat hippocampal axons completely recover axonal transport with no detectable axonal loss when compressed with pressures up to 65 ± 30 Pa for 10 min, while dorsal root ganglia axons can resist to pressures up to 540 ± 220 Pa. We investigated the reasons for the differential susceptibility of hippocampal and DRG axons to mechanical injury and estimated the elasticity of live axons. We found that dorsal root ganglia axons have a 20% lower elastic modulus than hippocampal axons. Our results emphasize the importance of the integrity of the axonal cytoskeleton in deciding the axonal fate after damage and open up new avenues to improve injury diagnosis and to identify ways to protect axons. PMID:22947856

  20. Axonal synapses utilize multiple synaptic ribbons in the mammalian retina.

    Directory of Open Access Journals (Sweden)

    Hong-Lim Kim

    Full Text Available In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.


    Directory of Open Access Journals (Sweden)

    Abhijeet R. Bhalerao


    Full Text Available Aqueous Methanolic extracts of Nyctanthes Arbor tristis and Maharasnadi ghan were studied for a  inflammation   parameter using   carrageenin induced hind paw edema   and cotton pellet granuloma . The natural plant was screened for acute toxicity and it did not show any toxic or deleterious effects indicating low toxicity of the extract even at high doses at two different dose levels. In carrageenin induced hind paw edema a  significant reduction in paw volume was observed  as  compared  to  control  group  whereas  in  cotton  pellet  granuloma  model  marked inhibition in granuloma formation, reduction in the elevated levels of serum lysosomal enzymes (SGPT, SGOT, and ALP and lipid peroxidation was noted as compared to control group. The extracts exhibited profound anti-inflammatory activity in both acute and subacute animal models warranting further  investigations to establish its anti-inflammatory potential. The activity was thought  due  to  flavonoids  which  might  be  present  in  the  formulation  which  could  play  a significant role in preventing the release of histamine, leukotreins and prostaglandins. In future the extract needs to be studied for cellular line models of inflammation.

  2. Quadrupedal locomotor performance in two species of arboreal squirrels: predicting energy savings of gliding. (United States)

    Flaherty, Elizabeth A; Ben-David, Merav; Smith, Winston P


    Gliding allows mammals to exploit canopy habitats of old-growth forests possibly as a means to save energy. To assess costs of quadrupedal locomotion for a gliding arboreal mammal, we used open-flow respirometry and a variable-speed treadmill to measure oxygen consumption and to calculate cost of transport, excess exercise oxygen consumption, and excess post-exercise oxygen consumption for nine northern flying squirrels (Glaucomys sabrinus) and four fox squirrels (Sciurus niger). Our results indicate that oxygen consumption during exercise by flying squirrels was 1.26-1.65 times higher than predicted based on body mass, and exponentially increased with velocity (from 0.84 ± 0.03 ml O(2) kg(-1) s(-1) at 0.40 m s(-1) to 1.55 ± 0.03 ml O(2) kg(-1) s(-1) at 0.67 m s(-1)). Also, cost of transport in flying squirrels increased with velocity, although excess exercise oxygen consumption and excess post-exercise oxygen consumption did not. In contrast, oxygen consumption during exercise for fox squirrels was similar to predicted, varying from 0.51 (±0.02) ml O(2) kg(-1) s(-1) at 0.63 m s(-1) to 0.54 (±0.03) ml O(2) kg(-1) s(-1) at 1.25 m s(-1). In addition, the cost of transport for fox squirrels decreased with velocity, while excess exercise oxygen consumption and excess post-exercise oxygen consumption did not. Collectively, these observations suggest that unlike fox squirrels, flying squirrels are poorly adapted to prolonged bouts of quadrupedal locomotion. The evolution of skeletal adaptations to climbing, leaping, and landing and the development of a gliding membrane likely has increased the cost of quadrupedal locomotion by >50% while resulting in energy savings during gliding and reduction in travel time between foraging patches.

  3. Enhancement of basolateral amygdaloid neuronal dendritic arborization following Bacopa monniera extract treatment in adult rats

    Directory of Open Access Journals (Sweden)

    Venkata Ramana Vollala


    Full Text Available OBJECTIVE: In the ancient Indian system of medicine, Ayurveda, Bacopa monniera is classified as Medhya rasayana, which includes medicinal plants that rejuvenate intellect and memory. Here, we investigated the effect of a standardized extract of Bacopa monniera on the dendritic morphology of neurons in the basolateral amygdala, a region that is concerned with learning and memory. METHODS: The present study was conducted on 2¹/2-month-old Wistar rats. The rats were divided into 2-, 4- and 6-week treatment groups. Rats in each of these groups were further divided into 20 mg/kg, 40 mg/kg and 80 mg/kg dose groups (n = 8 for each dose. After the treatment period, treated rats and age-matched control rats were subjected to spatial learning (T-maze and passive avoidance tests. Subsequently, these rats were killed by decapitation, the brains were removed, and the amygdaloid neurons were impregnated with silver nitrate (Golgi staining. Basolateral amygdaloid neurons were traced using camera lucida, and dendritic branching points (a measure of dendritic arborization and dendritic intersections (a measure of dendritic length were quantified. These data were compared with the data from the age-matched control rats. RESULTS: The results showed an improvement in spatial learning performance and enhanced memory retention in rats treated with Bacopa monniera extract. Furthermore, a significant increase in dendritic length and the number of dendritic branching points was observed along the length of the dendrites of the basolateral amygdaloid neurons of rats treated with 40 mg/kg and 80 mg/kg of Bacopa monniera (BM for longer periods of time (i.e., 4 and 6 weeks. CONCLUSION: We conclude that constituents present in Bacopa monniera extract have neuronal dendritic growth-stimulating properties.

  4. Bacterial associates of arboreal ants and their putative functions in an obligate ant-plant mutualism. (United States)

    Eilmus, Sascha; Heil, Martin


    Bacterial communities are highly diverse and have great ecological importance. In the present study, we used an in silico analysis of terminal restriction fragments (tRF) to characterize the bacterial community of the plant ant Pseudomyrmex ferrugineus. This species is an obligate inhabitant of Acacia myrmecophytes and feeds exclusively on plant-derived food sources. Ants are the dominant insect group in tropical rain forests. Associations of ants with microbes, which contribute particularly to the ants' nitrogen nutrition, could allow these insects to live on mostly or entirely plant-based diets and could thus contribute to the explanation of the high abundances that are reached by tropical ants. We found tRF patterns representing at least 30 prokaryotic taxa, of which the Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Planctomycetes, Proteobacteria, and Spirochaetes comprised 93%. Because most bacterial taxa were found in all ant-derived samples studied and because the bacteria detected on the ants' host plant revealed little overlap with this community, we regard our results as reliably representing the bacterial community that is associated with P. ferrugineus. Genera with a likely function as ant symbionts were Burkholderia, Pantoea, Weissella, and several members of the Enterobacteriaceae. The presence of these and various other groups was confirmed via independent PCR and cultivation approaches. Many of the bacteria that we detected belong to purportedly N-fixing taxa. Bacteria may represent important further partners in ant-plant mutualisms, and their influences on ant nutrition can contribute to the extraordinary abundance and evolutionary success of tropical arboreal ants.

  5. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas (United States)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.


    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  6. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. (United States)

    Lopez-Verrilli, María Alejandra; Picou, Frederic; Court, Felipe A


    Axonal regeneration in the peripheral nervous system is greatly supported by Schwann cells (SCs). After nerve injury, SCs dedifferentiate to a progenitor-like state and efficiently guide axons to their original target tissues. Contact and soluble factors participate in the crosstalk between SCs and axons during axonal regeneration. Here we show that dedifferentiated SCs secrete nano-vesicles known as exosomes which are specifically internalized by axons. Surprisingly, SC-derived exosomes markedly increase axonal regeneration in vitro and enhance regeneration after sciatic nerve injury in vivo. Exosomes shift the growth cone morphology to a pro-regenerating phenotype and decrease the activity of the GTPase RhoA, involved in growth cone collapse and axon retraction. Altogether, our work identifies a novel mechanism by which SCs communicate with neighboring axons during regenerative processes. We propose that SC exosomes represent an important mechanism by which these cells locally support axonal maintenance and regeneration after nerve damage.

  7. Subtypes of GABAergic neurons project axons in the neocortex

    Directory of Open Access Journals (Sweden)

    Shigeyoshi Higo


    Full Text Available γ-aminobutyric acid (GABAergic neurons in the neocortex have been regarded as interneurons and speculated to modulate the activity of neurons locally. Recently, however, several experiments revealed that neuronal nitric oxide synthase (nNOS-positive GABAergic neurons project cortico-cortically with long axons. In this study, we illustrate Golgi-like images of the nNOS-positive GABAergic neurons using a nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d reaction and follow the emanating axon branches in cat brain sections. These axon branches projected cortico-cortically with other non-labeled arcuate fibers, contra-laterally via the corpus callosum and anterior commissure. The labeled fibers were not limited to the neocortex but found also in the fimbria of the hippocampus. In order to have additional information on these GABAergic neuron projections, we investigated green fluorescent protein (GFP-labeled GABAergic neurons in GAD67-Cre knock-in / GFP Cre-reporter mice. GFP-labeled axons emanate densely, especially in the fimbria, a small number in the anterior commissure, and very sparsely in the corpus callosum. These two different approaches confirm that not only nNOS-positive GABAergic neurons but also other subtypes of GABAergic neurons project long axons in the cerebral cortex and are in a position to be involved in information processing.

  8. A novel technique using hydrophilic polymers to promote axonal fusion

    Directory of Open Access Journals (Sweden)

    Ravinder Bamba


    Full Text Available The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day. When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily repaired. Polythethylene glycol (PEG in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion.

  9. A novel technique using hydrophilic polymers to promote axonal fusion

    Institute of Scientific and Technical Information of China (English)

    Ravinder Bamba; D Colton Riley; Nathaniel D Kelm; Mark D Does; Richard D Dortch; Wesley P hTayer


    The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration) has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day). When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily re-paired. Polythethylene glycol (PEG) in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion.

  10. Calpain Inhibition Reduces Axolemmal Leakage in Traumatic Axonal Injury

    Directory of Open Access Journals (Sweden)

    János Sándor


    Full Text Available Calcium-induced, calpain-mediated proteolysis (CMSP has recently been implicated to the pathogenesis of diffuse (traumatic axonal injury (TAI. Some studies suggested that subaxolemmal CMSP may contribute to axolemmal permeability (AP alterations observed in TAI. Seeking direct evidence for this premise we investigated whether subaxolemmal CMSP may contribute to axolemmal permeability alterations (APA and pre-injury calpain-inhibition could reduce AP in a rat model of TAI. Horseradish peroxidase (HRP, a tracer that accumulates in axons with APA was administered one hour prior to injury into the lateral ventricle; 30 min preinjury a single tail vein bolus injection of 30 mg/kg MDL-28170 (a calpain inhibitor or its vehicle was applied in Wistar rats exposed to impact acceleration brain injury. Histological detection of traumatically injured axonal segments accumulating HRP and statistical analysis revealed that pre-injury administration of the calpain inhibitor MDL-28170 significantly reduced the average length of HRP-labeled axonal segments. The axono-protective effect of pre-injury calpain inhibition recently demonstrated with classical immunohistochemical markers of TAI was further corroborated in this experiment; significant reduction of the length of labeled axons in the drug-treated rats implicate CMSP in the progression of altered AP in TAI.

  11. Functional complexity of the axonal growth cone: a proteomic analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  12. Variação morfológica de pegadas de roedores arborícolas e cursoriais do Cerrado Footprint morphological variation of arboreal and cursorial rodents of the Cerrado

    Directory of Open Access Journals (Sweden)

    Nícholas F. de Camargo


    Full Text Available Considerando que os roedores possuem diversas formas de locomoção, o presente estudo apresenta e discute variações na forma das pegadas anteriores e posteriores de sete espécies [Akodon cursor (Winge, 1887, Necromys lasiurus (Lund, 1840, Oecomys bicolor (Tomes, 1860, Oecomys concolor (Wagner, 1845, Oligoryzomys nigripes (Olfers, 1818, Hylaeamys megacephalus (Fischer, 1814 e Rhipidomys macrurus (Gervais, 1855], utilizando técnicas de morfometria geométrica e análises discriminantes. As variáveis de forma das pegadas foram relacionadas com a topologia filogenética e os modos de locomoção das espécies para verificar a influência de fatores históricos e ecológicos na morfologia das pegadas. A forma das pegadas dos roedores arborícolas (curtas e largas foi claramente distinta dos cursoriais (estreitas e alongadas. As reclassificações das pegadas anteriores (Kappa = 0,72 e posteriores (Kappa = 0,88 das espécies foram consideradas substanciais e quase perfeitas, respectivamente. As pegadas posteriores discriminaram melhor as espécies além de indicarem os níveis de atividade arborícola e cursorial dos roedores. Efeitos alométricos foram observados nas análises das pegadas anteriores (13% e posteriores (3%. O modo de locomoção explicou 90,3% da variação na forma nas pegadas dos roedores (p = 0,02, indicando convergência nos padrões morfológicos nas pegadas das espécies de roedores arborícolas e cursoriais.Considering that species of rodents have different means of locomotion, this study presents and discusses variations on the anterior and posterior footprints shape of seven species [Akodon cursor (Winge, 1887, Necromys lasiurus (Lund, 1840, Oecomys bicolor (Tomes, 1860, Oecomys concolor (Wagner, 1845, Oligoryzomys nigripes (Olfers, 1818, Hylaeamys megacephalus (Fischer, 1814 and Rhipidomys macrurus (Gervais, 1855], using geometric morphometrics and discriminant analyses. Shape variables were related to phylogenetic

  13. Communication and abnormal behaviour. (United States)

    Crown, S


    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential).

  14. Neurofilament proteins in axonal regeneration and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Haitao Wang; Minfei Wu; Chuanjun Zhan; Enyuan Ma; Maoguang Yang; Xiaoyu Yang; Yingpu Li


    Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases.

  15. Arboreal forage lichens in partial cuts – a synthesis of research results from British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Susan K. Stevenson


    Full Text Available The mountain ecotype of the woodland caribou (Rangifer tarandus caribou is highly dependent on the arboreal hair lichens Bryoria spp. and Alectoria sarmentosa during winter. In parts of British Columbia, partial-cutting silvicultural systems have been used in an effort to provide continuously usable winter habitat for mountain caribou, while allowing some timber removal. We reviewed available information about the changes in hair lichens after partial cutting in Engelmann spruce (Picea engelmannii – subalpine fir (Abies lasiocarpa forests of British Columbian and Idaho. Generally, abundance of Bryoria spp. in the lower canopy of individual residual trees increases with increased exposure after partial cutting, until the new regeneration begins to shelter the lower canopy of the residuals. Heavy basal area removal, however, results in low lichen availability at the stand level for many years. Abundance of Bryoria on the regeneration is low, and appears to be limited largely by the structure of the young trees, not by lichen dispersal, although dispersal capability may be limiting in Alectoria. Both distributional and physiological data suggest that Bryoria is intolerant of prolonged wetting, and that increased ventilation, rather than increased light, accounts for enhanced Bryoria abundance in the partial cuts. Alectoria sarmentosa reaches its physiological optimum in the lower canopy of unharvested stands; its growth rates are somewhat reduced in the more exposed environment of partial cuts. Both genera are capable of rapid growth: over a 7-year period, individual thalli of A. sarmentosa and Bryoria spp. (excluding those with a net biomass loss due to fragmentation in an unlogged stand more than tripled their biomass. Calculated growth rates, as well as dispersal potential, are influenced by fragmentation. Bryoria produces more abundant, but smaller, fragments than Alectoria, and fragmentation in both genera increases in partial cuts. In

  16. Thiamine Deficiency Complex Workshop final report: November 6-7, 2008, Ann Arbor, MI (United States)

    Honeyfield, Dale C.; Tillitt, Donald E.; Riley, Stephen C.


    Fry mortality which was first observed in the late 1960s in Great Lakes salmonines and in Baltic Sea salmon in 1974 has now been linked to thiamine deficiency (historically referred to as Early Mortality Syndrome, or EMS and M74, respectively). Over the past 14 years significant strides have been made in our understanding of this perplexing problem. It is now known that thiamine deficiency causes embryonic mortality in these salmonids. Both overt mortality and secondary effects of thiamine deficiency are observed in juvenile and adult animals. Collectively the morbidity and mortality (fry and adult mortality, secondary metabolic and behavior affects in juveniles and adult fish) are referred to as Thiamine Deficiency Complex (TDC). A workshop was held in Ann Arbor, MI on 6-7 November 2008 that brought together 38 federal, state, provincial, tribal and university scientists to share information, present data and discuss the latest observations on thiamine status of aquatic animals with thiamine deficiency and the causative agent, thiaminase. Twenty presentations (13 oral and 7 posters) detailed current knowledge. In Lake Huron, low alewife Alosa pseudoharengus abundance has persisted and egg thiamine concentrations in salmonines continue to increase, along with evidence of natural reproduction in lake trout Salvelinus namaycush. Lake Michigan Chinook salmon Oncorhynchus tshawytscha appear to have a lower thiamine requirement than other salmonids in the lake. Lake Ontario American eel Anguilla rostrata foraging on alewife have approximately one third the muscle thiamine compared to eels not feeding on alewife, suggesting that eels may be suffering from thiamine deficiency. Secondary effects of low thiamine exist in Great Lakes salmonines and should not be ignored. Thiaminase activity in dreissenid mussels is extremely high but a connection to TDC has not been made. Thiaminase in net plankton was found more consistently in lakes Michigan and Ontario than other lakes

  17. Effect of arbuscular mycorrhizal fungi and phosphate fertilization on initial growth of six arboreal species of cerrado

    Directory of Open Access Journals (Sweden)

    Kenia Alves Pereira Lacerda


    Full Text Available This study evaluated the benefit of inoculation with arbuscular mycorrhizal fungi, Glomus clarum, for the initial growth of some native arboreal species of the Cerrado biome, namely gabiroba (Campomanesia cambessedeana, baru (Dipterix alata, jatobá (Hymenaea courbaril, ingá (Inga laurina, caroba (Jacaranda cuspidifolia and chichá (Sterculia striata, in unsterilized soil with low (0.02 mg L‑1 and high (0.2 mg L‑1 concentrations of P in the soil solution. Experiments were conducted in a greenhouse, using 1.5 kg vases, for up to 120 days. The experimental design for each arboreal species was completely randomized, with ten replicates in a 2x2 factorial design (inoculated and noninoculated seedlings, and two levels of phosphorus (P in the soil solution. Arboreal plants of the Cerrado biome showed increased mycorrhizal colonization from inoculation with Glomus clarum, except chichá, as this species showed a high indigenous colonization, not differing from the colonization promoted by inoculated fungi. Inoculation promoted increased growth in baru, gabiroba, ingá, caroba and chichá, increasing shoot dry matter (MSPA and root dry matter (MSR. In caroba, this effect was synergistic with application of P to the soil. Baru and jatobá showed increased dry matter with application of P to the soil only. The mycotrophy (mycorrhizal dependence of species and their response to inoculation and to phosphorus are discussed. In order to produce quality seedlings of caroba, gabiroba, chichá and ingá, combining inoculation with Glomus clarum and phosphate fertilization of the soil is recommended, while for jatobá and baru only the application of P to the soil is recommended.

  18. Giant Axonal Neuropathy Among Two Siblings - A Case Report

    Directory of Open Access Journals (Sweden)

    John Jhon. K


    Full Text Available Giant axonal neuropathy is a rate disorder with an autosomal recessive inheritance. It should be differentiated from toxic neuropathies, and hereditary degenerative disorders of nervous system like Friedreich′s ataxia and HMSN. Thick curly hair, though may not be present always is a useful clinical clue to identify cases. Prognosis is generally poor though course of the illness is variable. We report here a clinically and hisopathologically characteristic familial case of giant axonal neuropathy, which occurred in a 17-year-old boy, and his 21-year-old sister.

  19. Los cromosomas meióticos de la rana arborícola Smilisca baudinii (Anura: Hylidae)


    Hernández-Guzmán, Javier; Arias-Rodriguez, Lenin; Rimber Indy, Jeane


    La rana arborícola mexicana Smilisca baudinii, es una especie de rana común en Centroamérica. Sin embargo, la biología y genética de la especie, es pobremente conocida a pesar de su importancia para mantener en equilibrio ecológico las selvas tropicales. Con el propósito de contribuir con el conocimiento biológico de esta especie, establecimos el cariotipo típico en meiosis en especímenes recolectados en Tabasco, México, mediante procedimientos citogenéticos estándares. El estudio, se fundame...

  20. Systemic abnormalities in liver disease

    Institute of Scientific and Technical Information of China (English)

    Masami Minemura; Kazuto Tajiri; Yukihiro Shimizu


    Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases.

  1. Abnormal pressure in hydrocarbon environments (United States)

    Law, B.E.; Spencer, C.W.


    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  2. Expressing hNF-LE397K results in abnormal gaiting in a transgenic model of CMT2E (United States)

    Dale, Jeffrey M.; Villalon, Eric; Shannon, Stephen G.; Barry, Devin M.; Markey, Rachel M.; Garcia, Virginia B.; Garcia, Michael L.


    Charcot-Marie-Tooth disease (CMT) is the most commonly inherited peripheral neuropathy. CMT disease signs include distal limb neuropathy, abnormal gaiting, exacerbation of neuropathy, sensory defects, and deafness. We generated a novel line of CMT2E mice expressing a hNF-LE397K transgene, which displayed muscle atrophy of the lower limbs without denervation, proximal reduction in large caliber axons, and decreased nerve conduction velocity. In this study, we demonstrated that hNF-LE397K mice developed abnormal gait of the hind limbs. The identification of severe gaiting defects in combination with previously observed muscle atrophy, reduced axon caliber, and decreased nerve conduction velocity suggests that hNF-LE397K mice recapitulate many of clinical signs associated with CMT2E. Therefore, hNF-LE397K mice provide a context for potential therapeutic intervention. PMID:22288874

  3. Nocturnal arboreality in snakes in the swamplands of the Atchafalaya Basin of south-central Louisiana and Big Thicket National Preserve of Southeast Texas (United States)

    Glorioso, Brad M.; Waddle, Hardin


    The southeastern United States is home to a diverse assemblage of snakes, but only one species, the Rough Greensnake (Opheodrys aestivus), is considered specialized for a predominantly arboreal lifestyle. Other species, such as Ratsnakes (genus Pantherophis) and Ribbonsnakes/Gartersnakes (genus Thamnophis), are widely known to climb into vegetation and trees. Some explanations given for snake climbing behavior are foraging, thermoregulation, predator avoidance, and response to flood. Reports of arboreality in snake species typically not associated with life in the trees (such as terrestrial, aquatic, and even fossorial species) usually come from single observations, with no knowledge of prevalence of the behavior. Here, we report on arboreality of snake species detected during 8 years of night surveys in the Atchafalaya Basin of south-central Louisiana and 5+ years of night surveys in Big Thicket National Preserve in southeast Texas. We recorded a total of 1,088 detections of 19 snake species between the two study areas, with 348 detections above ground level (32%). The Rough Greensnake and Western Ribbonsnake (Thamnophis proximus) accounted for nearly 75% of total arboreal detections among the two study areas. However, with one exception, all snake species detected more than once between both study areas had at least one arboreal detection. These observations demonstrate that snakes with widely varying natural histories may be found in the trees at night, and for some species, this behavior may be more common than previously believed.

  4. Regulation of Axonal Midline Guidance by Prolyl 4-Hydroxylation in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Torpe, Nanna; Pocock, Roger David John


    Neuronal wiring during development requires that the growth cones of axons and dendrites are correctly guided to their appropriate targets. As in other animals, axon growth cones in Caenorhabditis elegans integrate information in their extracellular environment via interactions among transiently...

  5. Rapid axonal transport in primate optic nerve. Distribution of pressure-induced interruption. (United States)

    Radius, R L; Anderson, D R


    Six primate eyes were studied after four hours of elevated intraocular pressure. Tissue specimens from the region of the lamina cribrosa were examined in cross section by transmission electron microscopy. Interruption in fast orthograde and retrograde axonal transport was identified in individual axons by noting accumulation of membraneous microorganelles, such as mitochondria and microvesicles within axon cylinders. Although organelle accumulation varied from bundle to bundle, involvement of individual axons was diffuse across the extent of a specific axon bundle. This observation contradicts the apparent association of axonal transport block with crosswise-oriented trabecular beams at the level of the lamina cribrosa as seen in tissue specimens examined in longitudinal section. It also fails to support the notion that blocked axonal transport with elevated pressure is produced by kinking of axons at the lamina.

  6. Axon diameter and intra-axonal volume fraction of the corticospinal tract in idiopathic normal pressure hydrocephalus measured by q-space imaging.

    Directory of Open Access Journals (Sweden)

    Kouhei Kamiya

    Full Text Available PURPOSE: Previous studies suggest that compression and stretching of the corticospinal tract (CST potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH. Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI analysis. METHODS: Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( =  axon diameter and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. RESULTS: Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001, whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. CONCLUSION: Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.

  7. Computational Analysis of Axonal Transport: A Novel Assessment of Neurotoxicity, Neuronal Development and Functions

    Directory of Open Access Journals (Sweden)

    Toshiyuki Gotoh


    Full Text Available Axonal transport plays a crucial role in neuronal morphogenesis, survival and function. Despite its importance, however, the molecular mechanisms of axonal transport remain mostly unknown because a simple and quantitative assay system for monitoring this cellular process has been lacking. In order to better characterize the mechanisms involved in axonal transport, we formulate a novel computer-assisted monitoring system of axonal transport. Potential uses of this system and implications for future studies will be discussed.

  8. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D;


    periods. Message for the immune cytokine interferon-gamma (IFNgamma) was undetectable, and glial reactivity to axonal lesions occurred as normal in IFNgamma-deficient mice. Microglial responses to lesion-induced neuronal injury were markedly enhanced in myelin basic protein promoter-driven transgenic mice...

  9. PTEN inhibition and axon regeneration and neural repair

    Institute of Scientific and Technical Information of China (English)

    Yosuke Ohtake; Umar Hayat; Shuxin Li


    The intrinsic growth ability of all the neurons declines during development although some may grow better than others. Numerous intracellular signaling proteins and transcription factors have been shown to regulate the intrinsic growth capacity in mature neurons. Among them, PI3 kinase/Akt pathway is important for controlling axon elongation. As a negative regulator of this pathway, the tumor suppressor phosphatase and tensin homolog (PTEN) appears critical to con-trol the regenerative ability of young and adult neurons. This review will focus on recent research progress in axon regeneration and neural repair by PTEN inhibition and therapeutic potential of blocking this phosphatase for neurological disorders. Inhibition of PTEN by deletion in con-ditional knockout mice, knockdown by short-hairpin RNA, or blockade by pharmacological approaches, including administration of selective PTEN antagonist peptides, stimulates various degrees of axon regrowth in juvenile or adult rodents with central nervous system injuries. Im-portantly, post-injury PTEN suppression could enhance axonal growth and functional recovery in adult central nervous system after injury.

  10. Life-or-death decisions upon axonal damage. (United States)

    Roselli, Francesco; Caroni, Pico


    In this issue of Neuron, Hu et al. (2012) report that upon axonal damage, CHOP and XBP1 unfolded protein response pathways are not recruited equally and have opposite effects on neuronal survival. XBP1 pathway boosting may represent a valuable neuroprotective strategy.

  11. Drosophila Ryks and their roles in axon and muscle guidance

    NARCIS (Netherlands)

    Lahaye, Liza Lucia


    In the last decade it has become clear that a number of the molecular mechanisms that are required for proper navigation of axons in complex nervous systems are also employed to guide muscles to their appropriate attachment sites. Among the gene families that mediate these diverse processes is the R

  12. Quantifying mechanical force in axonal growth and guidance

    Directory of Open Access Journals (Sweden)

    Ahmad Ibrahim Mahmoud Athamneh


    Full Text Available Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight (1 standing questions concerning the role of mechanical force in axonal growth and guidance and (2 different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.

  13. Traction Force and Tension Fluctuations During Axon Growth

    Directory of Open Access Journals (Sweden)

    Jamison ePolackwich


    Full Text Available Actively generated mechanical forces play a central role in axon growthand guidance, but the mechanisms that underly force generation andregulation in growing axons remain poorly understood. We reportmeasurements of the dynamics of traction stresses from growth cones ofactively advancing axons from postnatal rat DRG neurons. By tracking themovement of the growth cone and analyzing the traction stress field froma reference frame that moves with it, we are able to show that there isa clear and consistent average stress field that underlies the complexspatial stresses present at any one time. The average stress field hasstrong maxima on the sides of the growth cone, directed inward towardthe growth cone neck. This pattern represents a contractile stresscontained within the growth cone, and a net force that is balanced bythe axon tension. Using high time-resolution measurements of the growthcone traction stresses, we show that the stress field is composed offluctuating local stress peaks, with a large number peaks that live fora short time, a population of peaks whose lifetime distribution followsan exponential decay, and a small number of very long-lived peaks. Weshow that the high time-resolution data also reveal that the tensionappears to vary randomly over short time scales, roughly consistent withthe lifetime of the stress peaks, suggesting that the tensionfluctuations originate from stochastic adhesion dynamics.

  14. Unravelling the incidence and etiology of chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Visser, N.A.


    Chronic idiopathic axonal polyneuropathy (CIAP) is a sensory or sensorimotor polyneuropathy that has a slowly progressive course without severe disability. CIAP is diagnosed in a significant proportion of patients with polyneuropathy, but precise figures on the incidence of polyneuropathy and CIAP w

  15. Axon diameter mapping in crossing fibers with diffusion MRI

    DEFF Research Database (Denmark)

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C


    This paper proposes a technique for a previously unaddressed problem, namely, mapping axon diameter in crossing fiber regions, using diffusion MRI. Direct measurement of tissue microstructure of this kind using diffusion MRI offers a new class of biomarkers that give more specific information abo...

  16. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Sally A Marik

    Full Text Available Cortical topography can be remapped as a consequence of sensory deprivation, suggesting that cortical circuits are continually modified by experience. To see the effect of altered sensory experience on specific components of cortical circuits, we imaged neurons, labeled with a genetically modified adeno-associated virus, in the intact mouse somatosensory cortex before and after whisker plucking. Following whisker plucking we observed massive and rapid reorganization of the axons of both excitatory and inhibitory neurons, accompanied by a transient increase in bouton density. For horizontally projecting axons of excitatory neurons there was a net increase in axonal projections from the non-deprived whisker barrel columns into the deprived barrel columns. The axon collaterals of inhibitory neurons located in the deprived whisker barrel columns retracted in the vicinity of their somata and sprouted long-range projections beyond their normal reach towards the non-deprived whisker barrel columns. These results suggest that alterations in the balance of excitation and inhibition in deprived and non-deprived barrel columns underlie the topographic remapping associated with sensory deprivation.

  17. Fractal dimension of apical dendritic arborization differs in the superficial and the deep pyramidal neurons of the rat cerebral neocortex. (United States)

    Puškaš, Nela; Zaletel, Ivan; Stefanović, Bratislav D; Ristanović, Dušan


    Pyramidal neurons of the mammalian cerebral cortex have specific structure and pattern of organization that involves the presence of apical dendrite. Morphology of the apical dendrite is well-known, but quantification of its complexity still remains open. Fractal analysis has proved to be a valuable method for analyzing the complexity of dendrite morphology. The aim of this study was to establish the fractal dimension of apical dendrite arborization of pyramidal neurons in distinct neocortical laminae by using the modified box-counting method. A total of thirty, Golgi impregnated neurons from the rat brain were analyzed: 15 superficial (cell bodies located within lamina II-III), and 15 deep pyramidal neurons (cell bodies situated within lamina V-VI). Analysis of topological parameters of apical dendrite arborization showed no statistical differences except in total dendritic length (p=0.02), indicating considerable homogeneity between the two groups of neurons. On the other hand, average fractal dimension of apical dendrite was 1.33±0.06 for the superficial and 1.24±0.04 for the deep cortical neurons, showing statistically significant difference between these two groups (pfractal dimension values, apical dendrites of the superficial pyramidal neurons tend to show higher structural complexity compared to the deep ones.

  18. Habitat diversity of the Multicolored Asian ladybeetle Harmonia axyridis Pallas (Coleoptera: Coccinellidae in agricultural and arboreal ecosystems: a review

    Directory of Open Access Journals (Sweden)

    Vandereycken, A.


    Full Text Available The Multicolored Asian ladybeetle, Harmonia axyridis (Pallas, native to Asia, is an invasive species in many European and American countries. Initially introduced as a biological control agent against aphids and coccids in greenhouses, this alien species rapidly invaded many habitats such as forests, meadows, wetlands, and agricultural crops. This paper reviews the habitats (forests, crops, herbs, gardens and orchards where H. axyridis has been observed, either during insect samplings or as part of Integrated Pest Management (IPM programs. Studies have referenced H. axyridis on 106 plant taxa (35 arboreal species, 21 crop species, 27 herbaceous species, 11 ornamental species, and 12 orchard species and have identified 89 plant-prey relationships (34 arboreal species, 16 crop species, 13 herbaceous species, 10 ornamental species, and 16 orchard species in different countries. Harmonia axyridis is more abundant in forest areas, principally on Acer, Salix, Tilia and Quercus, than in agroecosystems. Some plant species, such as Urtica dioica L., which surround crops, contain large numbers of H. axyridis and could constitute important reserves of this alien species in advance of aphid invasions into crops. This review highlights the polyphagy and eurytopic aspect of H. axyridis.

  19. Chronic excitotoxin-induced axon degeneration in a compartmented neuronal culture model

    Directory of Open Access Journals (Sweden)

    Katherine A Hosie


    Full Text Available Glutamate excitotoxicity is a major pathogenic process implicated in many neurodegenerative conditions, including AD (Alzheimer's disease and following traumatic brain injury. Occurring predominantly from over-stimulation of ionotropic glutamate receptors located along dendrites, excitotoxic axonal degeneration may also occur in white matter tracts. Recent identification of axonal glutamate receptor subunits within axonal nanocomplexes raises the possibility of direct excitotoxic effects on axons. Individual neuronal responses to excitotoxicity are highly dependent on the complement of glutamate receptors expressed by the cell, and the localization of the functional receptors. To enable isolation of distal axons and targeted excitotoxicity, murine cortical neuron cultures were prepared in compartmented microfluidic devices, such that distal axons were isolated from neuronal cell bodies. Within the compartmented culture system, cortical neurons developed to relative maturity at 11 DIV (days in vitro as demonstrated by the formation of dendritic spines and clustering of the presynaptic protein synaptophysin. The isolated distal axons retained growth cone structures in the absence of synaptic targets, and expressed glutamate receptor subunits. Glutamate treatment (100 μM to the cell body chamber resulted in widespread degeneration within this chamber and degeneration of distal axons in the other chamber. Glutamate application to the distal axon chamber triggered a lesser degree of axonal degeneration without degenerative changes in the untreated somal chamber. These data indicate that in addition to current mechanisms of indirect axonal excitotoxicity, the distal axon may be a primary target for excitotoxicity in neurodegenerative conditions.

  20. Differential Axonal Projection of Mitral and Tufted Cells in the Mouse Main Olfactory System

    Directory of Open Access Journals (Sweden)

    Shin Nagayama


    Full Text Available In the past decade, much has been elucidated regarding the functional organization of the axonal connection of olfactory sensory neurons to olfactory bulb (OB glomeruli. However, the manner in which projection neurons of the OB process odorant input and send this information to higher brain centers remains unclear. Here, we report long-range, large-scale tracing of the axonal projection patterns of OB neurons using two-photon microscopy. Tracer injection into a single glomerulus demonstrated widely distributed mitral/tufted cell axonal projections on the lateroventral surface of the mouse brain, including the anterior/posterior piriform cortex (PC and olfactory tubercle (OT. We noted two distinct groups of labeled axons: PC-orienting axons and OT-orienting axons. Each group occupied distinct parts of the lateral olfactory tract. PC-orienting axons projected axon collaterals to a wide area of the PC but only a few collaterals to the OT. OT-orienting axons densely projected axon collaterals primarily to the anterolateral OT (alOT. Different colored dye injections into the superficial and deep portions of the OB external plexiform layer revealed that the PC-orienting axon populations originated in presumed mitral cells and the OT-orienting axons in presumed tufted cells. These data suggest that although mitral and tufted cells receive similar odor signals from a shared glomerulus, they process the odor information in different ways and send their output to different higher brain centers via the PC and alOT.

  1. Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum. (United States)

    Hutchins, B Ian; Li, Li; Kalil, Katherine


    Wnt5a gradients guide callosal axons by repulsion through Ryk receptors in vivo. We recently found that Wnt5a repels cortical axons and promotes axon outgrowth through calcium signaling in vitro. Here, using cortical slices, we show that Wnt5a signals through Ryk to guide and promote outgrowth of callosal axons after they cross the midline. Calcium transient frequencies in callosal growth cones positively correlate with axon outgrowth rates in vitro. In cortical slices, calcium release through inositol 1,4,5-trisphosphate (IP(3)) receptors and calcium entry through transient receptor potential channels modulate axon growth and guidance. Knocking down Ryk inhibits calcium signaling in cortical axons, reduces rates of axon outgrowth subsequent to midline crossing, and causes axon guidance defects. Calcium- and calmodulin-dependent protein kinase II (CaMKII) is required downstream of Wnt-induced calcium signaling for postcrossing callosal axon growth and guidance. Taken together, these results suggest that growth and guidance of postcrossing callosal axons by Wnt-Ryk-calcium signaling involves axon repulsion through CaMKII.

  2. Imaging findings of sternal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Franquet, T. [Dept. of Radiology, Hospital de Sant Pau, Universidad Autonoma de Barcelona (Spain); Gimenez, A. [Dept. of Radiology, Hospital de Sant Pau, Universidad Autonoma de Barcelona (Spain); Alegret, X. [Dept. of Radiology, Hospital de Sant Pau, Universidad Autonoma de Barcelona (Spain); Sanchis, E. [Dept. of Radiology, Hospital de Sant Pau, Universidad Autonoma de Barcelona (Spain); Rivas, A. [Dept. of Radiology, Hospital Vall d`Hebron, Universidad Autonoma de Barcelona (Spain)


    Radiographic findings in the sternal abnormalities are often nonspecific, showing appearances from a localized benign lesion to an aggressive lesion as seen with infections and malignant neoplasms. A specific diagnosis of sternal abnormalities can be suggested on the basis of CT and MR characteristics. Familiarity with the presentation and variable appearance of sternal abnormalities may aid the radiologist is suggesting a specific diagnosis. We present among others characteristic radiographic findings of hemangioma, chondrosarcoma, hydatid disease, and SAPHO syndrome. In those cases in which findings are not specific, cross-sectional imaging modalities may help the clinician in their management. (orig.)

  3. mTORC2 controls dendritic arbor development through Akt-mTORC1-p70S6K pathway

    Directory of Open Access Journals (Sweden)

    Malgorzata Barbara Urbanska


    Full Text Available Mammalian target of rapamycin (mTOR is a serine/threonine protein kinase that was identified as one of the important regulators of dendritogenesis. mTOR forms two functionally separate complexes (mTORC in mammalian cells. The complexes are defined by unique mTOR binding partners, Raptor for the mTORC1, and Rictor for the mTORC2. These two complexes control different cellular processes and their roles seem non-overlapping. mTORC1 was initially characterized as a protein translation regulator while mTORC2 was shown to affect cytoskeleton. Both processes are known to be essential for neuron development, but until now the role of particular mTORCs in dendritogenesis was not studied. Therefore, in our study we precisely characterized mTOR involvement in dendrite development. Using RNA interference in developing rat hippocampal neurons in culture we targeted either Raptor or Rictor to separate activities of mTORC1 and mTORC2, respectively. Dendritic arbors of neurons, depleted of either one of these proteins were reduced. However, no obvious differences were observed in context of dendrite number, length, dendritic arbor complexity and dynamics of dendritic growth and retraction between cells with either Raptor or Rictor knockdown. Yet on the molecular level we were able to pin-point differences between cells lacking Rictor and Raptor. For example, Rictor, but not Raptor knockdown phenotype could be rescued by overexpression of a constitutively active mutant of Akt (myr-Akt, a kinase known to be mTORC2 effector. Besides of being mTORC2 effector, Akt is the most important positive regulator of mTORC1. Since, Rictor and Raptor knockdown have similar and not additive dendritic phenotypes, we hypothesized that mTORC1 acts downstream of mTORC2 during dendritic growth. Therefore, we tested the effects of Rictor knockdown in neurons on phosphorylation of S6 (Ser-235/236 and eIF4B (Ser-422, canonical targets for mTORC1. Indeed, downregulation of Rictor

  4. Nicotine elicits prolonged calcium signaling along ventral hippocampal axons. (United States)

    Zhong, Chongbo; Talmage, David A; Role, Lorna W


    Presynaptic nicotinic acetylcholine receptors (nAChRs) have long been implicated in the modulation of CNS circuits. We previously reported that brief exposure to low concentrations of nicotine induced sustained potentiation of glutamatergic transmission at ventral hippocampal (vHipp)-striatal synapses. Here, we exploited nAChR subtype-selective antagonists and agonists and α7*nAChR knockout mutant mice (α7-/-) to elucidate the signaling mechanisms underlying nAChR-mediated modulation of synaptic transmission. Using a combination of micro-slices culture from WT and α7-/-mice, calcium imaging, and immuno-histochemical techniques, we found that nicotine elicits localized and oscillatory increases in intracellular Ca(2+) along vHipp axons that persists for up to 30 minutes. The sustained phase of the nicotine-induced Ca(2+) response was blocked by α-BgTx but not by DHβE and was mimicked by α7*nAChR agonists but not by non-α7*nAChR agonists. In vHipp slices from α7-/- mice, nicotine elicited only transient increases of axonal Ca(2+) signals and did not activate CaMKII. The sustained phase of the nicotine-induced Ca(2+) response required localized activation of CaMKII, phospholipase C, and IP3 receptor mediated Ca(2+)-induced Ca(2+) release (CICR). In conclusion, activation of presynaptic nAChRs by nicotine elicits Ca(2+) influx into the presynaptic axons, the sustained phase of the nicotine-induced Ca(2+) response requires that axonal α7*nAChR activate a downstream signaling network in the vHipp axons.

  5. Progressive Motor Deficit is Mediated by the Denervation of Neuromuscular Junctions and Axonal Degeneration in Transgenic Mice Expressing Mutant (P301S) Tau Protein. (United States)

    Yin, Zhuoran; Valkenburg, Femke; Hornix, Betty E; Mantingh-Otter, Ietje; Zhou, Xingdong; Mari, Muriel; Reggiori, Fulvio; Van Dam, Debby; Eggen, Bart J L; De Deyn, Peter P; Boddeke, Erik


    Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we use a novel transgenic tau mouse line, Tau 58/4, with enhanced neuron-specific expression of P301S mutant tau to investigate the motor abnormalities in association with the peripheral nervous system. Using stationary beam, gait, and rotarod tests, motor deficits were found in Tau 58/4 mice already 3 months after birth, which deteriorated during aging. Hyperphosphorylated tau was detected in the cell bodies and axons of motor neurons. At the age of 9 and 12 months, significant denervation of the neuromuscular junction in the extensor digitorum longus muscle was observed in Tau 58/4 mice, compared to wild-type mice. Muscle hypotrophy was observed in Tau 58/4 mice at 9 and 12 months. Using electron microscopy, we observed ultrastructural changes in the sciatic nerve of 12-month-old Tau 58/4 mice indicative of the loss of large axonal fibers and hypomyelination (assessed by g-ratio). We conclude that the accumulated hyperphosphorylated tau in the axon terminals may induce dying-back axonal degeneration, myelin abnormalities, neuromuscular junction denervation, and muscular atrophy, which may be the mechanisms responsible for the deterioration of the motor function in Tau 58/4 mice. Tau 58/4 mice represent an interesting neuromuscular degeneration model, and the pathological mechanisms might be responsible for motor signs observed in some human tauopathies.

  6. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. (United States)

    Colbert, C M; Johnston, D


    A long-standing hypothesis is that action potentials initiate first in the axon hillock/initial segment (AH-IS) region because of a locally high density of Na+ channels. We tested this idea in subicular pyramidal neurons by using patch-clamp recordings in hippocampal slices. Simultaneous recordings from the soma and IS confirmed that orthodromic action potentials initiated in the axon and then invaded the soma. However, blocking Na+ channels in the AH-IS with locally applied tetrodotoxin (TTX) did not raise the somatic threshold membrane potential for orthodromic spikes. TTX applied to the axon beyond the AH-IS (30-60 microm from the soma) raised the apparent somatic threshold by approximately 8 mV. We estimated the Na+ current density in the AH-IS and somatic membranes by using cell-attached patch-clamp recordings and found similar magnitudes (3-4 pA/microm2). Thus, the present results suggest that orthodromic action potentials initiate in the axon beyond the AH-IS and that the minimum threshold for spike initiation of the neuron is not determined by a high density of Na+ channels in the AH-IS region.

  7. ALS Along the Axons – Expression of Coding and Noncoding RNA Differs in Axons of ALS models (United States)

    Rotem, Nimrod; Magen, Iddo; Ionescu, Ariel; Gershoni-Emek, Noga; Altman, Topaz; Costa, Christopher J.; Gradus, Tal; Pasmanik-Chor, Metsada; Willis, Dianna E.; Ben-Dov, Iddo Z.; Hornstein, Eran; Perlson, Eran


    Amyotrophic lateral sclerosis (ALS) is a multifactorial lethal motor neuron disease with no known treatment. Although the basic mechanism of its degenerative pathogenesis remains poorly understood, a subcellular spatial alteration in RNA metabolism is thought to play a key role. The nature of these RNAs remains elusive, and a comprehensive characterization of the axonal RNAs involved in maintaining neuronal health has yet to be described. Here, using cultured spinal cord (SC) neurons grown using a compartmented platform followed by next-generation sequencing (NGS) technology, we find that RNA expression differs between the somatic and axonal compartments of the neuron, for both mRNA and microRNA (miRNA). Further, the introduction of SOD1G93A and TDP43A315T, established ALS-related mutations, changed the subcellular expression and localization of RNAs within the neurons, showing a spatial specificity to either the soma or the axon. Altogether, we provide here the first combined inclusive profile of mRNA and miRNA expression in two ALS models at the subcellular level. These data provide an important resource for studies on the roles of local protein synthesis and axon degeneration in ALS and can serve as a possible target pool for ALS treatment. PMID:28300211

  8. Skin - abnormally dark or light (United States)

    ... ency/article/003242.htm Skin - abnormally dark or light To use the sharing features on this page, ... the hands. The bronze color can range from light to dark (in fair-skinned people) with the ...

  9. Pregnancy Complications: Umbilical Cord Abnormalities (United States)

    ... defects. These tests may include a detailed ultrasound, amniocentesis (to check for chromosomal abnormalities) and in some ... the provider may recommend additional tests, such as amniocentesis and a detailed ultrasound, to diagnose or rule ...

  10. Adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and Nasu-Hakola disease: lesion staging and dynamic changes of axons and microglial subsets. (United States)

    Oyanagi, Kiyomitsu; Kinoshita, Michiaki; Suzuki-Kouyama, Emi; Inoue, Teruhiko; Nakahara, Asa; Tokiwai, Mika; Arai, Nobutaka; Satoh, Jun-Ichi; Aoki, Naoya; Jinnai, Kenji; Yazawa, Ikuru; Arai, Kimihito; Ishihara, Kenji; Kawamura, Mitsuru; Ishizawa, Keisuke; Hasegawa, Kazuko; Yagisita, Saburo; Amano, Naoji; Yoshida, Kunihiro; Terada, Seishi; Yoshida, Mari; Akiyama, Haruhiko; Mitsuyama, Yoshio; Ikeda, Shu-Ichi


    The brains of 10 Japanese patients with adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) encompassing hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD) and eight Japanese patients with Nasu-Hakola disease (N-HD) and five age-matched Japanese controls were examined neuropathologically with special reference to lesion staging and dynamic changes of microglial subsets. In both diseases, the pathognomonic neuropathological features included spherically swollen axons (spheroids and globules), axon loss and changes of microglia in the white matter. In ALSP, four lesion stages based on the degree of axon loss were discernible: Stage I, patchy axon loss in the cerebral white matter without atrophy; Stage II, large patchy areas of axon loss with slight atrophy of the cerebral white matter and slight dilatation of the lateral ventricles; Stage III, extensive axon loss in the cerebral white matter and dilatation of the lateral and third ventricles without remarkable axon loss in the brainstem and cerebellum; Stage IV, devastated cerebral white matter with marked dilatation of the ventricles and axon loss in the brainstem and/or cerebellum. Internal capsule and pontine base were relatively well preserved in the N-HD, even at Stage IV, and the swollen axons were larger with a higher density in the ALSP. Microglial cells immunopositive for CD68, CD163 or CD204 were far more obvious in ALSP, than in N-HD, and the shape and density of the cells changed in each stage. With progression of the stage, clinical symptoms became worse to apathetic state, and epilepsy was frequently observed in patients at Stages III and IV in both diseases. From these findings, it is concluded that (i) shape, density and subsets of microglia change dynamically along the passage of stages and (ii) increase of IBA-1-, CD68-, CD163- and CD204-immunopositive cells precedes loss of axons in ALSP.

  11. IH activity is increased in populations of slow versus fast motor axons of the rat.

    Directory of Open Access Journals (Sweden)

    Chad eLorenz


    Full Text Available Much is known about the electrophysiological variation in motoneuron somata across different motor units. However comparatively less is known about electrophysiological variation in motor axons and how this could impact function or electrodiagnosis in healthy or diseased states. We performed nerve excitability testing on two groups of motor axons in Sprague-Dawley rats that are known to differ significantly in their chronic daily activity patterns and in the relative proportion of motor unit types: one group innervating the soleus (slow motor axons and the other group innervating the tibialis anterior (fast motor axons muscles. We found that slow motor axons have significantly larger accommodation compared to fast motor axons upon application of a 100 ms hyperpolarizing conditioning stimulus that is 40% of axon threshold (Z = 3.24, p = 0.001 or 20% of axon threshold (Z = 2.67, p = 0.008. Slow motor axons had larger accommodation to hyperpolarizing currents in the current-threshold measurement (-80% Z = 3.07, p = 0.002; -90% Z = 2.98, p = 0.003. In addition, we found that slow motor axons have a significantly smaller rheobase than fast motor axons (Z = -1.99, p = 0.047 accompanied by a lower threshold in stimulus-response curves. The results provide evidence that slow motor axons have greater activity of the hyperpolarization-activated inwardly rectifying cation conductance (IH than fast motor axons. It is possible that this difference between fast and slow axons is caused by an adaptation to their chronic differences in daily activity patterns, and that this adaptation might have a functional effect on the motor unit. Moreover, these findings indicate that slow and fast motor axons may react differently to pathological conditions.

  12. An integrated, multistudy analysis of the safety of Ann Arbor strain live attenuated influenza vaccine in children aged 2–17 years


    Ambrose, Christopher S.; Yi, Tingting; Falloon, Judith


    Background Trivalent, Ann Arbor strain, live attenuated influenza vaccine (LAIV) is approved in several countries for use in eligible children aged ≥2 years. Objective To describe the safety of Ann Arbor strain LAIV in children aged 2–17 years. Methods An integrated analysis of randomized, controlled trials of LAIV. Results A total of 4245 and 10 693 children received ≥1 dose of LAIV in year 1 of 6 trivalent inactivated influenza vaccine (TIV)-controlled and 14 placebo-controlled studies, res...

  13. A forward genetic screen with a thalamocortical axon reporter mouse yields novel neurodevelopment mutants and a distinct emx2 mutant phenotype

    Directory of Open Access Journals (Sweden)

    Vock Vita M


    Full Text Available Abstract Background The dorsal thalamus acts as a gateway and modulator for information going to and from the cerebral cortex. This activity requires the formation of reciprocal topographic axon connections between thalamus and cortex. The axons grow along a complex multistep pathway, making sharp turns, crossing expression boundaries, and encountering intermediate targets. However, the cellular and molecular components mediating these steps remain poorly understood. Results To further elucidate the development of the thalamocortical system, we first created a thalamocortical axon reporter line to use as a genetic tool for sensitive analysis of mutant mouse phenotypes. The TCA-tau-lacZ reporter mouse shows specific, robust, and reproducible labeling of thalamocortical axons (TCAs, but not the overlapping corticothalamic axons, during development. Moreover, it readily reveals TCA pathfinding abnormalities in known cortical mutants such as reeler. Next, we performed an unbiased screen for genes involved in thalamocortical development using random mutagenesis with the TCA reporter. Six independent mutant lines show aberrant TCA phenotypes at different steps of the pathway. These include ventral misrouting, overfasciculation, stalling at the corticostriatal boundary, and invasion of ectopic cortical cell clusters. An outcross breeding strategy coupled with a genomic panel of single nucleotide polymorphisms facilitated genetic mapping with small numbers of mutant mice. We mapped a ventral misrouting mutant to the Emx2 gene, and discovered that some TCAs extend to the olfactory bulbs in this mutant. Mapping data suggest that other lines carry mutations in genes not previously known for roles in thalamocortical development. Conclusions These data demonstrate the feasibility of a forward genetic approach to understanding mammalian brain morphogenesis and wiring. A robust axonal reporter enabled sensitive analysis of a specific axon tract inside the

  14. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons (United States)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.


    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  15. The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study. (United States)

    Nilsson, Markus; Lätt, Jimmy; Ståhlberg, Freddy; van Westen, Danielle; Hagslätt, Håkan


    Many axons follow wave-like undulating courses. This is a general feature of extracranial nerve segments, but is also found in some intracranial nervous tissue. The importance of axonal undulation has previously been considered, for example, in the context of biomechanics, where it has been shown that posture affects undulation properties. However, the importance of axonal undulation in the context of diffusion MR measurements has not been investigated. Using an analytical model and Monte Carlo simulations of water diffusion, this study compared undulating and straight axons in terms of diffusion propagators, diffusion-weighted signal intensities and parameters derived from diffusion tensor imaging, such as the mean diffusivity (MD), the eigenvalues and the fractional anisotropy (FA). All parameters were strongly affected by the presence of undulation. The diffusivity perpendicular to the undulating axons increased with the undulation amplitude, thus resembling that of straight axons with larger diameters. Consequently, models assuming straight axons for the estimation of the axon diameter from diffusion MR measurements might overestimate the diameter if undulation is present. FA decreased from approximately 0.7 to 0.5 when axonal undulation was introduced into the simulation model structure. Our results indicate that axonal undulation may play a role in diffusion measurements when investigating, for example, the optic and sciatic nerves and the spinal cord. The simulations also demonstrate that the stretching or compression of neuronal tissue comprising undulating axons alters the observed water diffusivity, suggesting that posture may be of importance for the outcome of diffusion MRI measurements.

  16. Neuroinflammation by cytotoxic T-lymphocytes impairs retrograde axonal transport in an oligodendrocyte mutant mouse.

    Directory of Open Access Journals (Sweden)

    Chi Wang Ip

    Full Text Available Mice overexpressing proteolipid protein (PLP develop a leukodystrophy-like disease involving cytotoxic, CD8+ T-lymphocytes. Here we show that these cytotoxic T-lymphocytes perturb retrograde axonal transport. Using fluorogold stereotactically injected into the colliculus superior, we found that PLP overexpression in oligodendrocytes led to significantly reduced retrograde axonal transport in retina ganglion cell axons. We also observed an accumulation of mitochondria in the juxtaparanodal axonal swellings, indicative for a disturbed axonal transport. PLP overexpression in the absence of T-lymphocytes rescued retrograde axonal transport defects and abolished axonal swellings. Bone marrow transfer from wildtype mice, but not from perforin- or granzyme B-deficient mutants, into lymphocyte-deficient PLP mutant mice led again to impaired axonal transport and the formation of axonal swellings, which are predominantly located at the juxtaparanodal region. This demonstrates that the adaptive immune system, including cytotoxic T-lymphocytes which release perforin and granzyme B, are necessary to perturb axonal integrity in the PLP-transgenic disease model. Based on our observations, so far not attended molecular and cellular players belonging to the immune system should be considered to understand pathogenesis in inherited myelin disorders with progressive axonal damage.

  17. Eph:ephrin-B1 forward signaling controls fasciculation of sensory and motor axons. (United States)

    Luxey, Maëva; Jungas, Thomas; Laussu, Julien; Audouard, Christophe; Garces, Alain; Davy, Alice


    Axon fasciculation is one of the processes controlling topographic innervation during embryonic development. While axon guidance steers extending axons in the accurate direction, axon fasciculation allows sets of co-extending axons to grow in tight bundles. The Eph:ephrin family has been involved both in axon guidance and fasciculation, yet it remains unclear how these two distinct types of responses are elicited. Herein we have characterized the role of ephrin-B1, a member of the ephrinB family in sensory and motor innervation of the limb. We show that ephrin-B1 is expressed in sensory axons and in the limb bud mesenchyme while EphB2 is expressed in motor and sensory axons. Loss of ephrin-B1 had no impact on the accurate dorso-ventral innervation of the limb by motor axons, yet EfnB1 mutants exhibited decreased fasciculation of peripheral motor and sensory nerves. Using tissue-specific excision of EfnB1 and in vitro experiments, we demonstrate that ephrin-B1 controls fasciculation of axons via a surround repulsion mechanism involving growth cone collapse of EphB2-expressing axons. Altogether, our results highlight the complex role of Eph:ephrin signaling in the development of the sensory-motor circuit innervating the limb.

  18. The corpus callosum in primates: processing speed of axons and the evolution of hemispheric asymmetry (United States)

    Phillips, Kimberley A.; Stimpson, Cheryl D.; Smaers, Jeroen B.; Raghanti, Mary Ann; Jacobs, Bob; Popratiloff, Anastas; Hof, Patrick R.; Sherwood, Chet C.


    Interhemispheric communication may be constrained as brain size increases because of transmission delays in action potentials over the length of axons. Although one might expect larger brains to have progressively thicker axons to compensate, spatial packing is a limiting factor. Axon size distributions within the primate corpus callosum (CC) may provide insights into how these demands affect conduction velocity. We used electron microscopy to explore phylogenetic variation in myelinated axon density and diameter of the CC from 14 different anthropoid primate species, including humans. The majority of axons were less than 1 µm in diameter across all species, indicating that conduction velocity for most interhemispheric communication is relatively constant regardless of brain size. The largest axons within the upper 95th percentile scaled with a progressively higher exponent than the median axons towards the posterior region of the CC. While brain mass among the primates in our analysis varied by 97-fold, estimates of the fastest cross-brain conduction times, as conveyed by axons at the 95th percentile, varied within a relatively narrow range between 3 and 9 ms across species, whereas cross-brain conduction times for the median axon diameters differed more substantially between 11 and 38 ms. Nonetheless, for both size classes of axons, an increase in diameter does not entirely compensate for the delay in interhemispheric transmission time that accompanies larger brain size. Such biophysical constraints on the processing speed of axons conveyed by the CC may play an important role in the evolution of hemispheric asymmetry. PMID:26511047

  19. Effect of vesicle traps on traffic jam formation in fast axonal transport. (United States)

    Kuznetsov, A V


    The purpose of this paper is to develop a model for simulation of the formation of organelle traps in fast axonal transport. Such traps may form in the regions of microtubule polar mismatching. Depending on the orientation of microtubules pointing toward the trap region, these traps can accumulate either plus-end or minus-end oriented vesicles. The model predicts that the maximum concentrations of organelles occur at the boundaries of the trap regions; the overall concentration of organelles in the axon with traps is greatly increased compared to that in a healthy axon, which is expected to contribute to mechanical damages of the axon. The organelle traps induce hindrance to organelle transport down the axon; the total organelle flux down the axon with traps is found to be significantly reduced compared to that in a healthy axon.

  20. Regulation of neuronal axon specification by glia-neuron gap junctions in C. elegans (United States)

    Meng, Lingfeng; Zhang, Albert; Jin, Yishi; Yan, Dong


    Axon specification is a critical step in neuronal development, and the function of glial cells in this process is not fully understood. Here, we show that C. elegans GLR glial cells regulate axon specification of their nearby GABAergic RME neurons through GLR-RME gap junctions. Disruption of GLR-RME gap junctions causes misaccumulation of axonal markers in non-axonal neurites of RME neurons and converts microtubules in those neurites to form an axon-like assembly. We further uncover that GLR-RME gap junctions regulate RME axon specification through activation of the CDK-5 pathway in a calcium-dependent manner, involving a calpain clp-4. Therefore, our study reveals the function of glia-neuron gap junctions in neuronal axon specification and shows that calcium originated from glial cells can regulate neuronal intracellular pathways through gap junctions. DOI: PMID:27767956

  1. Interplay between kinesin-1 and cortical dynein during axonal outgrowth and microtubule organization in Drosophila neurons. (United States)

    del Castillo, Urko; Winding, Michael; Lu, Wen; Gelfand, Vladimir I


    In this study, we investigated how microtubule motors organize microtubules in Drosophila neurons. We showed that, during the initial stages of axon outgrowth, microtubules display mixed polarity and minus-end-out microtubules push the tip of the axon, consistent with kinesin-1 driving outgrowth by sliding antiparallel microtubules. At later stages, the microtubule orientation in the axon switches from mixed to uniform polarity with plus-end-out. Dynein knockdown prevents this rearrangement and results in microtubules of mixed orientation in axons and accumulation of microtubule minus-ends at axon tips. Microtubule reorganization requires recruitment of dynein to the actin cortex, as actin depolymerization phenocopies dynein depletion, and direct recruitment of dynein to the membrane bypasses the actin requirement. Our results show that cortical dynein slides 'minus-end-out' microtubules from the axon, generating uniform microtubule arrays. We speculate that differences in microtubule orientation between axons and dendrites could be dictated by differential activity of cortical dynein.

  2. [Diagnosticum of abnormalities of plant meiotic division]. (United States)

    Shamina, N V


    Abnormalities of plant meiotic division leading to abnormal meiotic products are summarized schematically in the paper. Causes of formation of monads, abnormal diads, triads, pentads, polyads, etc. have been observed in meiosis with both successive and simultaneous cytokinesis.

  3. Memetics clarification of abnormal behavior

    Institute of Scientific and Technical Information of China (English)


    AIM: Biological medicine is hard to fully and scientifically explain the etiological factor and pathogenesis of abnormal behaviors; while, researches on philosophy and psychology (including memetics) are beneficial to better understand and explain etiological factor and pathogenesis of abnormal behaviors. At present, the theory of philosophy and psychology is to investigate the entity of abnormal behavior based on the views of memetics.METHODS: Abnormal behavior was researched in this study based on three aspects, including instinctive behavior disorder, poorly social-adapted behavior disorder and mental or body disease associated behavior disorder. Most main viewpoints of memetics were derived from "The Meme Machine", which was written by Susan Blackmore. When questions about abnormal behaviors induced by mental and psychological diseases and conduct disorder of teenagers were discussed, some researching achievements which were summarized by authors previously were added in this study, such as aggressive behaviors, pathologically aggressive behaviors, etc.RESULTS: The abnormal behaviors mainly referred to a part of people's substandard behaviors which were not according with the realistic social environment, culture background and the pathologic behaviors resulted from people's various psychological diseases. According to the theory of "meme", it demonstrated that the relevant behavioral obstacles of various psychological diseases, for example, the unusual behavior of schizophrenia, were caused, because the old meme was destroyed thoroughly but the new meme was unable to establish; psychoneurosis and personality disorder were resulted in hard establishment of meme; the behavioral obstacles which were ill-adapted to society, for example, various additional and homosexual behaviors, were because of the selfish replications and imitations of "additional meme" and "homosexual meme"; various instinct behavioral and congenital intelligent obstacles were not significance

  4. Squid Giant Axon Contains Neurofilament Protein mRNA but does not Synthesize Neurofilament Proteins. (United States)

    Gainer, Harold; House, Shirley; Kim, Dong Sun; Chin, Hemin; Pant, Harish C


    When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon's neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia-axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.

  5. Thyroid abnormality in perimenopausal women with abnormal uterine bleeding

    Directory of Open Access Journals (Sweden)

    Prasanna Byna


    Full Text Available Background: AUB is a common but complicated clinical presentation and occurs in 15-20% of women between menarche to menopause and significantly affects the women's health. Women with thyroid dysfunction often have menstrual irregularities, infertility and increased morbidity during pregnancy. The objective of present study is to find the correlation between thyroid disorders and AUB in perimenopausal women attending gynecology OPD. Methods: In the present study, fifty five patients with AUB were included and were evaluated for the cause including thyroid abnormality. Thyroid function tests were done in all patients. Results: Among 55 patients, 12 patients were diagnosed as hypothyroidism and 7 as hyperthyroidism, women with AUB 36 (65.4% were euthyroid. Among 19 women with thyroid abnormality, heavy menstrual bleeding was seen in 8 (42% women, 6 (31.57% had polymenorrhagia, 5 (26.31% had oligomenorrhoea. The frequent menstrual abnormality in women with hypothyroidism (12 women was heavy menstrual bleeding in 5 (41.6% women, 3 (25% had oligomennorhoea, 4 (33.3% had polymenorrhagia. Out of 7 women with hyperthyroidism, 2 (28.57% had oligomenorrhoea, 3 (42.8% had heavy menstrual bleeding, 2 (28.57% had polymenorrhagia. In a total of 55 patients with AUB, 11 (20% had structural abnormalities in uterus and ovaries. 5 (9% had adenomyosis, 3 (5.4% had ovarian cysts, 3 (5.4% had fibroids. Conclusions: It is important to screen all women for thyroid abnormality who are presenting with AUB especially with non-structural causes of AUB. Correction of thyroid abnormalities also relieves AUB. This will avoid unnecessary hormonal treatment and surgery. [Int J Res Med Sci 2015; 3(11.000: 3250-3253

  6. Axon and muscle spindle hyperplasia in the myostatin null mouse. (United States)

    Elashry, Mohamed I; Otto, Anthony; Matsakas, Antonios; El-Morsy, Salah E; Jones, Lisa; Anderson, Bethan; Patel, Ketan


    Germline deletion of the myostatin gene results in hyperplasia and hypertrophy of the tension-generating (extrafusal) fibres in skeletal muscle. As this gene is expressed predominantly in myogenic tissues it offers an excellent model with which to investigate the quantitative relationship between muscle and axonal development. Here we show that skeletal muscle hyperplasia in myostatin null mouse is accompanied by an increase in nerve fibres in major nerves of both the fore- and hindlimbs. We show that axons within these nerves undergo hypertrophy. Furthermore, we provide evidence that the age-related neural atrophic process is delayed in the absence of myostatin. Finally, we show that skeletal muscle hyperplasia in the myostatin null mouse is accompanied by an increase in the number of muscle spindles (also called stretch receptors or proprioceptors). However, our work demonstrates that the mechanisms regulating intrafusal fibre hyperplasia and hypertrophy differ from those that control the aetiology of extrafusal fibres.

  7. Coevolution of axon guidance molecule Slit and its receptor Robo. (United States)

    Yu, Qi; Li, Xiao-Tong; Zhao, Xiao; Liu, Xun-Li; Ikeo, Kazuho; Gojobori, Takashi; Liu, Qing-Xin


    Coevolution is important for the maintenance of the interaction between a ligand and its receptor during evolution. The interaction between axon guidance molecule Slit and its receptor Robo is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the mechanism of coevolution between Slit and Robo remains unclear. In this study, we found that coordinated amino acid changes took place at interacting sites of Slit and Robo by comparing the amino acids at these sites among different organisms. In addition, the high level correlation between evolutionary rate of Slit and Robo was identified in vertebrates. Furthermore, the sites under positive selection of slit and robo were detected in the same lineage such as mosquito and teleost. Overall, our results provide evidence for the coevolution between Slit and Robo.

  8. Antiretroviral Therapy-Associated Acute Motor and Sensory Axonal Neuropathy

    Directory of Open Access Journals (Sweden)

    Kimberly N. Capers


    Full Text Available Guillain-Barré syndrome (GBS has been reported in HIV-infected patients in association with the immune reconstitution syndrome whose symptoms can be mimicked by highly active antiretroviral therapy (HAART-mediated mitochondrial toxicity. We report a case of a 17-year-old, HIV-infected patient on HAART with a normal CD4 count and undetectable viral load, presenting with acute lower extremity weakness associated with lactatemia. Electromyography/nerve conduction studies revealed absent sensory potentials and decreased compound muscle action potentials, consistent with a diagnosis of acute motor and sensory axonal neuropathy. Lactatemia resolved following cessation of HAART; however, neurological deficits minimally improved over several months in spite of immune modulatory therapy. This case highlights the potential association between HAART, mitochondrial toxicity and acute axonal neuropathies in HIV-infected patients, distinct from the immune reconstitution syndrome.

  9. Coevolution of axon guidance molecule Slit and its receptor Robo.

    Directory of Open Access Journals (Sweden)

    Qi Yu

    Full Text Available Coevolution is important for the maintenance of the interaction between a ligand and its receptor during evolution. The interaction between axon guidance molecule Slit and its receptor Robo is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the mechanism of coevolution between Slit and Robo remains unclear. In this study, we found that coordinated amino acid changes took place at interacting sites of Slit and Robo by comparing the amino acids at these sites among different organisms. In addition, the high level correlation between evolutionary rate of Slit and Robo was identified in vertebrates. Furthermore, the sites under positive selection of slit and robo were detected in the same lineage such as mosquito and teleost. Overall, our results provide evidence for the coevolution between Slit and Robo.

  10. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties


    Casale, Amanda E.; Foust, Amanda J.; Bal, Thierry; McCormick, David A.


    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two o...

  11. Efficient simulations of tubulin-driven axonal growth. (United States)

    Diehl, Stefan; Henningsson, Erik; Heyden, Anders


    This work concerns efficient and reliable numerical simulations of the dynamic behaviour of a moving-boundary model for tubulin-driven axonal growth. The model is nonlinear and consists of a coupled set of a partial differential equation (PDE) and two ordinary differential equations. The PDE is defined on a computational domain with a moving boundary, which is part of the solution. Numerical simulations based on standard explicit time-stepping methods are too time consuming due to the small time steps required for numerical stability. On the other hand standard implicit schemes are too complex due to the nonlinear equations that needs to be solved in each step. Instead, we propose to use the Peaceman-Rachford splitting scheme combined with temporal and spatial scalings of the model. Simulations based on this scheme have shown to be efficient, accurate, and reliable which makes it possible to evaluate the model, e.g. its dependency on biological and physical model parameters. These evaluations show among other things that the initial axon growth is very fast, that the active transport is the dominant reason over diffusion for the growth velocity, and that the polymerization rate in the growth cone does not affect the final axon length.

  12. Axon clinical chemistry analyzer evaluated according to ECCLS protocol. (United States)

    Brenna, S; Prencipe, L


    We assessed the analytical performance of the Axon system (Bayer Diagnostici), according to the European Committee for Clinical Laboratory Standards guidelines, for assay of 12 analytes: cholesterol, creatinine, glucose, total protein, urea, uric acid, alkaline phosphatase, alpha-amylase, aspartate aminotransferase, creatine kinase, sodium, and potassium. The field evaluation lasted approximately 5 months and involved the collection of approximately 10,000 data points with the Axon. The following results were obtained: The highest CVs for controls and human sera at different concentration/activity values were 2.2% for within-run imprecision (n = 60; 3 days, pooled estimate) and 3.5% for the between-day imprecision (n = 20 days). Close correlation was found with results for patients' specimens assayed with comparative instruments (Hitachi 717 for substrates and enzymes, Beckman Synchron EL/E4A for electrolytes). No drift was observed during 8 h of operation. The linearity range was broad, sometimes exceeding the manufacturer's claims. No sample-, reagent-, or cuvette-related carryover was found. Measurement of control sera gave results within +/- 5% of the assigned values. We conclude that good reliability and practicability make the Axon system suitable for laboratories with various needs.

  13. Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia linked CSF1R mutation: Report of four Korean cases. (United States)

    Kim, Eun-Joo; Shin, Jin-Hong; Lee, Jeong Hee; Kim, Jong Hun; Na, Duk L; Suh, Yeon-Lim; Hwang, Sun Jae; Lee, Jae-Hyeok; Lee, Young Min; Shin, Myung-Jun; Lee, Myung Jun; Kim, Seong-Jang; Yoon, Uicheul; Park, Do Youn; Jung, Dae Soo; Ahn, Jae Woo; Sung, Suk; Huh, Gi Yeong


    We describe detailed clinical, biochemical, neuroimaging and neuropathological features in adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), encompassing hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD), linked to colony-stimulating factor 1 receptor (CSF1R) mutations in four Korean cases. Clinical, biochemical, neuroimaging and neuropathological findings were obtained by direct evaluation and from previous medical records. The genetic analysis of the CSF1R gene was done in two autopsy-confirmed ALSP cases and two cases where ALSP was suspected based on the clinical and neuroimaging characteristics. We identified two known mutations: c.2342C>T (p.A781V) in one autopsy-proven HDLS and clinically ALSP-suspected case and c.2345G>A (p.R782H) in another autopsy-proven POLD case. We also found a novel mutation (c.2296A>G; p.M766V) in a patient presenting with hand tremor, stuttering and hesitant speech, and abnormal behavior whose father died from a possible diagnosis of spinocerebellar ataxia. To the best of our knowledge, this is the first documented ALSP-linked CSF1R mutation in Korea and supports the suggestion that HDLS and POLD, with pathological characteristics that are somewhat different but which are caused by CSF1R mutations, are the same spectrum of disease, ALSP.

  14. Influence of brain-derived neurotrophic factor on pathfinding of dentate granule cell axons, the hippocampal mossy fibers. (United States)

    Tamura, Makoto; Tamura, Naohiro; Ikeda, Takamitsu; Koyama, Ryuta; Ikegaya, Yuji; Matsuki, Norio; Yamada, Maki K


    Mossy fibers, the dentate granule cell axons, are generated throughout an animal's lifetime. Mossy fiber paths and synapses are primarily restricted to the stratum lucidum within the CA3 region. Brain-derived neurotrophic factor (BDNF), a neurotrophin family protein that activates Trk neurotrophin receptors, is highly expressed in the stratum lucidum in an activity-dependent manner. The addition of a Trk neurotrophin receptor inhibitor, K252a, to cultured hippocampal slices induced aberrant extension of mossy fibers into ectopic regions. BDNF overexpression in granule cells ameliorated the mossy fiber pathway abnormalities caused by a submaximal dose of K252a. A similar rescue was observed when BDNF was expressed in CA3 pyramidal cells, most notably in mossy fibers distal to the expression site. These findings are the first to clarify the role of BDNF in mossy fiber pathfinding, not as an attractant cue but as a regulator, possibly acting in a paracrine manner. This effect of BDNF may be as a signal for new fibers to fasciculate and extend further to form synapses with neurons that are far from active BDNF-expressing synapses. This mechanism would ensure the emergence of new independent dentate gyrus-CA3 circuits by the axons of new-born granule cells.

  15. Clinical pathological and genetic analysis of 2 cases of mitochondrial myopathy presented as acute motor axonal neuropathy

    Directory of Open Access Journals (Sweden)

    Hou-min YIN


    Full Text Available Background The main clinical manifestations of mitochondrial myopathy are chronic limb weakness and muscular soreness. Subclinical peripheral nerve injury is also reported, but acute axonal syndrome concurrent with lactic acidosis is rare. In this paper the clinical features of 2 patients presenting as acute lactic acidosis and sudden muscle weakness were analyzed. Pathological changes and genetic mutations were detected.  Methods Electromyography (EMG and muscle biopsy were performed. Modified Gomori trichrome (MGT and succinodehydrogenase (SDH staining were used to identify pathological changes. Changes of ultra microstructure of muscular tissue were observed under electron microscope. Mitochondrial DNA (mtDNA full length sequencing was performed using 24 pairs of partially overlapping primers.  Results EMG showed a coexistence of neurogenic and myogenic changes. Dramatic decrease of motor nerve amplitude and moderately reduced sensory nerve amplitude were observed but nerve conduction velocity was normal in both patients. Impressive ragged red fibers were seen on MGT staining. Electron microscope showed dramatic mitochondrial abnormalities in Case 1 and paracrystaline inclusions in Case 2. mtDNA sequencing showed 3243A > G mutation in Case 1 and 8344A > G mutation in Case 2. Conclusions Mitochondrial myopathy can present as metabolic crisis like acute lactic acidosis, dyspnea and acute motor axonal syndrome. It is a life.threatening phenotype that needs more attention. doi: 10.3969/j.issn.1672-6731.2014.06.007

  16. Influence of brain-derived neurotrophic factor on pathfinding of dentate granule cell axons, the hippocampal mossy fibers

    Directory of Open Access Journals (Sweden)

    Tamura Makoto


    Full Text Available Abstract Mossy fibers, the dentate granule cell axons, are generated throughout an animal's lifetime. Mossy fiber paths and synapses are primarily restricted to the stratum lucidum within the CA3 region. Brain-derived neurotrophic factor (BDNF, a neurotrophin family protein that activates Trk neurotrophin receptors, is highly expressed in the stratum lucidum in an activity-dependent manner. The addition of a Trk neurotrophin receptor inhibitor, K252a, to cultured hippocampal slices induced aberrant extension of mossy fibers into ectopic regions. BDNF overexpression in granule cells ameliorated the mossy fiber pathway abnormalities caused by a submaximal dose of K252a. A similar rescue was observed when BDNF was expressed in CA3 pyramidal cells, most notably in mossy fibers distal to the expression site. These findings are the first to clarify the role of BDNF in mossy fiber pathfinding, not as an attractant cue but as a regulator, possibly acting in a paracrine manner. This effect of BDNF may be as a signal for new fibers to fasciculate and extend further to form synapses with neurons that are far from active BDNF-expressing synapses. This mechanism would ensure the emergence of new independent dentate gyrus-CA3 circuits by the axons of new-born granule cells.

  17. Abnormal insulin levels and vertigo. (United States)

    Proctor, C A


    Fifty patients with unexplained vertigo (36) or lightheadedness (14) are evaluated, all of whom had abnormal ENGs and normal audiograms. Five hour insulin glucose tolerance tests were performance on all patients, with insulin levels being obtained fasting and at one-half, one, two, and three hours. The results of this investigation were remarkable. Borderline or abnormal insulin levels were discovered in 82% of patients; 90% were found to have either an abnormal glucose tolerance test or at least borderline insulin levels. The response to treatment in these dizzy patients was also startling, with appropriate low carbohydrate diets improving the patient's symptoms in 90% of cases. It is, therefore, apparent that the earliest identification of carbohydrate imbalance with an insulin glucose tolerance test is extremely important in the work-up of the dizzy patients.

  18. Loss of Saltation and Presynaptic Action Potential Failure in Demyelinated Axons (United States)

    Hamada, Mustafa S.; Popovic, Marko A.; Kole, Maarten H. P.


    In cortical pyramidal neurons the presynaptic terminals controlling transmitter release are located along unmyelinated axon collaterals, far from the original action potential (AP) initiation site, the axon initial segment (AIS). Once initiated, APs will need to reliably propagate over long distances and regions of geometrical inhomogeneity like branch points (BPs) to rapidly depolarize the presynaptic terminals and confer temporally precise synaptic transmission. While axon pathologies such as demyelinating diseases are well established to impede the fidelity of AP propagation along internodes, to which extent myelin loss affects propagation along BPs and axon collaterals is not well understood. Here, using the cuprizone demyelination model, we performed optical voltage-sensitive dye (VSD) imaging from control and demyelinated layer 5 pyramidal neuron axons. In the main axon, we find that myelin loss switches the modality of AP propagation from rapid saltation towards a slow continuous wave. The duration of single AP waveforms at BPs or nodes was, however, only slightly briefer. In contrast, by using two-photon microscopy-guided loose-seal patch recordings from axon collaterals we revealed a presynaptic AP broadening in combination with a reduced velocity and frequency-dependent failure. Finally, internodal myelin loss was also associated with de novo sprouting of axon collaterals starting from the primary (demyelinated) axon. Thus, the loss of oligodendrocytes and myelin sheaths bears functional consequences beyond the main axon, impeding the temporal fidelity of presynaptic APs and affecting the functional and structural organization of synaptic connectivity within the neocortex.

  19. Regulation of action potential waveforms by axonal GABAA receptors in cortical pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Yang Xia

    Full Text Available GABAA receptors distributed in somatodendritic compartments play critical roles in regulating neuronal activities, including spike timing and firing pattern; however, the properties and functions of GABAA receptors at the axon are still poorly understood. By recording from the cut end (bleb of the main axon trunk of layer -5 pyramidal neurons in prefrontal cortical slices, we found that currents evoked by GABA iontophoresis could be blocked by picrotoxin, indicating the expression of GABAA receptors in axons. Stationary noise analysis revealed that single-channel properties of axonal GABAA receptors were similar to those of somatic receptors. Perforated patch recording with gramicidin revealed that the reversal potential of the GABA response was more negative than the resting membrane potential at the axon trunk, suggesting that GABA may hyperpolarize the axonal membrane potential. Further experiments demonstrated that the activation of axonal GABAA receptors regulated the amplitude and duration of action potentials (APs and decreased the AP-induced Ca2+ transients at the axon. Together, our results indicate that the waveform of axonal APs and the downstream Ca2+ signals are modulated by axonal GABAA receptors.

  20. Intra-axonal protein synthesis - a new target for neural repair?

    Directory of Open Access Journals (Sweden)

    Jeffery L Twiss


    Full Text Available Although initially argued to be a feature of immature neurons with incomplete polarization, there is clear evidence that neurons in the peripheral nervous system retain the capacity for intra-axonal protein synthesis well into adulthood. This localized protein synthesis has been shown to contribute to injury signaling and axon regeneration in peripheral nerves. Recent works point to potential for protein synthesis in axons of the vertebrate central nervous system. mRNAs and protein synthesis machinery have now been documented in lamprey, mouse, and rat spinal cord axons. Intra-axonal protein synthesis appears to be activated in adult vertebrate spinal cord axons when they are regeneration-competent. Rat spinal cord axons regenerating into a peripheral nerve graft contain mRNAs and markers of activated translational machinery. Indeed, levels of some growth-associated mRNAs in these spinal cord axons are comparable to the regenerating sciatic nerve. Markers of active translation tend to decrease when these axons stop growing, but can be reactivated by a second axotomy. These emerging observations raise the possibility that mRNA transport into and translation within axons could be targeted to facilitate regeneration in both the peripheral and central nervous systems.

  1. Intra-axonal protein synthesis - a new target for neural repair? (United States)

    Twiss, Jeffery L; Kalinski, Ashley L; Sachdeva, Rahul; Houle, John D


    Although initially argued to be a feature of immature neurons with incomplete polarization, there is clear evidence that neurons in the peripheral nervous system retain the capacity for intra-axonal protein synthesis well into adulthood. This localized protein synthesis has been shown to contribute to injury signaling and axon regeneration in peripheral nerves. Recent works point to potential for protein synthesis in axons of the vertebrate central nervous system. mRNAs and protein synthesis machinery have now been documented in lamprey, mouse, and rat spinal cord axons. Intra-axonal protein synthesis appears to be activated in adult vertebrate spinal cord axons when they are regeneration-competent. Rat spinal cord axons regenerating into a peripheral nerve graft contain mRNAs and markers of activated translational machinery. Indeed, levels of some growth-associated mRNAs in these spinal cord axons are comparable to the regenerating sciatic nerve. Markers of active translation tend to decrease when these axons stop growing, but can be reactivated by a second axotomy. These emerging observations raise the possibility that mRNA transport into and translation within axons could be targeted to facilitate regeneration in both the peripheral and central nervous systems.

  2. Intra-axonal protein synthesis - a new target for neural repair?

    Institute of Scientific and Technical Information of China (English)

    Jeffery L Twiss; Ashley L Kalinski; Rahul Sachdeva; John D Houle


    Although initially argued to be a feature of immature neurons with incomplete polarization, there is clear evidence that neurons in the peripheral nervous system retain the capacity for intra-axonal protein synthe-sis well into adulthood. This localized protein synthesis has been shown to contribute to injury signaling and axon regeneration in peripheral nerves. Recent works point to potential for protein synthesis in axons of the vertebrate central nervous system. mRNAs and protein synthesis machinery have now been docu-mented in lamprey, mouse, and rat spinal cord axons. Intra-axonal protein synthesis appears to be activated in adult vertebrate spinal cord axons when they are regeneration-competent. Rat spinal cord axons regen-erating into a peripheral nerve graft contain mRNAs and markers of activated translational machinery. Indeed, levels of some growth-associated mRNAs in these spinal cord axons are comparable to the regen-erating sciatic nerve. Markers of active translation tend to decrease when these axons stop growing, but can be reactivated by a second axotomy. These emerging observations raise the possibility that mRNA transport into and translation within axons could be targeted to facilitate regeneration in both the peripheral and central nervous systems.

  3. The legacy of logging--estimating arboreal lichen occurrence in a boreal multiple-use landscape on a two century scale.

    Directory of Open Access Journals (Sweden)

    Tim Horstkotte

    Full Text Available In northern Sweden, the availability of arboreal lichens (Bryoria fuscescens, Alectoria sarmentosa as winter grazing resources is an important element in reindeer husbandry. With the industrialization of forestry, forests rich in arboreal lichens have diminished considerably. Here, we analyze how forestry has impacted lichen availability from the 1920's to the present day and model its future development assuming different forest management scenarios.We recorded the current occurrence of B. fuscescens in 144 sampling plots, stratified by forest age class and dominant tree species in a 26,600 ha boreal forest landscape that is used for both reindeer herding and forestry. Lichen abundance was visually estimated in four classes: none, sparse, moderate and abundant. A binary logistic model using forest age as the independent variable was developed to predict the probability of lichens being present. Using this model, we found that lichens were present in stands that are at least 63 years old. Because of the relative paucity of stands rich in arboreal lichens, it was not possible to reliably determine how age affects the variation in abundance of older forest stands. The historical development of forests where arboreal lichens could potentially occur was studied using historic forestry records dating back 80 years. Between 1926 and the present day, forestry has reduced the cover of forests older than 60 years from 84% to 34%. The likely future spatial coverage of these stands over the next 120 years was estimated for two different management scenarios and an unmanaged reference scenario, using the Heureka strategic planning program. Under both the "business as usual" scenario and that involving more intensive forestry, continued decreases in lichen availability are projected. Our results emphasize the importance of alternative forestry practices, such as prolonged rotation periods, to increase the availability of arboreal lichens as a grazing

  4. The Legacy of Logging—Estimating Arboreal Lichen Occurrence in a Boreal Multiple-Use Landscape on a Two Century Scale (United States)

    Horstkotte, Tim; Moen, Jon; Lämås, Tomas; Helle, Timo


    In northern Sweden, the availability of arboreal lichens (Bryoria fuscescens, Alectoria sarmentosa) as winter grazing resources is an important element in reindeer husbandry. With the industrialization of forestry, forests rich in arboreal lichens have diminished considerably. Here, we analyze how forestry has impacted lichen availability from the 1920's to the present day and model its future development assuming different forest management scenarios. We recorded the current occurrence of B. fuscescens in 144 sampling plots, stratified by forest age class and dominant tree species in a 26,600 ha boreal forest landscape that is used for both reindeer herding and forestry. Lichen abundance was visually estimated in four classes: none, sparse, moderate and abundant. A binary logistic model using forest age as the independent variable was developed to predict the probability of lichens being present. Using this model, we found that lichens were present in stands that are at least 63 years old. Because of the relative paucity of stands rich in arboreal lichens, it was not possible to reliably determine how age affects the variation in abundance of older forest stands. The historical development of forests where arboreal lichens could potentially occur was studied using historic forestry records dating back 80 years. Between 1926 and the present day, forestry has reduced the cover of forests older than 60 years from 84% to 34%. The likely future spatial coverage of these stands over the next 120 years was estimated for two different management scenarios and an unmanaged reference scenario, using the Heureka strategic planning program. Under both the “business as usual” scenario and that involving more intensive forestry, continued decreases in lichen availability are projected. Our results emphasize the importance of alternative forestry practices, such as prolonged rotation periods, to increase the availability of arboreal lichens as a grazing resource for reindeer

  5. ROCK2 is a major regulator of axonal degeneration, neuronal death and axonal regeneration in the CNS. (United States)

    Koch, J C; Tönges, L; Barski, E; Michel, U; Bähr, M; Lingor, P


    The Rho/ROCK/LIMK pathway is central for the mediation of repulsive environmental signals in the central nervous system. Several studies using pharmacological Rho-associated protein kinase (ROCK) inhibitors have shown positive effects on neurite regeneration and suggest additional pro-survival effects in neurons. However, as none of these drugs is completely target specific, it remains unclear how these effects are mediated and whether ROCK is really the most relevant target of the pathway. To answer these questions, we generated adeno-associated viral vectors to specifically downregulate ROCK2 and LIM domain kinase (LIMK)-1 in rat retinal ganglion cells (RGCs) in vitro and in vivo. We show here that specific knockdown of ROCK2 and LIMK1 equally enhanced neurite outgrowth of RGCs on inhibitory substrates and both induced substantial neuronal regeneration over distances of more than 5 mm after rat optic nerve crush (ONC) in vivo. However, only knockdown of ROCK2 but not LIMK1 increased survival of RGCs after optic nerve axotomy. Moreover, knockdown of ROCK2 attenuated axonal degeneration of the proximal axon after ONC assessed by in vivo live imaging. Mechanistically, we demonstrate here that knockdown of ROCK2 resulted in decreased intraneuronal activity of calpain and caspase 3, whereas levels of pAkt and collapsin response mediator protein 2 and autophagic flux were increased. Taken together, our data characterize ROCK2 as a specific therapeutic target in neurodegenerative diseases and demonstrate new downstream effects of ROCK2 including axonal degeneration, apoptosis and autophagy.

  6. Magnetic resonance spectroscopy markers of axons and astrogliosis in relation to specific features of white matter injury in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Wisnowski, Jessica L.; Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Schmithorst, Vincent J. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Rosser, Tena [Children' s Hospital Los Angeles, Department of Pediatrics, Division of Neurology, Los Angeles, CA (United States); Paquette, Lisa [Children' s Hospital Los Angeles, Department of Pediatrics, Division of Neonatology, Los Angeles, CA (United States); Nelson, Marvin D. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Haynes, Robin L. [Boston Children' s Hospital, Department of Pathology, Boston, MA (United States); Painter, Michael J. [University of Pittsburgh, Department of Pediatrics, Division of Neurology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Blueml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States)


    Punctate white matter lesions (pWMLs) and diffuse excessive high signal intensity (DEHSI) are commonly observed signal abnormalities on MRI scans of high-risk preterm infants near term-equivalent age. To establish whether these features are indicative abnormalities in axonal development or astroglia, we compared pWMLs and DEHSI to markers of axons and astrogliosis, derived from magnetic resonance spectroscopy (MRS). Data from 108 preterm infants (gestational age at birth 31.0 weeks ± 4.3; age at scan 41.2 weeks ± 6.0) who underwent MR examinations under clinical indications were included in this study. Linear regression analyses were used to test the effects of pWMLs and DEHSI on N-acetyl-aspartate (NAA) and myoinositol concentrations, respectively. Across the full sample, pWMLs were associated with a reduction in NAA whereas moderate to severe DEHSI altered the normal age-dependent changes in myoinositol such that myoinositol levels were lower at younger ages with no change during the perinatal period. Subgroup analyses indicated that the above associations were driven by the subgroup of neonates with both pWMLs and moderate to severe DEHSI. Overall, these findings suggest that pWMLs in conjunction with moderate/severe DEHSI may signify a population of infants at risk for long-term adverse neurodevelopmental outcome due to white matter injury and associated axonopathy. The loss of normal age-associated changes in myoinositol further suggests disrupted astroglial function and/or osmotic dysregulation. (orig.)

  7. Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models (United States)

    Coggan, Jay S.; Ocker, Gabriel K.; Sejnowski, Terrence J.; Prescott, Steven A.


    Neurons rely on action potentials, or spikes, to relay information. Pathological changes in spike generation likely contribute to certain enigmatic features of neurological disease, like paroxysmal attacks of pain and muscle spasm. Paroxysmal symptoms are characterized by abrupt onset and short duration, and are associated with abnormal spiking although the exact pathophysiology remains unclear. To help decipher the biophysical basis for 'paroxysmal' spiking, we replicated afterdischarge (i.e. continued spiking after a brief stimulus) in a minimal conductance-based axon model. We then applied nonlinear dynamical analysis to explain the dynamical basis for initiation and termination of afterdischarge. A perturbation could abruptly switch the system between two (quasi-)stable attractor states: rest and repetitive spiking. This bistability was a consequence of slow positive feedback mediated by persistent inward current. Initiation of afterdischarge was explained by activation of the persistent inward current forcing the system to cross a saddle point that separates the basins of attraction associated with each attractor. Termination of afterdischarge was explained by the attractor associated with repetitive spiking being destroyed. This occurred when ultra-slow negative feedback, such as intracellular sodium accumulation, caused the saddle point and stable limit cycle to collide; in that regard, the active attractor is not truly stable when the slowest dynamics are taken into account. The model also explains other features of paroxysmal symptoms, including temporal summation and refractoriness.

  8. Cryptic Amyloidogenic Elements in the 3′ UTRs of Neurofilament Genes Trigger Axonal Neuropathy (United States)

    Rebelo, Adriana P.; Abrams, Alexander J.; Cottenie, Ellen; Horga, Alejandro; Gonzalez, Michael; Bis, Dana M.; Sanchez-Mejias, Avencia; Pinto, Milena; Buglo, Elena; Markel, Kasey; Prince, Jeffrey; Laura, Matilde; Houlden, Henry; Blake, Julian; Woodward, Cathy; Sweeney, Mary G.; Holton, Janice L.; Hanna, Michael; Dallman, Julia E.; Auer-Grumbach, Michaela; Reilly, Mary M.; Zuchner, Stephan


    Abnormal protein aggregation is observed in an expanding number of neurodegenerative diseases. Here, we describe a mechanism for intracellular toxic protein aggregation induced by an unusual mutation event in families affected by axonal neuropathy. These families carry distinct frameshift variants in NEFH (neurofilament heavy), leading to a loss of the terminating codon and translation of the 3′ UTR into an extra 40 amino acids. In silico aggregation prediction suggested the terminal 20 residues of the altered NEFH to be amyloidogenic, which we confirmed experimentally by serial deletion analysis. The presence of this amyloidogenic motif fused to NEFH caused prominent and toxic protein aggregates in transfected cells and disrupted motor neurons in zebrafish. We identified a similar aggregation-inducing mechanism in NEFL (neurofilament light) and FUS (fused in sarcoma), in which mutations are known to cause aggregation in Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis, respectively. In summary, we present a protein-aggregation-triggering mechanism that should be taken into consideration during the evaluation of stop-loss variants. PMID:27040688

  9. Cardiac abnormalities after subarachnoid hemorrhage

    NARCIS (Netherlands)

    Bilt, I.A.C. van der


    Aneurysmal subarachnoid hemorrhage(aSAH) is a devastating neurological disease. During the course of the aSAH several neurological and medical complications may occur. Cardiac abnormalities after aSAH are observed often and resemble stress cardiomyopathy or Tako-tsubo cardiomyopathy(Broken Heart Syn

  10. Congenital abnormalities in methylmercury poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Gilani, S.H.


    This study was undertaken to determine the teratogenic potential of methylmercury on chick embryogenesis. Methylmercuric chloride was dissolved in sodium bicarbonate (0.2%) and administered to the chick embryos at doses ranging from 0.0009 to 0.010 mg per egg. The injections were made at days 2 and 3 on incubation (Groups A and B). All the embryos including controls were examined on the 7th day of incubation. Methylmercury poisoning was observed to be both embryolethal and teratogenic. Within the two groups, embryolethality was higher in Group A. The following congenital abnormalities were observed: exencephaly, shortened and twisted limbs, microphthalmia, shortened and twisted neck, beak abnormalities, everted viscera, reduced body size and hemorrhage all over the body. Exencephaly and limb abnormalities were very common. No differences in the incidence and types of gross abnormalities within both the groups (A and B) were noted. The incidence of malformations among the controls was low. The results of present investigation show that methylmercury poisoning is both embryolethal and teratogenic to early chick embryogenesis. (auth)

  11. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. (United States)

    Magrané, Jordi; Cortez, Czrina; Gan, Wen-Biao; Manfredi, Giovanni


    Neuronal mitochondrial morphology abnormalities occur in models of familial amyotrophic lateral sclerosis (ALS) associated with SOD1 and TDP43 mutations. These abnormalities have been linked to mitochondrial axonal transport defects, but the temporal and spatial relationship between mitochondrial morphology and transport alterations in these two distinct genetic forms of ALS has not been investigated in vivo. To address this question, we crossed SOD1 (wild-type SOD1(WT) and mutant SOD1(G93A)) or TDP43 (mutant TDP43(A315T)) transgenic mice with mice expressing the fluorescent protein Dendra targeted to mitochondria in neurons (mitoDendra). At different time points during the disease course, we studied mitochondrial transport in the intact sciatic nerve of living mice and analyzed axonal mitochondrial morphology at multiple sites, spanning from the spinal cord to the motor terminals. Defects of retrograde mitochondrial transport were detected at 45 days of age, before the onset of symptoms, in SOD1(G93A) and TDP43(A315T) mice, but not in SOD1(WT). At later disease stages, also anterograde mitochondrial transport was affected in both mutant mouse lines. In SOD1(G93A) mice, mitochondrial morphological abnormalities were apparent at 15 days of age, thus preceding transport abnormalities. Conversely, in TDP43(A315T) mice, morphological abnormalities appeared after the onset of transport defects. Taken together, these findings demonstrate that neuronal mitochondrial transport and morphology abnormalities occur in vivo and that they are common denominators of different genetic forms of the ALS. At the same time, differences in the temporal and spatial manifestation of mitochondrial abnormalities between the two mouse models of familial ALS imply that different molecular mechanisms may be involved.

  12. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon. (United States)

    Ma, Marek


    Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed.

  13. Coculture of elongated neuron axon with poly (D, L-lactide-co-glycolide) biomembrane in vitro

    Institute of Scientific and Technical Information of China (English)

    程飚; 陈峥嵘


    Objective: To elongate human nerve axon in culture and search for suitable support matrices for peripheral nervous system transplantation.Methods: Human embryo cortical neuronal cells,seeded on poly ( D, L-lactide-co-glycolide ) ( PLGA )membrane scaffolds, were elongated with a self-made neuro-axon extending device. The growth and morphological changes of neuron axons were observed to measure axolemmal permeability after elongation.Neurofilament protein was stained by immunohistochemical technique.Results: Human embryo neuron axon could be elongated and cultured on the PLGA membrane and retain their normal form and function.Conclusions: Three dimensional scaffolds with elongated neuron axon have the basic characteristics of artificial nerves, indicating a fundemental theory of nerve repair with elongated neuron axon.

  14. JMJD-1.2/PHF8 controls axon guidance by regulating Hedgehog-like signaling

    DEFF Research Database (Denmark)

    Riveiro, Alba; Mariani, Luca; Malmberg, Kim Emily


    . Here, we show that the catalytic activity of a PHF8 homolog in Caenorhabditis elegans, JMJD-1.2, is required non-cell-autonomously for proper axon guidance. Loss of JMJD-1.2 dysregulates transcription of the Hedgehog-related genes wrt-8 and grl-16, the overexpression of which is sufficient to induce...... the axonal defects. Deficiency of either wrt-8 or grl-16, or reduced expression of homologs of genes promoting Hedgehog signaling, restores correct axon guidance in jmjd-1.2 mutants. Genetic and overexpression data indicate that Hedgehog-related genes act on axon guidance through actin remodelers. Thus, our...... study highlights a novel function of jmjd-1.2 in axon guidance that might be relevant for the onset of X-linked mental retardation and provides compelling evidence of a conserved function of the Hedgehog pathway in C. elegans axon migration....

  15. Sonic hedgehog regulates its own receptor on postcrossing commissural axons in a glypican1-dependent manner. (United States)

    Wilson, Nicole H; Stoeckli, Esther T


    Upon reaching their intermediate target, the floorplate, commissural axons acquire responsiveness to repulsive guidance cues, allowing the axons to exit the midline and adopt a contralateral, longitudinal trajectory. The molecular mechanisms that regulate this switch from attraction to repulsion remain poorly defined. Here, we show that the heparan sulfate proteoglycan Glypican1 (GPC1) is required as a coreceptor for the Shh-dependent induction of Hedgehog-interacting protein (Hhip) in commissural neurons. In turn, Hhip is required for postcrossing axons to respond to a repulsive anteroposterior Shh gradient. Thus, Shh is a cue with dual function. In precrossing axons it acts as an attractive guidance molecule in a transcription-independent manner. At the same time, Shh binds to GPC1 to induce the expression of its own receptor, Hhip, which mediates the repulsive response of postcrossing axons to Shh. Our study characterizes a molecular mechanism by which navigating axons switch their responsiveness at intermediate targets.

  16. Trafifc lights for axon growth:proteoglycans and their neuronal receptors

    Institute of Scientific and Technical Information of China (English)

    Yingjie Shen


    Axon growth is a central event in the development and post-injury plasticity of the nervous system. Growing axons encounter a wide variety of environmental instructions. Much like trafifc lights in controlling the migrating axons, chondroitin sulfate proteoglycans (CSPGs) and hepa-ran sulfate proteoglycans (HSPGs) often lead to“stop”and“go”growth responses in the axons, respectively. Recently, the LAR family and NgR family molecules were identified as neuronal receptors for CSPGs and HSPGs. These discoveries provided molecular tools for further study of mechanisms underlying axon growth regulation. More importantly, the identiifcation of these proteoglycan receptors offered potential therapeutic targets for promoting post-injury axon re-generation.

  17. Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway



    The failure of axons to regenerate is a major obstacle for functional recovery after central nervous system (CNS) injury. Removing extracellular inhibitory molecules results in limited axon regeneration in vivo. To test for the role of intrinsic impediments to axon regrowth, we analyzed cell growth control genes using a virus-assisted in vivo conditional knockout approach. Deletion of PTEN (phosphatase and tensin homolog), a negative regulator of the mammalian target of rapamycin (mTOR) pathw...

  18. ATP7A (Menkes Protein) functions in Axonal Targeting and Synaptogenesis


    Meskini, Rajaâ El; Crabtree, Kelli L.; Cline, Laura B.; Mains, Richard E.; Eipper, Betty A.; Ronnett, Gabriele V.


    Menkes Disease (MD) is a neurodegenerative disorder caused by mutations in the copper transporter, ATP7A, a P-type ATPase. We previously used the olfactory system to demonstrate that ATP7A expression is developmentally, not constitutive, regulated, peaking during synaptogenesis when it is highly expressed in extending axons in a copper-independent manner. Although not known to be associated with axonal functions, we explored the possibility that the inability of mutant ATP7A to support axon o...

  19. Craniocerebral trauma. Magnetic resonance imaging of diffuse axonal injury; Schaedel-Hirn-Trauma. MRT bei diffuser axonaler Verletzung

    Energy Technology Data Exchange (ETDEWEB)

    Mallouhi, A. [Medizinische Universitaet Wien, Allgemeines Krankenhaus, Abteilung fuer Neuro- und Muskuloskelettale Radiologie, Klinik fuer Radiologie und Nuklearmedizin, Wien (Austria)


    Acceleration-deceleration rotational brain trauma is a common cause of disability or death in young adults and often leads to a focal destruction of axons. The resulting pathology, axonal shear injury is referred to as diffuse axonal injury (DAI). The DAI-associated lesions occur bilaterally, are widely dispersed and have been observed in the surface and deep white matter. They are found near to and far from the impact site. When DAI is clinically suspected, magnetic resonance imaging (MRI) is the method of choice for further clarification, especially in patients where cranial computed tomography (CT) is inconspicuous. To investigate the presence of DAI after traumatic brain injury (TBI), a multimodal MRI approach is applied including the common structural and also functional imaging sequences. For structural MRI, fluid-attenuated inversion recovery (FLAIR) weighted and susceptibility contrast imaging (SWI) are the sequences mainly used. The SWI technique is extremely sensitive to blood breakdown products, which appear as small signal voids at three locations, at the gray-white interface, in the corpus callosum and in the brain stem. Functional MRI comprises a group of constantly developing techniques that have great potential in optimal evaluation of the white matter in patients after craniocerebral trauma. These imaging techniques allow the visualization of changes associated with shear injuries, such as functional impairment of axons and decreased blood flow and abnormal metabolic activity of the brain parts affected. The multimodal MRI approach in patients with DAI results in a more detailed and differentiated representation of the underlying pathophysiological changes of the injured nerve tracts and helps to improve the diagnostic and prognostic accuracy of MRI. When DAI is suspected multimodal MRI should be performed as soon as possible after craniocerebral injury. (orig.) [German] Das Rotationstrauma des Gehirns ist bei jungen Erwachsenen ein haeufiger Grund

  20. Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury

    Energy Technology Data Exchange (ETDEWEB)

    Wisnowski, Jessica L. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Ceschin, Rafael C. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Pittsburgh, Department of Biomedical Informatics, Pittsburgh, PA (United States); Choi, So Young [University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Schmithorst, Vincent J. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Painter, Michael J. [University of Pittsburgh, Department of Pediatrics, Division of Neurology, Childrens Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Nelson, Marvin D. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Blueml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States); Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States)


    Altered thalamocortical development is hypothesized to be a key substrate underlying neurodevelopmental disabilities in preterm infants. However, the pathogenesis of this abnormality is not well-understood. We combined magnetic resonance spectroscopy of the parietal white matter and morphometric analyses of the thalamus to investigate the association between white matter metabolism and thalamic volume and tested the hypothesis that thalamic volume would be associated with diminished N-acetyl-aspartate (NAA), a measure of neuronal/axonal maturation, independent of white matter injury. Data from 106 preterm infants (mean gestational age at birth: 31.0 weeks ± 4.3; range 23-36 weeks) who underwent MR examinations under clinical indications were included in this study. Linear regression analyses demonstrated a significant association between parietal white matter NAA concentration and thalamic volume. This effect was above and beyond the effect of white matter injury and age at MRI and remained significant even when preterm infants with punctate white matter lesions (pWMLs) were excluded from the analysis. Furthermore, choline, and among the preterm infants without pWMLs, lactate concentrations were also associated with thalamic volume. Of note, the associations between NAA and choline concentration and thalamic volume remained significant even when the sample was restricted to neonates who were term-equivalent age or older. These observations provide convergent evidence of a neuroimaging phenotype characterized by widespread abnormal thalamocortical development and suggest that the pathogenesis may involve impaired axonal maturation. (orig.)

  1. Thiazolidinediones Promote Axonal Growth through the Activation of the JNK Pathway (United States)

    Quintanilla, Rodrigo A.; Godoy, Juan A.; Alfaro, Ivan; Cabezas, Deny; von Bernhardi, Rommy; Bronfman, Miguel; Inestrosa, Nibaldo C.


    The axon is a neuronal process involved in protein transport, synaptic plasticity, and neural regeneration. It has been suggested that their structure and function are profoundly impaired in neurodegenerative diseases. Previous evidence suggest that Peroxisome Proliferator-Activated Receptors-γ (PPARγ promote neuronal differentiation on various neuronal cell types. In addition, we demonstrated that activation of PPARγby thiazolidinediones (TZDs) drugs that selectively activate PPARγ prevent neurite loss and axonal damage induced by amyloid-β (Aβ). However, the potential role of TZDs in axonal elongation and neuronal polarity has not been explored. We report here that the activation of PPARγ by TZDs promoted axon elongation in primary hippocampal neurons. Treatments with different TZDs significantly increased axonal growth and branching area, but no significant effects were observed in neurite elongation compared to untreated neurons. Treatment with PPARγ antagonist (GW 9662) prevented TZDs-induced axonal growth. Recently, it has been suggested that the c-Jun N-terminal kinase (JNK) plays an important role regulating axonal growth and neuronal polarity. Interestingly, in our studies, treatment with TZDs induced activation of the JNK pathway, and the pharmacological blockage of this pathway prevented axon elongation induced by TZDs. Altogether, these results indicate that activation of JNK induced by PPARγactivators stimulates axonal growth and accelerates neuronal polarity. These novel findings may contribute to the understanding of the effects of PPARγ on neuronal differentiation and validate the use of PPARγ activators as therapeutic agents in neurodegenerative diseases. PMID:23741474

  2. A role for myosin VI in the localization of axonal proteins.

    Directory of Open Access Journals (Sweden)

    Tommy L Lewis


    Full Text Available In neurons polarized trafficking of vesicle-bound membrane proteins gives rise to the distinct molecular composition and functional properties of axons and dendrites. Despite their central role in shaping neuronal form and function, surprisingly little is known about the molecular processes that mediate polarized targeting of neuronal proteins. Recently, the plus-end-directed motor Myosin Va was shown to play a critical role in targeting of transmembrane proteins to dendrites; however, the role of myosin motors in axonal targeting is unknown. Here we show that Myosin VI, a minus-end-directed motor, plays a vital role in the enrichment of proteins on the surface of axons. Engineering non-neuronal proteins to interact with Myosin VI causes them to become highly concentrated at the axonal surface in dissociated rat cortical neurons. Furthermore, disruption of either Myosin VI function or expression leads to aberrant dendritic localization of axonal proteins. Myosin VI mediates the enrichment of proteins on the axonal surface at least in part by stimulating dendrite-specific endocytosis, a mechanism that has been shown to underlie the localization of many axonal proteins. In addition, a version of Channelrhodopsin 2 that was engineered to bind to Myosin VI is concentrated at the surface of the axon of cortical neurons in mice in vivo, suggesting that it could be a useful tool for probing circuit structure and function. Together, our results indicate that myosins help shape the polarized distributions of both axonal and dendritic proteins.

  3. Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay

    DEFF Research Database (Denmark)

    Colak, Dilek; Ji, Sheng-Jian; Porse, Bo T


    show that Robo3.2, a receptor for the Slit family of guidance cues, is synthesized locally within axons of commissural neurons. Robo3.2 translation is induced by floor-plate-derived signals as axons cross the spinal cord midline. Robo3.2 is also a predicted target of the nonsense-mediated mRNA decay...... (NMD) pathway. We find that NMD regulates Robo3.2 synthesis by inducing the degradation of Robo3.2 transcripts in axons that encounter the floor plate. Commissural neurons deficient in NMD proteins exhibit aberrant axonal trajectories after crossing the midline, consistent with misregulation of Robo3...

  4. Motor neuron synapse and axon defects in a C. elegans alpha-tubulin mutant.

    Directory of Open Access Journals (Sweden)

    Renee Baran

    Full Text Available Regulation of microtubule dynamics underlies many fundamental cellular mechanisms including cell division, cell motility, and transport. In neurons, microtubules play key roles in cell migration, axon outgrowth, control of axon and synapse growth, and the regulated transport of vesicles and structural components of synapses. Loss of synapse and axon integrity and disruption of axon transport characterize many neurodegenerative diseases. Recently, mutations that specifically alter the assembly or stability of microtubules have been found to directly cause neurodevelopmental defects or neurodegeneration in vertebrates. We report here the characterization of a missense mutation in the C-terminal domain of C. elegans alpha-tubulin, tba-1(ju89, that disrupts motor neuron synapse and axon development. Mutant ju89 animals exhibit reduction in the number and size of neuromuscular synapses, altered locomotion, and defects in axon extension. Although null mutations of tba-1 show a nearly wild-type pattern, similar axon outgrowth defects were observed in animals lacking the beta-tubulin TBB-2. Genetic analysis reveals that tba-1(ju89 affects synapse development independent of its role in axon outgrowth. tba-1(ju89 is an altered function allele that most likely perturbs interactions between TBA-1 and specific microtubule-associated proteins that control microtubule dynamics and transport of components needed for synapse and axon growth.

  5. Odorant receptors regulate the final glomerular coalescence of olfactory sensory neuron axons. (United States)

    Rodriguez-Gil, Diego J; Bartel, Dianna L; Jaspers, Austin W; Mobley, Arie S; Imamura, Fumiaki; Greer, Charles A


    Odorant receptors (OR) are strongly implicated in coalescence of olfactory sensory neuron (OSN) axons and the formation of olfactory bulb (OB) glomeruli. However, when ORs are first expressed relative to basal cell division and OSN axon extension is unknown. We developed an in vivo fate-mapping strategy that enabled us to follow OSN maturation and axon extension beginning at basal cell division. In parallel, we mapped the molecular development of OSNs beginning at basal cell division, including the onset of OR expression. Our data show that ORs are first expressed around 4 d following basal cell division, 24 h after OSN axons have reached the OB. Over the next 6+ days the OSN axons navigate the OB nerve layer and ultimately coalesce in glomeruli. These data provide a previously unidentified perspective on the role of ORs in homophilic OSN axon adhesion and lead us to propose a new model dividing axon extension into two phases. Phase I is OR-independent and accounts for up to 50% of the time during which axons approach the OB and begin navigating the olfactory nerve layer. Phase II is OR-dependent and concludes as OSN axons coalesce in glomeruli.

  6. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion (United States)

    Sasaki, Yo; Nakagawa, Takashi; Mao, Xianrong; DiAntonio, Aaron; Milbrandt, Jeffrey


    Overexpression of the NAD+ biosynthetic enzyme NMNAT1 leads to preservation of injured axons. While increased NAD+ or decreased NMN levels are thought to be critical to this process, the mechanism(s) of this axon protection remain obscure. Using steady-state and flux analysis of NAD+ metabolites in healthy and injured mouse dorsal root ganglion axons, we find that rather than altering NAD+ synthesis, NMNAT1 instead blocks the injury-induced, SARM1-dependent NAD+ consumption that is central to axon degeneration. DOI: PMID:27735788

  7. Evidence for the Role of MAP1B in Axon Formation (United States)

    Gonzalez-Billault, Christian; Avila, Jesus; Cáceres, Alfredo


    Cultured neurons obtained from a hypomorphous MAP1B mutant mouse line display a selective and significant inhibition of axon formation that reflects a delay in axon outgrowth and a reduced rate of elongation. This phenomenon is paralleled by decreased microtubule formation and dynamics, which is dramatic at the distal axonal segment, as well as in growth cones, where the more recently assembled microtubule polymer normally predominates. These neurons also have aberrant growth cone formation and increased actin-based protrusive activity. Taken together, this study provides direct evidence showing that by promoting microtubule dynamics and regulating cytoskeletal organization MAP1B has a crucial role in axon formation. PMID:11452005

  8. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients.

    Directory of Open Access Journals (Sweden)

    Jan Jessen Krut

    Full Text Available Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL in CSF with a novel, sensitive method.With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL (marker of neuronal injury, neopterin (intrathecal immunoactivation and CSF/Plasma albumin ratio (blood-brain barrier integrity were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200, HIV-associated dementia (HAD (n = 14 and on combinations antiretroviral treatment (cART (n = 85, and healthy controls (n = 204. 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation.While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups.Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and clinical brain injury in HIV and warrants further

  9. Erbin is required for myelination in regenerated axons after injury



    Neuregulin 1 (NRG1) is an axon-derived factor that is critical for Schwann cell (SC) development and myelinogenesis in a manner dependent on transmembrane tyrosine kinases ErbB2 and ErbB3. Recent studies suggest that NRG1 signaling plays a role in remyelination of regenerated nerves after injury. In this study, we investigated the role of Erbin, a protein that interacts with ErbB2 in remyelination of injured nerves. We show that Erbin expression increased dramatically in injured nerves. Myeli...

  10. Pyridoxine neuropathy in rats: specific degeneration of sensory axons. (United States)

    Windebank, A J; Low, P A; Blexrud, M D; Schmelzer, J D; Schaumburg, H H


    When rats received pyridoxine in doses large enough to cause neuropathy in humans, the animals developed gait ataxia that subsided after the toxin was withdrawn. By using quantitative histologic techniques, we found axonal degeneration of sensory system fibers and that the fibers derived from the ventral root were spared. Although the degeneration approached the dorsal root ganglion, neurons in the ganglion did not degenerate. We found no early decrease in oxygen consumption of nerve, suggesting that impaired oxidative metabolism was not the primary event.

  11. Neuroprotective Effects of Citicoline in Diffuse Axonal Injuries


    Firooz Salehpou; Ghaffar Shokouhi; Moslem Shakeri; Mohammad Shimia; Atta Mahdkhah; Ali Baradaran; Mohammad Taghi Imani; arhad Mirzaee; Aydin Kazempour Azar; Amir Mohammad Bazzazi; Hadi Mohammad Khanli


    Citicoline is a neuroprotective agent and fundamental item of phospholipid biosynthesis in cell walls. In this study, we aimed at examining the effect of citicoline in patients suffering from traumatic brain injury with Glasgow Coma Score (GCS) ≤ 8, and diffuse axonal injury (DAI) diagnosis. Efficacy of citicoline was evaluated by measurement of malondialdehyde (MDA) plasma levels as a marker of oxidative stress. Forty patients were randomly divided into two groups of cases (treated with citi...

  12. Nail abnormalities in rheumatoid arthritis. (United States)

    Michel, C; Cribier, B; Sibilia, J; Kuntz, J L; Grosshans, E


    Many nail abnormalities have traditionally been described in association with rheumatoid arthritis (RA), but their specificity has never been assessed in a controlled study. Our purpose was to evaluate the frequency and the specificity of nail changes associated with RA in a case-controlled study including 50 patients suffering from RA and 50 controls. For each patient, a general skin examination was performed and the 20 nails were examined. The nail features were noted and classified. A chi 2 test or a Fisher test was used to compare the two groups. The only nail abnormalities significantly associated with RA were longitudinal ridging on nine or 10 finger nails (29 patients in the RA group vs. three in the controls, chi 2: P nail (24 patients vs. 10, chi 2: P nail changes were noticed but were not frequent enough to be significant. The presence of longitudinal ridging on the finger nails was significantly associated with RA.

  13. Neuroendocrine abnormalities in Parkinson's disease. (United States)

    De Pablo-Fernández, Eduardo; Breen, David P; Bouloux, Pierre M; Barker, Roger A; Foltynie, Thomas; Warner, Thomas T


    Neuroendocrine abnormalities are common in Parkinson's disease (PD) and include disruption of melatonin secretion, disturbances of glucose, insulin resistance and bone metabolism, and body weight changes. They have been associated with multiple non-motor symptoms in PD and have important clinical consequences, including therapeutics. Some of the underlying mechanisms have been implicated in the pathogenesis of PD and represent promising targets for the development of disease biomarkers and neuroprotective therapies. In this systems-based review, we describe clinically relevant neuroendocrine abnormalities in Parkinson's disease to highlight their role in overall phenotype. We discuss pathophysiological mechanisms, clinical implications, and pharmacological and non-pharmacological interventions based on the current evidence. We also review recent advances in the field, focusing on the potential targets for development of neuroprotective drugs in Parkinson's disease and suggest future areas for research.

  14. Radiological appearances of sinonasal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    El-Beltagi, A.H.; Sobeih, A.A.; Valvoda, M.; Dahniya, M.H.; Badr, S.S


    The aim of this pictorial review is to present a variety of abnormalities of the sinonasal cavities to emphasize the diversity of lesions occurring in this region. These include congenital, neoplastic and granulomatous disorders and some allergic and inflammatory lesions with uncommon radiological appearances, as well as expanding lesions of the facial bones or of dental origin with secondary involvement of the related sinus(es). El-Beltagi, A.H. et al. (2002). Clinical Radiology 57, 702-718.

  15. Computed tomography of thymic abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, P.; Candardjis, G.


    Computed tomographic examinations of 38 patients with surgically and histologically proven diagnosis were reviewed. Twenty subjects (52%) had an invasive thymoma and 16% an hyperplastic thymus. Myasthenia gravis was present in 6 cases (16%) of thymic abnormalities, four (10,5%) with invasive thymoma and two (5%) with thymic hyperplasia. Graves' disease was also present in one case of thymic hyperplasia. We emphasize the contribution of CT to the diagnosis and the prognosis.

  16. Meiotic abnormalities in infertile males. (United States)

    Egozcue, J; Sarrate, Z; Codina-Pascual, M; Egozcue, S; Oliver-Bonet, M; Blanco, J; Navarro, J; Benet, J; Vidal, F


    Meiotic anomalies, as reviewed here, are synaptic chromosome abnormalities, limited to germ cells that cannot be detected through the study of the karyotype. Although the importance of synaptic errors has been underestimated for many years, their presence is related to many cases of human male infertility. Synaptic anomalies can be studied by immunostaining of synaptonemal complexes (SCs), but in this case their frequency is probably underestimated due to the phenomenon of synaptic adjustment. They can also be studied in classic meiotic preparations, which, from a clinical point of view, is still the best approach, especially if multiplex fluorescence in situ hybridization is at hand to solve difficult cases. Sperm chromosome FISH studies also provide indirect evidence of their presence. Synaptic anomalies can affect the rate of recombination of all bivalents, produce achiasmate small univalents, partially achiasmate medium-sized or large bivalents, or affect all bivalents in the cell. The frequency is variable, interindividually and intraindividually. The baseline incidence of synaptic anomalies is 6-8%, which may be increased to 17.6% in males with a severe oligozoospermia, and to 27% in normozoospermic males with one or more previous IVF failures. The clinical consequences are the production of abnormal spermatozoa that will produce a higher number of chromosomally abnormal embryos. The indications for a meiotic study in testicular biopsy are provided.

  17. Plexin A3 and turnout regulate motor axonal branch morphogenesis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Rajiv Sainath

    Full Text Available During embryogenesis motor axons navigate to their target muscles, where individual motor axons develop complex branch morphologies. The mechanisms that control axonal branching morphogenesis have been studied intensively, yet it still remains unclear when branches begin to form or how branch locations are determined. Live cell imaging of individual zebrafish motor axons reveals that the first axonal branches are generated at the ventral extent of the myotome via bifurcation of the growth cone. Subsequent branches are generated by collateral branching restricted to their synaptic target field along the distal portion of the axon. This precisely timed and spatially restricted branching process is disrupted in turnout mutants we identified in a forward genetic screen. Molecular genetic mapping positioned the turnout mutation within a 300 kb region encompassing eight annotated genes, however sequence analysis of all eight open reading frames failed to unambiguously identify the turnout mutation. Chimeric analysis and single cell labeling reveal that turnout function is required cell non-autonomously for intraspinal motor axon guidance and peripheral branch formation. turnout mutant motor axons form the first branch on time via growth cone bifurcation, but unlike wild-type they form collateral branches precociously, when the growth cone is still navigating towards the ventral myotome. These precocious collateral branches emerge along the proximal region of the axon shaft typically devoid of branches, and they develop into stable, permanent branches. Furthermore, we find that null mutants of the guidance receptor plexin A3 display identical motor axon branching defects, and time lapse analysis reveals that precocious branch formation in turnout and plexin A3 mutants is due to increased stability of otherwise short-lived axonal protrusions. Thus, plexin A3 dependent intrinsic and turnout dependent extrinsic mechanisms suppress collateral branch

  18. RabGDI controls axonal midline crossing by regulating Robo1 surface expression

    Directory of Open Access Journals (Sweden)

    Philipp Melanie


    Full Text Available Abstract Background Axons navigate to their future synaptic targets with the help of choice points, intermediate targets that express axon guidance cues. Once they reach a choice point, axons need to switch their response from attraction to repulsion in order to move on with the next stage of their journey. The mechanisms underlying the change in axonal responsiveness are poorly understood. Commissural axons become sensitive to the repulsive activity of Slits when they cross the ventral midline of the CNS. Responsiveness to Slits depends on surface expression of Robo receptors. In Drosophila, Commissureless (Comm plays a crucial regulatory role in midline crossing by keeping Robo levels low on precommissural axons. Interestingly, to date no vertebrate homolog of comm has been identified. Robo3/Rig1 has been shown to control Slit sensitivity before the midline, but without affecting Robo1 surface expression. Results We had identified RabGDI, a gene linked to human mental retardation and an essential component of the vesicle fusion machinery, in a screen for differentially expressed floor-plate genes. Downregulation of RabGDI by in ovo RNAi caused commissural axons to stall in the floor plate, phenocopying the effect observed after downregulation of Robo1. Conversely, premature expression of RabGDI prevented commissural axons from entering the floor plate. Furthermore, RabGDI triggered Robo1 surface expression in cultured commissural neurons. Taken together, our results identify RabGDI as a component of the switching mechanism that is required for commissural axons to change their response from attraction to repulsion at the intermediate target. Conclusion RabGDI takes over the functional role of fly Comm by regulating the surface expression of Robo1 on commissural axons in vertebrates. This in turn allows commissural axons to switch from attraction to repulsion at the midline of the spinal cord.

  19. Drivers of aggregation in a novel arboreal parasite: the influence of host size and infra-populations. (United States)

    Yule, Kirsty J; Burns, Kevin C


    As a novel arboreal parasite, New Zealand's largest endemic moth, Aenetus virescens, is a biological oddity. With arguably the most unusual lepidopteran life history on earth, larvae grow to 100mm, spending ∼6 years as wood-boring parasites feeding on host tree phloem. Parasite fitness is a product of host suitability. Parasite discrimination between heterogeneous hosts in fragmented populations shapes parasite aggregation. We investigated whether A. virescens aggregation among hosts occurs randomly (target area effect), or if larvae select hosts based on host quality (ideal free distribution). Using long-term larval growth as an indicator of energy intake, we examined A. virescens aggregation in relation to host size and infra-population. Using a generalised linear model, the relationship between parasite intensity and host tree size was analysed. Reduced major axis regression was used to evaluate A. virescens growth after 1 year. Linear mixed-effects models inferred the influence of parasite infra-population on parasite growth, with host tree as a random factor. Results indicate parasite intensity scaled positively with host size. Furthermore, parasite growth remained consistent throughout ontogeny regardless of host size or parasite infra-population. Aenetus virescens aggregation among hosts violates the ideal free distribution hypothesis, occurring instead as a result of host size, supporting the target area effect.

  20. Modified Roots of Tropical Rainforest Arbor%热带雨林乔木的变态根

    Institute of Scientific and Technical Information of China (English)

    田静; 王洪武


    This paper introduces basic knowledge and morphological types of roots which reveal that buttress roots, ground roots, aerial roots and brace roots are all unique root-modifying of tropical rainforest plants in Xishuangbanna and which constitute unique tropical rainforest landscape such as single-tree forest and plant strangler and so on and points out that the root-modifying of tropical rainforest arbor are the laws for the plants to survive by competing the space and by suiting the environment,%介绍了根的基本知识和形态类型;说明了西双版纳热带雨林中的板根、地面根、气生根和支柱根均是热带雨林植物特有的变态根,也正是这些形态各异的变态根构成了独树成林、植物绞杀等独特的热带雨林景观;指出热带雨林乔木的变态根,实质上是植物为了适应环境、争夺空间所采取的生存法则。

  1. A possible role for integrin signaling in diffuse axonal injury.

    Directory of Open Access Journals (Sweden)

    Matthew A Hemphill

    Full Text Available Over the past decade, investigators have attempted to establish the pathophysiological mechanisms by which non-penetrating injuries damage the brain. Several studies have implicated either membrane poration or ion channel dysfunction pursuant to neuronal cell death as the primary mechanism of injury. We hypothesized that traumatic stimulation of integrins may be an important etiological contributor to mild Traumatic Brain Injury. In order to study the effects of forces at the cellular level, we utilized two hierarchical, in vitro systems to mimic traumatic injury to rat cortical neurons: a high velocity stretcher and a magnetic tweezer system. In one system, we controlled focal adhesion formation in neurons cultured on a stretchable substrate loaded with an abrupt, one dimensional strain. With the second system, we used magnetic tweezers to directly simulate the abrupt injury forces endured by a focal adhesion on the neurite. Both systems revealed variations in the rate and nature of neuronal injury as a function of focal adhesion density and direct integrin stimulation without membrane poration. Pharmacological inhibition of calpains did not mitigate the injury yet the inhibition of Rho-kinase immediately after injury reduced axonal injury. These data suggest that integrin-mediated activation of Rho may be a contributor to the diffuse axonal injury reported in mild Traumatic Brain Injury.

  2. An analysis of conductance changes in squid axon. (United States)



    The membrane of the squid axon is considered on the basis of a pore model in which the distribution of the pore sizes strongly favors K(+) transfer when there is no potential. Electrical asymmetry causes non-penetrating ions on the membrane capacitor to exert a mechanical force on both membrane surfaces and this force results in a deformation of the membrane pore system such that it assumes a distribution of sizes favoring the ions exerting mechanical force. The ions involved appear to be Ca(++) on the outside of the membrane and isethionate(-), (i(-)) on the inside; as Ca(++) is equivalent in size to Na(+), the charged membrane is potentially able to transfer Na(+), when the ions deforming the membrane pore distribution are removed. A depolarization of the membrane leads to an opening of pores that will allow Na(+) penetration and a release of the membrane from deformation. The pores revert to the zero-potential pore size distribution hence the Na permeability change is a transient. Calculation shows that the potassium conductance vs. displacement of membrane potential curve for the squid axon and the "inactivation" function, h, can be obtained directly from the assumed membrane distortion without the introduction of arbitrary parameters. The sodium conductance, because it is a transient, requires assumptions about the time constants with which ions unblock pores at the outside and the inside of the membrane.

  3. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M


    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  4. Bushen Yisui Capsule ameliorates axonal injury in experimental autoimmune encephalomyelitis

    Institute of Scientific and Technical Information of China (English)

    Ling Fang; Lei Wang; Qi Zheng; Tao Yang; Hui Zhao; Qiuxia Zhang; Kangning Li; Li Zhou; Haiyang Gong; Yongping Fan


    A preliminary clinical study by our group demonstrated Bushen Yisui Capsule (formerly cal ed Er-huang Formula) in combination with conventional therapy is an effective prescription for the treat-ment of multiple sclerosis. However, its effect on axonal injury during early multiple sclerosis re-mains unclear. In this study, a MOG 35-55-immunized C57BL/6 mouse model of experimental au-toimmune encephalomyelitis was intragastrical y administered Bushen Yisui Capsule. The results showed that Bushen Yisui Capsule effectively improved clinical symptoms and neurological function of experimental autoimmune encephalomyelitis. In addition, amyloid precursor protein expression was down-regulated and microtubule-associated protein 2 was up-regulated. Experimental findings indicate that the disease-preventive mechanism of Bushen Yisui Capsule in experimental autoim-mune encephalomyelitis was mediated by amelioration of axonal damage and promotion of rege-neration. But the effects of the high-dose Bushen Yisui Capsule group was not better than that of the medium-dose and low-dose Bushen Yisui Capsule group in preventing neurological dysfunction.

  5. Tau phosphorylation affects its axonal transport and degradation (United States)

    Rodríguez-Martín, Teresa; Cuchillo-Ibáñez, Inmaculada; Noble, Wendy; Nyenya, Fanon; Anderton, Brian H.; Hanger, Diane P.


    Phosphorylated forms of microtubule-associated protein tau accumulate in neurofibrillary tangles in Alzheimer's disease. To investigate the effects of specific phosphorylated tau residues on its function, wild type or phosphomutant tau was expressed in cells. Elevated tau phosphorylation decreased its microtubule binding and bundling, and increased the number of motile tau particles, without affecting axonal transport kinetics. In contrast, reducing tau phosphorylation enhanced the amount of tau bound to microtubules and inhibited axonal transport of tau. To determine whether differential tau clearance is responsible for the increase in phosphomimic tau, we inhibited autophagy in neurons which resulted in a 3-fold accumulation of phosphomimic tau compared with wild type tau, and endogenous tau was unaffected. In autophagy-deficient mouse embryonic fibroblasts, but not in neurons, proteasomal degradation of phosphomutant tau was also reduced compared with wild type tau. Therefore, autophagic and proteasomal pathways are involved in tau degradation, with autophagy appearing to be the primary route for clearing phosphorylated tau in neurons. Defective autophagy might contribute to the accumulaton of tau in neurodegenerative diseases. PMID:23601672

  6. Selective optogenetic stimulation of cholinergic axons in neocortex. (United States)

    Kalmbach, Abigail; Hedrick, Tristan; Waters, Jack


    Acetylcholine profoundly affects neocortical function, being involved in arousal, attention, learning, memory, sensory and motor function, and plasticity. The majority of cholinergic afferents to neocortex are from neurons in nucleus basalis. Nucleus basalis also contains projecting neurons that release other transmitters, including GABA and possibly glutamate. Hence, electrical stimulation of nucleus basalis evokes the release of a mixture of neurotransmitters in neocortex, and this lack of selectivity has impeded research on cholinergic signaling in neocortex. We describe a method for the selective stimulation of cholinergic axons in neocortex. We used the Cre-lox system and a viral vector to express the light-activated protein channelrhodopsin-2 in cholinergic neurons in nucleus basalis and their axons in neocortex. Labeled neurons depolarized on illumination with blue light but were otherwise unchanged. In anesthetized mice, illumination of neocortex desynchronized the local field potential, indicating that light evoked release of ACh. This novel technique will enable many new studies of the cellular, network, and behavioral physiology of ACh in neocortex.

  7. An integrative approach to phylogeography: Investigating the effects of ancient seaways, climate, and historical geology on multi-locus phylogeographic boundaries of the Arboreal Salamander (Aneides lugubris)


    Reilly, SB; Corl, A; Wake, DB


    Background Phylogeography is an important tool that can be used to reveal cryptic biodiversity and to better understand the processes that promote lineage diversification. We studied the phylogeographic history of the Arboreal Salamander (Aneides lugubris), a wide-ranging species endemic to the California floristic province. We used multi-locus data to reconstruct the evolutionary history of A. lugubris and to discover the geographic location of major genetic breaks within the species. We als...

  8. Low-set ears and pinna abnormalities (United States)

    Low-set ears; Microtia; "Lop" ear; Pinna abnormalities; Genetic defect-pinna; Congenital defect-pinna ... conditions: Abnormal folds or location of the pinna Low-set ears No opening to the ear canal ...

  9. Impaired terrestrial and arboreal locomotor performance in the western fence lizard (Sceloporus occidentalis) after exposure to an AChE-inhibiting pesticide

    Energy Technology Data Exchange (ETDEWEB)

    DuRant, Sarah E. [Wildlife Ecotoxicology and Physiological Ecology Program, Department of Fisheries and Wildlife Sciences, Virginia Polytechnic Institute and State University, 444 Latham Hall, Blacksburg, VA 24061 (United States); University of Georgia, Savannah River Ecology Laboratory, PO Drawer E, Aiken, SC 29802 (United States); Hopkins, William A. [Wildlife Ecotoxicology and Physiological Ecology Program, Department of Fisheries and Wildlife Sciences, Virginia Polytechnic Institute and State University, 444 Latham Hall, Blacksburg, VA 24061 (United States) and University of Georgia, Savannah River Ecology Laboratory, PO Drawer E, Aiken, SC 29802 (United States)]. E-mail:; Talent, Larry G. [Department of Zoology, Oklahoma State University, Stillwater, OK 74078 (United States)


    We examined the effects of a commonly used AChE-inhibiting pesticide on terrestrial and arboreal sprint performance, important traits for predator avoidance and prey capture, in the western fence lizard (Sceloporus occidentalis). Lizards were exposed to carbaryl (2.5, 25, and 250 {mu}g/g) and were raced before and 4, 24, and 96 h after dosing. In the terrestrial setting, exposure to low concentrations of carbaryl had stimulatory effects on performance, but exposure to the highest concentration was inhibitory. No stimulatory effects of carbaryl were noted in the arboreal environment and performance in lizards was reduced after exposure to both the medium and highest dose of carbaryl. Our findings suggest that acute exposure to high concentrations of carbaryl can have important sublethal consequences on fitness-related traits in reptiles and that arboreal locomotor performance is a more sensitive indicator of AChE-inhibiting pesticide poisoning than terrestrial locomotor performance. - Exposure to an acetylcholinesterase-inhibiting pesticide alters locomotor performance in western fence lizards.

  10. Potential effects of arboreal and terrestrial avian dispersers on seed dormancy, seed germination and seedling establishment in Ormosia (Papilionoideae) species in Peru (United States)

    Foster, Mercedes S.


    The relative effectiveness of arboreal or terrestrial birds at dispersing seeds of Ormosia macrocalyx and O. bopiensis (Fabaceae: Papilionoideae) were studied in south-eastern Peru. Seeds of both species were either scarified, to represent seed condition after dispersal by terrestrial birds, or left intact, to represent seed condition after dispersal by arboreal birds. Seeds were distributed along forest transects, and germination, seedling development and mortality were monitored to determine the successes of the two groups at producing seedlings. Scarified seeds germinated with the early rains of the dry-to-wet-season transition, when erratic rainfall was interspersed with long dry spells. Intact seeds germinated 30 d later when the rain was more plentiful and regular. Intact seeds of O. macrocalyx gave rise to significantly more seedlings (41.1% vs. 25.5%) than did scarified seeds, in part, because significantly more seedlings from scarified seeds (n = 20) than from intact seeds (n = 3) died from desiccation when their radicles failed to enter the dry ground present during the dry-to-wet-season transition. Also, seedlings from scarified seeds were neither larger nor more robust than those from intact seeds despite their longer growing period. Results are consistent with the hypothesis that dispersal effectiveness of arboreal birds, at least for O. macrocalyx, is greater than that of terrestrial birds. Screen-house experiments in which seedlings developed under different watering regimes supported this result. Numbers of seedlings developing from intact and scarified seeds of O. bopiensis did not differ significantly.

  11. HIV-1 infected and immune competent mononuclear phagocytes induce quantitative alterations in neuronal dendritic arbor: relevance for HIV-1-associated dementia. (United States)

    Zheng, J; Thylin, M R; Cotter, R L; Lopez, A L; Ghorpade, A; Persidsky, Y; Xiong, H; Leisman, G B; Che, M H; Gendelman, H E


    Neuronal loss, alterations in dendritic arbor, and decreased synaptic density, in infected brain tissue, are neuropathological signatures of HIV-1-associated dementia (HAD). Brain mononuclear phagocyte (MP) (macrophage and microglia) secretory products can effect neuronal compromise, although the underlying mechanism(s) remain incompletely defined. To these ends, we quantitatively assessed the effects of virus-infected and/or immune activated MP secretory products on multiple aspects of neuronal morphology. Rat cortical and hippocampal neurons were exposed to secretory products from HIV-1-infected and lipopolysaccharide (LPS)-activated human monocyte-derived macrophage (MDM). Our assays for alterations in neuronal dendritic arbor and cell loss included the quantification of neurofilament (NF), neuron-specific enolase (NSE), and MAP-2 by ELISA and cellular morphology. MDM conditioned media (MCM) enhanced neuronal survival. HIV-1 infection or activation by LPS had modest neurotoxic effects. In contrast, the combination of HIV-1 infection and activation of MDM produced significant neurotoxicity. Such MDM products altered dendritic arbor, decreased synaptic density, and increased LDH release. Comparable neurotrophic/toxic responses were observed when neurons were exposed to MCM collected from 12 separate human donors. Similar responses were observed with MCM from human fetal microglia, further supporting the role of HIV-1-infected and immune-activated brain MP in the overall neurotoxic responses. This work provides quantitative measures of neuronal damage by which virus infected and activated MP can elicit neuronal injury in HAD.

  12. Shank3 is localized in axons and presynaptic specializations of developing hippocampal neurons and involved in the modulation of NMDA receptor levels at axon terminals. (United States)

    Halbedl, Sonja; Schoen, Michael; Feiler, Marisa S; Boeckers, Tobias M; Schmeisser, Michael J


    Autism-related Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses. A few studies, however, have already indicated that within a neuron, the presence of Shank family members is not limited to the postsynaptic density. By separating axons from dendrites of developing hippocampal neurons in microfluidic chambers, we show that RNA of all three Shank family members is present within axons. Immunostaining confirms these findings as all three Shanks are indeed found within separated axons and further co-localize with well-known proteins of the presynaptic specialization in axon terminals. Therefore, Shank proteins might not only serve as postsynaptic scaffold proteins, but also play a crucial role during axonal outgrowth and presynaptic development and function. This is supported by our findings that shRNA-mediated knockdown of Shank3 results in up-regulation of the NMDA receptor subunit GluN1 in axon terminals. Taken together, our findings will have major implications for the future analysis of neuronal Shank biology in both health and disease. Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses strongly related to several neuropsychiatric disorders. However, a few studies have already implicated a functional role of the Shanks beyond the postsynaptic density (PSD). We here show that all three Shanks are localized in both axons and pre-synaptic specializiations of developing hippocampal neurons in culture. We further provide evidence that Shank3 is involved in the modulation of NMDA receptor levels at axon terminals. Taken together, our study will open up novel avenues for the future analysis of neuronal Shank biology in both health and disease.

  13. Sensory axon-derived neuregulin-1 is required for axoglial signaling and normal sensory function but not for long-term axon maintenance

    DEFF Research Database (Denmark)

    Fricker, F.R.; Zhu, N.; Tsantoulas, C.


    death; the markers of different DRG cell populations and cutaneous innervation were unchanged. These anatomical changes were reflected in a slowing of conduction velocity at the lower end of the A-fiber conduction velocity range and a new population of more rapidly conducting C-fibers that are likely...... cells required for normal sensory function. Sensory neuronal survival and axonal maintenance, however, are not dependent on axon-derived neuregulin-1 signaling in adulthood Udgivelsesdato: 2009/6/17...

  14. [Phenomenology of abnormal body perceptions]. (United States)

    Schäfer, M L


    The present paper deals with the problematic nature of the phenomenological grasping of the consciousness of the body and its pathological modifications. The reasoning is oriented by the doctrine of Husserl of the so-called sentiments as the fundamentals of the experience of the own body. This basic approach does not only seem to be basically for a psychology of the consciousness of the body, but also to give the theoretical-conceptual structure for a great number of psychopathological modifications. Subsequent to a criticism of the conventional use of the term 'hallucination of the body' we attempt to chart elements of a scheme of the abnormal consciousness of the body.

  15. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    Directory of Open Access Journals (Sweden)

    Giorgi Kharebava


    Full Text Available Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3 that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine, an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1 transcription and sonic hedgehog (Shh target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO agonist (SAG or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway.

  16. Axon-somatic back-propagation in detailed models of spinal alpha motoneurons

    Directory of Open Access Journals (Sweden)

    Pietro eBalbi


    Full Text Available Antidromic action potentials following distal stimulation of motor axons occasionally fail to invade the soma of alpha motoneurons in spinal cord, due to their passing through regions of high non-uniformity.Morphologically detailed conductance-based models of cat spinal alpha motoneurons have been developed, with the aim to reproduce and clarify some aspects of the electrophysiological behavior of the antidromic axon-somatic spike propagation. Fourteen 3D morphologically detailed somata and dendrites of cat spinal alpha motoneurons have been imported from an open-access web-based database of neuronal morphologies,, and instantiated in neurocomputational models. An axon hillock, an axonal initial segment and a myelinated axon are added to each model.By sweeping the diameter of the axonal initial segment (AIS and the axon hillock, as well as the maximal conductances of sodium channels at the AIS and at the soma, the developed models are able to show the relationships between different geometric and electrophysiological configurations and the voltage attenuation of the antidromically travelling wave.In particular, a greater than usually admitted sodium conductance at AIS is necessary and sufficient to overcome the dramatic voltage attenuation occurring during antidromic spike propagation both at the myelinated axon-AIS and at the AIS-soma transitions.

  17. Axonal transport rate decreased at the onset of optic neuritis in EAE mice. (United States)

    Lin, Tsen-Hsuan; Kim, Joong Hee; Perez-Torres, Carlos; Chiang, Chia-Wen; Trinkaus, Kathryn; Cross, Anne H; Song, Sheng-Kwei


    Optic neuritis is frequently the first symptom of multiple sclerosis (MS), an inflammatory demyelinating neurodegenerative disease. Impaired axonal transport has been considered as an early event of neurodegenerative diseases. However, few studies have assessed the integrity of axonal transport in MS or its animal models. We hypothesize that axonal transport impairment occurs at the onset of optic neuritis in experimental autoimmune encephalomyelitis (EAE) mice. In this study, we employed manganese-enhanced MRI (MEMRI) to assess axonal transport in optic nerves in EAE mice at the onset of optic neuritis. Axonal transport was assessed as (a) optic nerve Mn(2+) accumulation rate (in % signal change/h) by measuring the rate of increased total optic nerve signal enhancement, and (b) Mn(2+) transport rate (in mm/h) by measuring the rate of change in optic nerve length enhanced by Mn(2+). Compared to sham-treated healthy mice, Mn(2+) accumulation rate was significantly decreased by 19% and 38% for EAE mice with moderate and severe optic neuritis, respectively. The axonal transport rate of Mn(2+) was significantly decreased by 43% and 65% for EAE mice with moderate and severe optic neuritis, respectively. The degree of axonal transport deficit correlated with the extent of impaired visual function and diminished microtubule-associated tubulins, as well as the severity of inflammation, demyelination, and axonal injury at the onset of optic neuritis.

  18. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. (United States)

    Pun, San; Santos, Alexandre Ferrão; Saxena, Smita; Xu, Lan; Caroni, Pico


    Neurodegenerative diseases can have long preclinical phases and insidious progression patterns, but the mechanisms of disease progression are poorly understood. Because quantitative accounts of neuronal circuitry affected by disease have been lacking, it has remained unclear whether disease progression reflects processes of stochastic loss or temporally defined selective vulnerabilities of distinct synapses or axons. Here we derive a quantitative topographic map of muscle innervation in the hindlimb. We show that in two mouse models of motoneuron disease (G93A SOD1 and G85R SOD1), axons of fast-fatiguable motoneurons are affected synchronously, long before symptoms appear. Fast-fatigue-resistant motoneuron axons are affected at symptom-onset, whereas axons of slow motoneurons are resistant. Axonal vulnerability leads to synaptic vesicle stalling and accumulation of BC12a1-a, an anti-apoptotic protein. It is alleviated by ciliary neurotrophic factor and triggers proteasome-dependent pruning of peripheral axon branches. Thus, motoneuron disease involves predictable, selective vulnerability patterns by physiological subtypes of axons, episodes of abrupt pruning in the target region and compensation by resistant axons.

  19. NF-Protocadherin Regulates Retinal Ganglion Cell Axon Behaviour in the Developing Visual System.

    Directory of Open Access Journals (Sweden)

    Louis C Leung

    Full Text Available Cell adhesion molecules play a central role in mediating axonal tract development within the nascent nervous system. NF-protocadherin (NFPC, a member of the non-clustered protocadherin family, has been shown to regulate retinal ganglion cell (RGC axon and dendrite initiation, as well as influencing axonal navigation within the mid-optic tract. However, whether NFPC mediates RGC axonal behaviour at other positions within the optic pathway remains unclear. Here we report that NFPC plays an important role in RGC axonogenesis, but not in intraretinal guidance. Moreover, axons with reduced NFPC levels exhibit insensitivity to Netrin-1, an attractive guidance cue expressed at the optic nerve head. Netrin-1 induces rapid turnover of NFPC localized to RGC growth cones, suggesting that the regulation of NFPC protein levels may underlie Netrin-1-mediated entry of RGC axons into the optic nerve head. At the tectum, we further reveal a function for NFPC in controlling RGC axonal entry into the final target area. Collectively, our results expand our understanding of the role of NFPC in RGC guidance and illustrate that this adhesion molecule contributes to axon behaviour at multiple points in the optic pathway.

  20. Selective control of small versus large diameter axons using infrared laser light (Conference Presentation) (United States)

    Lothet, Emilie H.; Shaw, Kendrick M.; Horn, Charles C.; Lu, Hui; Wang, Yves T.; Jansen, E. Duco; Chiel, Hillel J.; Jenkins, Michael W.


    Sensory information is conveyed to the central nervous system via small diameter unmyelinated fibers. In general, smaller diameter axons have slower conduction velocities. Selective control of such fibers could create new clinical treatments for chronic pain, nausea in response to chemo-therapeutic agents, or hypertension. Electrical stimulation can control axonal activity, but induced axonal current is proportional to cross-sectional area, so that large diameter fibers are affected first. Physiologically, however, synaptic inputs generally affect small diameter fibers before large diameter fibers (the size principle). A more physiological modality that first affected small diameter fibers could have fewer side effects (e.g., not recruiting motor axons). A novel mathematical analysis of the cable equation demonstrates that the minimum length along the axon for inducing block scales with the square root of axon diameter. This implies that the minimum length along an axon for inhibition will scale as the square root of axon diameter, so that lower radiant exposures of infrared light will selectively affect small diameter, slower conducting fibers before those of large diameter. This prediction was tested in identified neurons from the marine mollusk Aplysia californica. Radiant exposure to block a neuron with a slower conduction velocity (B43) was consistently lower than that needed to block a faster conduction velocity neuron (B3). Furthermore, in the vagus nerve of the musk shrew, lower radiant exposure blocked slow conducting fibers before blocking faster conducting fibers. Infrared light can selectively control smaller diameter fibers, suggesting many novel clinical treatments.

  1. Axonal pathfinding mechanisms at the cortical midline and in the development of the corpus callosum

    Directory of Open Access Journals (Sweden)

    Richards L.J.


    Full Text Available The corpus callosum is a large fiber tract that connects neurons in the right and left cerebral hemispheres. Agenesis of the corpus callosum (ACC is associated with a large number of human syndromes but little is known about why ACC occurs. In most cases of ACC, callosal axons are able to grow toward the midline but are unable to cross it, continuing to grow into large swirls of axons known as Probst bundles. This phenotype suggests that in some cases ACC may be due to defects in axonal guidance at the midline. General guidance mechanisms that influence the development of axons include chemoattraction and chemorepulsion, presented by either membrane-bound or diffusible molecules. These molecules are not only expressed by the final target but by intermediate targets along the pathway, and by pioneering axons that act as guides for later arriving axons. Midline glial populations are important intermediate targets for commissural axons in the spinal cord and brain, including the corpus callosum. The role of midline glial populations and pioneering axons in the formation of the corpus callosum are discussed. Finally the differential guidance of the ipsilaterally projecting perforating pathway and the contralaterally projecting corpus callosum is addressed. Development of the corpus callosum involves the coordination of a number of different guidance mechanisms and the probable involvement of a large number of molecules.

  2. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri


    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  3. A developmental timing switch promotes axon outgrowth independent of known guidance receptors.

    Directory of Open Access Journals (Sweden)

    Katherine Olsson-Carter


    Full Text Available To form functional neuronal connections, axon outgrowth and guidance must be tightly regulated across space as well as time. While a number of genes and pathways have been shown to control spatial features of axon development, very little is known about the in vivo mechanisms that direct the timing of axon initiation and elongation. The Caenorhabditis elegans hermaphrodite specific motor neurons (HSNs extend a single axon ventrally and then anteriorly during the L4 larval stage. Here we show the lin-4 microRNA promotes HSN axon initiation after cell cycle withdrawal. Axons fail to form in lin-4 mutants, while they grow prematurely in lin-4-overexpressing animals. lin-4 is required to down-regulate two inhibitors of HSN differentiation--the transcriptional regulator LIN-14 and the "stemness" factor LIN-28--and it likely does so through a cell-autonomous mechanism. This developmental switch depends neither on the UNC-40/DCC and SAX-3/Robo receptors nor on the direction of axon growth, demonstrating that it acts independently of ventral guidance signals to control the timing of HSN axon elongation.

  4. Polarized targeting of L1-CAM regulates axonal and dendritic bundling in vitro. (United States)

    Barry, Joshua; Gu, Yuanzheng; Gu, Chen


    Proper axonal and dendritic bundling is essential for the establishment of neuronal connections and the synchronization of synaptic inputs, respectively. Cell adhesion molecules of the L1-CAM (L1-cell adhesion molecule) family regulate axon guidance and fasciculation, neuron migration, dendrite morphology, and synaptic plasticity. It remains unclear how these molecules play so many different roles. Here we show that polarized axon-dendrite targeting of an avian L1-CAM protein, NgCAM (neuron-glia cell adhesion molecule), can regulate the switch of bundling of the two major compartments of rat hippocampal neurons. Using a new in-vitro model for studying neurite-neurite interactions, we found that expressed axonal NgCAM induced robust axonal bundling via the trans-homophilic interaction of immunoglobulin domains. Interestingly, dendritic bundling was induced by the dendritic targeting of NgCAM, caused by either deleting its fibronectin repeats or blocking activities of protein kinases. Consistent with the NgCAM results, expression of mouse L1-CAM also induced axonal bundling and blocking kinase activities disrupted its axonal targeting. Furthermore, the trans-homophilic interaction stabilized the bundle formation, probably through recruiting NgCAM proteins to contact sites and promoting guided axon outgrowth. Taken together, our results suggest that precise localization of L1-CAM is important for establishing proper cell-cell contacts in neural circuits.

  5. Integration of shallow gradients of Shh and Netrin-1 guides commissural axons. (United States)

    Sloan, Tyler F W; Qasaimeh, Mohammad A; Juncker, David; Yam, Patricia T; Charron, Frédéric


    During nervous system development, gradients of Sonic Hedgehog (Shh) and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide axons is not known. We first quantified the steepness of the Shh gradient in the spinal cord and found that it is mostly very shallow. We then developed an in vitro microfluidic guidance assay to simulate these shallow gradients. We found that axons of dissociated commissural neurons respond to steep but not shallow gradients of Shh or Netrin-1. However, when we presented axons with combined Shh and Netrin-1 gradients, they had heightened sensitivity to the guidance cues, turning in response to shallower gradients that were unable to guide axons when only one cue was present. Furthermore, these shallow gradients polarized growth cone Src-family kinase (SFK) activity only when Shh and Netrin-1 were combined, indicating that SFKs can integrate the two guidance cues. Together, our results indicate that Shh and Netrin-1 synergize to enable growth cones to sense shallow gradients in regions of the spinal cord where the steepness of a single guidance cue is insufficient to guide axons, and we identify a novel type of synergy that occurs when the steepness (and not the concentration) of a guidance cue is limiting.

  6. In vivo Imaging of Mitochondrial Transport in Single-Axon Regeneration of Zebrafish Mauthner Cells (United States)

    Xu, Yang; Chen, Min; Hu, Bingbing; Huang, Rongchen; Hu, Bing


    Mitochondrial transport is essential for neuronal function, but the evidence of connections between mitochondrial transport and axon regeneration in the central nervous system (CNS) of living vertebrates remains limited. Here, we developed a novel model to explore mitochondrial transport in a single Mauthner axon (M axon) of zebrafish with non-invasive in vivo imaging. To confirm the feasibility of using this model, we treated labeled zebrafish with nocodazole and demonstrated that it could disrupt mitochondrial transport. We also used two-photon laser axotomy to precisely axotomize M axons and simultaneously recorded their regeneration and the process of mitochondrial transport in living zebrafish larvae. The findings showed that the injured axons with stronger regenerative capability maintain greater mitochondrial motility. Furthermore, to stimulate axon regeneration, treatment with dibutyryl cyclic adenosine monophosphate (db-cAMP) could also augment mitochondrial motility. Taken together, our results provide new evidence that mitochondrial motility is positively correlated with axon regeneration in the living vertebrate CNS. This promising model will be useful for further studies on the interaction between axon regeneration and mitochondrial dynamics, using various genetic and pharmacological techniques. PMID:28174522

  7. Quantifying visual pathway axonal and myelin loss in multiple sclerosis and neuromyelitis optica

    Directory of Open Access Journals (Sweden)

    Praveena Manogaran


    Conclusions: The relationship between reductions in OCT measures of neuro-axonal health in the anterior visual pathway and MRI-based measures of myelin health in the posterior visual pathway suggests that these measures may be linked through bidirectional axonal degeneration.

  8. Distinct temporal and anatomical distributions of amyloid-β and tau abnormalities following controlled cortical impact in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Hien T Tran

    Full Text Available Traumatic brain injury (TBI is a major environmental risk factor for Alzheimer's disease. Intracellular accumulations of amyloid-β and tau proteins have been observed within hours following severe TBI in humans. Similar abnormalities have been recapitulated in young 3xTg-AD mice subjected to the controlled cortical impact model (CCI of TBI and sacrificed at 24 h and 7 days post injury. This study investigated the temporal and anatomical distributions of amyloid-β and tau abnormalities from 1 h to 24 h post injury in the same model. Intra-axonal amyloid-β accumulation in the fimbria was detected as early as 1 hour and increased monotonically over 24 hours following injury. Tau immunoreactivity in the fimbria and amygdala had a biphasic time course with peaks at 1 hour and 24 hours, while tau immunoreactivity in the contralateral CA1 rose in a delayed fashion starting at 12 hours after injury. Furthermore, rapid intra-axonal amyloid-β accumulation was similarly observed post controlled cortical injury in APP/PS1 mice, another transgenic Alzheimer's disease mouse model. Acute increases in total and phospho-tau immunoreactivity were also evident in single transgenic Tau(P301L mice subjected to controlled cortical injury. These data provide further evidence for the causal effects of moderately severe contusional TBI on acceleration of acute Alzheimer-related abnormalities and the independent relationship between amyloid-β and tau in this setting.

  9. On Regularity of Abnormal Subriemannian Geodesics

    CERN Document Server

    Tan, Kanghai


    We prove the smoothness of abnormal minimizers of subriemannian manifolds of step 3 with a nilpotent basis. We prove that rank 2 Carnot groups of step 4 admit no strictly abnormal minimizers. For any subriemannian manifolds of step less than 7, we show all abnormal minimizers have no corner type singularities, which partly generalize the main result of Leonardi-Monti.

  10. The course of axons through the retina and optic nerve head. (United States)

    Radius, R L; Anderson, D R


    By identifying degenerating axons in tissue specimens from 22 primate eyes, it was possible to demonstrate the normal course of axon fibers. Nerve fiber bundles from a group of retinal ganglion cells travel together with little tendency to disperse laterally. In addition, axons are stratified such that processes from more central ganglion cells are successfully added to the inner strata of the retinal nerve fiber layer. Within and behind the lamina cribrosa, areas of degeneration following retinal photocoagulation were well circumscribed and confined to a group of adjacent axon bundles. This degree of retinotopic organization of axons within the nerve head and retinal fiber layer is believed to be consistent with the premise that isolated lesions within the lamina cribrosa could cause well-organized paracentral scotomas such as those characteristic of early glaucoma.

  11. BmRobo2/3 is required for axon guidance in the silkworm Bombyx mori. (United States)

    Li, Xiao-Tong; Yu, Qi; Zhou, Qi-Sheng; Zhao, Xiao; Liu, Zhao-Yang; Cui, Wei-Zheng; Liu, Qing-Xin


    Axon guidance is critical for proper wiring of the nervous system. During the neural development, the axon guidance molecules play a key role and direct axons to choose the correct way to reach the target. Robo, as the receptor of axon guidance molecule Slit, is evolutionarily conserved from planarians to humans. However, the function of Robo in the silkworm, Bombyx mori, remained unknown. In this study, we cloned robo2/3 from B. mori (Bmrobo2/3), a homologue of robo2/3 in Tribolium castaneum. Moreover, BmRobo2/3 was localized in the neuropil, and RNAi-mediated knockdown of Bmrobo2/3 resulted in the longitudinal connectives forming closer to the midline. These data demonstrate that BmRobo2/3 is required for axon guidance in the silkworm.

  12. Electromagnetic induction between axons and their schwann cell myelin-protein sheaths. (United States)

    Goodman, G; Bercovich, D


    Two concepts have long dominated vertebrate nerve electrophysiology: (a) Schwann cell-formed myelin sheaths separated by minute non-myelinated nodal gaps and spiraling around axons of peripheral motor nerves reduce current leakage during propagation of trains of axon action potentials; (b) "jumping" by action potentials between successive nodes greatly increases signal conduction velocity. Long-held and more recent assumptions and issues underlying those concepts have been obscured by research emphasis on axon-sheath biochemical symbiosis and nerve regeneration. We hypothesize: mutual electromagnetic induction in the axon-glial sheath association, is fundamental in signal conduction in peripheral and central myelinated axons, explains the g-ratio and is relevant to animal navigation.

  13. The autophagy gene Wdr45/Wipi4 regulates learning and memory function and axonal homeostasis. (United States)

    Zhao, Yan G; Sun, Le; Miao, Guangyan; Ji, Cuicui; Zhao, Hongyu; Sun, Huayu; Miao, Lin; Yoshii, Saori R; Mizushima, Noboru; Wang, Xiaoqun; Zhang, Hong


    WDR45/WIPI4, encoding a WD40 repeat-containing PtdIns(3)P binding protein, is essential for the basal autophagy pathway. Mutations in WDR45 cause the neurodegenerative disease β-propeller protein-associated neurodegeneration (BPAN), a subtype of NBIA. We generated CNS-specific Wdr45 knockout mice, which exhibit poor motor coordination, greatly impaired learning and memory, and extensive axon swelling with numerous axon spheroids. Autophagic flux is defective and SQSTM1 (sequestosome-1)/p62 and ubiquitin-positive protein aggregates accumulate in neurons and swollen axons. Nes-Wdr45(fl/Y) mice recapitulate some hallmarks of BPAN, including cognitive impairment and defective axonal homeostasis, providing a model for revealing the disease pathogenesis of BPAN and also for investigating the possible role of autophagy in axon maintenance.

  14. Exposure to 1-bromopropane causes degeneration of noradrenergic axons in the rat brain. (United States)

    Mohideen, Sahabudeen Sheik; Ichihara, Gaku; Ichihara, Sahoko; Nakamura, Shoji


    1-Bromopropane (1-BP) has been used as an alternative to ozone-depleting solvents. Previous studies showed that 1-BP is neurotoxic in animals and humans. In humans, exposure to 1-BP caused various neurological and neurobehavioral symptoms or signs including depressive or irritated mood. However, the neurobiological changes underlying the depressive symptoms induced by 1-BP remain to be determined. The depressive symptoms are thought to be associated with degeneration of axons containing noradrenaline and serotonin. Based on this hypothesis, the present study examined the effects of repeated exposure to 1-BP on serotonergic and noradrenergic axons. Exposure to 1-BP induced dose-dependent decreases in the density of noradrenergic axons in the rat prefrontal cortex, but no apparent change in the density of serotonergic axons. The results suggest that depressive symptoms in workers exposed to 1-BP are due, at least in part, to the degeneration of noradrenergic axons in the brain.

  15. PACSIN1, a Tau-interacting protein, regulates axonal elongation and branching by facilitating microtubule instability. (United States)

    Liu, Yingying; Lv, Kaosheng; Li, Zenglong; Yu, Albert C H; Chen, Jianguo; Teng, Junlin


    Tau is a major member of the neuronal microtubule-associated proteins. It promotes tubulin assembly and stabilizes axonal microtubules. Previous studies have demonstrated that Tau forms cross-bridges between microtubules, with some particles located on cross-bridges, suggesting that some proteins interact with Tau and might be involved in regulating Tau-related microtubule dynamics. This study reports that PACSIN1 interacts with Tau in axon. PACSIN1 blockade results in impaired axonal elongation and a higher number of primary axonal branches in mouse dorsal root ganglia neurons, which is induced by increasing the binding ability of Tau to microtubules. In PACSIN1-blocked dorsal root ganglia neurons, a greater amount of Tau is inclined to accumulate in the central domain of growth cones, and it promotes the stability of the microtubule network. Taken together, these results suggest that PACSIN1 is an important Tau binding partner in regulating microtubule dynamics and forming axonal plasticity.

  16. Transfer of vesicles from Schwann cell to axon: a novel mechanism of communication in the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    María Alejandra eLopez-Verrilli


    Full Text Available Schwann cells (SCs are the glial component of the peripheral nervous system, with essential roles during development and maintenance of axons, as well as during regenerative processes after nerve injury. SCs increase conduction velocities by myelinating axons, regulate synaptic activity at presynaptic nerve terminals and are a source of trophic factors to neurons. Thus, development and maintenance of peripheral nerves are crucially dependent on local signalling between SCs and axons. In addition to the classic mechanisms of intercellular signalling, the possibility of communication through secreted vesicles has been poorly explored to date. Interesting recent findings suggest the occurrence of lateral transfer mediated by vesicles from glial cells to axons that could have important roles in axonal growth and axonal regeneration. Here, we review the role of vesicular transfer from SCs to axons and propose the benefits of this means in supporting neuronal and axonal maintenance and regeneration after nerve damage.

  17. Chromosomal phenotypes and submicroscopic abnormalities

    Directory of Open Access Journals (Sweden)

    Devriendt Koen


    Full Text Available Abstract The finding, during the last decade, that several common, clinically delineated syndromes are caused by submicroscopic deletions or, more rarely, by duplications, has provided a powerful tool in the annotation of the human genome. Since most microdeletion/microduplication syndromes are defined by a common deleted/duplicated region, abnormal dosage of genes located within these regions can explain the phenotypic similarities among individuals with a specific syndrome. As such, they provide a unique resource towards the genetic dissection of complex phenotypes such as congenital heart defects, mental and growth retardation and abnormal behaviour. In addition, the study of phenotypic differences in individuals with the same microdeletion syndrome may also become a treasury for the identification of modifying factors for complex phenotypes. The molecular analysis of these chromosomal anomalies has led to a growing understanding of their mechanisms of origin. Novel tools to uncover additional submicroscopic chromosomal anomalies at a higher resolution and higher speed, as well as the novel tools at hand for deciphering the modifying factors and epistatic interactors, are 'on the doorstep' and will, besides their obvious diagnostic role, play a pivotal role in the genetic dissection of complex phenotypes.

  18. Abnormal visuomotor processing in schizophrenia

    Directory of Open Access Journals (Sweden)

    Siân E. Robson


    Full Text Available Subtle disturbances of visual and motor function are known features of schizophrenia and can greatly impact quality of life; however, few studies investigate these abnormalities using simple visuomotor stimuli. In healthy people, electrophysiological data show that beta band oscillations in sensorimotor cortex decrease during movement execution (event-related beta desynchronisation (ERBD, then increase above baseline for a short time after the movement (post-movement beta rebound (PMBR; whilst in visual cortex, gamma oscillations are increased throughout stimulus presentation. In this study, we used a self-paced visuomotor paradigm and magnetoencephalography (MEG to contrast these responses in patients with schizophrenia and control volunteers. We found significant reductions in the peak-to-peak change in amplitude from ERBD to PMBR in schizophrenia compared with controls. This effect was strongest in patients who made fewer movements, whereas beta was not modulated by movement in controls. There was no significant difference in the amplitude of visual gamma between patients and controls. These data demonstrate that clear abnormalities in basic sensorimotor processing in schizophrenia can be observed using a very simple MEG paradigm.

  19. Axonal regeneration through the fibrous scar in lesioned goldfish spinal cord. (United States)

    Takeda, A; Atobe, Y; Kadota, T; Goris, R C; Funakoshi, K


    Spontaneous nerve regeneration beyond the scar frequently occurs in fish after spinal cord lesions, in contrast to mammals. Here we examined the spatiotemporal relationship between the fibrous scar and axonal regeneration in the goldfish. Within 1 week after hemisection of the spinal cord, the open wound was closed by a fibrous scar that was demarcated from the surrounding nervous tissue by the glia limitans, which was immunoreactive for laminin. Within 1 week after hemisection, regenerating axons entered the fibrous scar, and were surrounded by laminin-coated tubular structures continuous with the glia limitans. Regenerating axons that initially entered the fibrous scar were usually accompanied by glial processes. Within 2-3 weeks after hemisection, the tubular structures became enlarged, and the regenerating axons increased in number, fasciculating in the tubules. Glial processes immunoreactive for glial fibrillary acid protein and 5-hydroxytryptamine neurons then entered the tubular structures to associate with the regenerating axons. The tubular structures developed further, creating tunnels that penetrated the fibrous scar, through which the regenerating axons passed. At 6-12 weeks after hemisection, the fibrous scar was smaller and the enlarged tunnels contained many glial processes and several axons. The findings of present study demonstrated that, following spinal lesions in goldfish, regenerating axons enter and pass the scar tissue. The regenerating axons first enter the fibrous scar with glial elements and then grow through laminin-coated tubular structures within the fibrous scar. Invasion by glial processes and neuronal elements into the tubular structures reduces the fibrous scar area and allows for more regenerating axons to pass beyond the fibrous scar.

  20. Sonic Hedgehog Guides Axons via Zipcode Binding Protein 1-Mediated Local Translation. (United States)

    Lepelletier, Léa; Langlois, Sébastien D; Kent, Christopher B; Welshhans, Kristy; Morin, Steves; Bassell, Gary J; Yam, Patricia T; Charron, Frédéric


    Sonic hedgehog (Shh) attracts spinal cord commissural axons toward the floorplate. How Shh elicits changes in the growth cone cytoskeleton that drive growth cone turning is unknown. We find that the turning of rat commissural axons up a Shh gradient requires protein synthesis. In particular, Shh stimulation increases β-actin protein at the growth cone even when the cell bodies have been removed. Therefore, Shh induces the local translation of β-actin at the growth cone. We hypothesized that this requires zipcode binding protein 1 (ZBP1), an mRNA-binding protein that transports β-actin mRNA and releases it for local translation upon phosphorylation. We found that Shh stimulation increases phospho-ZBP1 levels in the growth cone. Disruption of ZBP1 phosphorylation in vitro abolished the turning of commissural axons toward a Shh gradient. Disruption of ZBP1 function in vivo in mouse and chick resulted in commissural axon guidance errors. Therefore, ZBP1 is required for Shh to guide commissural axons. This identifies ZBP1 as a new mediator of noncanonical Shh signaling in axon guidance.SIGNIFICANCE STATEMENT Sonic hedgehog (Shh) guides axons via a noncanonical signaling pathway that is distinct from the canonical Hedgehog signaling pathway that specifies cell fate and morphogenesis. Axon guidance is driven by changes in the growth cone in response to gradients of guidance molecules. Little is known about the molecular mechanism of how Shh orchestrates changes in the growth cone cytoskeleton that are required for growth cone turning. Here, we show that the guidance of axons by Shh requires protein synthesis. Zipcode binding protein 1 (ZBP1) is an mRNA-binding protein that regulates the local translation of proteins, including actin, in the growth cone. We demonstrate that ZBP1 is required for Shh-mediated axon guidance, identifying a new member of the noncanonical Shh signaling pathway.

  1. Interleukin (IL)-8 immunoreactivity of injured axons and surrounding oligodendrocytes in traumatic head injury. (United States)

    Hayashi, Takahito; Ago, Kazutoshi; Nakamae, Takuma; Higo, Eri; Ogata, Mamoru


    Interleukin (IL)-8 has been suggested to be a positive regulator of myelination in the central nervous system, in addition to its principal role as a chemokine for neutrophils. Immunostaining for beta-amyloid precursor protein (AβPP) is an effective tool for detecting traumatic axonal injury, although AβPP immunoreactivity can also indicate axonal injury due to hypoxic causes. In this study, we examined IL-8 and AβPP immunoreactivity in sections of corpus callosum obtained from deceased patients with blunt head injury and from equivalent control tissue. AβPP immunoreactivity was detected in injured axons, such as axonal bulbs and varicose axons, in 24 of 44 head injury cases. These AβPP immunoreactive cases had survived for more than 3h. The AβPP immunostaining pattern can be classified into two types: traumatic (Pattern 1) and non-traumatic (Pattern 2) axonal injuries, which we described previously [Hayashi et al. Int. J. Legal Med. 129 (2015) 1085-1090]. Three of 44 control cases also showed AβPP immunoreactive injured axons as Pattern 2. In contrast, IL-8 immunoreactivity was detected in 7 AβPP immunoreactive and in 2 non-AβPP immunoreactive head injury cases, but was not detected in any of the 44 control cases, including the 3 AβPP immunoreactive control cases. The IL-8 immunoreactive cases had survived from 3 to 24 days, whereas those cases who survived less than 3 days (n=29) and who survived 90 days (n=1) were not IL-8 immunoreactive. Moreover, IL-8 was detected as Pattern 1 axons only. In addition, double immunofluorescence analysis showed that IL-8 is expressed by oligodendrocytes surrounding injured axons. In conclusion, our results suggest that immunohistochemical detection of IL-8 may be useful as a complementary diagnostic marker of traumatic axonal injury.

  2. Shh signaling guides spatial pathfinding of raphespinal tract axons by multidirectional repulsion

    Institute of Scientific and Technical Information of China (English)

    Lijuan Song; Yuehui Liu; YangYu; Xin Duan; Shening Qi; Yaobo Liu


    Relatively little is known about the molecular mechanisms underlying spatial pathfinding in the descending serotonergic raphespinal tract (RST) in the developing spinal cord,one of the most important nerve pathways for pain,sensory and motor functions.We provide evidence that ventral floor plate-secreted Sonic hedgehog (Shh) is responsible for the establishment of decreasing gradients in both the anterior-to-posterior (A-P) and the medialto-lateral (M-L) directions in the ventral spinal cord during serotonergic RST axon projection.Downstream components of the Shh pathway,Patched 1 (Ptch1) and Smoothened (Smo),were expressed in the serotonergic caudal raphe nuclei and enriched in the descending serotonergic RST axons.Diffusible Shh repulsion of serotonergic RST axons was shown to be mediated by Shh-Ptch1 interactions and derepression of Smo.Using a co-culture assay,we showed that A-P graded repulsion mediated by Shh signaling pushed the serotonergic axons caudally through the ventral spinal cord and M-L graded repulsion mediated by Shh signaling simultaneously restricted the serotonergic axons to the ventral and ventral-lateral funiculus.Prominent pathfinding errors of serotonergic RST axons were observed in various Shh,Ptch1 and Smo mutants.We conclude that Shh signaling-mediated multidirectional repulsion is required to push descending serotonergic RST axons in the A-P direction,and to restrict these axons to the ventral and ventral-lateral funiculus in the M-L direction.This is the first demonstration that Shh signalingmediated muitidirectional repulsion of serotonergic RST axons maintains spatial axon pathfinding in the developing spinal cord.

  3. Shh signaling guides spatial pathfinding of raphespinal tract axons by multidirectional repulsion. (United States)

    Song, Lijuan; Liu, Yuehui; Yu, Yang; Duan, Xin; Qi, Shening; Liu, Yaobo


    Relatively little is known about the molecular mechanisms underlying spatial pathfinding in the descending serotonergic raphespinal tract (RST) in the developing spinal cord, one of the most important nerve pathways for pain, sensory and motor functions. We provide evidence that ventral floor plate-secreted Sonic hedgehog (Shh) is responsible for the establishment of decreasing gradients in both the anterior-to-posterior (A-P) and the medial-to-lateral (M-L) directions in the ventral spinal cord during serotonergic RST axon projection. Downstream components of the Shh pathway, Patched 1 (Ptch1) and Smoothened (Smo), were expressed in the serotonergic caudal raphe nuclei and enriched in the descending serotonergic RST axons. Diffusible Shh repulsion of serotonergic RST axons was shown to be mediated by Shh-Ptch1 interactions and derepression of Smo. Using a co-culture assay, we showed that A-P graded repulsion mediated by Shh signaling pushed the serotonergic axons caudally through the ventral spinal cord and M-L graded repulsion mediated by Shh signaling simultaneously restricted the serotonergic axons to the ventral and ventral-lateral funiculus. Prominent pathfinding errors of serotonergic RST axons were observed in various Shh, Ptch1 and Smo mutants. We conclude that Shh signaling-mediated multidirectional repulsion is required to push descending serotonergic RST axons in the A-P direction, and to restrict these axons to the ventral and ventral-lateral funiculus in the M-L direction. This is the first demonstration that Shh signaling-mediated multidirectional repulsion of serotonergic RST axons maintains spatial axon pathfinding in the developing spinal cord.

  4. The role of microtubule-associated protein 1B in axonal growth and neuronal migration in the central nervous system

    Institute of Scientific and Technical Information of China (English)

    Maoguang Yang; Xiaoyu Yang; Minfei Wu; Peng Xia; Chunxin Wang; Peng Yan; Qi Gao; Jian Liu; Haitao Wang; Xingwei Duan


    In this review, we discuss the role of microtubule-associated protein 1B (MAP1B) and its phosphorylation in axonal development and regeneration in the central nervous system. MAP1B exhibits similar functions during axonal development and regeneration. MAP1B and phosphorylated MAP1B in neurons and axons maintain a dynamic balance between cytoskeletal components, and regulate the stability and interaction of microtubules and actin to promote axonal growth, neural connectivity and regeneration in the central nervous system.

  5. Role of Rb during Neurogenesis and Axonal Guidance in the Developing Olfactory System (United States)

    Jaafar, Carine; Omais, Saad; Al Lafi, Sawsan; El Jamal, Nadim; Noubani, Mohammad; Skaf, Larissa; Ghanem, Noël


    The Retinoblastoma protein, Rb, was shown to regulate distinct aspects of neurogenesis in the embryonic and adult brain besides its primary role in cell cycle control. It is still unknown, however, whether Rb is required for tissue morphogenesis and the establishment of synaptic connections between adjacent tissues during development. We have investigated here the role of Rb during development of the olfactory system (OS), which heavily relies on reciprocal interactions between the olfactory epithelium (OE) and the olfactory bulb (OB). We show that mice carrying a telencephalic-specific deletion of Rb display several neurogenic defects in the OS during late development. In the OE, loss of Rb leads to ectopic proliferation of late-born progenitors (Tuj-1+), abnormal radial migration and terminal maturation of olfactory sensory neurons (OSNs). In the OB, deletion of Rb causes severe lamination defects with loss of clear boundaries between distinct layers. Importantly, starting around E15.5 when OB glomerulogenesis is initiated, many OSNs axons that project along the olfactory nerve layer (ONL) fail to properly innervate the nascent bulb, thus resulting in partial loss of connectivity between OE-OB and gradual neuronal degeneration in both tissues peaking at birth. This deficiency correlates with deregulated expressions of two key chemo-repellant molecules, Robo2/Slit1 and Nrp2/Sema3F that control the formation of dorsal-ventral topographic map of OSNs connections with OB glomeruli. This study highlights a critical requirement for Rb during neurogenesis and the establishment of proper synaptic connections inside the OS during development. PMID:27667971

  6. A macroscopic model of traffic jams in axons. (United States)

    Kuznetsov, A V; Avramenko, A A


    The purpose of this paper is to develop a minimal macroscopic model capable of explaining the formation of traffic jams in fast axonal transport. The model accounts for the decrease of the number density of positively (and negatively) oriented microtubules near the location of the traffic jam due to formation of microtubule swirls; the model also accounts for the reduction of the effective velocity of organelle transport in the traffic jam region due to organelles falling off microtubule tracks more often in the swirl region. The model is based on molecular-motor-assisted transport equations and the hydrodynamic model of traffic jams in highway traffic. Parametric analyses of the model's predictions for various values of viscosity of the traffic flow, variance of the velocity distribution, diffusivity of microtubule-bound and free organelles, rate constants for binding to and detachment from microtubules, relaxation time, and average motor velocities of the retrograde and anterograde transport, are carried out.

  7. Video Object Tracking in Neural Axons with Fluorescence Microscopy Images

    Directory of Open Access Journals (Sweden)

    Liang Yuan


    tracking. In this paper, we describe two automated tracking methods for analyzing neurofilament movement based on two different techniques: constrained particle filtering and tracking-by-detection. First, we introduce the constrained particle filtering approach. In this approach, the orientation and position of a particle are constrained by the axon’s shape such that fewer particles are necessary for tracking neurofilament movement than object tracking techniques based on generic particle filtering. Secondly, a tracking-by-detection approach to neurofilament tracking is presented. For this approach, the axon is decomposed into blocks, and the blocks encompassing the moving neurofilaments are detected by graph labeling using Markov random field. Finally, we compare two tracking methods by performing tracking experiments on real time-lapse image sequences of neurofilament movement, and the experimental results show that both methods demonstrate good performance in comparison with the existing approaches, and the tracking accuracy of the tracing-by-detection approach is slightly better between the two.

  8. Neural signal registration and analysis of axons grown in microchannels (United States)

    Pigareva, Y.; Malishev, E.; Gladkov, A.; Kolpakov, V.; Bukatin, A.; Mukhina, I.; Kazantsev, V.; Pimashkin, A.


    Registration of neuronal bioelectrical signals remains one of the main physical tools to study fundamental mechanisms of signal processing in the brain. Neurons generate spiking patterns which propagate through complex map of neural network connectivity. Extracellular recording of isolated axons grown in microchannels provides amplification of the signal for detailed study of spike propagation. In this study we used neuronal hippocampal cultures grown in microfluidic devices combined with microelectrode arrays to investigate a changes of electrical activity during neural network development. We found that after 5 days in vitro after culture plating the spiking activity appears first in microchannels and on the next 2-3 days appears on the electrodes of overall neural network. We conclude that such approach provides a convenient method to study neural signal processing and functional structure development on a single cell and network level of the neuronal culture.

  9. Diagnosis and treatment of diffuse axonal injury in 169 patients

    Institute of Scientific and Technical Information of China (English)

    YANG Jia-yong; YANG Zhen-jiu; FENG Cheng-xuan; LI Hong-wei; LI Wei-ping; ZHANG Jun; ZHANG Hong


    Objective: To evaluate current diagnosis and therapeutic effect and outcome of diffuse axonal injury (DAI) in 169 patients.Methods: The data of 169 DAI patients treated in the Second, Sixth, Eighth and Ninth Hospitals of Shenzhen and Shekou Hospital from January 2001 to January 2005 were collected. The imaging features, classification, GCS (Glasgow coma scale), treatment and outcome of the 169patients were retrospectively analyzed.Results: The simpler the imaging features, the closer the focus of DAI to the periphery of hemisphere and the higher the GCS score, the better the prognoses of DAI patients will be.Conclusions: The prognoses of DAI patients are closely related to the imaging features and classification,GCS and clinical treatment.

  10. Multimodal transition and stochastic antiresonance in squid giant axons

    CERN Document Server

    Borkowski, L S


    The experimental data of N. Takahashi, Y. Hanyu, T. Musha, R. Kubo, and G. Matsumoto, Physica D \\textbf{43}, 318 (1990), on the response of squid giant axons stimulated by periodic sequence of short current pulses is interpreted within the Hodgkin-Huxley model. The minimum of the firing rate as a function of the stimulus amplitude $I_0$ in the high-frequency regime is due to the multimodal transition. Below this singular point only odd multiples of the driving period remain and the system is highly sensitive to noise. The coefficient of variation has a maximum and the firing rate has a minimum as a function of the noise intensity which is an indication of the stochastic coherence antiresonance. The model calculations reproduce the frequency of occurrence of the most common modes in the vicinity of the transition. A linear relation of output frequency vs. $I_0$ for above the transition is also confirmed.

  11. Cross-taxa similarities in affect-induced changes of vocal behavior and voice in arboreal monkeys. (United States)

    Lemasson, Alban; Remeuf, Kevin; Rossard, Arnaud; Zimmermann, Elke


    Measuring the affective state of an individual across species with comparable non-invasive methods is a current challenge in animal communication research. This study aims to explore to which extent affect intensity is conveyed in the vocal behaviours of three nonhuman primate species (Campbell's monkeys, De Brazza's monkeys, red-capped mangabeys), which vary in body size, ecological niche and social system. Similarly in the three species, we experimentally induced a change in captive social groups' affect by locking all group members together in their outside enclosure. The two experimental conditions which varied in affect intensity consisted in imposing a pre-reunion 90 mn-separation by splitting up the respective group into two subgroups (High affect condition) or not (Low affect condition). We measured call rates as well as voice features at the time of reunion in both conditions. The three studied species reacted in a very similar way. Across species, call rates changed significantly between the behaviourally defined states. Furthermore, contact call duration and, to some extent, voice pitch increased. Our results suggest, for the first time in arboreal Old World monkeys, that affect intensity is conveyed reliably in vocal behaviour and specific acoustic characteristics of voice, irrespective of body size and ecological niche differences between species. Cross-taxa similarities in acoustic cues of affect intensity point to phylogenetic constraints and inheritance from a common ancestor, whereas variations in vocal behaviour and affect intensity-related acoustic cues between species may be an adaptation to specific social requirements and depend on social systems. Our findings as well as a comparison with published works on acoustic communication in other vertebrate groups support the hypothesis that affect intensity in human voice originates from precursors already found deep inside the vertebrate phylogeny.

  12. Vagal Intramuscular Arrays: The Specialized Mechanoreceptor Arbors That Innervate the Smooth Muscle Layers of the Stomach Examined in the Rat. (United States)

    Powley, Terry L; Hudson, Cherie N; McAdams, Jennifer L; Baronowsky, Elizabeth A; Phillips, Robert J


    The fundamental roles that the stomach plays in ingestion and digestion notwithstanding, little morphological information is available on vagal intramuscular arrays (IMAs), the afferents that innervate gastric smooth muscle. To characterize IMAs better, rats were given injections of dextran biotin in the nodose ganglia, and, after tracer transport, stomach whole mounts were collected. Specimens were processed for avidin-biotin permanent labeling, and subsets of the whole mounts were immunohistochemically processed for c-Kit or stained with cuprolinic blue. IMAs (n = 184) were digitized for morphometry and mapping. Throughout the gastric muscle wall, IMAs possessed common phenotypic features. Each IMA was generated by a parent neurite arborizing extensively, forming an array of multiple (mean = 212) branches averaging 193 µm in length. These branches paralleled, and coursed in apposition with, bundles of muscle fibers and interstitial cells of Cajal. Individual arrays averaged 4.3 mm in length and innervated volumes of muscle sheet, presumptive receptive fields, averaging 0.1 mm(3) . Evaluated by region and by muscle sheet, IMAs displayed architectural adaptations to the different loci. A subset (32%) of circular muscle IMAs issued specialized polymorphic collaterals to myenteric ganglia, and a subset (41%) of antral longitudinal muscle IMAs formed specialized net endings associated with the serosal boundary. IMAs were concentrated in regional patterns that correlated with the unique biomechanical adaptations of the stomach, specifically proximal stomach reservoir functions and antral emptying operations. Overall, the structural adaptations and distributions of the IMAs were consonant with the hypothesized stretch receptor roles of the afferents.

  13. Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Rahul Sachdeva


    Full Text Available Intra-axonal localization of mRNAs and protein synthesis machinery (PSM endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS axons regenerating into intraspinal peripheral nerve grafts (PNGs we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.. By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury.

  14. Multichannel activity propagation across an engineered axon network (United States)

    Chen, H. Isaac; Wolf, John A.; Smith, Douglas H.


    Objective. Although substantial progress has been made in mapping the connections of the brain, less is known about how this organization translates into brain function. In particular, the massive interconnectivity of the brain has made it difficult to specifically examine data transmission between two nodes of the connectome, a central component of the ‘neural code.’ Here, we investigated the propagation of multiple streams of asynchronous neuronal activity across an isolated in vitro ‘connectome unit.’ Approach. We used the novel technique of axon stretch growth to create a model of a long-range cortico-cortical network, a modular system consisting of paired nodes of cortical neurons connected by axon tracts. Using optical stimulation and multi-electrode array recording techniques, we explored how input patterns are represented by cortical networks, how these representations shift as they are transmitted between cortical nodes and perturbed by external conditions, and how well the downstream node distinguishes different patterns. Main results. Stimulus representations included direct, synaptic, and multiplexed responses that grew in complexity as the distance between the stimulation source and recorded neuron increased. These representations collapsed into patterns with lower information content at higher stimulation frequencies. With internodal activity propagation, a hierarchy of network pathways, including latent circuits, was revealed using glutamatergic blockade. As stimulus channels were added, divergent, non-linear effects were observed in local versus distant network layers. Pairwise difference analysis of neuronal responses suggested that neuronal ensembles generally outperformed individual cells in discriminating input patterns. Significance. Our data illuminate the complexity of spiking activity propagation in cortical networks in vitro, which is characterized by the transformation of an input into myriad outputs over several network layers

  15. Peroxisome deficiency but not the defect in ether lipid synthesis causes activation of the innate immune system and axonal loss in the central nervous system

    Directory of Open Access Journals (Sweden)

    Bottelbergs Astrid


    , confirming previous observations, no signs of inflammation or demyelination aggravating with age were observed. Conclusions Peroxisome inactivity triggers a fast neuroinflammatory reaction, which is not solely due to the depletion of plasmalogens. In association with myelin abnormalities this causes axon damage and loss.

  16. Abnormal Returns and Contrarian Strategies

    Directory of Open Access Journals (Sweden)

    Ivana Dall'Agnol


    Full Text Available We test the hypothesis that strategies which are long on portfolios of looser stocks and short on portfolios of winner stocks generate abnormal returns in Brazil. This type of evidence for the US stock market was interpreted by The Bondt and Thaler (1985 as reflecting systematic evaluation mistakes caused by investors overreaction to news related to the firm performance. We found evidence of contrarian strategies profitability for horizons from 3 months to 3 years in a sample of stock returns from BOVESPA and SOMA from 1986 to 2000. The strategies are more profitable for shorter horizons. Therefore, there was no trace of the momentum effect found by Jagadeesh and Titman (1993 for the same horizons with US data. There are remaing unexplained positive returns for contrarian strategies after accounting for risk, size, and liquidity. We also found that the strategy profitability is reduced after the Real Plan, which suggests that the Brazilian stock market became more efficient after inflation stabilization.

  17. Axon extension in the fast and slow lanes: substratum-dependent engagement of myosin II functions. (United States)

    Ketschek, Andrea R; Jones, Steven L; Gallo, Gianluca


    Axon extension involves the coordinated regulation of the neuronal cytoskeleton. Actin filaments drive protrusion of filopodia and lamellipodia while microtubules invade the growth cone, thereby providing structural support for the nascent axon. Furthermore, in order for axons to extend the growth cone must attach to the substratum. Previous work indicates that myosin II activity inhibits the advance of microtubules into the periphery of growth cones, and myosin II has also been implicated in mediating integrin-dependent cell attachment. However, it is not clear how the functions of myosin II in regulating substratum attachment and microtubule advance are integrated during axon extension. We report that inhibition of myosin II function decreases the rate of axon extension on laminin, but surprisingly promotes extension rate on polylysine. The differential effects of myosin II inhibition on axon extension rate are attributable to myosin II having the primary function of mediating substratum attachment on laminin, but not on polylysine. Conversely, on polylysine the primary function of myosin II is to inhibit microtubule advance into growth cones. Thus, the substratum determines the role of myosin II in axon extension by controlling the functions of myosin II that contribute to extension.

  18. Modeling the mechanics of axonal fiber tracts using the embedded finite element method. (United States)

    Garimella, Harsha T; Kraft, Reuben H


    A subject-specific human head finite element model with embedded axonal fiber tractography obtained from diffusion tensor imaging was developed. The axonal fiber tractography finite element model was coupled with the volumetric elements in the head model using the embedded element method. This technique enables the calculation of axonal strains and real-time tracking of the mechanical response of the axonal fiber tracts. The coupled model was then verified using pressure and relative displacement-based (between skull and brain) experimental studies and was employed to analyze a head impact, demonstrating the applicability of this method in studying axonal injury. Following this, a comparison study of different injury criteria was performed. This model was used to determine the influence of impact direction on the extent of the axonal injury. The results suggested that the lateral impact loading is more dangerous compared to loading in the sagittal plane, a finding in agreement with previous studies. Through this analysis, we demonstrated the viability of the embedded element method as an alternative numerical approach for studying axonal injury in patient-specific human head models.

  19. Calpain-mediated cleavage of collapsin response mediator protein-2 drives acute axonal degeneration (United States)

    Zhang, Jian-Nan; Michel, Uwe; Lenz, Christof; Friedel, Caroline C.; Köster, Sarah; d’Hedouville, Zara; Tönges, Lars; Urlaub, Henning; Bähr, Mathias; Lingor, Paul; Koch, Jan C.


    Axonal degeneration is a key initiating event in many neurological diseases. Focal lesions to axons result in a rapid disintegration of the perilesional axon by acute axonal degeneration (AAD) within several hours. However, the underlying molecular mechanisms of AAD are only incompletely understood. Here, we studied AAD in vivo through live-imaging of the rat optic nerve and in vitro in primary rat cortical neurons in microfluidic chambers. We found that calpain is activated early during AAD of the optic nerve and that calpain inhibition completely inhibits axonal fragmentation on the proximal side of the crush while it attenuates AAD on the distal side. A screening of calpain targets revealed that collapsin response mediator protein-2 (CRMP2) is a main downstream target of calpain activation in AAD. CRMP2-overexpression delayed bulb formation and rescued impairment of axonal mitochondrial transport after axotomy in vitro. In vivo, CRMP2-overexpression effectively protected the proximal axon from fragmentation within 6 hours after crush. Finally, a proteomic analysis of the optic nerve was performed at 6 hours after crush, which identified further proteins regulated during AAD, including several interactors of CRMP2. These findings reveal CRMP2 as an important mediator of AAD and define it as a putative therapeutic target. PMID:27845394

  20. Gene expression of axon growth promoting factors in the deer antler.

    Directory of Open Access Journals (Sweden)

    Wolfgang Pita-Thomas

    Full Text Available The annual regeneration cycle of deer (Cervidae, Artiodactyla antlers represents a unique model of epimorphic regeneration and rapid growth in adult mammals. Regenerating antlers are innervated by trigeminal sensory axons growing through the velvet, the modified form of skin that envelopes the antler, at elongation velocities that reach one centimetre per day in the common deer (Cervus elaphus. Several axon growth promoters like NT-3, NGF or IGF-1 have been described in the antler. To increase the knowledge on the axon growth environment, we have combined different gene-expression techniques to identify and characterize the expression of promoting molecules not previously described in the antler velvet. Cross-species microarray analyses of deer samples on human arrays allowed us to build up a list of 90 extracellular or membrane molecules involved in axon growth that were potentially being expressed in the antler. Fifteen of these genes were analysed using PCR and sequencing techniques to confirm their expression in the velvet and to compare it with the expression in other antler and skin samples. Expression of 8 axon growth promoters was confirmed in the velvet, 5 of them not previously described in the antler. In conclusion, our work shows that antler velvet provides growing axons with a variety of promoters of axon growth, sharing many of them with deer's normal and pedicle skin.

  1. Effect of fetal spinal cord graft with different methods on axonal pathology after spinal cord contusion

    Institute of Scientific and Technical Information of China (English)


    Objective: To investigate the effect of fetal spinal cord (FSC) graft with different methods on axonal pathology and neurological function recovery after spinal cord injury (SCI).   Methods: Forty Wistar rats were divided into 4 groups. In Group A, the spinal cord was injured and hemisected. In Group B, fetal spinal cord (FSC) was transferred into the injured site. In Group C, after having done as Group B, the upper and lower spinal nerve roots were anastomosed. And in Group D, after having done as Group B, the pedicled omentum was transferred into the hemisection cavity. At 6 weeks after operation, light and electronic microscopes were used to examine the axonal pathology. The neurological function was assessed with inclined plane tests in the open field. The number of axons was quantitated by a computer image analysis system.   Results: A greater loss of axons was observed in Group A than that of other groups at 6 weeks. The sequence of the reduced rate of the axons was as following, Group A>Group B>Group C>Group D (P<0.05). The remaining axons were paralleled with the significant improvement in neurological function recovery of the rats.   Conclusions: It indicates that FSC and pedicled omentum grafts after SCI can protect the axons and promote the neurological function recovery of the rats.

  2. The use of proteomic analysis to study trafficking defects in axons. (United States)

    Fu, Xiaoqin; Brown, Kristy J; Rayavarapu, Sree; Nagaraju, Kanneboyina; Liu, Judy S


    Mutations in microtubule subunits and microtubule-associated proteins are the causes of many neurological disorders. These human conditions are usually associated with axonal tract defects or degeneration. The molecular mechanisms of these axonal dysfunction are still largely unknown. Conventional methods may not yield a complete analysis of downstream molecules related to axonal dysfunctions. Therefore, we devised a simple unbiased method to screen molecular motors and axonal molecules, which might be involved in axonal defects. We performed our analysis in the mouse with a targeted deletion in the doublecortin (Dcx) gene. Dcx is a microtubule-associated protein with direct effects on microtubule motors. Furthermore, the knockout of Dcx and its functionally redundant structurally similar paralog, doublecortin-like kinase 1 (Dclk1), in mouse results in thinner or absent axon tracts, including the corpus callosum and anterior commissures. We compared protein profiles of corpus callosum from Dcx knockout and wild-type mouse of P0-P2 using mass spectrometry. This strategy allowed us to identify novel candidates downstream of Dcx involved in axon transport.

  3. Discoidin domain receptors guide axons along longitudinal tracts in C. elegans. (United States)

    Unsoeld, Thomas; Park, Ja-On; Hutter, Harald


    Discoidin domain receptors are a family of receptor tyrosine kinases activated by collagens. Here we characterize the role of the two discoidin domain receptors, ddr-1 and ddr-2, of the nematode C. elegans during nervous system development. ddr-2 mutant animals exhibit axon guidance defects in major longitudinal tracts most prominently in the ventral nerve cord. ddr-1 mutants show no significant phenotype on their own but significantly enhance guidance defects of ddr-2 in double mutants. ddr-1 and ddr-2 GFP-reporter constructs are expressed in neurons with axons in all affected nerve tracts. DDR-1 and DDR-2 GFP fusion proteins localize to axons. DDR-2 is required cell-autonomously in the PVPR neuron for the guidance of the PVPR pioneer axon, which establishes the left ventral nerve cord tract and serves as substrate for later outgrowing follower axons. Our results provide the first insight on discoidin domain receptor function in invertebrates and establish a novel role for discoidin domain receptors in axon navigation and axon tract formation.

  4. Effects of axonal topology on the somatic modulation of synaptic outputs. (United States)

    Sasaki, Takuya; Matsuki, Norio; Ikegaya, Yuji


    Depolarization of the neuronal soma augments synaptic output onto postsynaptic neurons via long-range, axonal cable properties. Here, we report that the range of this somatic influence is spatially restricted by not only axonal path length but also a branching-dependent decrease in axon diameter. Cell-attached recordings of action potentials (APs) from multiple axon branches of a rat hippocampal CA3 pyramidal cell revealed that an AP was broadened following a 20 mV depolarization of the soma and reverted to a normal width during propagation down the axon. The narrowing of the AP depended on the distance traveled by the AP and on the number of axon branch points through which the AP passed. These findings were confirmed by optical imaging of AP-induced calcium elevations in presynaptic boutons, suggesting that the somatic membrane potential modifies synaptic outputs near the soma but not long-projection outputs. Consistent with this prediction, whole-cell recordings from synaptically connected neurons revealed that depolarization of presynaptic CA3 pyramidal cells facilitated synaptic transmission to nearby CA3 pyramidal cells, but not to distant pyramidal cells in CA3 or CA1. Therefore, axonal geometry enables the differential modulation of synaptic output depending on target location.

  5. Characterizing Semaphorin-Mediated Effects on Sensory and Motor Axon Pathfinding and Connectivity During Embryonic Development. (United States)

    Huettl, Rosa Eva; Huber, Andrea B


    How are precise connectivity to peripheral targets and corresponding sensory-motor networks established during developmental innervation of the vertebrate extremities? The formation of functional sensory-motor circuits requires highly appropriate temporal and spatial regulation of axon growth which is achieved through the combination of different molecular mechanisms such as communication between heterotypic fiber systems, axon-environment, or axon-glia interactions that ensure proper fasciculation and accurate pathfinding to distal targets. Family members of the class 3 semaphorins and their cognate receptors, the neuropilins, were shown to govern various events during wiring of central and peripheral circuits, with mice lacking Sema3-Npn signaling showing deficits in timing of growth, selective fasciculation, guidance fidelity, and coupling of sensory axon growth to motor axons at developmental time points. Given the accuracy with which these processes have to interact in a stepwise manner, deficiency of the smallest cog in the wheel may impact severely on the faithful establishment and functionality of peripheral circuitries, ultimately leading to behavioral impairments or even cause the death of the animal. Reliable quantitative analyses of sensory-motor fasciculation, extension, and guidance of axons to their cognate target muscles and the skin during development, but also assessment of physiological and behavioral consequences at adult age, are therefore a necessity to extend our understanding of the molecular mechanisms of peripheral circuit formation. In this chapter we provide a detailed methodology to characterize class 3 semaphorin-mediated effects on peripheral sensory and motor axon pathfinding and connectivity during embryonic development.

  6. Morphometric analysis of Mauthner axon cytoskeletal components in adult and subadult fish. (United States)

    Alfei, L; Medolago-Albani, L; Zezze, G M; Stefanelli, A


    A previous cytoskeletal analysis on trout MA during developmental stages demonstrated, during the subadult stages, neurofilaments (NF) as main components as expressed by the high values of neurofilament to microtubules (MT) ratio which was found to be of the order of 300:1. Since the MA cytoskeletal composition is not known in the adult fish, the MA cytoskeletal composition has been compared to other axons of much smaller diameter of the fasciculus longitudinalis medialis (flm) among which the MA run in the ventral spinal cord. The following parameters were measured on conventional electron microscopy in MA and flm axons cross sections micrographs by means of a computer linked graphic tablet (Apple II): axonal caliber, number of microtubules (MT), microtubular (MT/microns2) and neurofilament (NF/microns2) densities. The analysis of these parameters demonstrated that neurofilaments are the main architectural components in the adult and subadult fish MA and flm axons. However, MA cytoskeletal composition differs from the other flm axons because of its particular very high ratio of neurofilaments to microtubules. The inverse relationship of axonal caliber to microtubular density, previously found in the trout during developmental stages and suggested also for many other vertebrate species, was further confirmed for flm axons which, with calibers 10 times smaller than MA, exhibit a microtubular density 10 times larger.

  7. EFN-4 functions in LAD-2-mediated axon guidance in Caenorhabditis elegans. (United States)

    Dong, Bingyun; Moseley-Alldredge, Melinda; Schwieterman, Alicia A; Donelson, Cory J; McMurry, Jonathan L; Hudson, Martin L; Chen, Lihsia


    During development of the nervous system, growing axons rely on guidance molecules to direct axon pathfinding. A well-characterized family of guidance molecules are the membrane-associated ephrins, which together with their cognate Eph receptors, direct axon navigation in a contact-mediated fashion. InC. elegans, the ephrin-Eph signaling system is conserved and is best characterized for their roles in neuroblast migration during early embryogenesis. This study demonstrates a role for the C. elegans ephrin EFN-4 in axon guidance. We provide both genetic and biochemical evidence that is consistent with the C. elegans divergent L1 cell adhesion molecule LAD-2 acting as a non-canonical ephrin receptor to EFN-4 to promote axon guidance. We also show that EFN-4 probably functions as a diffusible factor because EFN-4 engineered to be soluble can promote LAD-2-mediated axon guidance. This study thus reveals a potential additional mechanism for ephrins in regulating axon guidance and expands the repertoire of receptors by which ephrins can signal.

  8. Differential expression of axon-sorting molecules in mouse olfactory sensory neurons. (United States)

    Ihara, Naoki; Nakashima, Ai; Hoshina, Naosuke; Ikegaya, Yuji; Takeuchi, Haruki


    In the mouse olfactory system, the axons of olfactory sensory neurons that express the same type of odorant receptor (OR) converge to a specific set of glomeruli in the olfactory bulb (OB). It is widely accepted that expressed OR molecules instruct glomerular segregation by regulating the expression of axon-sorting molecules. Although the relationship between the expression of axon-sorting molecules and OR types has been analyzed in detail, those between the expressions of axon-sorting molecules remain to be elucidated. Here we collected the expression profiles of four axon-sorting molecules from a large number of glomeruli in the OB. These molecules demonstrated position-independent mosaic expressions, but their patterns were not identical in the OB. Comparing their expressions identified positive and negative correlations between several pairs of genes even though they showed various expressions. Furthermore, the principal component analysis revealed that the factor loadings in the principal component 1, which explain the largest amount of variation, were most likely to reflect the degree of the cyclic nucleotide-gated (CNG) channel dependence on the expression of axon-sorting molecules. Thus, neural activity generated through the CNG channel is a major component in the generation of a wide variety of expressions of axon-sorting molecules in glomerular segregation.

  9. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. (United States)

    Sasaki, Yo; Araki, Toshiyuki; Milbrandt, Jeffrey


    Axonal degeneration occurs in many neurodegenerative diseases and after traumatic injury and is a self-destructive program independent from programmed cell death. Previous studies demonstrated that overexpression of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) or exogenous application of nicotinamide adenine dinucleotide (NAD) can protect axons of cultured dorsal root ganglion (DRG) neurons from degeneration caused by mechanical or neurotoxic injury. In mammalian cells, NAD can be synthesized from multiple precursors, including tryptophan, nicotinic acid, nicotinamide, and nicotinamide riboside (NmR), via multiple enzymatic steps. To determine whether other components of these NAD biosynthetic pathways are capable of delaying axonal degeneration, we overexpressed each of the enzymes involved in each pathway and/or exogenously administered their respective substrates in DRG cultures and assessed their capacity to protect axons after axotomy. Among the enzymes tested, Nmnat1 had the strongest protective effects, whereas nicotinamide phosphoribosyl transferase and nicotinic acid phosphoribosyl transferase showed moderate protective activity in the presence of their substrates. Strong axonal protection was also provided by Nmnat3, which is predominantly located in mitochondria, and an Nmnat1 mutant localized to the cytoplasm, indicating that the subcellular location of NAD production is not crucial for protective activity. In addition, we showed that exogenous application of the NAD precursors that are the substrates of these enzymes, including nicotinic acid mononucleotide, nicotinamide mononucleotide, and NmR, can also delay axonal degeneration. These results indicate that stimulation of NAD biosynthetic pathways via a variety of interventions may be useful in preventing or delaying axonal degeneration.

  10. Serial Section Registration of Axonal Confocal Microscopy Datasets for Long-Range Neural Circuit Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Hogrebe, Luke; Paiva, Antonio R.; Jurrus, Elizabeth R.; Christensen, Cameron; Bridge, Michael; Dai, Li; Pfeiffer, Rebecca; Hof, Patrick; Roysam, Badrinath; Korenberg, Julie; Tasdizen, Tolga


    In the context of long-range digital neural circuit reconstruction, this paper investigates an approach for registering axons across histological serial sections. Tracing distinctly labeled axons over large distances allows neuroscientists to study very explicit relationships between the brain's complex interconnects and, for example, diseases or aberrant development. Large scale histological analysis requires, however, that the tissue be cut into sections. In immunohistochemical studies thin sections are easily distorted due to the cutting, preparation, and slide mounting processes. In this work we target the registration of thin serial sections containing axons. Sections are first traced to extract axon centerlines, and these traces are used to define registration landmarks where they intersect section boundaries. The trace data also provides distinguishing information regarding an axon's size and orientation within a section. We propose the use of these features when pairing axons across sections in addition to utilizing the spatial relationships amongst the landmarks. The global rotation and translation of an unregistered section are accounted for using a random sample consensus (RANSAC) based technique. An iterative nonrigid refinement process using B-spline warping is then used to reconnect axons and produce the sought after connectivity information.

  11. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice (United States)

    Yungher, Benjamin J.; Ribeiro, Márcio; Park, Kevin K.


    Purpose Enhanced regeneration of retinal ganglion cell (RGC) axons can be achieved by modification of numerous neuronal-intrinsic factors. However, axon growth initiation and the pathfinding behavior of these axons after traumatic injury remain poorly understood outside of acute injury paradigms, despite the clinical relevance of more chronic settings. We therefore examined RGC axon regeneration following therapeutic delivery that is postponed until 2 months after optic nerve crush injury. Methods Optic nerve regeneration was induced by virally mediated (adeno-associated virus) ciliary neurotrophic factor (AAV-CNTF) administered either immediately or 56 days after optic nerve crush in wild-type or Bax knockout (KO) mice. Retinal ganglion nerve axon regeneration was assessed 21 and 56 days after viral injection. Immunohistochemical analysis of RGC injury signals and extrinsic factors in the optic nerve were also examined at 5 and 56 days post crush. Results In addition to sustained expression of injury response proteins in surviving RGCs, we observe axon regrowth in wild-type and apoptosis-deficient Bax KO mice following AAV-CNTF treatment. Fewer instances of aberrant axon growth are seen, at least in the area near the lesion site, in animals given treatment 56 days after crush injury compared to the animals given treatment immediately after injury. We also find evidence of long distance growth into a visual target in Bax KO mice despite postponed initiation of this regenerative program. Conclusions These studies provide evidence against an intrinsic critical period for RGC axon regeneration or degradation of injury signals. Regeneration results from Bax KO mice imply highly sustained regenerative capacity in RGCs, highlighting the importance of long-lasting neuroprotective strategies as well as of RGC axon guidance research in chronically injured animals. PMID:28324115

  12. Midbrain dopaminergic axons are guided longitudinally through the diencephalon by Slit/Robo signals. (United States)

    Dugan, James P; Stratton, Andrea; Riley, Hilary P; Farmer, W Todd; Mastick, Grant S


    Dopaminergic neurons from the ventral mesencephalon/diencephalon (mesodiencephalon) form vital pathways constituting the majority of the brain's dopamine systems. Mesodiencephalic dopaminergic (mdDA) neurons extend longitudinal projections anteriorly through the diencephalon, ascending toward forebrain targets. The mechanisms by which mdDA axons initially navigate through the diencephalon are poorly understood. Recently the Slit family of secreted axon guidance proteins, and their Robo receptors, have been identified as important guides for descending longitudinal axons. To test the potential roles of Slit/Robo guidance in ascending trajectories, we examined tyrosine hydroxylase-positive (TH+) projections from mdDA neurons in mutant mouse embryos. We found that mdDA axons grow out of and parallel to Slit-positive ventral regions within the diencephalon, and that subsets of the mdDA axons likely express Robo1 and possibly also Robo2. Slit2 was able to directly inhibit TH axon outgrowth in explant co-culture assays. The mdDA axons made significant pathfinding errors in Slit1/2 and Robo1/2 knockout mice, including spreading out in the diencephalon to form a wider tract. The wider tract resulted from a combination of invasion of the ventral midline, consistent with Slit repulsion, but also axons wandering dorsally, away from the ventral midline. Aberrant dorsal trajectories were prominent in Robo1 and Robo1/2 knockout mice, suggesting that an aspect of Robo receptor function is Slit-independent. These results indicate that Slit/Robo signaling is critical during the initial establishment of dopaminergic pathways, with roles in the dorsoventral positioning and precise pathfinding of these ascending longitudinal axons.

  13. Experience-driven axon retraction in the pharmacologically inactivated visual cortex does not require synaptic transmission.

    Directory of Open Access Journals (Sweden)

    Kana Watanabe

    Full Text Available BACKGROUND: Experience during early postnatal development plays an important role in the refinement of specific neural connections in the brain. In the mammalian visual system, altered visual experiences induce plastic adaptation of visual cortical responses and guide rearrangements of afferent axons from the lateral geniculate nucleus. Previous studies using visual deprivation demonstrated that the afferents serving an open eye significantly retract when cortical neurons are pharmacologically inhibited by applying a gamma-aminobutyric acid type A receptor agonist, muscimol, whereas those serving a deprived eye are rescued from retraction, suggesting that presynaptic activity can lead to the retraction of geniculocortical axons in the absence of postsynaptic activity. Because muscimol application suppresses the spike activity of cortical neurons leaving transmitter release intact at geniculocortical synapses, local synaptic interaction may underlie the retraction of active axons in the inhibited cortex. METHOD AND FINDINGS: New studies reported here determined whether experience-driven axon retraction can occur in the visual cortex inactivated by blocking synaptic inputs. We inactivated the primary visual cortex of kittens by suppressing synaptic transmission with cortical injections of botulinum neurotoxin type E, which cleaves a synaptic protein, SNAP-25, and blocks transmitter release, and examined the geniculocortical axon morphology in the animals with normal vision and those deprived of vision binocularly. We found that afferent axons in the animals with normal vision showed a significant retraction in the inactivated cortex, as similarly observed in the muscimol-treated cortex, whereas the axons in the binocularly deprived animals were preserved. CONCLUSIONS: Therefore, the experience-driven axon retraction in the inactivated cortex can proceed in the absence of synaptic transmission. These results suggest that presynaptic mechanisms play

  14. The Microtubule Regulatory Protein Stathmin Is Required to Maintain the Integrity of Axonal Microtubules in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jason E Duncan

    Full Text Available Axonal transport, a form of long-distance, bi-directional intracellular transport that occurs between the cell body and synaptic terminal, is critical in maintaining the function and viability of neurons. We have identified a requirement for the stathmin (stai gene in the maintenance of axonal microtubules and regulation of axonal transport in Drosophila. The stai gene encodes a cytosolic phosphoprotein that regulates microtubule dynamics by partitioning tubulin dimers between pools of soluble tubulin and polymerized microtubules, and by directly binding to microtubules and promoting depolymerization. Analysis of stai function in Drosophila, which has a single stai gene, circumvents potential complications with studies performed in vertebrate systems in which mutant phenotypes may be compensated by genetic redundancy of other members of the stai gene family. This has allowed us to identify an essential function for stai in the maintenance of the integrity of axonal microtubules. In addition to the severe disruption in the abundance and architecture of microtubules in the axons of stai mutant Drosophila, we also observe additional neurological phenotypes associated with loss of stai function including a posterior paralysis and tail-flip phenotype in third instar larvae, aberrant accumulation of transported membranous organelles in stai deficient axons, a progressive bang-sensitive response to mechanical stimulation reminiscent of the class of Drosophila mutants used to model human epileptic seizures, and a reduced adult lifespan. Reductions in the levels of Kinesin-1, the primary anterograde motor in axonal transport, enhance these phenotypes. Collectively, our results indicate that stai has an important role in neuronal function, likely through the maintenance of microtubule integrity in the axons of nerves of the peripheral nervous system necessary to support and sustain long-distance axonal transport.

  15. Robust regeneration of CNS axons through a track depleted of CNS glia. (United States)

    Moon, L D; Brecknell, J E; Franklin, R J; Dunnett, S B; Fawcett, J W


    Transected CNS axons do not regenerate spontaneously but may do so if given an appropriate environment through which to grow. Since molecules associated with CNS macroglia are thought to be inhibitory to axon regeneration, we have tested the hypothesis that removing these cell types from an area of brain will leave an environment more permissive for axon regeneration. Adult rats received unilateral knife cuts of the nigrostriatal tract and ethidium bromide (EB) was used to create a lesion devoid of astrocytes, oligodendrocytes, intact myelin sheaths, and NG2 immunoreactive cells from the site of the knife cut to the ipsilateral striatum (a distance of 6 mm). The regenerative response and the EB lesion environment was examined with immunostaining and electron microscopy at different timepoints following surgery. We report that large numbers of dopaminergic nigral axons regenerated for over 4 mm through EB lesions. At 4 days postlesion dopaminergic sprouting was maximal and the axon growth front had reached the striatum, but there was no additional growth into the striatum after 7 days. Regenerating axons did not leave the EB lesion to form terminals in the striatum, there was no recovery of function, and the end of axon growth correlated with increasing glial immunoreactivity around the EB lesion. We conclude that the removal of CNS glia promotes robust axon regeneration but that this becomes limited by the reappearance of nonpermissive CNS glia. These results suggest, first, that control of the glial reaction is likely to be an important feature in brain repair and, second, that reports of axon regeneration must be interpreted with caution since extensive regeneration can occur simply as a result of a major glia-depleting lesion, rather than as the result of some other specific intervention.

  16. Hematopoietic progenitors express myelin basic protein and ensheath axons in Shiverer brain. (United States)

    Goolsby, James; Makar, Tapas; Dhib-Jalbut, Suhayl; Bever, Christopher T; Pessac, Bernard; Trisler, David


    Oligodendroglia are cells of the central nervous system (CNS) that form myelin sheath, which insulates neuronal axons. Neuropathologies of the CNS include dysmyelination of axons in multiple sclerosis and CNS trauma. Cell replacement is a promising but largely untested therapy for dysmyelination. Shiverer mouse, a genetic mutant that does not synthesize full-length myelin basic protein (MBP), a critical prerequisite protein in CNS myelin sheath formation, provides an unequivocal model for determining the potential of stem cells to become oligodendroglia. We demonstrate that adult wild-type mouse bone marrow stem cells can express MBP and ensheath axons when transplanted into Shiverer brain.

  17. Midline governs axon pathfinding by coordinating expression of two major guidance systems. (United States)

    Liu, Qing-Xin; Hiramoto, Masaki; Ueda, Hitoshi; Gojobori, Takashi; Hiromi, Yasushi; Hirose, Susumu


    Formation of the neural network requires concerted action of multiple axon guidance systems. How neurons orchestrate expression of multiple guidance genes is poorly understood. Here, we show that Drosophila T-box protein Midline controls expression of genes encoding components of two major guidance systems: Frazzled, ROBO, and Slit. In midline mutant, expression of all these molecules are reduced, resulting in severe axon guidance defects, whereas misexpression of Midline induces their expression. Midline is present on the promoter regions of these genes, indicating that Midline controls transcription directly. We propose that Midline controls axon pathfinding through coordinating the two guidance systems.

  18. Axonal recovery after severe traumatic brain injury demonstrated in vivo by 1H MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Danielsen, E.R.; Thomsen, C. [Department of Neuroradiology, Section 3023, Rigshospitalet, Copenhagen (Denmark); Christensen, P.B. [Hammel Neurocentre, Department of Neurology, Aarhus University Hospital (Denmark); Arlien-Soeborg, P. [Department of Neurology, Rigshospitalet, Copenhagen (Denmark)


    Proton magnetic resonance spectroscopy (MRS) suggested almost complete axonal recovery 21 months after trauma in a patient with severe diffuse axonal injury. MRS while the patient was comatose showed evidence of severe diffuse axonal injury in occipitoparietal white matter, but occipital grey matter was relatively spared. At 21 months N-acetylaspartate was normal. At 33 months examination showed a Functional Independence Measure of 83 and a Rancho Los Amigos Scale of Cognitive Function of 7-8, a remarkable improvement considering all the initial findings, except those of MRS. (orig.)

  19. Enzyme-instructed self-assembly of taxol promotes axonal branching (United States)

    Mei, Bin; Miao, Qingqing; Tang, Anming; Liang, Gaolin


    Axonal branching is important for vertebrate neuron signaling. Taxol has a biphasic effect on axonal branching (i.e., high concentration inhibits axonal growth but low concentration restores it). To the best of our knowledge, low concentration of taxol to promote axonal branching has not been reported yet. Herein, we rationally designed a taxol derivative Fmoc-Phe-Phe-Lys(taxol)-Tyr(H2PO4)-OH (1) which could be subjected to alkaline phosphatase (ALP)-catalyzed self-assembly to form taxol nanofibers. We found that, at 10 μM, 1 has a microtubule (MT) condensation effect similar to that of taxol on mammalian cells but with more chronic toxicity than taxol on the cells. At a low concentration of 10 nM, 1 not only promoted neurite elongation as taxol did but also promoted axonal branching which was not achieved by using taxol. We propose that self-assembly of 1 along the MTs prohibited their lateral contacts and thus promoted axonal branching. Our strategy of enzyme-instructed self-assembly (EISA) of a taxol derivative provides a new tool for scientists to study the morphology of neurons, as well as their behaviours.Axonal branching is important for vertebrate neuron signaling. Taxol has a biphasic effect on axonal branching (i.e., high concentration inhibits axonal growth but low concentration restores it). To the best of our knowledge, low concentration of taxol to promote axonal branching has not been reported yet. Herein, we rationally designed a taxol derivative Fmoc-Phe-Phe-Lys(taxol)-Tyr(H2PO4)-OH (1) which could be subjected to alkaline phosphatase (ALP)-catalyzed self-assembly to form taxol nanofibers. We found that, at 10 μM, 1 has a microtubule (MT) condensation effect similar to that of taxol on mammalian cells but with more chronic toxicity than taxol on the cells. At a low concentration of 10 nM, 1 not only promoted neurite elongation as taxol did but also promoted axonal branching which was not achieved by using taxol. We propose that self-assembly of 1

  20. In vivo axonal transport deficits in a mouse model of fronto-temporal dementia

    Directory of Open Access Journals (Sweden)

    Tabassum Majid


    Discussion: In our study, we identified the presence of age-dependent axonal transport deficits beginning at 3 months of age in rTg4510 mice. We correlated these deficits at 3 months to the presence of hyperphosphorylated tau in the brain and the presence within the olfactory epithelium. We observed tau pathology not only in the soma of these neurons but also within the axons and processes of these neurons. Our characterization of axonal transport in this tauopathy model provides a functional time point that can be used for future therapeutic interventions.

  1. Extracellular matrix molecules play diverse roles in the growth and guidance of central nervous system axons

    Directory of Open Access Journals (Sweden)

    M.A. Pires-Neto


    Full Text Available Axon growth and guidance represent complex biological processes in which probably intervene diverse sets of molecular cues that allow for the appropriate wiring of the central nervous system (CNS. The extracellular matrix (ECM represents a major contributor of molecular signals either diffusible or membrane-bound that may regulate different stages of neural development. Some of the brain ECM molecules form tridimensional structures (tunnels and boundaries that appear during time- and space-regulated events, possibly playing relevant roles in the control of axon elongation and pathfinding. This short review focuses mainly on the recognized roles played by proteoglycans, laminin, fibronectin and tenascin in axonal development during ontogenesis.

  2. An Atypical SCF-like Ubiquitin Ligase Complex Promotes Wallerian Degeneration through Regulation of Axonal Nmnat2

    Directory of Open Access Journals (Sweden)

    Yuya Yamagishi


    Full Text Available Axon degeneration is a tightly regulated, self-destructive program that is a critical feature of many neurodegenerative diseases, but the molecular mechanisms regulating this program remain poorly understood. Here, we identify S-phase kinase-associated protein 1A (Skp1a, a core component of a Skp/Cullin/F-box (SCF-type E3 ubiquitin ligase complex, as a critical regulator of axon degeneration after injury in mammalian neurons. Depletion of Skp1a prolongs survival of injured axons in vitro and in the optic nerve in vivo. We demonstrate that Skp1a regulates the protein level of the nicotinamide adenine dinucleotide (NAD+ synthesizing enzyme nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2 in axons. Loss of axonal Nmnat2 contributes to a local ATP deficit that triggers axon degeneration. Knockdown of Skp1a elevates basal levels of axonal Nmnat2, thereby delaying axon degeneration through prolonged maintenance of axonal ATP. Consistent with Skp1a functioning through regulation of Nmnat2, Skp1a knockdown fails to protect axons from Nmnat2 knockdown. These results illuminate the molecular mechanism underlying Skp1a-dependent axonal destruction.

  3. Novel RNA- and FMRP-binding protein TRF2-S regulates axonal mRNA transport and presynaptic plasticity. (United States)

    Zhang, Peisu; Abdelmohsen, Kotb; Liu, Yong; Tominaga-Yamanaka, Kumiko; Yoon, Je-Hyun; Ioannis, Grammatikakis; Martindale, Jennifer L; Zhang, Yongqing; Becker, Kevin G; Yang, In Hong; Gorospe, Myriam; Mattson, Mark P


    Despite considerable evidence that RNA-binding proteins (RBPs) regulate mRNA transport and local translation in dendrites, roles for axonal RBPs are poorly understood. Here we demonstrate that a non-telomeric isoform of telomere repeat-binding factor 2 (TRF2-S) is a novel RBP that regulates axonal plasticity. TRF2-S interacts directly with target mRNAs to facilitate their axonal delivery. The process is antagonized by fragile X mental retardation protein (FMRP). Distinct from the current RNA-binding model of FMRP, we show that FMRP occupies the GAR domain of TRF2-S protein to block the assembly of TRF2-S-mRNA complexes. Overexpressing TRF2-S and silencing FMRP promotes mRNA entry to axons and enhances axonal outgrowth and neurotransmitter release from presynaptic terminals. Our findings suggest a pivotal role for TRF2-S in an axonal mRNA localization pathway that enhances axon outgrowth and neurotransmitter release.

  4. Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities (United States)

    Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.


    Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.

  5. Guidance of Drosophila Mushroom Body Axons Depends upon DRL-Wnt Receptor Cleavage in the Brain Dorsomedial Lineage Precursors

    Directory of Open Access Journals (Sweden)

    Elodie Reynaud


    Full Text Available In vivo axon pathfinding mechanisms in the neuron-dense brain remain relatively poorly characterized. We study the Drosophila mushroom body (MB axons, whose α and β branches connect to different brain areas. We show that the Ryk family WNT5 receptor, DRL (derailed, which is expressed in the dorsomedial lineages, brain structure precursors adjacent to the MBs, is required for MB α branch axon guidance. DRL acts to capture and present WNT5 to MB axons rather than transduce a WNT5 signal. DRL’s ectodomain must be cleaved and shed to guide α axons. DRL-2, another Ryk, is expressed within MB axons and functions as a repulsive WNT5 signaling receptor. Finally, our biochemical data support the existence of a ternary complex composed of the cleaved DRL ectodomain, WNT5, and DRL-2. Thus, the interaction of MB-extrinsic and -intrinsic Ryks via their common ligand acts to guide MB α axons.


    Institute of Scientific and Technical Information of China (English)

    戈峰; 李泽坚; 柯美云


    Using 3 non-invasive tests,abnormalities of cardiovascular reflex function were found in 7 of 15 patients with achalasia.Abnormalities of heart rate responses to the Valsalva maneuver,deep breathing ,and standing were moted in patients with autonomic neuropathy defect.The findings are consistent with the hypothesis that an abnormality of vagal function may contribute to the pathogenesis of achalasia.

  7. Arboreous vegetation of an alluvial riparian forest and their soil relations: Porto Rico island, Paraná river, Brazil

    Directory of Open Access Journals (Sweden)

    João Batista Campos


    Full Text Available The dynamics of alluvial deposits in floodplains forms islands and sandbanks. Deposits frequently accumulate at the river margins and on islands with consequent side growths. One of these sandbanks which started to form in 1952 annexed an area of 12.4ha to the Porto Rico island (53º15’W and 22º45’S. At present a forest fragment of approximately 2.0 ha exists in this place. The structural analysis of arboreous vegetation of this fragment showed a floristic gradient related to the physical and chemical variations of the substratum. High density of pioneer species associated to the absence of recruitment of new individuals of these and other successional categories indicated that the forest was impaired in its succession process. This fact could be associated with constant disturbances caused by cattle in the area.A dinâmica de deposições aluviais em planícies de inundação proporciona a formação de ilhas e barras (bancos de areia, que muitas vezes agregam-se às margens dos rios ou ilhas propiciando o seu crescimento lateral. Uma dessas barras, com início de formação a partir de 1952, agregou a ilha Porto Rico (53º15’W e 22º45’S uma área de 12,40ha, onde existe, atualmente, um fragmento florestal de aproximadamente 2,0ha. A análise estrutural da vegetação arbórea desse fragmento mostra a presença de um gradiente florístico relacionado às variações físicas e químicas do substrato. A elevada densidade de espécies pioneiras, associada a ausência de recrutamento de novos indivíduos, dessas e de outras categorias sucessionais, indicam que esta floresta está limitada em seu processo de sucessão, podendo, este fato, estar associado às constantes perturbações provocada pela presença de gado na área.

  8. Aluminium Accumulation and Intra-Tree Distribution Patterns in Three Arbor aluminosa (Symplocos) Species from Central Sulawesi. (United States)

    Schmitt, Marco; Boras, Sven; Tjoa, Aiyen; Watanabe, Toshihiro; Jansen, Steven


    Accumulation of Aluminium (Al) at concentrations far above 1,000 mg kg-1 in aboveground plant tissues of Arbor aluminosa (Symplocos) species is the main reason why traditional Indonesian weavers rely on their leaves and bark as a mordant for dyeing textile. Recently, Symplocos species have become a flagship species for the conservation efforts of weaving communities due to their traditionally non-sustainable sampling and increasing demand for Symplocos plant material. Here we investigated Symplocos odoratissima, S. ophirensis and S. ambangensis at three montane rainforest sites in Central Sulawesi to measure Al levels in different tissues and organs. The highest Al concentrations were found in old leaves (24,180 ± 7,236 mg·kg-1 dry weight, mean ± SD), while young leaves had significantly lower Al levels (20,708 ± 7,025 mg·kg-1). Al accumulation was also lower in bark and wood tissue of the trunk (17,231 ± 8,356 mg·kg-1 and 5,181 ± 2,032 mg·kg-1, respectively). Two Al excluding species (Syzigium sp. and Lithocarpus sp.) contained only high Al levels in their roots. Moreover, no difference was found in soil pH (4.7 ± 0.61) and nutrient (K, Ca, Fe, Mg) availability at different soil levels and within or outside the crown of Symplocos trees, except for the upper soil layer. Furthermore, a positive and significant correlation between Al and Ca concentrations was found at the whole plant level for Symplocos, and at the leaf level for S. ophirensis and S. ambangensis, suggesting a potential role of Ca in Al uptake and/or detoxification within the plant. Our results provide evidence for strong Al accumulation in Symplocos species and illustrate that both Al accumulation and exclusion represent two co-occurring strategies of montane rainforest plants for dealing with Al toxicity. Indonesian weavers should be encouraged to harvest old leaves, which have the most efficient mordant capacity due to high Al concentrations.

  9. Aluminium Accumulation and Intra-Tree Distribution Patterns in Three Arbor aluminosa (Symplocos Species from Central Sulawesi.

    Directory of Open Access Journals (Sweden)

    Marco Schmitt

    Full Text Available Accumulation of Aluminium (Al at concentrations far above 1,000 mg kg-1 in aboveground plant tissues of Arbor aluminosa (Symplocos species is the main reason why traditional Indonesian weavers rely on their leaves and bark as a mordant for dyeing textile. Recently, Symplocos species have become a flagship species for the conservation efforts of weaving communities due to their traditionally non-sustainable sampling and increasing demand for Symplocos plant material. Here we investigated Symplocos odoratissima, S. ophirensis and S. ambangensis at three montane rainforest sites in Central Sulawesi to measure Al levels in different tissues and organs. The highest Al concentrations were found in old leaves (24,180 ± 7,236 mg·kg-1 dry weight, mean ± SD, while young leaves had significantly lower Al levels (20,708 ± 7,025 mg·kg-1. Al accumulation was also lower in bark and wood tissue of the trunk (17,231 ± 8,356 mg·kg-1 and 5,181 ± 2,032 mg·kg-1, respectively. Two Al excluding species (Syzigium sp. and Lithocarpus sp. contained only high Al levels in their roots. Moreover, no difference was found in soil pH (4.7 ± 0.61 and nutrient (K, Ca, Fe, Mg availability at different soil levels and within or outside the crown of Symplocos trees, except for the upper soil layer. Furthermore, a positive and significant correlation between Al and Ca concentrations was found at the whole plant level for Symplocos, and at the leaf level for S. ophirensis and S. ambangensis, suggesting a potential role of Ca in Al uptake and/or detoxification within the plant. Our results provide evidence for strong Al accumulation in Symplocos species and illustrate that both Al accumulation and exclusion represent two co-occurring strategies of montane rainforest plants for dealing with Al toxicity. Indonesian weavers should be encouraged to harvest old leaves, which have the most efficient mordant capacity due to high Al concentrations.

  10. Semen abnormalities with SSRI antidepressants. (United States)


    Despite decades of widespread use, the adverse effect profile of "selective" serotonin reuptake inhibitor (SSRI) antidepressants has still not been fully elucidated. Studies in male animals have shown delayed sexual development and reduced fertility. Three prospective cohort studies conducted in over one hundred patients exposed to an SSRI for periods ranging from 5 weeks to 24 months found altered semen param-eters after as little as 3 months of exposure: reduced sperm concentration, reduced sperm motility, a higher percentage of abnormal spermatozoa, and increased levels of sperm DNA fragmentation. One clinical trial showed growth retardation in children considered depressed who were exposed to SSRls. SSRls may have endocrine disrupting properties. Dapoxetine is a short-acting serotonin reuptake inhibitor that is chemically related to fluoxetine and marketed in the European Union for men complaining of premature ejaculation. But the corresponding European summary of product characteristics does not mention any effects on fertility. In practice, based on the data available as of mid-2014, the effects of SSRI exposure on male fertility are unclear. However, it is a risk that should be taken into account and pointed out to male patients who would like to father a child or who are experiencing fertility problems.

  11. [Renal abnormalities in ankylosing spondylitis]. (United States)

    Samia, Barbouch; Hazgui, Faiçal; Abdelghani, Khaoula Ben; Hamida, Fethi Ben; Goucha, Rym; Hedri, Hafedh; Taarit, Chokri Ben; Maiz, Hedi Ben; Kheder, Adel


    We will study the epidemiologic, clinical, biological, therapeutic, prognostic characteristics and predictive factors of development of nephropathy in ankylosing spondylitis patients. We retrospectively reviewed the medical record of 32 cases with renal involvement among 212 cases of ankylosing spondylitis followed in our service during the period spread out between 1978 and 2006. The renal involvement occurred in all patients a mean of 12 years after the clinical onset of the rheumatic disease. Thirty-two patients presented one or more signs of renal involvement: microscopic hematuria in 22 patients, proteinuria in 23 patients, nephrotic syndrome in 11 patients and decreased renal function in 24 patients (75%). Secondary renal amyloidosis (13 patients), which corresponds to a prevalence of 6,1% and tubulointerstitial nephropathy (7 patients) were the most common cause of renal involvement in ankylosing spondylitis followed by IgA nephropathy (4 patients). Seventeen patients evolved to the end stage renal disease after an average time of 29.8 ± 46 months. The average follow-up of the patients was 4,4 years. By comparing the 32 patients presenting a SPA and renal disease to 88 with SPA and without nephropathy, we detected the predictive factors of occurred of nephropathy: tobacco, intense inflammatory syndrome, sacroileite stage 3 or 4 and presence of column bamboo. The finding of 75% of the patients presented a renal failure at the time of the diagnosis of renal involvement suggests that evidence of renal abnormality involvement should be actively sought in this disease.

  12. Biochemical abnormalities in Pearson syndrome. (United States)

    Crippa, Beatrice Letizia; Leon, Eyby; Calhoun, Amy; Lowichik, Amy; Pasquali, Marzia; Longo, Nicola


    Pearson marrow-pancreas syndrome is a multisystem mitochondrial disorder characterized by bone marrow failure and pancreatic insufficiency. Children who survive the severe bone marrow dysfunction in childhood develop Kearns-Sayre syndrome later in life. Here we report on four new cases with this condition and define their biochemical abnormalities. Three out of four patients presented with failure to thrive, with most of them having normal development and head size. All patients had evidence of bone marrow involvement that spontaneously improved in three out of four patients. Unique findings in our patients were acute pancreatitis (one out of four), renal Fanconi syndrome (present in all patients, but symptomatic only in one), and an unusual organic aciduria with 3-hydroxyisobutyric aciduria in one patient. Biochemical analysis indicated low levels of plasma citrulline and arginine, despite low-normal ammonia levels. Regression analysis indicated a significant correlation between each intermediate of the urea cycle and the next, except between ornithine and citrulline. This suggested that the reaction catalyzed by ornithine transcarbamylase (that converts ornithine to citrulline) might not be very efficient in patients with Pearson s