WorldWideScience

Sample records for ablative materials final

  1. Moldable cork ablation material

    Science.gov (United States)

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  2. Advances in laser ablation of materials

    International Nuclear Information System (INIS)

    Singh, R.K.; Lowndes, D.H.; Chrisey, D.B.; Fogarassy, E.; Narayan, J.

    1998-01-01

    The symposium, Advances in Laser Ablation of Materials, was held at the 1998 MRS Spring Meeting in San Francisco, California. The papers in this symposium illustrate the advances in pulsed laser ablation for a wide variety of applications involving semiconductors, superconductors, metals, ceramics, and polymers. In particular, advances in the deposition of oxides and related materials are featured. Papers dealing with both fundamentals and the applications of laser ablation are presented. Topical areas include: fundamentals of ablation and growth; in situ diagnostics and nanoscale synthesis advances in laser ablation techniques; laser surface processing; pulsed laser deposition of ferroelectric, magnetic, superconducting and optoelectronic thin films; and pulsed laser deposition of carbon-based and polymeric materials. Sixty papers have been processed separately for inclusion on the data base

  3. Ablative Material Testing at Lewis Rocket Lab

    Science.gov (United States)

    1997-01-01

    The increasing demand for a low-cost, reliable way to launch commercial payloads to low- Earth orbit has led to the need for inexpensive, expendable propulsion systems for new launch vehicles. This, in turn, has renewed interest in less complex, uncooled rocket engines that have combustion chambers and exhaust nozzles fabricated from ablative materials. A number of aerospace propulsion system manufacturers have utilized NASA Lewis Research Center's test facilities with a high degree of success to evaluate candidate materials for application to new propulsion devices.

  4. X-ray Micro-Tomography of Ablative Heat Shield Materials

    Science.gov (United States)

    Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.

    2016-01-01

    X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation

  5. Water absorption and desorption in shuttle ablator and insulation materials

    Science.gov (United States)

    Whitaker, A. F.; Smith, C. F.; Wooden, V. A.; Cothren, B. E.; Gregory, H.

    1982-01-01

    Shuttle systems ablator and insulation materials underwent water soak with subsequent water desorption in vacuum. Water accumulation in these materials after a soak for 24 hours ranged from +1.1% for orbiter tile to +161% for solid rocket booster MSA-1. After 1 minute in vacuum, water retention ranged from none in the orbiter tile to +70% for solid rocket booster cork.

  6. Solid material evaporation into an ECR source by laser ablation

    International Nuclear Information System (INIS)

    Harkewicz, R.; Stacy, J.; Greene, J.; Pardo, R.C.

    1993-01-01

    In an effort to explore new methods of producing ion beams from solid materials, we are attempting to develop a laser-ablation technique for evaporating materials directly into an ECR ion source plasma. A pulsed NdYaG laser with approximately 25 watts average power and peak power density on the order of 10 7 W/cm 2 has been used off-line to measure ablation rates of various materials as a function of peak laser power. The benefits anticipated from the successful demonstration of this technique include the ability to use very small quantities of materials efficiently, improved material efficiency of incorporation into the ECR plasma, and decoupling of the material evaporation process from the ECR source tuning operation. Here we report on the results of these tests and describe the design for incorporating such a system directly with the ATLAS PII-ECR ion source

  7. Effect analysis of material properties of picosecond laser ablation for ABS/PVC

    Science.gov (United States)

    Tsai, Y. H.; Ho, C. Y.; Chiou, Y. J.

    2017-06-01

    This paper analytically investigates the picosecond laser ablation of ABS/PVC. Laser-pulsed ablation is a wellestablished tool for polymer. However the ablation mechanism of laser processing for polymer has not been thoroughly understood yet. This study utilized a thermal transport model to analyze the relationship between the ablation rate and laser fluences. This model considered the energy balance at the decomposition interface and Arrhenius law as the ablation mechanisms. The calculated variation of the ablation rate with the logarithm of the laser fluence agrees with the measured data. It is also validated in this work that the variation of the ablation rate with the logarithm of the laser fluence obeys Beer's law for low laser fluences. The effects of material properties and processing parameters on the ablation depth per pulse are also discussed for picosecond laser processing of ABS/PVC.

  8. Equation of state study of Laser Megajoule capsules ablator materials

    International Nuclear Information System (INIS)

    Colin-Lalu, Pierre

    2016-01-01

    This PhD thesis enters the field of inertial confinement fusion studies. In particular, it focuses on the equation of state tables of ablator materials synthesized on LMJ capsules. This work is indeed aims at improving the theoretical models introduced into the equation of state tables. We focused in the Mbar-eV pressure-temperature range because it can be access on kJ-scale laser facilities.In order to achieve this, we used the QEOS model, which is simple to use, configurable, and easily modifiable.First, quantum molecular dynamics (QMD) simulations were performed to generate cold compression curve as well as shock compression curves along the principal Hugoniot. Simulations were compared to QEOS model and showed that atomic bond dissociation has an effect on the compressibility. Results from these simulations are then used to parametrize the Grueneisen parameter in order to generate a tabulated equation of state that includes dissociation. It allowed us to show its influence on shock timing in a hydrodynamic simulation.Second, thermodynamic states along the Hugoniot were measured during three experimental campaigns upon the LULI2000 and GEKKO XII laser facilities. Experimental data confirm QMD simulations.This study was performed on two ablator materials which are an undoped polymer CHO, and a silicon-doped polymer CHOSi. Results showed universal shock compression properties. (author) [fr

  9. Reassembling Solid Materials by Femtosecond Laser Ablation: Case of Aluminum Nitride

    Science.gov (United States)

    Kobayashi, Tohru; Matsuo, Yukari

    2013-06-01

    Through atomization and ionization, we could completely alter the composition of a nonconductive material, aluminum nitride, by femtosecond laser ablation. Preferential production of pure aluminum cluster cations Aln+ (n≤32) reflects not only their higher energetic stability compared with mixed clusters AlnNm+ but also completion of thermal relaxation in ablation plasma. Observation of metastable dissociation of Aln+ indicates that cluster cations have still enough internal energy for dissociation to occur, although the process is much slower than the cluster formation. Almost no cluster formation has been observed after nanosecond laser ablation of aluminum nitride, which highlights the distinct nature of ablation plasma produced by femtosecond laser ablation.

  10. Femtosecond laser ablation profile near an interface: Analysis based on the correlation with superficial properties of individual materials

    Energy Technology Data Exchange (ETDEWEB)

    Nicolodelli, Gustavo, E-mail: nicolodelli@ursa.ifsc.usp.br [Instituto de Fisica de Sao Carlos, University of Sao Paulo, Grupo de Optica, Av. Trabalhador Sancarlense 400, P.O. Box 369, CEP 13560-970, Sao Carlos, SP (Brazil); Kurachi, Cristina; Bagnato, Vanderlei Salvador [Instituto de Fisica de Sao Carlos, University of Sao Paulo, Grupo de Optica, Av. Trabalhador Sancarlense 400, P.O. Box 369, CEP 13560-970, Sao Carlos, SP (Brazil)

    2011-01-15

    Femtosecond laser ablation of materials is turning to be an important tool for micromachining as well as for selective removal of biological tissues. In a great number of applications, laser ablation has to process through interfaces separating media of different properties. The investigation of the ablation behavior within materials and passing through interfaces is the main aim of this study. Especially, the analysis of the discontinuity in the ablation profile close to interfaces between distinct materials can reveal some of the phenomena involved in the formation of an ablated microcavity geometry. We have used a method that correlates the ablation cross sectional area with the local laser intensity. The effective intensity ablation properties were obtained from surface ablation data of distinct materials. The application of this method allows the prediction of the occurrence of a size discontinuity in the ablation geometry at the interface of distinct media, a fact which becomes important when planning applications in different media.

  11. Single- and multi-pulse femtosecond laser ablation of optical filter materials

    International Nuclear Information System (INIS)

    Krueger, J.; Lenzner, M.; Martin, S.; Lenner, M.; Spielmann, C.; Fiedler, A.; Kautek, W.

    2003-01-01

    Ablation experiments employing Ti:sapphire laser pulses with durations from 30 to 340 fs (centre wavelength 800 nm, repetition rate 1 kHz) were performed in air. Absorbing filters (Schott BG18 and BG36) served as targets. The direct focusing technique was used under single- and multi-pulse irradiation conditions. Ablation threshold fluences were determined from a semi-logarithmic plot of the ablation crater diameter versus laser fluence. The threshold fluence decreases for a shorter pulse duration and an increasing number of pulses. The multi-pulse ablation threshold fluences are similar to those of undoped glass material (∼1 J cm -2 ). That means that the multi-pulse ablation threshold is independent on the doping level of the filters. For more than 100 pulses per spot and all pulse durations applied, the threshold fluence is practically constant. This leads to technically relevant ablation threshold values

  12. Wide range scaling laws for radiation driven shock speed, wall albedo and ablation parameters for high-Z materials

    Science.gov (United States)

    Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.

    2018-06-01

    Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.

  13. Material response reconstruction of ablative TPS using accurate boundary layer modeling

    Data.gov (United States)

    National Aeronautics and Space Administration — For hypersonic atmospheric entry missions, charring ablators are often used. These materials are made of non-pyrolyzing matrices (carbon, ceramic, etc.) combined...

  14. Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell

    International Nuclear Information System (INIS)

    Garcia-Lechuga, M.; Siegel, J.; Hernandez-Rueda, J.; Solis, J.

    2014-01-01

    Phase transition pathways of matter upon ablation with ultrashort laser pulses have been considered to be understood long-since for metals and semiconductors. We provide evidence that also certain dielectrics follow the same pathway, even at high pulse energies triggering optical breakdown. Employing femtosecond microscopy, we observe a characteristic ring pattern within the ablating region that dynamically changes for increasing time delays between pump and probe pulse. These transient Newton rings are related to optical interference of the probe beam reflected at the front surface of the ablating layer with the reflection at the interface of the non-ablating substrate. Analysis of the ring structure shows that the ablation mechanism is initiated by a rarefaction wave leading within a few tens of picoseconds to the formation of a transparent thin shell of reduced density and refractive index, featuring optically sharp interfaces. The shell expands and eventually detaches from the solid material at delays of the order of 100 ps.

  15. Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, M.; Siegel, J., E-mail: j.siegel@io.cfmac.csic.es; Hernandez-Rueda, J.; Solis, J. [Laser Processing Group, Instituto de Optica, Serrano 121, 28006 Madrid (Spain)

    2014-09-15

    Phase transition pathways of matter upon ablation with ultrashort laser pulses have been considered to be understood long-since for metals and semiconductors. We provide evidence that also certain dielectrics follow the same pathway, even at high pulse energies triggering optical breakdown. Employing femtosecond microscopy, we observe a characteristic ring pattern within the ablating region that dynamically changes for increasing time delays between pump and probe pulse. These transient Newton rings are related to optical interference of the probe beam reflected at the front surface of the ablating layer with the reflection at the interface of the non-ablating substrate. Analysis of the ring structure shows that the ablation mechanism is initiated by a rarefaction wave leading within a few tens of picoseconds to the formation of a transparent thin shell of reduced density and refractive index, featuring optically sharp interfaces. The shell expands and eventually detaches from the solid material at delays of the order of 100 ps.

  16. Laser ablation characteristics of metallic materials: Role of Debye-Waller thermal parameter

    International Nuclear Information System (INIS)

    Butt, M Z

    2014-01-01

    The interaction of a high intensity laser pulse with a solid target results in the formation of a crater and a plasma plume. The characteristics of both depend on physical properties of target material, environmental conditions, and laser parameters (e.g. wavelength, pulse duration, energy, beam diameter) etc. It has been shown for numerous metals and their alloys that plasma threshold fluence, plasma threshold energy, ablation efficiency, ablation yield, angular distribution of laser produced plasma (LPP) ions, etc. are a unique function of the Debye-Waller thermal parameter B or the mean-square amplitude of atomic vibration of the target material for given experimental conditions. The FWHM of the angular distribution of LPP ions, ablation yield, and ablation efficiency increase whereas plasma threshold fluence and plasma threshold energy decrease as B-factor of the target material increases

  17. Thin film growing by the laser ablation technique: possibilities for growing of dosimetric materials

    International Nuclear Information System (INIS)

    Rojas R, E.M.; Melo M, M.; Enriquez Z, E.; Fernandez G, M.; Haro P, E.; Hernandez P, J.L.

    2005-01-01

    In this talk we will present the basics about the laser ablation technique and how it is used for thin film growing, either as a single film or a stack of thin films, as well as some methods to characterize in real time the film thickness. Finally, we will discuss the possibilities of using laser ablation for growing thin films with applications to dosimetry. (Author)

  18. Study of radiative ablation to low-Z material and energy transport

    International Nuclear Information System (INIS)

    Yang Jiamin; Ding Yaonan; Miao Wenyong; Sun Kexu; Yi Rongqing; Chen Zhenglin; Wang Hongbin; Li Sanwei; Wang Yaomei; Wen Shuhuai; Zheng Zhijian; Zhang Wenhai; Yu Yanning

    1998-12-01

    X-ray emissions from the gold foil target, irradiated by 0.35 μm laser on the Xingguang facility, have been studied. A clean and intense X-ray source has been obtained from the rear of gold foil target by selection of irradiating laser parameters. Then, characteristics of radiation ablation to low-Z materials C 8 H 8 and C 10 H 16 O 5 and energy transport have been investigated comprehensively. Experimental results show that mass ablative rate of C 10 H 16 O 5 are greater than those of C 8 H 8 due to its better match with the ablative source spectra

  19. Femtosecond laser ablation of single-wall carbon nanotube-based material

    International Nuclear Information System (INIS)

    Danilov, Pavel A; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Mel’nik, Nikolay N; Rudenko, Andrey A; Yurovskikh, Vladislav I; Zayarny, Dmitry V; Lednev, Vasily N; Obraztsova, Elena D; Pershin, Sergey M; Bunkin, Alexey F

    2014-01-01

    Single- and multi-shot femtosecond laser surface ablation of a single-wall carbon nanotube-based substrate at 515- and 1030 nm wavelengths was studied by scanning electron microscopy and micro-Raman spectroscopy. The laser ablation proceeds in two ways: as the low-fluence mesoscopic shallow disintegration of the surface nanotube packing, preserving the individual integrity and the semiconducting character of the nanotubes or as the high-fluence deep material removal apparently triggered by the strong intrinsic or impurity-mediated ablation of the individual carbon nanotubes on the substrate surface. (letter)

  20. New laser materials: Final report

    International Nuclear Information System (INIS)

    1986-10-01

    In the Interim Report No. 1, it was reported that the fluorescence lifetime (≥ 750μs) in Nd doped Y(PO 3 ) 3 was longer by a factor of three as compared to YAG. This means potentially three times as much energy storage and consequently more efficient for flashlamp pumping. It also makes diode pumping easier. In addition, since the Y site is octahedrally coordinated, there is a possibility of energy transfer using Cr as the sensitizing element. As suggested by W. Krupke, we decided to explore the trivalent cation metaphosphates systematically. The compounds investigated can be represented by the general formula A(PO 3 ) 3 where A = Y, Lu, In, Sc, GA and Al. The object is to study the fluorescence characteristics of Nd and Cr as well as the effectiveness of energy transfer from Cr to Nd. In addition, we also investigated other possible laser host crystals, notably CaMgSi 2 O 6 (diopside), LaBO 3 and La(BO 2 ) 3 . Results on these materials will also be discussed

  1. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon [Manufacturing Processes Department, Fundacion TEKNIKER, Av. Otaola 20, 20600, Eibar, Guipuzcoa (Spain); Lejardi, Ainhoa; Sarasua, Jose-Ramon [Department of Mining and Metallurgy Engineering and Materials Science, School of Engineering, University of the Basque Country (EHU-UPV), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  2. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    International Nuclear Information System (INIS)

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-01-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  3. On the angular dependence of focused laser ablation by nanosecond pulses in solgel and polymer materials

    Science.gov (United States)

    George, D. S.; Onischenko, A.; Holmes, A. S.

    2004-03-01

    Focused laser ablation by single laser pulses at varying angles of incidence is studied in two materials of interest: a solgel (Ormocer 4) and a polymer (SU8). For a range of angles (up to 70° from normal), and for low-energy (<20 μJ), 40 ns pulses at 266 nm wavelength, the ablation depth along the direction of the incident laser beam is found to be independent of the angle of incidence. This allows the crater profiles at oblique incidence to be generated directly from the crater profiles at normal incidence by a simple coordinate transformation. This result is of use in the development of simulation tools for direct-write laser ablation. A simple model based on the moving ablation front approach is shown to be consistent with the observed behavior.

  4. Replacement of Ablators with Phase-Change Material for Thermal Protection of STS Elements

    Science.gov (United States)

    Kaul, Raj K.; Stuckey, Irvin; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    As part of the research and development program to develop new Thermal Protection System (TPS) materials for aerospace applications at NASA's Marshall Space Flight Center (MSFC), an experimental study was conducted on a new concept for a non-ablative TPS material. Potential loss of TPS material and ablation by-products from the External Tank (ET) or Solid Rocket Booster (SRB) during Shuttle flight with the related Orbiter tile damage necessitates development of a non-ablative thermal protection system. The new Thermal Management Coating (TMC) consists of phase-change material encapsulated in micro spheres and a two-part resin system to adhere the coating to the structure material. The TMC uses a phase-change material to dissipate the heat produced during supersonic flight rather than an ablative material. This new material absorbs energy as it goes through a phase change during the heating portion of the flight profile and then the energy is slowly released as the phase-change material cools and returns to its solid state inside the micro spheres. The coating was subjected to different test conditions simulating design flight environments at the NASA/MSFC Improved Hot Gas Facility (IHGF) to study its performance.

  5. Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation

    NARCIS (Netherlands)

    Brugmans, M. J.; Kemper, J.; Gijsbers, G. H.; van der Meulen, F. W.; van Gemert, M. J.

    1991-01-01

    This paper presents surface temperature responses of various tissue phantoms and in vitro and in vivo biological materials in air to non-ablative pulsed CO2 laser irradiation, measured with a thermocamera. We studied cooling off behavior of the materials after a laser pulse, to come to an

  6. Evaluation of Ablation rate by the change of Sacrificial Material for PECS in EU-APR

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Do Hyun; Kim, Yong Soo; Lee, Keun Sung [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-05-15

    EU-APR, modified and improved from its original design of APR1400, has been developed to comply with European Utility Requirements (EUR) and nuclear design requirements of the European countries. In EU-APR, Severe Accident Mitigation Systems are dedicated to providing an independent defense line from that of Engineered Safety Feature (ESF) and Diverse Safety Feature (DSF). They consist of Emergency Reactor Depressurization System (ERDS), Passive Ex-vessel corium retaining and Cooling System (PECS), Severe Accident Containment Spray System (SACSS), Hydrogen Mitigation System (HMS) and Containment Filtered Vent System (CFVS). The PECS, so called core catcher, was introduced to prevent the Molten Core Concrete Interaction (MCCI) after Reactor Vessel (RV) failure. The PECS has experienced a lot of changes from its original design. Recently, the most significant change was that as a SM, limestone concrete is installed on PECS's body wall instead of previous sacrificial material rich in Fe{sub 2}O{sub 3}. The main reason of this design change is to overcome the issue that the sacrificial material is ablated rather too fast when reacting with corium that contains a large fraction of Zr metal. Other changes in the geometry of PECS's wall and downcomer design are considered as minor ones. In this paper, the comparison of ablation rates between previous SM and limestone concrete is carried out using MAAP5 code with respective MCCI model according to the material. In this paper, major improvements of MAAP5 model for PECS in EU-APR are presented and the evaluation of ablation rate for the previous SM model and the new LC model is carried out by means of ablation depths with LBLOCA sequence. Two models have respective unique ablation process. The ablation of LC model proceeds at a constant rate regardless of water while the ablation of SM model proceeds at a faster rate before the arrival of cooling water for corium and SM mixture. The change of sacrificial material

  7. Evaluation of Ablation rate by the change of Sacrificial Material for PECS in EU-APR

    International Nuclear Information System (INIS)

    Hwang, Do Hyun; Kim, Yong Soo; Lee, Keun Sung

    2015-01-01

    EU-APR, modified and improved from its original design of APR1400, has been developed to comply with European Utility Requirements (EUR) and nuclear design requirements of the European countries. In EU-APR, Severe Accident Mitigation Systems are dedicated to providing an independent defense line from that of Engineered Safety Feature (ESF) and Diverse Safety Feature (DSF). They consist of Emergency Reactor Depressurization System (ERDS), Passive Ex-vessel corium retaining and Cooling System (PECS), Severe Accident Containment Spray System (SACSS), Hydrogen Mitigation System (HMS) and Containment Filtered Vent System (CFVS). The PECS, so called core catcher, was introduced to prevent the Molten Core Concrete Interaction (MCCI) after Reactor Vessel (RV) failure. The PECS has experienced a lot of changes from its original design. Recently, the most significant change was that as a SM, limestone concrete is installed on PECS's body wall instead of previous sacrificial material rich in Fe 2 O 3 . The main reason of this design change is to overcome the issue that the sacrificial material is ablated rather too fast when reacting with corium that contains a large fraction of Zr metal. Other changes in the geometry of PECS's wall and downcomer design are considered as minor ones. In this paper, the comparison of ablation rates between previous SM and limestone concrete is carried out using MAAP5 code with respective MCCI model according to the material. In this paper, major improvements of MAAP5 model for PECS in EU-APR are presented and the evaluation of ablation rate for the previous SM model and the new LC model is carried out by means of ablation depths with LBLOCA sequence. Two models have respective unique ablation process. The ablation of LC model proceeds at a constant rate regardless of water while the ablation of SM model proceeds at a faster rate before the arrival of cooling water for corium and SM mixture. The change of sacrificial material also

  8. Comparison of Ablation Predictions for Carbonaceous Materials Using CEA and JANAF-Based Species Thermodynamics

    Science.gov (United States)

    Milos, Frank S.

    2011-01-01

    In most previous work at NASA Ames Research Center, ablation predictions for carbonaceous materials were obtained using a species thermodynamics database developed by Aerotherm Corporation. This database is derived mostly from the JANAF thermochemical tables. However, the CEA thermodynamics database, also used by NASA, is considered more up to date. In this work, the FIAT code was modified to use CEA-based curve fits for species thermodynamics, then analyses using both the JANAF and CEA thermodynamics were performed for carbon and carbon phenolic materials over a range of test conditions. The ablation predictions are comparable at lower heat fluxes where the dominant mechanism is carbon oxidation. However, the predictions begin to diverge in the sublimation regime, with the CEA model predicting lower recession. The disagreement is more significant for carbon phenolic than for carbon, and this difference is attributed to hydrocarbon species that may contribute to the ablation rate.

  9. Colour marking of transparent materials by laser-induced plasma-assisted ablation (LIPAA)

    International Nuclear Information System (INIS)

    Hanada, Yasutaka; Sugioka, Koji; Miyamoto, Iwao; Midorikawa, Katsumi

    2007-01-01

    We demonstrate colour marking of a transparent material using laser-induced plasma-assisted ablation (LIPAA) system. After the LIPAA process, metal thin film is deposited on the surface of the ablated groove. This feature is applied to RGB (red, green and blue) colour marking by using specific metal targets. The metal targets, for instance, are Pb 3 O 4 for red, Cr 2 O 3 for green and [Cu(C 32 H 15 ClN 8 )] for blue colour marking. Additionally, adhesion of the metal thin film deposited on the processed groove by various experimental conditions is investigated

  10. Thermal protection for hypervelocity flight in earth's atmosphere by use of radiation backscattering ablating materials

    Science.gov (United States)

    Howe, John T.; Yang, Lily

    1991-01-01

    A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.

  11. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    Science.gov (United States)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  12. Production of nanodispersed materials and thin films by laser ablation techniques in liquid and in vacuum

    International Nuclear Information System (INIS)

    Tveryanovich, Yu S; Manshina, A A; Tverjanovich, A S

    2012-01-01

    The methods of laser ablation of chemical compounds in a liquid medium and in vacuum used for the production of highly dispersed materials and films, respectively, are considered. Features and advantages of these methods are noted and the potential of their application for the design of novel materials is discussed. Examples of application of these methods in scientific research are given. The bibliography includes 177 references.

  13. Micromanufacturing Of Hard To Machine Materials By Physical And Chemical Ablation Processes

    International Nuclear Information System (INIS)

    Schubert, A.; Edelmann, J.; Gross, S.; Meichsner, G.; Wolf, N.; Schneider, J.; Zeidler, H.; Hackert, M.

    2011-01-01

    Miniaturization leads to high requirements to the applied manufacturing processes especially in respect to the used hard to machine materials and the aims of structure size and geometrical accuracy. Traditional manufacturing processes reach their limits here. One alternative for these provide thermal and chemical ablation processes. These processes are applied for the production of different microstructures in different materials like hardened steel, carbides and ceramics especially for medical engineering and tribological applications.

  14. Momentum and velocity of the ablated material in laser machining of carbon fiber preforms

    Science.gov (United States)

    Mucha, P.; Speker, N.; Weber, R.; Graf, T.

    2013-11-01

    The automation in fabrication of CFRP (carbon-fiber-reinforced plastics) parts demands efficient and low-cost machining technologies. In conventional cutting technologies, tool-wear and low process speeds are some of the reasons for high costs. Thus, the use of lasers is an attractive option for cutting CF-preforms. A typical effect degrading the quality in laser cutting CF-preform is a bulged cutting edge. This effect is assumed to be caused by interaction of the fibers with the ablated material, which leaves the kerf at high velocity. Hence, a method for measuring the momentum and the velocity of the vapor is presented in this article. To measure the momentum of the ablated material, the CF-preform is mounted on a precision scale while cutting it with a laser. The direction of the momentum was determined by measuring the momentum parallel and orthogonal to the CF-preform surface. A change of the direction of the momentum with different cutting-speeds is assessed at constant laser-power. Averaged velocities of the ablation products of up to 300 m/s were determined by measuring the ablated mass and the momentum.

  15. The thermal and mechanical properties of a low-density glass-fiber-reinforced elastomeric ablation material

    Science.gov (United States)

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1974-01-01

    An evaluation of the thermal and mechanical properties was performed on a molded low-density elastomeric ablation material designated as Material B. Both the virgin and charred states were examined to provide meaningful inputs to the design of a thermal protection system. Chars representative of the flight chars formed during ablation were prepared in a laboratory furnace from 600 K to 1700 K and properties of effective thermal conductivity, heat capacity, porosity and permeability were determined on the furnace chars formed at various temperature levels within the range. This provided a boxing of the data which will enable the prediction of the transient response of the material during flight ablation.

  16. Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Frislev, Martin Thomas; Balling, Peter

    2013-01-01

    Modeling of the interaction between a dielec- tric material and ultrashort laser pulses provides the tem- poral evolution of the electronic excitation and the optical properties of the dielectric. Experimentally determined re- flectances and ablation depths for sapphire are compared...... to the calculations. A decrease in reflectance at high fluences is observed experimentally, which demonstrates the neces- sity of a temperature-dependent electron scattering rate in the model. The comparison thus provides new constraints on the optical parameters of the model....

  17. Ablation characteristics and reaction mechanism of insulation materials under slag deposition condition

    Science.gov (United States)

    Guan, Yiwen; Li, Jiang; Liu, Yang

    2017-07-01

    Current understanding of the physical and chemical processes involved in the ablation of insulation materials by highly aluminized solid propellants is limited. The study on the heat transfer and ablation principle of ethylene propylene diene monomer (EPDM) materials under slag deposition condition is essential for future design or modification of large solid rocket motors (SRMs) for launch application. In this paper, the alumina liquid flow pattern and the deposition principle in full-scale SRM engines are discussed. The interaction mechanism between the alumina droplets and the wall are analyzed. Then, an experimental method was developed to simulate the insulation material ablation under slag deposition condition. Experimental study was conducted based on a laboratory-scale device. Meanwhile, from the analysis of the cross-sectional morphology and chemical composition of the charring layer after ablation, the reaction mechanism of the charring layer under deposition condition was discussed, and the main reaction equation was derived. The numerical simulation and experimental results show the following. (i) The alumina droplet flow in the deposition section of the laboratory-scale device is similar to that of a full-scale SRM. (ii) The charring layer of the EPDM insulator displays a porous tight/loose structure under high-temperature slag deposition condition. (iii) A seven-step carbothermal reduction in the alumina is derived and established under high-pressure and high-temperature environment in the SRM combustion chamber. (iv) The analysis using thermodynamic software indicates that the reaction of the alumina and charring layer initially forms Al4C3 during the operation. Then, Al element and Al2OC compound are subsequently produced with the reduction in the release of gas CO as well with continuous environmental heating.

  18. Laser-solid interaction and dynamics of the laser-ablated materials

    International Nuclear Information System (INIS)

    Chen, K.R.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-01-01

    Rapid transformations through the liquid and vapor phases induced by laser-solid interactions are described by the authors' thermal model with the Clausius-Clapeyron equation to determine the vaporization temperature under different surface pressure condition. Hydrodynamic behavior of the vapor during and after ablation is described by gas dynamic equations. These two models are coupled. Modeling results show that lower background pressure results lower laser energy density threshold for vaporization. The ablation rate and the amount of materials removed are proportional to the laser energy density above its threshold. The authors also demonstrate a dynamic source effect that accelerates the unsteady expansion of laser-ablated material in the direction perpendicular to the solid. A dynamic partial ionization effect is studied as well. A self-similar theory shows that the maximum expansion velocity is proportional to c s α, where 1 - α is the slope of the velocity profile. Numerical hydrodynamic modeling is in good agreement with the theory. With these effects, α is reduced. Therefore, the expansion front velocity is significantly higher than that from conventional models. The results are consistent with experiments. They further study how the plume propagates in high background gas condition. Under appropriate conditions, the plume is slowed down, separates with the background, is backward moving, and hits the solid surface. Then, it splits into two parts when it rebounds from the surface. The results from the modeling will be compared with experimental observations where possible

  19. Selective ablation of photovoltaic materials with UV laser sources for monolithic interconnection of devices based on a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Molpeceres, C. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain)], E-mail: carlos.molpeceres@upm.es; Lauzurica, S.; Garcia-Ballesteros, J.J.; Morales, M.; Guadano, G.; Ocana, J.L. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain); Fernandez, S.; Gandia, J.J. [Dept. de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda, Complutense 22, 28040 Madrid (Spain); Villar, F.; Nos, O.; Bertomeu, J. [CeRMAE Dept. Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)

    2009-03-15

    Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.

  20. Selective ablation of photovoltaic materials with UV laser sources for monolithic interconnection of devices based on a-Si:H

    International Nuclear Information System (INIS)

    Molpeceres, C.; Lauzurica, S.; Garcia-Ballesteros, J.J.; Morales, M.; Guadano, G.; Ocana, J.L.; Fernandez, S.; Gandia, J.J.; Villar, F.; Nos, O.; Bertomeu, J.

    2009-01-01

    Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.

  1. Modeling of Heat Transfer and Ablation of Refractory Material Due to Rocket Plume Impingement

    Science.gov (United States)

    Harris, Michael F.; Vu, Bruce T.

    2012-01-01

    CR Tech's Thermal Desktop-SINDA/FLUINT software was used in the thermal analysis of a flame deflector design for Launch Complex 39B at Kennedy Space Center, Florida. The analysis of the flame deflector takes into account heat transfer due to plume impingement from expected vehicles to be launched at KSC. The heat flux from the plume was computed using computational fluid dynamics provided by Ames Research Center in Moffet Field, California. The results from the CFD solutions were mapped onto a 3-D Thermal Desktop model of the flame deflector using the boundary condition mapping capabilities in Thermal Desktop. The ablation subroutine in SINDA/FLUINT was then used to model the ablation of the refractory material.

  2. Degradation of carbon-based materials under ablative conditions produced by a high enthalpy plasma jet

    Directory of Open Access Journals (Sweden)

    Gilberto Petraconi

    2010-04-01

    Full Text Available A stationary experiment was performed to study the degradation of carbon-based materials by immersion in a plasma jet. In the experiment, graphite and C/C composite were chosen as the target materials, and the reactive plasma jet was generated by an air plasma torch. For macroscopic study of the material degradation, the sample’s mass losses were measured as function of the exposure time under various temperatures on the sample surface. A microscopic analysis was then carried out for the study of microscopic aspects of the erosion of material surface. These experiments showed that the mass loss per unit area is approximately proportional to the exposure time and strongly depends on the temperature of the material surface. The mass erosion rate of graphite was appreciably higher than the C/C composite. The ablation rate in the carbon matrix region in C/C composite was also noticeably higher than that in the fiber region. In addition, the latter varied according to the orientation of fibers relatively to the flow direction. These tests indicated an excellent ablation resistance of the C/C composite, thus being a reliable material for rocket nozzles and heat shielding elements of the protection systems of hypersonic apparatuses from aerodynamic heating.

  3. Lightweight Ablative and Ceramic Thermal Protection System Materials for NASA Exploration Systems Vehicles

    Science.gov (United States)

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2006-01-01

    As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.

  4. Formation of atomic clusters through the laser ablation of refractory materials in a supersonic molecular beam source

    International Nuclear Information System (INIS)

    Haufler, R.E.; Puretzky, A.A.; Compton, R.N.

    1993-01-01

    Concepts which guide the design of atomic cluster supersonic beam sources have been developed. These ideas are founded on the knowledge of laser ablation dynamics and are structured in order to take advantage of certain features of the ablation event. Some of the drawbacks of previous cluster source designs become apparent when the sequence of events following laser ablation are clarified. Key features of the new cluster source design include control of the cluster size distribution, uniform performance with a variety of solid materials and elements, high beam intensity, and significant removal of internal energy during the supersonic expansion

  5. Accelerated expansion of laser-ablated materials near a solid surface

    International Nuclear Information System (INIS)

    Chen, K.R.; Leboeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-01-01

    A dynamic source effect that accelerates the expansion of laser-ablated material in the direction perpendicular to the target is demonstrated. A self-similar theory shows that the maximum expansion velocity is proportional to c s /α, where 1-α is the slope of the velocity profile and c s is the sound speed. Numerical hydrodynamic modeling is in good agreement with the theory. A dynamic partial ionization effect is also studied. With these effects, α is reduced and the maximum expansion velocity is significantly increased over that found from conventional models. copyright 1995 The American Physical Society

  6. Equation of state and shock compression of carbon-hydrogen and other ablator materials

    Science.gov (United States)

    Zhang, S.; Militzer, B.; Whitley, H.

    2017-12-01

    Dynamic compression experiments in planetary interior studies and fusion sciences often implement carbon-hydrogen or other low-Z elements or compounds as ablators. Accurate quantum simulations of these materials enables theoretical investigation of the equation of state (EOS) over temperatures and pressures that are difficult to access experimentally, and can help guide the design of targets for future experiments. In this work, we use path integral Monte Carlo and density functional molecular dynamics to calculate the equation of state of a series of hydrocarbons and other low-Z materials (B, B4C, and BN). For the hydrocarbon with C:H=1:1, we predict the pressure-compression profile to agree remarkably with experiments at low pressures. At high pressures, we find the Hugoniot curve displays a single compression maximum of 4.7 that corresponds to K-shell ionization. This is slightly higher than that of glow-discharge polymers but both occur at the same pressure (0.47 Gbar). We study the linear mixing approximation for the EOS of hydrocarbons and demonstrate its validity at stellar core conditions. We examine the sensitivity of the fusion yield to the EOS of these candidate ablator materials in radiation-hydrodynamic simulations of a direct-drive implosion. We also make detailed comparisons of the EOS and atomic and electronic structure of C and BN, which is useful for systematic improvement of existing EOS models. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. Synthesis of nano-structured materials by laser-ablation and their application to sensors

    International Nuclear Information System (INIS)

    Okada, T.; Suehiro, J.

    2007-01-01

    We describe the synthesis of nano-structured materials of ZnO and Pd by laser ablation and their applications to sensors. The synthesis of ZnO nano-wires was performed by nano-particle assisted deposition (NPAD) where nano-crystals were grown with nano-particles generated by laser-ablating a ZnO sintered target in an Ar background gas. The synthesized ZnO nano-wires were characterized with a scanning electron microscopy and the photoluminescent characteristics were examined under an excitation with the third harmonics of a Nd:YAG laser. The nano-wires with a diameter in the range from 50 to 150 nm and a length of up to 5 μm were taken out of the substrate by laser blow-off technique and/or sonication. It was confirmed that the nano-wires showed the stimulated emission under optical pumping, indicating a high quality of the crystalinity. Pd nano-particles were generated by laser-ablating a Pd plate in pure water. The transmission electron microscope observation revealed that Pd nano-particles with a diameter in the range from 3 nm to several tens of nanometers were produced. Using these nano-structured materials, we successfully fabricated sensors by the dielectrophoresis techniques. In the case of the ultraviolet photosensor, a detection sensitivity of 10 nW/cm 2 was achieved and in the case of hydrogen sensing, the response time of less than 10 s has been demonstrated with Pd nano-particles

  8. Buried waste containment system materials. Final Report

    International Nuclear Information System (INIS)

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers

  9. Experimental Investigation on the Specific Heat of Carbonized Phenolic Resin-Based Ablative Materials

    Science.gov (United States)

    Zhao, Te; Ye, Hong; Zhang, Lisong; Cai, Qilin

    2017-10-01

    As typical phenolic resin-based ablative materials, the high silica/phenolic and carbon/phenolic composites are widely used in aerospace field. The specific heat of the carbonized ablators after ablation is an important thermophysical parameter in the process of heat transfer, but it is rarely reported. In this investigation, the carbonized samples of the high silica/phenolic and carbon/phenolic were obtained through carbonization experiments, and the specific heat of the carbonized samples was determined by a 3D DSC from 150 °C to 970 °C. Structural and compositional characterizations were performed to determine the mass fractions of the fiber and the carbonized product of phenolic which are the two constituents of the carbonized samples, while the specific heat of each constituent was also measured by 3D DSC. The masses of the carbonized samples were reduced when heated to a high temperature in the specific heat measurements, due to the thermal degradation of the carbonized product of phenolic resin in the carbonized samples. The raw experimental specific heat of the two carbonized samples and the carbonized product of phenolic resin was modified according to the quality changes of the carbonized samples presented by TGA results. Based on the mass fraction and the specific heat of each constituent, a weighted average method was adopted to obtain the calculated results of the carbonized samples. Due to the unconsolidated property of the fiber samples which impacts the reliability of the DSC measurement, there is a certain deviation between the experimental and calculated results of the carbonized samples. Considering the similarity of composition and structure, the data of quartz glass and graphite were used to substitute the specific heat of the high silica fiber and carbon fiber, respectively, resulting in better agreements with the experimental ones. Furthermore, the accurate specific heat of the high silica fiber and carbon fiber bundles was obtained by

  10. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range.

    Science.gov (United States)

    Sola, Daniel; Peña, Jose I

    2013-11-19

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated.

  11. Energy Materials Center at Cornell: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Abruña, Héctor [Cornell Univ., Ithaca, NY (United States); Mutolo, Paul F [Cornell Univ., Ithaca, NY (United States)

    2015-01-02

    The mission of the Energy Materials Center at Cornell (emc2) was to achieve a detailed understanding, via a combination of synthesis of new materials, experimental and computational approaches, of how the nature, structure, and dynamics of nanostructured interfaces affect energy conversion and storage with emphasis on fuel cells, batteries and supercapacitors. Our research on these systems was organized around a full system strategy for; the development and improved performance of materials for both electrodes at which storage or conversion occurs; understanding their internal interfaces, such as SEI layers in batteries and electrocatalyst supports in fuel cells, and methods for structuring them to enable high mass transport as well as high ionic and electronic conductivity; development of ion-conducting electrolytes for batteries and fuel cells (separately) and other separator components, as needed; and development of methods for the characterization of these systems under operating conditions (operando methods) Generally, our work took industry and DOE report findings of current materials as a point of departure to focus on novel material sets for improved performance. In addition, some of our work focused on studying existing materials, for example observing battery solvent degradation, fuel cell catalyst coarsening or monitoring lithium dendrite growth, employing in operando methods developed within the center.

  12. Modeling and experiments of x-ray ablation of National Ignition Facility first wall materials

    International Nuclear Information System (INIS)

    Anderson, A.T.; Burnham, A.K.; Tobin, M.T.; Peterson, P.F.

    1996-01-01

    This paper discusses results of modeling and experiments on the x-ray response of selected materials relevant to NIF target chamber design. X-ray energy deposition occurs in such small characteristic depths (on the order of a micron) that thermal conduction and hydrodynamic motion significantly affect the material response, even during the typical 10-ns pulses. The finite-difference ablation model integrates four separate processes: x-ray energy deposition, heat conduction, hydrodynamics, and surface vaporization. Experiments have been conducted at the Nova laser facility in Livermore on response of various materials to NIF-relevant x-ray fluences. Fused silica, Si nitride, B carbide, B, Si carbide, C, Al2O3, and Al were tested. Response was diagnosed using post-shot examinations of the surfaces with SEM and atomic force microscopes. Judgements were made about the dominant removal mechanisms for each material; relative importances of these processes were also studied with the x-ray response model

  13. Quantum Materials at the Nanoscale - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Stephen Lance [Univ. of Illinois, Urbana, IL (United States). Dept. of Physics

    2016-01-11

    The central aim of the Quantum Materials at the Nanoscale (QMN) cluster was to understand and control collective behavior involving the interplay of spins, orbitals, and charges, which governs many scientifically interesting and technologically important phenomena in numerous complex materials. Because these phenomena involve various competing interactions, and influence properties on many different length and energy scales in complex materials, tackling this important area of study motivated a collaborative effort that combined the diverse capabilities of QMN cluster experimentalists, the essential theoretical analysis provided by QMN cluster theorists, and the outstanding facilities and staff of the FSMRL. During the funding period 2007-2014, the DOE cluster grant for the Quantum Materials at the Nanoscale (QMN) cluster supported, at various times, 15 different faculty members (14 in Physics and 1 in Materials Science and Engineering), 7 postdoctoral research associates, and 57 physics and materials science PhD students. 41 of these PhD students have since graduated and have gone on to a variety of advanced technical positions at universities, industries, and national labs: 25 obtained postdoctoral positions at universities (14), industrial labs (2 at IBM), DOE national facilities (3 at Argonne National Laboratory, 1 at Brookhaven National Lab, 1 at Lawrence Berkeley National Lab, and 1 at Sandia National Lab), and other federal facilities (2 at NIST); 13 took various industrial positions, including positions at Intel (5), Quantum Design (1), Lasque Industries (1), Amazon (1), Bloomberg (1), and J.P. Morgan (1). Thus, the QMN grant provided the essential support for training a large number of technically advanced personnel who have now entered key national facilities, industries, and institutions. Additionally, during the period 2007-2015, the QMN cluster produced 159 publications (see pages 14-23), including 23 papers published in Physical Review Letters; 16

  14. Improved model for the angular dependence of excimer laser ablation rates in polymer materials

    Science.gov (United States)

    Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.

    2009-10-01

    Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.

  15. Standard Test Method for Oxyacetylene Ablation Testing of Thermal Insulation Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the screening of ablative materials to determine the relative thermal insulation effectiveness when tested as a flat panel in an environment of a steady flow of hot gas provided by an oxyacetylene burner. 1.2 This test method should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard of materials, products, or assemblies under actual fire conditions. However, results of this test method may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limi...

  16. Evaulation of B4C as an ablator material for NIF capsules. Revision 1

    International Nuclear Information System (INIS)

    Burnham, A.K.; Alford, C.S.; Makowiecki, D.M.; Dittrich, T.R.; Wallace, R.J.; Honea, E.C.; King, C.M.; Steinman, D.

    1997-01-01

    Boron carbide (B 4 C) is examined as a potential fuel container and ablator for implosion capsules on the National Ignition Facility (NIF). A capsule of pure B 4 C encasing a layer of solid DT implodes stably and ignites with anticipated NIF x-ray drives, producing 18 MJ of energy. Thin films of B 4 C were found to be resistant to oxidation and modestly transmitting in the infrared (IR), possibly enabling IR fuel characterization and enhancement for thin permeation barriers but not for full-thickness capsules. Polystyrene mandrels 0.5 mm in diameter were successfully coated with 0.15-2.0 micrometers of B 4 C. Thickness estimated from optical density agreed well with those measured by scanning electron microscopy (SEM). The B 4 C microstructure was columnar but finer than for Be made at the same conditions. B 4 C is a very strong material, with a fiber tensile strength capable of holding NIF fill pressures at room temperature, but it is also very brittle, and microscopic flaws or grain structure may limit the noncryogenic fill pressure. Argon (Ar) permeation rates were measured for a few capsules that had been further coated with 5 micrometers of plasma polymer. The B 4 C coatings tended to crack under tensile load. Some shells filled more slowly than they leaked, suggesting that the cracks open and close under opposite pressure loading. As observed earlier for Ti coatings, 0.15-micrometer layers of B 4 C had better gas retention properties than 2-micrometer layers, possibly because of fewer cracks. Permeation and fill strength issues for capsules with a full ablator thickness of B 4 C are unresolved. 21 refs., 6 figs

  17. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos S. [Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, SP (Brazil); Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Schenk, Emily R. [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Professor Arthur Riedel 275, Diadema, SP (Brazil); Krug, Francisco José [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Almirall, José R., E-mail: almirall@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States)

    2014-04-01

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg{sup −1} for Zn to as high as 94 mg kg{sup −1} for K but were generally below 6 mg kg{sup −1} for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ∼ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ∼ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis. - Highlights: • An evaluation of LA-ICP-OES for the direct analysis of pelleted plant material is reported. • Orange citrus, soy and sugarcane plants were pressed into pellets and sampled directly. • The element menu consisted of Ca, Mg, P, K, Fe, Mn, Zn and B. • LODs for the method ranged from 0.1 mg kg{sup −1} for Zn to 94 mg kg{sup −1} for K. • The precision ranged from 4% RSD for Mn to 17% RSD for Zn (∼ 6.5% RSD average)

  18. Inorganic polymers and materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2001-01-01

    This DOE-sponsored project was focused on the design, synthesis, characterization, and applications of new types of boron and silicon polymers with a goal of attaining processable precursors to advanced ceramic materials of technological importance. This work demonstrated a viable design strategy for the systematic formation of polymeric precursors to ceramics based on the controlled functionalization of preformed polymers with pendant groups of suitable compositions and crosslinking properties. Both the new dipentylamine-polyborazylene and pinacolborane-hydridopolysilazane polymers, unlike the parent polyborazylene and other polyborosilazanes, are stable as melts and can be easily spun into polymer fibers. Subsequent pyrolyses of these polymer fibers then provide excellent routes to BN and SiNCB ceramic fibers. The ease of synthesis of both polymer systems suggests new hybrid polymers with a range of substituents appended to polyborazylene or polysilazane backbones, as well as other types of preceramic polymers, should now be readily achieved, thereby allowing even greater control over polymer and ceramic properties. This control should now enable the systematic tailoring of the polymers and derived ceramics for use in different technological applications. Other major recent achievements include the development of new types of metal-catalyzed methods needed for the polymerization and modification of inorganic monomers and polymers, and the modification studies of polyvinylsiloxane and related polymers with substituents that enable the formation of single source precursors to high-strength, sintered SiC ceramics.

  19. Ablation, surface activation, and electroless metallization of insulating materials by pulsed excimer laser irradiation

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Godbole, M.J.; Pedraza, A.J.

    1993-01-01

    Pulsed-laser irradiation of wide bandgap ceramic substrates, using photons with sub-bandgap energies, activates the ceramic surface for subsequent electroless copper deposition. The copper deposit is confined within the irradiated region when the substrate is subsequently immersed in an electroless copper bath. However, a high laser fluence (typically several j/cm 2 ) and repeated laser shots are needed to obtain uniform copper coverage by this direct-irradiation process. In contrast, by first applying an evaporated SiO x thin film (with x ∼1), laser ablation at quite low energy density (∼0.5 J/cm 2 ) results in re-deposition on the ceramic substrate of material that is catalytic for subsequent electroless copper deposition. Experiments indicate that the re-deposited material is on silicon, on which copper nucleates. Using an SiO x film on a laser-transparent substrate, quite fine (∼12 μm) copper lines can be formed at the boundary of the region that is laser-etched in SiO x . Using SiO x with an absorbing (polycrystalline) ceramic substrate, more-or-less uniform activation and subsequent copper deposition are obtained. In the later case, interactions with the ceramic substrate also may be important for uniform deposition

  20. Production and characterization of composite material based on ablative phenolic resin and carbon fibers

    International Nuclear Information System (INIS)

    Srebrenkoska, Vineta

    2002-01-01

    The optimisation of technology for production of moulding compound based on short carbon fibers and ablative phenolic resin is carried out. The characterisation of the starting raw materials is performed and moulding compounds With different fiber/matrix ratios and different fiber lengths are prepared. From the different samples, mouldings are produced by thermal compression. All physical, mechanical and thermal properties of the composites are tested. From the obtained results the optimal fiber/matrix ratio, for high temperature moulding compounds production are determined. Also, in order to meet the request for high thermal and mechanics properties of the composite, optimization is carded out on the moulding process itself. The optimization is fulfilled by a planned experiment. The full factorial experimental design is applied in which the following parameters are varied: fiber length, temperature and time of the press cycle. Regression equations for the influence of the parameters to the impact resistance, compression strength, flexural strength and the modulus of elasticity of the molding, are obtained. The obtained mechanical properties of the composite rate this material for potential application in the automotive, leisure, military and other industries.(Author)

  1. Final Report for completed IPP Project: Development of Plasma Ablation for Soft Tissue and Bone Surgery

    International Nuclear Information System (INIS)

    Brown, Ian

    2009-01-01

    ArthroCare is a medical device company that develops, manufactures, and markets an advanced surgical tool, a plasma electro-surgical system for cutting and removing tissue. The hand-held electrical discharge device produces plasma in a biocompatible conductive fluid and tissue to which it is applied during surgery. Its products allow surgeons to operate with increased precision and accuracy, limiting damage to surrounding tissue thereby reducing pain and speeding recovery for the patient. In the past, the design of ArthfoCare's plasma wands has been an empirical undertaking. One goal of this R and D program was to put the phenomena involved on a sound scientific footing, allowing optimization of existing plasma based electro-surgery system technology, and the design and manufacture of new and improved kinds of scalpels, in particular for the surgical cutting of bone. Another important related goal of the program was to develop, through an experimental approach, new plasma wand approaches to the cutting ('shaving') of hard bone tissue. The goals of the CRADA were accomplished - computer models were used to predict important parameters of the plasma discharge and the bone environment, and several different approaches to bone-shaving were developed and demonstrated. The primary goal of the project was to develop and demonstrate an atmospheric-pressure plasma tool that is suitable for surgical use for shaving bone in humans. This goal was accomplished, in fact with several different alternative plasma approaches. High bone ablation speeds were measured. The use of probes ('plasma wand' - the surgical tool) with moving active electrodes was also explored, and there are advantages to this method. Another important feature is that the newly-exposed bone surface have only a very thin necrosis layer; this feature was demonstrated. This CRADA has greatly advanced our understanding of bone removal by atmospheric pressure plasmas in liquid, and puts ArthroCare in a good

  2. High-Fidelity Modeling of Ablation and Coupled CFD-Material Response

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposal seeks to improve the state of the art in the modeling and simulation of ablating thermal protection systems (TPS). It will accomplish the...

  3. MATERIALS FOR THE FINAL COVER OF SANITARY LANDFILLS

    Directory of Open Access Journals (Sweden)

    Davorin Kovačić

    1994-12-01

    Full Text Available The paper deals with the selection of materials for the sea¬ling layer in the final cover of sanitary landfills. The sealing la¬yer is the most critical component of the final cover. Its role is to minimize percolation of water through the final cover. Ma¬terials used for the construction of the sealing layer are either of mineral origin (compacted clay or geosynthetic (geomem¬brane. They are most often used in combination creating com¬posite liners. Recently alternative materials are also used like paper mill sludge or discarded swelling clay.

  4. MATERIALS FOR THE FINAL COVER OF SANITARY LANDFILLS

    OpenAIRE

    Davorin Kovačić

    1994-01-01

    The paper deals with the selection of materials for the sea¬ling layer in the final cover of sanitary landfills. The sealing la¬yer is the most critical component of the final cover. Its role is to minimize percolation of water through the final cover. Ma¬terials used for the construction of the sealing layer are either of mineral origin (compacted clay) or geosynthetic (geomem¬brane). They are most often used in combination creating com¬posite liners. Recently alternative materials are also ...

  5. Ablative thermal protection systems

    International Nuclear Information System (INIS)

    Vaniman, J.; Fisher, R.; Wojciechowski, C.; Dean, W.

    1983-01-01

    The procedures used to establish the TPS (thermal protection system) design of the SRB (solid rocket booster) element of the Space Shuttle vehicle are discussed. A final evaluation of the adequacy of this design will be made from data obtained from the first five Shuttle flights. Temperature sensors installed at selected locations on the SRB structure covered by the TPS give information as a function of time throughout the flight. Anomalies are to be investigated and computer design thermal models adjusted if required. In addition, the actual TPS ablator material loss is to be measured after each flight and compared with analytically determined losses. The analytical methods of predicting ablator performance are surveyed. 5 references

  6. Investigation of the particle size distribution of the ejected material generated during the single femtosecond laser pulse ablation of aluminium

    International Nuclear Information System (INIS)

    Wu, Han; Zhang, Nan; Zhu, Xiaonong

    2014-01-01

    Highlights: • Single 50 fs laser pulse ablation of an aluminium target in vacuum is investigated in our experiments. • Nanoparticles with large radii of several hundred nanometers are observed. • The nanoparticles are most likely from the mechanical tensile stress relaxation. - Abstract: Single femtosecond laser pulses are employed to ablate an aluminium target in vacuum, and the particle size distribution of the ablated material deposited on a mica substrate is examined with atomic force microscopy (AFM). The recorded AFM images show that these particles have a mean radius of several tens of nanometres. It is also determined that the mean radius of these deposited nanoparticles increases when the laser fluence at the aluminium target increases from 0.44 J/cm 2 to 0.63 J/cm 2 . The mechanism of the laser-induced nanoparticle generation is thought to be photomechanical tensile stress relaxation. Raman spectroscopy measurements confirm that the nanoparticles thus produced have the same structure as the bulk aluminium

  7. Instability growth seeded by ablator material inhomogeneity in indirect drive implosions on the National Ignition Facility

    Science.gov (United States)

    Haan, Steven; Ali, S. J.; Baxamusa, S. H.; Celliers, P. M.; Clark, D. S.; Kritcher, A. L.; Nikroo, A.; Stadermann, M.; Biener, J.; Wallace, R.; Smalyuk, V.; Robey, H.; Weber, C. R.; Huang, H.; Reynolds, H.; Carlson, L.; Rice, N.; Kline, J. L.; Simakov, A. N.; Yi, S. A.

    2017-10-01

    NIF indirect drive ablators (CH, Be, and high density carbon HDC) show hydrodynamic irregularity beyond that expected from surface features. Characterizing these seeds and estimating their growth is important in projecting performance. The resulting modulations can be measured in x-ray backlit implosions on NIF called Hydro Growth Radiography, and on Omega with 2D velocimetry. This presentation summarizes the experiments for the three ablators, along with simulations thereof and projections of the significance for NIF. For CH, dominant seeds are photo-induced oxidation, which might be mitigated with alumina coating. For Be, perturbations result from Ar and O contamination. For HDC, perturbations are seeded by shock propagation around melt, depend on shock strength, and may constrain the adiabat of future HDC implosions. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  8. Laser ablation of the lysozyme protein: a model system for soft materials

    DEFF Research Database (Denmark)

    Schou, Jørgen; Matei, Andreea; Constantinescu, Catalin

    .3 1015 molecules per pulse. This is perhaps one of the highest ablation yields ever measured. Films with a significant number of intact lysozyme molecules have been produced by PLD (pulsed laser deposition) and MAPLE (Matrix-assisted pulsed laser evaporation). The deposition of intact molecules...... is expected in MAPLE, but is surprising in PLD, where a high degree of thermal fragmentation is typically required for generation of a sufficient amount of volatile decomposition products that drive the transfer of molecules to the film substrate. The experimental results will be discussed based...

  9. Laser ablation microprobe inductively coupled plasma mass spectrometry study on diffusion of uranium into cement materials

    International Nuclear Information System (INIS)

    Sugiyama, D.; Chida, T.; Cowper, M.

    2008-01-01

    The diffusion of uranium (U(VI)) in solid cement monoliths of ordinary portland cement (OPC) and low-heat portland cement containing 30 wt.% fly ash (FAC) was measured by an in-diffusion technique. Detailed sharp depth profiles of uranium in the solid cement matrices were successively and quantitatively measured using laser ablation microprobe inductively coupled plasma mass spectrometry (LAMP-ICP-MS), and the apparent (D a ) and effective (D e ) diffusion coefficient of uranium in cement matrix were calculated as: D a =∝ 4 x 10 -16 m 2 s -1 and D e =∝ 3 x 10 -11 m 2 s -1 for OPC, and D a =∝ 2 x 10 -17 m 2 s -1 and D e =∝ 6 x 10 -13 m 2 s -1 for FAC. (orig.)

  10. [Progress in the application of laser ablation ICP-MS to surface microanalysis in material science].

    Science.gov (United States)

    Zhang, Yong; Jia, Yun-hai; Chen, Ji-wen; Shen, Xue-jing; Liu, Ying; Zhao, Leiz; Li, Dong-ling; Hang, Peng-cheng; Zhao, Zhen; Fan, Wan-lun; Wang, Hai-zhou

    2014-08-01

    In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).

  11. Determination of Physical Properties of Carbon Materials by Results of Ablative Experiments Con-ducted in the Jets of Gas Dynamic Units

    Directory of Open Access Journals (Sweden)

    V. V. Gorsky

    2015-01-01

    Full Text Available The process of hypersonic vehicles’ movement in the dense layers of the atmosphere is accompanied by the considerable combustion of heat shield, which effects on the aerodynamic, mass-inertial and centering characteristics of the product.For correct calculation of model's movement parameters it is necessary:* Using the theoretical and computation methods for determining ablative characteristics of heat-protective materials;* Taking into account all the basic physical and chemical processes, involved in their ablation, using the above mentioned methods;* Testing these techniques in the wide range of experimental data. This physic-mathematical model of carbon materials (CM aerothermochemical destruction is based on using the following:* Arrhenius equations to calculate carbon kinetic oxidation;* Langmuir-Knudsen formula to calculate the velocity of non-equilibrium carbon’s sublimation;* Carbon erosion law represented as a unique dependence of this process velocity on the gas pressure on the wall.Mathematical description of all major processes included in this formulation of the problem, contains a number of "free" parameters that can be determined only on the basis of comparison of theoretical and experimental data according to total ablation characteristics of these materials.This comparison was performed in the article applicable to the tests conditions of modern CM in the stream of electric arc plant and in combustion products of liquid-propellant rocket engines.As the result, the data of kinetic of carbon oxidation by atomic oxygen at sublimation mode of material ablation were obtained for the first time. Carbon erosion law under high pressure was established for the first time.The new approach to processing of ablation experiments is enunciated. Using this approach allows to turn this experiments for CM from comparative tests into the tests to determine ablation properties of thermal protection. Moreover, it enables us also to use the

  12. Phosphate bonded ceramics as candidate final-waste-form materials

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Cunnane, J.; Sutaria, M.; Kurokawa, S.; Mayberry, J.

    1994-04-01

    Room-temperature setting phosphate-bonded ceramics were studied as candidate materials for stabilization of DOE low-level problem mixed wastes which cannot be treated by other established stabilization techniques. Phosphates of Mg, Mg-Na, Al and Zr were studied to stabilize ash surrogate waste containing RCRA metals as nitrates and RCRA organics. We show that for a typical loading of 35 wt.% of the ash waste, the phosphate ceramics pass the TCLP test. The waste forms have high compression strength exceeding ASTM recommendations for final waste forms. Detailed X-ray diffraction studies and differential thermal analyses of the waste forms show evidence of chemical reaction of the waste with phosphoric acid and the host matrix. The SEM studies show evidence of physical bonding. The excellent performance in the leaching tests is attributed to a chemical solidification and physical as well as chemical bonding of ash wastes in these phosphate ceramics

  13. New Materials for Electric Drive Vehicles - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J. David [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-18

    This project was sponsored by the US DOE Global Initiatives for Proliferation Prevention. The object was for Ukrainian and US partners, including Argonne, AETC, and Dontech to develop special carbon materials and factory production equipment with the goal of making better car batteries to achieve DOE's goals for all-electric and plug-in hybrid electric vehicles. Carbon materials are used in designs for lithium-ion batteries and metal-air batteries, both leading contenders for future electric cars. Specifically, the collaborators planned to use the equipment derived from this project to develop a rechargeable battery system that will use the carbon materials produced by the innovative factory process equipment. The final outcome of the project was that the Ukrainian participants consisting of the Kharkov Institute of Physics and Technology (KIPT), the Institute of Gas of National Academy of Sciences of Ukraine and the Materials Research Center, Ltd. designed, built, tested and delivered 14 pieces of processing equipment for pilot scale carbon production lines at the AETC, Arlington Heights facilities. The pilot scale equipment will be used to process materials such as activated carbon, thermally expanded graphite and carbon coated nano-particles. The equipment was shipped from Ukraine to the United States and received by AETC on December 3, 2013. The equipment is on loan from Argonne, control # 6140. Plug-in hybrid electric vehicles (PHEV) and all-electric vehicles have already demostrated success in the U.S. as they begin to share the market with older hybrid electric designs. When the project was conceived, PHEV battery systems provided a ~40 mile driving range (2011 figures). DOE R&D targets increased this to >100 miles at reduced cost less than $250/kWh (2011 figures.) A 2016 Tesla model S has boasted 270 miles. The project object was to develop pilot-production line equipment for advanced hybrid battery system that achieves cycle life of 1000, an energy

  14. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sumption, Mike D. [Ohio State University, Columbia, OH (United States); Collings, Edward W. [Ohio State University, Columbia, OH (United States)

    2014-09-19

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  15. Towards the Industrial Application of Spark Ablation for Nanostructured Functional Materials

    NARCIS (Netherlands)

    Pfeiffer, T.V.

    2014-01-01

    Nanostructuring of functional materials is an essential part in the design of energy related devices – but the industrial tools we have to make these materials are lacking. This dissertation explores the green, flexible, and scalable spark discharge process for the fabrication of complex

  16. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials.

    Science.gov (United States)

    Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-12-03

    We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. State surveillance of radioactive material transportation. Final report

    International Nuclear Information System (INIS)

    Salomon, S.N.

    1984-02-01

    The main objective of this final report on the state surveillance of the transportation of radioactive material (RAM) is to suggest the most cost-effective inspection areas where enforcement actions might be taken by the states during their participation in the State Hazardous Materials Enforcement Development (SHMED) Program. On the basis of the lessons learned from the surveillance program, these actions are enforcement at low-level radioactive burial sites by means of civil penalties and site use suspension; enforcement at airports and at terminals that forward freight; and enforcement of courier companies. More effective and efficient enforcement can be achieved through instrumented police patrol cars and remote surveillance because they require the least amount of time of enforcement personnel. In addition, there is a strong relationship between effective emergency response and enforcement because the appropriate shipping papers, placarding and knowledge of appropriate emergency response procedures lead to improved emergency response. These lessons originate from a ten-state surveillance program from 1977 through 1981 jointly sponsored by the US Nuclear Regulatory Commission (NRC) and DOT. The states give recommendations in the categories of education, training, expanded surveillance, coordination and enforcement. The topics of special interest covered include low-level radioactive waste disposal sites, airports, cargo terminals, highways, ports, and accidents and incidents. The three most common problems in compliance with RAM transportation regulations reported by the states are incorrect package labeling; improper shipping papers; and incorrect or missing placards. Other common problems reported by the states are summarized. The relationship to other studies, the status of the SHMED Program, a synopsis of state RAM surveillance reports, and NRC/DOT expenditures are given

  18. Theory and numerical modeling of the accelerated expansion of laser-ablated materials near a solid surface

    International Nuclear Information System (INIS)

    Chen, K.R.; King, T.C.; Hes, J.H.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Puretzky, A.A.; Donato, J.M.

    1999-01-01

    A self-similar theory and numerical hydrodynamic modeling is developed to investigate the effects of dynamic source and partial ionization on the acceleration of the unsteady expansion of laser-ablated material near a solid target surface. The dynamic source effect accelerates the expansion in the direction perpendicular to the target surface, while the dynamic partial ionization effect accelerates the expansion in all directions. The vaporized material during laser ablation provides a nonadiabatic dynamic source at the target surface into the unsteady expanding fluid. For studying the dynamic source effect, the self-similar theory begins with an assumed profile of plume velocity, u=v/v m =α+(1-α)ξ, where v m is the maximum expansion velocity, α is a constant, and ξ=x/v m t. The resultant profiles of plume density and plume temperature are derived. The relations obtained from the conservations of mass, momentum, and energy, respectively, all show that the maximum expansion velocity is inversely proportional to α, where 1-α is the slope of plume velocity profile. The numerical hydrodynamic simulation is performed with the Rusanov method and the Newton Raphson method. The profiles and scalings obtained from numerical hydrodynamic modeling are in good agreement with the theory. The dynamic partial ionization requires ionization energy from the heat at the expansion front, and thus reduces the increase of front temperature. The reduction of thermal motion would increase the flow velocity to conserve the momentum. This dynamic partial ionization effect is studied with the numerical hydrodynamic simulation including the Saha equation. With these effects, α is reduced from its value of conventional free expansion. This reduction on α increases the flow velocity slope, decreases the flow velocity near the surface, and reduces the thermal motion of plume, such that the maximum expansion velocity is significantly increased over that found from conventional models

  19. 10 CFR 51.97 - Final environmental impact statement-materials license.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Final environmental impact statement-materials license. 51...-Regulations Implementing Section 102(2) Final Environmental Impact Statements-Materials Licenses § 51.97 Final environmental impact statement—materials license. (a) Independent spent fuel storage installation (ISFSI...

  20. Characterization of nuclear materials by laser ablation ICP(SF)MS for nuclear forensic purposes

    International Nuclear Information System (INIS)

    Stefanka, Z.; Katona, R.; Varga, Z.

    2009-01-01

    Full text: The task of the categorization and characterization of nuclear materials of unknown origin has been delegated to the Institute of Isotopes of the Hungarian Academy of Sciences in 1996 by a governmental decree. Since the investigated materials are forensic evidences special attention was paid for minimizing the required sample amount. Therefore LA-ICP(SF)MS has been developed and also applied for the determination of isotopic composition, production date and the concentration of trace impurities. The LA-ICP(SF)MS methods were validated by inter-laboratory comparisons and were applied for analysis of uranium oxide pellets seized in Hungary. (author)

  1. High-Tc thin films prepared by laser ablation: material distribution and droplet problem

    NARCIS (Netherlands)

    Blank, David H.A.; IJsselsteijn, R.P.J.; IJsselsteijn, R.P.J.; Out, P.G.; Kuiper, H.J.H.; Flokstra, Jakob; Rogalla, Horst

    1992-01-01

    The lateral material distribution of laser-deposited YBa2Cu3O7¿¿ films and the density of droplets coming from the target were studied by varying the laser pulse energy, the laser spot size and the target-to-substrate distance. Silicon wafers at ambient temperature were used as substrates to

  2. Condensation of ablated first-wall materials in the cascade inertial confinement fusion reactor

    International Nuclear Information System (INIS)

    Ladd, A.J.C.

    1985-01-01

    This report concerns problems involved in recondensing first-wall materials vaporized by x rays and pellet debris in the Cascade inertial confinement fusion reactor. It examines three proposed first-wall materials, beryllium oxide (BeO), silicon carbide (SiO), and pyrolytic graphite (C), paying particular attention to the chemical equilibrium and kinetics of the vaporized gases. The major results of this study are as follows. Ceramic materials composed of diatomic molecules, such as BeO and SiC, exist as highly dissociated species after vaporization. The low gas density precludes significant recombination during times of interest (i.e., less than 0.1 s). The dissociated species (Be, O, Si, and C) are, except for carbon, quite volatile and are thermodynamically stable as a vapor under the high temperature and low density found in Cascade. These materials are thus unsuitable as first-wall materials. This difficulty is avoided with pyrolytic graphite. Since the condensation coefficient of monatomic carbon vapor (approx. 0.5) is greater than that of the polyatomic vapor (<0.1), recondensation is assisted by the expected high degree of dissociation. The proposed 10-layer granular carbon bed is sufficient to condense all the carbon vapor before it penetrates to the BeO layer below. The effective condensation coefficient of the porous bed is about 50% greater than that of a smooth wall. An estimate of the mass flux leaving the chamber results in a condensation time for a carbon first wall of about 30 to 50 ms. An experiment to investigate condensation in a Cascade-like chamber is proposed

  3. Applications of inductively coupled plasma mass spectrometry and laser ablation inductively coupled plasma mass spectrometry in materials science

    International Nuclear Information System (INIS)

    Becker, Johanna Sabine

    2002-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new

  4. Fusion surface material melting, ablation, and ejection under high heat loading

    International Nuclear Information System (INIS)

    Holliday, M.R.; Doster, J.M.; Gilligan, J.G.

    1986-01-01

    Limiters, divertor plates, and sections of the first wall are exposed to intense heat loads during normal operation and plasma disruptions. This results in severe thermal stresses as well as erosion of the surface material. Large surface areas of compact high-field tokamaks are expected to be exposed to these high heat loads. The need for a fast and accurate computational model describing the heat transfer and phase change process has arisen as a part of the larger model of the plasma-edge region. The authors report on a solution scheme that has been developed that minimizes computational time for this time-dependent, one-dimensional, moving boundary problem. This research makes use of the heat balance integral technique, which is at least an order of magnitude faster than previous finite difference techniques. In addition, we report on the effect of molten material ejection (by external forces) on the total surface erosion rate

  5. Cardiac ablation

    Directory of Open Access Journals (Sweden)

    Kelly Ratheal

    2016-01-01

    Full Text Available Cardiac ablation is a procedure that uses either radiofrequency or cryothermal energy to destroy cells in the heart to terminate and/or prevent arrhythmias. The indications for cardiac catheter ablation include refractory, symptomatic arrhythmias, with more specific guidelines for atrial fibrillation in particular. The ablation procedure itself involves mapping the arrhythmia and destruction of the aberrant pathway in an effort to permanently prevent the arrhythmia. There are many types of arrhythmias, and they require individualized approaches to ablation based on their innately different electrical pathways. Ablation of arrhythmias, such as Wolff-Parkinson-White syndrome, AV nodal reentrant tachycardia, and atrial-fibrillation, is discussed in this review. Ablation has a high success rate overall and minimal complication rates, leading to improved quality of life in many patients.

  6. Promotional materials clearinghouse, year 5 final report 2001-2002

    Science.gov (United States)

    2002-10-01

    The Promotional Materials Clearinghouse is a participant-driven undertaking. All materials currently archived at the Clearinghouse were solicited from transit systems and transportation demand management (TDM) agencies nationwide with marketing manag...

  7. AY 2002-2003 Industry Study: Final Report Strategic Materials

    National Research Council Canada - National Science Library

    Adams, Karen G

    2003-01-01

    Strategic materials are those materials, along with research, development, and technology that are critical in ensuring a US competitive advantage, both economically and with respect to national security capabilities...

  8. Numerical Simulation of Femtosecond Laser Ablation of Stent Material%飞秒激光烧蚀血管支架材料的数值模拟

    Institute of Scientific and Technical Information of China (English)

    王雷雷; 郑洋洋; 霍扬; 刘建英; 李春霞; 卢洋

    2017-01-01

    为了研究飞秒脉冲激光烧蚀血管支架材料的特性,利用考虑了电子之间热传导项的双温模型,采用有限差分法,对飞秒激光烧蚀NiTi合金的温度场分布进行数值模拟,计算得到了电子温度和晶格温度随时间和烧蚀深度的变化规律,进一步讨论了不同激光能量密度、不同激光脉宽、不同延迟时间对电子和晶格的温度场影响.发现血管支架材料在飞秒激光的作用下,先是电子吸收能量温度快速升高,再通过电声耦合作用将能量传递给晶格,最后两者的温度达到一个平衡状态;激光能量密度主要影响电子的峰值温度和电子与晶格的平衡温度;脉冲宽度主要影响电子的峰值温度和达到峰值温度所用的时间;电子温度随着延迟时间的增加先升高后降低,晶格温度随着延迟时间的增加不断上升.这些理论分析对实际飞秒激光加工血管支架有重要的指导意义.%In order to study the characteristics of femtosecond laser ablation of stent material,two-temperature model which considers the thermal conduction between the electronics,and finite difference method were used to simulate temperature field of NiTi alloys during femtosecond laser ablation.According to the results,the influences of laser energy density,pulse width and delay time on the temperature field of electron and lattice were discussed.The results showed that the temperature of electron and lattice finally reached a state of equilibrium.Before that,firstly,the temperature of electron increased rapidly due to energy absorption,then,the absorbed energy was transferred to lattice through electron phonon coupling effect;at last,the equilibrium would be reached.Laser energy density played a major role in the equilibrium temperature,and pulse width determined the peak temperature and the time to reach it.Consequently,the temperature of electrons first increased and then decreased with the increase of the delay time

  9. Electroceramic functional gradient materials. Final report 1995 - 1998

    Energy Technology Data Exchange (ETDEWEB)

    Toft Soerensen, O. [ed.

    1999-10-01

    In this programme the research and development is focused on electroceramic materials, which are of direct interest for the Danish producers of electronic components (AMP Danmark) and ceramic gas sensors (PBI-Dansensor) as well as companies involved in development of fuel cells (Haldor Topsoee). The R and D work has been focused on strategic materials research, both application oriented and more basic research, and on development of new techniques for fabrication of EFGM (Electroceramic Functional Gradient Materials) of three types: LC circuit materials (electronic noise filters), oxides for electrochemical reactors and solid oxide fuel cell applications (SOFC) and materials (semiconductors, oxygen ion conductors) for oxygen sensors. This work has been carried out in five projects: 1) Integrated filter components; 2) Electrochemical reactor materials; 3) Oxygen sensors based on semiconductors and oxygen ion conductors; 4) Interface models - synthesis and characterisation; 5) Suppression of cracking in multilayered ceramic materials. (EHS)

  10. Final Report for completed IPP Project:"Development of Plasma Ablation for Soft Tissue and Bone Surgery"

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Ian

    2009-09-01

    ArthroCare is a medical device company that develops, manufactures, and markets an advanced surgical tool, a plasma electro-surgical system for cutting and removing tissue. The hand-held electrical discharge device produces plasma in a biocompatible conductive fluid and tissue to which it is applied during surgery. Its products allow surgeons to operate with increased precision and accuracy, limiting damage to surrounding tissue thereby reducing pain and speeding recovery for the patient. In the past, the design of ArthfoCare's plasma wands has been an empirical undertaking. One goal of this R&D program was to put the phenomena involved on a sound scientific footing, allowing optimization of existing plasma based electro-surgery system technology, and the design and manufacture of new and improved kinds of scalpels, in particular for the surgical cutting of bone. Another important related goal of the program was to develop, through an experimental approach, new plasma wand approaches to the cutting ('shaving') of hard bone tissue. The goals of the CRADA were accomplished - computer models were used to predict important parameters of the plasma discharge and the bone environment, and several different approaches to bone-shaving were developed and demonstrated. The primary goal of the project was to develop and demonstrate an atmospheric-pressure plasma tool that is suitable for surgical use for shaving bone in humans. This goal was accomplished, in fact with several different alternative plasma approaches. High bone ablation speeds were measured. The use of probes ('plasma wand' - the surgical tool) with moving active electrodes was also explored, and there are advantages to this method. Another important feature is that the newly-exposed bone surface have only a very thin necrosis layer; this feature was demonstrated. This CRADA has greatly advanced our understanding of bone removal by atmospheric pressure plasmas in liquid, and puts Arthro

  11. Photo-Machining of Semiconductor Related Materials with Femtosecond Laser Ablation and Characterization of Its Properties

    Science.gov (United States)

    Yokotani, Atushi; Mizuno, Toshio; Mukumoto, Toru; Kawahara, Kousuke; Ninomiya, Takahumi; Sawada, Hiroshi; Kurosawa, Kou

    We have analyzed the drilling process with femtosecond laser on the silicon surface in order to investigate a degree of thermal effect during the dicing process of the very thin silicon substrate. A regenerative amplified Ti:Al2O3 laser (E= 30˜500 μJ/pulse, τ= 200 fs, λ= 780 nm, f= 10 Hz) was used and focused onto a 50 μm-thick silicon sample. ICCD (Intensified Charge coupled Device) camera with a high-speed gate of 5 ns was utilized to take images of processing hole. First, we investigated the dependence of laser energy on the speed of the formation of the drilled hole. As a result, it was found that the lager the energy, the slower the speed of the formation under the minimum hole was obtained. Consequently, in the case of defocused condition, even when the smaller the energy density was used, the very slow speed of formation and the much lager thermal effects are simultaneously observed. So we can say that the degree of the thermal effects is not simply related to energy density of the laser but strongly related to the speed of the formation, which can be measured by the ICCD camera. The similar tendency was also obtained for other materials, which are important for the fabrication of ICs (Al, Cu, SiO2 and acrylic resin).

  12. Organic materials for second harmonic generation. Final report

    International Nuclear Information System (INIS)

    Twieg, R.J.

    1985-01-01

    Materials were chosen by screening the Cambridge Crystallographic Index for new noncentrosymmetric crystalline compounds, by screening commercially available materials or by synthesis of unique new substances. Measurements were then made on the powder form of these materials. Langmuir-Blodgett films were deposited and studied. In addition to the above studies, a computer program was developed to calculate (hyper) polarizabilities of organic molecules and thus aid in the selection of materials for testing. The nonlinear molecules have been divided into three classes according to absorption cutoff: 400 to 500 nm, 300 to 400 nm, and 200 to 300 nm. 108 refs., 7 tabs

  13. Organic materials for second harmonic generation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Twieg, R.J. (comp.)

    1985-03-31

    Materials were chosen by screening the Cambridge Crystallographic Index for new noncentrosymmetric crystalline compounds, by screening commercially available materials or by synthesis of unique new substances. Measurements were then made on the powder form of these materials. Langmuir-Blodgett films were deposited and studied. In addition to the above studies, a computer program was developed to calculate (hyper) polarizabilities of organic molecules and thus aid in the selection of materials for testing. The nonlinear molecules have been divided into three classes according to absorption cutoff: 400 to 500 nm, 300 to 400 nm, and 200 to 300 nm. 108 refs., 7 tabs. (WRF)

  14. Final report for Assembling Microorganisms into Energy Converting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Ozgur

    2018-03-26

    The goal of this project was to integrate microorganisms capable of reversible energy transduction in response to changing relative humidity with non-biological materials to create hybrid energy conversion systems. While plants and many other biological organisms have developed structures that are extraordinarily effective in converting changes in relative humidity into mechanical energy, engineered energy transduction systems rarely take advantage of this powerful phenomenon. Rather than developing synthetic materials that can convert changes in relative humidity in to mechanical energy, we developed approaches to assemble bacterial spores into larger materials. These materials can convert energy from evaporation of water in dry atmospheric conditions, which we demonstrated by building energy harvesters from these materials. We have also developed experiments to investigate the interaction of water with the spore material, and to determine how this interaction imposes limits on energy conversion. In addition, we carried out theoretical calculations to investigate the limits imposed by the environmental conditions to the power available in the energy harvesting process. These calculations took into account heat and water vapor transfer in the atmosphere surrounding the spore based materials. Overall, our results suggest that biomolecular materials are promising candidates to convert energy from evaporation.

  15. Materials Technology Support for Radioisotope Power Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Kramer; Chadwick D. Barklay

    2008-10-07

    Over the period of this sponsored research, UDRI performed a number of materials related tasks that helped to facilitate increased understanding of the properties and applications of a number of candidate program related materials including; effects of neutron irradiation on tantalum alloys using a 500kW reactor, thermodynamic based modeling of the chemical species in weld pools, and the application of candidate coatings for increased oxidation resistance of FWPF (Fine Weave Pierced Fabric) modules.

  16. Materials Technology Support for Radioisotope Power Systems Final Report

    International Nuclear Information System (INIS)

    Kramer, Daniel P.; Barklay, Chadwick D.

    2008-01-01

    Over the period of this sponsored research, UDRI performed a number of materials related tasks that helped to facilitate increased understanding of the properties and applications of a number of candidate program related materials including; effects of neutron irradiation on tantalum alloys using a 500kW reactor, thermodynamic based modeling of the chemical species in weld pools, and the application of candidate coatings for increased oxidation resistance of FWPF (Fine Weave Pierced Fabric) modules

  17. Thin film growing by the laser ablation technique: possibilities for growing of dosimetric materials; Crecimiento de capas delgadas por la tecnica de ablacion laser: posibilidades para crecimiento de materiales dosimetricos

    Energy Technology Data Exchange (ETDEWEB)

    Rojas R, E.M.; Melo M, M.; Enriquez Z, E.; Fernandez G, M.; Haro P, E.; Hernandez P, J.L. [UAM-I, Laboratorio de Optica Cuantica, 09340 Mexico D.F. (Mexico)

    2005-07-01

    In this talk we will present the basics about the laser ablation technique and how it is used for thin film growing, either as a single film or a stack of thin films, as well as some methods to characterize in real time the film thickness. Finally, we will discuss the possibilities of using laser ablation for growing thin films with applications to dosimetry. (Author)

  18. Superhard nanophase cutter materials for rock drilling applications; FINAL

    International Nuclear Information System (INIS)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-01-01

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications

  19. Multiyear Program Plan for the High Temperature Materials Laboratory; FINAL

    International Nuclear Information System (INIS)

    Arvid E. Pasto

    2000-01-01

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO(sub x) and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required

  20. Relationships between fracture toughness and other material properties. Final report

    International Nuclear Information System (INIS)

    Perra, M.; Finnie, I.

    1974-01-01

    The key experimental and analytical studies which have led to our present understanding of the mechanisms of ductile fracture are reviewed. It is concluded that insufficient progress has been made in the quantitative description of ductile separation mechanisms on a microscale to allow the realistic prediction of fracture toughness from material properties and microstructure. An experimental study of ductile fracture is underway which has the aim of determining the growth rate of voids in known plastic deformation fields as a function of triaxiality of stress and material work-hardening. Novel specimens of particularly well characterized microstructure are utilized

  1. Materials Degradation and Detection (MD2): Deep Dive Final Report

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, John S.; Montgomery, Robert O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hu, Shenyang Y.; Li, Yulan; Henager, Charles H.; Johnson, Bradley R.

    2013-02-01

    An effort is underway at Pacific Northwest National Laboratory (PNNL) to develop a fundamental and general framework to foster the science and technology needed to support real-time monitoring of early degradation in materials used in the production of nuclear power. The development of such a capability would represent a timely solution to the mounting issues operators face with materials degradation in nuclear power plants. The envisioned framework consists of three primary and interconnected “thrust” areas including 1) microstructural science, 2) behavior assessment, and 3) monitoring and predictive capabilities. A brief state-of-the-art assessment for each of these core technology areas is discussed in the paper.

  2. Source book of educational materials for radiation therapy. Final report

    International Nuclear Information System (INIS)

    Pijar, M.L.

    1979-08-01

    The Source Book is a listing of educational materials in radiation therapy technology. The first 17 sections correspond to the subjects identified in the ASRT Curriculum Guide for schools of radiation therapy. Each section is divided into publications and in some sections audiovisuals and training aids. Entries are listed without endorsement

  3. Increase in Volume of Ablation Zones during Follow-up Is Highly Suggestive of Ablation Site Recurrence in Colorectal Liver Metastases Treated with Radiofrequency Ablation

    NARCIS (Netherlands)

    Kele, Petra G.; de Jong, Koert P.; van der Jagt, Eric J.

    Purpose: To test the hypothesis that volume changes of ablation zones (AZs) on successive computed tomography (CT) scans could predict ablation site recurrences (ASRs) in patients with colorectal liver metastases treated by radiofrequency (RF) ablation. Materials and Methods: RF ablation was

  4. Numerical analysis of laser ablation using the axisymmetric two-temperature model

    Science.gov (United States)

    Dziatkiewicz, Jolanta; Majchrzak, Ewa

    2018-01-01

    Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.

  5. Dissemination of Continuing Education Materials Via Television Delivery Systems. Final Technical Report and Final Report.

    Science.gov (United States)

    Munushian, Jack

    In 1972, the University of Southern California School of Engineering established a 4-channel interactive instructional television network. It was designed to allow employees of participating industries to take regular university science and engineering courses and special continuing education courses at or near their work locations. Final progress…

  6. Engineered Materials for Cesium and Strontium Storage Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sean M. McDeavitt

    2010-04-14

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at

  7. Engineered Materials for Cesium and Strontium Storage. Final Technical Report

    International Nuclear Information System (INIS)

    McDeavitt, Sean M.

    2010-01-01

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at Purdue

  8. Fissile material disposition program final immobilization form assessment and recommendation

    International Nuclear Information System (INIS)

    Cochran, S.G.; Dunlop, W.H.; Edmunds, T.A.; MacLean, L.M.; Gould, T.H.

    1997-01-01

    Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy's Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations

  9. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhujie [Univ. of Michigan, Ann Arbor, MI (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Bartels, David [Univ. of Notre Dame, IN (United States)

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  10. Final Report: Nanoscale Dynamical Heterogeneity in Complex Magnetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kevan, Stephen [Univ. of Oregon, Eugene, OR (United States)

    2016-05-27

    A magnetic object can be demagnetized by dropping it on a hard surface, but what does ‘demagnetized’ actually mean? In 1919 Heinrich Barkhausen proved the existence of magnetic domains, which are regions of uniform magnetization that are much larger than atoms but much smaller than a macroscopic object. A material is fully magnetized when domain magnetizations are aligned, while it is demagnetized when the domain magnetizations are randomly oriented and the net magnetization is zero. The heterogeneity of a demagnetized object leads to interesting questions. Magnets are unstable when their poles align, and stable when their poles anti-align, so why is the magnetized state ever stable? What do domains look like? What is the structure of a domain wall? How does the magnetized state transform to the demagnetized state? How do domains appear and disappear? What are the statistical properties of domains and how do these vary as the domain pattern evolves? Some of these questions remain the focus of intense study nearly a century after Barkhausen’s discovery. For example, just a few years ago a new kind of magnetic texture called a skyrmion was discovered. A skyrmion is a magnetic domain that is a nanometer-scale, topologically protected vortex. ‘Topologically protected’ means that skyrmions are hard to destroy and so are stable for extended periods. Skyrmions are characterized by integral quantum numbers and are observed to move with little dissipation and so could store and process information with very low power input. Our research project uses soft x-rays, which offer very high magnetic contrast, to probe magnetic heterogeneity and to measure how it evolves in time under external influences. We will condition a soft x-ray beam so that the wave fronts will be coherent, that is, they will be smooth and well-defined. When coherent soft x-ray beam interacts with a magnetic material, the magnetic heterogeneity is imprinted onto the wave fronts and projected into

  11. Trace elements in landfill calcite: a comparison of solution & laser ablation ICP-MS and calibration to different standard material (SRM NIST glass and USGS MACS carbonate)

    Czech Academy of Sciences Publication Activity Database

    Strnad, L.; Ettler, V.; Mihaljevič, M.; Hladil, Jindřich

    2008-01-01

    Roč. 9, - (2008), s. 235-236 ISSN 1885-7264. [Reunión de la Sociedad Española de Mineralogía /28./ ; Reunión de la Sociedad Española de Arcillas /21./. Zaragoza, 16.09.2008-19.09.2008] R&D Projects: GA AV ČR IAA300130702 Institutional research plan: CEZ:AV0Z30130516 Keywords : trace elements * reference material * carbonate * ICP-MS * laser ablation Subject RIV: DB - Geology ; Mineralogy http://www.ehu.es/sem/macla_pdf/macla9/macla9_235.pdf

  12. Radiation effects on organic materials in nuclear plants. Final report

    International Nuclear Information System (INIS)

    Bruce, M.B.; Davis, M.V.

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10 4 rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10 5 rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects

  13. Safeguards systems concepts for nuclear material transportation. Final report

    International Nuclear Information System (INIS)

    Baldonado, O.C.; Kevany, M.; Rodney, D.; Pitts, D.; Mazur, M.

    1977-09-01

    The report describes the development of system concepts for the safeguarding of special strategic nuclear materials (SNM) against malevolent adversary action during the interfacility transport of the SNM. The methodology used includes techniques for defining, classifying, and analyzing adversary action sequences; defining safeguards system components; assessing the vulnerability of various safeguards systems and their component parts to the potential adversary action sequences, and conceptualizing system design requirements. The method of analysis is based primarily on a comparison of adversary actions with safeguards measures, to estimate vulnerability. Because of the paucity of the data available for assessing vulnerability, the Delphi approach was used to generate data: values were estimated in a structured exercise by a panel of experts in the safeguards and terrorist fields. It is concluded that the probability of successful attack against a truck/escort convoy manned by well-trained, well-armed personnel is low enough to discourage all but the strongest adversaries. Secrecy of operations and careful screening of personnel are very important. No reliance should be placed on current capabilities of local law enforcement agencies. The recommendation of the study is the use of road transport in the near future and air transport at a later time when the number of shipments reaches a level to justify it, and when present safety problems are resolved

  14. Functional Materials for Microsystems: Smart Self-Assembled Photochromic Films: Final Report; FINAL

    International Nuclear Information System (INIS)

    BURNS, ALAN R.; SASAKI, DARRYL Y.; CARPICK, R.W.; SHELNUTT, JOHN A.; BRINKER, C. JEFFREY

    2001-01-01

    This project set out to scientifically-tailor ''smart'' interfacial films and 3-D composite nanostructures to exhibit photochromic responses to specific, highly-localized chemical and/or mechanical stimuli, and to integrate them into optical microsystems. The project involved the design of functionalized chromophoric self-assembled materials that possessed intense and environmentally-sensitive optical properties (absorbance, fluorescence) enabling their use as detectors of specific stimuli and transducers when interfaced with optical probes. The conjugated polymer polydiacetylene (PDA) proved to be the most promising material in many respects, although it had some drawbacks concerning reversibility. Throughout his work we used multi-task scanning probes (AFM, NSOM), offering simultaneous optical and interfacial force capabilities, to actuate and characterize the PDA with localized and specific interactions for detailed characterization of physical mechanisms and parameters. In addition to forming high quality mono-, bi-, and tri-layers of PDA via Langmuir-Blodgett deposition, we were successful in using the diacetylene monomer precursor as a surfactant that directed the self-assembly of an ordered, mesostructured inorganic host matrix. Remarkably, the diacetylene was polymerized in the matrix, thus providing a PDA-silica composite. The inorganic matrix serves as a perm-selective barrier to chemical and biological agents and provides structural support for improved material durability in microsystems. Our original goal was to use the composite films as a direct interface with microscale devices as optical elements (e.g., intracavity mirrors, diffraction gratings), taking advantage of the very high sensitivity of device performance to real-time dielectric changes in the films. However, our optical physics colleagues (M. Crawford and S. Kemme) were unsuccessful in these efforts, mainly due to the poor optical quality of the composite films

  15. Power Laser Ablation Symposia

    CERN Document Server

    Phipps, Claude

    2007-01-01

    Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficu...

  16. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    Energy Technology Data Exchange (ETDEWEB)

    Buelow, S.J.; Allen, D.; Anderson, G.K. [and others

    1995-04-03

    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

  17. High-order nonlinear optical processes in ablated carbon-containing materials: Recent approaches in development of the nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range

    Science.gov (United States)

    Ganeev, R. A.

    2017-08-01

    The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.

  18. Revisions to the Clean Water Act Regulatory Definition of Discharge of Dredged Material; Final Rule

    Science.gov (United States)

    The U.S. Army Corps of Engineers (Corps) and the Environmental Protection Agency (EPA) promulgated a final rule Amending a Clean Water Act (CWA) section 404 regulation that defines the term discharge of dredged material.

  19. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias; Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas; Mahnken, Andreas H.

    2012-01-01

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 ± 0.14, 1.45 ± 0.13, and 1.74 ± 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 ± 0.09 and 1.26 ± 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 ± 0.65, 2.85 ± 0.72, and 4.45 ± 0.47 cm 3 for MW ablation at outputs of 25W, 35W, and 45W and 1.18 ± 0.30 and 2.29 ± 0.55 cm 3 got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  20. Laboratory Simulations of Micrometeoroid Ablation

    Science.gov (United States)

    Thomas, Evan Williamson

    Each day, several tons of meteoric material enters Earth's atmosphere, the majority of which consist of small dust particles (micrometeoroids) that completely ablate at high altitudes. The dust input has been suggested to play a role in a variety of phenomena including: layers of metal atoms and ions, nucleation of noctilucent clouds, effects on stratospheric aerosols and ozone chemistry, and the fertilization of the ocean with bio-available iron. Furthermore, a correct understanding of the dust input to the Earth provides constraints on inner solar system dust models. Various methods are used to measure the dust input to the Earth including satellite detectors, radar, lidar, rocket-borne detectors, ice core and deep-sea sediment analysis. However, the best way to interpret each of these measurements is uncertain, which leads to large uncertainties in the total dust input. To better understand the ablation process, and thereby reduce uncertainties in micrometeoroid ablation measurements, a facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to accelerate iron particles to relevant meteoric velocities (10-70 km/s). The particles are then introduced into a chamber pressurized with a target gas, and they partially or completely ablate over a short distance. An array of diagnostics then measure, with timing and spatial resolution, the charge and light that is generated in the ablation process. In this thesis, we present results from the newly developed ablation facility. The ionization coefficient, an important parameter for interpreting meteor radar measurements, is measured for various target gases. Furthermore, experimental ablation measurements are compared to predictions from commonly used ablation models. In light of these measurements, implications to the broader context of meteor ablation are discussed.

  1. Exploiting Novel Radiation-Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report

    Science.gov (United States)

    2016-04-01

    Exploiting Novel Radiation -Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report Distribution...assess the effects of ionizing radiation on at least three classes of electromagnetic materials. The proposed approach for radiation detection was...that was desired to be monitored remotely. Microwave or low millimeter wave electromagnetic radiation would be used to interrogate the device

  2. 36 CFR 1206.86 - What additional materials must I submit with the final narrative report?

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false What additional materials must I submit with the final narrative report? 1206.86 Section 1206.86 Parks, Forests, and Public... narrative report? You must submit the materials determined by the Commission as found in the NHPRC grant...

  3. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, J. Thomas [Washington State Univ., Pullman, WA (United States)

    2014-04-05

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  4. Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fromm, Bradley [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hauch, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sridharan, Kumar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulation tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.

  5. Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report

    International Nuclear Information System (INIS)

    Fromm, Bradley; Hauch, Benjamin; Sridharan, Kumar

    2016-01-01

    A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulation tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.

  6. Colloids and composite materials Au/Pvp and Ag/Pvp generated by laser ablation in polymeric liquid environment

    Energy Technology Data Exchange (ETDEWEB)

    Larez, J.; Rojas, C. [Universidad Central de Venezuela, Faculty of Science, Center of Experimental Solid State Physics, Paseo Los Ilustres, Los Chaguaramos, Apdo. Postal 20513, Caracas 1020-A (Venezuela, Bolivarian Republic of); Castell, R., E-mail: jlarez@fisica.ciens.ucv.ve [Universidad Simon Bolivar, Department of Physics, Plasma and Laser Spectroscopy Laboratory, Valle de Sartenejas, Baruta, Apdo. Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of)

    2016-11-01

    Pulsed laser ablation of silver and gold targets, immersed in a polymeric solution of Polyvinylpyrrolidone (Pvp), is used to generate colloids and composite metal-polymer. Solutions of Pvp in deionized water at different concentrations are employed. Two Pvp number average molecular weights were considered, 10000 g/mol and 55000 g/mol. The high purity targets are irradiated between 20 min and 40 min with the third harmonic (Thg) (λ = 335 nm) of a Nd:YAG laser operating at a rate of 10 Hz with pulses of 8 ns. Optical spectroscopy in UV and vis regions, scanning electron microscopy, high resolution scanning electron microscopy and X-ray are used to identify and determine the shape and size of the produced particles. Very stable sub-micrometric spherical particles for Au/Pvp and Ag/Pvp samples are obtained with diameters of 0.72 μm and 0.40 μm, respectively. The preparation of colloids is performed in one step and no surfactant or dispersing agent is used in this process. (Author)

  7. Properties of aerosol particles generated during 213 nm laser ablation: a study of compact and powdered tungsten carbides as materials with a two-component matrix

    International Nuclear Information System (INIS)

    Hola, M.; Konecna, V.; Kanicky, V.; Mikuska, P.; Kaiser, J.; Hanzlikova, R.

    2009-01-01

    Full text: The laser ablation process of tungsten carbide hardmetals was studied using 213 nm Nd:YAG laser. The samples were presented for ablation as sintered compacts or powders pressed into pellets to compare the generation of particles from samples with similar chemical composition but different physical properties. The influence of laser ablation parameters on the aerosol generation was studied using an optical aerosol spectrometer. In the case of powders, the effect of binder amount was investigated. The structure of generated particles and the properties of ablation-craters were additionally studied by SEM. (author)

  8. Femtosecond laser ablation of enamel

    Science.gov (United States)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  9. Radiofrequency Ablation of Lung Tumors

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Radiofrequency Ablation (RFA) / Microwave Ablation (MWA) of Lung Tumors ... and Microwave Ablation of Lung Tumors? What are Radiofrequency and Microwave Ablation of Lung Tumors? Radiofrequency ablation, ...

  10. Final disposal of the rad waste materials - question of the nuclear energy implementation and application perspectives

    International Nuclear Information System (INIS)

    Plecas, I.

    1995-01-01

    Two main problems that are denying and slowing down the development of nuclear energy are safe work of the nuclear power facilities (NEF) and disposal of the radioactive waste materials, produced from the NEF and infrastructure facilities of the nuclear fuel cycle (NFC). Although nowadays worldwide knowledge, based on the 45 year of experiences in handling the radioactive waste materials, do not treat the problems of final disposal of the rad waste materials as a task of the primary importance in NFC, this subject still engage experts from this field of investigations, especially in the countries that developed all aspects of the nuclear fuel cycle. Techniques for final disposal of low and intermediate level rad waste materials, are well known and are in state of implementation. The importance of the fundamental safety principles, implemented in the IAEA documents, concerning handling, treatment and final disposal of the rad waste materials, is presented. Future usage of nuclear energy, taking into account all the facts that are dealing with problems of the rad waste materials produced in the NFC, can be a reality. (author.)

  11. Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material

    International Nuclear Information System (INIS)

    Györgyey, Ágnes; Ungvári, Krisztina; Kecskeméti, Gabriella; Kopniczky, Judit; Hopp, Béla; Oszkó, Albert; Pelsöczi, István; Rakonczay, Zoltán; Nagy, Katalin; Turzó, Kinga

    2013-01-01

    Demand is increasing for shortening the long (3–6 months) osseointegration period to rehabilitate patients' damaged chewing apparatus in as short a time as possible. For dental implants, as for biomaterials in general, the bio- and osseointegration processes can be controlled at molecular and cellular levels by modification of the implant surface. One of the most promising of such surface modifications is laser ablation, as demonstrated by our previous results [46]. Commercially pure (CP4) sand-blasted, acid-etched titanium disks (Denti® System Ltd., Hungary) were irradiated with a KrF excimer laser (248 nm, fluence 0.4 J/cm 2 , FWHM 18 ns, 2000 pulses), or with a Nd:YAG laser (532 nm, 1.3 J/cm 2 , 10 ns, 200 pulses) then examined by SEM, AFM, and XPS. In vitro attachment (24 h) and proliferation (72 h) of MG-63 osteoblast cells were investigated via dimethylthiazol-diphenyl tetrazolium bromide (MTT), alamarBlue (AB) assays alkaline phosphatase quantification (ALP) and SEM. SEM and AFM revealed significant changes in morphology and roughness. XPS confirmed the presence of TiO 2 on each sample; after Nd:YAG treatment a reduced state of Ti (Ti 3+ ) was also observed. MTT, AB and ALP measurements detected an increase in the number of cells between the 24- and 72 hour observations; however, laser treatment did not affect cell attachment and proliferation significantly. - Highlights: • CP4 titanium implant surfaces were modified with Nd:YAG and KrF excimer laser. • SEM and AFM revealed significant changes in morphology and roughness. • XPS confirmed the presence of TiO 2 on each sample; after Nd:YAG treatment a reduced state of Ti (Ti 3+ ) was found. • Cell proliferation experiments detected an increased number of MG-63 cells between the 24 h and 72 h observations. • Laser treatments neither disturbed, nor enhanced MG-63 cell attachment and proliferation significantly

  12. New Ablation-Resistant Material Candidate for Hypersonic Applications: Synthesis, Composition, and Oxidation Resistance of HfIr3-Based Solid Solution.

    Science.gov (United States)

    Lozanov, Victor V; Baklanova, Natalya I; Bulina, Natalia V; Titov, Anatoly T

    2018-04-18

    The peculiarities of the solid-state interaction in the HfC-Ir system have been studied within the 1000-1600 °C temperature range using a set of modern analytical techniques. It was stated that the interaction of HfC with iridium becomes noticeable at temperatures as low as 1000-1100 °C and results in the formation of HfIr 3 -based substitutional solid solution. The homogeneity range of the HfIr 3± x phase was evaluated and refined as HfIr 2.43 -HfIr 3.36 . The durability of the HfIr 3 -based system under extreme environmental conditions was studied. It was shown that the HfIr 3 -based material displays excellent ablation resistance under extreme environmental conditions. The benefits of the new designed material result from its relative oxygen impermeability and special microstructure similar to superalloys. The results obtained in this work allow us to consider HfIr 3 as a very promising candidate for extreme applications.

  13. Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material

    Energy Technology Data Exchange (ETDEWEB)

    Györgyey, Ágnes; Ungvári, Krisztina [Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary); Kecskeméti, Gabriella; Kopniczky, Judit [Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged (Hungary); Hopp, Béla [Research Group on Laser Physics, Hungarian Academy of Sciences and University of Szeged, H-6720 Szeged (Hungary); Oszkó, Albert [Department of Physical Chemistry and Materials Science, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged (Hungary); Pelsöczi, István; Rakonczay, Zoltán [Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary); Nagy, Katalin [Department of Oral Surgery, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary); Turzó, Kinga, E-mail: kturzo@yahoo.com [Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary)

    2013-10-15

    Demand is increasing for shortening the long (3–6 months) osseointegration period to rehabilitate patients' damaged chewing apparatus in as short a time as possible. For dental implants, as for biomaterials in general, the bio- and osseointegration processes can be controlled at molecular and cellular levels by modification of the implant surface. One of the most promising of such surface modifications is laser ablation, as demonstrated by our previous results [46]. Commercially pure (CP4) sand-blasted, acid-etched titanium disks (Denti® System Ltd., Hungary) were irradiated with a KrF excimer laser (248 nm, fluence 0.4 J/cm{sup 2}, FWHM 18 ns, 2000 pulses), or with a Nd:YAG laser (532 nm, 1.3 J/cm{sup 2}, 10 ns, 200 pulses) then examined by SEM, AFM, and XPS. In vitro attachment (24 h) and proliferation (72 h) of MG-63 osteoblast cells were investigated via dimethylthiazol-diphenyl tetrazolium bromide (MTT), alamarBlue (AB) assays alkaline phosphatase quantification (ALP) and SEM. SEM and AFM revealed significant changes in morphology and roughness. XPS confirmed the presence of TiO{sub 2} on each sample; after Nd:YAG treatment a reduced state of Ti (Ti{sup 3+}) was also observed. MTT, AB and ALP measurements detected an increase in the number of cells between the 24- and 72 hour observations; however, laser treatment did not affect cell attachment and proliferation significantly. - Highlights: • CP4 titanium implant surfaces were modified with Nd:YAG and KrF excimer laser. • SEM and AFM revealed significant changes in morphology and roughness. • XPS confirmed the presence of TiO{sub 2} on each sample; after Nd:YAG treatment a reduced state of Ti (Ti{sup 3+}) was found. • Cell proliferation experiments detected an increased number of MG-63 cells between the 24 h and 72 h observations. • Laser treatments neither disturbed, nor enhanced MG-63 cell attachment and proliferation significantly.

  14. Pellet ablation and ablation model development

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1989-01-01

    A broad survey of pellet ablation is given, based primarily on information presented at this meeting. The implications of various experimental observations for ablation theory are derived from qualitative arguments of the physics involved. The major elements of a more complete ablation theory are then outlined in terms of these observations. This is followed by a few suggestions on improving the connections between theory and experimental results through examination of ablation data. Although this is a rather aggressive undertaking for such a brief (and undoubtedly incomplete) assessment, some of the discussion may help us advance the understanding of pellet ablation. 17 refs

  15. The first stage of BFS integrated system for nuclear materials control and accounting. Final report

    International Nuclear Information System (INIS)

    1996-09-01

    The BFS computerized accounting system is a network-based one. It runs in a client/server mode. The equipment used in the system includes a computer network consisting of: One server computer system, including peripheral hardware and three client computer systems. The server is located near the control room of the BFS-2 facility outside of the 'stone sack' to ensure access during operation of the critical assemblies. Two of the client computer systems are located near the assembly tables of the BFS-1 and BFS-2 facilities while the third one being the Fissile Material Storage. This final report details the following topics: Computerized nuclear material accounting methods; The portal monitoring system; Test and evaluation of item control technology; Test and evaluation of radiation based nuclear material measurement equipment; and The integrated demonstration of nuclear material control and accounting methods

  16. Shock-Driven Hydrodynamic Instability Growth Near Phase Boundaries and Material Property Transitions: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, Pedro [Arizona State Univ., Tempe, AZ (United States); Fortin, Elizabeth [Arizona State Univ., Tempe, AZ (United States); Opie, Saul [Arizona State Univ., Tempe, AZ (United States); Gautam, Sudrishti [Arizona State Univ., Tempe, AZ (United States); Gopalakrishnan, Ashish [Arizona State Univ., Tempe, AZ (United States); Lynch, Jenna [Arizona State Univ., Tempe, AZ (United States); Chen, Yan [Arizona State Univ., Tempe, AZ (United States); Loomis, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-01

    Activities for this grant included: 1) Development of dynamic impact experiments to probe strength and phase transition influence on dynamic deformation, 2) development of modern strength and phase aware simulation capabilities, 3) and post-processing of experimental data with simulation and closed form analytical techniques. Two different dynamic experiments were developed to probe material strengths in solid metals (largely copper and iron in this effort). In the first experiment a flyer plate impacts a flat target with an opposite rippled surface that is partially supported by a weaker window material. Post mortem analysis of the target sample showed a strong and repeatable residual plastic deformation dependence on grain orientation. Yield strengths for strain rates near 105 s-1 and plastic strains near ~50% were estimated to be around 180 to 240 MPa, varying in this range with grain orientation. Unfortunately dynamic real-time measurements were difficult with this setup due to diagnostic laser scattering; hence, an additional experimental setup was developed to complement these results. In the second set of experiments a rippled surface was ablated by a controlled laser pulsed, which launched a rippled shock front to an opposite initially flat diagnostic surface that was monitored in real-time with spatially resolved velocimetry techniques, e.g., line VISAR in addition to Transient Imaging Displacement Interferometry (TIDI) displacement measurements. This setup limited the displacements at the diagnostic surface to a reasonable level for TIDI measurements (~ less than one micrometer). These experiments coupled with analytical and numerical solutions provided evidence that viscous and elastic deviatoric strength affect shock front perturbation evolution in clearly different ways. Particularly, normalized shock front perturbation amplitudes evolve with viscosity (η) and perturbation wavelength (λ) as η/λ, such that increasing viscosity

  17. Fusion Bead Procedure for Nuclear Forensics Employing Synthetic Enstatite to Dissolve Uraniferous and Other Challenging Materials Prior to Laser Ablation Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Reading, David G; Croudace, Ian W; Warwick, Phillip E

    2017-06-06

    There is an increasing demand for rapid and effective analytical tools to support nuclear forensic investigations of seized or suspect materials. Some methods are simply adapted from other scientific disciplines and can effectively be used to rapidly prepare complex materials for subsequent analysis. A novel sample fusion method is developed, tested, and validated to produce homogeneous, flux-free glass beads of geochemical reference materials (GRMs), uranium ores, and uranium ore concentrates (UOC) prior to the analysis of 14 rare earth elements (REE) via laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The novelty of the procedure is the production of glass beads using 9 parts high purity synthetic enstatite (MgSiO 3 ) as the glass former with 1 part of sample (sample mass ∼1.5 mg). The beads are rapidly prepared (∼10 min overall time) by fusing the blended mixture on an iridium strip resistance heater in an argon-purged chamber. Many elements can be measured in the glass bead, but the rare earth group in particular is a valuable series in nuclear forensic studies and is well-determined using LA-ICP-MS. The REE data obtained from the GRMs, presented as chondrite normalized patterns, are in very good agreement with consensus patterns. The UOCs have comparable patterns to solution ICP-MS methods and published data. The attractions of the current development are its conservation of sample, speed of preparation, and suitability for microbeam analysis, all of which are favorable for nuclear forensics practitioners and geochemists requiring REE patterns from scarce or valuable samples.

  18. Some economic aspects of the conversion of raw materials into final products

    Energy Technology Data Exchange (ETDEWEB)

    Pick, H J [Univ. of Aston, Birmingham, Eng.; Becker, P E

    1978-01-01

    In a previous paper Pick and Becker analyzed the direct and indirect relations between energy and the ''physical structure'' materials used by the engineering and construction industries. The present paper provides a more general description of materials conversion from natural resources to final products. The cost of raw materials, only some 30 percent of which come from the developing countries, accounts for a relatively small proportion of final product costs, the remaining product costs arising from the progressive application of labor, capital, energy, etc. Emphasis is placed on the complete interdependence of the inputs to manufacturing; a change in any one having implications for the remainder. Materials substitution, while in principle providing an adaptive mechanism to change, also has implications for a wide range of factors of production and for social and industrial issues such as regional employment, the demand for specific trades and professions, for research and development and for industrial structure and capital investment. Full allowance for this interdependence needs to be an integral part of effective long term policy formulation and of research and development planning.

  19. Study of materials for use in final deposits of radioactive waste

    International Nuclear Information System (INIS)

    Amaral, A.F.; Tello, C.C.O.

    2011-01-01

    Clays are used in repositories (final deposits of radioactive waste) due to their radionuclide sorption and soil waterproofing capacities. The objectives of this work are to research and develop tests of characterization relevant to the use of clays in repositories, to characterize national clays and to assemble a database with information on the suppliers and the tests that were done. Results are shown for the mineral identification test, for the determination of the normal Proctor compaction curve, size distribution, cationic exchange capacity, specific surface, and others, for two materials. Such information will allow the selection of the best among these materials for use in the backfill and in other applications, besides indicating the most reliable test for estimating characteristics of different materials. (author)

  20. Study of hydrological and geochemical data on materials for the final cover of subsurface storage sites

    International Nuclear Information System (INIS)

    Sauter, M.M.; Barres, M.; Faby, J.

    1987-01-01

    The European Research program includes studies on highly watertight materials likely to sait the final cover of low-level and intermediate-level waste disposal. The experimental equipment is composed of a 26 sq. m collector placed on an inclined plane, just below the material to be tested and connected by means of a gutter with a measuring room where the infiltration waters flow rate is steadily measured. On the surface of the tumulus, a 300 sq.m inclined plane permits the measure of the running off water. The recording raingauge completes the device. Water vapour pressures are measured at different depths within the material. Total watercontents are registered along vertical profils using a special neutron logging tool. Numerous physico-chemical measures are carried out on the infiltration and running off waters: pH, Eh, temperature, dissolved oxygen, conductivity, turbidity and major anions and cations. Two materials have been tested with this device: - weathered schists; Compacted clay. The first material showed that, on average over the six months period of measurements, the overall rainfall brokedown into 11% running waters, 13% infiltration and 76% evaporation because infiltration accounts for a large part of rainfall. It resulted in a complete saturation of the material during certain periods of the year. Humidity measurements performed at different places pointed out large heterogeneities inside the material. It is worth noting that, despite some problems due to calibration, the whole instrumentation located in the measuring room worked rather well and permitted to demonstate the bad qualities of the material. The second material was subsequently covered by a 20 cm thick layer made of a mixture of sand in order to regularize water infiltration under the soil vegetation constituted by a special grass growing

  1. The 2016-2018 National Plan of Management of Radioactive Materials and Wastes. Final report

    International Nuclear Information System (INIS)

    2017-01-01

    A first document contains the final version of the French National Plan of Management of Radioactive Materials and Wastes (PNGMDR) for the period 2016-2018: principles and objectives (presentation of radioactive materials and wastes, principles to be taken into account to define pathways of management of radioactive wastes, legal and institutional framework, information transparency), the management of radioactive materials (context and challenges, management pathways, works on fast breeder reactors of fourth generation), assessment and perspectives of existing pathways of management of radioactive wastes (management of historical situations, management of residues of mining and sterile processing, management of waste with a high natural radioactivity, management of very short life waste, of very low activity wastes, and low and medium activity wastes), needs and perspectives regarding management processes to be implemented for the different types of radioactive wastes. Appendices to this document contain: a recall of the content of previous PNGMDR since 2007, a synthesis of realisations and researches performed abroad, research orientations for the concerned period, and international agreement on spent fuel and radioactive waste management. A second document, released by the ASN, proposes an environmental and strategic assessment of the plan. A third one and a fourth one contain the opinion of the Environmental Authority on the plan preliminary focus and the answer to the Environmental Authority by the ASN. Finally, a synthesis of the remarks made by the public about the PNGMDR and the answers to these remarks conclude the document

  2. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    International Nuclear Information System (INIS)

    Seto, Takafumi; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto

    2006-01-01

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism

  3. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Takafumi, E-mail: t.seto@aist.go.jp; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto [National Institute of Advanced Industrial Science and Technology (AIST), Research Consortium for Synthetic Nano-Function Materials Project (SYNAF) (Japan)

    2006-08-15

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism.

  4. Final-impression techniques and materials for making complete and removable partial dentures.

    Science.gov (United States)

    Jayaraman, Srinivasan; Singh, Balendra P; Ramanathan, Balasubramanian; Pazhaniappan Pillai, Murukan; MacDonald, Laura; Kirubakaran, Richard

    2018-04-04

    Endentulism is relatively common and is often treated with the provision of complete or partial removable dentures. Clinicians make final impressions of complete dentures (CD) and removable partial dentures (RPD) using different techniques and materials. Applying the correct impression technique and material, based on an individual's oral condition, improves the quality of the prosthesis, which may improve quality of life. To assess the effects of different final-impression techniques and materials used to make complete dentures, for retention, stability, comfort, and quality of life in completely edentulous people.To assess the effects of different final-impression techniques and materials used to make removable partial dentures, for stability, comfort, overextension, and quality of life in partially edentulous people. Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 22 November 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) (Cochrane Register of Studies, to 22 November 2017), MEDLINE Ovid (1946 to 22 November 2017), and Embase Ovid (21 December 2015 to 22 November 2017). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on language or publication status when searching the electronic databases, however the search of Embase was restricted by date due to the Cochrane Centralised Search Project to identify all clinical trials and add them to CENTRAL. We included randomised controlled trials (RCTs) comparing different final-impression techniques and materials for treating people with complete dentures (CD) and removable partial dentures (RPD). For CD, we included trials that compared different materials or different techniques or both. In RPD for tooth-supported conditions, we included trials comparing the

  5. Femtosecond laser ablation of dentin

    International Nuclear Information System (INIS)

    Alves, S; Vilar, R; Oliveira, V

    2012-01-01

    The surface morphology, structure and composition of human dentin treated with a femtosecond infrared laser (pulse duration 500 fs, wavelength 1030 nm, fluences ranging from 1 to 3 J cm -2 ) was studied by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The average dentin ablation threshold under these conditions was 0.6 ± 0.2 J cm -2 and the ablation rate achieved in the range 1 to 2 µm/pulse for an average fluence of 3 J cm -2 . The ablation surfaces present an irregular and rugged appearance, with no significant traces of melting, deformation, cracking or carbonization. The smear layer was entirely removed by the laser treatment. For fluences only slightly higher than the ablation threshold the morphology of the laser-treated surfaces was very similar to the dentin fracture surfaces and the dentinal tubules remained open. For higher fluences, the surface was more porous and the dentin structure was partially concealed by ablation debris and a few resolidified droplets. Independently on the laser processing parameters and laser processing method used no sub-superficial cracking was observed. The dentin constitution and chemical composition was not significantly modified by the laser treatment in the processing parameter range used. In particular, the organic matter is not preferentially removed from the surface and no traces of high temperature phosphates, such as the β-tricalcium phosphate, were observed. The achieved results are compatible with an electrostatic ablation mechanism. In conclusion, the high beam quality and short pulse duration of the ultrafast laser used should allow the accurate preparation of cavities, with negligible damage of the underlying material. (paper)

  6. Experimental investigation of interface conditions between oxidic melt and ablating concrete during MCCI by means of simulating material experiments: the Artemis program

    Energy Technology Data Exchange (ETDEWEB)

    Veteau, J.M. [Commissariat a l' Energie Atomique, DEN/DTN/SE2T/LPTM, 17 rue des Martyrs 38 - Grenoble cedex 9 (France)

    2005-07-01

    Full text of publication follows: In the frame work of R and D on Severe Accidents in PWR plants, an estimation by codes of time of basemat melt-through by Corium is required. For this, the heat flux distribution along the cavity wall must be properly modelled. Hence the knowledge of the heat transfer coefficient as well as the temperature at the interface between the melt and the solid become key issues. Phase diagram of the melt and composition governs the interface temperature which controls, at least partly, the thickness of the Corium crust formed on the molten concrete. Crust behaviour (time evolution of thickness, mechanical interaction with gas) implies a release mode of molten concrete in Corium which in turn alters the melt composition. Clearly, the molten corium-concrete interaction (MCCI) phenomenon is the result of a strong coupling between physico-chemistry and thermohydraulics. The main goal of the first test series of the Artemis program is to make a link between the interface temperature and the physico-chemistry of the melt (phase diagram) through tests conducted with simulating materials and to provide an insight on the existence, the behaviour and the composition of the crust. This test series considers 1D MCCI using a non eutectic LiCl-BaCl{sub 2} mixture poured at 1000 deg. C in a cylindrical test section (internal diameter 0.3 m) to interact with the 0.35 m deep basemat made of the same salt mixture at the eutectic composition. This 'concrete' was especially manufactured with sintered granulates to allow gas flow from the bottom (argon), then simulating gas released by concrete in the reactor case. Constant power is applied in the pool with an helical coil and 1D MCCI is ensured by counterbalancing heat losses by controlled heating at the lateral walls and at the top of the test section. Concrete ablation is followed from the output of 45 0.5 mm diameter thermocouples. An instrumented rod periodically investigates the temperature

  7. Experimental investigation of interface conditions between oxidic melt and ablating concrete during MCCI by means of simulating material experiments: the Artemis program

    International Nuclear Information System (INIS)

    Veteau, J.M.

    2005-01-01

    Full text of publication follows: In the frame work of R and D on Severe Accidents in PWR plants, an estimation by codes of time of basemat melt-through by Corium is required. For this, the heat flux distribution along the cavity wall must be properly modelled. Hence the knowledge of the heat transfer coefficient as well as the temperature at the interface between the melt and the solid become key issues. Phase diagram of the melt and composition governs the interface temperature which controls, at least partly, the thickness of the Corium crust formed on the molten concrete. Crust behaviour (time evolution of thickness, mechanical interaction with gas) implies a release mode of molten concrete in Corium which in turn alters the melt composition. Clearly, the molten corium-concrete interaction (MCCI) phenomenon is the result of a strong coupling between physico-chemistry and thermohydraulics. The main goal of the first test series of the Artemis program is to make a link between the interface temperature and the physico-chemistry of the melt (phase diagram) through tests conducted with simulating materials and to provide an insight on the existence, the behaviour and the composition of the crust. This test series considers 1D MCCI using a non eutectic LiCl-BaCl 2 mixture poured at 1000 deg. C in a cylindrical test section (internal diameter 0.3 m) to interact with the 0.35 m deep basemat made of the same salt mixture at the eutectic composition. This 'concrete' was especially manufactured with sintered granulates to allow gas flow from the bottom (argon), then simulating gas released by concrete in the reactor case. Constant power is applied in the pool with an helical coil and 1D MCCI is ensured by counterbalancing heat losses by controlled heating at the lateral walls and at the top of the test section. Concrete ablation is followed from the output of 45 0.5 mm diameter thermocouples. An instrumented rod periodically investigates the temperature and the position

  8. Transarterial embolization (TAE) as add-on to percutaneous radiofrequency ablation (RFA) for the treatment of renal tumors: Review of the literature, overview of state-of-the-art embolization materials and further perspective of advanced image-guided tumor ablation

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, C.M., E-mail: christof.sommer@med.uni-heidelberg.de [Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg (Germany); Clinic for Diagnostic and Interventional Radiology, Klinikum Stuttgart, Katharinenhospital, Stuttgart (Germany); Pallwein-Prettner, L., E-mail: leo.pallwein-prettner@bhs.at [Department of Diagnostic and Interventional Radiology, Krankenhaus der Barmherzigen Schwestern Linz, Linz (Austria); Vollherbst, D.F., E-mail: dominik@vollherbst.de [Clinic for Radiology, Minimally-Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Heilbronn (Germany); Seidel, R., E-mail: roland.seidel@uks.eu [Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg/Saar (Germany); Rieder, C., E-mail: christian.rieder@mevis.fraunhofer.de [Fraunhofer MEVIS, Institute for Medical Image Computing, Bremen (Germany); Radeleff, B.A., E-mail: boris.radeleff@med.uni-heidelberg.de [Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg (Germany); Kauczor, H.U., E-mail: hu.kauczor@med.uni-heidelberg.de [Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg (Germany); Wacker, F., E-mail: wacker.frank@mh-hannover.de [Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover (Germany); Richter, G.M., E-mail: g.richter@klinikum-stuttgart.de [Clinic for Diagnostic and Interventional Radiology, Klinikum Stuttgart, Katharinenhospital, Stuttgart (Germany); Bücker, A., E-mail: arno.buecker@uks.eu [Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg/Saar (Germany); Rodt, T., E-mail: rodt.thomas@mh-hannover.de [Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover (Germany); and others

    2017-01-15

    Highlights: • TAE as add-on to percutaneous RFA is feasible, safe, and very effective. • State-of-the-art embolization materials include tightly-size-calibrated microspheres. • MWA, cryoablation and IRE are TA systems beyond RFA. • Visible beads rank among the most promising innovative embolization materials. • Software-based solutions will be increasingly important for treatment guidance. - Abstract: Percutaneous radiofrequency ablation (RFA) for the treatment of stage I renal cell carcinoma has recently gained significant attention as the now available long-term and controlled data demonstrate that RFA can result in disease-free and cancer-specific survival comparable with partial and/or radical nephrectomy. In the non-controlled single center trials, however, the rates of treatment failure vary. Operator experience and ablation technique may explain some of the different outcomes. In the controlled trials, a major limitation is the lack of adequate randomization. In case reports, original series and overview articles, transarterial embolization (TAE) before percutaneous RFA was promising to increase tumor control and to reduce complications. The purpose of this study was to systematically review the literature on TAE as add-on to percutaneous RFA for renal tumors. Specific data regarding technique, tumor and patient characteristics as well as technical, clinical and oncologic outcomes have been analyzed. Additionally, an overview of state-of-the-art embolization materials and the radiological perspective of advanced image-guided tumor ablation (TA) will be discussed. In conclusion, TAE as add-on to percutaneous RFA is feasible and very effective and safe for the treatment of T1a tumors in difficult locations and T1b tumors. Advanced radiological techniques and technologies such as microwave ablation, innovative embolization materials and software-based solutions are now available, or will be available in the near future, to reduce the limitations of

  9. Final Report: Photo-Directed Molecular Assembly of Multifunctional Inorganic Materials

    Energy Technology Data Exchange (ETDEWEB)

    B.G. Potter, Jr.

    2010-10-15

    This final report details results, conclusions, and opportunities for future effort derived from the study. The work involved combining the molecular engineering of photoactive Ti-alkoxide systems and the optical excitation of hydrolysis and condensation reactions to influence the development of the metal-oxygen-metal network at the onset of material formation. Selective excitation of the heteroleptic alkoxides, coupled with control of alkoxide local chemical environment, enabled network connectivity to be influenced and formed the basis for direct deposition and patterning of Ti-oxide-based materials. The research provided new insights into the intrinsic photoresponse and assembly of these complex, alkoxide molecules. Using a suite of electronic, vibrational, and nuclear spectroscopic probes, coupled with quantum chemical computation, the excitation wavelength and fluence dependence of molecular photoresponse and the nature of subsequent hydrolysis and condensation processes were probed in pyridine-carbinol-based Ti-alkoxides with varied counter ligand groups. Several methods for the patterning of oxide material formation were demonstrated, including the integration of this photoprocessing approach with conventional, dip-coating methodologies.

  10. Properties of container and backfill materials for the final disposal of highly radioactive fission products

    International Nuclear Information System (INIS)

    Mirschinka, V.

    1983-11-01

    The qualifications of six metallic alloys to serve as canister materials for an in-can glass smelting process were studied. These alloys are: N 6 1.4864 (X 12NiCrSi3616, Thermax 16/36), No. 2.4816 (NiCr15Fe, Inconel 600), No. 2.4610 (Hastelloy C4), No. 2.4778 (UMCO50), No. 1.5415 (15MO3), No. 1.1005 (ZSH-Spezial). The mechanical properties of any of the six materials at high temperatures were found to be sufficient. The chemical interactions between glass and metal were investigated by glass smelting tests and electron microprobe analyses, showing that chromium as an alloying element of the crucible material may affect the quality of the glass product by causing inhomogeneities and a violent blistering in the glass matrix. The resistance against corrosion by concentrated salt solutions under elevated pressure and temperature similar to final depository conditions was tested showing that the presence of a bentonite suspension in the salt solution reduces the corrosion attack of the metal significantly. Diffusion experiments of salt solutions doted with radioactive isotopes Na-22 and Cl-36 as tracer substances were made to show the retardation behaviour of salt ions in compacted bentonite. However, a long-term barrier effect of the bentonite against salt ion diffusion could not be verified. (orig./HOE)

  11. X-ray ablation measurements and modeling for ICF applications

    International Nuclear Information System (INIS)

    Anderson, A.T.

    1996-09-01

    X-ray ablation of material from the first wall and other components of an ICF (Inertial Confinement Fusion) chamber is a major threat to the laser final optics. Material condensing on these optics after a shot may cause damage with subsequent laser shots. To ensure the successful operation of the ICF facility, removal rates must be predicted accurately. The goal for this dissertation is to develop an experimentally validated x-ray response model, with particular application to the National Ignition Facility (NIF). Accurate knowledge of the x-ray and debris emissions from ICF targets is a critical first step in the process of predicting the performance of the target chamber system. A number of 1-D numerical simulations of NIF targets have been run to characterize target output in terms of energy, angular distribution, spectrum, and pulse shape. Scaling of output characteristics with variations of both target yield and hohlraum wall thickness are also described. Experiments have been conducted at the Nova laser on the effects of relevant x-ray fluences on various materials. The response was diagnosed using post-shot examinations of the surfaces with scanning electron microscope and atomic force microscope instruments. Judgments were made about the dominant removal mechanisms for each material. Measurements of removal depths were made to provide data for the modeling. The finite difference ablation code developed here (ABLATOR) combines the thermomechanical response of materials to x-rays with models of various removal mechanisms. The former aspect refers to energy deposition in such small characteristic depths (∼ micron) that thermal conduction and hydrodynamic motion are significant effects on the nanosecond time scale. The material removal models use the resulting time histories of temperature and pressure-profiles, along with ancillary local conditions, to predict rates of surface vaporization and the onset of conditions that would lead to spallation

  12. Chemotoxic materials in a final repository for high-level radioactive wastes. CHEMOTOX concept for defence in depth concerning ground water protection from chemotoxic materials in a final high-level waste repository

    International Nuclear Information System (INIS)

    Alt, Stefan; Sailer, Michael; Schmidt, Gerhard; Herbert, Horst-Juergen; Krone, Juergen; Tholen, Marion

    2009-01-01

    The disposal of high-level radioactive wastes in a final repository includes chemotoxic materials. The chemotoxic materials are either part of the radioactive material or part of the packaging material, or the structures within the repository. In the frame of the licensing procedure it has to be demonstrated that no hazardous pollution of the ground water or other disadvantageous changes can occur. The report describes the common project of the Oeko-Institut e.V., the DBE Technology GmbH and the GRS mbH concerning the possible demonstration of a systematic protection of the groundwater against chemotoxic materials in case of a final high-level-radioactive waste repository in the host materials salt and clay stone.

  13. Application of the final flotation waste for obtaining the glass-ceramic materials

    Directory of Open Access Journals (Sweden)

    Cocić Mira

    2017-01-01

    Full Text Available This work describes the investigation of the final flotation waste (FFW, originating from the RTB Bor Company (Serbia, as the main component for the production of glass-ceramic materials. The glass-ceramics was synthesized by the sintering of FFW, mixtures of FFW with basalt (10%, 20%, and 40%, and mixtures of FFW with tuff (20% and 40%. The sintering was conducted at the different temperatures and with the different time duration in order to find the optimal composition and conditions for crystallization. The increase of temperature, from 1100 to 1480°C, and sintering time, from 4 to 6h resulted in a higher content of hematite crystal in the obtained glass-ceramic (up to 44%. The glass-ceramics sintered from pure FFW (1080°C/36h has good mechanical properties, such as high propagation speed (4500 m/s and hardness (10800 MPa, as well as very good thermal stability. The glass-ceramics obtained from mixtures shows weaker mechanical properties compared to that obtained from pure FFW. The mixtures of FFW with tuff have a significantly lower bulk density compared to other obtained glass-ceramics. Our results indicate that FFW can be applied as a basis for obtaining the construction materials. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 176010: Composition, genesis, application, and contribution to the environmental sustainability

  14. Cladding and Structural Materials for Advanced Nuclear Energy Systems Final Report

    International Nuclear Information System (INIS)

    Was, G.S.; Allen, T.R.; Ila, D.; Levi, C.; Morgan, D.; Motta, A.; Wang, L.; Wirth, B.

    2011-01-01

    The goal of this consortium is to address key materials issues in the most promising advanced reactor concepts that have yet to be resolved or that are beyond the existing experience base of dose or burnup. The research program consists of three major thrusts: (1) high-dose radiation stability of advanced fast reactor fuel cladding alloys, (2) irradiation creep at high temperature, and (3) innovative cladding concepts embodying functionally-graded barrier materials. This NERI-Consortium final report represents the collective efforts of a large number of individuals over a period of three and a half years and included 9 PIs, 4 scientists, 3 post-docs and 12 students from the seven participating institutions and 8 partners from 5 national laboratories and 3 industrial institutions (see table). University participants met semi-annually and participants and partners met annually for meetings lasting 2-3 days and designed to disseminate and discuss results, update partners, address outstanding issues and maintain focus and direction toward achieving the objectives of the program. The participants felt that this was a highly successful program to address broader issues that can only be done by the assembly of a range of talent and capabilities at a more substantial funding level than the traditional NERI or NEUP grant. As evidence of the success, this group, collectively, has published 20 articles in archival journals and made 57 presentations at international conferences on the results of this consortium.

  15. Fracture in Phenolic Impregnated Carbon Ablator

    Science.gov (United States)

    Agrawal, Parul; Chavez-Garcia, Jose; Pham, John

    2013-01-01

    This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  16. Final Report: Scintillator Materials for Medical Applications, December 1, 1997 - November 30, 1999

    International Nuclear Information System (INIS)

    Lempicki, A.; Brecher, C.; Wojtowicz, A.J.; Szupryczynski, P.

    2000-01-01

    From the very beginning of our program we regarded the understanding of the scintillation mechanism as our primary mission. If in addition this understanding could lead to the discovery of a new material, so much the better. When we began this work some nine years ago, the theoretical basis for the scintillation phenomenon was in disarray. The initial and final steps were reasonably well characterized, but there was no consensus on the crucial intermediate, the transfer of energy from the lattice to the emitting center. In the over 40 publications that resulted from this program, we demonstrated that despite the highly insulating nature of the hosts and the great magnitude of the band gap, the primary means of transport is through mobile charge carriers and their sequential capture by the emitting center. Although radical at the time, this picture is now generally accepted throughout the field. Subsequently, we also recognized the critical role that trapping centers localized at lattice defects can play in the process, not merely as passive sources of loss but as active participants in the kinetics. In this sense shallow traps can wreak more havoc than deep ones, impeding the rate by which carriers can reach the emitting centers and seriously slowing the resulting decay. And we established low-temperature thermoluminescence as a comprehensive tool for quantizing these effects. As for new and better materials, our work also had an impact. We were among the first to recognize the potential of LuAlO 3 (lutetium aluminum perovskite, or LuAP) as a detector for PET applications. Although this material has not supplanted LuSiO 5 (lutetium oxysilicate, or LSO) in terms of light output or absence of afterglow, LuAP still exhibits by far the highest figure of merit (light output divided by decay time) of any scintillator material currently known. Our work has also bought into stark view the dismaying realization of just how improbable it is that a material will ever be found

  17. Pulmonary ablation: a primer.

    Science.gov (United States)

    Roberton, Benjamin J; Liu, David; Power, Mark; Wan, John M C; Stuart, Sam; Klass, Darren; Yee, John

    2014-05-01

    Percutaneous image-guided thermal ablation is safe and efficacious in achieving local control and improving outcome in the treatment of both early stage non-small-cell lung cancer and pulmonary metastatic disease, in which surgical treatment is precluded by comorbidity, poor cardiorespiratory reserve, or unfavorable disease distribution. Radiofrequency ablation is the most established technology, but new thermal ablation technologies such as microwave ablation and cryoablation may offer some advantages. The use of advanced techniques, such as induced pneumothorax and the popsicle stick technique, or combining thermal ablation with radiotherapy, widens the treatment options available to the multidisciplinary team. The intent of this article is to provide the reader with a practical knowledge base of pulmonary ablation by concentrating on indications, techniques, and follow-up. Copyright © 2014 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Femtosecond laser ablation of carbon reinforced polymers

    International Nuclear Information System (INIS)

    Moreno, P.; Mendez, C.; Garcia, A.; Arias, I.; Roso, L.

    2006-01-01

    Interaction of intense ultrashort laser pulses (120 fs at 795 nm) with polymer based composites has been investigated. We have found that carbon filled polymers exhibit different ultrafast ablation behaviour depending on whether the filling material is carbon black or carbon fiber and on the polymer matrix itself. The shape and dimensions of the filling material are responsible for some geometrical bad quality effects in the entrance and inner surfaces of drilled microholes. We give an explanation for these non-quality effects in terms of fundamentals of ultrafast ablation process, specifically threshold laser fluences and material removal paths. Since carbon fiber reinforced polymers seemed particularly concerned, this could prevent the use of ultrafast ablation for microprocessing purposes of some of these materials

  19. Laser ablation in analytical chemistry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  20. Fast Surface Temperature Measurement of Teflon Propellant in Pulsed Ablative Discharges Using HgCdTe Photovoltaic Cells (PREPRINT)

    National Research Council Canada - National Science Library

    Antonsen, Erik L; Burton, Rodney L; Reed, Garrett A; Spanjers, Gregory G

    2006-01-01

    ... ablative discharge with Teflon(TradeMark) as the ablated material. Analysis is used to derive a governing equation for detector output voltage for materials with wavelength dependent emissivity...

  1. Simulation of the Press Hardening Process and Prediction of the Final Mechanical Material Properties

    Science.gov (United States)

    Hochholdinger, Bernd; Hora, Pavel; Grass, Hannes; Lipp, Arnulf

    2011-08-01

    Press hardening is a well-established production process in the automotive industry today. The actual trend of this process technology points towards the manufacturing of parts with tailored properties. Since the knowledge of the mechanical properties of a structural part after forming and quenching is essential for the evaluation of for example the crash performance, an accurate as possible virtual assessment of the production process is more than ever necessary. In order to achieve this, the definition of reliable input parameters and boundary conditions for the thermo-mechanically coupled simulation of the process steps is required. One of the most important input parameters, especially regarding the final properties of the quenched material, is the contact heat transfer coefficient (IHTC). The CHTC depends on the effective pressure or the gap distance between part and tool. The CHTC at different contact pressures and gap distances is determined through inverse parameter identification. Furthermore a simulation strategy for the subsequent steps of the press hardening process as well as adequate modeling approaches for part and tools are discussed. For the prediction of the yield curves of the material after press hardening a phenomenological model is presented. This model requires the knowledge of the microstructure within the part. By post processing the nodal temperature history with a CCT diagram the quantitative distribution of the phase fractions martensite, bainite, ferrite and pearlite after press hardening is determined. The model itself is based on a Hockett-Sherby approach with the Hockett-Sherby parameters being defined in function of the phase fractions and a characteristic cooling rate.

  2. Laser ablation principles and applications

    CERN Document Server

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  3. Tailings neutralization and other alternatives for immobilizing toxic materials in tailings. Final report

    International Nuclear Information System (INIS)

    Opitz, B.E.; Sherwood, D.R.; Dodson, M.E.; Serne, R.J.

    1985-09-01

    This document, ''Tailing Neutralization and Other Alternatives for Immobilizing Toxic Materials in Tailings,'' is the final report in a series of six. It summarizes research completed since the beginning of the project. Three subtasks are included: Subtask A - Neutralization Methods Selection; Subtask B - Laboratory Analysis; and Subtask C - Field Testing. Subtask A reviews treatment processes from other industries to evaluate whether current waste technology from other fields is applicable to the uranium industry. This task also identifies several reagents that were tested for their effectiveness in treating acidic tailings and tailings solution in order to immobilize the contaminants associated with the acid waste. Subtask B describes the laboratory batch and column treatment studies performed on solid waste tailings and tailings solutions over the course of the project. The evaluation of several reagents identified in Subtask A was based on three criteria: (1) treated effluent water quality; (2) neutralized sludge handling and hydraulic properties; and (3) reagent costs and acid neutralizing efficiency. Subtask C presents a field demonstration plan that will evaluate the effectiveness, costs, and benefits of neutralizing acidic uranium mill tailings solution to reduce the potential leaching of toxic trace metals, radionuclides, and macro ions from a tailings impoundment. Details of the related research can be found in the documents listed in the ''Previous Documents in Series.'' 43 refs., 9 figs., 46 tabs

  4. Hard tissue ablation with a spray-assisted mid-IR laser

    International Nuclear Information System (INIS)

    Kang, H W; Rizoiu, I; Welch, A J

    2007-01-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment

  5. Hard tissue ablation with a spray-assisted mid-IR laser

    Science.gov (United States)

    Kang, H. W.; Rizoiu, I.; Welch, A. J.

    2007-12-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  6. Radiofrequency ablation with epinephrine injection: in vivo study in normal pig livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Jung; Lee, Dong Hoo; Lim, Joo Won; Ko, Young Tae; Kim, Youn Wha; Choi, Bong Keun [Kyung Hee University Medical Center, Seoul (Korea, Republic of)

    2007-07-15

    We wanted to evaluate whether epinephrine injection prior to radiofrequency (RF) ablation can increase the extent of thermally mediated coagulation in vivo normal pig liver tissue. Eighteen RF ablation zones were created in six pigs using a 17-gauge internally cooled electrode under ultrasound guidance. Three RF ablation zones were created in each pig under three conditions: RF ablation alone, RF ablation after the injection of 3 mL of normal saline, and RF ablation after the injection of 3 mL of epinephrine (1:10,000 solution). After the RF ablation, we measured the short and long diameters of the white zones in the gross specimens. Three of the RF ablations were technically unsuccessful; therefore, measurement of white zone was finally done in 15 RF ablation zones. The mean short and long diameters of the white zone of the RF ablation after epinephrine injection (17.2 mm {+-} 1.8 and 20.8 mm {+-} 3.7, respectively) were larger than those of RF ablation only (10 mm {+-} 1.2 and 12.2 mm {+-} 1.1, respectively) and RF ablation after normal saline injection (12.8 mm {+-} 1.5 and 15.6 mm {+-} 2.5, respectively) ({rho} < .05). RF ablation with epinephrine injection can increase the diameter of the RF ablation zone in normal pig liver tissue.

  7. Effect of liquid film on near-threshold laser ablation of a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongsik; Oh, Bukuk; Lee, Ho

    2004-01-30

    Enhancement of material ablation and photoacoustic excitation by an artificially deposited liquid film in the process of pulsed-laser ablation (PLA) is investigated in this paper. Ablation threshold, ablation rate, surface topography, and acoustic-transient emission are also measured for dry and liquid film-coated surfaces. The physical mechanisms of enhanced ablation in the liquid-assisted process are analyzed at relatively low laser fluences with negligible effect of laser-produced plasma. Particularly, correlation between material ablation and acoustic-transient generation is examined. In the experiment, aluminum thin-films and bulk foils are ablated by Q-switched Nd:YAG laser pulses. The dependence of ablation rate and laser-induced topography on liquid film thickness and chemical composition is also examined. Photoacoustic emission is measured by the probe beam deflection method utilizing a CW HeNe laser and a microphone. In comparison with a dry ablation process, the liquid-assisted ablation process results in substantially augmented ablation efficiency and reduced ablation threshold. The results indicate that both increased laser-energy coupling, i.e., lowered reflectance, and amplified photoacoustic excitation in explosive vaporization of liquid are responsible for the enhanced material ablation.

  8. Micrometeoroid ablation simulated in the laboratory

    Science.gov (United States)

    Sternovsky, Zoltan; Thomas, Evan W.; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Munsat, Tobin L.; Plane, John M. C.

    2016-04-01

    A facility is developed to simulate the ablation of micrometeoroids in laboratory conditions, which also allows measuring the ionization probability of the ablated material. An electrostatic dust accelerator is used to generate iron and meteoric analog particles with velocities 10-50 km/s. The particles are then introduced into a cell filled with nitrogen, air or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where the partial or complete ablation of the particle occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path, allowing thus the study of the temporal resolution of the process. A simple ablation model is used to match the observations. For completely ablated particles the total collected charge directly yields the ionization efficiency for. The measurements using iron particles in N2 and air are in relatively good agreement with earlier data. The measurements with CO2 and He gases, however, are significantly different from the expectations.

  9. Laser ablation of microparticles for nanostructure generation

    International Nuclear Information System (INIS)

    Waraich, Palneet Singh; Tan, Bo; Venkatakrishnan, Krishnan

    2011-01-01

    The process of laser ablation of microparticles has been shown to generate nanoparticles from microparticles; but the generation of nanoparticle networks from microparticles has never been reported before. We report a unique approach for the generation of nanoparticle networks through ablation of microparticles. Using this approach, two samples containing microparticles of lead oxide (Pb 3 O 4 ) and nickel oxide (NiO), respectively, were ablated under ambient conditions using a femtosecond laser operating in the MHz repetition rate regime. Nanoparticle networks with particle diameter ranging from 60 to 90 nm were obtained by ablation of microparticles without use of any specialized equipment, catalysts or external stimulants. The formation of finer nanoparticle networks has been explained by considering the low pressure region created by the shockwave, causing rapid condensation of microparticles into finer nanoparticles. A comparison between the nanostructures generated by ablating microparticle and those by ablating bulk substrate was carried out; and a considerable reduction in size and narrowed size distribution was observed. Our nanostructure fabrication technique will be a unique process for nanoparticle network generation from a vast array of materials.

  10. 3D transient model to predict temperature and ablated areas during laser processing of metallic surfaces

    Directory of Open Access Journals (Sweden)

    Babak. B. Naghshine

    2017-02-01

    Full Text Available Laser processing is one of the most popular small-scale patterning methods and has many applications in semiconductor device fabrication and biomedical engineering. Numerical modelling of this process can be used for better understanding of the process, optimization, and predicting the quality of the final product. An accurate 3D model is presented here for short laser pulses that can predict the ablation depth and temperature distribution on any section of the material in a minimal amount of time. In this transient model, variations of thermal properties, plasma shielding, and phase change are considered. Ablation depth was measured using a 3D optical profiler. Calculated depths are in good agreement with measured values on laser treated titanium surfaces. The proposed model can be applied to a wide range of materials and laser systems.

  11. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    Science.gov (United States)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  12. Test and evaluation of computerized nuclear material accounting methods. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    In accordance with the definition of a Material Balance Area (MBA) as a well-defined geographical area involving an Integral operation, the building housing the BFS-1 and BFS-1 critical facilities is considered to consist of one MBA. The BFS materials are in the form of small disks clad in stainless steel and each disk with nuclear material has its own serial number. Fissile material disks in the BFS MBA can be located at three key monitoring points: BFS-1 facility, BFS-2 facility and main storage of BFS fissile materials (storage 1). When used in the BFS-1 or BFS-2 critical facilities, the fissile material disks are loaded in tubes (fuel rods) forming critical assembly cores. The following specific features of the BFS MBA should be taken into account for the purpose of computerized accounting of nuclear material: (1) very large number of nuclear material items (about 70,000 fissile material items); and (2) periodically very intensive shuffling of nuclear material items. Requirements for the computerized system are determined by basic objectives of nuclear material accounting: (1) providing accurate information on the identity and location of all items in the BFS material balance area; (2) providing accurate information on location and identity of tamper-indicating devices; (3) tracking nuclear material inventories; (4) issuing periodic reports; (5) assisting with the detection of material gains or losses; (6) providing a history of nuclear material transactions; (7) preventing unauthorized access to the system and data falsification. In August 1995, the prototype computerized accounting system was installed on the BFS facility for trial operation. Information on two nuclear material types was entered into the data base: weapon-grade plutonium metal and 36% enriched uranium dioxide. The total number of the weapon-grade plutonium disks is 12,690 and the total number of the uranium dioxide disks is 1,700

  13. Fundamentals of Composite Materials for Undergraduate Engineering--A Filmed Presentation. Final Report.

    Science.gov (United States)

    Busching, Herbert W.

    Curricula in undergraduate engineering have not adequately reflected present usage and knowledge of composite materials (types of rock and organic matter in which structurally dissimilar materials are combined). Wide usage of composites is expected to increase the importance of this class of materials and the need for more substantive exposure to…

  14. Review of the management of materials research and development in the Department of Energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Materials Working Group of DOE findings and recommendations of a management nature to improve the handling of materials R and D within DOE are presented. The special role of materials in the development of new energy technologies is provided. (FS)

  15. Numerical Modeling of Ablation Heat Transfer

    Science.gov (United States)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  16. Asbestos-Containing Materials in Schools; Final Rule and Notice. Part III: Environmental Protection Agency. 40 CFR Part 763.

    Science.gov (United States)

    Federal Register, 1987

    1987-01-01

    The Environmental Protection Agency (EPA) has issued a final rule under the Toxic Substance Control Act (TSCA) to require all local education agencies (LEAs) to identify asbestos-containing materials in their school buildings and take appropriate action to control release of asbestos fibers. The LEAs are required to describe their activities in…

  17. Radiofrequency ablation in dermatology

    Directory of Open Access Journals (Sweden)

    Sachdeva Silonie

    2007-01-01

    Full Text Available Radiofreqeuency ablation is a versatile dermatosurgical procedure used for surgical management of skin lesions by using various forms of alternating current at an ultra high frequency. The major modalities in radiofrequency are electrosection, electrocoagulation, electrodessication and fulguration. The use of radiofrequency ablation in dermatosurgical practice has gained importance in recent years as it can be used to treat most of the skin lesions with ease in less time with clean surgical field due to adequate hemostasis and with minimal side effects and complications. This article focuses on the major tissue effects and factors influencing radiofrequency ablation and its application for various dermatological conditions.

  18. Build green and conventional materials off-gassing tests: A final report

    Energy Technology Data Exchange (ETDEWEB)

    Piersol, P.

    1995-12-31

    Build Green is a certification program that will identify and label building products with a known recycled content. The introduction of these recycled materials has raised the concern that they may emit more indoor pollutants than conventional materials. This study addresses that concern by analyzing Build Green and conventional materials to assess their potential for off-gassing. The study involved emission tests of 37 materials including carpets, carpet undercushions, structural lumber, foundation material, insulation, drywall, fiberboard, counter tops, and cabinetry. The results presented in this report include comparisons of Build Green and conventional materials in terms of emissions of volatile organic compounds and formaldehyde, the material loading ratio, and discussion of the specific sources of the emissions.

  19. Planned investigations for packing materials for a waste package in a salt repository: [Final report

    International Nuclear Information System (INIS)

    Shade, J.W.; Bunnell, L.R.; Thornton, T.A.

    1987-10-01

    A considerable number of materials have been either proposed or investigated as packing materials for nuclear waste package systems. Almost always the expandable clays, such as the smectites contained in commercial bentonites, have received the most attention when their primary function is to retard groundwater flow. Other materials including zeolites, metals, and dessicants are considered as special-purpose additives. Materials that tend to hydrolyze and lead to porosity reduction, such as silicates, oxides, and sulfates, have also been suggested as packing materials. All these types of materials are also considered as components of tailored mixtures to achieve a broad range of packing material performance. Some of these materials are reviewed, along with proposed candidate materials, with respect to the properties required to function in a salt repository. The investigation of packing materials is composed of five studies which are discussed below. Initial candidates will consist of calcium hydroxide, a sodium silicate, and a cement-gypsum mixture in addition to the reference crushed salt. Consequently these tests will be necessary to determine properties of individual components and to optimize properties of mixtures. 13 refs., 7 figs., 1 tab

  20. Advisory group meeting on safeguards related to final disposal of nuclear material in waste and spent fuel

    International Nuclear Information System (INIS)

    1988-07-01

    This paper is primarily concerned with Section 11 of INFCIRC/153 which provides for the possible termination of safeguards based on a determination that the nuclear material in question has been consumed, has been diluted, or has become practicably irrecoverable. Two distinctly different categories of nuclear material have been suggested for possible termination of safeguards based on a determination that the nuclear material has become practicably irrecoverable: One relates to a variety of low concentration waste materials, meaning thereby materials which the State or plant operator considers to be of questionable economic recoverability and the other relates to the spent fuel placed in facilities described as ''permanent repositories'' which are at least claimed to represent ''final disposal'' facilities and are candidates for a possible determination of practicably irrecoverable. 26 refs, tabs

  1. Suitability of a tumour-mimicking material for the evaluation of high-intensity focused ultrasound ablation under magnetic resonance guidance

    International Nuclear Information System (INIS)

    Pichardo, S; Kivinen, J; Curiel, L; Melodelima, D

    2013-01-01

    This study tests the suitability of a tumour-mimic for targeting magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU). An agarose-based tumour-mimic was injected as a warm solution that polymerized in tissue. Thermal characteristics and acoustic absorption of the mimic were observed within the values reported for tissues. The relaxation times at 3T were 1679 ± 15 ms for T1 and 41 ± 1 ms for T2. The mimic was clearly visible on in vivo images. With lower contrast the tumour-mimic was visible on T2-weighted images, where it was possible to detect the ablated tissue surrounding the mimic after sonications. HIFU sonications were performed to induce thermal ablation on and around the mimic using a Sonalleve system (Philips). MR thermometry maps were performed during HIFU. The average temperature when the sonication was done at the tumour-mimic was 67.6 ± 8.0 °C in vitro and 67.6 ± 5.0 °C in vivo. The average temperature for sonications at tissues was 68.4 ± 8.7 °C in vitro (liver) and 66.0 ± 2.6 °C in vivo (muscle), with no significant difference between tissue and tumour-mimic (p > 0.05). The tumour-mimic behaviour when using MR-guided HIFU was similar to tissues, showing that this mimic can be used as an alternative to tumour models for validating MR-guided HIFU devices targeting. (paper)

  2. Ablative skin resurfacing.

    Science.gov (United States)

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. A thermal model for nanosecond pulsed laser ablation of aluminum

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-07-01

    Full Text Available In order to simulate the nanosecond pulsed laser ablation of aluminum, a novel model was presented for the target ablation and plume expansion. The simulation of the target ablation was based on one-dimensional heat conduction, taking into account temperature dependent material properties, phase transition, dielectric transition and phase explosion. While the simulation of the plume expansion was based on one-dimensional gas-dynamical equation, taking into account ionization, plume absorption and shielding. By coupling the calculations of the target ablation and plume expansion, the characteristics of the target and plume were obtained. And the calculated results were in good agreement with the experimental data, in terms of ablation threshold and depth within the fluence range of the tested laser. Subsequently, investigations were carried out to analyze the mechanisms of nanosecond pulsed laser ablation. The calculated results showed that the maximum surface temperature remained at about 90% of the critical temperature (0.9Tc due to phase explosion. Moreover, the plume shielding has significant effects on the laser ablation, and the plume shielding proportion increase as the laser fluence increasing. The ambient pressure belows 100 Pa is more suitable for laser ablation, which can obtained larger ablation depth.

  4. Study of nuclear material accounting. Final report, July 1, 1976--April 1, 1977

    International Nuclear Information System (INIS)

    Siri, W.E.; Gozani, T.; Maly, J.

    1977-04-01

    The following topics are discussed: hierarchy of accountability measurements; survey of analytical methods; accuracies of analytical methods for material accountability; and vulnerability of accountability measurements

  5. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  6. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    International Nuclear Information System (INIS)

    Geohegan, D.B.

    1994-01-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume

  7. Percutaneous Microwave Ablation of Renal Angiomyolipomas

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, Mircea, E-mail: mcristescu@uwhealth.org [University of Wisconsin, Department of Radiology (United States); Abel, E. Jason, E-mail: abel@urology.wisc.edu [University of Wisconsin, Department of Urology (United States); Wells, Shane, E-mail: swells@uwhealth.org; Ziemlewicz, Timothy J., E-mail: tziemlewicz@uwhealth.org [University of Wisconsin, Department of Radiology (United States); Hedican, Sean P., E-mail: hedican@surgery.wisc.edu [University of Wisconsin, Department of Urology (United States); Lubner, Megan G., E-mail: mlubner@uwhealth.org; Hinshaw, J. Louis, E-mail: jhinshaw@uwhealth.org; Brace, Christopher L., E-mail: cbrace@uwhealth.org; Lee, Fred T., E-mail: flee@uwhealth.org [University of Wisconsin, Department of Radiology (United States)

    2016-03-15

    PurposeTo evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML).Materials and MethodsFrom January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4–4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits.ResultsAll ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60–70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3–8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8 % (3.4–3.3 cm) and 1.7 % (27.5–26.3 cm{sup 3}), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9–47) demonstrated mean tumor diameter and volume decreases of 29 % (3.4–2.4 cm) and 47 % (27.5–12.1 cm{sup 3}), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation.ConclusionOur early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.

  8. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    Energy Technology Data Exchange (ETDEWEB)

    BRONOWSKI,DAVID R.

    2000-06-01

    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  9. Technical appendix for the special safeguards study on material control and accounting systems. Final report

    International Nuclear Information System (INIS)

    1975-01-01

    The appendixes contain information on alarm levels for detection of theft, computer simulation of theft detection capabilities, benefits and liabilities related to real-time material control, cost analysis, and impact of collocated facilities on the real-time material control concept

  10. Industry to Education Technology Transfer Program. Composite Materials--Personnel Development. Final Report.

    Science.gov (United States)

    Tomezsko, Edward S. J.

    A composite materials education program was established to train Boeing Helicopter Company employees in the special processing of new filament-reinforced polymer composite materials. During the personnel development phase of the joint Boeing-Penn State University project, an engineering instructor from Penn State completed a 5-month, full-time…

  11. Final versions of the initial package of classroom materials and guidelines

    NARCIS (Netherlands)

    Doorman, Michiel; Jonker, Vincent

    2014-01-01

    The main aim of the mascil Work Package 3 ‘classroom materials’ is to present guidelines and an online collection of teaching materials that encourage and support teachers to design their own classroom materials that connect IBL and the WoW in mathematics and science education.The collection

  12. Analysis and forecast of electrical distribution system materials. Final report. Volume III. Appendix

    Energy Technology Data Exchange (ETDEWEB)

    Love, C G

    1976-08-23

    These appendixes are referenced in Volume II of this report. They contain the detailed electrical distribution equipment requirements and input material requirements forecasts. Forecasts are given for three electric energy usage scenarios. Also included are data on worldwide reserves and demand for 30 raw materials required for the manufacture of electrical distribution equipment.

  13. Development of radiative-cooling materials. Final technical report: FY 1980-1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Work on research and development on glazing and selective emitter materials that will enhance day and night sky radiative cooling is described. The emphasis is on glazing development with a secondary interest in the appropriate selective emitter. The testing focused on the individual material properties. (MHR)

  14. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

    2007-12-31

    The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel

  15. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph

    2010-09-28

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  16. Final Project Report for ER15351 ''A Study of New Actinide Zintl Ions Materials''

    International Nuclear Information System (INIS)

    Peter K. Dorhout

    2007-01-01

    The structural chemistry of actinide main-group metal materials provides the fundamental basis for the understanding of structural coordination chemistry and the formation of materials with desired or predicted structural features. The main-group metal building blocks, comprising sulfur-group, phosphorus-group, or silicon-group elements, have shown versatility in oxidation state, coordination, and bonding preferences. These building blocks have allowed us to elucidate a series of structures that are unique to the actinide elements, although we can find structural relationships to transition metal and 4f-element materials. In the past year, we investigated controlled metathesis and self-propagating reactions between actinide metal halides and alkali metal salts of main-group metal chalcogenides such as K-P-S salts. Ternary plutonium thiophosphates have resulted from these reactions at low temperature in sealed ampules. we have also focused efforts to examine reactions of Th, U, and Pu halide salts with other alkali metal salts such as Na-Ge-S and Na-Si-Se and copper chloride to identify if self-propagating reactions may be used as a viable reaction to prepare new actinide materials and we prepared a series of U and Th copper chalcogenide materials. Magnetic measurements continued to be a focus of actinide materials prepared in our laboratory. We also contributed to the XANES work at Los Alamos by preparing materials for study and for comparison with environmental samples

  17. Comparison of the Three NIF Ablators

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Clark, D. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haan, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yi, S. A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zylstra, A. B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weber, C. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Indirect drive implosion experiments on NIF have now been performed using three different ablator materials: glow discharge polymer (GDP) or CH, high density carbon (HDC, which we also refer to as diamond), and sputtered beryllium (Be). It has been appreciated for some time that each of these materials has specific advantages and disadvantages as an ICF ablator.[1-4] In light of experiments conducted on NIF in the last few years, how do these ablators compare? Given current understanding, is any ablator more or less likely to reach ignition on NIF? Has the understanding of their respective strengths and weaknesses changed since NIF experiments began? How are those strengths and weaknesses highlighted by implosion designs currently being tested or planned for testing soon? This document aims to address these questions by combining modern simulation results with a survey of the current experimental data base. More particularly, this document is meant to fulfill an L2 Milestone for FY17 to “Document our understanding of the relative advantages and disadvantages of CH, HDC, and Be designs.” Note that this document does not aim to recommend a down-selection of the current three ablator choices. It is intended only to gather and document the current understanding of the differences between these ablators and thereby inform the choices made in planning future implosion experiments. This document has two themes: (i) We report on a reanalysis project in which post-shot simulations were done on a common basis for layered shots using each ablator. This included data from keyholes, 2D ConA, and so forth, from each campaign, leading up to the layered shots. (“Keyholes” are shots dedicated to measuring the shock timing in a NIF target, as described in Ref. 5. “2DConAs” are backlit implosions in which the symmetry of the implosion is measured between about half and full convergence, as described in Ref. 6.) This set of common-basis postshot simulations is compared to

  18. Materials for high-temperature hydrogen fluorine environments. Final report, June 1976-December 1978

    International Nuclear Information System (INIS)

    Holcombe, C.E. Jr.; Kovach, L.

    1981-03-01

    A determination has been made of the stability of 35 materials under high-temperature, fluorine rich, hydrogen fluoride torch testing. Refractory materials tested included 4 borides, 3 carbides, 3 nitrides, 12 oxides, 1 oxynitride, 1 sulfide, 10 metals, and carbon (10 types). Three materials distinctly performed better than nickel: lanthanum hexaboride, calcium hexaboride, and lanthanum silicon oxynitride. Of these, lanthanum hexaboride is the best candidate tested since it has an estimated upper use temperature > 1726 K, which is above the melting point and more than 300 K above the upper use temperature of nickel

  19. Evaluation and prediction of neutron embrittlement in reactor pressure vessel materials. Final report

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Menke, B.H.; Loss, F.J.; Watson, H.E.; Hiser, A.L.; Gray, R.A.

    1982-12-01

    This study evaluates the effects of fast neutron irradiation on the mechanical properties of eight nuclear reactor vessel materials. The materials include submerged arc weldments, three plates, and one forging. The materials are in the unirradiated and irradiated conditions with regard to tensile, Charpy impact, and static and dynamic fracture toughness properties. Correlations between impact and fracture toughness parameters are developed from the experimental results. The observed shifts in transition temperature and the drop in upper-shelf energy are compared with predictions developed from the Regulatory Guide 1.99.1 trend curves

  20. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    International Nuclear Information System (INIS)

    Martone, M.

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  1. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Martone, M [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  2. Quantum Simulations of Materials and Nanostructures (Q-SIMAN). Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Galli, Giulia [Univ. of California, Davis, CA (United States); Bai, Zhaojun [Univ. of California, Davis, CA (United States); Ceperley, David [Univ. of Illinois, Urbana, IL (United States); Cai, Wei [Stanford Univ., CA (United States); Gygi, Francois [Univ. of California, Davis, CA (United States); Marzari, Nicola [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Pickett, Warren [Univ. of California, Davis, CA (United States); Spaldin, Nicola [Univ. of California, Santa Barbara, CA (United States); Fattebert, Jean-Luc [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-16

    The focus of this SciDAC SAP (Scientific Application) is the development and use of quantum simulations techniques to understand materials and nanostructures at the microscopic level, predict their physical and chemical properties, and eventually design integrated materials with targeted properties. (Here the word ‘materials’ is used in a broad sense and it encompasses different thermodynamic states of matter, including solid, liquids and nanostructures.) Therefore our overarching goal is to enable scientific discoveries in the field of condensed matter and advanced materials through high performance computing.

  3. Materials for high-temperature hydrogen fluorine environments. Final report, June 1976-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Holcombe, C.E. Jr.; Kovach, L.

    1981-03-01

    A determination has been made of the stability of 35 materials under high-temperature, fluorine rich, hydrogen fluoride torch testing. Refractory materials tested included 4 borides, 3 carbides, 3 nitrides, 12 oxides, 1 oxynitride, 1 sulfide, 10 metals, and carbon (10 types). Three materials distinctly performed better than nickel: lanthanum hexaboride, calcium hexaboride, and lanthanum silicon oxynitride. Of these, lanthanum hexaboride is the best candidate tested since it has an estimated upper use temperature > 1726 K, which is above the melting point and more than 300 K above the upper use temperature of nickel.

  4. Steady ablation on the surface of a two-layer composite

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Shan [Chung Shan Institute of Science and Technology, P.O. Box 90008-15-3, Lung-Tan, Tao-Yuan, 32526 Taiwan (China)

    2005-12-01

    Discovered is a quasi-steady ablation phenomenon on the surface of a two-layer composite which is formed by a layer of ablative material and another layer of non-ablative substrate. Theoretical exact solutions of quasi-steady ablation rate, the associated temperature distribution and end-of-ablation time of this two-layer composite are derived. A criterion for the occurrence of quasi-steady ablation is presented also. A one-dimensional transient numerical model is developed to perform a number of numerical experiments and hence to verify the correctness of the above theoretical solutions for the current quasi-steady ablation phenomenon. Based on the current results, a new method of measuring the ablation (or sublimation) heat is also proposed. (author)

  5. Hazardous materials safety and security technology field operational test. Volume II, evaluation final report synthesis

    Science.gov (United States)

    2004-11-11

    The catastrophic events of September 11, 2001 and the ongoing war on terrorism have heightened the level of concern from Federal government officials and the transportation industry regarding the secure transport of hazardous materials (HAZMAT). Secu...

  6. Optimization and management of materials in earthwork construction : final report, April 2010.

    Science.gov (United States)

    2010-04-01

    As a result of forensic investigations of problems across Iowa, a research study was developed aimed at providing solutions to identified : problems through better management and optimization of the available pavement geotechnical materials and throu...

  7. High-resolution mapping and ablation of recurrent left lateral accessory pathway conduction

    Directory of Open Access Journals (Sweden)

    Francesco Solimene, MD

    2017-08-01

    Full Text Available Proper localization of the anatomical target during ablation of the accessory pathways (AP and the ability to detect clear AP potentials on the ablation catheter are crucial for successful AP ablation. We report a case of recurring AP conduction that was finally eliminated using a novel ablation catheter equipped with high-resolution mini-electrodes. Smaller and closer electrodes result in high mapping resolution with less signal averaging and cancellation effects. Owing to improved sensitivity, the new catheter seems effective in detecting fragmented and high frequency signals, thus allowing more effective radiofrequency application and improving ablation success.

  8. Mechanical behavior of a ceramic matrix composite material. M.S. Thesis Final Report

    Science.gov (United States)

    Grosskopf, Paul P.; Duke, John C., Jr.

    1991-01-01

    Monolithic ceramic materials have been used in industry for hundreds of years. These materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited. The existence of an imperfection in a monolithic ceramic on the order of several microns in size may be critical, resulting in catastrophic failure. To overcome this extreme sensitivity to small material imperfections, reinforced ceramic materials were developed. A ceramic matrix which has been reinforced with continuous fibers is not only less sensitive to microscopic flaws, but is also able to sustain significant damage without suffering catastrophic failure. A borosilicate glass reinforced with several layers of plain weave silicon carbide cloth (Nicalon) was studied. The mechanical testing which was performed included both flexural and tensile loading configurations. This testing was done not only to determine the material properties, but also to initiate a controlled amount of damage within each specimen. Several nondestructive testing techniques, including acousto-ultrasonics (AU), were performed on the specimens periodically during testing. The AU signals were monitored through the use of an IBM compatible personal computer with a high speed data acquisition board. Software was written which manipulates the AU signals in both the time and frequency domains, resulting in quantitative measures of the mechanical response of the material. The measured AU parameters are compared to both the mechanical test results and data from other nondestructive methods including ultrasonic C-scans and penetrant enhanced x ray radiography.

  9. FY98 Final Report Initial Interfacial Chemical Control for Enhancement of Composite Material Strength; TOPICAL

    International Nuclear Information System (INIS)

    GE Fryxell; KL Alford; KL Simmons; RD Voise; WD Samuels

    1999-01-01

    The U.S. Army Armament Research Development and Engineering Center (ARDEC) sponsored this research project to support the development of new self-assembled monolayer fiber coatings. These coatings can greatly increase the bond strength between the fiber and the resin matrix of a composite material. Composite ammunition components molded from such materials will exhibit higher strength than current materials, and will provide a major improvement in the performance of composites in military applications. Use of composite materials in military applications is desirable because of the lighter weight of the materials and their high strengths. The FY97 project investigated initial interfacial chemical control for enhancement of composite material strength. The core of the project was to modify the covalent interface of glass fibers (or other reinforcing fibers) to induce strong, uniform, defect-free adhesion between the fibers' surfaces and the polymer matrix. Installing a self-assembled monolayer tailored to the specific matrix resin accomplished this. Simply, the self-assembled monolayer modifies the fiber to make it appear to have the same chemical composition as the resin matrix. The self-assembled monolayer creates a receptive, hydrophobic interface that the thermoset resin (or polymer precursors) would wet more effectively, leading to a higher contact surface area and more efficient adhesion. The FY97 work phase demonstrated that it is possible to increase the adhesive strength, as well as increase the heat deflection temperature through the use of self-assembled monolayer

  10. Suitability of dredged material for reclamation of surface-mined land. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Van Luik, A.

    1979-12-01

    Eroding ridges of acidic coal-mine spoil in La Salle County, Illinois, were leveled to form a gently-sloped raised plateau. Four test plots were constructed: a control plot and three treatment plots that received a 0.9-m-thick cover of dredged material obtained from the Metropolitan Sanitary District of Greater Chicago. Two treatment plots received lime applications and all plots were seeded with a mixture of grasses. Pressure-vacuum soil water samplers were installed, in duplicate, at two levels in the control plot and at three levels in each treatment plot. The three levels in the treatment plots coincided with dredged material, the dredged-material mine-spoil interface, and the underlying mine spoil. Surface water, soil water, and groundwater were monitored for 29 water-quality parameters for one year. Rainfall, air temperature, runoff, and water-level elevation data were collected also. Detailed analysis of the data indicates that the dredged material used in this study does not adversely affect water quality; it supports abundant plant growth, lessens groundwater contamination, and controls acid runoff. The dredged material is judged to be a suitable material for use in reclamation of surface-mined land.

  11. Final environmental statement on the transportation of radioactive material by air and other modes

    International Nuclear Information System (INIS)

    1977-12-01

    An assessment is presented of the environmental impact from transportation of shipments of radioactive material into, within, and out of the United States. It is intended to serve as background material for a review by the United States Nuclear Regulatory Commission (NRC) of regulations dealing with transportation of radioactive materials. The impetus for such a review results not only from a general need to examine regulations to ensure their continuing consistency with the goal of limiting radiological impact to a level that is as low as reasonably achievable, but also from a need to respond to current national discussions of the safety and security aspects of nuclear fuel cycle materials. Chapters are included on regulations governing the transportation of radioactive materials, radiological effects, transport impact under normal conditions, impacts of transportation accidents, alternatives, and security and safeguards. A standard shipments model is also included along with a demographic model, excerpts from federal regulations, data on Pu, Population dose formulas, a list of radioactive material incidents, accident analysis methodology, and an analysis of risk assessment sensitivity

  12. Development & Optimization of Materials and Processes for a Cost Effective Photoelectrochemical Hydrogen Production System. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McFarland, Eric W

    2011-01-17

    The overall project objective was to apply high throughput experimentation and combinatorial methods together with novel syntheses to discover and optimize efficient, practical, and economically sustainable materials for photoelectrochemical production of bulk hydrogen from water. Automated electrochemical synthesis and photoelectrochemical screening systems were designed and constructed and used to study a variety of new photoelectrocatalytic materials. We evaluated photocatalytic performance in the dark and under illumination with or without applied bias in a high-throughput manner and did detailed evaluation on many materials. Significant attention was given to -Fe2O3 based semiconductor materials and thin films with different dopants were synthesized by co-electrodeposition techniques. Approximately 30 dopants including Al, Zn, Cu, Ni, Co, Cr, Mo, Ti, Pt, etc. were investigated. Hematite thin films doped with Al, Ti, Pt, Cr, and Mo exhibited significant improvements in efficiency for photoelectrochemical water splitting compared with undoped hematite. In several cases we collaborated with theorists who used density functional theory to help explain performance trends and suggest new materials. The best materials were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visual spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS). The photoelectrocatalytic performance of the thin films was evaluated and their incident photon

  13. Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold

    International Nuclear Information System (INIS)

    Upadhyay, Arun K.; Inogamov, Nail A.; Rethfeld, Baerbel; Urbassek, Herbert M.

    2008-01-01

    Ultrafast laser irradiation of solids may ablate material off the surface. We study this process for thin films using molecular-dynamics simulation and thermodynamic analysis. Both metals and Lennard-Jones (LJ) materials are studied. We find that despite the large difference in thermodynamical properties between these two classes of materials--e.g., for aluminum versus LJ the ratio T c /T tr of critical to triple-point temperature differs by more than a factor of 4--the values of the ablation threshold energy E abl normalized to the cohesion energy, ε abl =E abl /E coh , are surprisingly universal: all are near 0.3 with ±30% scattering. The difference in the ratio T c /T tr means that for metals the melting threshold ε m is low, ε m abl , while for LJ it is high, ε m >ε abl . This thermodynamical consideration gives a simple explanation for the difference between metals and LJ. It explains why despite the universality in ε abl , metals thermomechanically ablate always from the liquid state. This is opposite to LJ materials, which (near threshold) ablate from the solid state. Furthermore, we find that immediately below the ablation threshold, the formation of large voids (cavitation) in the irradiated material leads to a strong temporary expansion on a very slow time scale. This feature is easily distinguished from the acoustic oscillations governing the material response at smaller intensities, on the one hand, and the ablation occurring at larger intensities, on the other hand. This finding allows us to explain the puzzle of huge surface excursions found in experiments at near-threshold laser irradiation

  14. Probable approaches to develop particle beam energy drivers and to calculate wall material ablation with X ray radiation from imploded targets

    International Nuclear Information System (INIS)

    Kasuya, K.; Funatsu, M.; Saitoh, S.

    2001-01-01

    The first subject was the development of future ion beam driver with medium-mass ion specie. This may enable us to develop a compromised driver from the point of view of the micro-divergence angle and the cost. We produced nitrogen ion beams, and measured the micro-divergence angle on the anode surface. The measured value was 5-6mrad for the above beam with 300-400keV energy, 300A peak current and 50ns duration. This value was enough small and tolerable for the future energy driver. The corresponding value for the proton beam with higher peak current was 20-30mrad, which was too large. So that, the scale-up experiment with the above kind of medium-mass ion beam must be realized urgently to clarify the beam characteristics in more details. The reactor wall ablation with the implosion X-ray was also calculated as the second subject in this paper. (author)

  15. LDRD final report on nanocomposite materials based on hydrocarbon-bridged siloxanes

    Energy Technology Data Exchange (ETDEWEB)

    Ulibarri, T.A.; Bates, S.E.; Loy, D.A.; Jamison, G.M.; Emerson, J.A.; Curro, J.G.

    1997-05-01

    Silicones [polydimethylsiloxane (PDMS) polymers] are environmentally safe, nonflammable, weather resistant, thermally stable, low T{sub g} materials which are attractive for general elastomer applications because of their safety and their performance over a wide temperature range. However, PDMS is inherently weak due to its low glass transition temperature (T{sub g}) and lack of stress crystallization. The major goal of this project was to create a family of reinforced elastomers based on silsesquioxane/PDMS networks. Polydimethylsiloxane-based (PDMS) composite materials containing a variety of alkylene-arylene-bridged polysilsesquioxanes were synthesized in order to probe short chain and linkage effects in bimodal polymer networks. Monte Carlo simulations on the alkylene-bridged silsesquioxane/PDMS system predicted that the introduction of the silsesquioxane short chains into the long chain PDMS network would have a significant reinforcing effect on the elastomer. The silsesquioxane-PDMS networks were synthesized and evaluated. Analysis of the mechanical properties of the resulting materials indicated that use of the appropriate silisesquioxane generated materials with greatly enhanced properties. Arylene and activated alkylene systems resulted in materials that showed superior adhesive strength for metal-to-metal adhesion.

  16. Final Report on Trends in R and D in New Materials Technology in Australia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-04-09

    Research in the field of new or advanced materials in Australia is conducted in a strong, diverse, independent university segment; a small but high quality government segment; and a very small private/commercial segment which is dominated by a few, large corporations. Australia's research and development activities relatively small in scale are away from new or advanced materials, and are oriented toward process improvement and cost reduction. Basic studies will dwindle in the future and efforts in cooperation with foreign countries will stay. The Commonwealth Scientific and Industrial Research Organization (CSIRO) is a governmental establishment situated in Melbourne and is the largest research institute for new or advanced materials in Australia. It has plans to study ceramics, composite materials, intermetallic compounds, catalysts, etc. Its budget is two thirds from the government and the rest from aboard or from contracts with joint ventures. Among other research institutes, the Defence Science and Technology Organization (DSTO) and the Australian Nuclear Science and Technology Organisation (ANSTO) are to be named. Semi-governmental corporations for example The Australian and Overseas Telecommunications Corporation (AOTC) and 44 universities are also engaged in some study of materials. (NEDO)

  17. Final Report on Trends in R and D in New Materials Technology in Australia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-04-09

    Research in the field of new or advanced materials in Australia is conducted in a strong, diverse, independent university segment; a small but high quality government segment; and a very small private/commercial segment which is dominated by a few, large corporations. Australia's research and development activities relatively small in scale are away from new or advanced materials, and are oriented toward process improvement and cost reduction. Basic studies will dwindle in the future and efforts in cooperation with foreign countries will stay. The Commonwealth Scientific and Industrial Research Organization (CSIRO) is a governmental establishment situated in Melbourne and is the largest research institute for new or advanced materials in Australia. It has plans to study ceramics, composite materials, intermetallic compounds, catalysts, etc. Its budget is two thirds from the government and the rest from aboard or from contracts with joint ventures. Among other research institutes, the Defence Science and Technology Organization (DSTO) and the Australian Nuclear Science and Technology Organisation (ANSTO) are to be named. Semi-governmental corporations for example The Australian and Overseas Telecommunications Corporation (AOTC) and 44 universities are also engaged in some study of materials. (NEDO)

  18. Final Report, Materials for Industrial Heat Recovery Systems, Task 1 Improved Materials and Operation of Recuperators for Aluminum Melting Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, James R.; Sarma, Gorti B.; Thekdi, Arvind; Meisner Roberta A.; Phelps, Tony; Willoughby, Adam W.; Gorog, J. Peter; Zeh, John; Ningileri, Shridas; Liu, Yansheng; Xiao, Chenghe

    2007-09-30

    Production of aluminum is a very energy intensive process which is increasingly more important in the USA. This project concentrated on the materials issues associated with recovery of energy from the flue gas stream in the secondary industry where scrap and recycled metal are melted in large furnaces using gas fired burners. Recuperators are one method used to transfer heat from the flue gas to the air intended for use in the gas burners. By preheating this combustion air, less fuel has to be used to raise the gas temperature to the desired level. Recuperators have been successfully used to preheat the air, however, in many cases the metallic recuperator tubes have a relatively limited lifetime – 6 to 9 months. The intent of this project was to determine the cause of the rapid tube degradation and then to recommend alternative materials or operating conditions to prolong life of the recuperator tubes. The first step to understanding degradation of the tubes was to examine exposed tubes to identify the corrosion products. Analyses of the surface scales showed primarily iron oxides rather than chromium oxide suggesting the tubes were probably cycled to relatively high temperatures to the extent that cycling and subsequent oxide spalling reduced the surface concentration of chromium below a critical level. To characterize the temperatures reached by the tubes, thermocouples were mounted on selected tubes and the temperatures measured. During the several hour furnace cycle, tube temperatures well above 1000°C were regularly recorded and, on some occasions, temperatures of more than 1100°C were measured. Further temperature characterization was done with an infrared camera, and this camera clearly showed the variations in temperature across the first row of tubes in the four recuperator modules. Computational fluid dynamics was used to model the flow of combustion air in the tubes and the flue gas around the outside of the tubes. This modeling showed the

  19. Canister materials proposed for final disposal of high level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, E; Odoj, R; Merz, E [eds.

    1981-06-01

    The nuclear waste will be enclosed in corrosion resistant canisters. These will be deposited in repositories in geological formations, such as granite, basalt, clay, bedded or domed salt, or the sediments beneath the deep ocean floor. There the canisters will be exposed to groundwater, brine or seawater at an elevated temperature. Species formed by radiolysis may effect the corrosivity of the agent. The corrosion resistance of candidate canister materials is evaluated by corrosion tests and by thermodynamic and mass transport calculations. Examinations of ancient metal objects after long exposure in nature may give additional information. On the basis of the work carried out so far, the principal candidate canister materials are titanium materials, copper, and highpurity alumina.

  20. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials. Final Report

    International Nuclear Information System (INIS)

    Lindle, Dennis W.

    2011-01-01

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate 'real' waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  1. Material development for waste to energy plants. Overlay welding and refractory linings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Hansson, A.

    2011-02-15

    Waste is an extremely corrosive fuel. In order to recover a higher percentage of the energy in waste, waste incineration plants have developed from purely heat producing units to heat and power producing units. The change in concept results in higher material temperatures and thereby faster material degradation. As a result material failures have been observed in many waste incineration plants. The purpose of this project was to develop materials with higher resistance to the corrosive elements, in order to reduce the cost of maintenance, increase the availability, and increase the efficiency. The focus is on overlay welding and refractory linings. Inconel 625, alloy 50, alloy 686, and Super 625 offer equivalent corrosion protection at panel walls. 100% overlay performs better than 50% overlay. The corrosion morphology changes with increasing temperature from pitting and general corrosion to pitting and selective corrosion (dendritic core or grain boundaries). The previously observed detrimental effect of Fe on the corrosion resistance was not confirmed. It probably depends on factors such as microstructure of the alloy and local metal temperature. Ni-overlay also reduces the corrosion rates on superheater tubes. However, the superheater environment is less aggressive than the water wall environment. Failure of refractory linings is linked to excess porosity, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, and thermal stress induced crack formation. Free water and not decomposition of hydrates causes spalling and cracking during the initial heating of refractory linings. Finite Element analysis confirms the stress levels between steel and refractory with the higher stress level at the top of the panel wall tube. A number of LCC mixes were formulated, adjusted and tested. Mixes with low open porosities ({approx} 10%) and state of the art resistance to KCl were achieved. (LN)

  2. Research and development activities at INE concerning corrosion of final repository container materials

    International Nuclear Information System (INIS)

    Kienzler, Bernhard

    2017-01-01

    The present work provides a historical overview of the research and development activities carried out at the (Nuclear) Research Center Karlsruhe (today KIT) since the beginning of the 1980s on the corrosion of materials which might be suitable for construction of containers for highly radioactive wastes. The report relates almost exclusively to the work performed by Dr. Emmanuel Smailos, who elaborated the corrosion of various materials at the Institute for Nuclear Waste Disposal (INE). The requirements for the containers and materials, which were subject to changes in time, are presented. The changes were strongly influenced by the changed perception of the use of nuclear energy. The selection of the materials under investigations, the boundary conditions for the corrosion experiments and the analytical methods are described. Results of the corrosion of the materials such as finegrained steel, Hastelloy C4, nodular cast iron, titanium-palladium and copper or copper-nickel alloys in typical salt solutions are summarized. The findings of special investigations, e.g. corrosion under irradiation or the influence of sulfide on the corrosion rates are shown. For construction of disposal canisters, experiments were conducted to determine the contact corrosion, the influence of the hydrogen embrittlement of Ti-Pd and fine-grained steels on the corrosion behavior as well as the corrosion behavior of welding and the influence of different welding processes with the resulting heat-affected zones on the corrosion behavior. The work was contributed to several European research programs and was well recognized in the USA. Investigations on the corrosion of steels in non-saline solutions and corrosion under interim storage conditions as well as under the expected conditions of the Konrad repository for low-level radioactive wastes are also described. In addition, the experiments on ceramic materials are presented and the results of the corrosion of Al 2 O 3 and ZrO 2 ceramics

  3. Test methods for the dynamic mechanical properties of polymeric materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baker, G.K.

    1980-06-01

    Various test geometries and procedures for the dynamic mechanical analysis of polymers employing a mechanical spectrometer have been evaluated. The methods and materials included in this work are forced torsional pendulum testing of Kevlar/epoxy laminates and rigid urethane foams, oscillatory parallel plate testing to determine the kinetics of the cure of VCE with Hylene MP, oscillatory compressive testing of B-3223 cellular silicone, and oscillatory tensile testing of Silastic E and single Kevlar filaments. Fundamental dynamic mechanical properties, including the storage and loss moduli and loss tangent of the materials tested, were determined as a function of temperature and sometimes of frequency.

  4. Executive summary of safeguards systems concepts for nuclear material transportation. Final report

    International Nuclear Information System (INIS)

    Baldonado, O.C.; Kevany, M.; Rodney, D.; Pitts, D.; Mazur, M.

    1977-09-01

    The U.S. Nuclear Regulatory Commission contracted with System Development Corporation to develop integrated system concepts for the safeguard of special strategic nuclear materials (SSNM), which include plutonium, uranium 233 and uranium 235 of at least 20 percent enrichment, against malevolent action during interfacility transport. This executive summary outlines the conduct and findings of the project. The study was divided into three major subtasks: (1) The development of adversary action sequences; (2) The assessment of the vulnerability of the transport of nuclear materials to adversary action; (3) The development of conceptual safeguards system design requirements to reduce vulnerabilities

  5. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    Science.gov (United States)

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  6. Nanoparticle fabrication of hydroxyapatite by laser ablation in water

    International Nuclear Information System (INIS)

    Musaev, O. R.; Wieliczka, D. M.; Wrobel, J. M.; Kruger, M. B.; Dusevich, V.

    2008-01-01

    Synthetic polycrystalline hydroxyapatite was ablated in water with 337 nm radiation from a UV nitrogen pulsed laser. According to transmission electron microscopy micrographs, the ablated particles were approximately spherical and had a size of ∼80 nm. Raman spectroscopic analysis demonstrated that particles had the same structure as the original crystal. X-ray photoelectron spectroscopy showed that the surface chemical composition was close to that of the original material. The characteristics of the ablated particles and estimations of the temperature rise of the hydroxyapatite surface under laser irradiation are consistent with the mechanism of explosive boiling being responsible for ablation. The experimental observations offer the basis for preparation of hydroxyapatite nanoparticles by laser ablation in water

  7. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D. E-mail: lumd@21cn.com; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up.

  8. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    International Nuclear Information System (INIS)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D.; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J.

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up

  9. Executive summary of the special safeguards study on material control and accounting systems. Final report

    International Nuclear Information System (INIS)

    1975-01-01

    This report assesses the feasibility of real-time systems applied to mixed-oxide fuel rod fabrication. Their interaction with other material control and accounting measures are considered. Economics, effectiveness, and acceptance factors are discussed. A cost-benefit evaluation is made and recommendations given for safeguards improvements

  10. Economic assessment of using nonmetallic materials in the direct utilization of geothermal energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cabibbo, S.V.; Ammerlaan, T.

    1979-02-01

    The cost effectiveness of nonmetallic materials in three direct-use geothermal applications was assessed. An extensive review of the available literature was conducted in order to ascertain those processes for which sufficient design and cost data had been published to permit this economic assessment to be made. Only three such processes could be found and they are discussed.

  11. Safety analysis report for packages: packaging of fissile and other radioactive materials. Final report

    International Nuclear Information System (INIS)

    Chalfant, G.G.

    1984-01-01

    The 9965, 9966, 9967, and 9968 packages are designed for surface shipment of fissile and other radioactive materials where a high degree of containment (either single or double) is required. Provisions are made to add shielding material to the packaging as required. The package was physically tested to demonstrate that it meets the criteria specified in USDOE Order No. 5480.1, chapter III, dated 5/1/81, which invokes Title 10, Code of Federal Regulations, Part 71 (10 CFR 71), Packing and Transportation of Radioactive Material, and Title 49, Code of Federal Regulations, Part 100-179, Transportation. By restricting the maximum normal operating pressure of the packages to less than 7 kg/cm 2 (gauge) (99 to 54 psig), the packages will comply with Type B(U) regulations of the International Atomic Energy Agency (IAEA) in its Regulations for the Safe Transport of Radioactive Materials, Safety Series No. 6, 1973 Revised Edition, and may be used for export and import shipments. These packages have been assessed for transport of up to 14.5 kilograms of uranium, excluding uranium-233, or 4.4 kilograms of plutonium metal, oxides, or scrap having a maximum radioactive decay energy of 30 watts. Specific maximum package contents are given. This quantity and the configuration of uranium or plutonium metal cannot be made critical by any combination of hydrogeneous reflection and moderation regardless of the condition of the package. For a uranium-233 shipment, a separate criticality evaluation for the specific package is required

  12. Guidelines for applying criteria to designate routes for transporting hazardous materials. Final report

    International Nuclear Information System (INIS)

    1989-07-01

    These guidelines were prepared to assist State and local officials in the analysis of alternate routes to be used by highway vehicles transportating hazardous materials. A methodology for assessing comparative risks of routing alternatives is discussed and demonstrated through a hypothetical example. Mathematical models are provided for situations in which measured local data may not be easily obtained or adequate

  13. Secondary materials: Engineering properties, environmental consequences, and social and economic impacts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Breslin, V.; Reaven, S.; Schwartz, M.; Swanson, L.; Zweig, M.; Bortman, M.; Schubel, J.

    1993-08-01

    This report investigates two secondary materials, plastic lumber made from mixed plastic waste, and cement blocks and structures made with incinerator ash. Engineering properties, environmental impacts, and energy costs and savings of these secondary materials are compared to standard lumber products and cement blocks. Market capacity and social acceptance of plastic lumber and stabilized ash products are analyzed. These secondary materials apparently have potential markets; however, their economic value is primarily that they will not take up landfill space. For plastic lumber and stabilized incinerator ash products, marine and highway construction seem ideal public works applications. Incinerator ash may be suitable to use in seawalls, jetties, fishing reefs, highway barriers, and roadbed applications. Docks, piers, highway sound barriers, parking stops, and park furniture may all be made from plastic lumber. To encourage public acceptance and improve the market potential of secondary materials, these activities could be beneficial: industry should emphasize developing useful, long-lived products; industry and governments should create product performance criteria; government should provide rigorous testing and demonstration programs; and government and industry should cooperate to improve public outreach and educational programs.

  14. A Model for Producing and Sharing Instructional Materials in Veterinary Medicine. Final Report.

    Science.gov (United States)

    Ward, Billy C.; Niec, Alphonsus P.

    This report describes a study of factors which appear to influence the "shareability" of audiovisual materials in the field of veterinary medicine. Specific factors addressed are content quality, instructional effectiveness, technical quality, institutional support, organization, logistics, and personal attitudes toward audiovisuals. (Author/CO)

  15. Final certification of two new reference materials for inorganic trace analysis

    International Nuclear Information System (INIS)

    Dybczynski, R.; Danko, B.; Kulisa, K.; Chajduk-Maleszewska, E.; Polkowska-Motrenko, H.; Samczynski, Z.; Szopa, Z.

    2004-01-01

    Two new biological reference materials for inorganic trace analysis: Tea Leaves (INCT-TL-1) and Mixed Polish Herbs (INCT-MPH-2) were prepared and certified at the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, employing the general strategy of the preparation and certification of CRMs developed in INCT. For both materials ca 40 kg of ground, sieved and carefully homogenized fraction of nominal particle size ≤ 67 mm was obtained. Homogeneity of the materials studied by INAA was shown to be good for samples of masses: m ≥ 100 mg but further investigations indicate that for most of elements these materials can be considered homogeneous down to masses of ca 5 mg or perhaps even lower. The certification was based on results of a worldwide interlaboratory comparison, in which 109 laboratories from 19 countries participated. The results of the analysis of a CRM, which was sent and analyzed along with intercomparison samples and the identity of which was known only to the organizers, were utilized in the process of certification. In addition selected elements were analyzed also by definitive methods based on RNAA. The content of more than 30 elements could be certified in each of the new CRMs. Analytical uncertainties and stability uncertainties were quantified to arrive at combined uncertainties of the certified values. In addition information values were provided for some other elements. (author)

  16. Fellowship Program in the Design and Development of Instructional Materials. Final Report.

    Science.gov (United States)

    Fleming, Malcolm; Pett, Dennis

    A two-year graduate program leading to a specialists's degree was administered to train individuals in the design of instructional materials for elementary, secondary, vocational and special education curricula. The program sought to achieve a multiplier effect by placing its graduates in positions in which they could help other educators to…

  17. Final Report of Optimization Algorithms for Hierarchical Problems, with Applications to Nanoporous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Stephen G.

    2013-11-11

    The research focuses on the modeling and optimization of nanoporous materials. In systems with hierarchical structure that we consider, the physics changes as the scale of the problem is reduced and it can be important to account for physics at the fine level to obtain accurate approximations at coarser levels. For example, nanoporous materials hold promise for energy production and storage. A significant issue is the fabrication of channels within these materials to allow rapid diffusion through the material. One goal of our research is to apply optimization methods to the design of nanoporous materials. Such problems are large and challenging, with hierarchical structure that we believe can be exploited, and with a large range of important scales, down to atomistic. This requires research on large-scale optimization for systems that exhibit different physics at different scales, and the development of algorithms applicable to designing nanoporous materials for many important applications in energy production, storage, distribution, and use. Our research has two major research thrusts. The first is hierarchical modeling. We plan to develop and study hierarchical optimization models for nanoporous materials. The models have hierarchical structure, and attempt to balance the conflicting aims of model fidelity and computational tractability. In addition, we analyze the general hierarchical model, as well as the specific application models, to determine their properties, particularly those properties that are relevant to the hierarchical optimization algorithms. The second thrust was to develop, analyze, and implement a class of hierarchical optimization algorithms, and apply them to the hierarchical models we have developed. We adapted and extended the optimization-based multigrid algorithms of Lewis and Nash to the optimization models exemplified by the hierarchical optimization model. This class of multigrid algorithms has been shown to be a powerful tool for

  18. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    International Nuclear Information System (INIS)

    Naus, Dan J.; Mattus, Catherine H.; Dole, Leslie Robert

    2007-01-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a 'primer' on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a 'bench-scale' laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the 'primer,' a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures

  19. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Mattus, Catherine H [ORNL; Dole, Leslie Robert [ORNL

    2007-06-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a "primer" on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a "bench-scale" laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the "primer," a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures.

  20. Final report on CCQM-K80: Comparison of value-assigned CRMs and PT materials: Creatinine in human serum

    Science.gov (United States)

    Camara, Johanna E.; Duewer, David L.; Gasca Aragon, Hugo; Lippa, Katrice A.; Toman, Blaza

    2013-01-01

    regression was used to establish the key comparison reference function (KCRF) relating the assigned values to the repeatability measurements. Parametric bootstrap Monte Carlo was used to estimate 95% level-of-confidence coverage intervals for the degrees of equivalence of materials, d +/- U95(d), and of the participating NMIs, D +/- U95(D). Because of the wide range of creatinine mass fraction in the materials, these degrees of equivalence are expressed in percent relative form: %d +/- U95(%d) and %D +/- U95(%D). On the basis of leave-one-out cross-validation, the assigned values for 16 of the 17 materials were deemed equivalent at the 95% level of confidence. These materials were used to define the KCRF. The excluded material was identified as having a marginally underestimated assigned uncertainty, giving it large and potentially anomalous influence on the KCRF. However, this material's %d of 1.4 +/- 1.5 indicates that it is equivalent with the other materials at the 95% level of confidence. The median |%d| for all 17 of the materials is 0.3 with a median U95(%d) of 1.9. All of these higher-order CRMs for creatinine in human serum are equivalent within their assigned uncertainties. The median |%D| for the participating NMIs is 0.3 with a median U95(%D) of 2.1. These results demonstrate that all participating NMIs have the ability to correctly value-assign CRMs and proficiency test materials for creatinine in human serum and similar measurands. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  1. A study of angular dependence in the ablation rate of polymers by nanosecond pulses

    Science.gov (United States)

    Pedder, James E. A.; Holmes, Andrew S.

    2006-02-01

    Measurements of ablation rate have traditionally been carried out only at normal incidence. However, in real-world applications ablation is often carried out at oblique angles, and it is useful to have prior knowledge of the ablation rate in this case. Detailed information about the angular dependence is also important for the development of ablation simulation tools, and can provide additional insight into the ablation mechanism. Previously we have reported on the angular dependence of direct-write ablation at 266 nm wavelength in solgel and polymer materials. In this paper we present a systematic study of angular dependence for excimer laser ablation of two polymer materials of interest for microfabrication: polycarbonate and SU8 photoresist. The results are used to improve simulation models to aid in mask design.

  2. Final report for NIF chamber dynamics studies

    International Nuclear Information System (INIS)

    Burnham, A; Peterson, P F; Scott, J M

    1998-01-01

    The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, and other chamber structures. This ablated vapor will be transported throughout the chamber, and will eventually condense and deposit on surfaces in the chamber, including the final optics debris shields. The research at the University of California at Berkeley relates primarily to the NIF chamber dynamics. The key design issues are the ablation of the chamber structures, transport of the vapor through the chamber and the condensation or deposition processes of those vaporized materials. An understanding of these processes is essential in developing a concept for protecting the fina optics debris shields from an excessive coating (> 10 A) of target debris and ablated material, thereby prolonging their lifetime between change-outs. At Berkeley, we have studied the physical issues of the ablation process and the effects of varying materials, the condensation process of the vaporized material, and design schemes that can lower the threat posed to the debris shields by these processes. The work or portions of the work completed this year have been published in several papers and a dissertation [l-5

  3. Procedural law problems with the construction of installations (plants) for the final storage of radioactive materials

    International Nuclear Information System (INIS)

    Hoppe, W.; Bunse, B.

    1984-01-01

    The underground exploration of the salt-mine Gorleben has to be permitted according to sec. 126 para. 3, 51 et seq. Federal Mining Act. There is, however, no need for carrying out a nuclear law procedure for the official approval of the plan because the construction of the exploration mine does not represent the construction of a final storage facility. The operation of exploration measures does not create legally relevant prejudices for procedures of the official approval of the plan according to Atomic Energy Law. (HP) [de

  4. Novel Contact Materials for Improved Performance CdTe Solar Cells Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rockett, Angus [Colorado School of Mines, Golden, CO (United States); Marsillac, Sylvain [Old Dominion Univ., Norfolk, VA (United States); Collins, Robert [Univesity of Toledo

    2018-04-15

    This program has explored a number of novel materials for contacts to CdTe solar cells in order to reduce the back contact Schottky barrier to zero and produce an ohmic contact. The project tested a wide range of potential contact materials including TiN, ZrN, CuInSe2:N, a-Si:H and alloys with C, and FeS2. Improved contacts were achieved with FeS2. As part of understanding the operation of the devices and controlling the deposition processes, a number of other important results were obtained. In the process of this project and following its conclusion it led to research that resulted in seven journal articles, nine conference publications, 13 talks presented at conferences, and training of eight graduate students. The seven journal articles were published in 2015, 2016, and 2017 and have been cited, as of March 2018, 52 times (one cited 19 times and two cited 11 times). We demonstrated high levels of doping of CIS with N but electrical activity of the resulting N was not high and the results were difficult to reproduce. Furthermore, even with high doping the contacts were not good. Annealing did not improve the contacts. A-Si:H was found to produce acceptable but unstable contacts, degrading even over a day or two, apparently due to H incorporation into the CdTe. Alloying with C did not improve the contacts or stability. The transition metal nitrides produced Schottky type contacts for all materials tested. While these contacts were found to be unsatisfactory, we investigated FeS2 and found this material to be effective and comparable to the best contacts currently available. The contacts were found to be chemically stable under heat treatment and preferable to Cu doped contacts. Thus, we demonstrated an improved contact material in the course of this project. In addition, we developed new ways of controlling the deposition of CdTe and other materials, demonstrated the nature of defects in CdTe, and studied the distribution of conductivity and carrier type in Cd

  5. LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dingreville, Remi Philippe Michel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Voth, Thomas Eugene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Furnish, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Material response to dynamic loading is often dominated by microstructure (grain structure, porosity, inclusions, defects). An example critically important to Sandia's mission is dynamic strength of polycrystalline metals where heterogeneities lead to localization of deformation and loss of shear strength. Microstructural effects are of broad importance to the scientific community and several institutions within DoD and DOE; however, current models rely on inaccurate assumptions about mechanisms at the sub-continuum or mesoscale. Consequently, there is a critical need for accurate and robust methods for modeling heterogeneous material response at this lower length scale. This report summarizes work performed as part of an LDRD effort (FY11 to FY13; project number 151364) to meet these needs.

  6. Corrosion behavior of copper-base materials in a gamma-irradiated environment; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yunker, W.H.

    1990-09-01

    Specimens of three copper-base materials were corrosion tested with gamma radiation exposure dose rates in the range of 1.9 {times} 10{sup 3} R/h to 4.9 {times} 10{sup 5} R/h. Materials used were pure copper, 7% aluminum bronze and 30% copper-nickel. Exposures were performed in moist air at 95{degree}C and 150{degree}C and liquid Well J-13 water at 95{degree}C, for periods of up to 16 months. Specimens were monitored for uniform weight loss, stress-induced corrosion and crevice corrosion. Specimen surfaces were examined visually at 10X magnification as well as by Auger Electron Spectroscopy, x-ray diffraction and metallography. Corrosion was not severe in any of the cases. In general, the pure copper was corroded most uniformly while the copper-nickel was the least reproducibly corroded. 11 refs, 40 figs., 15 tabs.

  7. Analysis of materials from MSFC LDEF experiments. Final report, February 1990-July 1991

    International Nuclear Information System (INIS)

    Johnson, R.B.

    1991-07-01

    In preparation for the arrival of the Long Duration Exposure Facility (LDEF) samples, a material testing and handling approach was developed for the evaluation of the materials. A configured lab was made ready for the de-integration of the LDEF experiments. The lab was prepared to clean room specifications and arranged with the appropriate clean benches, tables, lab benches, clean room tools, particulate counter, and calibrated and characterized analytical instrumentation. Clean room procedures were followed. Clean room attire and shoe cleaning equipment were selected and installed for those entering. Upon arrival of the shipping crates they were taken to the lab, logged in, and opened for examination. The sample trays were then opened for inspection and test measurements. The control sample measurements were made prior to placement into handling and transport containers for the flight sample measurements and analysis. Both LDEF flight samples and LDEF type materials were analyzed and tested for future flight candidate material evaluation. Both existing and newly purchased equipment was used for the testing and evaluation. Existing Space Simulation Systems had to be upgraded to incorporate revised test objectives and approaches. Fixtures such as special configured sample holders, water, power and LN2 feed-throughs, temperature measurement and control, front surface mirrors for reflectance and deposition, and UV grade windows had to be designed, fabricated, and installed into systems to achieve the revised requirements. New equipment purchased for LDEF analysis was incorporated into and/or used with existing components and systems. A partial list of this equipment includes a portable monochromator, enhanced UV System, portable helium leak detector for porosity and leak measurements, new turbo pumping system, vacuum coaster assembly, cryopumps, and analytical and data acquisition equipment

  8. Hydrogel modified materials surfaces for the ERDA artificial heart. Final report

    International Nuclear Information System (INIS)

    Hoffman, A.S.

    1978-01-01

    This report summarizes a series of studies on the suitability of silicone surgical grafts. The studies performed include an evaluation of vena cava rings to study thrombogenicity of grafted polymer coatings, the interaction of platelets with radiation grafted polymers, an in vitro evaluation of knitted dacron artery sections, the tissue compatibility of HEMA-EMA copolymers, the in vitro cell adhesion to polymeric materials, and the use of the ESCA technique for determining HEMA/EMA ratios

  9. Study of nuclear material accounting. Final report, July 1, 1976--April 1, 1977

    International Nuclear Information System (INIS)

    Siri, W.E.; Ruderman, H.; Winsen, J.; Dresher, M.

    1977-04-01

    The basic result of this study was to affirm the utility of material accounting as a tool for safeguards purposes. Periodic inventories and proper interpretation of material unaccounted for (MUF) can be an effective procedure for estimating diversion and taking necessary follow-on action. We have developed a new approach in this study based upon the theory of games that eliminates many of the deficiencies of the classical statistical hypothesis testing approach. This new approach explicitly considers a malevolent Diverter as a basic ingredient of the analysis. This permits a different and more effective interpretation of MUF for safeguards purposes. At the present time MUF interpretation for major nuclear facilities cannot adequately support statements about diversion. Consequently NRC does not rely solely on MUF analysis for such statements. Diversion statements now are primarily based upon other safeguards systems and information. However, the game theoretic approach can make the periodic inventory-MUF concept work better for safeguards. With its use, MUF data by itself can be useful in directly interpreting possible unauthorized diversion of special nuclear material

  10. A regulatory analysis on emergency preparedness for fuel cycle and other radioactive material licensees: Final report

    International Nuclear Information System (INIS)

    McGuire, S.A.

    1988-01-01

    The question this Regulatory Analysis sought to answer is: should the NRC impose additional emergency preparedness requirements on certain fuel cycle and other radioactive material licensees for dealing with accidents that might have offsite releases of radioactive material. To answer the question, we analyzed potential accidents for 15 types of fuel cycle and other radioactive material licensees. An appropriate plan would: (1) identify accidents for which protective actions should be taken by people offsite; (2) list the licensee's responsibilities for each type of accident, including notification of local authorities (fire and police generally); and (3) give sample messages for local authorities including protective action recommendations. This approach more closely follows the approach used for research reactors than for power reactors. The low potential offsite doses (acute fatalities and injuries not possible except possibly for UF 6 releases), the small areas where actions would be warranted, the small number of people involved, and the fact that the local police and fire departments would be doing essentially the same things they normally do, are all factors that tend to make a simple plan adequate. This report discusses the potentially hazardous accidents, and the likely effects of these accidents in terms of personnel danger

  11. Materials, process, product analysis of coal process technology. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, J. C.; Roig, R. W.; Loridan, A.; Leggett, N. E.; Capell, R. G.; Humpstone, C. C.; Mudry, R. N.; Ayres, E.

    1976-02-01

    The purpose of materials-process-product analysis is a systematic evaluation of alternative manufacturing processes--in this case processes for converting coal into energy and material products that can supplement or replace petroleum-based products. The methodological steps in the analysis include: Definition of functional operations that enter into coal conversion processes, and modeling of alternative, competing methods to accomplish these functions; compilation of all feasible conversion processes that can be assembled from combinations of competing methods for the functional operations; systematic, iterative evaluation of all feasible conversion processes under a variety of economic situations, environmental constraints, and projected technological advances; and aggregative assessments (economic and environmental) of various industrial development scenarios. An integral part of the present project is additional development of the existing computer model to include: A data base for coal-related materials and coal conversion processes; and an algorithmic structure that facilitates the iterative, systematic evaluations in response to exogenously specified variables, such as tax policy, environmental limitations, and changes in process technology and costs. As an analytical tool, the analysis is intended to satisfy the needs of an analyst working at the process selection level, for example, with respect to the allocation of RDandD funds to competing technologies.

  12. A regulatory analysis on emergency preparedness for fuel cycle and other radioactive material licensees: Final report

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, S.A.

    1988-01-01

    The question this Regulatory Analysis sought to answer is: should the NRC impose additional emergency preparedness requirements on certain fuel cycle and other radioactive material licensees for dealing with accidents that might have offsite releases of radioactive material. To answer the question, we analyzed potential accidents for 15 types of fuel cycle and other radioactive material licensees. An appropriate plan would: (1) identify accidents for which protective actions should be taken by people offsite; (2) list the licensee's responsibilities for each type of accident, including notification of local authorities (fire and police generally); and (3) give sample messages for local authorities including protective action recommendations. This approach more closely follows the approach used for research reactors than for power reactors. The low potential offsite doses (acute fatalities and injuries not possible except possibly for UF/sub 6/ releases), the small areas where actions would be warranted, the small number of people involved, and the fact that the local police and fire departments would be doing essentially the same things they normally do, are all factors that tend to make a simple plan adequate. This report discusses the potentially hazardous accidents, and the likely effects of these accidents in terms of personnel danger.

  13. Final Report, Fundamental Mechanisms of Transient States in Materials Quantified by DTEM

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, G. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McKeown, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-12-01

    At the project’s inception, there was growing evidence that the time domain for in situ observations of material evolution held great promise for allowing measurements to be made in never previously contemplated regimes. Also, central to the development of the project was the knowledge that phase transformations are of central importance to the development of materials microstructure and hence properties. We addressed this opportunity by developing a transmission electron microscope that could be operated in the pulsed mode (DTEM), with exposure times down to 20 ns and interframe times down to 20 ns in the nine-frame movie mode, designed with the intent of performing in situ experiments. This unprecedented capability allowed us to investigate structural phase transformations, intermetallic formation reactions, crystallization from the amorphous phase, rapid solidification of liquid metals, transformations in phase change materials, and catalyst nanoparticles. The ability of the electron microscope to create images with high spatial resolution allows for the accurate measurement of position. Common to all of the transformations mentioned above is the presence of a distinct interface between the old phase and the growing new phase. Measuring the position of the interface as a function of time, combined with the ability to count nucleation sites as a function of time, allowed for the exceptionally accurate measure of transformation kinetics. These measurements were used to guide and constrain the development of models and simulation methods for the classes of transformations studied.

  14. Final Report: Characterization of Hydrogen Adsorption in Carbon-Based Materials by NMR

    International Nuclear Information System (INIS)

    Wu, Yue; Kleinhammes, Alfred

    2011-01-01

    In support of DOE/EERE's Fuel Cell Technologies Program Hydrogen Sorption Center of Excellence (HSCoE), UNC conducted Nuclear Magnetic Resonance (NMR) measurements that contributed spectroscopic information as well as quantitative analysis of adsorption processes. While NMR based Langmuir isotherms produce reliable H2 capacity measurements, the most astute contribution to the center is provided by information on dihydrogen adsorption on the scale of nanometers, including the molecular dynamics of hydrogen in micropores, and the diffusion of dihydrogen between macro and micro pores. A new method to assess the pore width using H2 as probe of the pore geometry was developed and is based on the variation of the observed chemical shift of adsorbed dihydrogen as function of H2 pressure. Adsorbents designed and synthesized by the Center were assessed for their H2 capacity, the binding energy of the adsorption site, their pore structure and their ability to release H2. Feedback to the materials groups was provided to improve the materials properties. To enable in situ NMR measurements as a function of H2 pressure and temperature, a unique, specialized NMR system was designed and built. Pressure can be varied between 10-4 and 107 Pa while the temperature can be controlled between 77K and room temperature. In addition to the 1H investigation of the H2 adsorption process, NMR was implemented to measure the atomic content of substituted elements, e.g. boron in boron substituted graphitic material as well as to determine the local environment and symmetry of these substituted nuclei. The primary findings by UNC are the following: (1) Boron substituted for carbon in graphitic material in the planar BC3 configuration enhances the binding energy for adsorbed hydrogen; (2) Arrested kinetics of H2 was observed below 130K in the same boron substituted carbon samples that combine enhanced binding energy with micropore structure; (3) Hydrogen storage material made from activated PEEK

  15. Final report on CCQM-K79: Comparison of value-assigned CRMs and PT materials: Ethanol in aqueous matrix

    Science.gov (United States)

    Hein, Sebastian; Philipp, Rosemarie; Duewer, David L.; Gasca Aragon, Hugo; Lippa, Katrice A.; Toman, Blaza

    2013-01-01

    -weighted generalized distance regression was used to establish the key comparison reference function (KCRF) relating the assigned values to the repeatability measurements. On the basis of leave-one-out cross-validation, all of the assigned values for all 27 materials were deemed equivalent at the 95% level of confidence. These materials were used to define the KCRF. Parametric bootstrap Monte Carlo was used to estimate 95% level-of-confidence coverage intervals for the degrees of equivalence of materials, d +/- U95(d), and of the participating NMIs, D +/- U95(D). Because of the very wide range of ethanol mass fraction in the materials, these degrees of equivalence are expressed in percent relative form: %d +/- U95(%d) and %D +/- U95(%D). The median of the absolute values of the %D for the participating NMIs is less than 0.05% with a median U95(%D) of less than 1%. These results demonstrate that the participating NMIs have the ability to correctly value-assign CRMs and proficiency test materials for ethanol in aqueous media and similar measurands. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  16. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Final Report: Characterization of Hydrogen Adsorption in Carbon-Based Materials by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue; Kleinhammes, Alfred

    2011-07-11

    In support of DOE/EERE's Fuel Cell Technologies Program Hydrogen Sorption Center of Excellence (HSCoE), UNC conducted Nuclear Magnetic Resonance (NMR) measurements that contributed spectroscopic information as well as quantitative analysis of adsorption processes. While NMR based Langmuir isotherms produce reliable H2 capacity measurements, the most astute contribution to the center is provided by information on dihydrogen adsorption on the scale of nanometers, including the molecular dynamics of hydrogen in micropores, and the diffusion of dihydrogen between macro and micro pores. A new method to assess the pore width using H2 as probe of the pore geometry was developed and is based on the variation of the observed chemical shift of adsorbed dihydrogen as function of H2 pressure. Adsorbents designed and synthesized by the Center were assessed for their H2 capacity, the binding energy of the adsorption site, their pore structure and their ability to release H2. Feedback to the materials groups was provided to improve the materials’ properties. To enable in situ NMR measurements as a function of H2 pressure and temperature, a unique, specialized NMR system was designed and built. Pressure can be varied between 10-4 and 107 Pa while the temperature can be controlled between 77K and room temperature. In addition to the 1H investigation of the H2 adsorption process, NMR was implemented to measure the atomic content of substituted elements, e.g. boron in boron substituted graphitic material as well as to determine the local environment and symmetry of these substituted nuclei. The primary findings by UNC are the following: • Boron substituted for carbon in graphitic material in the planar BC3 configuration enhances the binding energy for adsorbed hydrogen. • Arrested kinetics of H2 was observed below 130K in the same boron substituted carbon samples that combine enhanced binding energy with micropore structure. • Hydrogen storage material made from

  18. Sealing properties of cement-based grout materials. Final report on the Rock sealing project

    International Nuclear Information System (INIS)

    Onofrei, M.; Gray, Malcolm; Shenton, B.; Walker, Brad; Pusch, R.; Boergesson, L.; Karnland, O.

    1992-10-01

    This report presents the results of laboratory studies of material properties. A number of different high performance grouts were investigated. The laboratory studies focused on mixtures of sulphate resistant portland cement, silica fume, superplasticizer and water. The ability of the thin films to self seal was confirmed. The surface reactions were studied in specimens of hardened grouts. The leach rates were found to vary with grout and water composition and with temperature. The short-term hydraulic and strength or properties of the hardened grout were determined. These properties were determined for the grouts both in-bulk and as thin-films. The hydraulic conductivities of the bulk, hardened material were found to be less than 10 -14 m/s. The hydraulic conductivities of thin films were found to be less than 10 -11 m/s. Broken, the hydraulic conductivity of the thin films could be increased to 10 -7 m/s. Examination of the leached grout specimens revealed a trend for the pore sizes to decrease with time. The propensity for fractured grouts to self seal was also observed in tests in which the hydraulic conductivity of recompacted mechanically disrupted, granulated grouts was determined. These tests showed that the hydraulic conductivity decreased rapidly with time. The decreases were associated with decreases in mean pore size. In view of the very low hydraulic conductivity it is likely that surface leaching at the grout/groundwater interface will be that major process by which bulk high-performance grouts may degrade. With the completion of the laboratory, in situ and modelling studies it appears that high-performance cement based grouts can be considered as viable materials for some repository sealing applications. Some of the uncertainties that remain are identified in this report. (54 refs.)

  19. High frequency dielectric reference materials BCR projekt 43. Final report of phase 1

    International Nuclear Information System (INIS)

    Chantry, G.

    1980-01-01

    The Group of High Frequency Specialists from Belgium, France, Germany, The Netherlands and the UK, was awarded contracts in 1975 to carry out a programme of measurements on the high frequency dielectric properties of materials. The object of this first phase of a projected three phase programme was to establish the reliability of existing methods of measurement and to examine the possibilities of specifying and producing some standard reference materials, both liquid and solid, which could be used for calibrating and checking the performance of industrial measurement equipment. The liquids chosen for the first phase were cyclohexane, cis and trans decalin, chlorobenzene and 0.1, 1, and 10% solutions of chlorobenzene in cyclohexane. Each group had a limited frequency range over which it could make meaningful measurements but there was sufficient overlap to ensure that all random and systematic errors could be quantitatively assayed. The real (epsilon') and imaginary (epsilon'') components of the complex permittivity for all the liquids were measured over the frequency range 10 - 3,000 GHz and for the two most lossy liquids (chlorobenzene and 10% chlorobenzene in cyclohexane) this range was extended downwards to one GHz. The programme established for the first time the possible experimental imprecisions to be expected in high frequency dielecric measurements and showed that the chosen liquids could be useful standard reference materials if sufficiently pure specimens could be obtained commercially at a reasonable price. The programme did however reveal an unexpected snag in that the liquids, especially cyclohexane, were found to be rather more liable to contamination than expected. Since cyclohexane is a very low-loss liquid, only a small amount of a lossy contaminant need be absorbed to make the observed loss increase dramatically. This report contains all the measured results in both tabular and graphical form and in addition full technical details are given of the

  20. Simulation of space radiation effects on polyimide film materials for high temperature applications. Final report

    International Nuclear Information System (INIS)

    Fogdall, L.B.; Cannaday, S.S.

    1977-11-01

    Space environment effects on candidate materials for the solar sail film are determined. Polymers, including metallized polyimides that might be suitable solar radiation receivers, were exposed to combined proton and solar electromagnetic radiation. Each test sample was weighted, to simulate the tension on the polymer when it is stretched into near-planar shape while receiving solar radiation. Exposure rates up to 16 times that expected in Earth orbit were employed, to simulate near-sun solar sailing conditions. Sample appearance, elongation, and shrinkage were monitored, noted, and documented in situ. Thermosetting polyimides showed less degradation or visual change in appearance than thermoplastics

  1. Final results of the FY'78 chemistry and materials science research program review

    International Nuclear Information System (INIS)

    Frazer, J.W.

    1977-01-01

    18 projects which were selected to be sponsored by ''Chemistry Research Program'' are summarized. These include: lasers for chemical analysis; multi-element analysis systems; spectroscopic analysis of surface passivation; non-aqueous titrimetry; materials damage prediction for fiber composites; safe high energy explosives; single photon absorption reaction chemistry; reaction in shock waves; cryogenic heavy hydrogen technology; acoustic emission; metallic alloy glasses; basic study of toughness in steel; static equation-of-state at 100 GPa; transuranium element research; nuclear structure research; neutron capture gamma measurements; x-ray fluorescence analysis; and pyrochemical investigation

  2. Spectral analysis of meteorites ablated in a wind tunnel

    Science.gov (United States)

    Drouard, A.; Vernazza, P.; Loehle, S.; Gattacceca, J.; Zander, T.; Eberhart, M.; Meindl, A.; Oefele, R.; Vaubaillon, J.; Colas, F.

    2017-09-01

    Recently and for the very first time, experiments simulating vaporization of a meteorite sample were performed in a wind tunnel near Stuttgart with the specific aim to record emission spectra of the vaporized material. Using a high enthalpy air plasma flow for modeling an equivalent air friction of an entry speed of about 10 km/s, three meteorite types (H, CM and HED) and two meteoritical analogues (basalt and argillite) were ablated and high resolution spectra were recorded simultaneously. After the identification of all atomic lines, we per- formed a detailed study of our spectra using two approaches: (i) by direct comparison of multiplet in- tensities between the samples and (ii) by computation of a synthetic spectrum to constrain some physical parameters (temperature, elemental abundance). Finally, we compared our results to the elemental composition of our samples and we determined how much compositional information can be retrieved for a given meteor using visible sectroscopy.

  3. Development and characterization of semiconductor materials by ion beams. Final report of a co-ordinated research project

    International Nuclear Information System (INIS)

    2002-06-01

    This CRP was recommended by the Consultants meeting on Ion Beam Techniques Applied to Semiconductor and Related Advanced Materials, held in April 1997 in Vienna. The consultants proposed to have a CRP in the field of application of MeV ion beams for the development and characterization of semiconductor materials. The CRP was approved and a first RCM was held in Vienna between 2-5 June 1998, in order to stimulate ideas and to promote collaborations among CRP participants. The goals and practical outcomes of the CRP were defined and several specific topics were identified including: optoelectronic characterization of semiconductor materials and devices by ion microbeams, characterization of thin films, defect transformations in semiconductors, light element analysis. One important recommendation was that sample exchanges among different laboratories be strongly encouraged. The participants presented individual activities on their projects, all subjects of research were identified and linked with approved individual projects. Collaboration among the participants was discussed and established. Some modifications to work plans were adopted. As proposed during the first RCM, the final RCM was held at the Ruder Boskovic Institute, Zagreb, Croatia, between 25 and 29 September 2000, with the purpose of reviewing/discussing the results achieved during the course of the CRP and to prepare a draft of the final report and associated publication. This document contains summary of the CRP and ten individual reports presented by participants. Each of the reports has been indexed separately

  4. Storage and final disposal of low and intermediate level radioactive waste materials in Europe

    International Nuclear Information System (INIS)

    Plecas, I.

    1997-01-01

    As of the end of 1995, 18 countries in Europe had electricity-generating nuclear power reactors in operation or under construction. There are currently 217 operating units, with a total capacity of about 165 GW e. In addition, there are 26 units under construction, which would bring the total electrical generating capacity to about 190 GW e.The management of radioactive waste is not a new concept. It has been safely practised for low and intermediate level wastes for almost 40 years. Today, after decades of research, development and industrial applications, it can be stated confidently that safe technological solutions for radioactive waste management exist. However, waste disposal as a whole waste management system is no longer a matter for scientists but requires co-operation with politicians, licensing authorities, industry and ultimately general public. The goal is unique: the protection of human health and the global environment against possible short term and (very) long term effects of radioactive materials. Disposal of waste materials in a repository without the intention of retrieval, whereas storage, as previously discussed, is done with the intention that the waste will be retrieved at a later time. If disposed waste is abandoned, the repository site is not abandoned, but surveillance should not be necessary beyond some expected period of institutional control. (author)

  5. Republic of Lithuania national energy strategy. Vol. 2: Background material for strategy development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    IC Consult-ERM Energy Limited-COWI Consult-EC-PHARE Programme Collaboration

    1993-12-01

    Volume II presents supplementary Background Material collected and analysed during the course of the project. Volume II consists of two parts: PART A (Sources and Methods) and PART B (Special Sub sector Issues). PART A contains seven chapters. The subject of Chapter 1 is to integrate the material of this volume into the analytical approach as a whole and to give an outline of the tools applied in the Strategy development. Reference data provided in Chapter 2 summarizes the information as to the past energy consumption and the future economic development. Chapter 3 compiles basic parameters and assumptions with regard to energy forms, costs, the economic development as laid down for use in the project. Chapter 4 discusses in detail the projection of energy demand. Chapter 5 draws up the Projects under consideration. Chapter 6 presents key results of energy scenario computations, and Chapter 7 provides energy scenario indicators and assessment information. PART B of this Volume II contains full reports regarding topics, which have only briefly been addressed in Volume I. (author).[Data].

  6. Republic of Lithuania national energy strategy. Vol. 2: Background material for strategy development. Final report

    International Nuclear Information System (INIS)

    1993-12-01

    Volume II presents supplementary Background Material collected and analysed during the course of the project. Volume II consists of two parts: PART A (Sources and Methods) and PART B (Special Sub sector Issues). PART A contains seven chapters. The subject of Chapter 1 is to integrate the material of this volume into the analytical approach as a whole and to give an outline of the tools applied in the Strategy development. Reference data provided in Chapter 2 summarizes the information as to the past energy consumption and the future economic development. Chapter 3 compiles basic parameters and assumptions with regard to energy forms, costs, the economic development as laid down for use in the project. Chapter 4 discusses in detail the projection of energy demand. Chapter 5 draws up the Projects under consideration. Chapter 6 presents key results of energy scenario computations, and Chapter 7 provides energy scenario indicators and assessment information. PART B of this Volume II contains full reports regarding topics, which have only briefly been addressed in Volume I. (author).[Data

  7. Development of materials for open-cycle magnetohydrodynamics (MHD): ceramic electrode. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.L.; Marchant, D.D.

    1986-09-01

    Pacific Northwest Laboratory, supported by the US Department of Energy, developed advanced materials for use in open-cycle, closed cycle magnetohydrodynamics (MHD) power generation, an advanced energy conversion system in which the flow of electrically conducting fluid interacts with an electric field to convert the energy directly into electricity. The purpose of the PNL work was to develop electrodes for the MHD channel. Such electrodes must have: (1) electrical conductivity above 0.01 (ohm-cm)/sup -1/ from near room temperature to 1900/sup 0/K, (2) resistance to both electrochemical and chemical corrosion by both slag and potassium seed, (3) resistance to erosion by high-velocity gases and particles, (4) resistance to thermal shock, (5) adequate thermal conductivity, (6) compatibility with other channel components, particularly the electrical insulators, (7) oxidation-reduction stability, and (8) adequate thermionic emission. This report describes the concept and development of high-temperature, graded ceramic composite electrode materials and their electrical and structural properties. 47 refs., 16 figs., 13 tabs.

  8. GEO-TEP. Development of thermoelectric materials for geothermal energy conversion systems. Final report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bocher, L.; Weidenkaff, A.

    2008-07-01

    Geothermal heat can be directly converted into electricity by using thermoelectric converters. Thermoelectric conversion relies on intrinsic materials properties which have to be optimised. In this work novel environmentally friendly and stable oxide ceramics were developed to fulfil this task. Thus, manganate phases were studied regarding their potential thermoelectric properties for converting geothermal heat into electricity. Perovskite-type phases were synthesized by applying different methods: the ceramic route, and innovative synthesis routes such as the 'chimie douce' method by bulk thermal decomposition of the citrate precursor or using an USC process, and also the polyol-mediated synthesis route. The crystal structures of the manganate phases are evaluated by XRPD, NPD, and ED techniques while specific microstructures such as twinned domains are highlighted by HRTEM imaging. Besides, the thermal stability of the Mn-oxide phases in air atmosphere are controlled over a wide temperature range (T < 1300 K). The thermoelectric figure of merit ZT was enhanced from 0.021 to 0.3 in a broad temperature range for the studied phases which makes these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures. (author)

  9. Final Report: Stability and Novel Properties of Magnetic Materials and Ferromagnet / Insulator Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, Paul M. [Univ. of Wisconsin, Madison, WI (United States); Chang, Y. Austin [Univ. of Wisconsin, Madison, WI (United States)

    2013-07-24

    We report investigations of the synthesis, structure, and properties of new materials for spintronic applications integrated onto silicon substrates. Our primary focus is materials with very high, negative, intrinsic spin polarization of the density of states at the Fermi level. We have developed a new synthesis method for Fe3O4 thin films through selective oxidation of Fe, resulting in smooth, low-defect density films. We have synthesized Fe4N films and shown that they preferentially oxidize to Fe3O4. When integrated into magnetic tunnel junctions consisting of Fe4N / AlOx / Fe, oxidation at the Fe4N / AlOx interface creates Fe3O4, leading to negative tunneling magnetoresistance (TMR). Oxidation of Fe in nominally symmetric CoFe / AlOx / CoFe also produces Fe3O4 and negative TMR under selected oxidation conditions.

  10. Sealing performance of fractured claystone and clay-based materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chun-Liang

    2017-03-15

    The geological disposal concepts for radioactive waste are generally based on a multibarrier system comprising the natural geological formations and engineered barriers. After waste emplacement, disposal cells, access drifts and shafts will be backfilled and sealed with suitable materials to prevent release of radionuclides into the biosphere. In the framework of the THM-TON project during the last ten years from 2007 to 2016, which was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) under contract number 02E10377, GRS investigated the thermo-hydro-mechanical properties and responses of clay rocks and clay-based backfill/seal materials. The results obtained during the first time period of 2007 to 2013 are summarized in the GRS report ''Thermo-Hydro-Mechanical Processes in the Nearfield around a HLW Repository in Argillaceous Formations'' with two volumes: Volume I - Laboratory Investigations (GRS-312) /ZHA 13a/ and Volume II - In-situ-Investigations and Interpretative Modelling (GRS-313) /ZHA 14a/.

  11. Water Resources Research Program. Abatement of malodors at diked, dredged-material disposal sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Dravnieks, A.; Zussman, R.; Goltz, R.

    1976-06-01

    Samples of malodorous air and dredged material were collected at diked disposal sites at the following locations: Buffalo, NY; Milwaukee, WI; Mobile, AL; York Harbor, ME; Houston, TX; Detroit, MI; and Anacortes, WA; during the period July--October, 1975. Odorous compounds in the air samples were identified by gas chromatography/mass spectrometry, while the detection threshold, intensity, and character of the various odors were determined by experienced panelists using a dynamic, forced-choice-triangle olfactometer. Although significant problems with malodors were not observed beyond the disposal-area dikes during site visits, noteworthy odor episodes had occurred at some sites. An odor-abatement strategy is presented for handling the expected range of odor conditions at dredged-material disposal sites. Its aim is to reduce to an acceptable level the intensity of malodors in an affected community. The main steps in the strategy cover selection of the disposal site, site preparation, odor characterization of sediments to be dredged, malodor abatement during dredging and disposal operations, malodor abatement after filling of the disposal site, and the handling of malodor complaints.

  12. Long term test of buffer material. Final Report on the pilot parcels

    International Nuclear Information System (INIS)

    Karnland, Ola; Sanden, Torbjoern; Johannesson, Lars-Erik; Eriksen, Trygve E; Jansson, Mats; Wold, Susanna; Pedersen, Karsten; Motamedi, Mehrdad; Rosborg, Bo

    2000-12-01

    The 'Long Term Test of Buffer Material' (LOT) series at the Aespoe HRL aims at checking models and hypotheses for a bentonite buffer material under conditions similar to those in a KBS3 repository. The test series comprises seven test parcels, which are exposed to repository conditions for 1, 5 and 20 years. This report concerns the two completed pilot tests (1-year tests) with respect to construction, field data and laboratory results. Four research groups were engaged in this part of the project working on physical properties - mineralogy, cation diffusion, bacteria and copper corrosion, respectively. The experimental layout was to place parcels containing heater, central copper tube, pre-compacted bentonite blocks and instruments in vertical boreholes in crystalline rock. The heaters were used for simulating the decay power from spent nuclear fuel at standard KBS3 conditions (S1 parcel, 90 deg C) and to give adverse conditions (A1 parcel, 130 deg C). The latter was used in order to accelerate possible processes. Temperature, total pressure, water pressure and water content were measured during the heating period. The two pilot tests were terminated after approximately 12 months of heating, and the parcels were extracted by overlapping core drilling outside the original borehole. The entire 4.5 m long S1-parcel with approximately 20 cm rock cover was successfully lifted in one piece from the rock, whereas the central part of the A1 parcel was lost during drilling. The upper and lower parts were however retrieved. Reference and exposed bentonite material were analysed with respect to physical properties (triaxial, beam and oedometer tests), and to mineralogical properties (XRD, CEC, ICP-AES and SEM analyses) according to a defined test program. Some precipitation, mainly gypsum, was found in the warmest part of the parcels, and the only unpredicted change was minor uptake of Cu into the clay matrix. An overarching conclusion is that no degrading processes, with

  13. Long term test of buffer material. Final Report on the pilot parcels

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, Ola; Sanden, Torbjoern; Johannesson, Lars-Erik [Clay Technology AB, Lund (Sweden); Eriksen, Trygve E; Jansson, Mats; Wold, Susanna [Royal Inst. of Tech., Stockholm (Sweden); Pedersen, Karsten; Motamedi, Mehrdad [Goeteborg Univ. (Sweden); Rosborg, Bo [Studsvik Material AB, Nykoeping (Sweden)

    2000-12-01

    The 'Long Term Test of Buffer Material' (LOT) series at the Aespoe HRL aims at checking models and hypotheses for a bentonite buffer material under conditions similar to those in a KBS3 repository. The test series comprises seven test parcels, which are exposed to repository conditions for 1, 5 and 20 years. This report concerns the two completed pilot tests (1-year tests) with respect to construction, field data and laboratory results. Four research groups were engaged in this part of the project working on physical properties - mineralogy, cation diffusion, bacteria and copper corrosion, respectively. The experimental layout was to place parcels containing heater, central copper tube, pre-compacted bentonite blocks and instruments in vertical boreholes in crystalline rock. The heaters were used for simulating the decay power from spent nuclear fuel at standard KBS3 conditions (S1 parcel, 90 deg C) and to give adverse conditions (A1 parcel, 130 deg C). The latter was used in order to accelerate possible processes. Temperature, total pressure, water pressure and water content were measured during the heating period. The two pilot tests were terminated after approximately 12 months of heating, and the parcels were extracted by overlapping core drilling outside the original borehole. The entire 4.5 m long S1-parcel with approximately 20 cm rock cover was successfully lifted in one piece from the rock, whereas the central part of the A1 parcel was lost during drilling. The upper and lower parts were however retrieved. Reference and exposed bentonite material were analysed with respect to physical properties (triaxial, beam and oedometer tests), and to mineralogical properties (XRD, CEC, ICP-AES and SEM analyses) according to a defined test program. Some precipitation, mainly gypsum, was found in the warmest part of the parcels, and the only unpredicted change was minor uptake of Cu into the clay matrix. An overarching conclusion is that no degrading

  14. Material development for waste-to-energy plants. Refractory linings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O.

    2010-10-15

    Evaluation and SEM analysis of plant exposed, failed linings confirm over and again that failure in broad lines is linked to excess porosity, inferior quality on raw materials, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, thermal stress induced crack formation, and uncontrolled craftsmanship. Extensive evaluations, calculations and considerations revealed numerous ways to execute the formulation of experimental castable mixes, of which some formed a broad base for phase I trials. Three mixes of the experimental castable phase II batches reached apparent porosities of {approx} 10% measured with alcohol, estimated to less than 8%-9% if measured in water. These results compare favourably to the open porosities measure with water of generally applied LCCs in the Danish marketplace of 15.5-16.0%. Converted to bonding phase porosities the low levels realised in experiments look rather good: 28% vs 55-57%. Salt cup tests confirm state of the art resistance. Experiments and assessment of surface oxidation of Silicon Carbide grains of three levels of purity confirm that it is impossible to stabilise SiC by pre-oxydation for the purpose of creating a thicker, protective surface layer of SiO{sub 2}. It is evident from the literature and qualified assessment that free Si, as a remnant surplus from SiC manufacture, does indeed hydrolyse in the castable basic environment under development of H{sub 2} gas bubbles adding on to unwanted porosity. Heat conductivity measurements of six different, representative products conducted by the Danish Technological Institute from 300 dec. C to 750 dec. C according to their credited calorimetric method confirm that the pre-firing to excess temperatures and subsequent measurement according to the DIN/EUN norm does indeed give misleading data of up to 45% for a castable containing {approx} 55% Silicon Carbide. Finite Element analysis confirms the

  15. Characterization of susceptibility of metallic materials to environmentally assisted cracking. Final report

    International Nuclear Information System (INIS)

    Dietzel, W.

    1999-01-01

    The stress corrosion cracking (SCC) of three different material/environment combinations was investigated in an inter-laboratory test programme using five different SCC test methods, with special emphasis laid on a new rising displacement test method which was to be further developed in the course of this project. The degree of reliability that could be obtained with each of the test methods and their usability were assessed. In all cases the experimental data characterising the occurrence of SCC show considerable scatter, irrespective of the test method. Based on the experience gained in the test programme, a draft for a new part of the ISO standard 7539 was elaborated and has meanwhile attained the status of an ISO Draft International Standard (ISO/DIS). (orig.) [de

  16. Lightweight concrete materials and structural systems for water tanks for thermal storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buckman, R.W. Jr.; Elia, G.G.; Ichikawa, Y.

    1980-12-01

    Thermally efficient hot water storage tanks were designed, fabricated and evaluated. The tanks were made using cellular concrete at a nominal density of 100 lb/ft/sup 3/ for the structural elements and at a 30 lb/ft/sup 3/ density for the insulating elements. Thermal performance testing of the tanks was done using a static decay test since the test procedure specified in ASHRAE 94-77 was not experimentally practical. A series of composition modifications to the cellular concrete mix were investigated and the addition of alkaline resistant glass fibers was found to enhance the mechanical properties at no sacrifice in thermal behavior. Economic analysis indicated that cellular concrete provides a cost-effective insulating material. The total portability of the plant for producing cellular concrete makes cellular concrete amenable to on-site fabrication and uniquely adaptable to retrofit applications.

  17. Investigations on deflagration to detonation transition in porous energetic materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States)

    1999-07-01

    The research carried out by this contract was part of a larger effort funded by LANL in the areas of deflagration to detonation in porous energetic materials (DDT) and detonation shock dynamics in high explosives (DSD). In the first three years of the contract the major focus was on DDT. However, some researchers were carried out on DSD theory and numerical implementation. In the last two years the principal focus of the contract was on DSD theory and numerical implementation. However, during the second period some work was also carried out on DDT. The paper discusses DDT modeling and DSD modeling. Abstracts are included on the following topics: modeling deflagration to detonation; DSD theory; DSD wave front tracking; and DSD program burn implementation.

  18. Transportation of radioactive material in Michigan. Final report, September 1980-August 1981

    International Nuclear Information System (INIS)

    McCarty, M.J.; Hennigan, J.M.; Bruchmann, G.W.

    1982-05-01

    Most of the radioactive material transported into and through the State of Michigan is comprised of radiopharmaceuticals. The remainder includes radioactive waste from nuclear power plants and hospitals, uranium ore concentrate (yellowcake) from Ontario, Canada, and periodic spent fuel shipments from a university research reactor. Investigations carried out under contract with the US Department of Transportation and the US Nuclear Regulatory Commission have revealed that minor violations of packaging and shipping paper regulations persist but to a lesser degree than in previous years. Major operational problems associated with two courier companies have substantially improved but still require improvement. Several minor transportation accidents are reported, none of which resulted in significant radiation exposure. Joint investigations with federal agencies were made, and some resulted in legal action against shippers. Future work performed will be under a contract with the US Department of Transportation

  19. Ferrocyanide safety program: Final report on adiabatic calorimetry and tube propagation tests with synthetic ferrocyanide materials

    International Nuclear Information System (INIS)

    Fauske, H.F.; Meacham, J.E.; Cash, R.J.

    1995-01-01

    Based on Fauske and Associates, Inc. Reactive System Screening Tool tests, the onset or initiation temperature for a ferrocyanide-nitrate propagating reaction is about 250 degrees Celcius. This is at about 200 degrees Celcius higher than current waste temperatures in the highest temperature ferrocyanide tanks. Furthermore, for current ambient waste temperatures, the tube propagation tests show that a ferrocyanide concentration of 15.5 wt% or more is required to sustain a propagation reaction in the complete absence of free water. Ignoring the presence of free water, this finding rules out propagating reactions for all the Hanford flowsheet materials with the exception of the ferrocyanide waste produced by the original In Farm flowsheet

  20. Characterization of contaminated nuclear sites, facilities and materials: radioisotope and radiopharmaceutical manufacturers and suppliers. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    The Environmental Protection Agency (EPA) is developing environmental protection standards for evaluating the risks and characterizing problems associated with disposal of radioactive wastes arising from decontamination and decommissioning DandD operations. Information on operations conducted at sites authorized to possess radioactive materials for the production and/or distribution of radioisotopes and radiopharmaceuticals was compiled and evaluated. This information was used to project the types, nature, and volumes of wastes which are likely to be generated during decontamination and decommissioning at representative facilities and identifying special problems that may occur. Radioisotope and radiopharmaceutical manufacturers have been grouped together because decommissioning operations will be similar. Nuclear pharmacies were also evaluated because of their increasing numbers and their role as middlemen between manufacturers and users of radiopharmaceuticals. The majority of the radioactive waste will arise from the decontamination of the laboratories, rather than the disposal of components

  1. Powder-based synthesis of nanocrystalline material components for structural application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ilyuschenko, A.F.; Ivashko, V.S.; Okovity, V.A. [Powder Metallurgy Research Inst., Minsk (Belarus)] [and others

    1998-12-01

    Hydroxiapate spray coatings and substrates for implant production as well as multilayered metal ceramic coatings from nanocrystalline materials are a subject of the investigation. The work aims at the improvement of quality of said objects. This study has investigated the processes of hydroxiapatite powder production. Sizes, shapes and relief of initial HA powder surface are analyzed using SEM and TEM. Modes of HA plasma spraying on a substrate from titanium and associated compositions of traditional and nanocrystalline structure are optimized. The quality of the sprayed samples are studied using X-ray phase analysis and metallographic analysis. The results of investigations of bioceramic coating spraying on titanium are theoretically generalized, taking into account obtained experimental data. The results of investigations of ion-beam technology are presented for spraying multilayered coatings consisting of alternating metal-ceramic layers of nanocrystalline structure.

  2. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    2004-06-01

    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian

  3. Laser Materials Processing Final Report CRADA No. TC-1526-98

    Energy Technology Data Exchange (ETDEWEB)

    Crane, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lehane, C. J. [United Technologies Corp., East Hartford, CT (United States)

    2017-09-08

    This CRADA project was a joint effort between Lawrence Livermore National Laboratory (LLNL) and United Technologies Corporation (UTC)/Pratt & Whitney (P&W) to demonstrate process capability for drilling holes in turbine airfoils using LLNL-developed femtosecond laser machining technology. The basis for this development was the ability of femtosecond lasers to drill precision holes in variety of materials with little or no collateral damage. The ultimate objective was to develop a laser machine tool consisting of an extremely advanced femtosecond laser subsystem to be developed by LLNL on a best-effort basis and a drilling station for turbine blades and vanes to be developed by P&W. In addition, P&W was responsible for commercializing the system. The goal of the so called Advanced Laser Drilling (ALD) system was to drill specified complex hole-shapes in turbine blades and vanes with a high degree precision and repeatability and simultaneously capable of very high speed processing.

  4. High power laser and materials investigation. Final report, 31 July 1978-28 October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Chicklis, E.P.; Folweiler, R.C.; Pollak, T.M.; Baer, J.

    1980-06-01

    This is a combined study of resonant pumped solid state lasers as fusion drivers, and the development of crystalline optical materials suitable for propagation of the high peak powers associated with laser fusion research. During this period of study the concept of rare gas halide lasers was first demonstrated by the lasing of Tm:YLF at 453 nm pumped by the 353 nm energy of XeF. Excited stata densities of 5 x 10/sup 18/ cm/sup -3/ have been attained and spectroscopic measurements show that up to 60% of the pump energy can be converted into useful stored energy. Alternative lasers and pumping schemes are also discussed. In all cases the potential RGH/SS systems are evaluated in respect to internal efficiency and heat loading.

  5. Ablation of film stacks in solar cell fabrication processes

    Science.gov (United States)

    Harley, Gabriel; Kim, Taeseok; Cousins, Peter John

    2013-04-02

    A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.

  6. X-ray Studies of Materials Dynamics at MHATT-CAT Sector 7 , Advanced Photon Source. Final report

    International Nuclear Information System (INIS)

    Roy Clarke

    2006-01-01

    This Final Report describes the scientific accomplishments that have been achieved with support from grant DE-FG02-03ER46023 during the period 12/01/02-11/30/05. The funding supported a vigorous scientific program allowing the PI to achieve leadership in a number of important areas. In particular, research carried out during this period has opened way to ultrafast dynamics studies of materials by combining the capabilities of synchrotron radiation with those of ultrafast lasers. This enables the initiation of laser-induced excitations and studies of their subsequent dynamics using laser-pump/x-ray probe techniques. Examples of such excitations include phonons, shock waves, excitons, spin-waves, and polaritons. The breadth of phenomena that can now be studied in the time-domain is very broad, revealing new phenomena and mechanisms that are critical to many applications of materials

  7. Capsule physics comparison of different ablators for NIF implosion designs

    Science.gov (United States)

    Clark, Daniel; Kritcher, Andrea; Yi, Austin; Zylstra, Alex; Haan, Steven; Ralph, Joseph; Weber, Christopher

    2017-10-01

    Indirect drive implosion experiments on the Naitonal Ignition Facility (NIF) have now tested three different ablator materials: glow discharge polymer (GDP) plastic, high density carbon (HDC), and beryllium. How do these different ablator choices compare in current and future implosion experiments on NIF? What are the relative advantages and disadvantages of each? This talk compares these different ablator options in capsule-only simulations of current NIF experiments and proposed future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Regulatory analysis on criteria for the release of patients administered radioactive material. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, S.; McGuire, S.A.

    1997-02-01

    This regulatory analysis was developed to respond to three petitions for rulemaking to amend 10 CFR parts 20 and 35 regarding release of patients administered radioactive material. The petitions requested revision of these regulations to remove the ambiguity that existed between the 1-millisievert (0.1-rem) total effective dose equivalent (TEDE) public dose limit in Part 20, adopted in 1991, and the activity-based release limit in 10 CFR 35.75 that, in some instances, would permit release of individuals in excess of the current public dose limit. Three alternatives for resolution of the petitions were evaluated. Under Alternative 1, NRC would amend its patient release criteria in 10 CFR 35.75 to match the annual public dose limit in Part 20 of 1 millisievert (0.1 rem) TEDE. Alternative 2 would maintain the status quo of using the activity-based release criteria currently found in 10 CFR 35.75. Under Alternative 3, the NRC would revise the release criteria in 10 CFR 35.75 to specify a dose limit of 5 millisieverts (0.5 rem) TEDE.

  9. Electronic and magnetic interactions in high temperature superconducting and high coercivity materials. Final performance report

    International Nuclear Information System (INIS)

    Cooper, B.R.

    1997-01-01

    The issue addressed in the research was how to understand what controls the competition between two types of phase transition (ordering) which may be present in a hybridizing correlated-electron system containing two transition-shell atomic species; and how the variation of behavior observed can be used to understand the mechanisms giving the observed ordered state. This is significant for understanding mechanisms of high-temperature superconductivity and other states of highly correlated electron systems. Thus the research pertains to magnetic effects as related to interactions giving high temperature superconductivity; where the working hypothesis is that the essential feature governing the magnetic and superconducting behavior of copper-oxide-type systems is a cooperative valence fluctuation mechanism involving the copper ions, as mediated through hybridization effects dominated by the oxygen p electrons. (Substitution of praseodymium at the rare earth sites in the 1·2·3 material provides an interesting illustration of this mechanism since experimentally such substitution strongly suppresses and destroys the superconductivity; and, at 100% Pr, gives Pr f-electron magnetic ordering at a temperature above 16K). The research was theoretical and computational and involved use of techniques aimed at correlated-electron systems that can be described within the confines of model hamiltonians such as the Anderson lattice hamiltonian. Specific techniques used included slave boson methodology used to treat modification of electronic structure and the Mori projection operator (memory function) method used to treat magnetic response (dynamic susceptibility)

  10. Regulatory analysis on criteria for the release of patients administered radioactive material. Final report

    International Nuclear Information System (INIS)

    Schneider, S.; McGuire, S.A.

    1997-02-01

    This regulatory analysis was developed to respond to three petitions for rulemaking to amend 10 CFR parts 20 and 35 regarding release of patients administered radioactive material. The petitions requested revision of these regulations to remove the ambiguity that existed between the 1-millisievert (0.1-rem) total effective dose equivalent (TEDE) public dose limit in Part 20, adopted in 1991, and the activity-based release limit in 10 CFR 35.75 that, in some instances, would permit release of individuals in excess of the current public dose limit. Three alternatives for resolution of the petitions were evaluated. Under Alternative 1, NRC would amend its patient release criteria in 10 CFR 35.75 to match the annual public dose limit in Part 20 of 1 millisievert (0.1 rem) TEDE. Alternative 2 would maintain the status quo of using the activity-based release criteria currently found in 10 CFR 35.75. Under Alternative 3, the NRC would revise the release criteria in 10 CFR 35.75 to specify a dose limit of 5 millisieverts (0.5 rem) TEDE

  11. Final Technical Report: Mathematical Foundations for Uncertainty Quantification in Materials Design

    Energy Technology Data Exchange (ETDEWEB)

    Plechac, Petr [Univ. of Delaware, Newark, DE (United States); Vlachos, Dionisios G. [Univ. of Delaware, Newark, DE (United States)

    2018-01-23

    We developed path-wise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of non-equilibrium extended molecular systems. The combination of these novel methodologies provided the first methods in the literature which are capable to handle UQ questions for stochastic complex systems with some or all of the following features: (a) multi-scale stochastic models such as (bio)chemical reaction networks, with a very large number of parameters, (b) spatially distributed systems such as Kinetic Monte Carlo or Langevin Dynamics, (c) non-equilibrium processes typically associated with coupled physico-chemical mechanisms, driven boundary conditions, hybrid micro-macro systems, etc. A particular computational challenge arises in simulations of multi-scale reaction networks and molecular systems. Mathematical techniques were applied to in silico prediction of novel materials with emphasis on the effect of microstructure on model uncertainty quantification (UQ). We outline acceleration methods to make calculations of real chemistry feasible followed by two complementary tasks on structure optimization and microstructure-induced UQ.

  12. Final Scientific Report, New Proton Conductive Composite Materials for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei

    2010-11-08

    This project covered one of the main challenges in present-day PEM fuel cell technology: to design a membrane capable of maintaining high conductivity and mechanical integrity when temperature is elevated and water vapor pressure is severely reduced. The DOE conductivity milestone of 0.1 S cm-1 at 120 degrees C and 50 % relative humidity (RH) for designed membranes addressed the target for the project. Our approach presumed to develop a composite membrane with hydrophilic proton-conductive inorganic material and the proton conductive polymeric matrix that is able to “bridge” the conduction paths in the membrane. The unique aspect of our approach was the use of highly functionalized inorganic additives to benefit from their water retention properties and high conductivity as well. A promising result turns out that highly hydrophilic phosphorsilicate gels added in Nafion matrix improved PEM fuel cell performance by over 50% compared with bare Nafion membrane at 120 degrees C and 50 % RH. This achievement realizes that the fuel cell operating pressure can be kept low, which would make the PEM fuel cell much more cost efficient and adaptable to practical operating conditions and facilitate its faster commercialization particularly in automotive and stationary applications.

  13. Laser ablation of lysozyme with UV, visible and infrared femto- and nanosecond pulses

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Matei, Andreea

    Lysozyme is an interesting molecule for laser ablation of organic materials, because the ablation has been comprehensively studied, it is a medium heavy molecule with a mass of 14305 Da, which can be detected by standard techniques, and because it is used as a bactericidal protein in the food...... industry. Lysozyme molecules do not absorb energy for wavelengths above 310 nm, but nevertheless there is a strong mass loss by ablation for laser irradiation in the visible regime. The total ablation yield of lysozyme at 355 nm and at 2 J/cm2 is about 155 µg/pulse, possibly one of the highest ablation...... the ablation process for different wavelengths and time duration. Measurements for 6-7-ns laser ablation were carried out at DTU on Risø Campus, while measurements with pulses of 300 fs were carried out at the University of Naples in a similar setup. For all wavelengths except at nanosecond laser pulses at 355...

  14. Center for Electrocatalysis, Transport Phenomena, and Materials (CETM) for Innovative Energy Storage - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Soloveichik, Grigorii [GE Global Research, Niskayuna, New York (United States)

    2015-11-30

    EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power and energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of

  15. Enthalpy model for heating, melting, and vaporization in laser ablation

    OpenAIRE

    Vasilios Alexiades; David Autrique

    2010-01-01

    Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu) target in a helium (He) background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model th...

  16. Consolidated guidance about materials licenses: Program-specific guidance about portable gauge licenses. Final report; Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Vacca, P.C.; Whitten, J.E.; Pelchat, J.M.; Arredondo, S.A.; Matson, E.R.; Lewis, S.H.; Collins, D.J.; Santiago, P.A. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Industrial and Medical Nuclear Safety; Tingle, W. [Dept. of Environment, Health, and Natural Resources, Raleigh, NC (United States). Div. of Radiation Protection

    1997-05-01

    As part of its redesign of the materials licensing process, NRC is consolidating and updating numerous guidance documents into a single comprehensive repository as described in NUREG-1539 and draft NUREG-1541. NUREG-1556, Vol. 1, is the first program-specific guidance developed for the new process and will serve as a template for subsequent program-specific guidance. This document is intended for use by applicants, licensees, and NRC staff and will also be available to Agreement States. This document supersedes the guidance previously found in draft Regulatory Guide DG-0008, ``Applications for the Use of Sealed Sources in Portable Gauging Devices,`` and in NMSs Policy and guidance Directive 2-07, ``Standard Review Plan for Applications for Use of Sealed Sources in Portable Gauging Devices.`` This final report takes a more risk-informed, performance-based approach to licensing portable gauges, and reduces the information(amount and level of detail) needed to support an application to use these devices. It incorporates many suggests submitted during the comment period on draft NUREG-1556, Volume 1. When published, this final report should be used in preparing portable gauge license applications. NRC staff will use this final report in reviewing these applications.

  17. Concept and Idea-Project for Yugoslav Low and Intermediate level Radioactive Waste Materials Final Disposal Facility

    International Nuclear Information System (INIS)

    Peric, A.

    1997-01-01

    Encapsulation of rad waste in a mortar matrix and displacement of such solidified waste forms into the shallow land burial system, engineered trench system type is suggested concept for the final disposal of low and intermediate level rad waste. The mortar-rad waste mixtures are cured in containers of either concrete or metal for an appropriate period of time, after which solidified rad waste-mortar monoliths are then placed in the engineered trench system, parallelepiped honeycomb structure. Trench consists of vertical barrier-walls, bottom barrier-floors, surface barrier-caps and permeable-reactive walls. Surroundings of the trench consists of buffer barrier materials, mainly clay. Each segment of the trench is equipped with the independent drainage system, as a part of the main drainage. Encapsulation of each filled trench honeycomb segment is performed with concrete cap. Completed trench is covered with impermeable plastic foil and soil leaner, preferably clay. Paper presents an overview of the final disposal facility engineered trench system type. Advantages in comparison with other types of final disposal system are given. (author)

  18. Consolidated guidance about materials licenses: Program-specific guidance about portable gauge licenses. Final report; Volume 1

    International Nuclear Information System (INIS)

    Vacca, P.C.; Whitten, J.E.; Pelchat, J.M.; Arredondo, S.A.; Matson, E.R.; Lewis, S.H.; Collins, D.J.; Santiago, P.A.; Tingle, W.

    1997-05-01

    As part of its redesign of the materials licensing process, NRC is consolidating and updating numerous guidance documents into a single comprehensive repository as described in NUREG-1539 and draft NUREG-1541. NUREG-1556, Vol. 1, is the first program-specific guidance developed for the new process and will serve as a template for subsequent program-specific guidance. This document is intended for use by applicants, licensees, and NRC staff and will also be available to Agreement States. This document supersedes the guidance previously found in draft Regulatory Guide DG-0008, ''Applications for the Use of Sealed Sources in Portable Gauging Devices,'' and in NMSs Policy and guidance Directive 2-07, ''Standard Review Plan for Applications for Use of Sealed Sources in Portable Gauging Devices.'' This final report takes a more risk-informed, performance-based approach to licensing portable gauges, and reduces the information(amount and level of detail) needed to support an application to use these devices. It incorporates many suggests submitted during the comment period on draft NUREG-1556, Volume 1. When published, this final report should be used in preparing portable gauge license applications. NRC staff will use this final report in reviewing these applications

  19. Femtosecond laser ablation of bovine cortical bone

    Science.gov (United States)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  20. 3D Multifunctional Ablative Thermal Protection System

    Science.gov (United States)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  1. Transpiration cooling assisted ablative thermal protection of aerospace substructures

    International Nuclear Information System (INIS)

    Khan, M.B.; Iqbal, N.; Haider, Z.

    2009-01-01

    Ablatives are heat-shielding materials used to protect aerospace substructures. These materials are sacrificial in nature and provide protection primarily through the large endothermic transformation during exposure to hyper thermal environment such as encountered in re-entry modules. The performance of certain ablatives was reported in terms of their TGA/DTA in Advanced Materials-97 (pp 57-65). The focus of this earlier research resided in the consolidation of interface between the refractory inclusion and the host polymeric matrix to improve thermal resistance. In the present work we explore the scope of transpiration cooling in ablative performance through flash evaporation of liquid incorporated in the host EPDM (Ethylene Propylene Diene Monomer) matrix. The compression-molded specimens were exposed separately to plasma flame (15000 C) and oxyacetylene torch (3000 C) and the back face transient temperature is recorded in situ employing a thermocouple/data logger system. Both head on impingement (HOI) and parallel flow (PF) through a central cavity in the ablator were used. It is observed that transpiration cooling is effective and yields (a) rapid thermal equilibrium in the specimen, (b) lower back face temperature and (c) lower ablation rate, compared to conventional ablatives. SEM/EDS analysis is presented to amplify the point. (author)

  2. Intense harmonic generation from various ablation media

    International Nuclear Information System (INIS)

    Ozaki, T.; Elouga, L.; Suzuki, M.; Kuroda, H.; Ganeev, R.A.

    2006-01-01

    Complete test of publication follows. High-order harmonic generation (HHG) is a unique source of coherent extreme ultraviolet (XUV) radiation, which can produce soft x-rays within the spectral 'water-window' (between 2.3 and 4.4 nm), and ultimately short pulses with attosecond duration. However, the intensity of present-day harmonics is still low, and serious applications will need an increase of the conversion efficiency. Instead of using gas media, one can also use ablation material, produced on solid targets using a low-intensity prepulse, as the nonlinear medium to generate high-order harmonics. Recently, we have successfully demonstrated the generation of up to the 63 rd harmonic (λ = 12.6 nm) of a Ti:sapphire laser radiation using boron ablation, and a strong enhancement in the intensity of the 13 th harmonic from indium ablation. These harmonics were generated with a modest laser (10 mJ, 150 fs) and with the pre-pulse to main pulse energy ratio constant. In this paper, we perform systematic investigations of ablation harmonics, using the 200 mJ, 30 fs Ti:sapphire beam line of the Canadian Advanced Laser Light Source (ALLS) facility. ALLS allows studying ablation harmonics over wider experimental parameters, and with independent control over the pre-pulse and main pulse energies. The 10 Hz, 200 mJ Ti:sapphire beam line of ALLS is divided into two beams. Each beam has its own energy control system, which allows independent control over the energy of each beam. One of the beams is used as a pre-pulse for creating ablation, which is focused onto the solid target without pulse compression, with pulse duration of 200 ps. The second beam is used as the main pulse for harmonic generation. The main pulse is delayed in time relative to the pre-pulse by propagating through an optical delay line, and then sent through a pulse compressor. The compressed pulse duration have typical pulse duration of 30 fs FWHM, which is then focused onto the ablation medium using MgF 2

  3. New mitigation schemes of the ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Azechi, H.; Shiraga, H.; Nakai, M.; Shigemori, K.; Fujioka, S.; Sakaiya, T.; Tamari, Y.; Ohtani, K.; Watari, T.; Murakami, M.; Sunahara, A.; Nagatomo, H.; Nishihara, K.; Miyanaga, N.; Izawa, Y.; Ohnishi, N.

    2005-01-01

    The Rayleigh-Taylor (RT) instability with material ablation through the unstable interface is the key physics that determines success or failure of inertial fusion energy (IFE) generation, as the RT instability potentially quenches ignition and burn by disintegrating the IFE target. We present two suppression schemes of the RT growth without significant degradation of the target density. The first scheme is to generate double ablation structure in high-Z doped plastic targets. In addition to the electron ablation surface, a new ablation surface is created by x-ray radiation from the high-Z ions. Contrary to the previous thought, the electron ablation surface is almost completely stabilized by extremely high flow velocity. On the other hand, the RT instability on the radiative ablation surface is significantly moderated. The second is to enhance the nonlocal nature of the electron heat transport by illuminating the target with long wavelength laser light, whereas the high ablation pressure is generated by irradiating short wavelength laser light. The significant suppression of the RT instability may increase the possibility of impact ignition which uses a high velocity fuel colliding with a preformed main fuel. (author)

  4. Ames Infusion Stories for NASA Annual Technology Report: Development of an Ablative 3D Quartz / Cyanate Ester Composite Multi-Functional Material for the Orion Spacecraft Compression Pad

    Science.gov (United States)

    Smith, Brandon; Jan, Darrell Leslie; Venkatapathy, Ethiraj

    2015-01-01

    Vehicles re-entering Earth's atmosphere require protection from the heat of atmospheric friction. The Orion Multi-Purpose Crew Vehicle (MPCV) has more demanding thermal protection system (TPS) requirements than the Low Earth Orbit (LEO) missions, especially in regions where the structural load passes through. The use of 2-dimensional laminate materials along with a metal insert, used in EFT1 flight test for the compression pad region, are deemed adequate but cannot be extended for Lunar return missions.

  5. Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Delong; Sun, Shunkai; Zhao, Yingkui; Ding, Ning; Wu, Jiming; Dai, Zihuan; Yin, Li; Zhang, Yang; Xue, Chuang [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2015-05-15

    In a dynamic hohlraum driven inertial confinement fusion (ICF) configuration, the target may experience two different kinds of implosions. One is driven by hohlraum radiation ablation, which is approximately symmetric at the equator and poles. The second is caused by the radiating shock produced in Z-pinch dynamic hohlraums, only taking place at the equator. To gain a symmetrical target implosion driven by radiation ablation and avoid asymmetric shock compression is a crucial issue in driving ICF using dynamic hohlraums. It is known that when the target is heated by hohlraum radiation, the ablated plasma will expand outward. The pressure in the shocked converter plasma qualitatively varies linearly with the material temperature. However, the ablation pressure in the ablated plasma varies with 3.5 power of the hohlraum radiation temperature. Therefore, as the hohlraum temperature increases, the ablation pressure will eventually exceed the shock pressure, and the expansion of the ablated plasma will obviously weaken the shock propagation and decrease its velocity after propagating into the ablator plasma. Consequently, longer time duration is provided for the symmetrical target implosion driven by radiation ablation. In this paper these processes are numerically investigated by changing drive currents or varying load parameters. The simulation results show that a critical hohlraum radiation temperature is needed to provide a high enough ablation pressure to decelerate the shock, thus providing long enough time duration for the symmetric fuel compression driven by radiation ablation.

  6. Lesion size in relation to ablation site during radiofrequency ablation

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, A

    1998-01-01

    This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation was perfor......This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation...... was performed during two different flow-velocities in a tissue bath, while electrode contact pressure and position were unchanged. Target temperature was 80 degrees C. Obtained tip temperature, power consumption and lesion dimensions were measured. In vivo lesion volume, depth and width were found significantly.......61 in vitro). We conclude that during temperature controlled radiofrequency ablation lesion size differs for septal and apical left ventricular applications. Differences in convective cooling might play an important role in this respect. This is supported by our in vitro experiments, where increased...

  7. Bimodal electric tissue ablation (BETA) - in-vivo evaluation of the effect of applying direct current before and during radiofrequency ablation of porcine liver

    International Nuclear Information System (INIS)

    Cockburn, J.F.; Maddern, G.J.; Wemyss-Holden, S.A.

    2007-01-01

    Aim: To examine the effect of applying increasing amounts of direct current (DC) before and during alternating current radiofrequency ablation of porcine liver. Materials and methods: Using a Radiotherapeutics RF3000 generator, a 9 V AC/DC transformer and a 16 G plain aluminium tube as an electrode, a control group of 24 porcine hepatic radiofrequency ablation zones was compared with 24 zones created using a bimodal electric tissue ablation (BETA) technique in three pigs. All ablations were terminated when tissue impedance rose to greater than 999 Ω or radiofrequency energy input fell below 5 W on three successive measurements taken at 1 min intervals. BETA ablations were performed in two phases: an initial phase of variable duration DC followed by a second phase during which standard radiofrequency ablation was applied simultaneously with DC. During this second phase, radiofrequency power input was regulated by the feedback circuitry of the RF3000 generator according to changes in tissue impedance. The diameters (mm) of each ablation zone were measured by two observers in two planes perpendicular to the plane of needle insertion. The mean short axis diameter of each ablation zone was subjected to statistical analysis. Results: With increased duration of prior application of DC, there was a progressive increase in the diameter of the ablation zone (p < 0.001). This effect increased sharply up to 300 s of pre-treatment after which a further increase in diameter occurred, but at a much lesser rate. A maximum ablation zone diameter of 32 mm was produced (control diameters 10-13 mm). Conclusion: Applying a 9 V DC to porcine liver in vivo, and continuing this DC application during subsequent radiofrequency ablation, results in larger ablation zone diameters compared with radiofrequency ablation alone

  8. A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: Results in ex vivo and in vivo porcine livers

    International Nuclear Information System (INIS)

    Yu Jie; Liang Ping; Yu Xiaoling; Liu Fangyi; Chen Lei; Wang Yang

    2011-01-01

    Purpose: The purpose of this study was to compare the effectiveness of microwave (MW) ablation and radiofrequency (RF) ablation using a single internally cooled probe in a hepatic porcine model. Materials and methods: In the ex vivo experiment, MW ablations (n = 40) were performed with a 2450 MHz and 915 MHz needle antenna, respectively at 60 W, 70 W power settings. Bipolar RF ablations (n = 20) were performed with a 3-cm (T30) and 4-cm (T40) active tip needle electrodes, respectively at a rated power 30 W and 40 W according to automatically systematic power setting. In the in vivo experiment, the 2450 MHz and 915 MHz MW ablation both at 60 W and T30 bipolar RF ablation at 30 W were performed (n = 30). All of the application time were 10 min. Long-axis diameter (Dl), short-axis diameter (Ds), ratio of Ds/Dl, the temperature data 5 mm from the needle and the time of temperature 5 mm from the needle rising to 54 deg. C were measured. Results: Both in ex vivo and in vivo models, Ds and Dl of 915 MHz MW ablations were significantly larger than all the RF ablations (P < 0.05); the Ds for all the 2450 MHz MW ablations were significantly larger than that of T30 RF ablations (P < 0.05). 2450 MHz MW and T30 RF ablation tended to produce more elliptical-shaped ablation zone. Tissue temperatures 5 mm from the needle were considerably higher with MW ablation, meanwhile MW ablation achieved significantly faster rate of temperature rising to 54 deg. C than RF ablation. For in vivo study after 10 min of ablation, the Ds and Dl of 2450 MHz MW, 915 MHz MW and Bipolar RF were 2.35 ± 0.75, 2.95 ± 0.32, 1.61 ± 0.33 and 3.86 ± 0.81, 5.79 ± 1.03, 3.21 ± 0.51, respectively. Highest tissue temperatures 5 mm from the needle were 80.07 ± 12.82 deg. C, 89.07 ± 3.52 deg. C and 65.56 ± 15.31 deg. C and the time of temperature rising to 54 deg. C were respectively 37.50 ± 7.62 s, 24.50 ± 4.09 s and 57.29 ± 23.24 s for three applicators. Conclusion: MW ablation may have higher

  9. Field enhancement induced laser ablation

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob

    Sub-diffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures....... The accompanying field enhancement substantially lowers the ablation threshold of the polymer film and thus creates local ablation spots and corresponding topographic modifications of the polymer film. Such modifications are quantified straightforwardly via scanning electron and atomic force microscopy. Thickness...

  10. Final report, Ames Mobile Laboratory Project: The development and operation of instrumentation in a mobile laboratory for in situ, real-time screening and characterization of soils using the laser ablation sampling technique

    International Nuclear Information System (INIS)

    Anderson, M.S.; Braymen, S.D.

    1995-01-01

    The main focus of the Ames Laboratory's Technology Integration Program, TIP, from May 1991 through December 1994 was the development, fabrication, and demonstration of a mobile instrumentation laboratory incorporating rapid in situ sampling systems for safe, rapid, and cost effective soil screening/characterization. The Mobile Demonstration Laboratory for Environmental Screening Technologies, MDLEST, containing the analysis instrumentation, along with surface and subsurface sampling probe prototypes employing the laser ablation sampling technique were chosen to satisfy the particular surface and subsurface soil characterization needs of the various Department of Energy facilities for determining the extent of heavy metal and radionuclide contamination. The MDLEST, a 44 foot long 5th wheel trailer, is easily configured for the analysis instrumentation and sampling system required for the particular site work. This mobile laboratory contains all of the utilities needed to satisfy the operating requirements of the various instrumentation installed. These utilities include, an electric generator, a chilled water system, process gases, a heating/air conditioning system, and computer monitoring and automatic operating systems. Once the MDLEST arrives at the job site, the instrumentation is aligned and calibration is completed, sampling and analysis operations begin. The sample is acquired, analyzed and the results reported in as little as 10 minutes. The surface sampling probe is used in two modes to acquire samples for analysis. It is either set directly on the ground over the site to be sampled, in situ sampling, or in a special fixture used for calibrating the sampling analysis system with standard soil samples, having the samples brought to the MDLEST. The surface sampling probe was used to in situ sample a flat concrete surface (nondestructively) with the ablated sample being analyzed by the instrumentation in the MDLEST

  11. Radiofrequency ablation of pulmonary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Crocetti, Laura, E-mail: l.crocetti@med.unipi.i [Division of Diagnostic Imaging and Intervention, Department of Liver Transplants, Hepatology and Infectious Diseases, Pisa University School of Medicine (Italy); Lencioni, Riccardo [Division of Diagnostic Imaging and Intervention, Department of Liver Transplants, Hepatology and Infectious Diseases, Pisa University School of Medicine (Italy)

    2010-07-15

    The development of image-guided percutaneous techniques for local tumor ablation has been one of the major advances in the treatment of solid tumors. Among these methods, radiofrequency (RF) ablation is currently established as the primary ablative modality at most institutions. RF ablation is accepted as the best therapeutic choice for patients with early-stage hepatocellular carcinoma when liver transplantation or surgical resection are not suitable options and is considered as a viable alternate to surgery for inoperable patients with limited hepatic metastatic disease, especially from colorectal cancer. Recently, RF ablation has been demonstrated to be a safe and valuable treatment option for patients with unresectable or medically inoperable lung malignancies. Resection should remain the standard therapy for non-small cell lung cancer (NSCLC) but RF ablation may be better than conventional external-beam radiation for the treatment of the high-risk individual with NSCLC. Initial favourable outcomes encourage combining radiotherapy and RF ablation, especially for treating larger tumors. In the setting of colorectal cancer lung metastases, survival rates provided by RF ablation in selected patients, are substantially higher than those obtained with any chemotherapy regimens and provide indirect evidence that RF ablation therapy improves survival in patients with limited lung metastatic disease.

  12. Final report. Superconducting materials

    International Nuclear Information System (INIS)

    John Ruvalds

    1999-01-01

    Our group has discovered a many body effect that explains the surprising divergence of the spin susceptibility which has been measured by neutron scattering experiments on high temperature superconductors and vanadium oxide metals. Electron interactions on nested - i.e., nearly parallel paths - have been analyzed extensively by our group, and such processes provide a physical explanation for many anomalous features that distinguish cuprate superconductors from ordinary metals

  13. Enhanced ablation of small anodes in a carbon nanotube arc discharge

    Science.gov (United States)

    Raitses, Yevgeny; Fetterman, Abraham; Keidar, Michael

    2008-11-01

    An atmospheric pressure helium arc discharge is used for carbon nanotube synthesis. The arc discharge operates in an anodic mode with the ablating anode made from a graphite material. For such conditions, models predict the electron-repelling (negative) anode sheath. In the present experiments, the anode ablation rate is investigated as a function of the anode diameter. It is found that anomalously high ablation occurs for small anode diameters (Fetterman, Y. Raitses and M. Keidar, Carbon (2008).

  14. Similarities and differences in ablative and non-ablative iron oxide nanoparticle hyperthermia cancer treatment

    Science.gov (United States)

    Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. Jack

    2015-03-01

    The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. It has been demonstrated by many research groups that ablative temperatures and cytotoxicity can be produced with locally NP-based hyperthermia. Such ablative NP techniques have demonstrated the potential for success. Much attention has also been given to the fact that NP may be administered systemically, resulting in a broader cancer therapy approach, a lower level of tumor NP content and a different type of NP cancer therapy (most likely in the adjuvant setting). To use NP based hyperthermia successfully as a cancer treatment, the technique and its goal must be understood and utilized in the appropriate clinical context. The parameters include, but are not limited to, NP access to the tumor (large vs. small quantity), cancer cell-specific targeting, drug carrying capacity, potential as an ionizing radiation sensitizer, and the material properties (magnetic characteristics, size and charge). In addition to their potential for cytotoxicity, the material properties of the NP must also be optimized for imaging, detection and direction. In this paper we will discuss the differences between, and potential applications for, ablative and non-ablative magnetic nanoparticle hyperthermia.

  15. Microbial occurrence in bentonite-based buffer materials of a final disposal site for low level radioactive waste in Taiwan

    International Nuclear Information System (INIS)

    Chou Fongin; Chen Tzungyuang; Li Chiachin; Wen Hsiaowei

    2011-01-01

    This research addresses the potential of microbial implications in bentonite for use as a buffer and backfill material in final disposal site for low-level radioactive waste (LLRW) in Taiwan, where has a special island-type climate. Microbe activities naturally present in this site were analyzed, and buffer materials (BM) consisted of 100%, 70% or 50% bentonite were prepared for laboratory studies. A total of 39 microbial strains were isolated, and the predominant strains included four bacterial, one yeast and four fungal strains. Growth inhibition was not detected in any tested strain cultured in a radiation field with a dose rate of 0.2 Gy/h. Most of the isolated strains grew under a dose rate of 1.4 Gy/h. The D 10 values of the tested strains ranged from 0.16 to 2.05 kGy. The mycelia of tested fungal strains could spread over 5 cm during six months of inoculation in BM. The spreading activity of the tested bacteria was less than that of the fungi. Moreover, biofilms were observed on the surfaces of the BM. Since a large and diverse population of microbes is present in Taiwan, microbes may contribute to the mobilization of radionuclides in the disposal site. (author)

  16. Study of ablation on surfaces of nuclear-use metals irradiated with Femtosecond laser

    International Nuclear Information System (INIS)

    Nogueira, Alessandro F.; Samad, Ricardo E.; Vieira Junior, Nilson D.; Rossi, Wagner de

    2017-01-01

    The use of ultrashort pulsed lasers is an alternative for micro-machining in metal surfaces, with diverse applications in several industrial areas, such as aeronautics, aerospace, naval, nuclear, among others, where there is a growing concern with reliability in service. In this work, micro-machining were performed on titanium surfaces using femtosecond ultrashort pulses. Such a process resulted in minimal heat transfer to the material, thus avoiding and surface deformation of the titanium plate and the formation of resolidified material in the ablated region, which are drawbacks present in the use of the long pulsed keyed laser of the order of nanoseconds. Three types of micro-machining were performed, with variations in the distances between the machined lines. It was also verified that the wettability increases when there is an increase in the distance between machined lines. Finally, in order to change the surface with minimal removal of material, it has been found that the use of ultra-short pulse lasers provide great benefits for the integrity of the ablated material. This initial study is the starting point for the study of other metals, such as Maraging Steels and Zircaloy that will be the target of future work. (author)

  17. Study of ablation on surfaces of nuclear-use metals irradiated with Femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Alessandro F.; Samad, Ricardo E.; Vieira Junior, Nilson D.; Rossi, Wagner de, E-mail: alessandro.nogueira@usp.br, E-mail: resamad@ipen.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sorocaba, SP (Brazil); Faculdade de Engenharia de Sorocaba (FACENS), Ipero, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The use of ultrashort pulsed lasers is an alternative for micro-machining in metal surfaces, with diverse applications in several industrial areas, such as aeronautics, aerospace, naval, nuclear, among others, where there is a growing concern with reliability in service. In this work, micro-machining were performed on titanium surfaces using femtosecond ultrashort pulses. Such a process resulted in minimal heat transfer to the material, thus avoiding and surface deformation of the titanium plate and the formation of resolidified material in the ablated region, which are drawbacks present in the use of the long pulsed keyed laser of the order of nanoseconds. Three types of micro-machining were performed, with variations in the distances between the machined lines. It was also verified that the wettability increases when there is an increase in the distance between machined lines. Finally, in order to change the surface with minimal removal of material, it has been found that the use of ultra-short pulse lasers provide great benefits for the integrity of the ablated material. This initial study is the starting point for the study of other metals, such as Maraging Steels and Zircaloy that will be the target of future work. (author)

  18. Hydrodynamic stability theory of double ablation front structures in inertial confinement fusion

    International Nuclear Information System (INIS)

    Yanez Vico, C.

    2012-11-01

    For moderate-Z materials, the hydrodynamic structure of the ablation region formed by the irradiation of high intensity laser beams differs from that of low-Z materials (hydrogenic ablators). In particular, the role played by the radiative energy flux becomes non-negligible for increasing atomic number material and ended up forming a second ablation front. This structure of two separated ablation fronts, called double ablation (DA) front, was confirmed in the simulations carried out by Fujioka et al. In this work a linear stability theory of DA fronts is developed for direct-drive inertial confinement fusion targets. Two models are proposed. First, a sharp boundary model where the thin front approximation is assumed for both ablation fronts. The information about the corona region that permits to close the sharp boundary model is obtained from a prior self-consistent analysis of the electronic-radiative ablation (ERA) front. Numerical results are presented as well as an analytical approach for the radiation dominated regime of very steep double ablation front structure. Second, a self-consistent numerical method where the finite length of the ablation fronts is considered. Accurate hydrodynamic profiles are taken into account in the theoretical model by means of a fitting parameters method using one-dimensional simulation results. Numerical dispersion relation is compared to the analytical sharp boundary model showing an excellent agreement for the radiation dominated regime, and the stabilization due to smooth profiles. 2D simulations are presented to validate the linear stability theory

  19. Avoiding Complications in Bone and Soft Tissue Ablation

    International Nuclear Information System (INIS)

    Kurup, A. Nicholas; Schmit, Grant D.; Morris, Jonathan M.; Atwell, Thomas D.; Schmitz, John J.; Weisbrod, Adam J.; Woodrum, David A.; Eiken, Patrick W.; Callstrom, Matthew R.

    2017-01-01

    As with percutaneous ablation of tumors in the liver, lungs, and kidneys, ablation of bone and non-visceral soft tissue tumors carries risk, primarily from collateral damage to vital structures in proximity to the target tumor. Certain risks are of particular interest when ablating bone and non-visceral soft tissue tumors, namely neural or skin injury, bowel injury, fracture, and gas embolism from damaged applicators. Ablation of large volume tumors also carries special risk. Many techniques may be employed by the interventional radiologist to minimize complications when treating tumors in the musculoskeletal system. These methods include those to depict, displace, or monitor critical structures. Thus, measures to provide thermoprotection may be active, such as careful ablation applicator placement and use of various displacement techniques, as well as passive, including employment of direct temperature, radiographic, or neurophysiologic monitoring techniques. Cementoplasty should be considered in certain skeletal locations at risk of fracture. Patients treated with large volume tumors should be monitored for renal dysfunction and properly hydrated. Finally, ablation applicators should be cautiously placed in the constrained environment of intact bone.

  20. Avoiding Complications in Bone and Soft Tissue Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Kurup, A. Nicholas, E-mail: kurup.anil@mayo.edu; Schmit, Grant D., E-mail: schmit.grant@mayo.edu; Morris, Jonathan M., E-mail: morris.jonathan@mayo.edu; Atwell, Thomas D., E-mail: atwell.thomas@mayo.edu; Schmitz, John J., E-mail: schmitz.john@mayo.edu; Weisbrod, Adam J., E-mail: weisbrod.adam@mayo.edu; Woodrum, David A., E-mail: woodrum.david@mayo.edu; Eiken, Patrick W., E-mail: eiken.patrick@mayo.edu; Callstrom, Matthew R., E-mail: callstrom.matthew@mayo.edu [Mayo Clinic, Department of Radiology (United States)

    2017-02-15

    As with percutaneous ablation of tumors in the liver, lungs, and kidneys, ablation of bone and non-visceral soft tissue tumors carries risk, primarily from collateral damage to vital structures in proximity to the target tumor. Certain risks are of particular interest when ablating bone and non-visceral soft tissue tumors, namely neural or skin injury, bowel injury, fracture, and gas embolism from damaged applicators. Ablation of large volume tumors also carries special risk. Many techniques may be employed by the interventional radiologist to minimize complications when treating tumors in the musculoskeletal system. These methods include those to depict, displace, or monitor critical structures. Thus, measures to provide thermoprotection may be active, such as careful ablation applicator placement and use of various displacement techniques, as well as passive, including employment of direct temperature, radiographic, or neurophysiologic monitoring techniques. Cementoplasty should be considered in certain skeletal locations at risk of fracture. Patients treated with large volume tumors should be monitored for renal dysfunction and properly hydrated. Finally, ablation applicators should be cautiously placed in the constrained environment of intact bone.

  1. Radiofrequency ablation of osteoid osteoma

    NARCIS (Netherlands)

    Vanderschueren, Geert Maria Joris Michael

    2009-01-01

    The main purpose of this thesis was to evaluate the effectiveness and safety of CT-guided radiofrequency ablation for the treatment of spinal and non-spinal osteoid osteomas. Furthermore, the technical requirements needed for safe radiofrequency ablation and the clinical outcome after radiofrequency

  2. The effect of radiofrequency ablation on different organs: Ex vivo and in vivo comparative studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoo Na [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Rhim, Hyunchul, E-mail: rhimhc@skku.edu [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Choi, Dongil; Kim, Young-sun; Lee, Min Woo; Chang, Ilsoo; Lee, Won Jae; Lim, Hyo K. [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of)

    2011-11-15

    Objective: The purposes of this study are to evaluate the ex vivo and in vivo efficacy of radiofrequency ablation (RFA) on different porcine tissues by the ablation of three different sites simultaneously. Materials and methods: A multichannel RFA system, enables three separate tumors to be ablated simultaneously, was used. RFA procedures were applied to normal porcine liver, kidney, and muscle together ex vivo (n = 12) and in vivo (n = 17). Pre-impedances, defined as baseline systemic impedances of tissues before beginning RFA, and the areas of ablation zones were measured and compared. Results: The areas of ablation zones among three organs had a significant difference in decreasing order as follows: liver, muscle, and kidney in the ex vivo study (p = 0.001); muscle, liver, and kidney in the in vivo study (p < 0.0001). The areas of ablation zones between ex vivo and in vivo had a significant difference in the liver and muscle (each p < 0.05). There was no significant correlation between the areas of ablation zones and pre-impedances in both studies. Conclusions: Renal RFA produced the smallest ablation zone in both in vivo and ex vivo studies. Muscular RFA demonstrated the largest ablation zone in the in vivo study, and hepatic RFA showed the largest ablation zone in the ex vivo study. This variability in the tissues should be considered for performing an optimized RFA for each organ site.

  3. Evaluation of Novel Semiconductor Materials Potentially Useful in Solar Cells: Cooperative Research and Development Final Report, CRADA number CRD-06-00172

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, J.

    2010-07-01

    Evaluation of novel semiconductor materials potentially useful in solar cells. NREL will fabricate, test and analyze solar cells from EpiWorks' wafers produced in 2-3 separate growth campaigns. NREL will also characterize material from 2-3 separate EpiWorks material development campaigns. Finally, NREL will visit EpiWorks and help establish any necessary process, such as spectral CV measurements and III-V on Si metalization processes and help validate solar cell designs and performance.

  4. [Radiofrequency ablation of hepatocellular carcinoma].

    Science.gov (United States)

    Widmann, Gerlig; Schullian, Peter; Bale, Reto

    2013-03-01

    Percutaneous radiofrequency ablation (RFA) is well established in the treatment of hepatocellular carcinoma (HCC). Due to its curative potential, it is the method of choice for non resectable BCLC (Barcelona Liver Clinic) 0 and A. RFA challenges surgical resection for small HCC and is the method of choice in bridging for transplantation and recurrence after resection or transplantation. The technical feasibility of RFA depends on the size and location of the HCC and the availability of ablation techniques (one needle techniques, multi-needle techniques). More recently, stereotactic multi-needle techniques with 3D trajectory planning and guided needle placement substantially improve the spectrum of treatable lesions including large volume tumors. Treatment success depends on the realization of ablations with large intentional margins of tumor free tissue (A0 ablation in analogy to R0 resection), which has to be documented by fusion of post- with pre-ablation images, and confirmed during follow-up imaging.

  5. Radiofrequency Ablation for the Treatment of Hepatocellular Carcinoma in Patients with Transjugular Intrahepatic Portosystemic Shunts

    International Nuclear Information System (INIS)

    Park, Jonathan K.; Al-Tariq, Quazi Z.; Zaw, Taryar M.; Raman, Steven S.; Lu, David S.K.

    2015-01-01

    PurposeTo assess radiofrequency (RF) ablation efficacy, as well as the patency of transjugular intrahepatic portosystemic shunts (TIPSs), in patients with hepatocellular carcinoma (HCC).Materials and MethodsRetrospective database review of patients with pre-existing TIPS undergoing RF ablation of HCC was conducted over a 159-month period ending in November 2013. TIPS patency pre- and post-RF ablation was assessed by ultrasound, angiography, and/or contrast-enhanced CT or MRI. Patient demographics and immediate post-RF ablation outcomes and complications were also reviewed.Results19 patients with 21 lesions undergoing 25 RF ablation sessions were included. Child-Pugh class A, B, and C scores were seen in 1, 13, and 5 patients, respectively. Eleven patients (58 %) ultimately underwent liver transplantation. Immediate technical success was seen in all ablation sessions without residual tumor enhancement (100 %). No patients (0 %) suffered liver failure within 1 month of ablation. Pre-ablation TIPS patency was demonstrated in 22/25 sessions (88 %). Of 22 cases with patent TIPS prior to ablation, post-ablation patency was demonstrated in 22/22 (100 %) at immediate post-ablation imaging and in 21/22 (95 %) at last follow-up (1 patient was incidentally noted to have occlusion 31 months later). No immediate complications were observed.ConclusionAblation efficacy was similar to the cited literature values for patients without TIPS. Furthermore, TIPS patency was preserved in the majority of cases. Patients with both portal hypertension and HCC are not uncommonly encountered, and a pre-existing TIPS does not appear to be a definite contraindication for RF ablation

  6. Radiofrequency Ablation for the Treatment of Hepatocellular Carcinoma in Patients with Transjugular Intrahepatic Portosystemic Shunts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jonathan K., E-mail: jonathan.park09@gmail.com [David Geffen School of Medicine at UCLA, Department of Radiology (United States); Al-Tariq, Quazi Z., E-mail: qat200@gmail.com [Stanford University School of Medicine, Department of Radiology (United States); Zaw, Taryar M., E-mail: taryar.zaw@gmail.com; Raman, Steven S., E-mail: sraman@mednet.ucla.edu; Lu, David S.K., E-mail: dlu@mednet.ucla.edu [David Geffen School of Medicine at UCLA, Department of Radiology (United States)

    2015-10-15

    PurposeTo assess radiofrequency (RF) ablation efficacy, as well as the patency of transjugular intrahepatic portosystemic shunts (TIPSs), in patients with hepatocellular carcinoma (HCC).Materials and MethodsRetrospective database review of patients with pre-existing TIPS undergoing RF ablation of HCC was conducted over a 159-month period ending in November 2013. TIPS patency pre- and post-RF ablation was assessed by ultrasound, angiography, and/or contrast-enhanced CT or MRI. Patient demographics and immediate post-RF ablation outcomes and complications were also reviewed.Results19 patients with 21 lesions undergoing 25 RF ablation sessions were included. Child-Pugh class A, B, and C scores were seen in 1, 13, and 5 patients, respectively. Eleven patients (58 %) ultimately underwent liver transplantation. Immediate technical success was seen in all ablation sessions without residual tumor enhancement (100 %). No patients (0 %) suffered liver failure within 1 month of ablation. Pre-ablation TIPS patency was demonstrated in 22/25 sessions (88 %). Of 22 cases with patent TIPS prior to ablation, post-ablation patency was demonstrated in 22/22 (100 %) at immediate post-ablation imaging and in 21/22 (95 %) at last follow-up (1 patient was incidentally noted to have occlusion 31 months later). No immediate complications were observed.ConclusionAblation efficacy was similar to the cited literature values for patients without TIPS. Furthermore, TIPS patency was preserved in the majority of cases. Patients with both portal hypertension and HCC are not uncommonly encountered, and a pre-existing TIPS does not appear to be a definite contraindication for RF ablation.

  7. Development of Low Density, Flexible Carbon Phenolic Ablators

    Science.gov (United States)

    Stackpoole, Mairead; Thornton, Jeremy; Fan, Wendy; Covington, Alan; Doxtad, Evan; Beck, Robin; Gasch, Matt; Arnold, Jim

    2012-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (approximately 0.27 grams per cubic centimeter) coupled with efficient ablative capability at high heat fluxes. Due to its brittle nature and low strain to failure recent efforts at NASA ARC have focused on alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA. This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as recent arc jet and LHMEL screening test results.

  8. Comparison of different target material options for the European Spallation Source based on certain aspects related to the final disposal

    Science.gov (United States)

    Kókai, Zsófia; Török, Szabina; Zagyvai, Péter; Kiselev, Daniela; Moormann, Rainer; Börcsök, Endre; Zanini, Luca; Takibayev, Alan; Muhrer, Günter; Bevilacqua, Riccardo; Janik, József

    2018-02-01

    Different target options have been examined for the European Spallation Source, which is under construction in Lund, Sweden. During the design update phase, parameters and characteristics for the target design have been optimized not only for neutronics but also with respect to the waste characteristics related to the final disposal of the target. A rotating, solid tungsten target was eventually selected as baseline concept; the other options considered included mercury and lead-bismuth (LBE) targets suitable for a pulsed source. Since the licensee is obliged to present a decommissioning plan even before the construction phase starts, the radioactive waste category of the target after full operation time is of crucial importance. The results obtained from a small survey among project partners of 7th Framework Program granted by EU 202247 contract have been used. Waste characteristics of different potential spallation target materials were compared. Based on waste index, the tungsten target is the best alternative and the second one is the mercury target. However, all alternatives have HLW category after a 10 year cooling. Based on heat generation alone all of the options would be below the HLW limit after this cooling period. The LBE is the least advantageous alternative based on waste index and heat generation comparison. These results can be useful in compiling the licensing documents of the ESS facility as the target alternatives can be compared from various aspects related to their disposal.

  9. Excimer laser ablation of the cornea

    Science.gov (United States)

    Pettit, George H.; Ediger, Marwood N.; Weiblinger, Richard P.

    1995-03-01

    Pulsed ultraviolet laser ablation is being extensively investigated clinically to reshape the optical surface of the eye and correct vision defects. Current knowledge of the laser/tissue interaction and the present state of the clinical evaluation are reviewed. In addition, the principal findings of internal Food and Drug Administration research are described in some detail, including a risk assessment of the laser-induced-fluorescence and measurement of the nonlinear optical properties of cornea during the intense UV irradiation. Finally, a survey is presented of the alternative laser technologies being explored for this ophthalmic application.

  10. Ins and outs of endovenous laser ablation: afterthoughts

    NARCIS (Netherlands)

    Neumann, H. A. Martino; van Gemert, Martin J. C.

    2014-01-01

    Physicists and medical doctors "speak" different languages. Endovenous laser ablation (EVLA) is a good example in which technology is essential to guide the doctor to the final result: optimal treatment. However, for the doctor, it is by far insufficient just to turn on the knobs of the laser. He

  11. Ins and outs of endovenous laser ablation: Afterthoughts

    NARCIS (Netherlands)

    H.A.M. Neumann (Martino); M.J.C. van Gemert (Martin)

    2014-01-01

    textabstractPhysicists and medical doctors "speak" different languages. Endovenous laser ablation (EVLA) is a good example in which technology is essential to guide the doctor to the final result: optimal treatment. However, for the doctor, it is by far insufficient just to turn on the knobs of the

  12. Nephron-sparing percutaneous ablation of a 5 cm renal cell carcinoma by superselective embolization and percutaneous RF-ablation

    International Nuclear Information System (INIS)

    Tacke, J.; Mahnken, A.; Buecker, A.; Guenther, R.W.; Rohde, D.

    2001-01-01

    Purpose: To report on the nephron-sparing, percutaneous ablation of a large renal cell carcinoma by combined superselective embolization and percutaneous radiofrequency ablation. Materials and Methods: A 5 cm renal cell carcinoma of a 43-year-old drug abusing male with serologically proven HIV, hepatitis B and C infection, who refused surgery, was superselectively embolized using microspheres (size: 500 - 700 μm) and a platinum coil under local anesthesia. Percutaneous radiofrequency ablation using a 7F LeVeen probe (size of expanded probe tip: 40 mm) and a 200 Watt generator was performed one day after transcatheter embolization under general anesthesia. Results: The combined treatment resulted in complete destruction of the tumor without relevant damage of the surrounding healthy renal tissue. The patient was discharged 24 hours after RF ablation. No complications like urinary leaks or fistulas were observed and follow up CT one day and 4 weeks after the radiofrequency intervention revealed no signs of residual tumor growth. Conclusion: The combined transcatheter embolization and percutaneous radiofrequency ablation of renal cell carcinoma has proved technically feasible, effective, and safe in this patient. It may be offered as an alternative treatment to partial or radical nephrectomy under certain circumstances. Abbreviations: RF = radiofrequency ablation; CT = computed tomography; HIV = human immunodeficiency virus. (orig.) [de

  13. Final report for NIF chamber dynamics studies. Final report (May 1997), Subcontract No. B291847

    International Nuclear Information System (INIS)

    Peterson, P.F.; Jin, H.; Scott, J.M.

    1997-01-01

    The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. Various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, and other chamber structures. This ablated vapor will be transported throughout the chamber, and will eventually condense and deposit on surfaces in the chamber, including the final optics debris shields. The research at the University of California at Berkeley relates primarily to the NIF chamber dynamics. The key design issues are the ablation of the chamber structures, transport of the vapor through the chamber and the condensation or deposition processes of those vaporized materials. An understanding of these processes is essential in developing a concept for protecting the final optics debris shields from an excessive coating (> 10 Angstrom) of target debris and ablated material, thereby prolonging their lifetime between change- outs. At Berkeley, we have studied the physical issues of the ablation process and the effects of varying materials, the condensation process of the vaporized material, and design schemes that can lower the threat posed to the debris shields by these processes. In addition to the work described briefly above, we performed extensive analysis of the target-chamber thermal response to in- chamber CO 2 Cleaning and of work performed to model the behavior of silica vapor. The work completed this year has been published in several papers and a dissertation -6 This report provides a summary of the work completed this year, as well as copies of

  14. Fractional ablative erbium YAG laser

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth H; Haak, Christina S; Erlendsson, Andrés M

    2014-01-01

    laser parameters with tissue effects. MATERIALS AND METHODS: Ex vivo pig skin was exposed to a miniaturized 2,940 nm AFXL, spot size 225 µm, density 5%, power levels 1.15-2.22 W, pulse durations 50-225 microseconds, pulse repetition rates 100-500 Hz, and 2, 20, or 50 stacked pulses, resulting in pulse......BACKGROUND AND OBJECTIVES: Treatment of a variety of skin disorders with ablative fractional lasers (AFXL) is driving the development of portable AFXLs. This study measures micropore dimensions produced by a small 2,940 nm AFXL using a variety of stacked pulses, and determines a model correlating...... 190 to 347 µm. CONCLUSIONS: Pulse stacking with a small, low power 2,940 nm AFXL created reproducible shallow to deep micropores, and influenced micropore configuration. Mathematical modeling established relations between laser settings and micropore dimensions, which assists in choosing laser...

  15. Direct-drive–ignition designs with mid-Z ablators

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, M.; Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Anderson, K. S.; Collins, T. J. B.; Epstein, R.; McKenty, P. W.; Myatt, J. F.; Shvydky, A.; Skupsky, S. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-03-15

    Achieving thermonuclear ignition using direct laser illumination relies on the capability to accelerate spherical shells to high implosion velocities while maintaining shell integrity. Ablator materials of moderate atomic number Z reduce the detrimental effects of laser–plasma instabilities in direct-drive implosions. To validate the physics of moderate-Z ablator materials for ignition target designs on the National Ignition Facility (NIF), hydro-equivalent targets are designed using pure plastic (CH), high-density carbon, and glass (SiO{sub 2}) ablators. The hydrodynamic stability of these targets is investigated through two-dimensional (2D) single-mode and multimode simulations. The overall stability of these targets to laser-imprint perturbations and low-mode asymmetries makes it possible to design high-gain targets. Designs using polar-drive illumination are developed within the NIF laser system specifications. Mid-Z ablator targets are an attractive candidate for direct-drive ignition since they present better overall performance than plastic ablator targets through reduced laser–plasma instabilities and a similar hydrodynamic stability.

  16. Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air

    International Nuclear Information System (INIS)

    Wang, Z.B.; Hong, M.H.; Lu, Y.F.; Wu, D.J.; Lan, B.; Chong, T.C.

    2003-01-01

    Teflon, polytetrafluorethylene (PTFE), is an important material in bioscience and medical application due to its special characteristics (bio-compatible, nonflammable, antiadhesive, and heat resistant). The advantages of ultrashort laser processing of Teflon include a minimal thermal penetration region and low processing temperatures, precision removal of material, and good-quality feature definition. In this paper, laser processing of PTFE in ambient air by a Ti:sapphire femtosecond laser (780 nm, 110 fs) is investigated. It is found that the pulse number on each irradiated surface area must be large enough for a clear edge definition and the ablated depth increases with the pulse number. The air ionization effect at high laser fluences not only degrades the ablated structures quality but also reduces the ablation efficiency. High quality microstructures are demonstrated with controlling laser fluence below a critical fluence to exclude the air ionization effect. The ablated microstructures show strong adhesion property to liquids and clear edges that are suitable for bio-implantation applications. Theoretical calculation is used to analyze the evolution of the ablated width and depth at various laser fluences

  17. Influence of gamma irradiation on the deterioration of reactor pressure vessel materials and on reactor dosimetry measurements. Final report

    International Nuclear Information System (INIS)

    Boehmer, B.; Konheiser, J.; Kumpf, H.; Noack, K.; Vladimirov, P.

    2002-10-01

    Radiation embrittlement of pressure vessel steel in mixed neutron-gamma fields is mostly determined by neutrons, but in some cases also by gamma-radiation. Depending on the reactor type, gamma radiation can influence evaluations of lead factors of surveillance specimens, effect the interpretation of results of irradiation experiments and finally, it can result in changed pressure vessel lifetime evaluations. The project aimed at the evaluation of the importance of gamma radiation for RPV steel damage for several types of light-water reactors. Absolute neutron and gamma fluence rate spectra had been calculated for the Russian PWR types VVER-440 and two core loading variants of VVER-1000, for a German 1300 MW PWR and a German 900 MW BWR. Based on the calculated spectra several flux integrals and radiation damage parameters were derived for the region of the azimuthal flux maxima in the mid-planes for different radial positions between core and biological shield, especially, at the inner and outer surfaces of the PV walls, at the (1/4)-PV-thickness and at the surveillance positions. Fissionable materials are often used as activation detectors for neutron fluence measurements. To get the real value the analysis demands to take into account the gamma induced fissions. Therefore, the part of these fissions in the total number of fissions was estimated for the detector reactions 237 Np(n,f) and 238 U(n,f) in the calculated neutron/gamma fields. It has been found that considerable corrections of the neutron fluence measurements can be necessary, especially in case of 238 U(n,f). Most of the calculations were performed using a three-dimensional synthesis of 2D/1D-flux distributions obtained by the S N -code DORT with the BUGLE-96T group cross-section library. (orig.) [de

  18. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    International Nuclear Information System (INIS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-01-01

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F_t_h = 0.087 J/cm"2) than that for the femtosecond laser ablation of ABS (F_t_h = 1.576 J/cm"2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α"−"1 = 223 nm) than that for femtosecond laser ablation (α"−"1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas C=C bond is partially

  19. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    Energy Technology Data Exchange (ETDEWEB)

    See, Tian Long, E-mail: tianlong.see@postgrad.manchester.ac.uk [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Liu, Zhu [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Li, Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Zhong, Xiang Li [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom)

    2016-02-28

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F{sub th} = 0.087 J/cm{sup 2}) than that for the femtosecond laser ablation of ABS (F{sub th} = 1.576 J/cm{sup 2}), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α{sup −1} = 223 nm) than that for femtosecond laser ablation (α{sup −1} = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas

  20. UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface

    International Nuclear Information System (INIS)

    Spyratou, E.; Asproudis, I.; Tsoutsi, D.; Bacharis, C.; Moutsouris, K.; Makropoulou, M.; Serafetinides, A.A.

    2010-01-01

    Several new materials and patterns are studied for the formation and etching of intraocular lenses (IOLs), in order to improve their optical properties, to reduce the diffractive aberrations and to decrease the incidence of posterior capsular opacification. The aim of this study is to investigate the use of UV (λ = 266 nm) laser pulses to ablate the intraocular lenses materials, and thus to provide an alternative to conventional surface shaping techniques for IOLs fabrication. Ablation experiments were conducted using various polymer substrates of hydrophobic acrylic IOLs and PMMA IOLs. We investigated the ablation efficiency and the morphology of the ablated area by imaging the surface modification with atomic force microscopy (AFM) and scanning electron microscopy (SEM). The morphological appearance of IOL samples reveals the effect of a photochemical and photothermal ablation mechanism.

  1. UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface

    Energy Technology Data Exchange (ETDEWEB)

    Spyratou, E., E-mail: ellas5@central.ntua.gr [National Technical University of Athens, School of Applied Mathematical and Physical Sciences, Department of Physics, Zografou Campus, Athens, 15780 (Greece); Asproudis, I. [Department of Ophthalmology, University Hospital of Ioannina, Ioannina, 45110 (Greece); Tsoutsi, D. [Department of Chemistry, University of Ioannina, Ioannina, 45110 (Greece); Bacharis, C.; Moutsouris, K.; Makropoulou, M.; Serafetinides, A.A. [National Technical University of Athens, School of Applied Mathematical and Physical Sciences, Department of Physics, Zografou Campus, Athens, 15780 (Greece)

    2010-02-01

    Several new materials and patterns are studied for the formation and etching of intraocular lenses (IOLs), in order to improve their optical properties, to reduce the diffractive aberrations and to decrease the incidence of posterior capsular opacification. The aim of this study is to investigate the use of UV ({lambda} = 266 nm) laser pulses to ablate the intraocular lenses materials, and thus to provide an alternative to conventional surface shaping techniques for IOLs fabrication. Ablation experiments were conducted using various polymer substrates of hydrophobic acrylic IOLs and PMMA IOLs. We investigated the ablation efficiency and the morphology of the ablated area by imaging the surface modification with atomic force microscopy (AFM) and scanning electron microscopy (SEM). The morphological appearance of IOL samples reveals the effect of a photochemical and photothermal ablation mechanism.

  2. Radiofrequency Ablation of Liver Tumors

    Science.gov (United States)

    ... have had a surgical procedure in which the liver bile duct has been connected to a loop of bowel are at much greater risk of developing a liver abscess after ablation. Women should always inform their ...

  3. Cryoballoon Ablation for Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Jason G. Andrade, MD

    2012-03-01

    Full Text Available Focal point-by-point radiofrequency catheter ablation has shown considerable success in the treatment of paroxysmal atrial fibrillation. However, it is not without limitations. Recent clinical and preclinical studies have demonstrated that cryothermal ablation using a balloon catheter (Artic Front©, Medtronic CryoCath LP provides an effective alternative strategy to treating atrial fibrillation. The objective of this article is to review efficacy and safety data surrounding cryoballoon ablation for paroxysmal and persistent atrial fibrillation. In addition, a practical step-by-step approach to cryoballoon ablation is presented, while highlighting relevant literature regarding: 1 the rationale for adjunctive imaging, 2 selection of an appropriate cryoballoon size, 3 predictors of efficacy, 4 advanced trouble-shooting techniques, and 5 strategies to reduce procedural complications, such as phrenic nerve palsy.

  4. Effect of liquid properties on laser ablation of aluminum and titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Peixuan, E-mail: oypx12@mails.tsinghua.edu.cn [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); Li, Peijie [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Leksina, E.G.; Michurin, S.V. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992 (Russian Federation); He, Liangju [School of Aerospace, Tsinghua University, Beijing 100084 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Porous surfaces are formed in Al alloy after wet ablation due to phase explosion. • A higher ablation rate is produced in glycerin than that in water and isopropanol. • Effect of liquid properties on mass-removal mechanisms was discussed. • Phase explosion and plasma-induced pressure contribute greatly to mass removal. • Density, heat conductivity and shock impendence of liquid affect ablation rates. - Abstract: In order to study the effect of liquid properties on laser ablation in liquids, aluminum 5A06 and titanium TB5 targets were irradiated by single-pulse infrared laser in isopropanol, distilled water, glycerin and as a comparison, in air, respectively. Craters induced by laser ablation were characterized using scanning electron and white-light interferometric microscopies. The results show that for liquid-mediated ablation, craters with porous surface structures were formed in aluminum target through phase explosion, while no micro-cavities were formed in titanium target owing to high critical temperature of titanium. In addition, ablation rates of aluminum and titanium targets vary with types of ambient media in accordance with such sequence: air < isopropanol < water < glycerin. Further, the influence of liquid properties on material-removal mechanisms for laser ablation in liquid is discussed. It is concluded that the density, thermal conductivity and acoustical impedance of liquid play a dominant role in laser ablation efficiency.

  5. Final IAEA research coordination meeting on plasma-interaction induced erosion of fusion reactor materials. October 9-11, 1995, Vienna, Austria. Summary report

    International Nuclear Information System (INIS)

    Langley, R.A.

    1995-12-01

    The proceedings and results of the Final IAEA Research Coordination Meeting on ''Plasma-interaction Induced Erosion of Fusion Reactor Materials'' held on October 9, 10 and 11, 1995 at the IAEA Headquarters in Vienna are briefly described. This report includes a summary of presentations made by the meeting participants, the results of a data survey and needs assessment for the erosion of plasma facing components and in-vessel materials, and recommendations regarding future work. (author). Refs, figs, tabs

  6. Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, David J., E-mail: davidjjorgensen@engr.ucsb.edu; Titus, Michael S.; Pollock, Tresa M.

    2015-10-30

    Highlights: • The single-pulse fs laser ablation threshold of NiAl is 83 mJ/cm{sup 2}. • The transition between low- and high-fluence ablation regimes is 2.8 J/cm{sup 2}. • A bimodal size distribution of nanoparticles is formed with fs laser ablation. • Smaller nanoparticles are enriched in Al during pulsed fs laser ablation. • The target surface is depleted in Al during pulsed fs laser ablation. - Abstract: The ablation behavior of a stoichiometric intermetallic compound β-NiAl subjected to femtosecond laser pulsing in air has been investigated. The single-pulse ablation threshold for NiAl was determined to be 83 ± 4 mJ/cm{sup 2} and the transition to the high-fluence ablation regime occurred at 2.8 ± 0.3 J/cm{sup 2}. Two sizes of nanoparticles consisting of Al, NiAl, Ni{sub 3}Al and NiO were formed and ejected from the target during high-fluence ablation. Chemical analysis revealed that smaller nanoparticles (1–30 nm) tended to be rich in Al while larger nanoparticles (>100 nm) were lean in Al. Ablation in the low-fluence regime maintained this trend. Redeposited material and nanoparticles remaining on the surface after a single 3.7 J/cm{sup 2} pulse, one hundred 1.7 J/cm{sup 2} pulses, or one thousand 250 mJ/cm{sup 2} pulses were enriched in Al relative to the bulk target composition. Further, the surface of the irradiated high-fluence region was depleted in Al indicating that the fs laser ablation removal rate of the intermetallic constituents in this regime does not scale with the individual pure element ablation thresholds.

  7. Percutaneous radiofrequency ablation of renal tumors: Midterm results in 16 patients

    International Nuclear Information System (INIS)

    Memarsadeghi, Mazda; Schmook, Theresia; Remzi, Mesut; Weber, Michael; Poetscher, Gerda; Lammer, Johannes; Kettenbach, Joachim

    2006-01-01

    Purpose: To evaluate the outcome of 16 patients after percutaneous radiofrequency ablation of renal tumors. Materials and methods: Sixteen patients (nine women, seven men; mean age, 61 ± 9 years) with 24 unresectable renal tumors (mean volume, 4.3 ± 4.3 cm 3 ) underwent CT-guided (n = 20) or MR imaging-guided (n = 4) percutaneous radiofrequency ablation using an expandable electrode (Starburst XL TM , RITA Medical Systems, Mountain View, CA) with a 150-W generator. The initial follow-up imaging was performed within 1-30 days after RF ablation, then at 3-6 month intervals using either CT or MRI. Residual tumor volume and coagulation necrosis was assessed, and statistical correlation tests were obtained to determine the strength of the relationship between necrosis volume and number of ablations. Results: Overall, 97 overlapping RF ablations were performed (mean, 3.5 ± 1.5 ablations per tumor) during 24 sessions. Five or more RF ablations per tumor created significant larger necrosis volumes than 1-2 (p .034) or 3-4 ablations (p = .020). A complete ablation was achieved in 20/24 tumors (primary technical success, 83%; mean volume of coagulation necrosis: 10.2 ± 7.2 cm 3 ). Three of four residual tumors were retreated and showed complete necrosis thereafter. Three major complications (one percuatneous urinary fistula and two ureteral strictures) were observed after RF ablation. No further clinically relevant complications were observed and renal function remained stable. During a mean follow-up of 11.2 months (range, 0.2-31.5), 15/16 patients (94%) were alive. Only one patient had evidence of local recurrent tumor. Conclusion: The midterm results of percutaneous RF ablation for renal tumors are promising and show that RF ablation is well-suited to preserve renal function

  8. Assessment of ablative margin after radiofrequency ablation for hepatocellular carcinoma; comparison between magnetic resonance imaging with ferucarbotran and enhanced CT with iodized oil deposition

    International Nuclear Information System (INIS)

    Koda, Masahiko; Tokunaga, Shiho; Fujise, Yuki; Kato, Jun; Matono, Tomomitsu; Sugihara, Takaaki; Nagahara, Takakazu; Ueki, Masaru; Murawaki, Yoshikazu; Kakite, Suguru; Yamashita, Eijiro

    2012-01-01

    Background and purpose: Our aim was to investigate whether magnetic resonance imaging (MRI) with ferucarbotran administered prior to radiofrequency ablation could accurately assess ablative margin when compared with enhanced computed tomography (CT) with iodized oil marking. Materials and methods: We enrolled 27 patients with 32 hepatocellular carcinomas in which iodized oil deposits were visible throughout the nodule after transcatheter arterial chemoembolization. For these nodules, radiofrequency ablation was performed after ferucarbotran administration. We then performed T2-weighted MRI after 1 week and enhanced CT after 1 month. T2-weighted MRI demonstrated the ablative margin as a low-intensity rim. We classified the margin into three grades; margin (+): high-intensity area with a continuous low-intensity rim; margin zero: high-intensity area with a discontinuous low-intensity rim; and margin (−): high-intensity area extending beyond the low-intensity rim. Results: In 28 (86%) of 32 nodules, there was agreement between MRI and CT. The overall agreement between for the two modalities in the assessment of ablative margin was good (κ = 0.759, 95% confidence interval: 0.480–1.000, p < 0.001). In four nodules, ablative margins on MRI were underestimated by one grade compared with CT. Conclusion: MRI using ferucarbotran is less invasive and allows earlier assessment than CT. The MRI technique performed similarly to enhanced CT with iodized oil marking in evaluating the ablative margin after radiofrequency ablation.

  9. Relationship between LIBS Ablation and Pit Volume for Geologic Samples: Applications for in situ Absolute Geochronology

    Science.gov (United States)

    Devismes, D.; Cohen, Barbara A.

    2014-01-01

    In planetary sciences, in situ absolute geochronology is a scientific and engineering challenge. Currently, the age of the Martian surface can only be determined by crater density counting. However this method has significant uncertainties and needs to be calibrated with absolute ages. We are developing an instrument to acquire in situ absolute geochronology based on the K-Ar method. The protocol is based on the laser ablation of a rock by hundreds of laser pulses. Laser Induced Breakdown Spectroscopy (LIBS) gives the potassium content of the ablated material and a mass spectrometer (quadrupole or ion trap) measures the quantity of 40Ar released. In order to accurately measure the quantity of released 40Ar in cases where Ar is an atmospheric constituent (e.g., Mars), the sample is first put into a chamber under high vacuum. The 40Arquantity, the concentration of K and the estimation of the ablated mass are the parameters needed to give the age of the rocks. The main uncertainties with this method are directly linked to the measures of the mass (typically some µg) and of the concentration of K by LIBS (up to 10%). Because the ablated mass is small compared to the mass of the sample, and because material is redeposited onto the sample after ablation, it is not possible to directly measure the ablated mass. Our current protocol measures the ablated volume and estimates the sample density to calculate ablated mass. The precision and accuracy of this method may be improved by using knowledge of the sample's geologic properties to predict its response to laser ablation, i.e., understanding whether natural samples have a predictable relationship between laser energy deposited and resultant ablation volume. In contrast to most previous studies of laser ablation, theoretical equations are not highly applicable. The reasons are numerous, but the most important are: a) geologic rocks are complex, polymineralic materials; b) the conditions of ablation are unusual (for example

  10. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    Science.gov (United States)

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  11. Molybdenum oxide nanocolloids prepared by an external field-assisted laser ablation in water

    Directory of Open Access Journals (Sweden)

    Spadaro Salvatore

    2018-01-01

    Full Text Available he synthesis of extremely stable molybdenum oxide nanocolloids by pulsed laser ablation was studied. This green technique ensures the formation of contaminant-free nanostructures and the absence of by-products. A focused picosecond pulsed laser beam was used to ablate a solid molybdenum target immersed in deionized water. Molybdenum oxide nearly spherical nanoparticles with dimensions within few nanometers (20-100 nm are synthesized when the ablation processes were carried out, in water, at room temperature and 80°C. The application of an external electric field during the ablation process induces a nanostructures reorganization, as indicated by Scanning-Transmission Electron Microscopy images analysis. The ablation products were also characterized by some spectroscopic techniques: conventional UV-vis optical absorption, atomic absorption, dynamic light scattering, micro-Raman and X-ray photoelectron spectroscopies. Finally, NIH/3T3 mouse fibroblasts were used to evaluate cell viability by the sulforhodamine B assay

  12. Water spray assisted ultrashort laser pulse ablation

    International Nuclear Information System (INIS)

    Silvennoinen, M.; Kaakkunen, J.J.J.; Paivasaari, K.; Vahimaa, P.

    2013-01-01

    Highlights: ► We show the novel method to use multibeam processing with ultrashort pulses efficiently. ► Sprayed thin water layer on ablation zone enhances ablation rate and quality. ► In some cases this method also enables ablation of the deeper and straighter holes compared to ones made without the water layer. ► Method also makes possible to directly write features without the self-organizing structures. - Abstract: We have studied femtosecond ablation under sprayed thin water film and its influence and benefits compared with ablation in the air atmosphere. These have been studied in case of the hole and the groove ablation using IR femtosecond laser. Water enhances the ablation rate and in some situations it makes possible to ablate the holes with a higher aspect ratio. While ablating the grooves, the water spray allows using the high fluences without the generation of the self-organized structures.

  13. A survey of U.S. prosthodontists and dental schools on the current materials and methods for final impressions for complete denture prosthodontics.

    Science.gov (United States)

    Petrie, Cynthia S; Walker, Mary P; Williams, Karen

    2005-12-01

    The purpose of this study was to survey members of The American College of Prosthodontists (ACP) to evaluate current materials and methods for final impressions for complete denture prosthodontics in the United States. In addition, those methods were compared with methods and materials taught in U.S. dental schools via a second survey sent to the chairpersons of prosthodontic/restorative departments. An anonymous questionnaire was mailed to all 1762 active ACP members in the United States in 2003. A slightly modified questionnaire was also distributed to chairpersons of prosthodontic/restorative departments in the 54 U.S. dental schools. Data analysis was performed via frequency distribution and chi-square statistics. Nine hundred and forty-five questionnaires were returned by members of the ACP (54% return rate) and 42 questionnaires were returned by the U.S. dental schools (78% return rate). The majority of the reporting prosthodontists (88%) and dental schools (98%) use a border-molded custom tray for final impressions for complete denture prosthodontics. The most popular material for border molding was plastic modeling compound (67% of reporting ACP members, and 95% of the responding dental schools). Variability of the materials used for final impressions was observed, with the most popular materials being polyvinylsiloxane for the ACP members (36%) and polysulfide for the dental schools (64%). Statistically significant differences were found in the materials used for border molding by prosthodontists based on the time elapsed since completion of prosthodontic training. No differences were found in the materials used for impression of edentulous arches based on years of experience. Geographic location did not influence the materials and methods used by prosthodontists for complete denture final impressions. There was variability of the materials and techniques used for final impressions by ACP members and dental schools; however, overall there was an agreement

  14. Enthalpy model for heating, melting, and vaporization in laser ablation

    Directory of Open Access Journals (Sweden)

    Vasilios Alexiades

    2010-09-01

    Full Text Available Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu target in a helium (He background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model that connects the thermodynamics and underlying kinetics of this challenging phase change problem in a self-consistent way.

  15. Plan for PLEX X-Ray Ablation Experiments and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J F; Reyes, S

    2001-09-27

    PLEX is a Z-pinch based x-ray source that can produce x-rays with fluences (0.3-18 J/cm{sup 2}), pulselengths (10-30 ns), repetition rates (<10 Hz), and energies (50-500 eV) of interest for IFE chambers and optics. It provides an affordable, dedicated method to advance our understanding of x-ray damage to materials. The PLEX x-ray source will be used to experimentally validate and further develop the ABLATOR x-ray ablation code for use in inertial fusion energy (IFE) studies.

  16. Hazardous materials transportation. Part 2. Radioactive materials and wastes (citations from the NTIS Data Base). Final report for 1964--March 1978

    International Nuclear Information System (INIS)

    Reimherr, G.W.

    1978-06-01

    The bibliography cites studies on the hazards, risks, and uncertainty of transporting radioactive wastes and materials. The design of shipping containers and special labels for identification purposes for transporting fuels and wastes are also cited. Studies are included on legislation dealing with the safety and health of the population and the environmental problems associated with transporting radioactive materials

  17. Infrared Laser Ablation with Vacuum Capture for Fingermark Sampling

    Science.gov (United States)

    Donnarumma, Fabrizio; Camp, Eden E.; Cao, Fan; Murray, Kermit K.

    2017-09-01

    Infrared laser ablation coupled to vacuum capture was employed to collect material from fingermarks deposited on surfaces of different porosity and roughness. Laser ablation at 3 μm was performed in reflection mode with subsequent capture of the ejecta with a filter connected to vacuum. Ablation and capture of standards from fingermarks was demonstrated on glass, plastic, aluminum, and cardboard surfaces. Using matrix assisted laser desorption ionization (MALDI), it was possible to detect caffeine after spiking with amounts as low as 1 ng. MALDI detection of condom lubricants and detection of antibacterial peptides from an antiseptic cream was demonstrated. Detection of explosives from fingermarks left on plastic surfaces as well as from direct deposition on the same surface using gas chromatography mass spectrometry (GC-MS) was shown. [Figure not available: see fulltext.

  18. Ablation of Solid Hydrogen in a Plasma

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment.......Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment....

  19. Percutaneous Renal Tumor Ablation: Radiation Exposure During Cryoablation and Radiofrequency Ablation

    Energy Technology Data Exchange (ETDEWEB)

    McEachen, James C., E-mail: james.mceachen2@gmail.com [Mayo Clinic, Division of Preventive, Occupational, and Aerospace Medicine (United States); Leng, Shuai; Atwell, Thomas D. [Mayo Clinic, Department of Radiology (United States); Tollefson, Matthew K. [Mayo Clinic, Department of Urology (United States); Friese, Jeremy L. [Mayo Clinic, Department of Radiology (United States); Wang, Zhen; Murad, M. Hassan [Mayo Clinic, Division of Preventive, Occupational, and Aerospace Medicine (United States); Schmit, Grant D. [Mayo Clinic, Department of Radiology (United States)

    2016-02-15

    IntroductionOnce reserved solely for non-surgical cases, percutaneous ablation is becoming an increasingly popular treatment option for a wider array of patients with small renal masses and the radiation risk needs to be better defined as this transition continues.Materials and MethodsRetrospective review of our renal tumor ablation database revealed 425 patients who underwent percutaneous ablation for treatment of 455 renal tumors over a 5-year time period. Imparted radiation dose information was reviewed for each procedure and converted to effective patient dose and skin dose using established techniques. Statistical analysis was performed with each ablative technique.ResultsFor the 331 cryoablation procedures, the mean DLP was 6987 mGycm (SD = 2861) resulting in a mean effective dose of 104.7 mSv (SD = 43.5) and the mean CTDI{sub vol} was 558 mGy (SD = 439) resulting in a mean skin dose of 563.2 mGy (SD = 344.1). For the 124 RFA procedures, the mean DLP was 3485 mGycm (SD = 1630) resulting in a mean effective dose of 50.3 mSv (SD = 24.0) and the mean CTDI{sub vol} was 232 mGy (SD = 149) resulting in a mean skin dose of 233.2 mGy (SD = 117.4). The difference in patient radiation exposure between the two renal ablation techniques was statistically significant (p < 0.001).ConclusionBoth cryoablation and RFA imparted an average skin dose that was well below the 2 Gy deterministic threshold for appreciable sequela. Renal tumor cryoablation resulted in a mean skin and effective radiation dose more than twice that for RFA. The radiation exposure for both renal tumor ablation techniques was at the high end of the medical imaging radiation dose spectrum.

  20. DOE Final Report -NON-LINEAR WAVES IN CONTINUOUS MEDIA- BES- Division of Engineering and Materials Science

    International Nuclear Information System (INIS)

    Seth J. Putterman

    2006-01-01

    FINAL REPORT ON : NON-LINEAR WAVES IN CONTINUOUS MEDIA Doe DE FG03-87ER13686 (001312-001) Submitted January 10, 2006 by Seth J. Putterman 310-8252269 Physics Department University of California Los Angeles, CA 90095 puherman at ritva.physics.ucla.edu NON-LINEAR WAVES IN CONTINUOUS MEDIA I am happy to report that this project has been a big success. For over 10 years the DOE [Division of Materials Sciences and Engineering] has funded our research program on the overarching theme of spontaneous energy focusing phenomena. These effects occur when a nonlinear macroscopic system is excited so as to drive it far from equilibrium. The subsequent relaxation to equilibrium does not occur smoothly but instead is accompanied by the formation of structured domains where the energy density is highly concentrated. A signature example is picosecond sonoluminescence [1] wherein a smooth sound wave has its energy density focused by 12 orders of magnitude to generate a clock-like string of picosecond flashes of ultraviolet light. Our earlier work on solitons [2] demonstrated how uniform surface waves break up into stable localized structures. Our experimental work on turbulence produced photos of localized structures lying many standard deviations outside the range of gaussian statistics[3]. This effect is referred to as intermittency. Our recent work on friction finds its motivation in those theories of sonoluminescence which invoke frictional electricity. In its most common form this is the generation of a spark when we touch a doorknob after walking over a carpet. Our reading of the literature on this subject indicated that frictional electricity like sonoluminescence is not understood. So to probe triboelectrification we set up a modern version of an experiment performed by Bernoulli in 1700. Here sparking is caused by the rubbing of glass against mercury. We indeed observed flashes of light which were accompanied by events of stick-slip friction at the interface between the

  1. The effect of elastic modulus on ablation catheter contact area.

    Science.gov (United States)

    Camp, Jon J; Linte, Cristian A; Rettmann, Maryam E; Sun, Deyu; Packer, Douglas L; Robb, Richard A; Holmes, David R

    2015-02-21

    Cardiac ablation consists of navigating a catheter into the heart and delivering RF energy to electrically isolate tissue regions that generate or propagate arrhythmia. Besides the challenges of accurate and precise targeting of the arrhythmic sites within the beating heart, limited information is currently available to the cardiologist regarding intricate electrode-tissue contact, which directly impacts the quality of produced lesions. Recent advances in ablation catheter design provide intra-procedural estimates of tissue-catheter contact force, but the most direct indicator of lesion quality for any particular energy level and duration is the tissue-catheter contact area, and that is a function of not only force, but catheter pose and material elasticity as well. In this experiment, we have employed real-time ultrasound (US) imaging to determine the complete interaction between the ablation electrode and tissue to accurately estimate contact, which will help to better understand the effect of catheter pose and position relative to the tissue. By simultaneously recording tracked position, force reading and US image of the ablation catheter, the differing material properties of polyvinyl alcohol cryogel [1] phantoms are shown to produce varying amounts of tissue depression and contact area (implying varying lesion quality) for equivalent force readings. We have shown that the elastic modulus significantly affects the surface-contact area between the catheter and tissue at any level of contact force. Thus we provide evidence that a prescribed level of catheter force may not always provide sufficient contact area to produce an effective ablation lesion in the prescribed ablation time.

  2. Uncovering the Chemical Processes during Atmospheric Entry of a Carbon/Phenolic Ablator: Laboratory Studies by In Situ Mass Spectrometric and Molecular Beam Techniques

    Data.gov (United States)

    National Aeronautics and Space Administration — Several advanced thermal protection system (TPS) materials currently under development, such as conformal and woven systems, leverage the porous ablator technology...

  3. DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jennifer A.

    2009-03-24

    The scientific programs of the FSMRL supported under the DOE A9024 Grant consisted of four interdisciplinary research clusters, as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and Engineering). The completed work followed a dominant theme--Nanoscale Materials Systems--and emphasized studies of complex phenomena involving surfaces, interfaces, complex materials, dynamics, energetics, and structures and their transformations. A summary of our key accomplishments is provided for each cluster.

  4. Advanced EDL Materials (AEDLM)

    Data.gov (United States)

    National Aeronautics and Space Administration — Via the exploration of alternate resins and substrate materials for ablative TPS, and the development of new high heat flux resistant flexible TPS systems, we intend...

  5. Roll-to-roll compatible organic thin film transistor manufacturing technique by printing, lamination, and laser ablation

    International Nuclear Information System (INIS)

    Hassinen, Tomi; Ruotsalainen, Teemu; Laakso, Petri; Penttilä, Raimo; Sandberg, Henrik G.O.

    2014-01-01

    We present roll-to-roll printing compatible techniques for manufacturing organic thin film transistors using two separately processed foils that are laminated together. The introduction of heat-assisted lamination opens up possibilities for material and processing combinations. The lamination of two separately processed substrates together will allow usage of pre-patterned electrodes on both substrates and materials with non-compatible solvents. Also, the surface microstructure is formed differently when laminating dry films together compared to film formation from liquid phase. Demonstrator transistors, inverters and ring oscillators were produced using lamination techniques. Finally, a roll-to-roll compatible lamination concept is proposed where also the source and drain electrodes are patterned by laser ablation. The demonstrator transistors have shown very good lifetime in air, which is contributed partly to the good material combination and partly to the enhanced interface formation in heat-assisted lamination process. - Highlights: • A roll-to-roll compatible lamination technique for printed electronics is proposed. • Laser ablation allows highly defined metal top and bottom electrodes. • Method opens up processing possibilities for incompatible materials and solvents. • Shearing forces may enhance molecular orientation and packing. • An air stable polymer transistor is demonstrated with a lifetime of years

  6. Image and pathological changes after microwave ablation of breast cancer: A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenbin [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Jiang, Yanni [Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Chen, Lin; Ling, Lijun; Liang, Mengdi; Pan, Hong [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Wang, Siqi [Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Ding, Qiang [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Liu, Xiaoan, E-mail: liuxiaoan@126.com [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Wang, Shui, E-mail: ws0801@hotmail.com [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China)

    2014-10-15

    Highlights: • We report successful experience of MWA in breast cancer under local anesthesia. • We report MR imaging evaluation of microwave ablation zone in breast cancer. • Pathological changes after microwave ablation in breast cancer was reported. • 2 min MWA caused an ablation zone with three diameters > 2 cm in breast cancer. - Abstract: Purpose: To prospectively assess MR imaging evaluation of the ablation zone and pathological changes after microwave ablation (MWA) in breast cancer. Materials and methods: Twelve enrolled patients, diagnosed with non-operable locally advanced breast cancer (LABC), were treated by MWA and then neoadjuvant chemotherapy, followed by surgery. MR imaging was applied to evaluate the effect of MWA. Hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) were applied to analyze the ablated area. Results: All MWA procedures were performed successfully under local anesthesia. For a mean duration of 2.15 min, the mean largest, middle and smallest diameters in the ablated zone 24-h post-ablation in MR imaging were 2.98 cm ± 0.53, 2.51 cm ± 0.41 and 2.23 cm ± 0.41, respectively. The general shape of the ablation zone was close to a sphere. The ablated area became gradually smaller in MR imaging. No adverse effects related to MWA were noted in all 12 patients during and after MWA. HE staining could confirm the effect about 3 months after MWA, which was confirmed by TEM. Conclusions: 2 min MWA can cause an ablation zone with three diameters larger than 2 cm in breast cancer, which may be suitable for the local treatment of breast cancer up to 2 cm in largest diameter. However, the long-term effect of MWA in the treatment of small breast cancer should be determined in the future.

  7. Surgical and Pathological Changes after Radiofrequency Ablation of Thyroid Nodules

    Directory of Open Access Journals (Sweden)

    Chiara Dobrinja

    2015-01-01

    Full Text Available Background. Radiofrequency ablation (RFA has been recently advocated as an effective technique for the treatment of symptomatic benign thyroid nodules. It is not known to what extent it may affect any subsequent thyroid surgery and/or histological diagnosis. Materials and Methods. RFA was performed on 64 symptomatic Thy2 nodules (benign nodules and 6 symptomatic Thy3 nodules (follicular lesions/follicular neoplasms. Two Thy3 nodules regrew after the procedure, and these patients accepted to undergo a total thyroidectomy. Here we present how RFA has affected the operation and the final pathological features of the surgically removed nodules. Results and Conclusions. RFA is effective for the treatment of Thy2 nodules, but it should not be recommended as first-line therapy for the treatment of Thy3 nodules (irrespective of their mutational status, as it delays surgery in case of malignancy. Moreover, it is unknown whether RFA might promote residual tumor progression or neoplastic progression of Thy3 lesions. Nevertheless, here we show for the first time that one session of RFA does not affect subsequent thyroid surgery and/or histological diagnosis.

  8. Final environmental impact statement, interim management of nuclear materials, Savannah River Site, Aiken, South Carolina (DOE/EIS-0220)

    Energy Technology Data Exchange (ETDEWEB)

    Grainger, A R

    1995-10-01

    This document evaluates the potential environmental impacts of alternatives for the stabilization of nuclear materials currently stored at various locations on the Savannah River Site (SRS). These materials remain from past defense-related production, testing, and other activities at the SRS and from chemical separations and related activities that DOE suspended in 1992. The EIS analyzes the following alternatives: Continuing Storage (No Action), Processing to Metal, Processing to Oxide, Blending Down to Low Enriched Uranium, Processing and Storage for Vitrification in the Defense Waste Processing Facility, Vitrification (F-Canyon), and Improving Storage. The preferred alternatives cover a combination of these in relation to the different types of material.

  9. Radiofrequency ablation of hepatic metastasis: Results of treatment in forty patients

    Directory of Open Access Journals (Sweden)

    Rath G

    2008-01-01

    Full Text Available Aim: To evaluate the local control of hepatic metastasis with radiofrequency ablation treatment. Materials and Methods: We did a retrospective analysis in 40 patients treated with radiofrequency ablation for hepatic metastasis. The tumors ablated included up to two metastatic liver lesions, with primaries in breast, gastrointestinal tract, cervix, etc. Radiofrequency ablation was performed under general anesthesia in all cases, using ultrasound guidance. Radionics Cool-Tip RF System was used to deliver the treatment. Results: The median age of patients treated was 49 years. There were 13 female and 27 male patients. The median tumor size ablated was 1.5 cm (0.75-4.0 cm. A total of 52 radiofrequency ablation cycles were delivered. Successful ablation was achieved in all patients with hepatic metastasis less than 3 cm in size. Pain was the most common complication seen (75%. One patients developed skin burns. At 2-year follow-up 7.5% of patients had locally recurrent disease. Conclusions: Radiofrequency ablation is a minimally invasive treatment modality. It can be useful in a select group of patients with solitary liver metastasis of less than 3 cm size.

  10. R&D of Novel Materials for Animal Litters Using High Carbon Fly Ash Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Boxley, Chett J. [Ceramatec, Inc., Salt Lake City, UT (United States); Kadota, Rod [Ceramatec, Inc., Salt Lake City, UT (United States)

    2012-10-29

    This research program performed by Ceramatec may significantly increase the beneficial utilization of fly ash, and improve the overall performance of high quality animal litter products. Ceramatec has developed a novel high surface area material, which is capable of ammonia adsorption. High surface area zeolites when combined with agglomerated fly ash can significantly reduce the use of naturally mined materials (i.e. clay bentonite) for animal litter manufacture. This not only preserves natural resources and the natural environment, but it also will reduce CO2 emissions, via the reduced need for heavy mining equipment. This novel animal litter is made with over 85% of recycled materials, thus preventing their disposition to landfills. The novel litter material is similar to traditional clay-like litters, and it is clumpable and has superior odor control properties.

  11. Mathematical methods in material science and large scale optimization workshops: Final report, June 1, 1995-November 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A. [Minnesota Univ., Minneapolis, MN (United States). Inst. for Mathematics and Its Applications

    1996-12-01

    The summer program in Large Scale Optimization concentrated largely on process engineering, aerospace engineering, inverse problems and optimal design, and molecular structure and protein folding. The program brought together application people, optimizers, and mathematicians with interest in learning about these topics. Three proceedings volumes are being prepared. The year in Materials Sciences deals with disordered media and percolation, phase transformations, composite materials, microstructure; topological and geometric methods as well as statistical mechanics approach to polymers (included were Monte Carlo simulation for polymers); miscellaneous other topics such as nonlinear optical material, particulate flow, and thin film. All these activities saw strong interaction among material scientists, mathematicians, physicists, and engineers. About 8 proceedings volumes are being prepared.

  12. Research at and Operation of the Materials Science Beamline (X-11) at the National Synchrotron Light Source. Final Report

    International Nuclear Information System (INIS)

    Sayers, Dale E.

    2003-01-01

    This is the final report for DOE DE-FG02-89ER45384. An overview of the operational history and status of beamline X-11A at the end of the contract period, and a brief review of the core science program at NCSU and the scientific results of X-11A since the last progress report is also presented

  13. Nuclear material inventory estimation in solvent extraction contactors III. Final report for the period 1 January 1988 - 28 February 1989

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.

    1989-03-01

    Simple mathematical models have been developed for estimating the nuclear material inventory in the solvent extraction contactors of nuclear fuel reprocessing facilities from measured nuclear material concentrations in the tanks feeding the purification cycles. The report describes the models and their application to the Eurochemic Reprocessing Plant in Belgium, and the development of a computer simulation program, PUPART, for investigating the effects of process variation as well as measurement error on near-real-time accounting methods. Figs and tabs

  14. Medical Devices; Immunology and Microbiology Devices; Classification of the Assayed Quality Control Material for Clinical Microbiology Assays. Final order.

    Science.gov (United States)

    2017-07-27

    The Food and Drug Administration (FDA, Agency, or we) is classifying the assayed quality control material for clinical microbiology assays into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the assayed quality control material for clinical microbiology assays' classification. The Agency is classifying the device into class II (special controls) to provide a reasonable assurance of safety and effectiveness of the device.

  15. Predictive characterization of aging and degradation of reactor materials in extreme environments. Final report, December 20, 2013 - September 20, 2017

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jianmin [Northwestern Univ., Evanston, IL (United States)

    2017-09-20

    Understanding of reactor material behavior in extreme environments is vital not only to the development of new materials for the next generation nuclear reactors, but also to the extension of the operating lifetimes of the current fleet of nuclear reactors. To this end, this project conducted a suite of unique experimental techniques, augmented by a mesoscale computational framework, to understand and predict the long-term effects of irradiation, temperature, and stress on material microstructures and their macroscopic behavior. The experimental techniques and computational tools were demonstrated on two distinctive types of reactor materials, namely, Zr alloys and high-Cr martensitic steels. These materials are chosen as the test beds because they are the archetypes of high-performance reactor materials (cladding, wrappers, ducts, pressure vessel, piping, etc.). To fill the knowledge gaps, and to meet the technology needs, a suite of innovative in situ transmission electron microscopy (TEM) characterization techniques (heating, heavy ion irradiation, He implantation, quantitative small-scale mechanical testing, and various combinations thereof) were developed and used to elucidate and map the fundamental mechanisms of microstructure evolution in both Zr and Cr alloys for a wide range environmental boundary conditions in the thermal-mechanical-irradiation input space. Knowledge gained from the experimental observations of the active mechanisms and the role of local microstructural defects on the response of the material has been incorporated into a mathematically rigorous and comprehensive three-dimensional mesoscale framework capable of accounting for the compositional variation, microstructural evolution and localized deformation (radiation damage) to predict aging and degradation of key reactor materials operating in extreme environments. Predictions from this mesoscale framework were compared with the in situ TEM observations to validate the model.

  16. Predictive characterization of aging and degradation of reactor materials in extreme environments. Final report, December 20, 2013 - September 20, 2017

    International Nuclear Information System (INIS)

    Qu, Jianmin

    2017-01-01

    Understanding of reactor material behavior in extreme environments is vital not only to the development of new materials for the next generation nuclear reactors, but also to the extension of the operating lifetimes of the current fleet of nuclear reactors. To this end, this project conducted a suite of unique experimental techniques, augmented by a mesoscale computational framework, to understand and predict the long-term effects of irradiation, temperature, and stress on material microstructures and their macroscopic behavior. The experimental techniques and computational tools were demonstrated on two distinctive types of reactor materials, namely, Zr alloys and high-Cr martensitic steels. These materials are chosen as the test beds because they are the archetypes of high-performance reactor materials (cladding, wrappers, ducts, pressure vessel, piping, etc.). To fill the knowledge gaps, and to meet the technology needs, a suite of innovative in situ transmission electron microscopy (TEM) characterization techniques (heating, heavy ion irradiation, He implantation, quantitative small-scale mechanical testing, and various combinations thereof) were developed and used to elucidate and map the fundamental mechanisms of microstructure evolution in both Zr and Cr alloys for a wide range environmental boundary conditions in the thermal-mechanical-irradiation input space. Knowledge gained from the experimental observations of the active mechanisms and the role of local microstructural defects on the response of the material has been incorporated into a mathematically rigorous and comprehensive three-dimensional mesoscale framework capable of accounting for the compositional variation, microstructural evolution and localized deformation (radiation damage) to predict aging and degradation of key reactor materials operating in extreme environments. Predictions from this mesoscale framework were compared with the in situ TEM observations to validate the model.

  17. 2nd (final) IAEA research co-ordination meeting on 'plasma-material interaction data for mixed plasma facing materials in fusion reactors'. Summary report

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2001-11-01

    The proceedings and conclusions of the 2nd Research Co-ordination Meeting on 'Plasma-Material Interaction Data for Mixed Plasma Facing Materials in Fusion Reactors', held on October 16 and 17, 2000 at the IAEA Headquarters in Vienna, are briefly described. This report includes a summary of the presentations made by the meeting participants and a review of the accomplishments of the Co-ordinated Research Project (CRP). In addition, short summaries from the participants are included indicating the specific research completed in support of this CRP. (author)

  18. Further research on melting activated and contaminated materials from the decommissioning of nuclear installations for the final storage

    International Nuclear Information System (INIS)

    Deipenau, H.; Seidler, M.

    1990-07-01

    The unconditional reuse of activated and contaminated materials by melting and the production of qualified casks (type A- and type B-containers) was proved. Investigations on nuclide distribution in the melting furnace, molten material, dust and slag were used as a basis for the erection of a new central melting facility. Melting contaminated carbon steel a mass of 2-5% of the contaminated material was generated as dust and slag. They must be handled and transported as radioactive waste. Melting non-ferrous material activity contents could be reached for unconditional reuse. Binding radioactive carbon in the metal matrix of cast iron is only possible by using crushed graphite. The investigations of this project showed that unconditional reuse of contaminated material is possible in industrial scale. Doses of the workers and of the people in the environment of the facility resulting from melting were far below the limits of the German radiation protection law. Up to 1990 a mass of 2000 Mg of contaminated material was melted in the Siempelkamp foundry. Mass inventories for the dismantling of a reference power plant SWR 900 MWe are calculated. (orig./HP) With 7 refs., 18 tabs., 12 figs [de

  19. Transhemangioma Ablation of Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Pua, Uei

    2012-01-01

    Radiofrequency ablation (RFA) is a well-established treatment modality in the treatment of early hepatocellular carcinoma (HCC) [1]. Safe trajectory of the RFA probe is crucial in decreasing collateral tissue damage and unwarranted probe transgression. As a percutaneous technique, however, the trajectory of the needle is sometimes constrained by the available imaging plane. The presence of a hemangioma beside an HCC is uncommon but poses the question of safety related to probe transgression. We hereby describe a case of transhemangioma ablation of a dome HCC.

  20. Transhemangioma Ablation of Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Pua, Uei, E-mail: druei@yahoo.com [Tan Tock Seng Hospital, Department of Diagnostic Radiology (Singapore)

    2012-12-15

    Radiofrequency ablation (RFA) is a well-established treatment modality in the treatment of early hepatocellular carcinoma (HCC) [1]. Safe trajectory of the RFA probe is crucial in decreasing collateral tissue damage and unwarranted probe transgression. As a percutaneous technique, however, the trajectory of the needle is sometimes constrained by the available imaging plane. The presence of a hemangioma beside an HCC is uncommon but poses the question of safety related to probe transgression. We hereby describe a case of transhemangioma ablation of a dome HCC.

  1. Fractional ablative laser skin resurfacing: a review.

    Science.gov (United States)

    Tajirian, Ani L; Tarijian, Ani L; Goldberg, David J

    2011-12-01

    Ablative laser technology has been in use for many years now. The large side effect profile however has limited its use. Fractional ablative technology is a newer development which combines a lesser side effect profile along with similar efficacy. In this paper we review fractional ablative laser skin resurfacing.

  2. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stinis, Panos [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-07

    This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.

  3. Final Report on Developing Microstructure-Property Correlation in Reactor Materials using in situ High-Energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Almer, Jonathan D. [Argonne National Lab. (ANL), Argonne, IL (United States); Yang, Yong [Univ. of Florida, Gainesville, FL (United States); Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    This report provides a summary of research activities on understanding microstructure – property correlation in reactor materials using in situ high-energy X-rays. The report is a Level 2 deliverable in FY16 (M2CA-13-IL-AN_-0403-0111), under the Work Package CA-13-IL-AN_- 0403-01, “Microstructure-Property Correlation in Reactor Materials using in situ High Energy Xrays”, as part of the DOE-NE NEET Program. The objective of this project is to demonstrate the application of in situ high energy X-ray measurements of nuclear reactor materials under thermal-mechanical loading, to understand their microstructure-property relationships. The gained knowledge is expected to enable accurate predictions of mechanical performance of these materials subjected to extreme environments, and to further facilitate development of advanced reactor materials. The report provides detailed description of the in situ X-ray Radiated Materials (iRadMat) apparatus designed to interface with a servo-hydraulic load frame at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermal-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. We conducted several case studies using the iRadMat to obtain a better understanding of deformation and fracture mechanisms of irradiated materials. In situ X-ray measurements on neutron-irradiated pure metal and model alloy and several representative reactor materials, e.g. pure Fe, Fe-9Cr model alloy, 316 SS, HT-UPS, and duplex cast austenitic stainless steels (CASS) CF-8 were performed under tensile loading at temperatures of 20-400°C in vacuum. A combination of wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and imaging techniques were utilized to interrogate microstructure at different length scales in real time while the specimen was subject to thermal-mechanical loading. In addition, in situ X-ray studies were

  4. Experimental investigations on vessel-hole ablation during severe accidents

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Dinh, T.N.; Green, J.A.; Paladino, D.

    1997-12-01

    This report presents experimental results, and subsequent analyses, of scaled reactor pressure vessel (RPV) failure site ablation tests conducted at the Royal Institute of Technology, Division of Nuclear Power Safety (RIT/NPS). The goal of the test program is to reduce the uncertainty level associated with the phase-change-ablation process, and, thus, improve the characterization of the melt discharge loading on the containment. In a series of moderate temperature experiments, the corium melt is simulated by the binary oxide CaO-B 2 O 3 or the binary eutectic and non-eutectic salts NaNO 3 -KNO 3 , while the RPV head steel is represented by a Pb, Sn or metal alloys plate. A complementary set of experiments was conducted at lower temperatures, using water as melt and salted ice as plate material. These experiments scale well to the postulated prototypical conditions. The multidimensional code HAMISA, developed at RIT/NPS, is employed to analyze the experiments with good pre- and post-test predictions. The effects of melt viscosity and crust surface roughness, along with failure site entrance and exit frictional losses on the ablation characteristics are investigated. Theoretical concept was proposed to describe physical mechanisms which govern the vessel-hole ablation process during core melt discharge from RPV. Experimental data obtained from hole ablation tests and separate-effect tests performed at RIT/NPS were used to validate component physical models of the HAMISA code. It is believed that the hole ablation phenomenology is quite well understood. Detailed description of experiments and experimental data, as well as results of analyses are provided in the appendixes

  5. Localized corrosion of metallic materials and γ radiation effects in passive layers under simulated radwaste repository conditions. Final report

    International Nuclear Information System (INIS)

    Schultze, J.W.; Kudelka, S.; Michaelis, A.; Schweinsberg, M.; Thies, A.

    1996-02-01

    The task of the project was to simulate the conditions in a radwaste repository and to perform local analyses in order to detect the critical conditions and material susceptibilities leading to localized corrosion of materials. The information thus obtained was to yield more precise data on the long-term stability of materials for the intended purpose, in order to be able to appropriately select or optimize the materials (Ti, TiO.2Pd, Hastelloy C4, fine-grained structural steel). A major aspect to be examined was natural inhomogeneities of the electrode surfaces, as determined by the grain structure of the selected materials. Thus a laterally inhomogeneous composition in the welded zone induces an inhomogeneous current distribution, and hence strong susceptibility to localized corrosion. This effect was to be quantified, and the localized corrosion processes had to be identified by means of novel, electrochemical methods with a resolution power of μm. The investigations were to be made under conditions as near to practice as possible, for instance by simulating radwaste repository conditions and performing measurements at elevated temperatures (170 C) in an autoclave. Another task was to examine the radiation effects of γ radiation on passive layers, and describe the possible modifications induced by recrystallisation, photocorrosion, or oxide formation. (orig./MM) [de

  6. Development of Advanced Materials for Electro-Ceramic Application Final Report CRADA No. TC-1331-96

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Olstad, R. [General Atomics, San Diego, CA (United States); McMillan, L. [Symetrix International, Inc., Colorado Springs, CO (United States); Tulupov, A. [Soliton-NTT, Moscow (Russia)

    2017-10-19

    The goal of this project was to further develop and characterize the electrochemical methods originating in Russia for producing ultra high purity organometallic compounds utilized as precursors in the production of high quality electro-ceramic materials. Symetrix planned to use electro-ceramic materials with high dielectric constant for microelectronic memory circuit applications. General Atomics planned to use the barium titanate type ceramics with low loss tangent for producing a high power ferroelectric tuner used to match radio frequency power into their Dill-D fusion machine. Phase I of the project was scheduled to have a large number of organometallic (alkoxides) chemical samples produced using various methods. These would be analyzed by LLNL, Soliton and Symetrix independently to determine the level of chemical impurities thus verifying each other's analysis. The goal was to demonstrate a cost-effective production method, which could be implemented in a large commercial facility to produce high purity organometallic compounds. In addition, various compositions of barium-strontium-titanate ceramics were to be produced and analyzed in order to develop an electroceramic capacitor material having the desired characteristics with respect to dielectric constant, loss tangent, temperature characteristics and non-linear behavior under applied voltage. Upon optimizing the barium titanate material, 50 capacitor preforms would be produced from this material demonstrating the ability to produce, in quantity, the pills ultimately required for the ferroelectric tuner (approx 2000-3000 ceramic pills).

  7. Nephron-sparing percutaneous ablation of a 5 cm renal cell carcinoma by superselective embolization and percutaneous RF-ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, J.; Mahnken, A.; Buecker, A.; Guenther, R.W. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Rohde, D. [Technische Hochschule Aachen (Germany). Abt. Urologie

    2001-11-01

    Purpose: To report on the nephron-sparing, percutaneous ablation of a large renal cell carcinoma by combined superselective embolization and percutaneous radiofrequency ablation. Materials and Methods: A 5 cm renal cell carcinoma of a 43-year-old drug abusing male with serologically proven HIV, hepatitis B and C infection, who refused surgery, was superselectively embolized using microspheres (size: 500 - 700 {mu}m) and a platinum coil under local anesthesia. Percutaneous radiofrequency ablation using a 7F LeVeen probe (size of expanded probe tip: 40 mm) and a 200 Watt generator was performed one day after transcatheter embolization under general anesthesia. Results: The combined treatment resulted in complete destruction of the tumor without relevant damage of the surrounding healthy renal tissue. The patient was discharged 24 hours after RF ablation. No complications like urinary leaks or fistulas were observed and follow up CT one day and 4 weeks after the radiofrequency intervention revealed no signs of residual tumor growth. Conclusion: The combined transcatheter embolization and percutaneous radiofrequency ablation of renal cell carcinoma has proved technically feasible, effective, and safe in this patient. It may be offered as an alternative treatment to partial or radical nephrectomy under certain circumstances. Abbreviations: RF = radiofrequency ablation; CT = computed tomography; HIV = human immunodeficiency virus. (orig.) [German] Ziel: Bericht ueber eine nierenschonende, perkutane Ablation eines 5 cm grossen Nierenzellkarzinoms durch kombinierte Transkatheterembolisation und perkutane Radiofrequenzablation. Material und Methoden: Ein 5 cm grosses Nierenzellkarzinom eines 43 Jahre alten Drogenabhaengigen mit serologisch nachgewiesener HIV, Hepatitis B- und C-Infektion, der eine operative Therapie ablehnte, wurde superselektiv durch Embosphaeren (Partikelgroesse: 500 - 700 {mu}m) und einer Platinspirale unter Lokalanaesthesie embolisiert. Am Folgetag

  8. InTaO4-based nanostructures synthesized by reactive pulsed laser ablation

    International Nuclear Information System (INIS)

    Yoshida, Takehito; Toyoyama, Hirokazu; Umezu, Ikurou; Sugimura, Akira

    2008-01-01

    Nanostructured Ni-doped indium-tantalum-oxides (InTaO 4 ) were synthesized by a reactive pulsed laser ablation process, aiming at the final goal of direct splitting of water under visible sunbeam irradiation. The third harmonics beam of a Nd:YAG laser was focused onto a sintered In 0.9 Ni 0.1 TaO 4-δ target in pure oxygen background gases (0.05-1.00 Torr). Increasing the oxygen gas pressure, via thin films having nanometer-sized strong morphologies, single-crystalline nanoparticles were synthesized in the reactive vapor phases. The nanostructured deposited materials have the monoclinic layered wolframite-type structure of bulk InTaO 4 , without oxygen deficiency. (orig.)

  9. Precursor Derived Nanostructured Si-C-X Materials for Nuclear Applications. Final Report, October 2010 - September 2014

    Energy Technology Data Exchange (ETDEWEB)

    Bordia, Rajendra [Univ. of Washington, Seattle, WA (United States); Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States); Henager, Chuck [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-08

    Polymer derived ceramic route is an attractive approach to make structural materials with unique nanostructures that have very desirable high temperature properties. Processing techniques to make a variety of needed shapes and forms (e.g. coatings, matrices for fiber reinforced composites, porous ceramics) have been developed. With appropriate high temperature processing, the precursors can be converted to nano-crystalline materials. In this collaborative project, we investigated the processing, stability and properties of nanostructured Si-C materials, derived from polymeric precursors, and their performance under conditions appropriate for nuclear energy applications. All the milestones of the project were accomplished. Some of the results are being currently analyzed and additional papers being prepared in which support from NEUP will be acknowledged. So far, eight peer-reviewed papers have been published and one invention disclosure made. In this report, we summarize the major findings of this project.

  10. Precursor Derived Nanostructured Si-C-X Materials for Nuclear Applications. Final Report, October 2010 - September 2014

    International Nuclear Information System (INIS)

    Bordia, Rajendra; Tomar, Vikas; Henager, Chuck

    2015-01-01

    Polymer derived ceramic route is an attractive approach to make structural materials with unique nanostructures that have very desirable high temperature properties. Processing techniques to make a variety of needed shapes and forms (e.g. coatings, matrices for fiber reinforced composites, porous ceramics) have been developed. With appropriate high temperature processing, the precursors can be converted to nano-crystalline materials. In this collaborative project, we investigated the processing, stability and properties of nanostructured Si-C materials, derived from polymeric precursors, and their performance under conditions appropriate for nuclear energy applications. All the milestones of the project were accomplished. Some of the results are being currently analyzed and additional papers being prepared in which support from NEUP will be acknowledged. So far, eight peer-reviewed papers have been published and one invention disclosure made. In this report, we summarize the major findings of this project.

  11. Advisory group meeting on safeguards related to final disposal of nuclear material in waste and spent fuel (AGM-660)

    International Nuclear Information System (INIS)

    1988-12-01

    The Advisory Group was asked to advise the Agency on the circumstances under which the Agency might logically implement Section 11 of INFCIRC/153, or the comparable Section 26c of INFCIRC/66/rev2, which provides for a determination that nuclear material is 'practicably irrecoverable', and that therefore safeguards could be terminated. This advice was sought, and in the paragraphs that follow is given, in two areas. One relates to 'waste', which the Group understands as referring to material which contains nuclear material that the State/facility operator believes has no economically recoverable value and for which no further use is foreseen. The other relates to spent fuel, which in some cases may be placed in geological 'permanent repositories'

  12. On-site transportation and handling of uranium-233 special nuclear material: Preliminary hazards and accident analysis. Final

    International Nuclear Information System (INIS)

    Solack, T.; West, D.; Ullman, D.; Coppock, G.; Cox, C.

    1995-01-01

    U-233 Special Nuclear Material (SNM) currently stored at the T-Building Storage Areas A and B must be transported to the SW/R Tritium Complex for repackaging. This SNM is in the form of oxide powder contained in glass jars which in turn are contained in heat sealed double polyethylene bags. These doubled-bagged glass jars have been primarily stored in structural steel casks and birdcages for approximately 20 years. The three casks, eight birdcages, and one pail/pressure vessel will be loaded onto a transport truck and moved over an eight day period. The Preliminary Hazards and Accident Analysis for the on-site transportation and handling of Uranium-233 Special Nuclear Material, documented herein, was performed in accordance with the format and content guidance of DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, dated July 1994, specifically Chapter Three, Hazard and Accident Analysis. The Preliminary Hazards Analysis involved detailed walkdowns of all areas of the U-233 SNM movement route, including the T-Building Storage Area A and B, T-Building truck tunnel, and the roadway route. Extensive discussions were held with operations personnel from the Nuclear Material Control Group, Nuclear Materials Accountability Group, EG and G Mound Security and the Material Handling Systems Transportation Group. Existing documentation related to the on-site transportation of hazardous materials, T-Building and SW/R Tritium Complex SARs, and emergency preparedness/response documentation were also reviewed and analyzed to identify and develop the complete spectrum of energy source hazards

  13. Screening of candidate corrosion resistant materials for coal combustion environments -- Volume 4. Final report, January 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Boss, D.E.

    1997-12-31

    The development of a silicon carbide heat exchanger is a critical step in the development of the Externally-Fired Combined Cycle (EFCC) power system. SiC is the only material that provides the necessary combination of resistance to creep, thermal shock, and oxidation. While the SiC structural materials provide the thermomechanical and thermophysical properties needed for an efficient system, the mechanical properties of the SiC tubes are severely degraded through corrosion by the coal combustion products. To obtain the necessary service life of thousands of hours at temperature, a protective coating is needed that is stable with both the SiC tube and the coal combustion products, resists erosion from the particle laden gas stream, is thermal-shock resistant, adheres to SiC during repeated thermal shocks (start-up, process upsets, shut-down), and allows the EFCC system to be cost competitive. The candidate protective materials identified in a previous effort were screened for their stability to the EFCC combustion environment. Bulk samples of each of the eleven candidate materials were prepared, and exposed to coal slag for 100 hours at 1,370 C under flowing air. After exposure the samples were mounted, polished, and examined via x-ray diffraction, energy dispersive spectroscopy, and scanning electron microscopy. In general, the alumina-based materials behaved well, with comparable corrosion depths in all five samples. Magnesium chromite formed a series of reaction products with the slag, which included an alumina-rich region. These reaction products may act as a diffusion barrier to slow further reaction between the magnesium chromite and the slag and prove to be a protective coating. As for the other materials; calcium titanate failed catastrophically, the CS-50 exhibited extension microstructural and compositional changes, and zirconium titanate, barium zironate, and yttrium chromite all showed evidence of dissolution with the slag.

  14. Optical radiative properties of ablating polymers exposed to high-power arc plasmas

    Science.gov (United States)

    Becerra, Marley; Pettersson, Jonas

    2018-03-01

    The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer

  15. Safety Analysis Report: Packages, Pu oxide and Am oxide shipping cask: Packaging of fissile and other radioactive materials: Final report

    International Nuclear Information System (INIS)

    Chalfant, G.G.

    1984-12-01

    The PuO 2 cask or 5320-3 cask is designed for shipment of americium or plutonium by surface transportation modes. The cask design was physically tested to demonstrate that it met the criteria specified in US ERDA Manual Chapter 0529, dated 12/21/76, which invokes Title 10 Code of Federal Regulations, Part 71 (10 CFR 71) ''Packaging of Radioactive Materials for Transport,'' and Title 49 CFR Parts 171.179 ''Hazardous Materials Regulations.'' (US DOE Order 4580.1A, Chapter III, superseded manual chapter 0529 effective May 1981, but it retained the same 10 CFR 71 and 49 CFR 171-179 references

  16. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction; FINAL

    International Nuclear Information System (INIS)

    Ostowari, Ken; Nosson, Ali

    2000-01-01

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction

  17. The internal structure and dynamics of the railgun plasma armature between infinitely wide ablating rails

    International Nuclear Information System (INIS)

    Frese, M.F.

    1991-01-01

    This paper reports on computer simulations of the plasma flow in two-dimensionally symmetric railgun plasma arcs that were performed. The direction of symmetry is normal to the insulator surface, so that the rails are effectively infinite in width. The rail surface ablates according to one of two ablation models, in which either all absorbed energy flux, or only the excess over that which the rail material can conduct away, ablates mass. A number of combinations of initial conditions, boundary conditions and resistivity models were explored. The full ablation model produces an arc of continuously growing mass and length, in which the current distribution reaches from the projectile half-way to the breech. The conduction limited ablation model produces a compact arc approximately eight times the bore height in length, which ceases to ablate material from the rails before the projectile reaches a velocity of 1 km/s. There is need for further study in several areas. These include the arc initiation process, the ablation of the insulators, and three-dimensional effects

  18. Endometrial ablation with paracervical block

    NARCIS (Netherlands)

    Penninx, Josien P. M.; Mol, Ben Willem; Bongers, Marlies Y.

    2009-01-01

    OBJECTIVE: To evaluate the safety, feasibility and efficacy of endometrial ablation under local anesthesia. STUDY DESIGN: A prospective cohort study was performed at the gynecology department of a large teaching hospital. Women with dysfunctional uterine bleeding were included to undergo NovaSure

  19. Mucosal ablation in Barrett's esophagus.

    Science.gov (United States)

    Walker, S J; Selvasekar, C R; Birbeck, N

    2002-01-01

    Barrett's esophagus is a prevalent, premalignant condition affecting the gastroesophageal junction and distal esophagus. Ablation plus antireflux therapy has recently been advocated to prevent the development of adenocarcinoma or to treat those unfit or unwilling to undergo esophagectomy. The present article, based on a search of Medline/ISI databases and cross-referencing of relevant articles, reviews the literature on this subject. A number of techniques have been used to remove the affected mucosa, including laser, electrocoagulation, argon plasma coagulation and photodynamic therapy but, as yet, none has been shown to be superior. Depending on the method used, ablation results in complete removal of Barrett's esophagus in approximately one third of patients and a partial response in nearly two-thirds. The resultant squamous mucosa is apparently 'normal' but may regress. To promote and maintain regeneration, antireflux therapy must be sufficient to reduce repetitive injury to the esophageal mucosa. Whether ablation reduces the cancer risk or delays its occurrence is unknown, though recent data suggests benefit. Complications are infrequent and usually mild. Regular follow-up endoscopy and deep biopsies continue to be necessary. Careful data from much larger populations with long-term follow-up is required before ablation reaches the stage of broad clinical application.

  20. Hydrodynamic instabilities in an ablation front

    International Nuclear Information System (INIS)

    Piriz, A R; Portugues, R F

    2004-01-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved

  1. Hydrodynamic instabilities in an ablation front

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A R; Portugues, R F [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2004-06-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved.

  2. Comparison of wet radiofrequency ablation with dry radiofrequency ablation and radiofrequency ablation using hypertonic saline preinjection: ex vivo bovine liver

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Han, Joon Koo; Kim, Se Hyung; Lee, Jae Young; Park, Hee Sun; Hur, Hurn; Choi, Byung Ihn; Shin, Kyung Sook

    2004-01-01

    We wished to compare the in-vitro efficiency of wet radiofrequency (RF) ablation with the efficiency of dry RF ablation and RF ablation with preinjection of NaCl solutions using excised bovine liver. Radiofrequency was applied to excised bovine livers in a monopolar mode for 10 minutes using a 200 W generator and a perfused-cooled electrode with or without injection or slow infusion of NaCl solutions. After placing the perfused-cooled electrode in the explanted liver, 50 ablation zones were created with five different regimens: group A; standard dry RF ablation, group B; RF ablation with 11 mL of 5% NaCl solution preinjection, group C; RF ablation with infusion of 11 mL of 5% NaCl solution at a rate of 1 mL/min, group D; RFA with 6 mL of 36% NaCl solution preinjection, group E; RF ablation with infusion of 6 mL of 36% NaCl solution at a rate of 0.5 mL/min. In groups C and E, infusion of the NaCl solutions was started 1 min before RF ablation and then maintained during RF ablation (wet RF ablation). During RF ablation, we measured the tissue temperature at 15 mm from the electrode. The dimensions of the ablation zones and changes in impedance, current and liver temperature during RF ablation were then compared between the groups. With injection or infusion of NaCl solutions, the mean initial tissue impedance prior to RF ablation was significantly less in groups B, C, D, and E (43-75 Ω) than for group A (80 Ω) (ρ 3 in group A; 12.4 ± 3.8 cm 3 in group B; 80.9 ± 9.9 cm 3 in group C; 45.3 ± 11.3 cm 3 in group D and 81.6 ± 8.6 cm 3 in group E. The tissue temperature measured at 15 mm from the electrode was higher in groups C, D and E than other groups (ρ < 0.05): 53 ± 12 .deg. C in group A, 42 ± 2 .deg. C in group B, 93 ± 8 .deg. C in group C; 79 ± 12 .deg. C in group D and 83 ± 8 .deg.C in group E. Wet RF ablation with 5% or 36% NaCl solutions shows better efficiency in creating a large ablation zone than does dry RF ablation or RF ablation with

  3. Safety analysis report: packages 238Pu oxide shipping cask (packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    Evans, J.E.; Gates, A.A.

    1975-06-01

    Plutonium-238 (as PuO 2 powder) is shipped in triple-container stainless steel shipping casks in compliance with ERDA Manual Chapter 0529 (ERDAM 0529), Safety Standards for the Packaging of Fissile and Other Radioactive Materials. (U.S.)

  4. Safety analysis report: packages. Argonne National Laboratory SLSF test train shipping container, P-1 shipment. Fissile material. Final report

    International Nuclear Information System (INIS)

    Meyer, C.A.

    1975-06-01

    The package is used to ship an instrumented test fuel bundle (test train) containing fissile material. The package assembly is Argonne National Laboratory (ANL) Model R1010-0032. The shipment is fissile class III. The packaging consists of an outer carbon steel container into which an inner container is placed; the inner container is separated from the outer container by urethane foam cushioning material. The test train is supported in the inner container by a series of transverse supports spaced along the length of the test train. Both the inner and outer containers are closed with bolted covers. The covers do not seal the containers in a leaktight manner. The gross weight of the shipment is about 8350 lb. The unirradiated fissile material content is less than 3 kg of UO 2 of up to 93.2 percent enrichment. This is a Type A quantity (transport group III and less than 3 curies) of radioactive material which does not require shielding, cooling or heating, or neutron absorption or moderation functions in its packaging. The maximum exterior dimensions of the container are 37 ft 11 in. long, 24 1 / 2 in. wide, and 19 3 / 4 in. high

  5. LL13-MatModelRadDetect-PD2Jf Final Report: Materials Modeling for High-Performance Radiation Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lordi, Vincenzo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-12-11

    The aims of this project are to enable rational materials design for select high-payoff challenges in radiation detection materials by using state-of-the-art predictive atomistic modeling techniques. Three specific high-impact challenges are addressed: (i) design and optimization of electrical contact stacks for TlBr detectors to stabilize temporal response at room-temperature; (ii) identification of chemical design principles of host glass materials for large-volume, low-cost, highperformance glass scintillators; and (iii) determination of the electrical impacts of dislocation networks in Cd1-xZnxTe (CZT) that limit its performance and usable single-crystal volume. The specific goals are to establish design and process strategies to achieve improved materials for high performance detectors. Each of the major tasks is discussed below in three sections, which include the goals for the task and a summary of the major results, followed by a listing of publications that contain the full details, including details of the methodologies used. The appendix lists 12 conference presentations given for this project, including 1 invited talk and 1 invited poster.

  6. Synchrotron Studies of Narrow Band and Low-Dimensional Materials. Final Report for July 1, 1990 --- December 31, 2002

    International Nuclear Information System (INIS)

    Allen, J. W.

    2003-01-01

    This report summarizes a 12-year program of various kinds of synchrotron spectroscopies directed at the electronic structures of narrow band and low-dimensional materials that display correlated electron behaviors such as metal-insulator transitions, mixed valence, superconductivity, Kondo moment quenching, heavy Fermions, and non-Fermi liquid properties

  7. A theoretical and numerical study of the flow of granular materials down an inclined plane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, K.R.

    1995-12-31

    The mechanics of the flowing granular materials such as coal, agricultural products, at deal of attention as it has fertilizers, dry chemicals, metal ores, etc. have received a great deal of attention as it has relevance to several important technological problems. Despite wide interest and more than five decades of experimental and theoretical investigations, most aspects of the behavior of flowing granular materials are still not well understood. So Experiments have to be devised which quantify and describe the non-linear behavior of the modular materials, and theories developed which can explain the experimentally observed facts. As many models have been suggested for describing the behavior of granular materials, from both continuum and kinetic theory viewpoints, we proposed to investigate the validity and usefulness of representative models from both the continuum and kinetic theory points of view, by determining the prediction of such a theory, in a representative flow, with respect to existence, non-existence, multiplicity and stability of solutions. The continuum model to be investigated is an outgrowth of a model due to Goodman and Cowin (1971, 1972) and the kinetic theory models being those due to Jenkins and Richman (1985) and Boyle and Massoudi (1989). In this report we present detailed results regarding the same. Interestingly, we find that the predictions of all the theories, in certain parameter space associated with these models, are qualitatively similar. This ofcourse depends on the values assumed for various material parameters in the models, which as yet are unknown, as reliable experiments have not been carried out as yet for their determination.

  8. Self-modified quasi-stationary model for the radiation ablation

    International Nuclear Information System (INIS)

    Zhang Jun; Pei Wenbing; Gu Peijun; Sui Chengzhi; Chang Tieqiang

    1996-01-01

    The self-modified quasi-stationary model for radiation ablation has been established based on physical picture of numerical simulations. The objective of the model is to predict quantitatively the scaling laws of various ablation parameters driven by soft-X-ray, such as the dependence of ablation depth, pressure on radiation temperature, energy, pulse width, without resorting to complex computer simulations. The computational results are given for some interesting materials in ICF. Scaling laws obtained are simple and effective in target design and analysis of experimental results

  9. The Effect of Luting Cement and Titanium Base on the Final Color of Zirconium Oxide Core Material.

    Science.gov (United States)

    Capa, Nuray; Tuncel, Ilkin; Tak, Onjen; Usumez, Aslihan

    2017-02-01

    To evaluate the effects of different types of luting cements and different colors of zirconium cores on the final color of the restoration that simulates implant-supported fixed partial dentures (FPDs) by using a titanium base on the bottom. One hundred and twenty zirconium oxide core plates (Zr-Zahn; 10 mm in width, 5 mm in length, 0.5 mm in height) were prepared in different shades (n = 20; noncolored, A2, A3, B1, C2, D2). The specimens were subdivided into two subgroups for the two types of luting cements (n = 10). The initial color measurements were made on zirconium oxide core plates using a spectrometer. To create the cement thicknesses, stretch strips with holes in the middle (5 mm in diameter, 70 μm in height) were used. The second measurement was done on the zirconium oxide core plates after the application of the resin cement (U-200, A2 Shade) or polycarboxylate cement (Lumicon). The final measurement was done after placing the titanium discs (5 mm in diameter, 3 mm in height) in the bottom. The data were analyzed with two-way ANOVA and Tukey's honestly significant differences (HSD) tests (α = 0.05). The ∆E* ab value was higher in the resin cement-applied group than in the polycarboxylate cement-applied group (p zirconium oxide core-resin cement-titanium base, and the lowest was recorded for the polycarboxylate cement-zirconium oxide core (p zirconium are all important factors that determine the final shade of zirconia cores in implant-supported FPDs. © 2015 by the American College of Prosthodontists.

  10. Review of the sorption of radionuclides on the bedrock of Haestholmen and on construction and backfill materials of a final repository for reactor wastes

    International Nuclear Information System (INIS)

    Kulmala, S.; Hakanen, M.

    1992-10-01

    Imatran Voima Oy (IVO) has plans to build a final repository for reactor wastes in the bedrock of the nuclear power plant site at Haestholmen, Loviisa. This report summarizes the sorption studies of radionuclides in Finnish bedrock performed at the Department of Radiochemistry, University of Helsinki. The values of mass distribution ratios, K d , and surface distribution ratios, K a ; of carbon, calsium, Zirconium, niobium, cobalt, nickel, strontium, cesium, uranium, plutonium, americium, thorium, chlorine, iodine and technetium are surveyed. Special attention is paid to the sorption data for construction and backfill materials of rector waste repository and the bedrock of Haestholmen. Safety assessment of a repository includes calculations of migration of the waste element in construction materials and backfill in the nearfield and in bedrock. Retardation by sorption of waste nuclides compared to groundwater flow is described by using distribution ratios between solid materials and water. (orig.)

  11. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets.

    Science.gov (United States)

    Chang, Nan; Lu, Shukuan; Qin, Dui; Xu, Tianqi; Han, Meng; Wang, Supin; Wan, Mingxi

    2018-07-01

    A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration. Copyright © 2018. Published by Elsevier B.V.

  12. Safety analysis report, packages. Drath and Schrader Double Lidded Drum (packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    Chalfant, G.G.

    1985-07-01

    The preceding Safety Analysis Report - Packages qualifies the Drath and Schrader Double Lidded Drum (see appendix E) as a Department of Transportation DOT 7A Type A packaging and/or ''Type A'' foreign made packaging. The allowable contents shall be: in solid form; non-fissile or exempt fissile material (as defined by 49 CFR 173.453); less than 700 pounds (318 kg) in weight; equal to or less than the A 1 or A 2 quantities of radioactive material as appropriate (see 49 CFR 173.435 for tables of A 1 /A 2 values); and hydrogen gas generation in radioactive waste shall be limited to a maximum of 2-1/2% and total gas pressure limited to 5 psig. Package marking shall be as specified in 49 CFR 178.350-3 or as specified by the foreign country of origin

  13. Thermal conductivity and electrical resistivity standard reference materials: tungsten SRM's 730 and 799, from 4 to 30000K. Final report

    International Nuclear Information System (INIS)

    Hust, J.G.; Giarratano, P.J.

    1975-09-01

    A historical review of the development of thermophysical Standard Reference Materials, SRM's, is given and selection criteria of SRM's are listed. Thermal conductivity and electrical resistivity data for arc cast and sintered tungsten are compiled, analyzed, and correlated. Recommended values of thermal conductivity (SRM 730) and electrical resistivity (SRM 799) for these lots of tungsten are presented for the range 4 to 3000 0 K

  14. Application of titanates, niobates, and tantalates to neutralized defense waste decontamination: materials properties, physical forms, and regeneration techniques. Final report

    International Nuclear Information System (INIS)

    Dosch, R.G.

    1981-01-01

    A study of the application of sodium titanate (ST) to the decontamination of neutralized defense waste has been completed. The work was directed at Sr removal from dissolved salt cake, simulated in this work with a 6.0 N NaNO 3 - 0.6 N NaOH solution. Three physical forms of the titanates were developed including powder, pellets, and titanate-loaded resin beads and all were found to be superior to conventional organic ion exchange in this application. When spent, the titanate materials can be calcined to an oxide from which is a stable waste form in itself or can be added directly to a glass melter to become part of a vitrified waste form. Radiation stability of titanate powder and resin forms was assessed in tests in which these materials were exposed to 60 Co radiation. The strontium exchange capacity of the powder remained constant through a dose of 3 x 10 7 rads and retained 50% capacity after a dose of 2 x 10 9 rads. The primary mechanism involved in loss of capacity was believed to be heating associated with the irradiation. The resin forms were unchanged through a dose of 5 x 10 8 rads and retained 30% capacity after a dose of 2 x 10 9 rads. The latter dose resulted in visible degradation of the resin matrix. Anion exchange resins loaded with sodium niobate and sodium tantalate were also prepared by similar methods and evaluated for this application. These materials had Sr sorption properties comparable to the titanate material; however, they would have to provide a significant improvement to justify their higher cost

  15. Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final Report. Volume II: Silicon material

    OpenAIRE

    Lutwack, R.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. The goal of the Silicon Material Task, a part of the FSA Project, was to develop and ...

  16. Evaluation of the potential of optical switching materials for overheating protection of thermal solar collectors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Huot, G.; Roecker, Ch.; Schueler, A.

    2008-01-15

    Providing renewable energy for domestic hot water production and space heating, thermal solar collectors are more and more widespread, and users' expectations with respect to performance and service lifetime are rising continuously. The durability of solar collector materials is a critical point as the collector lifetime should be at least 25 years. Overheating and the resulting stagnation of the collector is a common problem with solar thermal systems. During stagnation high temperatures lead to water evaporation, glycol degradation, and stresses in the collector with increasing pressure. Special precautions are necessary to release this pressure; only mechanical solutions exist nowadays. Additionally, the occurring elevated temperatures lead to degradation of the materials that compose collectors: seals, insulation materials, and also the selective coating which is the most important part of the collector. A promising way to achieve active cooling of collectors without any mechanical device for pressure release or collector emptying is to produce a selective coating which is able to switch its optical properties at a critical temperature Tc. An optical switch allows changing the selective coating efficiency; the goal is to obtain a coating with a poor selectivity above Tc (decreasing of absorptance, increasing of emittance). Obtaining self-cooling collectors will allow increasing collector surfaces on facades and roofs in order to get high efficiency and hot water production during winter without inconvenient overheating during summer. Optical switching of materials can be obtained by many ways. Inorganic and organic thermochromic compounds, and organic thermotropic coatings are the main types of switching coatings that have been studied at EPFL-LESO-PB. Aging studies of organic thermochromic paints fabricated at EPFL suggest that the durability of organic compounds might not be sufficient for glazed metallic collectors. First samples of inorganic coatings

  17. Transport of radioactive material in the United States: results of a survey to determine the magnitude and characteristics of domestic, unclassified shipments of radioactive materials. Final report

    International Nuclear Information System (INIS)

    Javitz, H.S.; Lyman, T.R.; Maxwell, C.; Myers, E.L.; Thompson, C.R.

    1985-04-01

    SRI International has completed a project for the Sandia National Laboratories designed to create a statistical data base identifying the volume and characteristics of shipments of unclassified radioactive materials (RAM)* in the continental United States. Agencies providing resources for this project have included: Nuclear Regulatory Commission (NRC) Department of Transportation (DOT) Department of Energy (DOE) Federal Emergency Management Agency (FEMA). Technical management of the project was the responsibility of the Transportation Technology Center (TTC) of Sandia National Laboratories. This report is intended only as a brief summary of a project having as its primary product the Radioactive Materials Transportation (RAMT) survey data base provided by SRI to TTC. The data in the RAMT data base comes from two principal sources - a survey of NRC and Agreement State licensees (referred to as the Licensee survey) and a survey of DOE contractors (referred to as the DOE survey). This report provides summary information on: project background; objectives; approach; survey response; basic tables and discussion of shipment characteristics; and technical appendices. 21 figs., 15 tabs

  18. Reactive laser-induced ablation as approach to titanium oxycarbide films

    International Nuclear Information System (INIS)

    Jandova, V.; Fajgar, R.; Dytrych, P.; Kostejn, M.; Drinek, V.; Kupcik, J.

    2015-01-01

    The IR laser-induced reactive ablation of frozen titanium ethoxide target was studied. The method involves the laser ablation of titanium ethoxide at − 140 °C in gaseous methane (4–50 Pa) atmosphere. This process leads to reactions of the ablative species with hydrocarbon in the gaseous phase. During the ablation of the frozen target excited species interact with methane molecules. The reactive ablation process leads to the formation of a smooth thin film. The thickness of prepared films depends on the number of IR pulses and their composition depends on the pressure of gaseous methane. This reactive IR ablation proceeds as a carbidation process providing nanostructured films with good adhesion to various substrates (glass, metals, KBr) depending on the carbon content in prepared films. Particles are also stabilized by layer preventing their surface oxidation in the atmosphere. The described results are important in the general context for the synthesis of reactive particles in the gas phase. The final products are characterized by spectroscopic, microscopic and diffraction techniques: SEM/EDX, HRTEM, electron diffraction, Raman spectroscopy and XPS. - Highlights: • IR laser ablation of frozen target of titanium ethoxide leads to a reduction in the gaseous methane (4-50 Pa). • Films deposited in methane have Ti/O/C stoichiometry and are oxidized in the atmosphere. • Layers deposited in methane are reduced and have less O in the topmost layers

  19. Reactive laser-induced ablation as approach to titanium oxycarbide films

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, V., E-mail: jandova@icpf.cas.cz; Fajgar, R.; Dytrych, P.; Kostejn, M.; Drinek, V.; Kupcik, J.

    2015-09-01

    The IR laser-induced reactive ablation of frozen titanium ethoxide target was studied. The method involves the laser ablation of titanium ethoxide at − 140 °C in gaseous methane (4–50 Pa) atmosphere. This process leads to reactions of the ablative species with hydrocarbon in the gaseous phase. During the ablation of the frozen target excited species interact with methane molecules. The reactive ablation process leads to the formation of a smooth thin film. The thickness of prepared films depends on the number of IR pulses and their composition depends on the pressure of gaseous methane. This reactive IR ablation proceeds as a carbidation process providing nanostructured films with good adhesion to various substrates (glass, metals, KBr) depending on the carbon content in prepared films. Particles are also stabilized by layer preventing their surface oxidation in the atmosphere. The described results are important in the general context for the synthesis of reactive particles in the gas phase. The final products are characterized by spectroscopic, microscopic and diffraction techniques: SEM/EDX, HRTEM, electron diffraction, Raman spectroscopy and XPS. - Highlights: • IR laser ablation of frozen target of titanium ethoxide leads to a reduction in the gaseous methane (4-50 Pa). • Films deposited in methane have Ti/O/C stoichiometry and are oxidized in the atmosphere. • Layers deposited in methane are reduced and have less O in the topmost layers.

  20. Gravimetric and profilometric measurements of the ablation rates of photosensitive polymers at different wavelengths

    International Nuclear Information System (INIS)

    Dumont, Th.; Bischofberger, R.; Lippert, T.; Wokaun, A.

    2005-01-01

    The ablation rates of two polyimides (PMDA and DurimidTM) and one triazene polymer were studied by gravimetric (quartz microbalance) and profilometric (profilometer) methods at irradiation wavelengths of 193, 248 and 308 nm. The ablation rates determined by the two methods are discussed in the context of the absorption behavior of the materials. Furthermore, the consistence of the two experimental methods is discussed for the ablation rates of DurimidTM and the triazene polymer. The gravimetric measurements revealed a good correlation between the ablation rate and the absorption properties of the examined materials. The comparison of the gravimetric and the profilometric measurements suggest a significant mass removal, e.g. by formation of gaseous products, prior to the detection of changes in the surface morphology

  1. Three dimensional characterization of laser ablation craters using high resolution X-ray computed tomography

    Science.gov (United States)

    Galmed, A. H.; du Plessis, A.; le Roux, S. G.; Hartnick, E.; Von Bergmann, H.; Maaza, M.

    2018-01-01

    Laboratory X-ray computed tomography is an emerging technology for the 3D characterization and dimensional analysis of many types of materials. In this work we demonstrate the usefulness of this characterization method for the full three dimensional analysis of laser ablation craters, in the context of a laser induced breakdown spectroscopy setup. Laser induced breakdown spectroscopy relies on laser ablation for sampling the material of interest. We demonstrate here qualitatively (in images) and quantitatively (in terms of crater cone angles, depths, diameters and volume) laser ablation crater analysis in 3D for metal (aluminum) and rock (false gold ore). We show the effect of a Gaussian beam profile on the resulting crater geometry, as well as the first visual evidence of undercutting in the rock sample, most likely due to ejection of relatively large grains. The method holds promise for optimization of laser ablation setups especially for laser induced breakdown spectroscopy.

  2. Investigation of metal fluoride thermal energy storage materials: availability, cost, and chemistry. Final report, July 15, 1976--December 15, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Eichelberger, J.L.

    1976-12-01

    Storage of thermal energy in the 400 to 1000/sup 0/C range is attracting increasing consideration for use in solar power, central power, vehicular, and commercial process systems. This study investigates the practicality of using metal fluorides as the heat storage medium. The projected availability of metal fluorides has been studied and is shown to be adequate for widespread thermal storage use. Costs are projected and discussed in relation to thermal energy storage applications. Phase diagrams, heats of fusion, heat capacities, vapor pressures, toxicity, stability, volume changes, thermal conductivities, fusion kinetics, corrosion, and container materials of construction for a wide range of fluorides have been examined. Analyses of these data in consideration of thermal energy storage requirements have resulted in selection of the most cost-effective fluoride mixture for each of 23 temperature increments between 400 and 1000/sup 0/C. Thermo-physical properties of these 23 materials are presented. Comparison of fluoride with non-fluoride materials shows that the fluorides are suitable candidates for high temperature applications on the bases of cost, heat capacity/unit volume, heat capacity/unit weight, corrosive properties, and availability.

  3. Reference materials for microanalytical nuclear techniques. Final report of a co-ordinated research project 1994-1999

    International Nuclear Information System (INIS)

    2002-06-01

    A significant problem in the use of solid- and small-sample techniques is a general lack in suitable certified reference materials (CRM). Essentially, no CRM are certified for the small sample sizes typically used. Direct utilization of most existing CRM in solid sampling analysis procedures, typically 1 mg sample size, is often difficult or even impossible because trace components may not be sufficiently homogeneously distributed in the sample or their homogeneous distribution has not been tested. To explore the production, characterization and use of CRM for determinations with sample sizes much smaller than currently used, the Coordinated Research Program focused on selection of biological and environmental materials suitable for microanalytical techniques, definition of specifications for suitable CRM, evaluation of existing CRM for use with microanalytical techniques, evaluation of requirements for sample pre-treatment, evaluation of analytical techniques and research on development of techniques to be used in characterizing the homogeneity and chemical composition of small samples, and application of analytical techniques to the characterization of candidate reference materials for use with microanalytical techniques

  4. Canister materials proposed for final disposal of high level nuclear waste - a review with respect to corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, E; Odoj, R; Merz, E [eds.

    1981-06-01

    Spent fuel from nuclear reactors has to be disposed of either after reprocessing or without such treatment. Due to toxic radiation the nuclear waste has to be isolated from the biosphere for 300-1000 years, or in extreme cases for more than 100,000 years. The nuclear waste will be enclosed in corrosion resistant canisters. These will be deposited in repositories in geological formations, such as granite, basalt, clay, bedded or domed salt, or the sediments beneath the deep ocean floor. There the canisters will be exposed to groundwater, brine or seawater at an elevated temperature. Species formed by radiolysis may affect the corrosivity of the agent. The corrosion resistance of candidate canister materials is evaluated by corrosion tests and by thermodynamic and mass transport calculations. Examination of ancient metal objects after long exposure in nature may give additional information. On the basis of the work carried out so far, the principal candidate canister materials are titanium materials, copper and high purity alumina.

  5. Hydrogen pellet ablation and accelerator by current in high temperature plasmas

    International Nuclear Information System (INIS)

    Kuteev, B.V.

    1995-01-01

    Hydrogen pellet ablation and acceleration by current in high temperature plasmas are analyzed. The present state of ablation theory and experiment is discussed and an ablation model is formulated. This model takes into account the energy distribution of the particles (both electrons and ions) participating in the ablation process, electrostatic effects of the cloud charging and changes of the pellet form during ablation. Without charging the pellet form tends to a shape resembling a lentil while it remains almost spherical if charged. A new algorithm for ablation rate calculations that can be used for an arbitrary initial form of the pellet is described. The results of this kinetic two dimensional approach differ from those of the Parks ablation scaling used in the ITER design by not more than 30%. Plasma shielding effects are not significant in the ablation if strong turbulence in the cloud is taken into account. Acceleration analysis is based on the Braginskii corrected electron distribution function. For the lentil mode of ablation, acceleration is higher than those for the charged mode by a factor of 1.76. The ablation models are compared with the experiments on T-10, JET, TFTR, Heliotron-E and Tore Supra. A sensitivity analysis shows that pellet size and electron temperature are the most significant factors for determination of the penetration length. The available database of penetration lengths is not sufficient for distinguishing between the models. Acceleration for the charged model correlates with experimental data better than that for the lentil mode. The effect of the hot ions is seen on the ablation. Finally, ablation at reactor relevant plasma and pellet parameters is considered. This range of the plasma parameters needs a correction of the ablation scaling as follows: dN/dt ∼ n 0.453 e T 1.72 e r 1.443 p M -0.283 i , where n e and T e are the electron density and temperature, respectively, and r p and M i are the pellet radius and atomic mass

  6. Emission characteristics of laser ablation-hollow cathode glow discharge spectral source

    Directory of Open Access Journals (Sweden)

    Karatodorov Stefan

    2014-11-01

    Full Text Available The emission characteristics of a scheme combining laser ablation as sample introduction source and hollow cathode discharge as excitation source are presented. The spatial separation of the sample material introduction by laser ablation and hollow cathode excitation is achieved by optimizing the gas pressure and the sample-cathode gap length. At these conditions the discharge current is maximized to enhance the analytical lines intensity.

  7. Predictors of Sick Sinus Syndrome in Patients after Successful Radiofrequency Catheter Ablation of Atrial Flutter

    OpenAIRE

    Song, Changho; Jin, Moo-Nyun; Lee, Jung-Hee; Kim, In-Soo; Uhm, Jae-Sun; Pak, Hui-Nam; Lee, Moon-Hyoung; Joung, Boyoung

    2014-01-01

    Purpose The identification of sick sinus syndrome (SSS) in patients with atrial flutter (AFL) is difficult before the termination of AFL. This study investigated the patient characteristics used in predicting a high risk of SSS after AFL ablation. Materials and Methods Out of 339 consecutive patients who had undergone radiofrequency ablation for AFL from 1991 to 2012, 27 (8%) had SSS (SSS group). We compared the clinical characteristics of patients with and without SSS (n=312, no-SSS group). ...

  8. The contemporary role of ablative treatment approaches in the management of renal cell carcinoma (RCC): focus on radiofrequency ablation (RFA), high-intensity focused ultrasound (HIFU), and cryoablation.

    Science.gov (United States)

    Klatte, Tobias; Kroeger, Nils; Zimmermann, Uwe; Burchardt, Martin; Belldegrun, Arie S; Pantuck, Allan J

    2014-06-01

    Currently, most of renal tumors are small, low grade, with a slow growth rate, a low metastatic potential, and with up to 30 % of these tumors being benign on the final pathology. Moreover, they are often diagnosed in elderly patients with preexisting medical comorbidities in whom the underlying medical conditions may pose a greater risk of death than the small renal mass. Concerns regarding overdiagnosis and overtreatment of patients with indolent small renal tumors have led to an increasing interest in minimally invasive, ablative as an alternative to extirpative interventions for selected patients. To provide an overview about the state of the art in radiofrequency ablation (RFA), high-intensity focused ultrasound, and cryoablation in the clinical management of renal cell carcinoma. A PubMed wide the literature search of was conducted. International consensus panels recommend ablative techniques in patients who are unfit for surgery, who are not considered candidates for or elect against elective surveillance, and who have small renal masses. The most often used techniques are cryoablation and RFA. These ablative techniques offer potentially curative outcomes while conferring several advantages over extirpative surgery, including improved patient procedural tolerance, faster recovery, preservation of renal function, and reduction in the risk of intraoperative and postsurgical complications. While it is likely that outcomes associated with ablative modalities will improve with further advances in technology, their application will expand to more elective indications as longer-term efficacy data become available. Ablative techniques pose a valid treatment option in selected patients.

  9. Technical report on material selection and processing guidelines for BWR [boiling water reactor] coolant pressure boundary piping: Final report

    International Nuclear Information System (INIS)

    Hazelton, W.S.; Koo, W.H.

    1988-01-01

    This report provides the technical bases for the NRC staff's revised recommended methods to control the intergranular stress corrosion cracking susceptibility of BWR piping. For piping that does not fully comply with the material selection, testing, and processing guideline combinations of this document, varying degrees of augmented inservice inspection are recommended. This revision also includes guidance and NRC staff recommendations (not requirements) regarding crack evaluation and weld overlay repair methods for long-term operation or for continuing interim operation of plants until a more permanent solution is implemented

  10. Assessment of state and local notification requirements for transportation of radioactive and other hazardous materials. Final report

    International Nuclear Information System (INIS)

    Dively, D.; Morris, F.; Schilling, A.H.; Shen, E.; Allen, J.

    1985-01-01

    State and local laws requiring notification for shipments of radioactive and other hazardous materials have become increasingly common and controversial during the last decade. Such laws are seen by their proponents as essential for planning and emergency response, while their opponents view them as unnecessary and intrusive. The debate over the value of notification requirements has often been hampered by the lack of information about the extent and nature of these laws. The report is intended to present factual information about notification laws in order to facilitate more informed discussion

  11. Research & Development of Materials/Processing Methods for Continuous Fiber Ceramic Composites (CFCC) Phase 2 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Szweda, A.

    2001-01-01

    The Department of Energy's Continuous Fiber Ceramic Composites (CFCC) Initiative that begun in 1992 has led the way for Industry, Academia, and Government to carry out a 10 year R&D plan to develop CFCCs for these industrial applications. In Phase II of this program, Dow Corning has led a team of OEM's, composite fabricators, and Government Laboratories to develop polymer derived CFCC materials and processes for selected industrial applications. During this phase, Dow Corning carried extensive process development and representative component demonstration activities on gas turbine components, chemical pump components and heat treatment furnace components.

  12. A randomized prospective long-term (>1 year) clinical trial comparing the efficacy and safety of radiofrequency ablation to 980 nm laser ablation of the great saphenous vein.

    Science.gov (United States)

    Sydnor, Malcolm; Mavropoulos, John; Slobodnik, Natalia; Wolfe, Luke; Strife, Brian; Komorowski, Daniel

    2017-07-01

    Purpose To compare the short- and long-term (>1 year) efficacy and safety of radiofrequency ablation (ClosureFAST™) versus endovenous laser ablation (980 nm diode laser) for the treatment of superficial venous insufficiency of the great saphenous vein. Materials and methods Two hundred patients with superficial venous insufficiency of the great saphenous vein were randomized to receive either radiofrequency ablation or endovenous laser ablation (and simultaneous adjunctive therapies for surface varicosities when appropriate). Post-treatment sonographic and clinical assessment was conducted at one week, six weeks, and six months for closure, complications, and patient satisfaction. Clinical assessment of each patient was conducted at one year and then at yearly intervals for patient satisfaction. Results Post-procedure pain ( p radiofrequency ablation group. Improvements in venous clinical severity score were noted through six months in both groups (endovenous laser ablation 6.6 to 1; radiofrequency ablation 6.2 to 1) with no significant difference in venous clinical severity score ( p = 0.4066) or measured adverse effects; 89 endovenous laser ablation and 87 radiofrequency patients were interviewed at least 12 months out with a mean long-term follow-up of 44 and 42 months ( p = 0.1096), respectively. There were four treatment failures in each group, and every case was correctable with further treatment. Overall, there were no significant differences with regard to patient satisfaction between radiofrequency ablation and endovenous laser ablation ( p = 0.3009). There were no cases of deep venous thrombosis in either group at any time during this study. Conclusions Radiofrequency ablation and endovenous laser ablation are highly effective and safe from both anatomic and clinical standpoints over a multi-year period and neither modality achieved superiority over the other.

  13. Experimental investigation of the ribbon-array ablation process

    International Nuclear Information System (INIS)

    Li Zhenghong; Xu Rongkun; Chu Yanyun; Yang Jianlun; Xu Zeping; Ye Fan; Chen Faxin; Xue Feibiao; Ning Jiamin; Qin Yi; Meng Shijian; Hu Qingyuan; Si Fenni; Feng Jinghua; Zhang Faqiang; Chen Jinchuan; Li Linbo; Chen Dingyang; Ding Ning; Zhou Xiuwen

    2013-01-01

    Ablation processes of ribbon-array loads, as well as wire-array loads for comparison, were investigated on Qiangguang-1 accelerator. The ultraviolet framing images indicate that the ribbon-array loads have stable passages of currents, which produce axially uniform ablated plasma. The end-on x-ray framing camera observed the azimuthally modulated distribution of the early ablated ribbon-array plasma and the shrink process of the x-ray radiation region. Magnetic probes measured the total and precursor currents of ribbon-array and wire-array loads, and there exists no evident difference between the precursor currents of the two types of loads. The proportion of the precursor current to the total current is 15% to 20%, and the start time of the precursor current is about 25 ns later than that of the total current. The melting time of the load material is about 16 ns, when the inward drift velocity of the ablated plasma is taken to be 1.5 × 10 7 cm/s.

  14. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    Science.gov (United States)

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  15. Sonography-guided percutaneous microwave ablation of intrahepatic primary cholangiocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yu Mingan [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Liang Ping, E-mail: Liangping301@hotmail.com [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Yu Xiaoling; Cheng Zhigang; Han Zhiyu; Liu Fangyi; Yu Jie [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China)

    2011-11-15

    Objective: To evaluate the efficacy and safety of sonography-guided percutaneous microwave ablation of intrahepatic primary cholangiocarcinoma. Materials and methods: From May 2006 to March 2010, 15 patients (11 men, 4 women; mean age, 57.4 years) with 24 histologically proven intrahepatic primary cholangiocarcinoma lesions (mean tumor size, 3.2 {+-} 1.9 cm; range, 1.3-9.9 cm) were treated with microwave ablation. Results: Thirty-eight sessions were performed for 24 nodules in 15 patients. The follow-up period was 4-31 months (mean, 12.8 {+-} 8.0 months). The ablation success rate, the technique effectiveness rate, and the local tumor progression rate were 91.7% (22/24), 87.5% (21/24), and 25% (6/24) respectively according to the results of follow-up. The cumulative overall 6, 12, 24 month survival rates were 78.8%, 60.0%, and 60.0%, respectively. Major complication occurred including liver abscess in two patients (13.3%) and needle seeding in one patient (6.7%). Both complications were cured satisfied with antibiotic treatment combined to catheter drainage for abscess and resection for needle seeding. The minor complications and side effects were experienced by most patients which subsided with supportive treatment. Conclusion: Microwave ablation can be used as a safe and effective technique to treat intrahepatic primary cholangiocarcinoma.

  16. Glass particles produced by laser ablation for ICP-MSmeasurements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50 J cm{sup -2}. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloys samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns and fs-laser ablation than for metals alloys.

  17. Atmospheric pressure arc discharge with ablating graphite anode

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2015-01-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement. (paper)

  18. Atmospheric pressure arc discharge with ablating graphite anode

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2015-06-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322-6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  19. Laser ablation surface-enhanced Raman microspectroscopy.

    Science.gov (United States)

    Londero, Pablo S; Lombardi, John R; Leona, Marco

    2013-06-04

    Improved identification of trace organic compounds in complex matrixes is critical for a variety of fields such as material science, heritage science, and forensics. Surface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique that can attain single-molecule sensitivity and has been shown to complement mass spectrometry, but lacks widespread application without a robust method that utilizes the effect. We demonstrate a new, highly sensitive, and widely applicable approach to SERS analysis based on laser ablation in the presence of a tailored plasmonic substrate. We analyze several challenging compounds, including non-water-soluble pigments and dyed leather from an ancient Egyptian chariot, achieving sensitivity as high as 120 amol for a 1:1 signal-to-noise ratio and 5 μm spatial resolution. This represents orders of magnitude improvement in spatial resolution and sensitivity compared to those of other SERS approaches intended for widespread application, greatly increasing the applicability of SERS.

  20. Biological regeneration of carrier material for the adsorption of halogen hydrocarbons in plants for cleaning up contaminated groundwater. Final report

    International Nuclear Information System (INIS)

    Ressel, K.

    1993-06-01

    Halogen hydrocarbons and above all chlorinated hydrocarbons are widespread harmful substances in soils and in groundwater. When cleaning up groundwater contamination, the contaminants are brought into the gas phase by strip processes. From the gas phase, the contaminants can be adsorbed on different carrier materials, mostly active carbon. One was searching for ways to regenerate this adsorption material. The mixed culture from a sea sediment most suitable for the decomposition of chlorinated hydrocarbons was optimized regarding its decomposition performance and was later used on the technical scale. In the decomposition experiments on the large technical scale, the cultures were lodged on filling bodies which has a much higher amount of gaps. In this case, an optimum supply of the micro-organisms with oxygen and methane is guaranteed, which is used as co-substrate. No intermediate product was found in a gas chromatography examination. The biologically occupied stage is situated between a desorption column and the active carbon filters, and reduces the load of harmful substances which can no longer be brought into the gas phase by stripping out. This has the advantage that it can be integrated in existing plants and can be adapted to any case of contamination by lodging adapted micro-organisms on it. The basis for each application must be separately researched. (orig.) [de

  1. Investigation of laser-induced pre-breakdown material modifications. Final report, September 15, 1977--March 14, 1979

    International Nuclear Information System (INIS)

    Braeunlich, P.; Schmid, A.

    1979-01-01

    A new mechanism is presented for dielectric breakdown of wide gap materials in intense fields of photons having wavelengths in the visible region of the electromagnetic spectrum. It is based on multiphoton generation of free carriers and energy deposition from the photon field to the lattice via electron--photon--phonon collision processes. This laser breakdown model represents an alternative to the so-called avalanche ionization mechanism. It is further demonstrated that laser pulses with peak fluxes below the single-shot threshold for both bulk and surface damage of sodium chloride crystals modify the properties of this material. As a result of multiphoton exciton generation primary defects are formed which lead to intense directional emission of neutral halogen and alkali atoms. As a consequence, the crystal surface is severely perturbed. The technique of thermally stimulated exoemission of particles to assess the degree of surface pertubation after laser exposure was developed. Ongoing experiments present for the first time evidence that the single-shot laser surface damage threshold decreases with laser-induced surface perturbation

  2. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

    International Nuclear Information System (INIS)

    Chang H. Oh

    2006-01-01

    Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for state-of-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency

  3. Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers. Final report

    International Nuclear Information System (INIS)

    Vinson, D.W.; Bullen, D.B.

    1995-01-01

    One of the most significant factors impacting the performance of waste package container materials under repository relevant conditions is the thermal environment. This environment will be affected by the areal power density of the repository, which is dictated by facility design, and the dominant heat transfer mechanism at the site. The near-field environment will evolve as radioactive decay decreases the thermal output of each waste package. Recent calculations (Buscheck and Nitao, 1994) have addressed the importance of thermal loading conditions on waste package performance at the Yucca Mountain site. If a relatively low repository thermal loading design is employed, the temperature and relative humidity near the waste package may significantly affect the degradation of corrosion allowance barriers due to moist air oxidation and radiolytically enhanced corrosion. The purpose this report is to present a literature review of the potential degradation modes for moderately corrosion resistant nickel copper and nickel based candidate materials that may be applicable as alternate barriers for the ACD systems in the Yucca Mountain environment. This report presents a review of the corrosion of nickel-copper alloys, summaries of experimental evaluations of oxidation and atmospheric corrosion in nickel-copper alloys, views of experimental studies of aqueous corrosion in nickel copper alloys, a brief review of galvanic corrosion effects and a summary of stress corrosion cracking in these alloys

  4. Spectrum diagnoses of laser plasma in 'ablation mode' laser propulsion

    International Nuclear Information System (INIS)

    Zhang Ling; Tang Zhiping; Tong Huifeng; Su Maogen; Xue Simin

    2007-01-01

    The propellant materials (LY12 aluminium, No.45 steel, H62 brass, graphite, polyvinyl chloride, polyoxymethylene) in laser propulsion are ablated by a Nd: YAG laser (1.06 μm, 10 ns). The space-resolved and the power density-depended emission spectrums of aluminum and copper plasma are recorded and analyzed. Under the local thermo equilibrium assumption, the electronic temperature and density as well as the average intensity of ionization from the relative intensity of characteristic spectrum for aluminum are obtained. Their dependence on laser power-density and spatial variation are also investigated. The ablation imagines (the ejected plumes) of the six materials in vacuum are obtained and discussed by using a B shutter camera. (authors)

  5. Influence of laser ablation parameters on trueness of imaging

    International Nuclear Information System (INIS)

    Vaculovič, T.; Warchilová, T.; Čadková, Z.; Száková, J.; Tlustoš, P.; Otruba, V.; Kanický, V.

    2015-01-01

    Highlights: • Laser ablation conditions vs. quality of LA-ICP-MS imaging (resolution, detection). • Increase in laser spot size improves detection limit, while deteriorates resolution. • Decrease in scan speed improves resolution but prolongs time of analysis. • Compromise spot size and scan speed meet required quality of imaging. • Metal-enriched/depleted zones in tapeworm sections were resolved by LA-ICP-MS. - Abstract: Influence of laser ablation conditions on limit of detection, spatial resolution and time of analysis was studied for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) applied to elemental mapping. Laser repetition rate and laser fluence were investigated in tapeworm thin section to attain optimum ablation rate, yielding appropriately low detection limit which complies with elemental contents in the tissue. Effect of combinations of laser spot size and scan speed on relative broadening (Δw rel ) of image of the ablated pattern (line) was investigated with the aim to quantify the trueness of imaging. Ink lines printed on paper were employed for the study of influence of spot size and scan speed on limit of detection, relative broadening of elemental image and duration of elemental mapping. An uneven distribution of copper in a printed line (coffee stain effect) was observed. The Δw rel is strongly reduced (down to 2%) at low scan speed (10 μm s −1 ) and laser spot diameter of 10 μm but resulting in unacceptably long time of mapping (up to 3000 min). Finally, tapeworm thin-section elemental maps (4 mm × 5 mm) were obtained at the laser spot diameter of 65 μm and the scan speed of 65 μm s −1 within 100 min. A dissimilar lateral distribution of Pb was observed in comparison with that of Cu or Zn due to different pathways of element uptake

  6. Influence of laser ablation parameters on trueness of imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vaculovič, T.; Warchilová, T. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); CEITEC, Masaryk University, Kamenice 5, Brno 62500 (Czech Republic); Čadková, Z.; Száková, J.; Tlustoš, P. [Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka 129, Praha 16521 (Czech Republic); Otruba, V. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Kanický, V., E-mail: viktork@chemi.muni.cz [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); CEITEC, Masaryk University, Kamenice 5, Brno 62500 (Czech Republic)

    2015-10-01

    Highlights: • Laser ablation conditions vs. quality of LA-ICP-MS imaging (resolution, detection). • Increase in laser spot size improves detection limit, while deteriorates resolution. • Decrease in scan speed improves resolution but prolongs time of analysis. • Compromise spot size and scan speed meet required quality of imaging. • Metal-enriched/depleted zones in tapeworm sections were resolved by LA-ICP-MS. - Abstract: Influence of laser ablation conditions on limit of detection, spatial resolution and time of analysis was studied for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) applied to elemental mapping. Laser repetition rate and laser fluence were investigated in tapeworm thin section to attain optimum ablation rate, yielding appropriately low detection limit which complies with elemental contents in the tissue. Effect of combinations of laser spot size and scan speed on relative broadening (Δw{sub rel}) of image of the ablated pattern (line) was investigated with the aim to quantify the trueness of imaging. Ink lines printed on paper were employed for the study of influence of spot size and scan speed on limit of detection, relative broadening of elemental image and duration of elemental mapping. An uneven distribution of copper in a printed line (coffee stain effect) was observed. The Δw{sub rel} is strongly reduced (down to 2%) at low scan speed (10 μm s{sup −1}) and laser spot diameter of 10 μm but resulting in unacceptably long time of mapping (up to 3000 min). Finally, tapeworm thin-section elemental maps (4 mm × 5 mm) were obtained at the laser spot diameter of 65 μm and the scan speed of 65 μm s{sup −1} within 100 min. A dissimilar lateral distribution of Pb was observed in comparison with that of Cu or Zn due to different pathways of element uptake.

  7. Characterization of tracked radiofrequency ablation in phantom

    International Nuclear Information System (INIS)

    Chen, Chun-Cheng R.; Miga, Michael I.; Galloway, Robert L.

    2007-01-01

    In radiofrequency ablation (RFA), successful therapy requires accurate, image-guided placement of the ablation device in a location selected by a predictive treatment plan. Current planning methods rely on geometric models of ablations that are not sensitive to underlying physical processes in RFA. Implementing plans based on computational models of RFA with image-guided techniques, however, has not been well characterized. To study the use of computational models of RFA in planning needle placement, this work compared ablations performed with an optically tracked RFA device with corresponding models of the ablations. The calibration of the tracked device allowed the positions of distal features of the device, particularly the tips of the needle electrodes, to be determined to within 1.4±0.6 mm of uncertainty. Ablations were then performed using the tracked device in a phantom system based on an agarose-albumin mixture. Images of the sliced phantom obtained from the ablation experiments were then compared with the predictions of a bioheat transfer model of RFA, which used the positional data of the tracked device obtained during ablation. The model was demonstrated to predict 90% of imaged pixels classified as being ablated. The discrepancies between model predictions and observations were analyzed and attributed to needle tracking inaccuracy as well as to uncertainties in model parameters. The results suggest the feasibility of using finite element modeling to plan ablations with predictable outcomes when implemented using tracked RFA

  8. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    International Nuclear Information System (INIS)

    Canteli, D.; Fernandez, S.; Molpeceres, C.; Torres, I.; Gandía, J.J.

    2012-01-01

    Highlights: ► A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. ► The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. ► A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 °C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  9. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Canteli, D., E-mail: david.canteli@ciemat.es [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Fernandez, S. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Molpeceres, C. [Centro Laser, Universidad Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain); Torres, I.; Gandia, J.J. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. Black-Right-Pointing-Pointer The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. Black-Right-Pointing-Pointer A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 Degree-Sign C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  10. Percutaneous thermal ablation of renal neoplasms

    International Nuclear Information System (INIS)

    Tacke, J.; Mahnken, A.H.; Guenther, R.W.

    2005-01-01

    Due to modern examination techniques such as multidetector computed tomography and high-field magnetic resonance imaging, the detection rate of renal neoplasms is continually increasing. Even though tumors exceeding 4 cm in diameter rarely metastasize, all renal lesions that are possible neoplasms should be treated. Traditional treatment techniques include radical nephrectomy or nephron-sparing resection, which are increasingly performed laparoscopically. Modern thermal ablation techniques such as hyperthermal techniques like radiofrequency ablation RFA, laser induced thermal ablation LITT, focused ultrasound FUS and microwave therapy MW, as well as hypothermal techniques (cryotherapy) may be a useful treatment option for patients who are unfit for or refuse surgical resection. Cryotherapy is the oldest and best known thermal ablation technique and can be performed laparoscopically or percutaneously. Since subzero temperatures have no antistyptic effect, additional maneuvers must be performed to control bleeding. Percutaneous cryotherapy of renal tumors is a new and interesting method, but experience with it is still limited. Radiofrequency ablation is the most frequently used method. Modern probe design allows volumes between 2 and 5 cm in diameter to be ablated. Due to hyperthermal tract ablation, the procedure is deemed to be safe and has a low complication rate. Although there are no randomized comparative studies to open resection, the preliminary results for renal RFA are promising and show RFA to be superior to other thermal ablation techniques. Clinical success rates are over 90% for both, cryo- and radiofrequency ablation. Whereas laser induced thermal therapy is established in hepatic ablation, experience is minimal with respect to renal application. For lesions of more than 2 cm in diameter, additional cooling catheters are required. MR thermometry offers temperature control during ablation. Microwave ablation is characterized by small ablation volumes

  11. Safety analysis report: packages. Pu oxide and Am oxide shipping cask (Packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    Chalfant, G.G.

    1980-05-01

    The PuO 2 cask or SP 5320-2 and 3 cask is designed for surface shipment of americium or plutonium. The cask design was physically tested to demonstrate that it met the criteria specified in US ERDA Manual Chapter 0529, and Chapter I, Interstate Commerce Commission. The package has been assessed for transport of up to 357 grams of plutonium (403 grams PuO 2 powder) and up to 176 grams of americium (200 grams AmO 2 powder), having a maximum decay heat of 203 watts. Criticality evaluation alone would allow the shipment as Fissile Class II but the radiation level of the cask, measured at the time of shipment, may exceed 50 mrem/h at the surface and require shipment as Fissile Class III. Sample calculations address only the more restrictive of the two materials, which in most cases is 238 PuO 2

  12. Final report of the Buffer Mass Test - Volume 3: Chemical and physical stability of the buffer materials

    International Nuclear Information System (INIS)

    Pusch, R.

    1985-11-01

    The Buffer Mass Test offered a possibility to investigate whether chemical changes took place in the smectite component at heating to 125 degrees C for about one year. The alterations that could possibly take place were a slight charge change in the crystal lattice with an associated precipitation of silica compounds, and a tendency of illite formation. The analysis showed that there were indications of both but to such a slight extent that the processes could not have affected the physical properties, which was also demonstrated by determining the swelling pressure and the hydraulic conductivity. The BMT also showed that the erodibility of bentonite-based buffer materials is less than or about equal to what can be expected on theoretical grounds. (author)

  13. Process Parameter Evaluation and Optimization for Advanced Material Development Final Report CRADA No. TC-1234-96

    Energy Technology Data Exchange (ETDEWEB)

    Hrubesh, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McGann, T. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    This project was established as a three-year collaboration to produce and characterize · silica aerogels prepared by a Rapid Supercritical Extraction (RSCE) process to meet . BNA, Inc. application requirements. The objectives of this project were to study the parameters necessary to produce optimized aerogel parts with narrowly specified properties and establish the range and limits of the process for producing such aerogels. The project also included development of new aerogel materials useful for high temperature applications. The results of the project were expected to set the conditions necessary to produce quantities of aerogels having particular specifications such as size, shape, density, and mechanical strength. BNA, Inc. terminated the project on April 7, 1999, 10-months prior to the anticipated completion date, due to termination of corporate funding for the project. The technical accomplishments achieved are outlined in Paragraph C below.

  14. Large area nuclear particle detectors using ET materials, phase 2. Final report, 9 May 1988-9 May 1990

    International Nuclear Information System (INIS)

    Wrigley, C.Y.; Storti, G.M.; Walter, L.; Mathews, S.

    1990-05-01

    This report presents work done under a Phase 2 SBIR contract for demonstrating large area detector planes utilizing Quantex electron trapping materials as a film medium for storing high-energy nuclide impingement information. The detector planes utilize energy dissipated by passage of the high-energy nuclides to produce localized populations of electrons stored in traps. Readout of the localized trapped electron populations is effected by scanning the ET plane with near-infrared, which frees the trapped electrons and results in optical emission at visible wavelengths. The effort involved both optimizing fabrication technology for the detector planes and developing a readout system capable of high spatial resolution for displaying the recorded nuclide passage tracks

  15. Environmentally-assisted cracking in austenitic light water reactor structural materials. Final report of the KORA-I project

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.-P.; Ritter, S

    2009-03-15

    The following document is the final report of the KORA-I project, which was performed at the Paul Scherrer Institute (PSI) between 2006 and 2008 and was funded by the Swiss Nuclear Safety Inspectorate (ENSI). The three sub-projects of KORA-I covered the experimental characterisation of the effect of the reactor coolant environment on fatigue initiation and crack growth in austenitic stainless steels under boiling and pressurised water reactor conditions, the experimental evaluation of the potential and limits of the electrochemical noise measurement technique for the early detection of stress corrosion cracking initiation in austenitic stainless steels under boiling water reactor/normal water chemistry conditions, as well as the characterisation of the stress corrosion crack growth behaviour in the fusion line region of an Alloy 182-low-alloy reactor pressure vessel steel dissimilar metal weld. The main scientific results and major conclusions of the three sub-projects are discussed in three independent parts of this report. (author)

  16. Environmentally-assisted cracking in austenitic light water reactor structural materials. Final report of the KORA-I project

    International Nuclear Information System (INIS)

    Seifert, H.-P.; Ritter, S.

    2009-03-01

    The following document is the final report of the KORA-I project, which was performed at the Paul Scherrer Institute (PSI) between 2006 and 2008 and was funded by the Swiss Nuclear Safety Inspectorate (ENSI). The three sub-projects of KORA-I covered the experimental characterisation of the effect of the reactor coolant environment on fatigue initiation and crack growth in austenitic stainless steels under boiling and pressurised water reactor conditions, the experimental evaluation of the potential and limits of the electrochemical noise measurement technique for the early detection of stress corrosion cracking initiation in austenitic stainless steels under boiling water reactor/normal water chemistry conditions, as well as the characterisation of the stress corrosion crack growth behaviour in the fusion line region of an Alloy 182-low-alloy reactor pressure vessel steel dissimilar metal weld. The main scientific results and major conclusions of the three sub-projects are discussed in three independent parts of this report. (author)

  17. Real time determination of the laser ablated mass by means of electric field-perturbation measurement

    Science.gov (United States)

    Pacheco, P.; Álvarez, J.; Sarmiento, R.; Bredice, F.; Sánchez-Aké, C.; Villagrán-Muniz, M.; Palleschi, V.

    2018-04-01

    A Nd:YAG ns-pulsed laser was used to ablate Al, Cd and Zn targets, which were placed between the plates of a planar charged capacitor. The plasma generates a transient redistribution of the electrical charges on the plates that can be measured as a voltage drop across a resistor connected to the ground plate. This signal is proportional to the capacitor applied voltage, the distance between the plates and the total number of ions produced in the ablation process which in turn is related to the laser energy and the ablated mass. After a series of pulses, the targets were weighed on a thermogravimetric balance to measure the ablated mass. Our results show that the electrical signal measured on the resistor is univocally related to the ablated mass from the target. Therefore, after a proper calibration depending on the material and the experimental geometry, the electrical signal can be used for real time quantitative measurement of the ablated mass in pulsed laser generated plasma experiments. The experiments were repeated on an aluminum target, with and without the presence of the external electric field in order to determine the possible influence of the applied electric field on the ablated mass.

  18. 915 MHz microwave ablation with high output power in in vivo porcine spleens

    International Nuclear Information System (INIS)

    Gao Yongyan; Wang Yang; Duan Yaqi; Li Chunling; Sun Yuanyuan; Zhang Dakun; Lu Tong; Liang Ping

    2010-01-01

    Objective: The purpose of this study was to evaluate the efficacy of 915 MHz microwave (MW) ablation with high output power in in vivo porcine spleens. Materials and methods: MW ablations were performed in 9 porcine spleens with an internally cooled 915 MHz antenna. Thermocouples were placed at 5, 10, 15, 20 mm away from the antenna to measure temperatures in real-time during MW emission. The energy was applied for 10 min at high output power of 60 W, 70 W or 80 W. Gross specimens were sectioned and measured to determine ablation size. Representative areas were examined by light microscopy and electron microscopy. Coagulation sizes and temperatures were compared among the three power groups. Results: Hematoxylin-eosin staining showed irreversible necrosis in the splenic coagulation area after MW ablation. As the power was increased, long-axis diameter enlarged significantly (p .05). The coagulation size of long-axis and short-axis diameter with 80 W in vivo spleen ablation was 6.43 ± 0.52 and 4.95 ± 0.30 cm, respectively. With the increase of output power, maximum temperatures at 5, 10, 15, 20 mm from the antenna were increased accordingly (p o C respectively. Conclusion: With internally cooled antenna and high output power, 915 MHz MW ablation in the spleen could produce irreversible tissue necrosis of clinical significance. MW ablation may be used as a promising minimally invasive method for the treatment of splenic diseases.

  19. Percutaneous laser ablation of hepatocellular carcinoma in patients with liver cirrhosis awaiting liver transplantation

    International Nuclear Information System (INIS)

    Pompili, Maurizio; Pacella, Claudio Maurizio; Francica, Giampiero; Angelico, Mario; Tisone, Giuseppe; Craboledda, Paolo; Nicolardi, Erica; Rapaccini, Gian Ludovico; Gasbarrini, Giovanni

    2010-01-01

    Objective: The aim of this study was to determine the effectiveness and safety of percutaneous laser ablation for the treatment of cirrhotic patients with hepatocellular carcinoma awaiting liver transplantation. Materials and methods: The data of 9 male cirrhotic patients (mean age 50 years, range 45-60 years) with 12 biopsy proven nodules of hepatocellular carcinoma (mean diameter 2.0 cm, range 1.0-3.0 cm) treated by laser ablation before liver transplantation between June 2000 and January 2006 were retrospectively reviewed. Laser ablation was carried out by inserting 300 nm optical fibers through 21-Gauge needles (from two to four) positioned under ultrasound guidance into the target lesions. A continuous wave Neodymium:Yttrium Aluminium Garnet laser was used. Transarterial chemoembolization prior to liver transplantation was performed in two incompletely ablated tumors. Results: No procedure-related major complications were recorded. During the waiting time to liver transplantation local tumor progression after ablation occurred in 3 nodules (25%). At histological examination of the explanted livers complete necrosis was found in 8 nodules (66.7%, all treated exclusively with laser ablation), partial necrosis >50% in 3 nodules (25%), and partial necrosis <50% in 1 nodule. Conclusion: In patients with cirrhotic livers awaiting liver transplantation, percutaneous laser ablation is safe and effective for the management of small hepatocellular carcinoma.

  20. NSR&D Program Fiscal Year 2015 Funded Research Stochastic Modeling of Radioactive Material Releases Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, Jason P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pope, Chad [Idaho State Univ., Pocatello, ID (United States); Toston, Mary [Idaho State Univ., Pocatello, ID (United States); Maas, Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculates the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an

  1. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available . It is generally included as part of a structurally insulated panel (SIP) where the foam is sandwiched between external skins of steel, wood or cement. Cement composites Cement bonded composites are an important class of building materials. These products... for their stone buildings, including the Egyptians, Aztecs and Inca’s. As stone is a very dense material it requires intensive heating to become warm. Rocks were generally stacked dry but mud, and later cement, can be used as a mortar to hold the rocks...

  2. Application and further development of models for the final repository safety analyses on the clearance of radioactive materials for disposal. Final report; Anwendung und Weiterentwicklung von Modellen fuer Endlagersicherheitsanalysen auf die Freigabe radioaktiver Stoffe zur Deponierung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, Andreas; Larue, Juergen; Seher, Holger; Weiss, Dietmar

    2014-08-15

    The project of application and further development of models for the final repository safety analyses on the clearance of radioactive materials for disposal is aimed to study the long-term safety using repository-specific simulation programs with respect to radiation exposure for different scenarios. It was supposed to investigate whether the 10 micro Sv criterion can be guaranteed under consideration of human intrusion scenarios. The report covers the following issues: selection and identification of models and codes and the definition of boundary conditions; applicability of conventional repository models for long-term safety analyses; modeling results for the pollutant release and transport and calculation of radiation exposure; determination of the radiation exposure.

  3. Next Generation Solvent - Materials Compatibility With Polymer Components Within Modular Caustic-Side Solvent Extraction Unit (Final Report)

    International Nuclear Information System (INIS)

    Fondeur, F.; Peters, T.; Fink, S.

    2012-01-01

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX(reg s ign)79 and MaxCalix was varied systematically) showed that LIX(reg s ign)79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX(reg s ign)79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX(reg s ign)79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX(reg s ign)79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and

  4. Long term test of buffer material at the Aespoe HRL, LOT project. Final report on the A0 test parcel

    International Nuclear Information System (INIS)

    Karnland, Ola; Olsson, Siv; Sanden, Torbjoern; Faelth, Billy; Jansson, Mats; Eriksen, Trygve E.; Svaerdstroem, Kjell; Rosborg, Bo; Muurinen, Arto

    2011-02-01

    In the Swedish repository concept for nuclear waste (KBS-3 concept), the spent nuclear fuel will be stored in copper canisters surrounded by compacted bentonite. The decaying power of the fuel will increase the temperature in the repository which, in combination with the uptake of ground-water, could be expected to produce minor mineralogical changes in the bentonite. The ongoing LOT test series at the Aespoe Hard Rock Laboratory are focused on identifying and quantifying any mineralogical alterations in the bentonite exposed to typical repository-like conditions. Further, buffer-related processes concerning copper corrosion, cation transport, and bacterial survival/activity are studied. In total, the LOT project includes seven test parcels, which contain a central Cu-tube surrounded by cylindrical bentonite blocks to a total diameter of 30 cm as well as temperature, total pressure, water pressure and humidity sensors. In each test parcel, an electrical heater placed inside the copper tube is used to simulate the heat generation from the decaying spent fuel. Three test parcels (S1 to S3) have been exposed to standard KBS-3 conditions (maximum temperature below 100 deg C) and three parcels (A1 to A3) to adverse conditions (maximum temperature below ∼140 deg C). Both the standard and the adverse test series include short term tests (1 to 2 years), medium term tests (> 5 years) and long term tests (> 10 years). The present report concerns an additional short term test, thereby the designation A0, which was exposed to adverse conditions for approximately 1.5 years. Cu-coupons, 134 Cs and 57 Co tracers and specific chemical agents were placed in the bentonite at defined positions. After field exposure, the entire test parcel was released from the rock by overlapping percussion drilling and wire sawing. The parcel was lifted and divided at the test site and the bentonite material was sampled for specified analyses. The main aspects of the various tests and analyses may

  5. NEXT GENERATION SOLVENT-MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT (FINAL REPORT)

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.; Peters, T.; Fink, S.

    2012-01-17

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX{reg_sign}79 and MaxCalix was varied systematically) showed that LIX{reg_sign}79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX{reg_sign}79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX{reg_sign}79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX{reg_sign}79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and

  6. Long term test of buffer material at the Aespoe HRL, LOT project. Final report on the A0 test parcel

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, Ola; Olsson, Siv; Sanden, Torbjoern; Faelth, Billy (Clay Technology AB, Lund (Sweden)); Jansson, Mats; Eriksen, Trygve E.; Svaerdstroem, Kjell (KTH Royal Inst. of Technology, Stockholm (Sweden)); Rosborg, Bo (Studsvik AB, Nykoeping (Sweden); Rosborg Consulting, Nykoeping (Sweden)); Muurinen, Arto (VTT, Espoo (Finland))

    2011-02-15

    In the Swedish repository concept for nuclear waste (KBS-3 concept), the spent nuclear fuel will be stored in copper canisters surrounded by compacted bentonite. The decaying power of the fuel will increase the temperature in the repository which, in combination with the uptake of ground-water, could be expected to produce minor mineralogical changes in the bentonite. The ongoing LOT test series at the Aespoe Hard Rock Laboratory are focused on identifying and quantifying any mineralogical alterations in the bentonite exposed to typical repository-like conditions. Further, buffer-related processes concerning copper corrosion, cation transport, and bacterial survival/activity are studied. In total, the LOT project includes seven test parcels, which contain a central Cu-tube surrounded by cylindrical bentonite blocks to a total diameter of 30 cm as well as temperature, total pressure, water pressure and humidity sensors. In each test parcel, an electrical heater placed inside the copper tube is used to simulate the heat generation from the decaying spent fuel. Three test parcels (S1 to S3) have been exposed to standard KBS-3 conditions (maximum temperature below 100 deg C) and three parcels (A1 to A3) to adverse conditions (maximum temperature below approx140 deg C). Both the standard and the adverse test series include short term tests (1 to 2 years), medium term tests (> 5 years) and long term tests (> 10 years). The present report concerns an additional short term test, thereby the designation A0, which was exposed to adverse conditions for approximately 1.5 years. Cu-coupons, 134Cs and 57Co tracers and specific chemical agents were placed in the bentonite at defined positions. After field exposure, the entire test parcel was released from the rock by overlapping percussion drilling and wire sawing. The parcel was lifted and divided at the test site and the bentonite material was sampled for specified analyses. The main aspects of the various tests and analyses

  7. Studies of wood fuel systems with raw material from young forest stands. Final report; Systemstudier ungskogsbraensle. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Liss, J.E. [Dalarna Univ., Falun (Sweden)

    2001-12-01

    The three-year project 'Studies of wood fuel systems with raw material from young forest stands' has been carried out during the period March 1998 to February 2001. New technology for harvesting small trees has created a possibility to develop efficient wood fuel systems using raw material from young forest stands. This possibility coincides with a great demand for tending of young stands from a silvicultural point of view. The main aim of the project has been to analyse and assess wood fuel systems based on this concept. The spectrum of criteria for assessment has been broad, including productivity, profitability, safety and health aspects, employment and environmental impact. As an example of a new technology which has been developed and studied during the project period can be mentioned a new felling head which can be used for cutting and handling several trees at the same time. The weight of the felling head is only about 270 kg, which has done it possible to use it on smaller base-machines as well as larger machines. The productivity has shown to be about 150-250 trees/hour in stands with a diameter of 5-10 cm. The productivity, expressed as biomass, is about 2-3 tonnes dry substance/hour. In the design of production system, bundling of trees early in the process is considered to be especially promising. The development of such a system is ongoing, but is not at the market yet. Some experimental studies have been done on transportation, storing and chipping of such bundles with varying size and varying tree-species. The calculated cost of this system will be lower then for traditional chipping-systems, because of the higher density for the handle units. It is much easier to handle bundles than small non-bundled trees, the chipping-productivity will be high and the transportation can be done with regular timber trucks. The calculation cost for the bundle-system will be about 120-130 SEK/MWh in stands with a diameter of some 7-10 cm, which can be

  8. Characterization of Amorphous Silicon Advanced Materials and PV Devices: Final Technical Report, 15 December 2001--31 January 2005

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P. C.

    2005-11-01

    The major objectives of this subcontract have been: (1) understand the microscopic properties of the defects that contribute to the Staebler-Wronski effect to eliminate this effect, (2) perform correlated studies on films and devices made by novel techniques, especially those with promise to improve stability or deposition rates, (3) understand the structural, electronic, and optical properties of films of hydrogenated amorphous silicon (a-Si:H) made on the boundary between the amorphous and microcrystalline phases, (4) search for more stable intrinsic layers of a-Si:H, (5) characterize the important defects, impurities, and metastabilities in the bulk and at surfaces and interfaces in a-Si:H films and devices and in important alloy systems, and (6) make state-of-the-art plasma-enhanced chemical vapor deposition (PECVD) devices out of new, advanced materials, when appropriate. All of these goals are highly relevant to improving photovoltaic devices based on a-Si:H and related alloys. With regard to the first objective, we have identified a paired hydrogen site that may be the defect that stabilizes the silicon dangling bonds formed in the Staebler-Wronski effect.

  9. Instrumentation of x-ray diffraction and materials research on the National Synchrotron Light Source. Final report

    International Nuclear Information System (INIS)

    Liedl, G.L.

    1984-11-01

    MATRIX was organized in 1980 to formulate a research team to design and construct a beam line at NSLS for x-ray diffraction studies of materials. A versatile system was designed to allow a full range of experimental capabilities for wide angle x-ray scattering experiments including surface diffraction studies. The design and construction of the system has been completed. Testing of parts of the system was completed at CHESS and with x-ray sources or other equipment at member institutions. Installation of the beam line at NSLS is in progress and will proceed in parallel with the commissioning of the x-ray ring at NSLS. Full operation of the beam line is expected to be ready by December 1, 1984 being limited only by the source power of NSLS at that time. Useful experiments could be started if the power is at least 2 GeV and 100ma. The MATRIX beam line was one of the first x-ray beam lines to see light in the beam line in early spring of 1984. In July of 1984, the MATRIX beam line as the first port at NSLS to have a monochromatic beam and to scan part of the spectrum from the source. As part of this contract, six publications have resulted from the various projects. Three publications are concerned directly with the beam line and/or its operation while the other three publications are the result of research associated with the project

  10. Endometrial ablation by rollerball electrocoagulation compared to uterine balloon thermal ablation. Technical and safety aspects.

    NARCIS (Netherlands)

    Zon-Rabelink, I.A.A. van; Vleugels, M.P.; Merkus, J.M.W.M.; Graaf, R.M. de

    2003-01-01

    OBJECTIVE: To compare two methods of endometrial ablation, hysteroscopic rollerball electrocoagulation (RBE) and non-hysteroscopic uterine balloon thermal (UBT) ablation (Thermachoice), regarding intra- and post-operative technical complications and safety aspects. STUDY DESIGN: A randomised

  11. Attitudes Towards Catheter Ablation for Atrial Fibrillation

    DEFF Research Database (Denmark)

    Vadmann, Henrik; Pedersen, Susanne S; Nielsen, Jens Cosedis

    2015-01-01

    BACKGROUND: Catheter ablation for atrial fibrillation (AF) is an important but expensive procedure that is the subject of some debate. Physicians´ attitudes towards catheter ablation may influence promotion and patient acceptance. This is the first study to examine the attitudes of Danish...... cardiologists towards catheter ablation for AF, using a nationwide survey. METHODS AND RESULTS: We developed a purpose-designed questionnaire to evaluate attitudes towards catheter ablation for AF that was sent to all Danish cardiologists (n = 401; response n = 272 (67.8%)). There was no association between...... attitudes towards ablation and the experience or age of the cardiologist with respect to patients with recurrent AF episodes with a duration of 7 days and/or need for cardioversion. The majority (69%) expected a recurrence of AF after catheter ablation in more than 30% of the cases...

  12. Combinatorial Approach for the Discovery of New Scintillating Materials SBIR Phase I Final Report DOE/ER/84310

    International Nuclear Information System (INIS)

    Cronin, J.P.; Agrawal, A.; Tonazzi, J.C.

    2006-01-01

    The combinatorial approach for the discovery of new scintillating materials has been investigated using the wet-chemical (sol-gel) synthesis methods. Known scintillating compounds Lu 2 SiO 5 (LSO) and (LuAl)O 3 (LAO) and solid solutions in the systems of Lu 2 O 3 -Y 2 O 3 --SiO 2 (CeO 2 -doped) (LYSO) and Lu 2 O 3 -Y 2 O 3 --Al 2 O 3 (CeO 2 -doped) (LYAO) were synthesized from sol-gel precursors. Sol-gel precursors were formulated from alkoxides and nitrates and acetates of the cations. Sol-gel solution precursors were formulated for the printing of microdot arrays of different compositions in the above oxide systems. Microdot arrays were successfully printed on C-cut and R-cut sapphire substrates using Biodot printer at Los Alamos National Laboratory (LANL). The microdot arrays were adherent and stable after heat-treating at 1665 C and had an average thickness of around 2 (micro)m. X-ray fluorescence elemental mapping showed the arrays to be of the correct chemical composition. Sintered microdots were found to be highly crystalline by microscopic observation and X-ray diffraction. Scintillation was not clearly detectable by visual observation under UV illumination and by video observation under the scanning electron beam of an SEM. The microdots were either poorly scintillating or not scintillating under the present synthesis and testing conditions. Further improvements in the synthesis and processing of the microdot arrays as well as extensive scintillation testing are needed

  13. Femtosecond pulsed laser ablation of GaAs

    International Nuclear Information System (INIS)

    Trelenberg, T.W.; Dinh, L.N.; Saw, C.K.; Stuart, B.C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed

  14. Radiofrequency Ablation of Hepatic Cysts : Case Report

    International Nuclear Information System (INIS)

    Lee, Ye Ri; Kim, Pyo Nyun

    2005-01-01

    Radiofrequency ablation has been frequently performed on intra-hepatic solid tumor, namely, hepatocellular carcinoma, metastatic tumor and cholangio carcinoma, for take the cure. But, the reports of radiofrequency ablation for intrahepatic simple cysts are few. In vitro experiment of animal and in vivo treatment for intrahepatic cysts of human had been reported in rare cases. We report 4 cases of radiofrequency ablation for symptomatic intrahepatic cysts

  15. Effect of microbubble contrast agent during high intensity focused ultrasound ablation on rabbit liver in vivo

    International Nuclear Information System (INIS)

    Chung, Dong Jin; Cho, Se Hyun; Lee, Jae Mun; Hahn, Seong-Tae

    2012-01-01

    Objective: To evaluate the effect of a microbubble contrast agent (SonoVue) during HIFU ablation of a rabbit liver. Materials and methods: HIFU ablations (intensity of 400 W/cm 2 for 4 s, six times, with a 5 s interval between exposures) were performed upon 16 in vivo rabbit livers before and after intravenous injection of a microbubble contrast agent (0.8 ml). A Wilcoxon signed rank test was used to compare mean ablation volume and time required to tissue ablation on real-time US. Shape of ablation and pattern of coagulative necrosis were analyzed by Fisher's exact test. Results: The volume of coagulative necrosis was significantly larger in the combination microbubble and HIFU group than in the HIFU alone group (P < 0.05). Also, time to reach ablation was shorter in the combination microbubble and HIFU group than in the HIFU alone group (P < 0.05). When analyzing the shape of tissue ablation, a pyramidal shape was more prevalently in the HIFU alone group compared to the combination microbubble and HIFU group (P < 0.05). Following an analysis of the pattern of coagulative necrosis, non-cavitary necrosis was found in ten and cavitary necrosis in six of the samples in the combination microbubble and HIFU group. Conversely, non-cavitary necrosis occurred in all 16 samples in the HIFU alone group (P < 0.05). Conclusion: HIFU of in vivo rabbit livers with a microbubble contrast agent produced larger zones of ablation and more cavitary tissue necrosis than without the use of a microbubble contrast agent. Microbubble contrast agents may be useful in tissue ablation by enhancing the treatment effect of HIFU.

  16. Adrenal neoplasms: Effectiveness and safety of CT-guided ablation of 23 tumors in 22 patients

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Farrah J.; Dupuy, Damian E.; Machan, Jason T. [Department of Diagnostic Imaging and the Office of Research Administration, Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 (United States); Mayo-Smith, William W., E-mail: wmayo-smith@lifespan.org [Department of Diagnostic Imaging and the Office of Research Administration, Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 (United States)

    2012-08-15

    Purpose: To retrospectively evaluate the effectiveness and safety of image-guided ablation of adrenal tumors. Materials and methods: : This HIPAA-compliant study was IRB approved and informed consent was waived. From 5/1999-6/2008, 20 consecutive adrenal metastases (mean diameter 4.2 cm; range, 2-8) and 3 hormonally active primary adrenal tumors (mean diameter 2.3 cm; range, 1-4), including an aldosteronoma and 2 pheochromocytomas in 22 patients (14 men, 8 women; mean age 61 years; range 40-84) were ablated in 23 sessions. Bilateral metastases were treated in a single patient. Radiofrequency ablation was used to treat 16 adrenal metastases and the 3 hyperfunctioning tumors. Microwave ablation was used to treat 4 metastases. Successful treatment was defined as a lack of both enhancement on follow-up contrast enhanced CT and/or up-take on FDG PET-CT and for functioning tumors, resolution of biochemical abnormalities. Results: Technical success was achieved in all sessions. Mean follow-up was 45.1 months (range, 1-91) Local tumor progression (focal enhancement at ablation site {>=}1 cm in short axis) was detected in 4 of 23 tumors, two of which were identified bilaterally in a single patient prompting re-treatment. Of 19 patients with metastatic disease, 16 had fatal extra-adrenal disease progression, and 3 remain alive. Two of the 3 patients who underwent ablation of hyperfunctioning tumors remain alive, including the patient with an aldosteronoma who had recurrent symptoms 91 months post ablation. Intra-ablative hypertension occurred in 9% (2/23) of sessions and was successfully treated pharmacologically. Conclusion: Ablation of metastatic and hyperfunctioning adrenal tumors is safe and may provide local control and treatment of pathologic biochemical activity.

  17. Adrenal neoplasms: Effectiveness and safety of CT-guided ablation of 23 tumors in 22 patients

    International Nuclear Information System (INIS)

    Wolf, Farrah J.; Dupuy, Damian E.; Machan, Jason T.; Mayo-Smith, William W.

    2012-01-01

    Purpose: To retrospectively evaluate the effectiveness and safety of image-guided ablation of adrenal tumors. Materials and methods: : This HIPAA-compliant study was IRB approved and informed consent was waived. From 5/1999-6/2008, 20 consecutive adrenal metastases (mean diameter 4.2 cm; range, 2–8) and 3 hormonally active primary adrenal tumors (mean diameter 2.3 cm; range, 1–4), including an aldosteronoma and 2 pheochromocytomas in 22 patients (14 men, 8 women; mean age 61 years; range 40–84) were ablated in 23 sessions. Bilateral metastases were treated in a single patient. Radiofrequency ablation was used to treat 16 adrenal metastases and the 3 hyperfunctioning tumors. Microwave ablation was used to treat 4 metastases. Successful treatment was defined as a lack of both enhancement on follow-up contrast enhanced CT and/or up-take on FDG PET-CT and for functioning tumors, resolution of biochemical abnormalities. Results: Technical success was achieved in all sessions. Mean follow-up was 45.1 months (range, 1–91) Local tumor progression (focal enhancement at ablation site ≥1 cm in short axis) was detected in 4 of 23 tumors, two of which were identified bilaterally in a single patient prompting re-treatment. Of 19 patients with metastatic disease, 16 had fatal extra-adrenal disease progression, and 3 remain alive. Two of the 3 patients who underwent ablation of hyperfunctioning tumors remain alive, including the patient with an aldosteronoma who had recurrent symptoms 91 months post ablation. Intra-ablative hypertension occurred in 9% (2/23) of sessions and was successfully treated pharmacologically. Conclusion: Ablation of metastatic and hyperfunctioning adrenal tumors is safe and may provide local control and treatment of pathologic biochemical activity.

  18. Differences in Nanosecond Laser Ablation and Deposition of Tungsten, Boron, and WB2/B Composite due to Optical Properties

    Directory of Open Access Journals (Sweden)

    Tomasz Moscicki

    2016-01-01

    Full Text Available The first attempt to the deposition of WB3 films using nanosecond Nd:YAG laser demonstrated that deposited coatings are superhard. However, they have very high roughness. The deposited films consisted mainly of droplets. Therefore, in the present work, the explanation of this phenomenon is conducted. The interaction of Nd:YAG nanosecond laser pulse with tungsten, boron, and WB2/B target during ablation is investigated. The studies show the fundamental differences in ablation of those materials. The ablation of tungsten is thermal and occurs due to only evaporation. In the same conditions, during ablation of boron, the phase explosion and/or fragmentation due to recoil pressure is observed. The deposited films have a significant contribution of big debris with irregular shape. In the case of WB2/B composite, ablation is significantly different. The ablation seems to be the detonation in the liquid phase. The deposition mechanism is related mainly to the mechanical transport of the target material in the form of droplets, while the gaseous phase plays marginal role. The main origin of differences is optical properties of studied materials. A method estimating phase explosion occurrence based on material data such as critical temperature, thermal diffusivity, and optical properties is shown. Moreover, the effect of laser wavelength on the ablation process and the quality of the deposited films is discussed.

  19. Production of microscale particles from fish bone by gas flow assisted laser ablation

    International Nuclear Information System (INIS)

    Boutinguiza, M.; Lusquinos, F.; Comesana, R.; Riveiro, A.; Quintero, F.; Pou, J.

    2007-01-01

    Recycled wastes from fish and seafood can constitute a source of precursor material for different applications in the biomedical field such as bone fillers or precursor material for bioceramic coatings to improve the osteointegration of metallic implants. In this work, fish bones have been used directly as target in a laser ablation system. A pulsed Nd:YAG laser was used to ablate the fish bone material and a transverse air flow was used to extract the ablated material out of the interaction zone. The particles collected at a filter were in the micro and nanoscale range. The morphology as well as the composition of the obtained particles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results reveal that the composition of the analyzed particles is similar to that of the inorganic part of the fish bone

  20. Production of microscale particles from fish bone by gas flow assisted laser ablation

    Science.gov (United States)

    Boutinguiza, M.; Lusquiños, F.; Comesaña, R.; Riveiro, A.; Quintero, F.; Pou, J.

    2007-12-01

    Recycled wastes from fish and seafood can constitute a source of precursor material for different applications in the biomedical field such as bone fillers or precursor material for bioceramic coatings to improve the osteointegration of metallic implants. In this work, fish bones have been used directly as target in a laser ablation system. A pulsed Nd:YAG laser was used to ablate the fish bone material and a transverse air flow was used to extract the ablated material out of the interaction zone. The particles collected at a filter were in the micro and nanoscale range. The morphology as well as the composition of the obtained particles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results reveal that the composition of the analyzed particles is similar to that of the inorganic part of the fish bone.

  1. Development of LIBS for online analysis of solid nuclear materials

    International Nuclear Information System (INIS)

    Picard, Jessica

    2015-01-01

    With the objective to implement a fast, online analysis technique for control of solid metal nuclear materials, laser-induced breakdown spectroscopy (LIBS) technique is developed for quantitative analysis in uranium and plutonium. Since these matrices have a very dense emission spectrum in the UV-Visible range, the Vacuum Ultra-Violet (VUV) spectral range, less rich in lines, is explored. The aim of this thesis is to perform the analytical development of VUV-LIBS for quantitative analysis between 500 and 5000 ppm with an uncertainty of 3%. For that purpose, four steps were defined. First, for practical and safety reasons, it is generally better to perform experiments on surrogate materials. LIBS based on laser-material interaction, it is relevant to seek a surrogate of material of interest from the viewpoint of the ablated mass. Thus, a complete study of laser ablation of several metals was enabled to build a predictive model of the ablation efficiency. Titanium and stainless steel were defined as surrogate materials of plutonium and uranium for laser ablation. Secondly, the VUV-LIBS setup analytical performances were optimized for several elements of interest in four metals. Then, two calibration methods are used to determine the analytical performances. The limits of quantification are of the order of a few hundreds of ppm for all studied matrices, which validates the objective of impurities quantitation in the 500-5000 ppm range. Uncertainty is lower than 3% in the best cases. Finally, the calibration transfer between the four matrices was studied. A normalization of the nickel net signal measured in three matrices was presented. (author) [fr

  2. Cryoballoon Catheter Ablation in Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Cevher Ozcan

    2011-01-01

    Full Text Available Pulmonary vein isolation with catheter ablation is an effective treatment in patients with symptomatic atrial fibrillation refractory or intolerant to antiarrhythmic medications. The cryoballoon catheter was recently approved for this procedure. In this paper, the basics of cryothermal energy ablation are reviewed including its ability of creating homogenous lesion formation, minimal destruction to surrounding vasculature, preserved tissue integrity, and lower risk of thrombus formation. Also summarized here are the publications describing the clinical experience with the cryoballoon catheter ablation in both paroxysmal and persistent atrial fibrillation, its safety and efficacy, and discussions on the technical aspect of the cryoballoon ablation procedure.

  3. Pulse laser ablation at water-air interface

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro

    2010-06-01

    We studied a new pulse laser ablation phenomenon on a liquid surface layer, which is caused by the difference between the refractive indices of the two materials involved. The present study was motivated by our previous study, which showed that laser ablation can occur at the interface between a transparent material and a gas or liquid medium when the laser pulse is focused through the transparent material. In this case, the ablation threshold fluence is reduced remarkably. In the present study, experiments were conducted in water and air in order to confirm this phenomenon for a combination of two fluid media with different refractive indices. This phenomenon was observed in detail by pulse laser shadowgraphy. A high-resolution film was used to record the phenomenon with a Nd:YAG pulse laser with 10-ns duration as a light source. The laser ablation phenomenon on the liquid surface layer caused by a focused Nd:YAG laser pulse with 1064-nm wavelength was found to be followed by the splashing of the liquid surface, inducing a liquid jet with many ligaments. The liquid jet extension velocity was around 1000 m/s in a typical case. The liquid jet decelerated drastically due to rapid atomization at the tips of the ligaments. The liquid jet phenomenon was found to depend on the pulse laser parameters such as the laser fluence on the liquid surface, laser energy, and laser beam pattern. The threshold laser fluence for the generation of a liquid jet was 20 J/cm2. By increasing the incident laser energy with a fixed laser fluence, the laser focused area increased, which eventually led to an increase in the size of the plasma column. The larger the laser energy, the larger the jet size and the longer the temporal behavior. The laser beam pattern was found to have significant effects on the liquid jet’s velocity, shape, and history.

  4. Laser ablation under different electron heat conduction models in inertial confinement fusion

    Science.gov (United States)

    Li, Shuanggui; Ren, Guoli; Huo, Wen Yi

    2018-06-01

    In this paper, we study the influence of three different electron heat conduction models on the laser ablation of gold plane target. Different from previous studies, we concentrate on the plasma conditions, the conversion efficiency from laser into soft x rays and the scaling relation of mass ablation, which are relevant to hohlraum physics study in indirect drive inertial confinement fusion. We find that the simulated electron temperature in corona region is sensitive to the electron heat conduction models. For different electron heat conduction models, there are obvious differences in magnitude and spatial profile of electron temperature. For the flux limit model, the calculated conversion efficiency is sensitive to flux limiters. In the laser ablation of gold, most of the laser energies are converted into x rays. So the scaling relation of mass ablation rate is quite different from that of low Z materials.

  5. Synthesis of Fe–Ni bimetallic nanoparticles from pixel target ablation: plume dynamics and surface characterization

    International Nuclear Information System (INIS)

    Niu Xiaoxu; Murray, Paul T.; Sarangan, Andrew

    2012-01-01

    A novel Fe–Ni bimetallic nanoparticle synthesis technique, denoted pixel target ablation, is reported. The technique entails ablating a thin film target consisting of patterned Fe and Ni pixels with a selected ratio using a KrF excimer laser. The laser energy breaks a known amount of target materials into metal atoms, which then form nanoparticles by recombination in the gas phase. Due to the nature of thin-film ablation, splashing of large particles was eliminated with the added benefit of minimizing nanoparticle agglomeration. Plume dynamics and surface characterizations were carried out to exploit the formation of Fe–Ni nanoparticles more fully. The composition was readily controlled by varying the initial relative amount of Fe and Ni target pixels. Synthesis of multi-element nanoparticles by pixel target ablation should be possible with any element combination that can be prepared as a thin-film target.

  6. Studies of the impurity pellet ablation in the high-temperature plasma of magnetic confinement devices

    International Nuclear Information System (INIS)

    Sergeev, V. Yu.; Bakhareva, O. A.; Kuteev, B. V.; Tendler, M.

    2006-01-01

    The ablation of impurity pellets in tokamak and stellarator plasmas is investigated. Different mechanisms for shielding the heat fluxes from the surrounding plasma to the pellet surface are discussed. A model for impurity pellet ablation is developed that can account for both neutral and electrostatic shielding. It is shown that the experimental values of the impurity pellet ablation rate are well described by the neutral gas shielding model over a wide range of plasma temperatures and densities. Taking into account the electrostatic shielding leads to worse agreement between the predictions of the model and the experimental data; this result still remains unclear. Scaling laws are obtained that allow one to estimate the local ablation rate of impurity pellets made of various materials over a wide range of plasma parameters in the neutral gas shielding model

  7. Analysis of internal ablation for the thermal control of aerospace vehicles

    Science.gov (United States)

    Camberos, Jose A.; Roberts, Leonard

    1989-01-01

    A new method of thermal protection for transatmospheric vehicles is introduced. The method involves the combination of radiation, ablation and transpiration cooling. By placing an ablating material behind a fixed-shape, porous outer shield, the effectiveness of transpiration cooling is made possible while retaining the simplicity of a passive mechanism. A simplified one-dimensional approach is used to derive the governing equations. Reduction of these equations to non-dimensional form yields two parameters which characterize the thermal protection effectiveness of the shield and ablator combination for a given trajectory. The non-dimensional equations are solved numerically for a sample trajectory corresponding to glide re-entry. Four typical ablators are tested and compared with results obtained by using the thermal properties of water. For the present level of analysis, the numerical computations adequately support the analytical model.

  8. Evaporation as a diagnostic test for hydrodynamic cooling of laser-ablated clusters

    International Nuclear Information System (INIS)

    Klots, C.E.

    1991-01-01

    The properties of materials laser-ablated from a surface are of considerable interest. The interrogation of these properties inevitably occurs at a point some distance from the surface. One might then ask what processes have occurred in the intervening path length. Immediately, for example, one wonders whether the material was released as such from the surface or was formed as a result of collisions at a distant point. Similarly, one might ask if an observed ''temperature'' of the materials is characteristic of the ablation process of of subsequent events. We will indicate here how measurements of metastable evaporation rates can provide clues which are pertinent to these questions. 7 refs

  9. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers

    Science.gov (United States)

    Fan, Wendy

    2011-01-01

    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  10. Improving the prediction of the final part geometry in high strength