WorldWideScience

Sample records for ablation

  1. Pellet ablation and ablation model development

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1989-01-01

    A broad survey of pellet ablation is given, based primarily on information presented at this meeting. The implications of various experimental observations for ablation theory are derived from qualitative arguments of the physics involved. The major elements of a more complete ablation theory are then outlined in terms of these observations. This is followed by a few suggestions on improving the connections between theory and experimental results through examination of ablation data. Although this is a rather aggressive undertaking for such a brief (and undoubtedly incomplete) assessment, some of the discussion may help us advance the understanding of pellet ablation. 17 refs

  2. Lesion size in relation to ablation site during radiofrequency ablation

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, A

    1998-01-01

    This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation was perfor......This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation...... was performed during two different flow-velocities in a tissue bath, while electrode contact pressure and position were unchanged. Target temperature was 80 degrees C. Obtained tip temperature, power consumption and lesion dimensions were measured. In vivo lesion volume, depth and width were found significantly.......61 in vitro). We conclude that during temperature controlled radiofrequency ablation lesion size differs for septal and apical left ventricular applications. Differences in convective cooling might play an important role in this respect. This is supported by our in vitro experiments, where increased...

  3. Cardiac ablation

    Directory of Open Access Journals (Sweden)

    Kelly Ratheal

    2016-01-01

    Full Text Available Cardiac ablation is a procedure that uses either radiofrequency or cryothermal energy to destroy cells in the heart to terminate and/or prevent arrhythmias. The indications for cardiac catheter ablation include refractory, symptomatic arrhythmias, with more specific guidelines for atrial fibrillation in particular. The ablation procedure itself involves mapping the arrhythmia and destruction of the aberrant pathway in an effort to permanently prevent the arrhythmia. There are many types of arrhythmias, and they require individualized approaches to ablation based on their innately different electrical pathways. Ablation of arrhythmias, such as Wolff-Parkinson-White syndrome, AV nodal reentrant tachycardia, and atrial-fibrillation, is discussed in this review. Ablation has a high success rate overall and minimal complication rates, leading to improved quality of life in many patients.

  4. Therapeutic efficacy of percutaneous radiofrequency ablation versus microwave ablation for hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available The aim of this study was to investigate the therapeutic efficacy of percutaneous radiofrequency (RF ablation versus microwave (MW ablation for hepatocellular carcinoma (HCC measuring ≤ 5 cm in greatest diameter. From January 2006 to December 2006, 78 patients had undergone RF ablation whereas 77 had undergone MW ablation. Complete ablation (CA, local tumour progression (LTP and distant recurrence (DR were compared. The overall survival curves were calculated with the Kaplan-Meier technique and compared with the log-rank test. The CA rate was 83.4% (78/93 for RF ablation and 86.7%(91/105 for MW ablation. The LTP rate was 11.8% (11/93 for RF ablation and 10.5% (11/105 for MW ablation. DR was found in 51 (65.4% in the RF ablation and 62 (80.5% in the MW ablation. There was no significant difference in the 1-, 3-, and 5-year overall survival rates (P = 0.780 and the 1-, 3-, and 5-year disease-free survival rates (P = 0.123 between RF and MW ablation. At subgroup analyses, for patients with tumors ≤ 3.0 cm, there was no significant difference in the 1-, 3-, and 5-year overall survival rates (P = 0.067 and the corresponding disease-free survival rates(P = 0.849. For patients with tumor diameters of 3.1-5.0 cm, the 1-, 3-, and 5-year overall survival rates were 87.1%, 61.3%, and 40.1% for RF ablation and 85.4%, 36.6%, and 22% for MW ablation, with no significant difference (P = 0.068. The corresponding disease-free survival rates were 74.2%, 54.8%, and 45.2% for the RF ablation group and 53.3%, 26.8%, and 17.1% for the MW ablation group. The disease-free survival curve for the RF ablation group was significantly better than that for the MW ablation group (P = 0.018. RF ablation and MW ablation are both effective methods in treating hepatocellular carcinomas, with no significant differences in CA, LTP, DR, and overall survival.

  5. Radiofrequency thermal ablation of malignant hepatic tumors: post-ablation syndrome

    International Nuclear Information System (INIS)

    Choi, Jung Bin; Rhim, Hyunchul; Kim, Yongsoo; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Lee, Seung Ro

    2000-01-01

    To evaluate post-ablation syndrome after radiofrequency thermal ablation of malignant hepatic tumors. Forty-two patients with primary (n=3D29) or secondary (n=3D13) hepatic tumors underwent radiofrequency thermal ablation. A total of 65 nodules ranging in size from 1.1 to 5.0 (mean, 3.1) cm were treated percutaneously using a 50W RF generator with 15G expandable needle electrodes. We retrospectively evaluated the spectrum of post-ablation syndrome including pain, fever (≥3D 38 deg C), nausea, vomiting, right shoulder pain, and chest discomfort according to frequency, intensity and duration, and the findings were correlated with tumor location and number of ablations. We also evaluated changes in pre-/post-ablation serum aminotransferase (ALT/AST) and prothrombin time, and correlated these findings with the number of ablations. Post-ablation syndrome was noted in 29 of 42 patients (69.0%), and most symptoms improved with conservative treatment. The most important of these were abdominal plan (n=3D20, 47.6%), fever (n=3D8, 19.0%), and nausea (n=3D7, 16.7%), and four of 42 (9.5%) patients complained of severe pain. The abdominal pain lasted from 3 hours to 5.5 days (mean; 20.4 hours), the fever from 6 hours to 5 days (mean; 63.0 hours). And the nausea from 1 hours to 4 days (mean; 21.0 hours). Other symptoms were right shoulder pain (n=3D6, 14.3%), chest discomfort (n=3D3, 7.1%), and headache (n=3D3, 7.1%). Seventeen of 20 patients (85%) with abdominal pain had subcapsular tumor of the liver. There was significant correlation between pain, location of the tumor, and a number of ablations. After ablation, ALT/AST was elevated more than two-fold in 52.6%/73.7% of patients, respectively but there was no significant correlation with the number of ablation. Post-ablation syndrome is a frequent and tolerable post-procedural process after radiofrequency thermal ablation. The spectrum of this syndrome provides a useful guideline for the post-ablation management. (author)

  6. Comparison of wet radiofrequency ablation with dry radiofrequency ablation and radiofrequency ablation using hypertonic saline preinjection: ex vivo bovine liver

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Han, Joon Koo; Kim, Se Hyung; Lee, Jae Young; Park, Hee Sun; Hur, Hurn; Choi, Byung Ihn; Shin, Kyung Sook

    2004-01-01

    We wished to compare the in-vitro efficiency of wet radiofrequency (RF) ablation with the efficiency of dry RF ablation and RF ablation with preinjection of NaCl solutions using excised bovine liver. Radiofrequency was applied to excised bovine livers in a monopolar mode for 10 minutes using a 200 W generator and a perfused-cooled electrode with or without injection or slow infusion of NaCl solutions. After placing the perfused-cooled electrode in the explanted liver, 50 ablation zones were created with five different regimens: group A; standard dry RF ablation, group B; RF ablation with 11 mL of 5% NaCl solution preinjection, group C; RF ablation with infusion of 11 mL of 5% NaCl solution at a rate of 1 mL/min, group D; RFA with 6 mL of 36% NaCl solution preinjection, group E; RF ablation with infusion of 6 mL of 36% NaCl solution at a rate of 0.5 mL/min. In groups C and E, infusion of the NaCl solutions was started 1 min before RF ablation and then maintained during RF ablation (wet RF ablation). During RF ablation, we measured the tissue temperature at 15 mm from the electrode. The dimensions of the ablation zones and changes in impedance, current and liver temperature during RF ablation were then compared between the groups. With injection or infusion of NaCl solutions, the mean initial tissue impedance prior to RF ablation was significantly less in groups B, C, D, and E (43-75 Ω) than for group A (80 Ω) (ρ 3 in group A; 12.4 ± 3.8 cm 3 in group B; 80.9 ± 9.9 cm 3 in group C; 45.3 ± 11.3 cm 3 in group D and 81.6 ± 8.6 cm 3 in group E. The tissue temperature measured at 15 mm from the electrode was higher in groups C, D and E than other groups (ρ < 0.05): 53 ± 12 .deg. C in group A, 42 ± 2 .deg. C in group B, 93 ± 8 .deg. C in group C; 79 ± 12 .deg. C in group D and 83 ± 8 .deg.C in group E. Wet RF ablation with 5% or 36% NaCl solutions shows better efficiency in creating a large ablation zone than does dry RF ablation or RF ablation with

  7. An experimental study of simultaneous ablation with dual probes in radiofrequency thermal ablation

    International Nuclear Information System (INIS)

    Jang, Il Soo; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Kim, Yong Soo; Kim, Young Sun; Heo, Jeong Nam

    2003-01-01

    To determine the differences between sequential ablation with a single probe and simultaneous ablation with dual probes. Using two 14-gauge expandable probes (nine internal prongs with 4-cm deployment), radiofrequency was applied sequentially (n=8) or simultaneously (n=8) to ten ex-vivo cow livers. Before starting ablation, two RF probes with an inter-probe space of 2 cm (n=8) or 3 cm (n=8) were inserted. In the sequential group, switching the connecting cable to an RF generator permitted ablation with the second probe just after ablation with the first probe had finished. In the simultaneous group, single ablation was performed only after connecting the shafts of both RF probes using a connection device. Each ablation lasted 7 minutes at a target temperature of 105-110 .deg. C. The size and shape of the ablated area, and total ablation time were then compared between the two groups. With 2-cm spacing, the group, mean length and overlapping width of ablated lesions were, respectively, 5.20 and 5.05 cm in the sequential group (n=4), and 5.81 and 5.65 cm in the simultaneous group (n=4). With 3-cm spacing, the corresponding figures were 4.99 and 5.60 cm in the sequential group (n=4), and 6.04 and 6.78 cm in the simultaneous group (n=4). With 2-cm spacing, the mean depth of the proximal waist was 0.58 cm in the sequential (group and 0.28 cm in the simultaneous group, while with 3-cm spacing, the corresponding figures were 1.65 and 1.48 cm. In neither group was there a distal waist. Mean total ablation time was 23.4 minutes in the sequential group and 14 minutes in the simultaneous group. In terms of ablation size and ablation time, simultaneous radiofrequency ablation with dual probes is superior to sequential ablation with a single probe. A simultaneous approach will enable an operator to overcome difficulty in probe repositioning during overlapping ablation, resulting in complete ablation with a successful safety margin

  8. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    Science.gov (United States)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  9. Radiofrequency Ablation of Lung Tumors

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Radiofrequency Ablation (RFA) / Microwave Ablation (MWA) of Lung Tumors ... and Microwave Ablation of Lung Tumors? What are Radiofrequency and Microwave Ablation of Lung Tumors? Radiofrequency ablation, ...

  10. Effect of ablatant composition on the ablation of a fuelling pellet

    International Nuclear Information System (INIS)

    Chang, C.T.; Thomsen, K.; Piret, S.

    1988-01-01

    The single species neutral-shielding model for the ablation of a hydrogenic pellet is extended by considering the ablatant as a mixture of four species: molecular and atomic hydrogen, protons and electrons. Compared with the results of the frozen flow, (i.e. the single species molecular hydrogen gas model), results of the analysis showed that the presence of dissociation and ionization effects caused a marked difference of the ablatant state. The attenuations of the incoming electron energy and energy flux, however, are very much similar irrespective of whether the ablated flow is in a frozen or an equilibrium state. The scaling law of the pellet ablation rate with respect to the plasma state of Te, ne and the pellet radius remains the same; the ablation rate is reduced by approximately 15%. To examine the possible existence of a spherical shell around the pellet where most of the incoming electron energy is absorbed, acodmparison is made between the local electron collisional mean free path and the electron Larmor radius. A critical field at the ionization radius is evaluated. An effective spherical energyabsorbing region exists when the local field strength is below the critical value. For a plasma state of low Te and ne, (where the ablatant is hardly ionized), and for one near the thermonuclear condition (where a highly dense ablatant exists near the pellet), the effective energy absorption region is nearly spherical. 20 refs. (author)

  11. Laser ablation principles and applications

    CERN Document Server

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  12. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias; Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas; Mahnken, Andreas H.

    2012-01-01

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 ± 0.14, 1.45 ± 0.13, and 1.74 ± 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 ± 0.09 and 1.26 ± 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 ± 0.65, 2.85 ± 0.72, and 4.45 ± 0.47 cm 3 for MW ablation at outputs of 25W, 35W, and 45W and 1.18 ± 0.30 and 2.29 ± 0.55 cm 3 got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  13. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report.

    Science.gov (United States)

    Oddo, Silvia; Balestra, Margherita; Vera, Lara; Giusti, Massimo

    2018-05-11

    Radiofrequency ablation and laser ablation are safe and effective techniques for reducing thyroid nodule volume, neck symptoms, and cosmetic complaints. Therapeutic success is defined as a nodule reduction > 50% between 6 and 12 months after the procedure, but a percentage of nodules inexplicably do not respond to thermal ablation. We describe the case of a young Caucasian woman with a solid benign thyroid nodule who refused surgery and who had undergone radiofrequency ablation in 2013. The nodule did not respond in terms of either volume reduction or improvement in neck symptoms. After 2 years, given the patient's continued refusal of thyroidectomy, we proposed laser ablation. The nodule displayed a significant volume reduction (- 50% from radiofrequency ablation baseline volume, - 57% from laser ablation baseline), and the patient reported a significant improvement in neck symptoms (from 6/10 to 1/10 on a visual analogue scale). We conjecture that some benign thyroid nodules may be intrinsically resistant to necrosis when one specific ablation technique is used, but may respond to another technique. To the best of our knowledge, this is the first description of the effect of performing a different percutaneous ablation technique in a nodule that does not respond to radiofrequency ablation.

  14. Increase in Volume of Ablation Zones during Follow-up Is Highly Suggestive of Ablation Site Recurrence in Colorectal Liver Metastases Treated with Radiofrequency Ablation

    NARCIS (Netherlands)

    Kele, Petra G.; de Jong, Koert P.; van der Jagt, Eric J.

    Purpose: To test the hypothesis that volume changes of ablation zones (AZs) on successive computed tomography (CT) scans could predict ablation site recurrences (ASRs) in patients with colorectal liver metastases treated by radiofrequency (RF) ablation. Materials and Methods: RF ablation was

  15. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    Science.gov (United States)

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  16. Pulmonary ablation: a primer.

    Science.gov (United States)

    Roberton, Benjamin J; Liu, David; Power, Mark; Wan, John M C; Stuart, Sam; Klass, Darren; Yee, John

    2014-05-01

    Percutaneous image-guided thermal ablation is safe and efficacious in achieving local control and improving outcome in the treatment of both early stage non-small-cell lung cancer and pulmonary metastatic disease, in which surgical treatment is precluded by comorbidity, poor cardiorespiratory reserve, or unfavorable disease distribution. Radiofrequency ablation is the most established technology, but new thermal ablation technologies such as microwave ablation and cryoablation may offer some advantages. The use of advanced techniques, such as induced pneumothorax and the popsicle stick technique, or combining thermal ablation with radiotherapy, widens the treatment options available to the multidisciplinary team. The intent of this article is to provide the reader with a practical knowledge base of pulmonary ablation by concentrating on indications, techniques, and follow-up. Copyright © 2014 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  17. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D. E-mail: lumd@21cn.com; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up.

  18. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    International Nuclear Information System (INIS)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D.; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J.

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up

  19. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO2 laser.

    Science.gov (United States)

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2016-09-01

    Polyoxymethylene (POM) decomposes gradually as it is heated up by the irradiation of CO2 laser; the long-chain molecules of POM are broken into short chains, which leads to the lowering of the melting point and the critical temperature of the ablation products. When the product temperature is above the melting point, ablation comes up in the way of vaporization; when the product temperature is higher than the critical temperature, all liquid products are transformed into gas instantly and the ablation mechanism is changed. The laser fluence at which significant ablation is observed is defined as the ablation threshold, and the fluence corresponding to the ablation mechanism changing is denoted as the flyover threshold. In this paper, random pyrolysis is adopted to describe the pyrolytic decomposition of POM, and consequently, the components of the pyrolysis products under different pyrolysis rates are acquired. The Group Contribution method is used to count the thermodynamic properties of the pyrolysis products, and the melting point and the critical temperature of the product mixture are obtained by the Mixing Law. The Knudsen layer relationship is employed to evaluate the ablation mass removal when the product temperature is below the critical temperature. The gas dynamics conservation laws associated with the Jouguet condition are used to calculate the mass removal when the product temperature is higher than the critical temperature. Based on the model, a set of simulations for various laser intensities and lengths are carried out to generalize the relationships between the thresholds and the laser parameters. Besides the ablated mass areal density, which fits the experimental data quite well, the ablation temperature, pyrolysis rate, and product components are also discussed for a better understanding of the ablation mechanism of POM.

  20. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    Science.gov (United States)

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  1. Radiofrequency ablation of pulmonary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Crocetti, Laura, E-mail: l.crocetti@med.unipi.i [Division of Diagnostic Imaging and Intervention, Department of Liver Transplants, Hepatology and Infectious Diseases, Pisa University School of Medicine (Italy); Lencioni, Riccardo [Division of Diagnostic Imaging and Intervention, Department of Liver Transplants, Hepatology and Infectious Diseases, Pisa University School of Medicine (Italy)

    2010-07-15

    The development of image-guided percutaneous techniques for local tumor ablation has been one of the major advances in the treatment of solid tumors. Among these methods, radiofrequency (RF) ablation is currently established as the primary ablative modality at most institutions. RF ablation is accepted as the best therapeutic choice for patients with early-stage hepatocellular carcinoma when liver transplantation or surgical resection are not suitable options and is considered as a viable alternate to surgery for inoperable patients with limited hepatic metastatic disease, especially from colorectal cancer. Recently, RF ablation has been demonstrated to be a safe and valuable treatment option for patients with unresectable or medically inoperable lung malignancies. Resection should remain the standard therapy for non-small cell lung cancer (NSCLC) but RF ablation may be better than conventional external-beam radiation for the treatment of the high-risk individual with NSCLC. Initial favourable outcomes encourage combining radiotherapy and RF ablation, especially for treating larger tumors. In the setting of colorectal cancer lung metastases, survival rates provided by RF ablation in selected patients, are substantially higher than those obtained with any chemotherapy regimens and provide indirect evidence that RF ablation therapy improves survival in patients with limited lung metastatic disease.

  2. Ablative skin resurfacing.

    Science.gov (United States)

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Percutaneous thermal ablation of renal neoplasms

    International Nuclear Information System (INIS)

    Tacke, J.; Mahnken, A.H.; Guenther, R.W.

    2005-01-01

    Due to modern examination techniques such as multidetector computed tomography and high-field magnetic resonance imaging, the detection rate of renal neoplasms is continually increasing. Even though tumors exceeding 4 cm in diameter rarely metastasize, all renal lesions that are possible neoplasms should be treated. Traditional treatment techniques include radical nephrectomy or nephron-sparing resection, which are increasingly performed laparoscopically. Modern thermal ablation techniques such as hyperthermal techniques like radiofrequency ablation RFA, laser induced thermal ablation LITT, focused ultrasound FUS and microwave therapy MW, as well as hypothermal techniques (cryotherapy) may be a useful treatment option for patients who are unfit for or refuse surgical resection. Cryotherapy is the oldest and best known thermal ablation technique and can be performed laparoscopically or percutaneously. Since subzero temperatures have no antistyptic effect, additional maneuvers must be performed to control bleeding. Percutaneous cryotherapy of renal tumors is a new and interesting method, but experience with it is still limited. Radiofrequency ablation is the most frequently used method. Modern probe design allows volumes between 2 and 5 cm in diameter to be ablated. Due to hyperthermal tract ablation, the procedure is deemed to be safe and has a low complication rate. Although there are no randomized comparative studies to open resection, the preliminary results for renal RFA are promising and show RFA to be superior to other thermal ablation techniques. Clinical success rates are over 90% for both, cryo- and radiofrequency ablation. Whereas laser induced thermal therapy is established in hepatic ablation, experience is minimal with respect to renal application. For lesions of more than 2 cm in diameter, additional cooling catheters are required. MR thermometry offers temperature control during ablation. Microwave ablation is characterized by small ablation volumes

  4. Laboratory Simulations of Micrometeoroid Ablation

    Science.gov (United States)

    Thomas, Evan Williamson

    Each day, several tons of meteoric material enters Earth's atmosphere, the majority of which consist of small dust particles (micrometeoroids) that completely ablate at high altitudes. The dust input has been suggested to play a role in a variety of phenomena including: layers of metal atoms and ions, nucleation of noctilucent clouds, effects on stratospheric aerosols and ozone chemistry, and the fertilization of the ocean with bio-available iron. Furthermore, a correct understanding of the dust input to the Earth provides constraints on inner solar system dust models. Various methods are used to measure the dust input to the Earth including satellite detectors, radar, lidar, rocket-borne detectors, ice core and deep-sea sediment analysis. However, the best way to interpret each of these measurements is uncertain, which leads to large uncertainties in the total dust input. To better understand the ablation process, and thereby reduce uncertainties in micrometeoroid ablation measurements, a facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to accelerate iron particles to relevant meteoric velocities (10-70 km/s). The particles are then introduced into a chamber pressurized with a target gas, and they partially or completely ablate over a short distance. An array of diagnostics then measure, with timing and spatial resolution, the charge and light that is generated in the ablation process. In this thesis, we present results from the newly developed ablation facility. The ionization coefficient, an important parameter for interpreting meteor radar measurements, is measured for various target gases. Furthermore, experimental ablation measurements are compared to predictions from commonly used ablation models. In light of these measurements, implications to the broader context of meteor ablation are discussed.

  5. Ventricular fibrillation occurring after atrioventricular node ablation despite minimal difference between pre- and post-ablation heart rates.

    Science.gov (United States)

    Squara, F; Theodore, G; Scarlatti, D; Ferrari, E

    2017-02-01

    We report the case of an 82-year-old man presenting with ventricular fibrillation (VF) occurring acutely after atrioventricular node (AVN) ablation. This patient had severe valvular cardiomyopathy, chronic atrial fibrillation (AF), and underwent prior to the AVN ablation a biventricular implantable cardiac defibrillator positioning. The VF was successfully cardioverted with one external electrical shock. What makes this presentation original is that the pre-ablation spontaneous heart rate in AF was slow (84 bpm), and that VF occurred after ablation despite a minimal heart rate drop of only 14 bpm. VF is the most feared complication of AVN ablation, but it had previously only been described in case of acute heart rate drop after ablation of at least 30 bpm (and more frequently>50 bpm). This case report highlights the fact that VF may occur after AVN ablation regardless of the heart rate drop, rendering temporary fast ventricular pacing mandatory whatever the pre-ablation heart rate. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Thermal Ablation of T1c Renal Cell Carcinoma: A Comparative Assessment of Technical Performance, Procedural Outcome, and Safety of Microwave Ablation, Radiofrequency Ablation, and Cryoablation.

    Science.gov (United States)

    Zhou, Wenhui; Arellano, Ronald S

    2018-04-06

    To evaluate perioperative outcomes of thermal ablation with microwave (MW), radiofrequency (RF), and cryoablation for stage T1c renal cell carcinoma (RCC). A retrospective analysis of 384 patients (mean age, 71 y; range, 22-88 y) was performed between October 2006 and October 2016. Mean radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines; preoperative aspects and dimensions used for anatomic classification; and centrality index scores were 6.3, 7.9, and 2.7, respectively. Assessment of pre- and postablation serum blood urea nitrogen, creatinine, and estimated glomerular filtration rate was performed to assess functional outcomes. Linear regression analyses were performed to compare sedation medication dosages among the three treatment cohorts. Univariable and multivariable logistic regression analyses were performed to compare rates of residual disease and complications among treatment modalities. A total of 437 clinical stage T1N0M0 biopsy-proven RCCs measuring 1.2-6.9 cm were treated with computed tomography (CT)-guided MW ablation (n = 44; 10%), RF ablation (n = 347; 79%), or cryoablation (n = 46; 11%). There were no significant differences in patient demographic or tumor characteristics among cohorts. Complication rates and immediate renal function changes were similar among the three ablation modalities (P = .46 and P = .08, respectively). MW ablation was associated with significantly decreased ablation time (P < .05), procedural time (P < .05), and dosage of sedative medication (P < .05) compared with RF ablation and cryoablation. CT-guided percutaneous MW ablation is comparable to RF ablation or cryoablation for the treatment of stage T1N0M0 RCC with regard to treatment response and is associated with shorter treatment times and less sedation than RF ablation or cryoablation. In addition, the safety profile of CT-guided MW ablation is noninferior to those of RF ablation or

  7. Perioral Rejuvenation With Ablative Erbium Resurfacing.

    Science.gov (United States)

    Cohen, Joel L

    2015-11-01

    Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.

  8. CT-guided Bipolar and Multipolar Radiofrequency Ablation (RF Ablation) of Renal Cell Carcinoma: Specific Technical Aspects and Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Lemm, G.; Hohenstein, E. [Minimally Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Clinic for Radiology (Germany); Bellemann, N.; Stampfl, U. [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Goezen, A. S.; Rassweiler, J. [Clinic for Urology, SLK Kliniken Heilbronn GmbH (Germany); Kauczor, H. U.; Radeleff, B. A. [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Pereira, P. L. [Minimally Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Clinic for Radiology (Germany)

    2013-06-15

    Purpose. This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. Methods. We included 22 consecutive patients (3 women; age 74.2 {+-} 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 {+-} 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Results. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 {+-} 13.6 min and 43.7 {+-} 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 {+-} 8.8 months, local recurrence-free survival was 14.4 {+-} 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 {+-} 16.6 ml/min/1.73 m{sup 2} before RF ablation vs. 47.2 {+-} 11.9 ml/min/1.73 m{sup 2} after RF ablation; not significant). Conclusions. CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  9. Water spray assisted ultrashort laser pulse ablation

    International Nuclear Information System (INIS)

    Silvennoinen, M.; Kaakkunen, J.J.J.; Paivasaari, K.; Vahimaa, P.

    2013-01-01

    Highlights: ► We show the novel method to use multibeam processing with ultrashort pulses efficiently. ► Sprayed thin water layer on ablation zone enhances ablation rate and quality. ► In some cases this method also enables ablation of the deeper and straighter holes compared to ones made without the water layer. ► Method also makes possible to directly write features without the self-organizing structures. - Abstract: We have studied femtosecond ablation under sprayed thin water film and its influence and benefits compared with ablation in the air atmosphere. These have been studied in case of the hole and the groove ablation using IR femtosecond laser. Water enhances the ablation rate and in some situations it makes possible to ablate the holes with a higher aspect ratio. While ablating the grooves, the water spray allows using the high fluences without the generation of the self-organized structures.

  10. The effect of ethanol infusion on the size of the ablated lesion in radiofrequency thermal ablation: A pilot study

    International Nuclear Information System (INIS)

    Kim, Young Sun; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Kim, Yong Soo; Joo, Kyoung Bin

    2001-01-01

    To assess the effect of ethanol infusion on the size of ablated lesion during radiofrequency (RF) thermal ablation. We performed an ex vivo experimental study using a total of 15 pig livers. Three groups were designed: 1)normal control (n=10), 2) saline infusion (n=10) 3) ethanol infusion (n=10). Two radiofrequency ablations were done using a 50 watt RF generator and a 15 guage expandable elections with four prongs in each liver. During ablation for 8 minutes, continuous infusion of fluid at a rate of 0.5 ml/min through the side arm of electrode was performed. We checked the frequency of the 'impeded-out' phenomenon due to abrupt increase of impedance during ablation. Size of ablated lesion was measured according to length, width, height, and subsequently volume after the ablations. The sizes of the ablated lesions were compared between the three groups. 'Impeded-out' phenomenon during ablation was noted 4 times in control group, although that never happened in saline or ethanol infusion groups. There were significant differences in the volumes of ablated lesions between control group (10.62 ± 1.45 cm 3 ) and saline infusion group (15.33 ± 2.47 cm 3 ), and saline infusion group and ethanol infusion group (18.78 ± 3.58 cm 3 ) (p<0.05). Fluid infusion during radiofrequency thermal ablation decrease a chance of charming and increase the volume of the ablated lesion. Ethanol infusion during ablation may induce larger volume of ablated lesion than saline infusion.

  11. Ablation of Solid Hydrogen in a Plasma

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment.......Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment....

  12. CT-guided Bipolar and Multipolar Radiofrequency Ablation (RF Ablation) of Renal Cell Carcinoma: Specific Technical Aspects and Clinical Results

    International Nuclear Information System (INIS)

    Sommer, C. M.; Lemm, G.; Hohenstein, E.; Bellemann, N.; Stampfl, U.; Goezen, A. S.; Rassweiler, J.; Kauczor, H. U.; Radeleff, B. A.; Pereira, P. L.

    2013-01-01

    Purpose. This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. Methods. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Results. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m 2 before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m 2 after RF ablation; not significant). Conclusions. CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  13. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    Science.gov (United States)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  14. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    International Nuclear Information System (INIS)

    Baladi, Arash; Sarraf Mamoory, Rasoul

    2010-01-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  15. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Baladi, Arash [Materials Engineering Department, Tarbiat Modares University, Jalal Al Ahmad, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Sarraf Mamoory, Rasoul, E-mail: rsarrafm@modares.ac.ir [Materials Engineering Department, Tarbiat Modares University, Jalal Al Ahmad, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2010-10-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  16. Percutaneous Renal Tumor Ablation: Radiation Exposure During Cryoablation and Radiofrequency Ablation

    Energy Technology Data Exchange (ETDEWEB)

    McEachen, James C., E-mail: james.mceachen2@gmail.com [Mayo Clinic, Division of Preventive, Occupational, and Aerospace Medicine (United States); Leng, Shuai; Atwell, Thomas D. [Mayo Clinic, Department of Radiology (United States); Tollefson, Matthew K. [Mayo Clinic, Department of Urology (United States); Friese, Jeremy L. [Mayo Clinic, Department of Radiology (United States); Wang, Zhen; Murad, M. Hassan [Mayo Clinic, Division of Preventive, Occupational, and Aerospace Medicine (United States); Schmit, Grant D. [Mayo Clinic, Department of Radiology (United States)

    2016-02-15

    IntroductionOnce reserved solely for non-surgical cases, percutaneous ablation is becoming an increasingly popular treatment option for a wider array of patients with small renal masses and the radiation risk needs to be better defined as this transition continues.Materials and MethodsRetrospective review of our renal tumor ablation database revealed 425 patients who underwent percutaneous ablation for treatment of 455 renal tumors over a 5-year time period. Imparted radiation dose information was reviewed for each procedure and converted to effective patient dose and skin dose using established techniques. Statistical analysis was performed with each ablative technique.ResultsFor the 331 cryoablation procedures, the mean DLP was 6987 mGycm (SD = 2861) resulting in a mean effective dose of 104.7 mSv (SD = 43.5) and the mean CTDI{sub vol} was 558 mGy (SD = 439) resulting in a mean skin dose of 563.2 mGy (SD = 344.1). For the 124 RFA procedures, the mean DLP was 3485 mGycm (SD = 1630) resulting in a mean effective dose of 50.3 mSv (SD = 24.0) and the mean CTDI{sub vol} was 232 mGy (SD = 149) resulting in a mean skin dose of 233.2 mGy (SD = 117.4). The difference in patient radiation exposure between the two renal ablation techniques was statistically significant (p < 0.001).ConclusionBoth cryoablation and RFA imparted an average skin dose that was well below the 2 Gy deterministic threshold for appreciable sequela. Renal tumor cryoablation resulted in a mean skin and effective radiation dose more than twice that for RFA. The radiation exposure for both renal tumor ablation techniques was at the high end of the medical imaging radiation dose spectrum.

  17. Hydrodynamic instabilities in an ablation front

    International Nuclear Information System (INIS)

    Piriz, A R; Portugues, R F

    2004-01-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved

  18. Hydrodynamic instabilities in an ablation front

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A R; Portugues, R F [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2004-06-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved.

  19. Catheter ablation of epicardial ventricular tachycardia

    Directory of Open Access Journals (Sweden)

    Takumi Yamada, MD, PhD

    2014-08-01

    Full Text Available Ventricular tachycardias (VTs can usually be treated by endocardial catheter ablation. However, some VTs can arise from the epicardial surface, and their substrate can be altered only by epicardial catheter ablation. There are two approaches to epicardial catheter ablation: transvenous and transthoracic. The transvenous approach through the coronary venous system (CVS has been commonly used because it is easily accessible. However, this approach may be limited by the distribution of the CVS and insufficient radiofrequency energy delivery. Transthoracic epicardial catheter ablation has been developed to overcome these limitations of the transvenous approach. It is a useful supplemental or even preferred strategy to eliminate epicardial VTs in the electrophysiology laboratory. This technique has been applied for scar-related VTs secondary to often non-ischemic cardiomyopathy and sometimes ischemic cardiomyopathy, and idiopathic VTs as the epicardial substrates of these VTs have become increasingly recognized. When endocardial ablation and epicardial ablation through the CVS are unsuccessful, transthoracic epicardial ablation should be the next option. Intrapericardial access is usually obtained through a subxiphoidal pericardial puncture. This approach might not be possible in patients with pericardial adhesions caused by prior cardiac surgery or pericarditis. In such cases, a hybrid procedure involving surgical access with a subxiphoid pericardial window and a limited anterior or lateral thoracotomy might be a feasible and safe method of performing an epicardial catheter ablation in the electrophysiology laboratory. Potential complications associated with this technique include bleeding and collateral damage to the coronary arteries and phrenic nerve. Although the risk of these complications is low, electrophysiologists who attempt epicardial catheter ablation should know the complications associated with this technique, how to minimize their

  20. [Radiofrequency ablation of hepatocellular carcinoma].

    Science.gov (United States)

    Widmann, Gerlig; Schullian, Peter; Bale, Reto

    2013-03-01

    Percutaneous radiofrequency ablation (RFA) is well established in the treatment of hepatocellular carcinoma (HCC). Due to its curative potential, it is the method of choice for non resectable BCLC (Barcelona Liver Clinic) 0 and A. RFA challenges surgical resection for small HCC and is the method of choice in bridging for transplantation and recurrence after resection or transplantation. The technical feasibility of RFA depends on the size and location of the HCC and the availability of ablation techniques (one needle techniques, multi-needle techniques). More recently, stereotactic multi-needle techniques with 3D trajectory planning and guided needle placement substantially improve the spectrum of treatable lesions including large volume tumors. Treatment success depends on the realization of ablations with large intentional margins of tumor free tissue (A0 ablation in analogy to R0 resection), which has to be documented by fusion of post- with pre-ablation images, and confirmed during follow-up imaging.

  1. A spectral analysis of ablating meteors

    Science.gov (United States)

    Bloxam, K.; Campbell-Brown, M.

    2017-09-01

    Meteor ablation features in the spectral lines occurring at 394, 436, 520, and 589 nm were observed using a four-camera spectral system between September and December 2015. In conjunction with this multi-camera system the Canadian Automated Meteor Observatory was used to observe the orbital parameters and fragmentation of these meteors. In total, 95 light curves with complete data in the 520 and 589 nm filters were analyzed; some also had partial or complete data in the 394 nm filter, but no usable data was collected with the 436 nm filter. Of the 95 events, 70 exhibited some degree of differential ablation, and in all except 3 of these 70 events the 589 nm filter started or ended sooner compared with the 520 nm filter, indicating early ablation at the 589 nm wavelength. In the majority of cases the meteor showed evidence of fragmentation regardless of the type of ablation (differential or uniform). A surprising result was the lack of correlation found concerning the KB parameter, linked to meteoroid strength, and differential ablation. In addition, 22 shower-associated meteors were observed; Geminids showed mainly slight differential ablation, while Taurids were more likely to ablate uniformly.

  2. CT-guided radiofrequency tumor ablation in children

    International Nuclear Information System (INIS)

    Botsa, Evanthia; Poulou, Loukia S.; Koundouraki, Antonia; Thanos, Loukas; Koutsogiannis, Ioannis; Ziakas, Panayiotis D.; Alexopoulou, Efthimia

    2014-01-01

    Image-guided radiofrequency ablation is a well-accepted technique of interventional oncology in adults. To evaluate the efficacy and safety of CT-guided radiofrequency ablation as a minimally invasive treatment for metastatic neoplasms in children. A total of 15 radiofrequency ablation sessions were performed in 12 children and young adults (median age 9.5; range 5-18 years) with metastatic malignancies. Seven children and young adults had secondary hepatic lesions, three had pulmonary and two had bone lesions. Radiofrequency ablation was performed under conscious sedation. The median lesion size was 1.7 cm (range 1.3-2.8 cm). The median time for ablation was 8 min (range 7-10 min). Radiofrequency procedures were technically successful in all tumors. Postablation imaging immediately after, and 1 month and 3 months after radiofrequency ablation showed total necrosis in all patients. At 6-month follow-up, three patients (all with lesion size >2 cm) had local recurrence and underwent a second radiofrequency ablation session. At 2-year follow-up no patient had recurrence of the treated tumor. Post-ablation syndrome occurred in four children. No major complication occurred. CT-guided radiofrequency tumor ablation was safe and efficient for palliative treatment in our cohort of patients. (orig.)

  3. CT-guided radiofrequency tumor ablation in children

    Energy Technology Data Exchange (ETDEWEB)

    Botsa, Evanthia [National and Kapodistrian University of Athens, First Pediatric Clinic, Agia Sofia Children' s Hospital, Athens (Greece); Poulou, Loukia S.; Koundouraki, Antonia; Thanos, Loukas [Sotiria General Hospital for Chest Diseases, Department of Medical Imaging and Interventional Radiology, Athens (Greece); Koutsogiannis, Ioannis [General Military Hospital NIMTS, Department of Medical Imaging, Athens (Greece); Ziakas, Panayiotis D. [Warren Alpert Medical School of Brown University Rhode Island Hospital, Division of Infectious Diseases, Providence, RI (United States); Alexopoulou, Efthimia [Attikon University Hospital, Second Department of Radiology, Athens University School of Medicine, Athens (Greece)

    2014-11-15

    Image-guided radiofrequency ablation is a well-accepted technique of interventional oncology in adults. To evaluate the efficacy and safety of CT-guided radiofrequency ablation as a minimally invasive treatment for metastatic neoplasms in children. A total of 15 radiofrequency ablation sessions were performed in 12 children and young adults (median age 9.5; range 5-18 years) with metastatic malignancies. Seven children and young adults had secondary hepatic lesions, three had pulmonary and two had bone lesions. Radiofrequency ablation was performed under conscious sedation. The median lesion size was 1.7 cm (range 1.3-2.8 cm). The median time for ablation was 8 min (range 7-10 min). Radiofrequency procedures were technically successful in all tumors. Postablation imaging immediately after, and 1 month and 3 months after radiofrequency ablation showed total necrosis in all patients. At 6-month follow-up, three patients (all with lesion size >2 cm) had local recurrence and underwent a second radiofrequency ablation session. At 2-year follow-up no patient had recurrence of the treated tumor. Post-ablation syndrome occurred in four children. No major complication occurred. CT-guided radiofrequency tumor ablation was safe and efficient for palliative treatment in our cohort of patients. (orig.)

  4. Advances in laser ablation of materials

    International Nuclear Information System (INIS)

    Singh, R.K.; Lowndes, D.H.; Chrisey, D.B.; Fogarassy, E.; Narayan, J.

    1998-01-01

    The symposium, Advances in Laser Ablation of Materials, was held at the 1998 MRS Spring Meeting in San Francisco, California. The papers in this symposium illustrate the advances in pulsed laser ablation for a wide variety of applications involving semiconductors, superconductors, metals, ceramics, and polymers. In particular, advances in the deposition of oxides and related materials are featured. Papers dealing with both fundamentals and the applications of laser ablation are presented. Topical areas include: fundamentals of ablation and growth; in situ diagnostics and nanoscale synthesis advances in laser ablation techniques; laser surface processing; pulsed laser deposition of ferroelectric, magnetic, superconducting and optoelectronic thin films; and pulsed laser deposition of carbon-based and polymeric materials. Sixty papers have been processed separately for inclusion on the data base

  5. Efficacy and Safety of Radiofrequency Ablation for Focal Hepatic Lesions Adjacent to Gallbladder: Reconfiguration of the Ablation Zone through Probe Relocation and Ablation Time Reduction.

    Science.gov (United States)

    Choi, In Young; Kim, Pyo Nyun; Lee, Sung Gu; Won, Hyung Jin; Shin, Yong Moon

    2017-10-01

    To evaluate the safety and efficacy of radiofrequency (RF) ablation for treatment of focal hepatic lesions adjacent to the gallbladder with electrode relocation and ablation time reduction. Thirty-nine patients who underwent RF ablation for focal hepatic lesions adjacent to the gallbladder (≤ 10 mm) were evaluated retrospectively from January 2011 to December 2014 (30 men and 9 women; age range, 51-85 y; mean age, 65 y). Of 36 patients with hepatocellular carcinoma, 3 had a second treatment for recurrence (mean tumor size, 15 mm ± 6). Patients were divided into 2 subgroups based on lesion distance from the gallbladder: nonabutting (> 5 mm; n = 19) and abutting (≤ 5 mm; n = 20). Electrodes were inserted parallel to the gallbladder through the center of a tumor in the nonabutting group and through the center of the expected ablation zone between a 5-mm safety zone on the liver side and the gallbladder in the abutting group. Ablation time was decreased in proportion to the transverse diameter of the expected ablation zone. Technical success and technical effectiveness rates were 89.7% and 97.4%, respectively, with no significant differences between groups (P = 1.00). Local tumor progression was observed in 3 patients (1 in the nonabutting group and 2 in the abutting group; P = 1.00). There were no major complications. The gallbladder was thickened in 10 patients, with no significant difference between groups (P = .72). Biloma occurred in 1 patient in the nonabutting group. RF ablation with electrode relocation and reduction of ablation time can be a safe and effective treatment for focal hepatic lesions adjacent to the gallbladder. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  6. Characterization of tracked radiofrequency ablation in phantom

    International Nuclear Information System (INIS)

    Chen, Chun-Cheng R.; Miga, Michael I.; Galloway, Robert L.

    2007-01-01

    In radiofrequency ablation (RFA), successful therapy requires accurate, image-guided placement of the ablation device in a location selected by a predictive treatment plan. Current planning methods rely on geometric models of ablations that are not sensitive to underlying physical processes in RFA. Implementing plans based on computational models of RFA with image-guided techniques, however, has not been well characterized. To study the use of computational models of RFA in planning needle placement, this work compared ablations performed with an optically tracked RFA device with corresponding models of the ablations. The calibration of the tracked device allowed the positions of distal features of the device, particularly the tips of the needle electrodes, to be determined to within 1.4±0.6 mm of uncertainty. Ablations were then performed using the tracked device in a phantom system based on an agarose-albumin mixture. Images of the sliced phantom obtained from the ablation experiments were then compared with the predictions of a bioheat transfer model of RFA, which used the positional data of the tracked device obtained during ablation. The model was demonstrated to predict 90% of imaged pixels classified as being ablated. The discrepancies between model predictions and observations were analyzed and attributed to needle tracking inaccuracy as well as to uncertainties in model parameters. The results suggest the feasibility of using finite element modeling to plan ablations with predictable outcomes when implemented using tracked RFA

  7. Simple spherical ablative-implosion model

    International Nuclear Information System (INIS)

    Mayer, F.J.; Steele, J.T.; Larsen, J.T.

    1980-01-01

    A simple model of the ablative implosion of a high-aspect-ratio (shell radius to shell thickness ratio) spherical shell is described. The model is similar in spirit to Rosenbluth's snowplow model. The scaling of the implosion time was determined in terms of the ablation pressure and the shell parameters such as diameter, wall thickness, and shell density, and compared these to complete hydrodynamic code calculations. The energy transfer efficiency from ablation pressure to shell implosion kinetic energy was examined and found to be very efficient. It may be possible to attach a simple heat-transport calculation to our implosion model to describe the laser-driven ablation-implosion process. The model may be useful for determining other energy driven (e.g., ion beam) implosion scaling

  8. Field enhancement induced laser ablation

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob

    Sub-diffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures....... The accompanying field enhancement substantially lowers the ablation threshold of the polymer film and thus creates local ablation spots and corresponding topographic modifications of the polymer film. Such modifications are quantified straightforwardly via scanning electron and atomic force microscopy. Thickness...

  9. Radiofrequency ablation in dermatology

    Directory of Open Access Journals (Sweden)

    Sachdeva Silonie

    2007-01-01

    Full Text Available Radiofreqeuency ablation is a versatile dermatosurgical procedure used for surgical management of skin lesions by using various forms of alternating current at an ultra high frequency. The major modalities in radiofrequency are electrosection, electrocoagulation, electrodessication and fulguration. The use of radiofrequency ablation in dermatosurgical practice has gained importance in recent years as it can be used to treat most of the skin lesions with ease in less time with clean surgical field due to adequate hemostasis and with minimal side effects and complications. This article focuses on the major tissue effects and factors influencing radiofrequency ablation and its application for various dermatological conditions.

  10. Percutaneous Microwave Ablation of Renal Angiomyolipomas

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, Mircea, E-mail: mcristescu@uwhealth.org [University of Wisconsin, Department of Radiology (United States); Abel, E. Jason, E-mail: abel@urology.wisc.edu [University of Wisconsin, Department of Urology (United States); Wells, Shane, E-mail: swells@uwhealth.org; Ziemlewicz, Timothy J., E-mail: tziemlewicz@uwhealth.org [University of Wisconsin, Department of Radiology (United States); Hedican, Sean P., E-mail: hedican@surgery.wisc.edu [University of Wisconsin, Department of Urology (United States); Lubner, Megan G., E-mail: mlubner@uwhealth.org; Hinshaw, J. Louis, E-mail: jhinshaw@uwhealth.org; Brace, Christopher L., E-mail: cbrace@uwhealth.org; Lee, Fred T., E-mail: flee@uwhealth.org [University of Wisconsin, Department of Radiology (United States)

    2016-03-15

    PurposeTo evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML).Materials and MethodsFrom January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4–4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits.ResultsAll ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60–70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3–8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8 % (3.4–3.3 cm) and 1.7 % (27.5–26.3 cm{sup 3}), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9–47) demonstrated mean tumor diameter and volume decreases of 29 % (3.4–2.4 cm) and 47 % (27.5–12.1 cm{sup 3}), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation.ConclusionOur early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.

  11. The outcome of I-131 ablation therapy for intermediate and high-risk differentiated thyroid cancer using a strict definition of successful ablation.

    Science.gov (United States)

    Watanabe, Ken; Uchiyama, Mayuki; Fukuda, Kunihiko

    2017-09-01

    This article examines the outcome of radioactive iodine ablation therapy for thyroid cancer in high-risk patients and investigates background factors influencing ablation failure. We included 91 patients in this retrospective analysis and evaluated the ablation success rate. Successful ablation was defined as the absence of visible iodine-131 (I-131) accumulation in the thyroid bed after whole-body scans and thyroglobulin levels sex, I-131 dose, pathology, resection stump findings, tumor T category and thyroglobulin levels, which could affect ablation outcome. Successful ablation was achieved in only 14 patients (15.4%). Pre-ablation serum thyroglobulin levels were significantly higher in the ablation failure group than in the success group (P 10 ng/ml were significantly related to ablation failure after multivariate analysis (odds ratio 27.2; 95% confidence interval 2.469-299.7; P = 0.007). The ablation success rate was very low because of high thyroglobulin levels, even with high-dose I-131. High-risk patients, especially those with high thyroglobulin levels (>10 ng/ml), are unlikely to reach levels low enough to meet successful ablation criteria.

  12. Temperature-controlled irrigated tip radiofrequency catheter ablation

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, Adrian

    1998-01-01

    INTRODUCTION: In patients with ventricular tachycardias due to structural heart disease, catheter ablation cures radiofrequency ablation. Irrigated tip radiofrequency ablation using power control and high infusion rates enlarges lesion......: We conclude that temperature-controlled radiofrequency ablation with irrigated tip catheters using low target temperature and low infusion rate enlarges lesion size without increasing the incidence of cratering and reduces coagulum formation of the tip....

  13. Micrometeoroid ablation simulated in the laboratory

    Science.gov (United States)

    Sternovsky, Zoltan; Thomas, Evan W.; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Munsat, Tobin L.; Plane, John M. C.

    2016-04-01

    A facility is developed to simulate the ablation of micrometeoroids in laboratory conditions, which also allows measuring the ionization probability of the ablated material. An electrostatic dust accelerator is used to generate iron and meteoric analog particles with velocities 10-50 km/s. The particles are then introduced into a cell filled with nitrogen, air or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where the partial or complete ablation of the particle occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path, allowing thus the study of the temporal resolution of the process. A simple ablation model is used to match the observations. For completely ablated particles the total collected charge directly yields the ionization efficiency for. The measurements using iron particles in N2 and air are in relatively good agreement with earlier data. The measurements with CO2 and He gases, however, are significantly different from the expectations.

  14. The outcome of I-131 ablation therapy for intermediate and high-risk differentiated thyroid cancer using a strict definition of successful ablation

    International Nuclear Information System (INIS)

    Watanabe, Ken; Uchiyama, Mayuki; Fukuda, Kunihiko

    2017-01-01

    This article examines the outcome of radioactive iodine ablation therapy for thyroid cancer in nigh-risk patients and investigates background factors influencing ablation failure. We included 91 patients in this retrospective analysis and evaluated the ablation success rate. Successful ablation was defined as the absence of visible iodine-131 (I-131) accumulation in the thyroid bed after whole-body scans and thyroglobulin levels <2 ng/ml in a TSH-stimulated state after ablation. We extracted data on patients' age, sex, I-131 dose, pathology, resection stump findings, tumor T category and thyroglobulin levels, which could affect ablation outcome. Successful ablation was achieved in only 14 patients (15.4%). Pre-ablation serum thyroglobulin levels were significantly higher in the ablation failure group than in the success group (P < 0.001), while no significant differences were found for other factors between the groups. Furthermore, thyroglobulin levels >10 ng/ml were significantly related to ablation failure after multivariate analysis (odds ratio 27.2; 95% confidence interval 2.469-299.7; P = 0.007). The ablation success rate was very low because of high thyroglobulin levels, even with high-dose I-131. High-risk patients, especially those with high thyroglobulin levels (>10 ng/ml), are unlikely to reach levels low enough to meet successful ablation criteria. (author)

  15. Cryoballoon Ablation for Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Jason G. Andrade, MD

    2012-03-01

    Full Text Available Focal point-by-point radiofrequency catheter ablation has shown considerable success in the treatment of paroxysmal atrial fibrillation. However, it is not without limitations. Recent clinical and preclinical studies have demonstrated that cryothermal ablation using a balloon catheter (Artic Front©, Medtronic CryoCath LP provides an effective alternative strategy to treating atrial fibrillation. The objective of this article is to review efficacy and safety data surrounding cryoballoon ablation for paroxysmal and persistent atrial fibrillation. In addition, a practical step-by-step approach to cryoballoon ablation is presented, while highlighting relevant literature regarding: 1 the rationale for adjunctive imaging, 2 selection of an appropriate cryoballoon size, 3 predictors of efficacy, 4 advanced trouble-shooting techniques, and 5 strategies to reduce procedural complications, such as phrenic nerve palsy.

  16. Burn, freeze, or photo-ablate?: comparative symptom profile in Barrett's dysplasia patients undergoing endoscopic ablation

    Science.gov (United States)

    Gill, Kanwar Rupinder S.; Gross, Seth A.; Greenwald, Bruce D.; Hemminger, Lois L.; Wolfsen, Herbert C.

    2009-06-01

    Background: There are few data available comparing endoscopic ablation methods for Barrett's esophagus with high-grade dysplasia (BE-HGD). Objective: To determine differences in symptoms and complications associated with endoscopic ablation. Design: Prospective observational study. Setting: Two tertiary care centers in USA. Patients: Consecutive patients with BE-HGD Interventions: In this pilot study, symptoms profile data were collected for BE-HGD patients among 3 endoscopic ablation methods: porfimer sodium photodynamic therapy, radiofrequency ablation and low-pressure liquid nitrogen spray cryotherapy. Main Outcome Measurements: Symptom profiles and complications from the procedures were assessed 1-8 weeks after treatment. Results: Ten BE-HGD patients were treated with each ablation modality (30 patients total; 25 men, median age: 69 years (range 53-81). All procedures were performed in the clinic setting and none required subsequent hospitalization. The most common symptoms among all therapies were chest pain, dysphagia and odynophagia. More patients (n=8) in the porfimer sodium photodynamic therapy group reported weight loss compared to radio-frequency ablactation (n=2) and cryotherapy (n=0). Four patients in the porfimer sodium photodynamic therapy group developed phototoxicity requiring medical treatment. Strictures, each requiring a single dilation, were found in radiofrequency ablactation (n=1) and porfimer sodium photodynamic therapy (n=2) patients. Limitations: Small sample size, non-randomized study. Conclusions: These three endoscopic therapies are associated with different types and severity of post-ablation symptoms and complications.

  17. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    Science.gov (United States)

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  18. Microwave Ablation of Porcine Kidneys in vivo: Effect of two Different Ablation Modes (“Temperature Control” and “Power Control”) on Procedural Outcome

    International Nuclear Information System (INIS)

    Sommer, C. M.; Arnegger, F.; Koch, V.; Pap, B.; Holzschuh, M.; Bellemann, N.; Gehrig, T.; Senft, J.; Nickel, F.; Mogler, C.; Zelzer, S.; Meinzer, H. P.; Stampfl, U.; Kauczor, H. U.; Radeleff, B. A.

    2012-01-01

    Purpose: This study was designed to analyze the effect of two different ablation modes (“temperature control” and “power control”) of a microwave system on procedural outcome in porcine kidneys in vivo. Methods: A commercially available microwave system (Avecure Microwave Generator; MedWaves, San Diego, CA) was used. The system offers the possibility to ablate with two different ablation modes: temperature control and power control. Thirty-two microwave ablations were performed in 16 kidneys of 8 pigs. In each animal, one kidney was ablated twice by applying temperature control (ablation duration set point at 60 s, ablation temperature set point at 96°C, automatic power set point; group I). The other kidney was ablated twice by applying power control (ablation duration set point at 60 s, ablation temperature set point at 96°C, ablation power set point at 24 W; group II). Procedural outcome was analyzed: (1) technical success (e.g., system failures, duration of the ablation cycle), and (2) ablation geometry (e.g., long axis diameter, short axis diameter, and circularity). Results: System failures occurred in 0% in group I and 13% in group II. Duration of the ablation cycle was 60 ± 0 s in group I and 102 ± 21 s in group II. Long axis diameter was 20.3 ± 4.6 mm in group I and 19.8 ± 3.5 mm in group II (not significant (NS)). Short axis diameter was 10.3 ± 2 mm in group I and 10.5 ± 2.4 mm in group II (NS). Circularity was 0.5 ± 0.1 in group I and 0.5 ± 0.1 in group II (NS). Conclusions: Microwave ablations performed with temperature control showed fewer system failures and were finished faster. Both ablation modes demonstrated no significant differences with respect to ablation geometry.

  19. Attitudes Towards Catheter Ablation for Atrial Fibrillation

    DEFF Research Database (Denmark)

    Vadmann, Henrik; Pedersen, Susanne S; Nielsen, Jens Cosedis

    2015-01-01

    BACKGROUND: Catheter ablation for atrial fibrillation (AF) is an important but expensive procedure that is the subject of some debate. Physicians´ attitudes towards catheter ablation may influence promotion and patient acceptance. This is the first study to examine the attitudes of Danish...... cardiologists towards catheter ablation for AF, using a nationwide survey. METHODS AND RESULTS: We developed a purpose-designed questionnaire to evaluate attitudes towards catheter ablation for AF that was sent to all Danish cardiologists (n = 401; response n = 272 (67.8%)). There was no association between...... attitudes towards ablation and the experience or age of the cardiologist with respect to patients with recurrent AF episodes with a duration of 7 days and/or need for cardioversion. The majority (69%) expected a recurrence of AF after catheter ablation in more than 30% of the cases...

  20. Endometrial ablation by rollerball electrocoagulation compared to uterine balloon thermal ablation. Technical and safety aspects.

    NARCIS (Netherlands)

    Zon-Rabelink, I.A.A. van; Vleugels, M.P.; Merkus, J.M.W.M.; Graaf, R.M. de

    2003-01-01

    OBJECTIVE: To compare two methods of endometrial ablation, hysteroscopic rollerball electrocoagulation (RBE) and non-hysteroscopic uterine balloon thermal (UBT) ablation (Thermachoice), regarding intra- and post-operative technical complications and safety aspects. STUDY DESIGN: A randomised

  1. Clinical effects of non-ablative and ablative fractional lasers on various hair disorders: a case series of 17 patients.

    Science.gov (United States)

    Cho, Suhyun; Choi, Min Ju; Zheng, Zhenlong; Goo, Boncheol; Kim, Do-Young; Cho, Sung Bin

    2013-04-01

    Both ablative and non-ablative fractional lasers have been applied to various uncommon hair disorders. The purpose of this study was to demonstrate the clinical effects of fractional laser therapy on the course of primary follicular and perifollicular pathologies and subsequent hair regrowth. A retrospective review of 17 patients with uncommon hair disorders - including ophiasis, autosomal recessive woolly hair/hypotrichosis, various secondary cicatricial alopecias, pubic hypotrichosis, frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens - was conducted. All patients had been treated with non-ablative and/or ablative fractional laser therapies. The mean clinical improvement score in these 17 patients was 2.2, while the mean patient satisfaction score was 2.5. Of the 17 subjects, 12 (70.6%) demonstrated a clinical response to non-ablative and/or ablative fractional laser treatments, including individuals with ophiasis, autosomal recessive woolly hair/hypotrichosis, secondary cicatricial alopecia (scleroderma and pressure-induced alopecia), frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens. Conversely, patients with long-standing ophiasis, surgical scar-induced secondary cicatricial alopecia, and pubic hypotrichosis did not respond to fractional laser therapy. Our findings demonstrate that the use of non-ablative and/or ablative fractional lasers promoted hair growth in certain cases of uncommon hair disorders without any remarkable side effects.

  2. The atrial fibrillation ablation pilot study

    DEFF Research Database (Denmark)

    Arbelo, Elena; Brugada, Josep; Hindricks, Gerhard

    2014-01-01

    AIMS: The Atrial Fibrillation Ablation Pilot Study is a prospective registry designed to describe the clinical epidemiology of patients undergoing an atrial fibrillation (AFib) ablation, and the diagnostic/therapeutic processes applied across Europe. The aims of the 1-year follow-up were to analyse...... was achieved in 40.7% of patients (43.7% in paroxysmal AF; 30.2% in persistent AF; 36.7% in long-lasting persistent AF). A second ablation was required in 18% of the cases and 43.4% were under antiarrhythmic treatment. Thirty-three patients (2.5%) suffered an adverse event, 272 (21%) experienced a left atrial...... tachycardia, and 4 patients died (1 haemorrhagic stroke, 1 ventricular fibrillation in a patient with ischaemic heart disease, 1 cancer, and 1 of unknown cause). CONCLUSION: The AFib Ablation Pilot Study provided crucial information on the epidemiology, management, and outcomes of catheter ablation of AFib...

  3. Cryoballoon Catheter Ablation in Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Cevher Ozcan

    2011-01-01

    Full Text Available Pulmonary vein isolation with catheter ablation is an effective treatment in patients with symptomatic atrial fibrillation refractory or intolerant to antiarrhythmic medications. The cryoballoon catheter was recently approved for this procedure. In this paper, the basics of cryothermal energy ablation are reviewed including its ability of creating homogenous lesion formation, minimal destruction to surrounding vasculature, preserved tissue integrity, and lower risk of thrombus formation. Also summarized here are the publications describing the clinical experience with the cryoballoon catheter ablation in both paroxysmal and persistent atrial fibrillation, its safety and efficacy, and discussions on the technical aspect of the cryoballoon ablation procedure.

  4. Radiofrequency ablation of rabbit liver in vivo: effect of the Pringle maneuver on pathologic changes in liver surrounding the ablation zone

    International Nuclear Information System (INIS)

    Kim, Seung Kwon; Lim, Hyo K; Ryu, Jeong Ah

    2004-01-01

    We wished to evaluate the effect of the Pringle maneuver (occlusion of both the hepatic artery and portal vein) on the pathologic changes in the hepatic vessels, bile ducts and liver parenchyma surrounding the ablation zone in rabbit livers. Radiofrequency (RF) ablation zones were created in the livers of 24 rabbits in vivo by using a 50-W, 480-kHz monopolar RF generator and a 15-gauge expandable electrode with four sharp prongs for 7 mins. The tips of the electrodes were placed in the liver parenchyma near the porta hepatis with the distal 1 cm of their prongs deployed. Radiofrequency ablation was performed in the groups with (n=12 rabbits) and without (n=12 rabbits) the Pringle maneuver. Three animals of each group were sacrificed immediately, three days (the acute phase), seven days (the early subacute phase) and two weeks (the late subacute phase) after RF ablation. The ablation zones were excised and serial pathologic changes in the hepatic vessels, bile ducts and liver parenchyma surrounding the ablation zone were evaluated. With the Pringle maneuver, portal vein thrombosis was found in three cases (in the immediate [n=2] and acute phase [n=1]), bile duct dilatation adjacent to the ablation zone was found in one case (in the late subacute phase [n=1]), infarction adjacent to the ablation zone was found in three cases (in the early subacute [n=2] and late subacute [n=1] phases). None of the above changes was found in the livers ablated without the Pringle maneuver. On the microscopic findings, centrilobular congestion, sinusoidal congestion, sinusoidal platelet and neutrophilic adhesion, and hepatocyte vacuolar and ballooning changes in liver ablated with Pringle maneuver showed more significant changes than in those livers ablated without the Pringle maneuver (ρ < 0.05). Radiofrequency ablation with the Pringle maneuver created more severe pathologic changes in the portal vein, bile ducts and liver parenchyma surrounding the ablation zone compared with RF

  5. Radiofrequency ablation of osteoid osteoma

    NARCIS (Netherlands)

    Vanderschueren, Geert Maria Joris Michael

    2009-01-01

    The main purpose of this thesis was to evaluate the effectiveness and safety of CT-guided radiofrequency ablation for the treatment of spinal and non-spinal osteoid osteomas. Furthermore, the technical requirements needed for safe radiofrequency ablation and the clinical outcome after radiofrequency

  6. Image-guided radiofrequency ablation of renal cell carcinoma

    International Nuclear Information System (INIS)

    Boss, Andreas; Clasen, Stephan; Pereira, Philippe L.; Kuczyk, Markus; Schick, Fritz

    2007-01-01

    The incidence of renal cell carcinoma is rising with the increased number of incidental detection of small tumours. During the past few years, percutaneous imaging-guided radiofrequency ablation has evolved as a minimally invasive treatment of small unresectable renal tumours offering reduced patient morbidity and overall health care costs. In radiofrequency ablation, thermal energy is deposited into a targeted tumour by means of a radiofrequency applicator. In recent studies, radiofrequency ablation was shown to be an effective and safe modality for local destruction of renal cell carcinoma. Radiofrequency applicator navigation can be performed via ultrasound, computed tomography or magnetic resonance guidance; however, ultrasound seems less favourable because of the absence of monitoring capabilities during ablation. On-line monitoring of treatment outcome can only be performed with magnetic resonance imaging giving the possibility of eventual applicator repositioning to ablate visible residual tumour tissue. Long-term follow-up is crucial to assess completeness of tumour ablation. New developments in ablation technology and radiological equipment will further increase the indication field for radiofrequency ablation of renal cell carcinoma. Altogether, radiofrequency ablation seems to be a promising new modality for the minimally invasive treatment of renal cell carcinoma, which was demonstrated to exhibit high short-term effectiveness. (orig.)

  7. Percutaneous radiofrequency thermal ablation of lung VX2 tumors in a rabbit model: evaluation with helical CT findings for the complete and partal ablation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Gong Yong; Han, Young Min; Lim, Yeong Su; Jang, Kyu Yun; Lee, Sang Yong; Chung, Gyung Ho [School of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    2004-05-01

    To evaluate the radiologic findings for complete and partial ablation after percutaneous CT-guided transthoracic radiofrequency ablation (RFA) of lung VX2 tumor implanted in rabbits. Thirteen rabbits with successfully implanted lung VX2 were used. Three rabbits as controls did not receive RFA while the other ten rabbits underwent RFA; 5 complete and 5 partial. RFA was performed using an internally cooled, 17-gauge electrode (Radionics, Burlington, MA) with a 1-cm active tip under CT guidance. Postprocedural CT was performed within 3 days, and we analyzed the ablated size, enhancement pattern, shape, margin, and complications of the complete and partial ablation groups. Rabbits were sacrificed after postprocedural CT with an overdose of ketamine, and pathologic findings of the ablated groups were compared with those of the control group. The size of the ablated lesions and the enhancement pattern differed between the completely and partially ablated groups on chest CT. The size of the ablated lesions was increased by 47.1% in the completely ablated group and by 2.1% in the partially ablated group. In the completely ablated group, VX2 tumor showed absolutely no enhancement, whereas only ablated pulmonary parenchyma outside VX2 showed mild enhancement on enhanced CT. In the partial ablated group, a part of VX2 became strongly enhanced on enhanced CT. On microscopic examination, the completely ablated group demonstrated that a viable tumor cell was not visible. In the partially ablated group, however, a viable tumor cell within the surrounding fibrous capsule on the peripheral area of the VX2 was observed. The important CT findings for evaluation of complete and partial RFA are the ablated size and enhancement pattern of the ablated lesion.

  8. Convergent ablation measurements of plastic ablators in gas-filled rugby hohlraums on OMEGA

    Science.gov (United States)

    Casner, A.; Jalinaud, T.; Masse, L.; Galmiche, D.

    2015-10-01

    Indirect-drive implosions experiments were conducted on the Omega Laser Facility to test the performance of uniformly doped plastic ablators for Inertial Confinement Fusion. The first convergent ablation measurements in gas-filled rugby hohlraums are reported. Ignition relevant limb velocities in the range from 150 to 300 μm .n s-1 have been reached by varying the laser drive energy and the initial capsule aspect ratio. The measured capsule trajectory and implosion velocity are in good agreement with 2D integrated simulations and a zero-dimensional modeling of the implosions. We demonstrate experimentally the scaling law for the maximum implosion velocity predicted by the improved rocket model [Y. Saillard, Nucl. Fusion 46, 1017 (2006)] in the high-ablation regime case.

  9. Hard tissue ablation with a spray-assisted mid-IR laser

    International Nuclear Information System (INIS)

    Kang, H W; Rizoiu, I; Welch, A J

    2007-01-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment

  10. Hard tissue ablation with a spray-assisted mid-IR laser

    Science.gov (United States)

    Kang, H. W.; Rizoiu, I.; Welch, A. J.

    2007-12-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  11. Fractional ablative laser skin resurfacing: a review.

    Science.gov (United States)

    Tajirian, Ani L; Tarijian, Ani L; Goldberg, David J

    2011-12-01

    Ablative laser technology has been in use for many years now. The large side effect profile however has limited its use. Fractional ablative technology is a newer development which combines a lesser side effect profile along with similar efficacy. In this paper we review fractional ablative laser skin resurfacing.

  12. Chemically assisted laser ablation ICP mass spectrometry.

    Science.gov (United States)

    Hirata, Takafumi

    2003-01-15

    A new laser ablation technique combined with a chemical evaporation reaction has been developed for elemental ratio analysis of solid samples using an inductively coupled plasma mass spectrometer (ICPMS). Using a chemically assisted laser ablation (CIA) technique developed in this study, analytical repeatability of the elemental ratio measurement was successively improved. To evaluate the reliability of the CLA-ICPMS technique, Pb/U isotopic ratios were determined for zircon samples that have previously been analyzed by other techniques. Conventional laser ablation for Pb/U shows a serious elemental fractionation during ablation mainly due to the large difference in elemental volatility between Pb and U. In the case of Pb/U ratio measurement, a Freon R-134a gas (1,1,1,2-tetrafluoroethane) was introduced into the laser cell as a fluorination reactant. The Freon gas introduced into the laser cell reacts with the ablated sample U, and refractory U compounds are converted to a volatile U fluoride compound (UF6) under the high-temperature condition at the ablation site. This avoids the redeposition of U around the ablation pits. Although not all the U is reacted with Freon, formation of volatile UF compounds improves the transmission efficiency of U. Typical precision of the 206Pb/238U ratio measurement is 3-5% (2sigma) for NIST SRM 610 and Nancy 91500 zircon standard, and the U-Pb age data obtained here show good agreement within analytical uncertainties with the previously reported values. Since the observed Pb/U ratio for solid samples is relatively insensitive to laser power and ablation time, optimization of ablation conditions or acquisition parameters no longer needs to be performed on a sample-to-sample basis.

  13. Virtual In-Silico Modeling Guided Catheter Ablation Predicts Effective Linear Ablation Lesion Set for Longstanding Persistent Atrial Fibrillation: Multicenter Prospective Randomized Study.

    Science.gov (United States)

    Shim, Jaemin; Hwang, Minki; Song, Jun-Seop; Lim, Byounghyun; Kim, Tae-Hoon; Joung, Boyoung; Kim, Sung-Hwan; Oh, Yong-Seog; Nam, Gi-Byung; On, Young Keun; Oh, Seil; Kim, Young-Hoon; Pak, Hui-Nam

    2017-01-01

    Objective: Radiofrequency catheter ablation for persistent atrial fibrillation (PeAF) still has a substantial recurrence rate. This study aims to investigate whether an AF ablation lesion set chosen using in-silico ablation (V-ABL) is clinically feasible and more effective than an empirically chosen ablation lesion set (Em-ABL) in patients with PeAF. Methods: We prospectively included 108 patients with antiarrhythmic drug-resistant PeAF (77.8% men, age 60.8 ± 9.9 years), and randomly assigned them to the V-ABL ( n = 53) and Em-ABL ( n = 55) groups. Five different in-silico ablation lesion sets [1 pulmonary vein isolation (PVI), 3 linear ablations, and 1 electrogram-guided ablation] were compared using heart-CT integrated AF modeling. We evaluated the feasibility, safety, and efficacy of V-ABL compared with that of Em-ABL. Results: The pre-procedural computing time for five different ablation strategies was 166 ± 11 min. In the Em-ABL group, the earliest terminating blinded in-silico lesion set matched with the Em-ABL lesion set in 21.8%. V-ABL was not inferior to Em-ABL in terms of procedure time ( p = 0.403), ablation time ( p = 0.510), and major complication rate ( p = 0.900). During 12.6 ± 3.8 months of follow-up, the clinical recurrence rate was 14.0% in the V-ABL group and 18.9% in the Em-ABL group ( p = 0.538). In Em-ABL group, clinical recurrence rate was significantly lower after PVI+posterior box+anterior linear ablation, which showed the most frequent termination during in-silico ablation (log-rank p = 0.027). Conclusions: V-ABL was feasible in clinical practice, not inferior to Em-ABL, and predicts the most effective ablation lesion set in patients who underwent PeAF ablation.

  14. Automated planning of ablation targets in atrial fibrillation treatment

    Science.gov (United States)

    Keustermans, Johannes; De Buck, Stijn; Heidbüchel, Hein; Suetens, Paul

    2011-03-01

    Catheter based radio-frequency ablation is used as an invasive treatment of atrial fibrillation. This procedure is often guided by the use of 3D anatomical models obtained from CT, MRI or rotational angiography. During the intervention the operator accurately guides the catheter to prespecified target ablation lines. The planning stage, however, can be time consuming and operator dependent which is suboptimal both from a cost and health perspective. Therefore, we present a novel statistical model-based algorithm for locating ablation targets from 3D rotational angiography images. Based on a training data set of 20 patients, consisting of 3D rotational angiography images with 30 manually indicated ablation points, a statistical local appearance and shape model is built. The local appearance model is based on local image descriptors to capture the intensity patterns around each ablation point. The local shape model is constructed by embedding the ablation points in an undirected graph and imposing that each ablation point only interacts with its neighbors. Identifying the ablation points on a new 3D rotational angiography image is performed by proposing a set of possible candidate locations for each ablation point, as such, converting the problem into a labeling problem. The algorithm is validated using a leave-one-out-approach on the training data set, by computing the distance between the ablation lines obtained by the algorithm and the manually identified ablation points. The distance error is equal to 3.8+/-2.9 mm. As ablation lesion size is around 5-7 mm, automated planning of ablation targets by the presented approach is sufficiently accurate.

  15. Osteoid Osteoma: Experience with Laser- and Radiofrequency-Induced Ablation

    International Nuclear Information System (INIS)

    Gebauer, Bernhard; Tunn, Per-Ulf; Gaffke, Gunnar; Melcher, Ingo; Felix, Roland; Stroszczynski, Christian

    2006-01-01

    The purpose of this study was to analyze the clinical outcome of osteoid osteoma treated by thermal ablation after drill opening. A total of 17 patients and 20 procedures were included. All patients had typical clinical features (age, pain) and a typical radiograph showing a nidus. In 5 cases, additional histological specimens were acquired. After drill opening of the osteoid osteoma nidus, 12 thermal ablations were induced by laser interstitial thermal therapy (LITT) (9F Power-Laser-Set; Somatex, Germany) and 8 ablations by radiofrequency ablation (RFA) (RITA; StarBurst, USA). Initial clinical success with pain relief has been achieved in all patients after the first ablation. Three patients had an osteoid osteoma recurrence after 3, 9, and 10 months and were successfully re-treated by thermal ablation. No major complication and one minor complication (sensible defect) were recorded. Thermal ablation is a safe and minimally invasive therapy option for osteoid osteoma. Although the groups are too small for a comparative analysis, we determined no difference between laser- and radiofrequency-induced ablation in clinical outcome after ablation

  16. Femtosecond laser ablation of dentin

    International Nuclear Information System (INIS)

    Alves, S; Vilar, R; Oliveira, V

    2012-01-01

    The surface morphology, structure and composition of human dentin treated with a femtosecond infrared laser (pulse duration 500 fs, wavelength 1030 nm, fluences ranging from 1 to 3 J cm -2 ) was studied by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The average dentin ablation threshold under these conditions was 0.6 ± 0.2 J cm -2 and the ablation rate achieved in the range 1 to 2 µm/pulse for an average fluence of 3 J cm -2 . The ablation surfaces present an irregular and rugged appearance, with no significant traces of melting, deformation, cracking or carbonization. The smear layer was entirely removed by the laser treatment. For fluences only slightly higher than the ablation threshold the morphology of the laser-treated surfaces was very similar to the dentin fracture surfaces and the dentinal tubules remained open. For higher fluences, the surface was more porous and the dentin structure was partially concealed by ablation debris and a few resolidified droplets. Independently on the laser processing parameters and laser processing method used no sub-superficial cracking was observed. The dentin constitution and chemical composition was not significantly modified by the laser treatment in the processing parameter range used. In particular, the organic matter is not preferentially removed from the surface and no traces of high temperature phosphates, such as the β-tricalcium phosphate, were observed. The achieved results are compatible with an electrostatic ablation mechanism. In conclusion, the high beam quality and short pulse duration of the ultrafast laser used should allow the accurate preparation of cavities, with negligible damage of the underlying material. (paper)

  17. Temperature-controlled radiofrequency ablation of cardiac tissue

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, Adrian

    1999-01-01

    BACKGROUND: A variety of basic factors such as electrode tip pressure, flow around the electrode and electrode orientation influence lesion size during radiofrequency ablation, but importantly is dependent on the chosen mode of ablation. However, only little information is available for the frequ......BACKGROUND: A variety of basic factors such as electrode tip pressure, flow around the electrode and electrode orientation influence lesion size during radiofrequency ablation, but importantly is dependent on the chosen mode of ablation. However, only little information is available...... for the frequently used temperature-controlled mode. The purpose of the present experimental study was to evaluate the impact during temperature-controlled radiofrequency ablation of three basic factors regarding electrode-tissue contact and convective cooling on lesion size. METHODS AND RESULTS: In vitro strips......-controlled radiofrequency ablation increased external cooling of the electrode tip due to either flow of the surrounding liquid or poor electrode tissue contact, as exemplified by perpendicular versus parallel electrode orientation, increases lesion size significantly. This is in contrast to the impact of these factors...

  18. Laser ablation of microparticles for nanostructure generation

    International Nuclear Information System (INIS)

    Waraich, Palneet Singh; Tan, Bo; Venkatakrishnan, Krishnan

    2011-01-01

    The process of laser ablation of microparticles has been shown to generate nanoparticles from microparticles; but the generation of nanoparticle networks from microparticles has never been reported before. We report a unique approach for the generation of nanoparticle networks through ablation of microparticles. Using this approach, two samples containing microparticles of lead oxide (Pb 3 O 4 ) and nickel oxide (NiO), respectively, were ablated under ambient conditions using a femtosecond laser operating in the MHz repetition rate regime. Nanoparticle networks with particle diameter ranging from 60 to 90 nm were obtained by ablation of microparticles without use of any specialized equipment, catalysts or external stimulants. The formation of finer nanoparticle networks has been explained by considering the low pressure region created by the shockwave, causing rapid condensation of microparticles into finer nanoparticles. A comparison between the nanostructures generated by ablating microparticle and those by ablating bulk substrate was carried out; and a considerable reduction in size and narrowed size distribution was observed. Our nanostructure fabrication technique will be a unique process for nanoparticle network generation from a vast array of materials.

  19. Percutaneous tumor ablation in medical radiology

    Energy Technology Data Exchange (ETDEWEB)

    Vogl, T.J.; Mack, M.G. [University Hospital Frankfurt Univ. (Germany). Inst. for Diagnostic and Interventional Radiology; Helmberger, T.K. [Klinikum Bogenhausen, Academic Teaching Hospital of the Technical Univ. Munich (Germany). Dept. for Diagnostic and Interventional Radiology and Nuclear Medicine; Reiser, M.F. (eds.) [University Hospitals - Grosshadern and Innenstadt Munich Univ. (Germany). Dept. of Clinical Radiology

    2008-07-01

    Thermal ablation has become an integral part of oncology, especially in the field of interventional oncology. This very comprehensive book encompasses the different technologies employed in thermal ablation, its indications and the results achieved in various clinical conditions. The first part of the book clearly explains the basics of thermal ablative techniques such as laser-induced thermotherapy, radiofrequency ablation, microwave ablation, cryotherapy, and localized tumor therapy. The latest developments in the application of minimally invasive therapies in localized neoplastic disease are demonstrated. In the main part of the book, techniques of guiding the applicators to the target structures by use of different imaging tools such as ultrasound, computed tomography and magnetic resonance imaging are discussed. The results are presented for a variety of clinical indications, including liver and lung tumors and metastases and some rather rare conditions involving the kidney, the head and neck, the prostate, and soft tissue structures. A large number of acknowledged experts have contributed to the book, which benefits from a lucid structure and excellent images. (orig.)

  20. Percutaneous tumor ablation in medical radiology

    International Nuclear Information System (INIS)

    Vogl, T.J.; Mack, M.G.; Helmberger, T.K.; Reiser, M.F.

    2008-01-01

    Thermal ablation has become an integral part of oncology, especially in the field of interventional oncology. This very comprehensive book encompasses the different technologies employed in thermal ablation, its indications and the results achieved in various clinical conditions. The first part of the book clearly explains the basics of thermal ablative techniques such as laser-induced thermotherapy, radiofrequency ablation, microwave ablation, cryotherapy, and localized tumor therapy. The latest developments in the application of minimally invasive therapies in localized neoplastic disease are demonstrated. In the main part of the book, techniques of guiding the applicators to the target structures by use of different imaging tools such as ultrasound, computed tomography and magnetic resonance imaging are discussed. The results are presented for a variety of clinical indications, including liver and lung tumors and metastases and some rather rare conditions involving the kidney, the head and neck, the prostate, and soft tissue structures. A large number of acknowledged experts have contributed to the book, which benefits from a lucid structure and excellent images. (orig.)

  1. Investigation of ultrashort pulse laser ablation of solid targets by measuring the ablation-generated momentum using a torsion pendulum.

    Science.gov (United States)

    Zhang, Nan; Wang, Wentao; Zhu, Xiaonong; Liu, Jiansheng; Xu, Kuanhong; Huang, Peng; Zhao, Jiefeng; Li, Ruxin; Wang, Mingwei

    2011-04-25

    50 fs - 12 ps laser pulses are employed to ablate aluminum, copper, iron, and graphite targets. The ablation-generated momentum is measured with a torsion pendulum. Corresponding time-resolved shadowgraphic measurements show that the ablation process at the optimal laser fluence achieving the maximal momentum is primarily dominated by the photomechanical mechanism. When laser pulses with specific laser fluence are used and the pulse duration is tuned from 50 fs to 12 ps, the generated momentum firstly increases and then remains almost constant, which could be attributed to the change of the ablation mechanism involved from atomization to phase explosion. The investigation of the ablation-generated momentum also reveals a nonlinear momentum-energy conversion scaling law, namely, as the pulse energy increases, the momentum obtained by the target increases nonlinearly. This may be caused by the effective reduction of the dissipated energy into the surrounding of the ablation zone as the pulse energy increases, which indicates that for femtosecond laser the dissipated energy into the surrounding target is still significant.

  2. Femtosecond laser ablation of enamel

    Science.gov (United States)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  3. Delayed Development of Pneumothorax After Pulmonary Radiofrequency Ablation

    International Nuclear Information System (INIS)

    Clasen, Stephan; Kettenbach, Joachim; Kosan, Bora; Aebert, Hermann; Schernthaner, Melanie; Kroeber, Stefan-Martin; Boemches, Andrea; Claussen, Claus D.; Pereira, Philippe L.

    2009-01-01

    Acute pneumothorax is a frequent complication after percutaneous pulmonary radiofrequency (RF) ablation. In this study we present three cases showing delayed development of pneumothorax after pulmonary RF ablation in 34 patients. Our purpose is to draw attention to this delayed complication and to propose a possible approach to avoid this major complication. These three cases occurred subsequent to 44 CT-guided pulmonary RF ablation procedures (6.8%) using either internally cooled or multitined expandable RF electrodes. In two patients, the pneumothorax, being initially absent at the end of the intervention, developed without symptoms. One of these patients required chest drain placement 32 h after RF ablation, and in the second patient therapy remained conservative. In the third patient, a slight pneumothorax at the end of the intervention gradually increased and led into tension pneumothorax 5 days after ablation procedure. Underlying bronchopleural fistula along the coagulated former electrode track was diagnosed in two patients. In conclusion, delayed development of pneumothorax after pulmonary RF ablation can occur and is probably due to underlying bronchopleural fistula, potentially leading to tension pneumothorax. Patients and interventionalists should be prepared for delayed onset of this complication, and extensive track ablation following pulmonary RF ablation should be avoided.

  4. Steady ablation on the surface of a two-layer composite

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Shan [Chung Shan Institute of Science and Technology, P.O. Box 90008-15-3, Lung-Tan, Tao-Yuan, 32526 Taiwan (China)

    2005-12-01

    Discovered is a quasi-steady ablation phenomenon on the surface of a two-layer composite which is formed by a layer of ablative material and another layer of non-ablative substrate. Theoretical exact solutions of quasi-steady ablation rate, the associated temperature distribution and end-of-ablation time of this two-layer composite are derived. A criterion for the occurrence of quasi-steady ablation is presented also. A one-dimensional transient numerical model is developed to perform a number of numerical experiments and hence to verify the correctness of the above theoretical solutions for the current quasi-steady ablation phenomenon. Based on the current results, a new method of measuring the ablation (or sublimation) heat is also proposed. (author)

  5. Radiofrequency catheter ablation of idiopathic ventricular arrhythmias originating from intramural foci in the left ventricular outflow tract: efficacy of sequential versus simultaneous unipolar catheter ablation.

    Science.gov (United States)

    Yamada, Takumi; Maddox, William R; McElderry, H Thomas; Doppalapudi, Harish; Plumb, Vance J; Kay, G Neal

    2015-04-01

    Idiopathic ventricular arrhythmias (VAs) originating from the left ventricular outflow tract (LVOT) sometimes require catheter ablation from the endocardial and epicardial sides for their elimination, suggesting the presence of intramural VA foci. This study investigated the efficacy of sequential and simultaneous unipolar radiofrequency catheter ablation from the endocardial and epicardial sides in treating intramural LVOT VAs. Fourteen consecutive LVOT VAs, which required sequential or simultaneous irrigated unipolar radiofrequency ablation from the endocardial and epicardial sides for their elimination, were studied. The first ablation was performed at the site with the earliest local ventricular activation and best pace map on the endocardial or epicardial side. When the first ablation was unsuccessful, the second ablation was delivered on the other surface. If this sequential unipolar ablation failed, simultaneous unipolar ablation from both sides was performed. The first ablation was performed on the epicardial side in 9 VAs and endocardial side in 5 VAs. The intramural LVOT VAs were successfully eliminated by the sequential (n=9) or simultaneous (n=5) unipolar catheter ablation. Simultaneous ablation was most likely to be required for the elimination of the VAs when the distance between the endocardial and epicardial ablation sites was >8 mm and the earliest local ventricular activation time relative to the QRS onset during the VAs of sequential unipolar radiofrequency ablation and sometimes required simultaneous ablation from both the endocardial and epicardial sides. © 2015 American Heart Association, Inc.

  6. A review of the safety aspects of radio frequency ablation

    Directory of Open Access Journals (Sweden)

    Abhishek Bhaskaran

    2015-09-01

    Full Text Available In light of recent reports showing high incidence of silent cerebral infarcts and organized atrial arrhythmias following radiofrequency (RF atrial fibrillation (AF ablation, a review of its safety aspects is timely. Serious complications do occur during supraventricular tachycardia (SVT ablations and knowledge of their incidence is important when deciding whether to proceed with ablation. Evidence is emerging for the probable role of prophylactic ischemic scar ablation to prevent VT. This might increase the number of procedures performed. Here we look at the various complications of RF ablation and also the methods to minimize them. Electronic database was searched for relevant articles from 1990 to 2015. With better awareness and technological advancements in RF ablation the incidence of complications has improved considerably. In AF ablation it has decreased from 6% to less than 4% comprising of vascular complications, cardiac tamponade, stroke, phrenic nerve injury, pulmonary vein stenosis, atrio-esophageal fistula (AEF and death. Safety of SVT ablation has also improved with less than 1% incidence of AV node injury in AVNRT ablation. In VT ablation the incidence of major complications was 5–11%, up to 3.4%, up to 1.8% and 4.1–8.8% in patients with structural heart disease, without structural heart disease, prophylactic ablations and epicardial ablations respectively. Vascular and pericardial complications dominated endocardial and epicardial VT ablations respectively. Up to 3% mortality and similar rates of tamponade were reported in endocardial VT ablation. Recent reports about the high incidence of asymptomatic cerebral embolism during AF ablation are concerning, warranting more research into its etiology and prevention.

  7. Bimodal electric tissue ablation (BETA) - in-vivo evaluation of the effect of applying direct current before and during radiofrequency ablation of porcine liver

    International Nuclear Information System (INIS)

    Cockburn, J.F.; Maddern, G.J.; Wemyss-Holden, S.A.

    2007-01-01

    Aim: To examine the effect of applying increasing amounts of direct current (DC) before and during alternating current radiofrequency ablation of porcine liver. Materials and methods: Using a Radiotherapeutics RF3000 generator, a 9 V AC/DC transformer and a 16 G plain aluminium tube as an electrode, a control group of 24 porcine hepatic radiofrequency ablation zones was compared with 24 zones created using a bimodal electric tissue ablation (BETA) technique in three pigs. All ablations were terminated when tissue impedance rose to greater than 999 Ω or radiofrequency energy input fell below 5 W on three successive measurements taken at 1 min intervals. BETA ablations were performed in two phases: an initial phase of variable duration DC followed by a second phase during which standard radiofrequency ablation was applied simultaneously with DC. During this second phase, radiofrequency power input was regulated by the feedback circuitry of the RF3000 generator according to changes in tissue impedance. The diameters (mm) of each ablation zone were measured by two observers in two planes perpendicular to the plane of needle insertion. The mean short axis diameter of each ablation zone was subjected to statistical analysis. Results: With increased duration of prior application of DC, there was a progressive increase in the diameter of the ablation zone (p < 0.001). This effect increased sharply up to 300 s of pre-treatment after which a further increase in diameter occurred, but at a much lesser rate. A maximum ablation zone diameter of 32 mm was produced (control diameters 10-13 mm). Conclusion: Applying a 9 V DC to porcine liver in vivo, and continuing this DC application during subsequent radiofrequency ablation, results in larger ablation zone diameters compared with radiofrequency ablation alone

  8. Endometrial ablation: normal appearance and complications.

    Science.gov (United States)

    Drylewicz, Monica R; Robinson, Kathryn; Siegel, Cary Lynn

    2018-03-14

    Global endometrial ablation is a commonly performed, minimally invasive technique aimed at improving/resolving abnormal uterine bleeding and menorrhagia in women. As non-resectoscopic techniques have come into existence, endometrial ablation performance continues to increase due to accessibility and decreased requirements for operating room time and advanced technical training. The increased utilization of this method translates into increased imaging of patients who have undergone the procedure. An understanding of the expected imaging appearances of endometrial ablation using different modalities is important for the abdominal radiologist. In addition, the frequent usage of the technique naturally comes with complications requiring appropriate imaging work-up. We review the expected appearance of the post-endometrial ablated uterus on multiple imaging modalities and demonstrate the more common and rare complications seen in the immediate post-procedural time period and remotely.

  9. A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: Results in ex vivo and in vivo porcine livers

    International Nuclear Information System (INIS)

    Yu Jie; Liang Ping; Yu Xiaoling; Liu Fangyi; Chen Lei; Wang Yang

    2011-01-01

    Purpose: The purpose of this study was to compare the effectiveness of microwave (MW) ablation and radiofrequency (RF) ablation using a single internally cooled probe in a hepatic porcine model. Materials and methods: In the ex vivo experiment, MW ablations (n = 40) were performed with a 2450 MHz and 915 MHz needle antenna, respectively at 60 W, 70 W power settings. Bipolar RF ablations (n = 20) were performed with a 3-cm (T30) and 4-cm (T40) active tip needle electrodes, respectively at a rated power 30 W and 40 W according to automatically systematic power setting. In the in vivo experiment, the 2450 MHz and 915 MHz MW ablation both at 60 W and T30 bipolar RF ablation at 30 W were performed (n = 30). All of the application time were 10 min. Long-axis diameter (Dl), short-axis diameter (Ds), ratio of Ds/Dl, the temperature data 5 mm from the needle and the time of temperature 5 mm from the needle rising to 54 deg. C were measured. Results: Both in ex vivo and in vivo models, Ds and Dl of 915 MHz MW ablations were significantly larger than all the RF ablations (P < 0.05); the Ds for all the 2450 MHz MW ablations were significantly larger than that of T30 RF ablations (P < 0.05). 2450 MHz MW and T30 RF ablation tended to produce more elliptical-shaped ablation zone. Tissue temperatures 5 mm from the needle were considerably higher with MW ablation, meanwhile MW ablation achieved significantly faster rate of temperature rising to 54 deg. C than RF ablation. For in vivo study after 10 min of ablation, the Ds and Dl of 2450 MHz MW, 915 MHz MW and Bipolar RF were 2.35 ± 0.75, 2.95 ± 0.32, 1.61 ± 0.33 and 3.86 ± 0.81, 5.79 ± 1.03, 3.21 ± 0.51, respectively. Highest tissue temperatures 5 mm from the needle were 80.07 ± 12.82 deg. C, 89.07 ± 3.52 deg. C and 65.56 ± 15.31 deg. C and the time of temperature rising to 54 deg. C were respectively 37.50 ± 7.62 s, 24.50 ± 4.09 s and 57.29 ± 23.24 s for three applicators. Conclusion: MW ablation may have higher

  10. Nephron-sparing percutaneous ablation of a 5 cm renal cell carcinoma by superselective embolization and percutaneous RF-ablation

    International Nuclear Information System (INIS)

    Tacke, J.; Mahnken, A.; Buecker, A.; Guenther, R.W.; Rohde, D.

    2001-01-01

    Purpose: To report on the nephron-sparing, percutaneous ablation of a large renal cell carcinoma by combined superselective embolization and percutaneous radiofrequency ablation. Materials and Methods: A 5 cm renal cell carcinoma of a 43-year-old drug abusing male with serologically proven HIV, hepatitis B and C infection, who refused surgery, was superselectively embolized using microspheres (size: 500 - 700 μm) and a platinum coil under local anesthesia. Percutaneous radiofrequency ablation using a 7F LeVeen probe (size of expanded probe tip: 40 mm) and a 200 Watt generator was performed one day after transcatheter embolization under general anesthesia. Results: The combined treatment resulted in complete destruction of the tumor without relevant damage of the surrounding healthy renal tissue. The patient was discharged 24 hours after RF ablation. No complications like urinary leaks or fistulas were observed and follow up CT one day and 4 weeks after the radiofrequency intervention revealed no signs of residual tumor growth. Conclusion: The combined transcatheter embolization and percutaneous radiofrequency ablation of renal cell carcinoma has proved technically feasible, effective, and safe in this patient. It may be offered as an alternative treatment to partial or radical nephrectomy under certain circumstances. Abbreviations: RF = radiofrequency ablation; CT = computed tomography; HIV = human immunodeficiency virus. (orig.) [de

  11. Comparison of the Three NIF Ablators

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Clark, D. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haan, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yi, S. A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zylstra, A. B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weber, C. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Indirect drive implosion experiments on NIF have now been performed using three different ablator materials: glow discharge polymer (GDP) or CH, high density carbon (HDC, which we also refer to as diamond), and sputtered beryllium (Be). It has been appreciated for some time that each of these materials has specific advantages and disadvantages as an ICF ablator.[1-4] In light of experiments conducted on NIF in the last few years, how do these ablators compare? Given current understanding, is any ablator more or less likely to reach ignition on NIF? Has the understanding of their respective strengths and weaknesses changed since NIF experiments began? How are those strengths and weaknesses highlighted by implosion designs currently being tested or planned for testing soon? This document aims to address these questions by combining modern simulation results with a survey of the current experimental data base. More particularly, this document is meant to fulfill an L2 Milestone for FY17 to “Document our understanding of the relative advantages and disadvantages of CH, HDC, and Be designs.” Note that this document does not aim to recommend a down-selection of the current three ablator choices. It is intended only to gather and document the current understanding of the differences between these ablators and thereby inform the choices made in planning future implosion experiments. This document has two themes: (i) We report on a reanalysis project in which post-shot simulations were done on a common basis for layered shots using each ablator. This included data from keyholes, 2D ConA, and so forth, from each campaign, leading up to the layered shots. (“Keyholes” are shots dedicated to measuring the shock timing in a NIF target, as described in Ref. 5. “2DConAs” are backlit implosions in which the symmetry of the implosion is measured between about half and full convergence, as described in Ref. 6.) This set of common-basis postshot simulations is compared to

  12. Radioiodine Remnant Ablation: A Critical Review

    International Nuclear Information System (INIS)

    Bal, Chandra Sekhar; Padhy, Ajit Kumar

    2015-01-01

    Radioiodine remnant ablation (RRA) is considered a safe and effective method for eliminating residual thyroid tissue, as well as microscopic disease if at all present in thyroid bed following thyroidectomy. The rationale of RRA is that in the absence of thyroid tissue, serum thyroglobulin (Tg) measurement can be used as an excellent tumor marker. Other considerations are like the presence of significant remnant thyroid tissue makes detection and treatment of nodal or distant metastases difficult. Rarely, microscopic disease in the thyroid bed if not ablated, in the future, could be a source of anaplastic transformation. On the other hand, microscopic tumor emboli in distant sites could be the cause of distant metastasis too. The ablation of remnant tissue would in all probability eliminate these theoretical risks. It may be noted that all these are unproven contentious issues except postablation serum Tg estimation that could be a good tumor marker for detecting early biochemical recurrence in long-term follow-up strategy. Radioactive iodine is administered as a form of “adjuvant therapy” for remnant ablation. There have been several reports with regard to the administered dose for remnant ablation. The first report of a prospective randomized clinical trial was published from India by a prospective randomized study conducted at the All India Institute of Medical Sciences, New Delhi in the year 1996. The study reported that increasing the empirical 131 I initial dose to more than 50 mCi results in plateauing of the dose-response curve and thus, conventional high-dose remnant ablation needs critical evaluation. Recently, two important studies were published: One from French group and the other from UK on a similar line. Interestingly, all three studies conducted in three different geographical regions of the world showed exactly similar conclusion. The new era of low-dose remnant ablation has taken a firm scientific footing across the continents

  13. Fracture in Phenolic Impregnated Carbon Ablator

    Science.gov (United States)

    Agrawal, Parul; Chavez-Garcia, Jose; Pham, John

    2013-01-01

    This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  14. Radiofrequency Ablation of Hepatic Cysts : Case Report

    International Nuclear Information System (INIS)

    Lee, Ye Ri; Kim, Pyo Nyun

    2005-01-01

    Radiofrequency ablation has been frequently performed on intra-hepatic solid tumor, namely, hepatocellular carcinoma, metastatic tumor and cholangio carcinoma, for take the cure. But, the reports of radiofrequency ablation for intrahepatic simple cysts are few. In vitro experiment of animal and in vivo treatment for intrahepatic cysts of human had been reported in rare cases. We report 4 cases of radiofrequency ablation for symptomatic intrahepatic cysts

  15. 2D shear-wave ultrasound elastography (SWE) evaluation of ablation zone following radiofrequency ablation of liver lesions: is it more accurate?

    Science.gov (United States)

    Bo, Xiao W; Li, Xiao L; Guo, Le H; Li, Dan D; Liu, Bo J; Wang, Dan; He, Ya P; Xu, Xiao H

    2016-01-01

    Objective: To evaluate the usefulness of two-dimensional quantitative ultrasound shear-wave elastography (2D-SWE) [i.e. virtual touch imaging quantification (VTIQ)] in assessing the ablation zone after radiofrequency ablation (RFA) for ex vivo swine livers. Methods: RFA was performed in 10 pieces of fresh ex vivo swine livers with a T20 electrode needle and 20-W output power. Conventional ultrasound, conventional strain elastography (SE) and VTIQ were performed to depict the ablation zone 0 min, 10 min, 30 min and 60 min after ablation. On VTIQ, the ablation zones were evaluated qualitatively by evaluating the shear-wave velocity (SWV) map and quantitatively by measuring the SWV. The ultrasound, SE and VTIQ results were compared against gross pathological and histopathological specimens. Results: VTIQ SWV maps gave more details about the ablation zone, the central necrotic zone appeared as red, lateral necrotic zone as green and transitional zone as light green, from inner to exterior, while the peripheral unablated liver appeared as blue. Conventional ultrasound and SE, however, only marginally depicted the whole ablation zone. The volumes of the whole ablation zone (central necrotic zone + lateral necrotic zone + transitional zone) and necrotic zone (central necrotic zone + lateral necrotic zone) measured by VTIQ showed excellent correlation (r = 0.915, p  0.05). Conclusion: The quantitative 2D-SWE of VTIQ is useful for the depiction of the ablation zone after RFA and it facilitates discrimination of different areas in the ablation zone qualitatively and quantitatively. This elastography technique might be useful for the therapeutic response evaluation instantly after RFA. Advances in knowledge: A new quantitative 2D-SWE (i.e. VTIQ) for evaluation treatment response after RFA is demonstrated. It facilitates discrimination of the different areas in the ablation zone qualitatively and quantitatively and may be useful for the therapeutic

  16. Neutral and plasma shielding model for pellet ablation

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Milora, S.L.; Attenberger, S.E.

    1987-10-01

    The neutral gas shielding model for ablation of frozen hydrogenic pellets is extended to include the effects of an initial Maxwelliam distribution of incident electron energies; a cold plasma shield outside the neutral shield and extended along the magnetic field; energetic neutral beam ions and alpha particles; and self-limiting electron ablation in the collisionless plasma limit. Including the full electron distribution increases ablation, but adding the cold ionized shield reduces ablation; the net effect is a modest reduction in pellet penetration compared with the monoenergetic electron neutral shielding model with no plasma shield. Unlike electrons, fast ions can enter the neutral shield directly without passing through the cold ionized shield because their gyro-orbits are typically larger than the diameter of the cold plasma tube. Fast alpha particles should not enhance the ablation rate unless their population exceeds that expected from local classical thermalization. Fast beam ions, however, may enhance ablation in the plasma periphery if their population is high enough. Self-limiting ablation in the collisionless limit leads to a temporary distortion of the original plasma electron Maxwellian distribution function through preferential depopulation of the higher-energy electrons. 23 refs., 9 figs

  17. Modeling CO2 Laser Ablative Impulse with Polymers

    International Nuclear Information System (INIS)

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-01-01

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO 2 laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO 2 laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  18. Meta-analysis of bipolar radiofrequency endometrial ablation versus thermal balloon endometrial ablation for the treatment of heavy menstrual bleeding.

    Science.gov (United States)

    Zhai, Yan; Zhang, Zihan; Wang, Wei; Zheng, Tingping; Zhang, Huili

    2018-01-01

    Heavy menstrual bleeding is a common problem that can severely affect quality of life. To compare bipolar radiofrequency endometrial ablation and thermal balloon ablation for heavy menstrual bleeding in terms of efficacy and health-related quality of life (HRQoL). Online registries were systematically searched using relevant terms without language restriction from inception to November 24, 2016. Randomized control trials or cohort studies of women with heavy menstrual bleeding comparing the efficacy of two treatments were eligible. Data were extracted. Results were expressed as risk ratios (RRs) or weighted mean differences (WMDs) with 95% confidence intervals (CIs). Six studies involving 901 patients were included. Amenorrhea rate at 12 months was significantly higher after bipolar radiofrequency endometrial ablation than after thermal balloon ablation (RR 2.73, 95% CI 2.00-3.73). However, no difference at 12 months was noted for dysmenorrhea (RR 1.04, 95% CI 0.68-1.58) or treatment failure (RR 0.78, 95% CI 0.38-1.60). The only significant difference for HRQoL outcomes was for change in SAQ pleasure score (12 months: WMD -3.51, 95% CI -5.42 to -1.60). Bipolar radiofrequency endometrial ablation and thermal balloon ablation reduce menstrual loss and improve quality of life. However, bipolar radiofrequency endometrial ablation is more effective in terms of amenorrhea rate and SAQ pleasure. © 2017 International Federation of Gynecology and Obstetrics.

  19. Characterisation of tissue shrinkage during microwave thermal ablation.

    Science.gov (United States)

    Farina, Laura; Weiss, Noam; Nissenbaum, Yitzhak; Cavagnaro, Marta; Lopresto, Vanni; Pinto, Rosanna; Tosoratti, Nevio; Amabile, Claudio; Cassarino, Simone; Goldberg, S Nahum

    2014-11-01

    The aim of this study was to characterise changes in tissue volume during image-guided microwave ablation in order to arrive at a more precise determination of the true ablation zone. The effect of power (20-80 W) and time (1-10 min) on microwave-induced tissue contraction was experimentally evaluated in various-sized cubes of ex vivo liver (10-40 mm ± 2 mm) and muscle (20 and 40 mm ± 2 mm) embedded in agar phantoms (N = 119). Post-ablation linear and volumetric dimensions of the tissue cubes were measured and compared with pre-ablation dimensions. Subsequently, the process of tissue contraction was investigated dynamically during the ablation procedure through real-time X-ray CT scanning. Overall, substantial shrinkage of 52-74% of initial tissue volume was noted. The shrinkage was non-uniform over time and space, with observed asymmetry favouring the radial (23-43 % range) over the longitudinal (21-29%) direction. Algorithmic relationships for the shrinkage as a function of time were demonstrated. Furthermore, the smallest cubes showed more substantial and faster contraction (28-40% after 1 min), with more considerable volumetric shrinkage (>10%) in muscle than in liver tissue. Additionally, CT imaging demonstrated initial expansion of the tissue volume, lasting in some cases up to 3 min during the microwave ablation procedure, prior to the contraction phenomenon. In addition to an asymmetric substantial shrinkage of the ablated tissue volume, an initial expansion phenomenon occurs during MW ablation. Thus, complex modifications of the tissue close to a radiating antenna will likely need to be taken into account for future methods of real-time ablation monitoring.

  20. Microwave Tissue Ablation: Biophysics, Technology and Applications

    Science.gov (United States)

    2010-01-01

    Microwave ablation is an emerging treatment option for many cancers, cardiac arrhythmias and other medical conditions. During treatment, microwaves are applied directly to tissues to produce rapid temperature elevations sufficient to produce immediate coagulative necrosis. The engineering design criteria for each application differ, with individual consideration for factors such as desired ablation zone size, treatment duration, and procedural invasiveness. Recent technological developments in applicator cooling, power control and system optimization for specific applications promise to increase the utilization of microwave ablation in the future. This article will review the basic biophysics of microwave tissue heating, provide an overview of the design and operation of current equipment, and outline areas for future research for microwave ablation. PMID:21175404

  1. Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold

    International Nuclear Information System (INIS)

    Upadhyay, Arun K.; Inogamov, Nail A.; Rethfeld, Baerbel; Urbassek, Herbert M.

    2008-01-01

    Ultrafast laser irradiation of solids may ablate material off the surface. We study this process for thin films using molecular-dynamics simulation and thermodynamic analysis. Both metals and Lennard-Jones (LJ) materials are studied. We find that despite the large difference in thermodynamical properties between these two classes of materials--e.g., for aluminum versus LJ the ratio T c /T tr of critical to triple-point temperature differs by more than a factor of 4--the values of the ablation threshold energy E abl normalized to the cohesion energy, ε abl =E abl /E coh , are surprisingly universal: all are near 0.3 with ±30% scattering. The difference in the ratio T c /T tr means that for metals the melting threshold ε m is low, ε m abl , while for LJ it is high, ε m >ε abl . This thermodynamical consideration gives a simple explanation for the difference between metals and LJ. It explains why despite the universality in ε abl , metals thermomechanically ablate always from the liquid state. This is opposite to LJ materials, which (near threshold) ablate from the solid state. Furthermore, we find that immediately below the ablation threshold, the formation of large voids (cavitation) in the irradiated material leads to a strong temporary expansion on a very slow time scale. This feature is easily distinguished from the acoustic oscillations governing the material response at smaller intensities, on the one hand, and the ablation occurring at larger intensities, on the other hand. This finding allows us to explain the puzzle of huge surface excursions found in experiments at near-threshold laser irradiation

  2. Power Laser Ablation Symposia

    CERN Document Server

    Phipps, Claude

    2007-01-01

    Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficu...

  3. TEM investigations of laser ablated particles

    International Nuclear Information System (INIS)

    Fliegel, D.; Dundas, S.; Kosler, J.; Klementova, M.

    2009-01-01

    Full text: Laser ablation inductively coupled plasma mass spectrometry suffers from fractionation effects hindering a non matrix matched calibration strategy. Different reasons for elemental fractionation that are related to the laser ablation, the transport and the vaporization in the plasma are discussed. One major question to be addressed linked to the vaporization yield in the ICP is in which of mineralogical phase the different ablated particle sizes enter the plasma. This contribution will investigate particles generated by a 213 nm laser from different samples such as minerals and alloys with respect to their chemical and phase compositions using high resolution TEM. (author)

  4. Pacemaker implantation after catheter ablation for atrial fibrillation.

    Science.gov (United States)

    Deshmukh, Abhishek J; Yao, Xiaoxi; Schilz, Stephanie; Van Houten, Holly; Sangaralingham, Lindsey R; Asirvatham, Samuel J; Friedman, Paul A; Packer, Douglas L; Noseworthy, Peter A

    2016-01-01

    Sinus node dysfunction requiring pacemaker implantation is commonly associated with atrial fibrillation (AF), but may not be clinically apparent until restoration of sinus rhythm with ablation or cardioversion. We sought to determine frequency, time course, and predictors for pacemaker implantation after catheter ablation, and to compare the overall rates to a matched cardioversion cohort. We conducted a retrospective analysis using a large US commercial insurance database and identified 12,158 AF patients who underwent catheter ablation between January 1, 2005 and December 31, 2012. Over an average of 2.4 years of follow-up, 5.6 % of the patients underwent pacemaker implantation. Using the Cox proportional hazards models, we found that risk of risks of pacemaker implantation was associated with older age (50-64 and ≥65 versus pacemaker implantation between ablation patients and propensity score (PS)-matched cardioversion groups (3.5 versus. 4.1 % at 1 year and 8.8 versus 8.3 % at 5 years). Overall, pacemaker implantation occurs in about 1/28 patients within 1 year of catheter ablation. The overall implantation rate decreased between 2005 and 2012. Furthermore, the risk after ablation is similar to cardioversion, suggesting that patients require pacing due to a common underlying electrophysiologic substrate, rather than the ablation itself.

  5. Actual role of radiofrequency ablation of liver metastases

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Philippe L. [Eberhard-Karls-University of Tuebingen, Department of Diagnostic Radiology, Tuebingen (Germany)

    2007-08-15

    The liver is, second only to lymph nodes, the most common site for metastatic disease irrespective of the primary tumour. More than 50% of all patients with malignant diseases will develop liver metastases with a significant morbidity and mortality. Although the surgical resection leads to an improved survival in patients with colorectal metastases, only approximately 20% of patients are eligible for surgery. Thermal ablation and especially radiofrequency ablation emerge as an important additional therapy modality for the treatment of liver metastases. RF ablation shows a benefit in life expectancy and may lead in a selected patient group to cure. Percutaneous RF ablation appears safer (versus cryotherapy), easier (versus laser), and more effective (versus ethanol instillation and transarterial chemoembolisation) compared with other minimally invasive procedures. RF ablation can be performed by a percutaneous, laparoscopical or laparotomic approach, and may be potentially combined with chemotherapy and surgery. At present ideal candidates have tumours with a maximum diameter less than 3.5 cm. An untreatable primary tumour or a systemic disease represents contraindications for performing local therapies. Permanent technical improvements of thermal ablation devices and a better integration of thermal ablation in the overall patient care may lead to prognosis improvement in patients with liver metastases. (orig.)

  6. Actual role of radiofrequency ablation of liver metastases

    International Nuclear Information System (INIS)

    Pereira, Philippe L.

    2007-01-01

    The liver is, second only to lymph nodes, the most common site for metastatic disease irrespective of the primary tumour. More than 50% of all patients with malignant diseases will develop liver metastases with a significant morbidity and mortality. Although the surgical resection leads to an improved survival in patients with colorectal metastases, only approximately 20% of patients are eligible for surgery. Thermal ablation and especially radiofrequency ablation emerge as an important additional therapy modality for the treatment of liver metastases. RF ablation shows a benefit in life expectancy and may lead in a selected patient group to cure. Percutaneous RF ablation appears safer (versus cryotherapy), easier (versus laser), and more effective (versus ethanol instillation and transarterial chemoembolisation) compared with other minimally invasive procedures. RF ablation can be performed by a percutaneous, laparoscopical or laparotomic approach, and may be potentially combined with chemotherapy and surgery. At present ideal candidates have tumours with a maximum diameter less than 3.5 cm. An untreatable primary tumour or a systemic disease represents contraindications for performing local therapies. Permanent technical improvements of thermal ablation devices and a better integration of thermal ablation in the overall patient care may lead to prognosis improvement in patients with liver metastases. (orig.)

  7. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  8. Percutaneous thermal ablation of renal neoplasms; Perkutane Thermoablation von Nierentumoren

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, J. [Inst. fuer Diagnostische und Interventionelle Radiologie/Neuroradiologie, Klinikum Passau (Germany); Mahnken, A.H.; Guenther, R.W. [Klinik fuer Radiologische Diagnostik, Universitaetsklinikum Aachen (Germany)

    2005-12-15

    Due to modern examination techniques such as multidetector computed tomography and high-field magnetic resonance imaging, the detection rate of renal neoplasms is continually increasing. Even though tumors exceeding 4 cm in diameter rarely metastasize, all renal lesions that are possible neoplasms should be treated. Traditional treatment techniques include radical nephrectomy or nephron-sparing resection, which are increasingly performed laparoscopically. Modern thermal ablation techniques such as hyperthermal techniques like radiofrequency ablation RFA, laser induced thermal ablation LITT, focused ultrasound FUS and microwave therapy MW, as well as hypothermal techniques (cryotherapy) may be a useful treatment option for patients who are unfit for or refuse surgical resection. Cryotherapy is the oldest and best known thermal ablation technique and can be performed laparoscopically or percutaneously. Since subzero temperatures have no antistyptic effect, additional maneuvers must be performed to control bleeding. Percutaneous cryotherapy of renal tumors is a new and interesting method, but experience with it is still limited. Radiofrequency ablation is the most frequently used method. Modern probe design allows volumes between 2 and 5 cm in diameter to be ablated. Due to hyperthermal tract ablation, the procedure is deemed to be safe and has a low complication rate. Although there are no randomized comparative studies to open resection, the preliminary results for renal RFA are promising and show RFA to be superior to other thermal ablation techniques. Clinical success rates are over 90% for both, cryo- and radiofrequency ablation. Whereas laser induced thermal therapy is established in hepatic ablation, experience is minimal with respect to renal application. For lesions of more than 2 cm in diameter, additional cooling catheters are required. MR thermometry offers temperature control during ablation. Microwave ablation is characterized by small ablation volumes

  9. Avoiding Complications in Bone and Soft Tissue Ablation

    International Nuclear Information System (INIS)

    Kurup, A. Nicholas; Schmit, Grant D.; Morris, Jonathan M.; Atwell, Thomas D.; Schmitz, John J.; Weisbrod, Adam J.; Woodrum, David A.; Eiken, Patrick W.; Callstrom, Matthew R.

    2017-01-01

    As with percutaneous ablation of tumors in the liver, lungs, and kidneys, ablation of bone and non-visceral soft tissue tumors carries risk, primarily from collateral damage to vital structures in proximity to the target tumor. Certain risks are of particular interest when ablating bone and non-visceral soft tissue tumors, namely neural or skin injury, bowel injury, fracture, and gas embolism from damaged applicators. Ablation of large volume tumors also carries special risk. Many techniques may be employed by the interventional radiologist to minimize complications when treating tumors in the musculoskeletal system. These methods include those to depict, displace, or monitor critical structures. Thus, measures to provide thermoprotection may be active, such as careful ablation applicator placement and use of various displacement techniques, as well as passive, including employment of direct temperature, radiographic, or neurophysiologic monitoring techniques. Cementoplasty should be considered in certain skeletal locations at risk of fracture. Patients treated with large volume tumors should be monitored for renal dysfunction and properly hydrated. Finally, ablation applicators should be cautiously placed in the constrained environment of intact bone.

  10. Avoiding Complications in Bone and Soft Tissue Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Kurup, A. Nicholas, E-mail: kurup.anil@mayo.edu; Schmit, Grant D., E-mail: schmit.grant@mayo.edu; Morris, Jonathan M., E-mail: morris.jonathan@mayo.edu; Atwell, Thomas D., E-mail: atwell.thomas@mayo.edu; Schmitz, John J., E-mail: schmitz.john@mayo.edu; Weisbrod, Adam J., E-mail: weisbrod.adam@mayo.edu; Woodrum, David A., E-mail: woodrum.david@mayo.edu; Eiken, Patrick W., E-mail: eiken.patrick@mayo.edu; Callstrom, Matthew R., E-mail: callstrom.matthew@mayo.edu [Mayo Clinic, Department of Radiology (United States)

    2017-02-15

    As with percutaneous ablation of tumors in the liver, lungs, and kidneys, ablation of bone and non-visceral soft tissue tumors carries risk, primarily from collateral damage to vital structures in proximity to the target tumor. Certain risks are of particular interest when ablating bone and non-visceral soft tissue tumors, namely neural or skin injury, bowel injury, fracture, and gas embolism from damaged applicators. Ablation of large volume tumors also carries special risk. Many techniques may be employed by the interventional radiologist to minimize complications when treating tumors in the musculoskeletal system. These methods include those to depict, displace, or monitor critical structures. Thus, measures to provide thermoprotection may be active, such as careful ablation applicator placement and use of various displacement techniques, as well as passive, including employment of direct temperature, radiographic, or neurophysiologic monitoring techniques. Cementoplasty should be considered in certain skeletal locations at risk of fracture. Patients treated with large volume tumors should be monitored for renal dysfunction and properly hydrated. Finally, ablation applicators should be cautiously placed in the constrained environment of intact bone.

  11. Catheter Ablation versus Thoracoscopic Surgical Ablation in Long Standing Persistent Atrial Fibrillation (CASA-AF): study protocol for a randomised controlled trial.

    Science.gov (United States)

    Khan, Habib Rehman; Kralj-Hans, Ines; Haldar, Shouvik; Bahrami, Toufan; Clague, Jonathan; De Souza, Anthony; Francis, Darrel; Hussain, Wajid; Jarman, Julian; Jones, David Gareth; Mediratta, Neeraj; Mohiaddin, Raad; Salukhe, Tushar; Jones, Simon; Lord, Joanne; Murphy, Caroline; Kelly, Joanna; Markides, Vias; Gupta, Dhiraj; Wong, Tom

    2018-02-20

    Atrial fibrillation is the commonest arrhythmia which raises the risk of heart failure, thromboembolic stroke, morbidity and death. Pharmacological treatments of this condition are focused on heart rate control, rhythm control and reduction in risk of stroke. Selective ablation of cardiac tissues resulting in isolation of areas causing atrial fibrillation is another treatment strategy which can be delivered by two minimally invasive interventions: percutaneous catheter ablation and thoracoscopic surgical ablation. The main purpose of this trial is to compare the effectiveness and safety of these two interventions. Catheter Ablation versus Thoracoscopic Surgical Ablation in Long Standing Persistent Atrial Fibrillation (CASA-AF) is a prospective, multi-centre, randomised controlled trial within three NHS tertiary cardiovascular centres specialising in treatment of atrial fibrillation. Eligible adults (n = 120) with symptomatic, long-standing, persistent atrial fibrillation will be randomly allocated to either catheter ablation or thoracoscopic ablation in a 1:1 ratio. Pre-determined lesion sets will be delivered in each treatment arm with confirmation of appropriate conduction block. All patients will have an implantable loop recorder (ILR) inserted subcutaneously immediately following ablation to enable continuous heart rhythm monitoring for at least 12 months. The devices will be programmed to detect episodes of atrial fibrillation and atrial tachycardia ≥ 30 s in duration. The patients will be followed for 12 months, completing appropriate clinical assessments and questionnaires every 3 months. The ILR data will be wirelessly transmitted daily and evaluated every month for the duration of the follow-up. The primary endpoint in the study is freedom from atrial fibrillation and atrial tachycardia at the end of the follow-up period. The CASA-AF Trial is a National Institute for Health Research-funded study that will provide first-class evidence on the

  12. Microwave ablation devices for interventional oncology.

    Science.gov (United States)

    Ward, Robert C; Healey, Terrance T; Dupuy, Damian E

    2013-03-01

    Microwave ablation is one of the several options in the ablation armamentarium for the treatment of malignancy, offering several potential benefits when compared with other ablation, radiation, surgical and medical treatment modalities. The basic microwave system consists of the generator, power distribution system and antennas. Often under image (computed tomography or ultrasound) guidance, a needle-like antenna is inserted percutaneously into the tumor, where local microwave electromagnetic radiation is emitted from the probe's active tip, producing frictional tissue heating, capable of causing cell death by coagulation necrosis. Half of the microwave ablation systems use a 915 MHz generator and the other half use a 2450 MHz generator. To date, there are no completed clinical trials comparing microwave devices head-to-head. Prospective comparisons of microwave technology with other treatment alternatives, as well as head-to-head comparison with each microwave device, is needed if this promising field will garner more widespread support and use in the oncology community.

  13. Use of bipolar radiofrequency catheter ablation in treatment of cardiac arrhythmias.

    Science.gov (United States)

    Soucek, Filip; Starek, Zdenek

    2018-05-23

    Background Arrhythmia management is a complex process involving both pharmacological and non-pharmacological approaches. Radiofrequency ablation is the pillar of non-pharmacological arrhythmia treatment. Unipolar ablation is considered to be the gold standard in the treatment of the majority of arrhythmias; however, its efficacy is limited to specific cases. In particular, the creation of deep or transmural lesions to eliminate intramurally originating arrhythmias remains inadequate. Bipolar ablation is proposed as an alternative to overcome unipolar ablation boundaries. Results Despite promising results gained from in vitro and animal studies showing that bipolar ablation is superior in creating transmural lesions, the use of bipolar ablation in daily clinical practice is limited. Several studies have been published showing that bipolar ablation is effective in the treatment of clinical arrhythmias after failed unipolar ablation, however there is inconsistency regarding safety of bipolar ablation within the available research papers. According to research evidence the most common indications for bipolar ablation use are ventricular originating rhythmic disorders in patients with structural heart disease resistant to standard radiofrequency ablation. Conclusions To allow wider clinical application the efficiency and safety of bipolar ablation need to be verified in future studies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Detection of the Single-Session Complete Ablation Rate by Contrast-Enhanced Ultrasound during Ultrasound-Guided Laser Ablation for Benign Thyroid Nodules: A Prospective Study

    Directory of Open Access Journals (Sweden)

    Shuhua Ma

    2016-01-01

    Full Text Available This study aimed to investigate the single-session complete ablation rate of ultrasound-guided percutaneous laser ablation (LA for benign thyroid nodules. LA was performed in 90 patients with 118 benign thyroid nodules. Contrast-enhanced ultrasound (CEUS was used to evaluate complete nodule ablation one day after ablation. Thyroid nodule volumes, thyroid functions, clinical symptoms and complications were evaluated 1, 3, 6, 12, and 18 months after ablation. Results showed that all benign thyroid nodules successfully underwent LA. The single-session complete ablation rates for nodules with maximum diameters ≤2 cm, 2-3 cm and ≥3 cm were 93.4%, 70.3% and 61.1%, respectively. All nodule volumes significantly decreased than that one day after ablation (P0.05. Three patients had obvious pain during ablation; one (1.1% had recurrent laryngeal nerve injury, but the voice returned to normal within 6 months after treatment. Thus, ultrasound-guided LA can effectively inactivate benign thyroid nodules. LA is a potentially viable minimally invasive treatment that offers good cosmetic effects.

  15. Laser ablation of tumors: current concepts and recent developments

    International Nuclear Information System (INIS)

    Stroszczynski, C.; Gaffke, G.; Gnauck, M.; Ricke, J.; Felix, R.; Puls, R.; Speck, U.; Hosten, N.; Oettle, H.; Hohenberger, P.

    2004-01-01

    Purpose. The purpose of this paper is to present technical innovations and clinical results of percutaneous interventional laser ablation of tumors using new techniques. Methods. Laser ablation was performed in 182 patients (liver tumors: 131, non hepatic tumors - bone, lung, others: 51) after interdisciplinary consensus was obtained. The procedure was done using a combination of imaging modalities (CT/MRI, CT/US) or only closed high field MRI (1.5 T). All patients received an MRI-scan immediately after laser ablation. Results. In 90.9% of the patients with liver tumors, a complete ablation was achieved. Major events occurred in 5.4%. The technical success rate of laser ablation in non-hepatic tumors was high, clinical results differed depending on the treated organ. Conclusions. The treatment of tumors of the liver and other organs up to 5 cm by laser ablation was a safe procedure with a low rate of complications and side effects. Image guidance by MRI is advantageous for precise tumor visualization in all dimensions, therapy monitoring, and control of laser ablation results. (orig.) [de

  16. Cartilage ablation studies using mid-IR free electron laser

    Science.gov (United States)

    Youn, Jong-In; Peavy, George M.; Venugopalan, Vasan

    2005-04-01

    The ablation rate of articular cartilage and fibrocartilage (meniscus), were quantified to examine wavelength and tissue-composition dependence of ablation efficiency for selected mid-infrared wavelengths. The wavelengths tested were 2.9 um (water dominant absorption), 6.1 (protein and water absorption) and 6.45 um (protein dominant absorption) generated by the Free Electron Laser (FEL) at Vanderbilt University. The measurement of tissue mass removal using a microbalance during laser ablation was conducted to determine the ablation rates of cartilage. The technique can be accurate over methods such as profilometer and histology sectioning where tissue surface and the crater morphology may be affected by tissue processing. The ablation efficiency was found to be dependent upon the wavelength. Both articular cartilage and meniscus (fibrocartilage) ablations at 6.1 um were more efficient than those at the other wavelengths evaluated. We observed the lowest ablation efficiency of both types of cartilage with the 6.45 um wavelength, possibly due to the reduction in water absorption at this wavelength in comparison to the other wavelengths that were evaluated.

  17. Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jung Hwan; Lee, Jeong Hyun [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Valcavi, Roberto [Endocrinology Division and Thyroid Disease Center, Arcispedale Santa Maria Nuova, Reggio Emilia (Italy); Pacella, Claudio M. [Diagnostic Imaging and Interventional Radiology Department, Ospedale Regina Apostolorum, Albano Laziale-Rome (IT); Rhim, Hyun Chul [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Na, Dong Kyu [Human Medical Imaging and Intervention Center, Seoul (Korea, Republic of)

    2011-10-15

    Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation.

  18. Innovative techniques for image-guided ablation of benign thyroid nodules: Combined ethanol and radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Sun; Baek, Jung Hwan; Choi, Young Jun; Lee, Jeong Hyun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2017-06-15

    In the treatment of benign thyroid nodules, ethanol ablation (EA), and radiofrequency ablation (RFA) have been suggested for cystic and solid thyroid nodules, respectively. Although combining these ablation techniques may be effective, no guidelines for or reviews of the combination have been published. Currently, there are three ways of combining EA and RFA: additional RFA is effective for treatment of incompletely resolved symptoms and solid residual portions of a thyroid nodule after EA. Additional EA can be performed for the residual unablated solid portion of a nodule after RFA if it is adjacent to critical structures (e.g., trachea, esophagus, and recurrent laryngeal nerve). In the concomitant procedure, ethanol is injected to control venous oozing after aspiration of cystic fluid prior to RFA of the remaining solid nodule.

  19. Laser ablation in analytical chemistry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  20. Skin pre-ablation and laser assisted microjet injection for deep tissue penetration.

    Science.gov (United States)

    Jang, Hun-Jae; Yeo, Seonggu; Yoh, Jack J

    2017-04-01

    For conventional needless injection, there still remain many unresolved issues such as the potential for cross-contamination, poor reliability of targeted delivery dose, and significantly painstaking procedures. As an alternative, the use of microjets generated with Er:YAG laser for delivering small doses with controlled penetration depths has been reported. In this study, a new system with two stages is evaluated for effective transdermal drug delivery. First, the skin is pre-ablated to eliminate the hard outer layer and second, laser-driven microjet penetrates the relatively weaker and freshly exposed epidermis. Each stage of operation shares a single Er:YAG laser that is suitable for skin ablation as well as for the generation of a microjet. In this study, pig skin is selected for quantification of the injection depth based on the two-stage procedure, namely pre-ablation and microjet injection. The three types of pre-ablation devised here consists of bulk ablation, fractional ablation, and fractional-rotational ablation. The number of laser pulses are 12, 18, and 24 for each ablation type. For fractional-rotational ablation, the fractional beams are rotated by 11.25° at each pulse. The drug permeation in the skin is evaluated using tissue marking dyes. The depth of penetration is quantified by a cross sectional view of the single spot injections. Multi-spot injections are also carried out to control the dose and spread of the drug. The benefits of a pre-ablation procedure prior to the actual microjet injection to the penetration is verified. The four possible combinations of injection are (a) microjet only; (b) bulk ablation and microjet injection; (c) fractional ablation and microjet injection; and (d) fractional-rotational ablation and microjet injection. Accordingly, the total depth increases with injection time for all cases. In particular, the total depth of penetration attained via fractional pre-ablation increased by 8 ∼ 11% and that of fractional

  1. Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, David J., E-mail: davidjjorgensen@engr.ucsb.edu; Titus, Michael S.; Pollock, Tresa M.

    2015-10-30

    Highlights: • The single-pulse fs laser ablation threshold of NiAl is 83 mJ/cm{sup 2}. • The transition between low- and high-fluence ablation regimes is 2.8 J/cm{sup 2}. • A bimodal size distribution of nanoparticles is formed with fs laser ablation. • Smaller nanoparticles are enriched in Al during pulsed fs laser ablation. • The target surface is depleted in Al during pulsed fs laser ablation. - Abstract: The ablation behavior of a stoichiometric intermetallic compound β-NiAl subjected to femtosecond laser pulsing in air has been investigated. The single-pulse ablation threshold for NiAl was determined to be 83 ± 4 mJ/cm{sup 2} and the transition to the high-fluence ablation regime occurred at 2.8 ± 0.3 J/cm{sup 2}. Two sizes of nanoparticles consisting of Al, NiAl, Ni{sub 3}Al and NiO were formed and ejected from the target during high-fluence ablation. Chemical analysis revealed that smaller nanoparticles (1–30 nm) tended to be rich in Al while larger nanoparticles (>100 nm) were lean in Al. Ablation in the low-fluence regime maintained this trend. Redeposited material and nanoparticles remaining on the surface after a single 3.7 J/cm{sup 2} pulse, one hundred 1.7 J/cm{sup 2} pulses, or one thousand 250 mJ/cm{sup 2} pulses were enriched in Al relative to the bulk target composition. Further, the surface of the irradiated high-fluence region was depleted in Al indicating that the fs laser ablation removal rate of the intermetallic constituents in this regime does not scale with the individual pure element ablation thresholds.

  2. Measurement of intrahepatic pressure during radiofrequency ablation in porcine liver.

    Science.gov (United States)

    Kawamoto, Chiaki; Yamauchi, Atsushi; Baba, Yoko; Kaneko, Keiko; Yakabi, Koji

    2010-04-01

    To identify the most effective procedures to avoid increased intrahepatic pressure during radiofrequency ablation, we evaluated different ablation methods. Laparotomy was performed in 19 pigs. Intrahepatic pressure was monitored using an invasive blood pressure monitor. Radiofrequency ablation was performed as follows: single-step standard ablation; single-step at 30 W; single-step at 70 W; 4-step at 30 W; 8-step at 30 W; 8-step at 70 W; and cooled-tip. The array was fully deployed in single-step methods. In the multi-step methods, the array was gradually deployed in four or eight steps. With the cooled-tip, ablation was performed by increasing output by 10 W/min, starting at 40 W. Intrahepatic pressure was as follows: single-step standard ablation, 154.5 +/- 30.9 mmHg; single-step at 30 W, 34.2 +/- 20.0 mmHg; single-step at 70 W, 46.7 +/- 24.3 mmHg; 4-step at 30 W, 42.3 +/- 17.9 mmHg; 8-step at 30 W, 24.1 +/- 18.2 mmHg; 8-step at 70 W, 47.5 +/- 31.5 mmHg; and cooled-tip, 114.5 +/- 16.6 mmHg. The radiofrequency ablation-induced area was spherical with single-step standard ablation, 4-step at 30 W, and 8-step at 30 W. Conversely, the ablated area was irregular with single-step at 30 W, single-step at 70 W, and 8-step at 70 W. The ablation time was significantly shorter for the multi-step method than for the single-step method. Increased intrahepatic pressure could be controlled using multi-step methods. From the shapes of the ablation area, 30-W 8-step expansions appear to be most suitable for radiofrequency ablation.

  3. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  4. Mucosal ablation in Barrett's esophagus.

    Science.gov (United States)

    Walker, S J; Selvasekar, C R; Birbeck, N

    2002-01-01

    Barrett's esophagus is a prevalent, premalignant condition affecting the gastroesophageal junction and distal esophagus. Ablation plus antireflux therapy has recently been advocated to prevent the development of adenocarcinoma or to treat those unfit or unwilling to undergo esophagectomy. The present article, based on a search of Medline/ISI databases and cross-referencing of relevant articles, reviews the literature on this subject. A number of techniques have been used to remove the affected mucosa, including laser, electrocoagulation, argon plasma coagulation and photodynamic therapy but, as yet, none has been shown to be superior. Depending on the method used, ablation results in complete removal of Barrett's esophagus in approximately one third of patients and a partial response in nearly two-thirds. The resultant squamous mucosa is apparently 'normal' but may regress. To promote and maintain regeneration, antireflux therapy must be sufficient to reduce repetitive injury to the esophageal mucosa. Whether ablation reduces the cancer risk or delays its occurrence is unknown, though recent data suggests benefit. Complications are infrequent and usually mild. Regular follow-up endoscopy and deep biopsies continue to be necessary. Careful data from much larger populations with long-term follow-up is required before ablation reaches the stage of broad clinical application.

  5. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    Science.gov (United States)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  6. Similarities and differences in ablative and non-ablative iron oxide nanoparticle hyperthermia cancer treatment

    Science.gov (United States)

    Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. Jack

    2015-03-01

    The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. It has been demonstrated by many research groups that ablative temperatures and cytotoxicity can be produced with locally NP-based hyperthermia. Such ablative NP techniques have demonstrated the potential for success. Much attention has also been given to the fact that NP may be administered systemically, resulting in a broader cancer therapy approach, a lower level of tumor NP content and a different type of NP cancer therapy (most likely in the adjuvant setting). To use NP based hyperthermia successfully as a cancer treatment, the technique and its goal must be understood and utilized in the appropriate clinical context. The parameters include, but are not limited to, NP access to the tumor (large vs. small quantity), cancer cell-specific targeting, drug carrying capacity, potential as an ionizing radiation sensitizer, and the material properties (magnetic characteristics, size and charge). In addition to their potential for cytotoxicity, the material properties of the NP must also be optimized for imaging, detection and direction. In this paper we will discuss the differences between, and potential applications for, ablative and non-ablative magnetic nanoparticle hyperthermia.

  7. Nanoparticle fabrication of hydroxyapatite by laser ablation in water

    International Nuclear Information System (INIS)

    Musaev, O. R.; Wieliczka, D. M.; Wrobel, J. M.; Kruger, M. B.; Dusevich, V.

    2008-01-01

    Synthetic polycrystalline hydroxyapatite was ablated in water with 337 nm radiation from a UV nitrogen pulsed laser. According to transmission electron microscopy micrographs, the ablated particles were approximately spherical and had a size of ∼80 nm. Raman spectroscopic analysis demonstrated that particles had the same structure as the original crystal. X-ray photoelectron spectroscopy showed that the surface chemical composition was close to that of the original material. The characteristics of the ablated particles and estimations of the temperature rise of the hydroxyapatite surface under laser irradiation are consistent with the mechanism of explosive boiling being responsible for ablation. The experimental observations offer the basis for preparation of hydroxyapatite nanoparticles by laser ablation in water

  8. A thermal model for nanosecond pulsed laser ablation of aluminum

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-07-01

    Full Text Available In order to simulate the nanosecond pulsed laser ablation of aluminum, a novel model was presented for the target ablation and plume expansion. The simulation of the target ablation was based on one-dimensional heat conduction, taking into account temperature dependent material properties, phase transition, dielectric transition and phase explosion. While the simulation of the plume expansion was based on one-dimensional gas-dynamical equation, taking into account ionization, plume absorption and shielding. By coupling the calculations of the target ablation and plume expansion, the characteristics of the target and plume were obtained. And the calculated results were in good agreement with the experimental data, in terms of ablation threshold and depth within the fluence range of the tested laser. Subsequently, investigations were carried out to analyze the mechanisms of nanosecond pulsed laser ablation. The calculated results showed that the maximum surface temperature remained at about 90% of the critical temperature (0.9Tc due to phase explosion. Moreover, the plume shielding has significant effects on the laser ablation, and the plume shielding proportion increase as the laser fluence increasing. The ambient pressure belows 100 Pa is more suitable for laser ablation, which can obtained larger ablation depth.

  9. Using Target Ablation for Ion Beam Quality Improvement

    International Nuclear Information System (INIS)

    Zhao Shuan; Chen Jia-Er; Lin Chen; Ma Wen-Jun; Yan Xue-Qing; Wang Jun-Jie

    2016-01-01

    During the laser foil interaction, the output ion beam quality including the energy spread and beam divergence can be improved by the target ablation, due to the direct laser acceleration (DLA) electrons generated in the ablation plasma. The acceleration field established at the target rear by these electrons, which is highly directional and triangle-envelope, is helpful for the beam quality. With the help of the target ablation, both the beam divergence and energy spread will be reduced. If the ablation is more sufficient, the impact of DLA-electron-caused field will be strengthened, and the beam quality will be better, confirmed by the particle-in-cell simulation. (paper)

  10. Radiofrequency ablation with epinephrine injection: in vivo study in normal pig livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Jung; Lee, Dong Hoo; Lim, Joo Won; Ko, Young Tae; Kim, Youn Wha; Choi, Bong Keun [Kyung Hee University Medical Center, Seoul (Korea, Republic of)

    2007-07-15

    We wanted to evaluate whether epinephrine injection prior to radiofrequency (RF) ablation can increase the extent of thermally mediated coagulation in vivo normal pig liver tissue. Eighteen RF ablation zones were created in six pigs using a 17-gauge internally cooled electrode under ultrasound guidance. Three RF ablation zones were created in each pig under three conditions: RF ablation alone, RF ablation after the injection of 3 mL of normal saline, and RF ablation after the injection of 3 mL of epinephrine (1:10,000 solution). After the RF ablation, we measured the short and long diameters of the white zones in the gross specimens. Three of the RF ablations were technically unsuccessful; therefore, measurement of white zone was finally done in 15 RF ablation zones. The mean short and long diameters of the white zone of the RF ablation after epinephrine injection (17.2 mm {+-} 1.8 and 20.8 mm {+-} 3.7, respectively) were larger than those of RF ablation only (10 mm {+-} 1.2 and 12.2 mm {+-} 1.1, respectively) and RF ablation after normal saline injection (12.8 mm {+-} 1.5 and 15.6 mm {+-} 2.5, respectively) ({rho} < .05). RF ablation with epinephrine injection can increase the diameter of the RF ablation zone in normal pig liver tissue.

  11. New mitigation schemes of the ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Azechi, H.; Shiraga, H.; Nakai, M.; Shigemori, K.; Fujioka, S.; Sakaiya, T.; Tamari, Y.; Ohtani, K.; Watari, T.; Murakami, M.; Sunahara, A.; Nagatomo, H.; Nishihara, K.; Miyanaga, N.; Izawa, Y.; Ohnishi, N.

    2005-01-01

    The Rayleigh-Taylor (RT) instability with material ablation through the unstable interface is the key physics that determines success or failure of inertial fusion energy (IFE) generation, as the RT instability potentially quenches ignition and burn by disintegrating the IFE target. We present two suppression schemes of the RT growth without significant degradation of the target density. The first scheme is to generate double ablation structure in high-Z doped plastic targets. In addition to the electron ablation surface, a new ablation surface is created by x-ray radiation from the high-Z ions. Contrary to the previous thought, the electron ablation surface is almost completely stabilized by extremely high flow velocity. On the other hand, the RT instability on the radiative ablation surface is significantly moderated. The second is to enhance the nonlocal nature of the electron heat transport by illuminating the target with long wavelength laser light, whereas the high ablation pressure is generated by irradiating short wavelength laser light. The significant suppression of the RT instability may increase the possibility of impact ignition which uses a high velocity fuel colliding with a preformed main fuel. (author)

  12. Percutaneous laser ablation of benign and malignant thyroid nodules.

    Science.gov (United States)

    Papini, Enrico; Bizzarri, Giancarlo; Pacella, Claudio M

    2008-10-01

    Percutaneous image-guided procedures, largely based on thermal ablation, are at present under investigation for achieving a nonsurgical targeted cytoreduction in benign and malignant thyroid lesions. In several uncontrolled clinical trials and in two randomized clinical trials, laser ablation has demonstrated a good efficacy and safety for the shrinkage of benign cold thyroid nodules. In hyperfunctioning nodules, laser ablation induced a nearly 50% volume reduction with a variable frequency of normalization of thyroid-stimulating hormone levels. Laser ablation has been tested for the palliative treatment of poorly differentiated thyroid carcinomas, local recurrences or distant metastases. Laser ablation therapy is indicated for the shrinkage of benign cold nodules in patients with local pressure symptoms who are at high surgical risk. The treatment should be performed only by well trained operators and after a careful cytological evaluation. Laser ablation does not seem to be consistently effective in the long-term control of hyperfunctioning thyroid nodules and is not an alternative treatment to 131I therapy. Laser ablation may be considered for the cytoreduction of tumor tissue prior to external radiation therapy or chemotherapy of local or distant recurrences of thyroid malignancy that are not amenable to surgical or radioiodine treatment.

  13. No-touch radiofrequency ablation: A comparison of switching bipolar and switching monopolar ablation in Ex Vivo bovine liver

    International Nuclear Information System (INIS)

    Chang, Won; Lee, Jeong Min; Lee, Sang Min; Hank, Joon Koo

    2017-01-01

    To evaluate the feasibility, efficiency, and safety of no-touch switching bipolar (SB) and switching monopolar (SM) radiofrequency ablation (RFA) using ex vivo bovine livers. A pork loin cube was inserted as a tumor mimicker in the bovine liver block; RFA was performed using the no-touch technique in the SM (group A1; 10 minutes, n = 10, group A2; 15 minutes, n = 10) and SB (group B; 10 minutes, n = 10) modes. The groups were compared based on the creation of confluent necrosis with sufficient safety margins, the dimensions, and distance between the electrode and ablation zone margin (DEM). To evaluate safety, small bowel loops were placed above the liver surface and 30 additional ablations were performed in the same groups. Confluent necroses with sufficient safety margins were created in all specimens. SM RFA created significantly larger volumes of ablation compared to SB RFA (all p < 0.001). The DEM of group B was significantly lower than those of groups A1 and A2 (all p < 0.001). Although thermal injury to the small bowel was noted in 90%, 100%, and 30% of the cases in groups A1, A2, and B, respectively, full depth injury was noted only in 60% of group A2 cases. The no-touch RFA technique is feasible in both the SB and SM modes; however, SB RFA appears to be more advantageous compared to SM RFA in the creation of an ablation zone while avoiding the unnecessary creation of an adjacent parenchymal ablation zone or adjacent small bowel injuries

  14. No-touch radiofrequency ablation: A comparison of switching bipolar and switching monopolar ablation in Ex Vivo bovine liver

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Won; Lee, Jeong Min; Lee, Sang Min; Hank, Joon Koo [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-04-15

    To evaluate the feasibility, efficiency, and safety of no-touch switching bipolar (SB) and switching monopolar (SM) radiofrequency ablation (RFA) using ex vivo bovine livers. A pork loin cube was inserted as a tumor mimicker in the bovine liver block; RFA was performed using the no-touch technique in the SM (group A1; 10 minutes, n = 10, group A2; 15 minutes, n = 10) and SB (group B; 10 minutes, n = 10) modes. The groups were compared based on the creation of confluent necrosis with sufficient safety margins, the dimensions, and distance between the electrode and ablation zone margin (DEM). To evaluate safety, small bowel loops were placed above the liver surface and 30 additional ablations were performed in the same groups. Confluent necroses with sufficient safety margins were created in all specimens. SM RFA created significantly larger volumes of ablation compared to SB RFA (all p < 0.001). The DEM of group B was significantly lower than those of groups A1 and A2 (all p < 0.001). Although thermal injury to the small bowel was noted in 90%, 100%, and 30% of the cases in groups A1, A2, and B, respectively, full depth injury was noted only in 60% of group A2 cases. The no-touch RFA technique is feasible in both the SB and SM modes; however, SB RFA appears to be more advantageous compared to SM RFA in the creation of an ablation zone while avoiding the unnecessary creation of an adjacent parenchymal ablation zone or adjacent small bowel injuries.

  15. Theoretical analyses of the refractive implications of transepithelial PRK ablations.

    Science.gov (United States)

    Arba Mosquera, Samuel; Awwad, Shady T

    2013-07-01

    To analyse the refractive implications of single-step, transepithelial photorefractive keratectomy (TransPRK) ablations. A simulation for quantifying the refractive implications of TransPRK ablations has been developed. The simulation includes a simple modelling of corneal epithelial profiles, epithelial ablation profiles as well as refractive ablation profiles, and allows the analytical quantification of the refractive implications of TransPRK in terms of wasted tissue, achieved optical zone (OZ) and induced refractive error. Wasted tissue occurs whenever the actual corneal epithelial profile is thinner than the applied epithelial ablation profile, achieved OZ is reduced whenever the actual corneal epithelial profile is thicker than the applied epithelial ablation profile and additional refractive errors are induced whenever the actual difference centre-to-periphery in the corneal epithelial profile deviates from the difference in the applied epithelial ablation profile. The refractive implications of TransPRK ablations can be quantified using simple theoretical simulations. These implications can be wasted tissue (∼14 µm, if the corneal epithelial profile is thinner than the ablated one), reduced OZ (if the corneal epithelial profile is thicker than ablated one, very severe for low corrections) and additional refractive errors (∼0.66 D, if the centre-to-periphery progression of the corneal epithelial profile deviates from the progression of the ablated one). When TransPRK profiles are applied to normal, not previously treated, non-pathologic corneas, no specific refractive implications associated to the transepithelial profile can be anticipated; TransPRK would provide refractive outcomes equal to those of standard PRK. Adjustments for the planned OZ and, in the event of retreatments, for the target sphere can be easily derived.

  16. Laser ablation comparison by picosecond pulses train and nanosecond pulse

    Science.gov (United States)

    Lednev, V. N.; Filippov, M. N.; Bunkin, A. F.; Pershin, S. M.

    2015-12-01

    A comparison of laser ablation by a train of picosecond pulses and nanosecond pulses revealed a difference in laser craters, ablation thresholds, plasma sizes and spectral line intensities. Laser ablation with a train of picosecond pulses resulted in improved crater quality while ablated mass decreased up to 30%. A reduction in laser plasma dimensions for picosecond train ablation was observed while the intensity of atomic/ionic lines in the plasma spectra was greater by a factor of 2-4 indicating an improved excitation and atomization in the plasma.

  17. Imaging in percutaneous ablation for atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Maksimovic, Ruzica [Erasmus Medical Center, Department of Radiology, GD Rotterdam (Netherlands); Institute for Cardiovascular Diseases of the University Medical Center, Belgrade (Czechoslovakia); Dill, Thorsten [Kerckhoff-Heart Center, Department of Cardiology, Bad Nauheim (Germany); Ristic, Arsen D.; Seferovic, Petar M. [Institute for Cardiovascular Diseases of the University Medical Center, Belgrade (Czechoslovakia)

    2006-11-15

    Percutaneous ablation for electrical disconnection of the arrhythmogenic foci using various forms of energy has become a well-established technique for treating atrial fibrillation (AF). Success rate in preventing recurrence of AF episodes is high although associated with a significant incidence of pulmonary vein (PV) stenosis and other rare complications. Clinical workup of AF patients includes imaging before and after ablative treatment using different noninvasive and invasive techniques such as conventional angiography, transoesophageal and intracardiac echocardiography, computed tomography (CT) and magnetic resonance imaging (MRI), which offer different information with variable diagnostic accuracy. Evaluation before percutaneous ablation involves assessment of PVs (PV pattern, branching pattern, orientation and ostial size) to facilitate position and size of catheters and reduce procedure time as well as examining the left atrium (presence of thrombi, dimensions and volumes). Imaging after the percutaneous ablation is important for assessment of overall success of the procedure and revealing potential complications. Therefore, imaging methods enable depiction of PVs and the anatomy of surrounding structures essential for preprocedural management and early detection of PV stenosis and other ablation-related procedures, as well as long-term follow-up of these patients. (orig.)

  18. Imaging in percutaneous ablation for atrial fibrillation

    International Nuclear Information System (INIS)

    Maksimovic, Ruzica; Dill, Thorsten; Ristic, Arsen D.; Seferovic, Petar M.

    2006-01-01

    Percutaneous ablation for electrical disconnection of the arrhythmogenic foci using various forms of energy has become a well-established technique for treating atrial fibrillation (AF). Success rate in preventing recurrence of AF episodes is high although associated with a significant incidence of pulmonary vein (PV) stenosis and other rare complications. Clinical workup of AF patients includes imaging before and after ablative treatment using different noninvasive and invasive techniques such as conventional angiography, transoesophageal and intracardiac echocardiography, computed tomography (CT) and magnetic resonance imaging (MRI), which offer different information with variable diagnostic accuracy. Evaluation before percutaneous ablation involves assessment of PVs (PV pattern, branching pattern, orientation and ostial size) to facilitate position and size of catheters and reduce procedure time as well as examining the left atrium (presence of thrombi, dimensions and volumes). Imaging after the percutaneous ablation is important for assessment of overall success of the procedure and revealing potential complications. Therefore, imaging methods enable depiction of PVs and the anatomy of surrounding structures essential for preprocedural management and early detection of PV stenosis and other ablation-related procedures, as well as long-term follow-up of these patients. (orig.)

  19. Theoretical and experimental analysis of amplitude control ablation and bipolar ablation in creating linear lesion and discrete lesions for treating atrial fibrillation.

    Science.gov (United States)

    Yan, Shengjie; Wu, Xiaomei; Wang, Weiqi

    2017-09-01

    Radiofrequency (RF) energy is often used to create a linear lesion or discrete lesions for blocking the accessory conduction pathways for treating atrial fibrillation. By using finite element analysis, we study the ablation effect of amplitude control ablation mode (AcM) and bipolar ablation mode (BiM) in creating a linear lesion and discrete lesions in a 5-mm-thick atrial wall; particularly, the characteristic of lesion shape has been investigated in amplitude control ablation. Computer models of multipolar catheter were developed to study the lesion dimensions in atrial walls created through AcM, BiM and special electrodes activated ablation methods in AcM and BiM. To validate the theoretical results in this study, an in vitro experiment with porcine cardiac tissue was performed. At 40 V/20 V root mean squared (RMS) of the RF voltage for AcM, the continuous and transmural lesion was created by AcM-15s, AcM-5s and AcM-ad-20V ablation in 5-mm-thick atrial wall. At 20 V RMS for BiM, the continuous but not transmural lesion was created. AcM ablation yielded asymmetrical and discrete lesions shape, whereas the lesion shape turned to more symmetrical and continuous as the electrodes alternative activated period decreased from 15 s to 5 s. Two discrete lesions were created when using AcM, AcM-ad-40V, BiM-ad-20V and BiM-ad-40V. The experimental and computational thermal lesion shapes created in cardiac tissue were in agreement. Amplitude control ablation technology and bipolar ablation technology are feasible methods to create continuous lesion or discrete for pulmonary veins isolation.

  20. Effects of pressure rise on cw laser ablation of tissue

    Science.gov (United States)

    LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.

    1991-06-01

    The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.

  1. Pulsed Tm:YAG laser ablation of knee joint tissues

    Science.gov (United States)

    Shi, Wei-Qiang; Vari, Sandor G.; Duffy, J. T.; Miller, J. M.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1992-06-01

    We investigated the effect of a free-running 2.01 micron pulsed Tm:YAG laser on bovine knee joint tissues. Ablation rates of fresh fibrocartilage, hyaline cartilage, and bone were measured in saline as a function of laser fluence (160 - 640 J/cm2) and fiber core size (400 and 600 microns). All tissues could be effectively ablated and the ablation rate increased linearly with the increasing fluence. Use of fibers of different core sizes, while maintaining constant energy fluence, did not result in significant difference in ablation rate. Histology analyses of the ablated tissue samples reveal average Tm:YAG radiation induced thermal damage (denatunalization) zones ranging between 130 and 540 microns, depending on the laser parameters and the tissue type.

  2. Pulsed-laser ablation of co-deposits on JT-60 graphite tile

    International Nuclear Information System (INIS)

    Sakawa, Youichi; Watanabe, Daisuke; Shibahara, Takahiro; Sugiyama, Kazuyoshi; Tanabe, Tetsuo

    2007-01-01

    Pulsed laser ablation of the co-deposits on a JT-60 open-divertor tile using the fourth harmonic of a 20 ps-Nd: YAG laser has been investigated. With increasing the laser intensity, three regions, non-ablation region (NAR), weak-ablation region (WAR), and strong-ablation region (SAR) were distinguished. Transition from NAR to WAR and WAR to SAR occurred at the threshold laser intensity for laser ablation and that for strong ionization of carbon atoms, respectively. The ablation accompanied desorption of H 2 and C 2 H 2 , with minor contribution of other hydrocarbons, while production of H 2 O was small. In NAR and WAR the number of the hydrogen desorbed by the laser irradiation was less than that of hydrogen retained in the ablated volume, while in SAR it was much larger, owing to thermal desorption of hydrogen gas from the region surrounding the ablated volume. For the ablative removal of hydrogen isotopes, SAR is more desirable because of higher removal efficiency and less production of hydrocarbons

  3. Pulsed-laser ablation of co-deposits on JT-60 graphite tile

    Energy Technology Data Exchange (ETDEWEB)

    Sakawa, Youichi [Institute of Laser Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan)]. E-mail: sakawa-y@ile.osaka-u.ac.jp; Watanabe, Daisuke [Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Shibahara, Takahiro [Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Sugiyama, Kazuyoshi [Interdisciplinary School of Engineering Science, Kyushu University, Fukuoka, Fukuoka 812-8581 (Japan); Tanabe, Tetsuo [Interdisciplinary School of Engineering Science, Kyushu University, Fukuoka, Fukuoka 812-8581 (Japan)

    2007-08-01

    Pulsed laser ablation of the co-deposits on a JT-60 open-divertor tile using the fourth harmonic of a 20 ps-Nd: YAG laser has been investigated. With increasing the laser intensity, three regions, non-ablation region (NAR), weak-ablation region (WAR), and strong-ablation region (SAR) were distinguished. Transition from NAR to WAR and WAR to SAR occurred at the threshold laser intensity for laser ablation and that for strong ionization of carbon atoms, respectively. The ablation accompanied desorption of H{sub 2} and C{sub 2}H{sub 2}, with minor contribution of other hydrocarbons, while production of H{sub 2}O was small. In NAR and WAR the number of the hydrogen desorbed by the laser irradiation was less than that of hydrogen retained in the ablated volume, while in SAR it was much larger, owing to thermal desorption of hydrogen gas from the region surrounding the ablated volume. For the ablative removal of hydrogen isotopes, SAR is more desirable because of higher removal efficiency and less production of hydrocarbons.

  4. Direct-drive–ignition designs with mid-Z ablators

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, M.; Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Anderson, K. S.; Collins, T. J. B.; Epstein, R.; McKenty, P. W.; Myatt, J. F.; Shvydky, A.; Skupsky, S. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-03-15

    Achieving thermonuclear ignition using direct laser illumination relies on the capability to accelerate spherical shells to high implosion velocities while maintaining shell integrity. Ablator materials of moderate atomic number Z reduce the detrimental effects of laser–plasma instabilities in direct-drive implosions. To validate the physics of moderate-Z ablator materials for ignition target designs on the National Ignition Facility (NIF), hydro-equivalent targets are designed using pure plastic (CH), high-density carbon, and glass (SiO{sub 2}) ablators. The hydrodynamic stability of these targets is investigated through two-dimensional (2D) single-mode and multimode simulations. The overall stability of these targets to laser-imprint perturbations and low-mode asymmetries makes it possible to design high-gain targets. Designs using polar-drive illumination are developed within the NIF laser system specifications. Mid-Z ablator targets are an attractive candidate for direct-drive ignition since they present better overall performance than plastic ablator targets through reduced laser–plasma instabilities and a similar hydrodynamic stability.

  5. Computed Tomography Assessment of Ablation Zone Enhancement in Patients With Early-Stage Lung Cancer After Stereotactic Ablative Radiotherapy.

    Science.gov (United States)

    Moore, William; Chaya, Yair; Chaudhry, Ammar; Depasquale, Britney; Glass, Samantha; Lee, Susan; Shin, James; Mikhail, George; Bhattacharji, Priya; Kim, Bong; Bilfinger, Thomas

    2015-01-01

    Stereotactic ablative radiotherapy (SABR) offers a curative treatment for lung cancer in patients who are marginal surgical candidates. However, unlike traditional surgery the lung cancer remains in place after treatment. Thus, imaging follow-up for evaluation of recurrence is of paramount importance. In this retrospective designed Institutional Review Board-approved study, follow-up contrast-enhanced computed tomography (CT) exams were performed on sixty one patients to evaluate enhancement pattern in the ablation zone at 1, 3, 6, and 12 months after SABR. Eleven patients had recurrence within the ablation zone after SABR. The postcontrast enhancement in the recurrence group showed a washin and washout phenomenon, whereas the radiation-induced lung injury group showed continuous enhancement suggesting an inflammatory process. The textural feature of the ablation zone of enhancement and perfusion as demonstrated in computed tomography nodule enhancement may allow early differentiation of recurrence from radiation-induced lung injury in patients' status after SABR or primary lung cancer.

  6. Combination acetabular radiofrequency ablation and cementoplasty using a navigational radiofrequency ablation device and ultrahigh viscosity cement: technical note.

    Science.gov (United States)

    Wallace, Adam N; Huang, Ambrose J; Vaswani, Devin; Chang, Randy O; Jennings, Jack W

    2016-03-01

    Percutaneous radiofrequency ablation and cementoplasty is an alternative palliative therapy for painful metastases involving axial load-bearing bones. This technical report describes the use of a navigational radiofrequency probe to ablate acetabular metastases from an anterior approach followed by instillation of ultrahigh viscosity cement under CT-fluoroscopic guidance. The tumor ablation databases of two institutions were retrospectively reviewed to identify patients who underwent combination acetabular radiofrequency ablation and cementoplasty using the STAR Tumor Ablation and StabiliT Vertebral Augmentation Systems (DFINE; San Jose, CA). Pre-procedure acetabular tumor volume was measured on cross-sectional imaging. Pre- and post-procedure pain scores were measured using the Numeric Rating Scale (10-point scale) and compared. Partial pain improvement was categorically defined as ≥ 2-point pain score reduction. Patients were evaluated for evidence of immediate complications. Electronic medical records were reviewed for evidence of delayed complications. During the study period, 12 patients with acetabular metastases were treated. The median tumor volume was 54.3 mL (range, 28.3-109.8 mL). Pre- and post-procedure pain scores were obtained from 92% (11/12) of the cohort. The median pre-procedure pain score was 8 (range, 3-10). Post-procedure pain scores were obtained 7 days (82%; 9/11), 11 days (9.1%; 1/11) or 21 days (9.1%; 1/11) after treatment. The median post-treatment pain score was 3 (range, 1-8), a statistically significant difference compared with pre-treatment (P = 0.002). Categorically, 73% (8/11) of patients reported partial pain relief after treatment. No immediate symptomatic complications occurred. Three patients (25%; 3/12) were discharged to hospice within 1 week of treatment. No delayed complications occurred in the remaining 75% (9/12) of patients during median clinical follow-up of 62 days (range, 14-178 days). Palliative percutaneous

  7. Development of laser ablation plasma by anisotropic self-radiation

    Directory of Open Access Journals (Sweden)

    Ohnishi Naofumi

    2013-11-01

    Full Text Available We have proposed a method for reproducing an accurate solution of low-density ablation plasma by properly treating anisotropic radiation. Monte-Carlo method is employed for estimating Eddington tensor with limited number of photon samples in each fluid time step. Radiation field from ablation plasma is significantly affected by the anisotropic Eddington tensor. Electron temperature around the ablation surface changes with the radiation field and is responsible for the observed emission. An accurate prediction of the light emission from the laser ablation plasma requires a careful estimation of the anisotropic radiation field.

  8. Individualized laparoscopic B-ultrasound-guided microwave ablation for multifocal primary liver cancer.

    Science.gov (United States)

    Xu, Zhifeng; Yang, Zhangwei; Pan, Jianghua; Hu, Yiren

    2018-03-01

    Liver cancer is one of the most common malignancies of the digestive system. Minimally invasive ablation procedures have become one of the major means for treating unresectable multifocal liver cancer and have been extensively applied in primary and metastatic liver cancer treatment. Laparoscopic B-ultrasound-guided microwave ablation is an example of the progress made in this field. To analyze and summarize the results of and experience with laparoscopic B-ultrasound-guided microwave ablation for multifocal primary liver cancer; moreover, the ablation effects were compared between tumors of different sizes. Laparoscope-guided needle ablation was conducted on 84 lesions from 32 patients with primary liver cancer based on tumor size, quantity, and location. Moreover, the perioperative data, ablation effects according to tumor size, and long-term follow-up results were analyzed. Among the 84 nodules treated via microwave ablation, tumors measuring ≤ 3 cm demonstrated complete ablation upon imaging analysis conducted 1 month after surgery. Moreover, 5 of the tumors measuring > 3 cm demonstrated incomplete ablation. In these cases, a second procedure was performed, until imaging studies confirmed that complete ablation was achieved. Laparoscopic microwave ablation allows for precise puncture positioning, an effective ablation range, and safe and feasible surgery, which is especially suitable for liver tumors located in sites difficult to access.

  9. Subtotal Ablation of Parietal Epithelial Cells Induces Crescent Formation

    Science.gov (United States)

    Sicking, Eva-Maria; Fuss, Astrid; Uhlig, Sandra; Jirak, Peggy; Dijkman, Henry; Wetzels, Jack; Engel, Daniel R.; Urzynicok, Torsten; Heidenreich, Stefan; Kriz, Wilhelm; Kurts, Christian; Ostendorf, Tammo; Floege, Jürgen; Smeets, Bart

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established an inducible transgenic mouse to allow subtotal ablation of PECs. Proteinuria developed during doxycycline-induced cellular ablation but fully reversed 26 days after termination of doxycycline administration. The ablation of PECs was focal, with only 30% of glomeruli exhibiting histologic changes; however, the number of PECs was reduced up to 90% within affected glomeruli. Ultrastructural analysis revealed disruption of PEC plasma membranes with cytoplasm shedding into Bowman’s space. Podocytes showed focal foot process effacement, which was the most likely cause for transient proteinuria. After >9 days of cellular ablation, the remaining PECs formed cellular extensions to cover the denuded Bowman’s capsule and expressed the activation marker CD44 de novo. The induced proliferation of PECs persisted throughout the observation period, resulting in the formation of typical cellular crescents with periglomerular infiltrate, albeit without accompanying proteinuria. In summary, subtotal ablation of PECs leads the remaining PECs to react with cellular activation and proliferation, which ultimately forms cellular crescents. PMID:22282596

  10. Chemothermal Therapy for Localized Heating and Ablation of Tumor

    Directory of Open Access Journals (Sweden)

    Zhong-Shan Deng

    2013-01-01

    Full Text Available Chemothermal therapy is a new hyperthermia treatment on tumor using heat released from exothermic chemical reaction between the injected reactants and the diseased tissues. With the highly minimally invasive feature and localized heating performance, this method is expected to overcome the ubiquitous shortcomings encountered by many existing hyperthermia approaches in ablating irregular tumor. This review provides a relatively comprehensive review on the latest advancements and state of the art in chemothermal therapy. The basic principles and features of two typical chemothermal ablation strategies (acid-base neutralization-reaction-enabled thermal ablation and alkali-metal-enabled thermal/chemical ablation are illustrated. The prospects and possible challenges facing chemothermal ablation are analyzed. The chemothermal therapy is expected to open many clinical possibilities for precise tumor treatment in a minimally invasive way.

  11. CT thermometry for cone-beam CT guided ablation

    Science.gov (United States)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  12. Efficacy and Safety of Atrial Fibrillation Ablation Using Remote Magnetic Navigation

    DEFF Research Database (Denmark)

    Jin, Q I; Pehrson, Steen; Jacobsen, Peter Karl

    2016-01-01

    .0 minutes, PerAF, P = 0.17). The overall complication rate was 0.6%. One PAF patient experienced cardiac tamponade. AF repeat ablations by RMN significantly reduced the procedural and ablation times when compared with their first ablation times. CONCLUSIONS: AF ablation guided by RMN is safe as evidenced...

  13. Efficacy of microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma in patients with chronic liver disease: a randomised controlled phase 2 trial.

    Science.gov (United States)

    Vietti Violi, Naïk; Duran, Rafael; Guiu, Boris; Cercueil, Jean-Pierre; Aubé, Christophe; Digklia, Antonia; Pache, Isabelle; Deltenre, Pierre; Knebel, Jean-François; Denys, Alban

    2018-05-01

    Radiofrequency ablation is the recommended treatment for patients with hepatocellular carcinoma who have lesions smaller than 3 cm and are therefore not candidates for surgery. Microwave ablation is a more recent technique with certain theoretical advantages that have not yet been confirmed clinically. We aimed to compare the efficacy of both techniques in the treatment of hepatocellular carcinoma lesions of 4 cm or smaller. We did a randomised controlled, single-blinded phase 2 trial at four tertiary university centres in France and Switzerland. Patients with chronic liver disease and hepatocellular carcinoma with up to three lesions of 4 cm or smaller who were not eligible for surgery were randomised to receive microwave ablation (experimental group) or radiofrequency ablation (control group). Randomisation was centralised and done by use of a fixed block method (block size 4). Patients were randomly assigned by a co-investigator by use of the sealed opaque envelope method and were masked to the treatment; physicians were not masked to treatment, since the devices used were different. The primary outcome was the proportion of lesions with local tumour progression at 2 years of follow-up. Local tumour progression was defined as the appearance of a new nodule with features typical of hepatocellular carcinoma in the edge of the ablation zone. All analyses were done in the per-protocol population. The study is completed, but patients will continue to be followed up for 5 years. This study is registered with ClinicalTrials.gov, number NCT02859753. Between Nov 15, 2011, and Feb 27, 2015, 152 patients were randomly assigned: 76 patients to receive microwave ablation and 76 patients to receive radiofrequency ablation. For the per-protocol analysis, five patients were excluded from the microwave ablation group as were three patients from the radiofrequency ablation group. Median follow-up was 26 months (IQR 18-29) in the microwave ablation group and 25 months (18-34) in

  14. Nephron-sparing percutaneous ablation of a 5 cm renal cell carcinoma by superselective embolization and percutaneous RF-ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, J.; Mahnken, A.; Buecker, A.; Guenther, R.W. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Rohde, D. [Technische Hochschule Aachen (Germany). Abt. Urologie

    2001-11-01

    Purpose: To report on the nephron-sparing, percutaneous ablation of a large renal cell carcinoma by combined superselective embolization and percutaneous radiofrequency ablation. Materials and Methods: A 5 cm renal cell carcinoma of a 43-year-old drug abusing male with serologically proven HIV, hepatitis B and C infection, who refused surgery, was superselectively embolized using microspheres (size: 500 - 700 {mu}m) and a platinum coil under local anesthesia. Percutaneous radiofrequency ablation using a 7F LeVeen probe (size of expanded probe tip: 40 mm) and a 200 Watt generator was performed one day after transcatheter embolization under general anesthesia. Results: The combined treatment resulted in complete destruction of the tumor without relevant damage of the surrounding healthy renal tissue. The patient was discharged 24 hours after RF ablation. No complications like urinary leaks or fistulas were observed and follow up CT one day and 4 weeks after the radiofrequency intervention revealed no signs of residual tumor growth. Conclusion: The combined transcatheter embolization and percutaneous radiofrequency ablation of renal cell carcinoma has proved technically feasible, effective, and safe in this patient. It may be offered as an alternative treatment to partial or radical nephrectomy under certain circumstances. Abbreviations: RF = radiofrequency ablation; CT = computed tomography; HIV = human immunodeficiency virus. (orig.) [German] Ziel: Bericht ueber eine nierenschonende, perkutane Ablation eines 5 cm grossen Nierenzellkarzinoms durch kombinierte Transkatheterembolisation und perkutane Radiofrequenzablation. Material und Methoden: Ein 5 cm grosses Nierenzellkarzinom eines 43 Jahre alten Drogenabhaengigen mit serologisch nachgewiesener HIV, Hepatitis B- und C-Infektion, der eine operative Therapie ablehnte, wurde superselektiv durch Embosphaeren (Partikelgroesse: 500 - 700 {mu}m) und einer Platinspirale unter Lokalanaesthesie embolisiert. Am Folgetag

  15. Hyperkalaemia after radiofrequency ablation of hepatocellular carcinoma

    NARCIS (Netherlands)

    Verhoevena, BH; Haagsma, EB; Appeltans, BMG; Slooff, MJH; de Jong, KP

    Radiofrequency ablation of liver tumours is a useful therapy for otherwise unresectable tumours. The complication rate is said to be low. In this case report we describe hyperkalaemia after radiofrequency ablation of a hepatocellular carcinoma in a patient with end-stage renal insufficiency. (C)

  16. Efficacy and satisfaction rate comparing endometrial ablation by rollerball electrocoagulation to uterine balloon thermal ablation in a randomised controlled trial.

    NARCIS (Netherlands)

    Zon-Rabelink, I.A.A. van; Vleugels, M.P.; Merkus, J.M.W.M.; Graaf, R.M. de

    2004-01-01

    OBJECTIVE: To compare two methods of endometrial ablation, hysteroscopic rollerball electrocoagulation (RBE) and non-hysteroscopic uterine balloon thermal ablation (Thermachoice trade mark ), regarding efficacy for reducing dysfunctional uterine bleeding and patients satisfaction rate. METHODS: A

  17. Dynamic behaviors of laser ablated Si particles

    International Nuclear Information System (INIS)

    Ohyanagi, T.; Murakami, K.; Miyashita, A.; Yoda, O.

    1995-01-01

    The dynamics of laser-ablated Si particles produced by laser ablation have been investigated by time-and-space resolved X-ray absorption spectroscopy in a time scale ranging from 0 ns to 120 ns with a time resolution of 10 ns. Neutral and charged particles are observed through all X-ray absorption spectra. Assignments of transitions from 2s and 2p initial states to higher Rydberg states of Si atom and ions are achieved, and we experimentally determine the L II,III absorption edges of neutral Si atom (Si 0 ) and Si + , Si 2+ , Si 3+ and Si 4+ ions. The main ablated particles are found to be Si atom and Si ions in the initial stage of 0 ns to 120 ns. The relative amounts depend strongly on times and laser energy densities. We find that the spatial distributions of particles produced by laser ablation are changed with supersonic helium gas bombardment, but no cluster formation takes place. This suggests that a higher-density region of helium gas is formed at the top of the plume of ablated particles, and free expansion of particles is restrained by this helium cloud, and that it takes more than 120 ns to form Si clusters. (author)

  18. Radiofrequency ablation of liver tumors (II): clinical application and outcomes.

    Science.gov (United States)

    Vanagas, Tomas; Gulbinas, Antanas; Pundzius, Juozas; Barauskas, Giedrius

    2010-01-01

    Radiofrequency ablation is one of the alternatives in the management of liver tumors, especially in patients who are not candidates for surgery. The aim of this article is to review applicability of radiofrequency ablation achieving complete tumor destruction, utility of imaging techniques for patients' follow-up, indications for local ablative procedures, procedure-associated morbidity and mortality, and long-term results in patients with different tumors. The success of local thermal ablation consists in creating adequate volumes of tissue destruction with adequate "clear margin," depending on improved delivery of radiofrequency energy and modulated tissue biophysiology. Different volumes of coagulation necrosis are achieved applying different types of electrodes, pulsing energy sources, utilizing sophisticated ablation schemes. Some additional methods are used to increase the overall deposition of energy through alterations in tissue electrical conductivity, to improve heat retention within the tissue, and to modulate tolerance of tumor tissue to hyperthermia. Contrast-enhanced computed tomography, magnetic resonance imaging, ultrasound or positron emission tomography are applied to control the effectiveness of radiofrequency ablation. The long-term results of radiofrequency ablation are controversial.

  19. Optical properties of tin oxide nanoparticles prepared by laser ablation in water: Influence of laser ablation time duration and laser fluence

    International Nuclear Information System (INIS)

    Desarkar, Himadri Sankar; Kumbhakar, P.; Mitra, A.K.

    2012-01-01

    Colloidal tin oxide nanoparticles are prepared by laser (having a wavelength of 1064 nm) ablation of tin metallic target immersed in pure deionized water. The influences of laser ablation time and laser fluence on the size and optical properties of the synthesized nanoparticles are studied. Prepared tin oxide nanoparticles are characterized by transmission electron microscope, selected area electron diffraction and UV–Visible absorption spectroscopy. The morphology of prepared tin oxide nanoparticles is found to be mostly spherical and with sizes in the nanometric range (mean radius of 3.2 to 7.3 nm). The measured UV–Visible absorption spectra show the presence of absorption peaks in the ultraviolet region. The band gap energy of samples prepared with different laser ablation time duration is calculated and is found to be increased with decrease in size (radius) of the prepared nanoparticles. Photoluminescence emission measurements at room temperature show that all the samples exhibit photoluminescence in the visible region. The peak photoluminescence emission intensity in the sample prepared with 50 min of laser ablation time is 3.5 times larger than that obtained in the sample prepared with 10 min of laser ablation time. - Highlights: ► SnO 2 nanoparticles (6.4–14.6 nm) are prepared by laser ablation in liquid technique. ► The influences of laser ablation time and laser fluence are studied. ► Samples are characterized by TEM and UV–Visible absorption spectroscopy. ► UV–Visible absorption spectra exhibit quantum confinement effect. ► Samples exhibit enhanced photoluminescence emissions in the visible region.

  20. Effect of liquid film on near-threshold laser ablation of a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongsik; Oh, Bukuk; Lee, Ho

    2004-01-30

    Enhancement of material ablation and photoacoustic excitation by an artificially deposited liquid film in the process of pulsed-laser ablation (PLA) is investigated in this paper. Ablation threshold, ablation rate, surface topography, and acoustic-transient emission are also measured for dry and liquid film-coated surfaces. The physical mechanisms of enhanced ablation in the liquid-assisted process are analyzed at relatively low laser fluences with negligible effect of laser-produced plasma. Particularly, correlation between material ablation and acoustic-transient generation is examined. In the experiment, aluminum thin-films and bulk foils are ablated by Q-switched Nd:YAG laser pulses. The dependence of ablation rate and laser-induced topography on liquid film thickness and chemical composition is also examined. Photoacoustic emission is measured by the probe beam deflection method utilizing a CW HeNe laser and a microphone. In comparison with a dry ablation process, the liquid-assisted ablation process results in substantially augmented ablation efficiency and reduced ablation threshold. The results indicate that both increased laser-energy coupling, i.e., lowered reflectance, and amplified photoacoustic excitation in explosive vaporization of liquid are responsible for the enhanced material ablation.

  1. Effect of carbide particles on the ablation properties of tungsten composites

    International Nuclear Information System (INIS)

    Song Guiming; Zhou Yu; Wang Yujin

    2003-01-01

    The high temperature ablation behavior of tungsten composites containing carbides produced by vacuum hot pressing is studied as a function of reinforcement chemistry (ZrC and TiC) and content using a self-made oxyacetylene ablation equipment. A dynamic responding multiwavelength pyrometer was employed to measure the temperature of the ablation surface, and a thermocouple was employed to measure the temperature of the back surface during the time that a specimen was being ablated. The mass and linear ablation rates are lower in composites containing ZrC, decreasing with increasing particle content in both composites system. The values of the mass and linear ablation rates were in the order from high to low: W>30TiC/W>40TiC/W>30ZrC/W>40ZrC/W (30TiC/W stands for 30 vol.% TiC particle content in the W matrix, the same below). The important temperature curves of the ablation surfaces of specimens were successfully detected online. Ablated surfaces and vertical sections of the specimens were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Thermochemical oxidation of tungsten, TiC, and ZrC was the main ablation mechanism of ZrC/W and TiC/W composites. These ablation behaviors are discussed based on the thermophysical and chemical properties of both the composite systems

  2. Ablation of liver metastases by radiofrequency

    International Nuclear Information System (INIS)

    Baere, T. de

    2012-01-01

    Radiofrequency is a thermal ablative technique that is most often used percuteanously under image guidance. Thermal damage is obtained through frictional heating of a high frequency current. The maximal volume of destruction obtained in one radiofrequency delivery is around 4 cm and consequently, best indication for treatment are tumours below 3 cm. When compared, radiofrequency and surgical removal for tumours below 25 mm in diameter demonstrated a rate of incomplete resection/ablation of 6% and 7.3% respectively. Median survival after the first radiofrequency of a liver metastasis of CRC is reported to be 24 to 52 months with a 5 years overall survival of 18 to 44%. The median overall survival increases from 22 to 48 months depending on the use of radiofrequency ablation as rescue treatment after failure of others, or as a first line treatment. For patients with a single tumour, less than 4 cm, the survival rates at 1, 3, and 5 years are respectively 97%, 84% and 40%, with a median survival of 50 months. Follow-up imaging requires to use contrast-enhanced CT or MRI, looking for local recurrences evidenced by local foci of enhancement at the periphery of the ablation zone. (author)

  3. Improvement of the surface finish obtained by laser ablation with a Nd: YAG laser on pre-ablated tool steel

    CSIR Research Space (South Africa)

    Steyn, J

    2007-01-01

    Full Text Available . In recent years, these lasers have been used in other fields, such as laser ablation of small tools for plastics injection moulding. Laser ablation is a technology that is investigated as a method to improve the surface finish in tool steel. Different...

  4. Surgical Ablation of Atrial Fibrillation Using Energy Sources.

    Science.gov (United States)

    Brick, Alexandre Visconti; Braile, Domingo Marcolino

    2015-01-01

    Surgical ablation, concomitant with other operations, is an option for treatment in patients with chronic atrial fibrillation. The aim of this study is to present a literature review on surgical ablation of atrial fibrillation in patients undergoing cardiac surgery, considering energy sources and return to sinus rhythm. A comprehensive survey was performed in the literature on surgical ablation of atrial fibrillation considering energy sources, sample size, study type, outcome (early and late), and return to sinus rhythm. Analyzing studies with immediate results (n=5), the percentage of return to sinus rhythm ranged from 73% to 96%, while those with long-term results (n=20) (from 12 months on) ranged from 62% to 97.7%. In both of them, there was subsequent clinical improvement of patients who underwent ablation, regardless of the energy source used. Surgical ablation of atrial fibrillation is essential for the treatment of this arrhythmia. With current technology, it may be minimally invasive, making it mandatory to perform a procedure in an attempt to revert to sinus rhythm in patients requiring heart surgery.

  5. 308-nm excimer laser ablation of human cartilage

    Science.gov (United States)

    Prodoehl, John A.; Rhodes, Anthony L.; Meller, Menachem M.; Sherk, Henry H.

    1993-07-01

    The XeCl excimer laser was investigated as an ablating tool for human fibrocartilage and hyaline cartilage. Quantitative measurements were made of tissue ablation rates as a function of fluence in meniscal fibrocartilage and articular hyaline cartilage. A force of 1.47 Newtons was applied to an 800 micrometers fiber with the laser delivering a range of fluences (40 to 190 mj/mm2) firing at a frequency of 5 Hz. To assess the effect of repetition rate on ablation rate, a set of measurements was made at a constant fluence of 60 mj/mm2, with the repetition rate varying from 10 to 40 Hz. Histologic and morphometric analysis was performed using light microscopy. The results of these studies revealed that the ablation rate was directly proportional to fluence over the range tested. Fibrocartilage was ablated at a rate 2.56 times faster than hyaline cartilage at the maximum fluence tested. Repetition rate had no effect on the penetration per pulse. Adjacent tissue damage was noted to be minimal (10 - 70 micrometers ).

  6. Computational modeling of ultra-short-pulse ablation of enamel

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Bailey, D.S.; Young, D.A. [and others

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 sec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  7. Femtosecond pulsed laser ablation of GaAs

    International Nuclear Information System (INIS)

    Trelenberg, T.W.; Dinh, L.N.; Saw, C.K.; Stuart, B.C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed

  8. Percutaneous radiofrequency ablation of renal tumors: Midterm results in 16 patients

    International Nuclear Information System (INIS)

    Memarsadeghi, Mazda; Schmook, Theresia; Remzi, Mesut; Weber, Michael; Poetscher, Gerda; Lammer, Johannes; Kettenbach, Joachim

    2006-01-01

    Purpose: To evaluate the outcome of 16 patients after percutaneous radiofrequency ablation of renal tumors. Materials and methods: Sixteen patients (nine women, seven men; mean age, 61 ± 9 years) with 24 unresectable renal tumors (mean volume, 4.3 ± 4.3 cm 3 ) underwent CT-guided (n = 20) or MR imaging-guided (n = 4) percutaneous radiofrequency ablation using an expandable electrode (Starburst XL TM , RITA Medical Systems, Mountain View, CA) with a 150-W generator. The initial follow-up imaging was performed within 1-30 days after RF ablation, then at 3-6 month intervals using either CT or MRI. Residual tumor volume and coagulation necrosis was assessed, and statistical correlation tests were obtained to determine the strength of the relationship between necrosis volume and number of ablations. Results: Overall, 97 overlapping RF ablations were performed (mean, 3.5 ± 1.5 ablations per tumor) during 24 sessions. Five or more RF ablations per tumor created significant larger necrosis volumes than 1-2 (p .034) or 3-4 ablations (p = .020). A complete ablation was achieved in 20/24 tumors (primary technical success, 83%; mean volume of coagulation necrosis: 10.2 ± 7.2 cm 3 ). Three of four residual tumors were retreated and showed complete necrosis thereafter. Three major complications (one percuatneous urinary fistula and two ureteral strictures) were observed after RF ablation. No further clinically relevant complications were observed and renal function remained stable. During a mean follow-up of 11.2 months (range, 0.2-31.5), 15/16 patients (94%) were alive. Only one patient had evidence of local recurrent tumor. Conclusion: The midterm results of percutaneous RF ablation for renal tumors are promising and show that RF ablation is well-suited to preserve renal function

  9. Transhemangioma Ablation of Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Pua, Uei

    2012-01-01

    Radiofrequency ablation (RFA) is a well-established treatment modality in the treatment of early hepatocellular carcinoma (HCC) [1]. Safe trajectory of the RFA probe is crucial in decreasing collateral tissue damage and unwarranted probe transgression. As a percutaneous technique, however, the trajectory of the needle is sometimes constrained by the available imaging plane. The presence of a hemangioma beside an HCC is uncommon but poses the question of safety related to probe transgression. We hereby describe a case of transhemangioma ablation of a dome HCC.

  10. Transhemangioma Ablation of Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Pua, Uei, E-mail: druei@yahoo.com [Tan Tock Seng Hospital, Department of Diagnostic Radiology (Singapore)

    2012-12-15

    Radiofrequency ablation (RFA) is a well-established treatment modality in the treatment of early hepatocellular carcinoma (HCC) [1]. Safe trajectory of the RFA probe is crucial in decreasing collateral tissue damage and unwarranted probe transgression. As a percutaneous technique, however, the trajectory of the needle is sometimes constrained by the available imaging plane. The presence of a hemangioma beside an HCC is uncommon but poses the question of safety related to probe transgression. We hereby describe a case of transhemangioma ablation of a dome HCC.

  11. Hydrogen pellet ablation and accelerator by current in high temperature plasmas

    International Nuclear Information System (INIS)

    Kuteev, B.V.

    1995-01-01

    Hydrogen pellet ablation and acceleration by current in high temperature plasmas are analyzed. The present state of ablation theory and experiment is discussed and an ablation model is formulated. This model takes into account the energy distribution of the particles (both electrons and ions) participating in the ablation process, electrostatic effects of the cloud charging and changes of the pellet form during ablation. Without charging the pellet form tends to a shape resembling a lentil while it remains almost spherical if charged. A new algorithm for ablation rate calculations that can be used for an arbitrary initial form of the pellet is described. The results of this kinetic two dimensional approach differ from those of the Parks ablation scaling used in the ITER design by not more than 30%. Plasma shielding effects are not significant in the ablation if strong turbulence in the cloud is taken into account. Acceleration analysis is based on the Braginskii corrected electron distribution function. For the lentil mode of ablation, acceleration is higher than those for the charged mode by a factor of 1.76. The ablation models are compared with the experiments on T-10, JET, TFTR, Heliotron-E and Tore Supra. A sensitivity analysis shows that pellet size and electron temperature are the most significant factors for determination of the penetration length. The available database of penetration lengths is not sufficient for distinguishing between the models. Acceleration for the charged model correlates with experimental data better than that for the lentil mode. The effect of the hot ions is seen on the ablation. Finally, ablation at reactor relevant plasma and pellet parameters is considered. This range of the plasma parameters needs a correction of the ablation scaling as follows: dN/dt ∼ n 0.453 e T 1.72 e r 1.443 p M -0.283 i , where n e and T e are the electron density and temperature, respectively, and r p and M i are the pellet radius and atomic mass

  12. Histopathology of cryoballoon ablation-induced phrenic nerve injury.

    Science.gov (United States)

    Andrade, Jason G; Dubuc, Marc; Ferreira, Jose; Guerra, Peter G; Landry, Evelyn; Coulombe, Nicolas; Rivard, Lena; Macle, Laurent; Thibault, Bernard; Talajic, Mario; Roy, Denis; Khairy, Paul

    2014-02-01

    Hemi-diaphragmatic paralysis is the most common complication associated with cryoballoon ablation for atrial fibrillation, yet the histopathology of phrenic nerve injury has not been well described. A preclinical randomized study was conducted to characterize the histopathology of phrenic nerve injury induced by cryoballoon ablation and assess the potential for electromyographic (EMG) monitoring to limit phrenic nerve damage. Thirty-two dogs underwent cryoballoon ablation of the right superior pulmonary vein with the objective of inducing phrenic nerve injury. Animals were randomized 1:1 to standard monitoring (i.e., interruption of ablation upon reduction in diaphragmatic motion) versus EMG guidance (i.e., cessation of ablation upon a 30% reduction in the diaphragmatic compound motor action potential [CMAP] amplitude). The acute procedural endpoint was achieved in all dogs. Phrenic nerve injury was characterized by Wallerian degeneration, with subperineural injury to large myelinated axons and evidence of axonal regeneration. The degree of phrenic nerve injury paralleled the reduction in CMAP amplitude (P = 0.007). Animals randomized to EMG guidance had a lower incidence of acute hemi-diaphragmatic paralysis (50% vs 100%; P = 0.001), persistent paralysis at 30 days (21% vs 75%; multivariate odds ratio 0.12, 95% confidence interval [0.02, 0.69], P = 0.017), and a lesser severity of histologic injury (P = 0.001). Mature pulmonary vein ablation lesion characteristics, including circumferentiality and transmurality, were similar in both groups. Phrenic nerve injury induced by cryoballoon ablation is axonal in nature and characterized by Wallerian degeneration, with potential for recovery. An EMG-guided approach is superior to standard monitoring in limiting phrenic nerve damage. © 2013 Wiley Periodicals, Inc.

  13. Radiofrequency ablation for hepatocellular carcinoma: assistant techniques for difficult cases.

    Science.gov (United States)

    Inoue, Tatsuo; Minami, Yasunori; Chung, Hobyung; Hayaishi, Sousuke; Ueda, Taisuke; Tatsumi, Chie; Takita, Masahiro; Kitai, Satoshi; Hatanaka, Kinuyo; Ishikawa, Emi; Yada, Norihisa; Hagiwara, Satoru; Ueshima, Kazuomi; Kudo, Masatoshi

    2010-07-01

    To confirm the safety and effectiveness of techniques to assist radiofrequency ablation (RFA) for difficult cases, we retrospectively evaluated successful treatment rates, early complications and local tumor progressions. Between June 1999 and April 2009, a total of 341 patients with 535 nodules were treated as difficult cases. Artificial pleural effusion assisted ablation was performed on 64 patients with 82 nodules. Artificial ascites-assisted ablation was performed on 11 patients with 13 nodules. Cooling by endoscopic nasobiliary drainage (ENBD) tube-assisted ablation was performed on 6 patients with 8 nodules. When the tumors were not well visualized with conventional B-mode ultrasonography (US), contrast-enhanced US-assisted ablation with Levovist or Sonazoid or virtual CT sonography-assisted ablation was performed. Contrast-enhanced US-assisted ablation was performed on 139 patients with 224 nodules and virtual CT sonography-assisted ablation was performed on 121 patients with 209 nodules. In total, complete ablation was achieved in 514 of 535 (96%) nodules in difficult cases. For RFA with artificial pleural effusion, artificial ascites and ENBD, complete response was confirmed in all cases. For contrast-enhanced US- and CT sonography-assisted ablation, complete response was 95%. Early complications were recognized in 24 cases (4.5%). All cases recovered with no invasive treatment. Local tumor recurrence was investigated in 377 nodules of 245 patients, and 69 (18%) nodules were positive. Tumor recurrences in each assisted technique were 14.7% in artificial pleural effusion cases, 7% in artificial ascites, 12.5% in ENBD tube cases, 31% in virtual CT sonography, and 8.5% in contrast-enhanced US. Although local tumor progression needs to be carefully monitored, assisted techniques of RFA for difficult cases are well tolerated and expand the indications of RFA. Copyright (c) 2010 S. Karger AG, Basel.

  14. Effects of endocardial microwave energy ablation

    Directory of Open Access Journals (Sweden)

    Vicente Climent

    2005-07-01

    Full Text Available Until recently the treatment of atrial fibrillation (AF consisted primarily of palliation, mostly in the form of pharmacological intervention. However because of recent advances in nonpharmacologic therapies, the current expectation of patients and referring physicians is that AF will be cured, rather than palliated. In recent years there has been a rapid expansion in the availability and variety of energy sources and devices for ablation. One of these energies, microwave, has been applied clinically only in the last few years, and may be a promising technique that is potentially capable of treating a wide range of ventricular and supraventricular arrhythmias. The purpose of this study was to review microwave energy ablation in surgical treatment of AF with special interest in histology and ultrastructure of lesions produced by this endocardial ablation procedure.

  15. Deep Dive Topic: Choosing between ablators

    Energy Technology Data Exchange (ETDEWEB)

    Hurricane, O. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thomas, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Olson, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-14

    Recent data on implosions using identical hohlraums and very similar laser drives underscores the conundrum of making a clear choice of one ablator over another. Table I shows a comparison of Be and CH in a nominal length, gold, 575 μm-diameter, 1.6 mg/cc He gas-fill hohlraum while Table II shows a comparison of undoped HDC and CH in a +700 length, gold, 575 μm diameter, 1.6 mg/cc He gas fill hohlraum. As can be seen in the tables, the net integrated fusion performance of these ablators is the same to within error bars. In the case of the undoped HDC and CH ablators, the hot spot shapes of the implosions were nearly indistinguishable for the experiments listed in Table II.

  16. Image-Guided Spinal Ablation: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Koch, Guillaume, E-mail: guillaume.koch@chru-strasbourg.fr; Caudrelier, Jean, E-mail: jean.caudrelier@chru-strasbourg.fr; Garnon, Julien, E-mail: julien.garnon@chru-strasbourg.fr; Cazzato, Roberto Luigi, E-mail: roberto-luigi.cazzato@chru-strasbourg.fr; Edalat, Faramarz, E-mail: faramarz.edalat@gmail.com; Gangi, Afshin, E-mail: gangi@unistra.fr [Strasbourg University Hospital (France)

    2016-09-15

    The image-guided thermal ablation procedures can be used to treat a variety of benign and malignant spinal tumours. Small size osteoid osteoma can be treated with laser or radiofrequency. Larger tumours (osteoblastoma, aneurysmal bone cyst and metastasis) can be addressed with radiofrequency or cryoablation. Results on the literature of spinal microwave ablation are scarce, and thus it should be used with caution. A distinct advantage of cryoablation is the ability to monitor the ice-ball by intermittent CT or MRI. The different thermal insulation, temperature and electrophysiological monitoring techniques should be applied. Cautious pre-procedural planning and intermittent intra-procedural monitoring of the ablation zone can help reduce neural complications. Tumour histology, patient clinical-functional status and life-expectancy should define the most efficient and least disabling treatment option.

  17. Effect analysis of material properties of picosecond laser ablation for ABS/PVC

    Science.gov (United States)

    Tsai, Y. H.; Ho, C. Y.; Chiou, Y. J.

    2017-06-01

    This paper analytically investigates the picosecond laser ablation of ABS/PVC. Laser-pulsed ablation is a wellestablished tool for polymer. However the ablation mechanism of laser processing for polymer has not been thoroughly understood yet. This study utilized a thermal transport model to analyze the relationship between the ablation rate and laser fluences. This model considered the energy balance at the decomposition interface and Arrhenius law as the ablation mechanisms. The calculated variation of the ablation rate with the logarithm of the laser fluence agrees with the measured data. It is also validated in this work that the variation of the ablation rate with the logarithm of the laser fluence obeys Beer's law for low laser fluences. The effects of material properties and processing parameters on the ablation depth per pulse are also discussed for picosecond laser processing of ABS/PVC.

  18. Intense harmonic generation from various ablation media

    International Nuclear Information System (INIS)

    Ozaki, T.; Elouga, L.; Suzuki, M.; Kuroda, H.; Ganeev, R.A.

    2006-01-01

    Complete test of publication follows. High-order harmonic generation (HHG) is a unique source of coherent extreme ultraviolet (XUV) radiation, which can produce soft x-rays within the spectral 'water-window' (between 2.3 and 4.4 nm), and ultimately short pulses with attosecond duration. However, the intensity of present-day harmonics is still low, and serious applications will need an increase of the conversion efficiency. Instead of using gas media, one can also use ablation material, produced on solid targets using a low-intensity prepulse, as the nonlinear medium to generate high-order harmonics. Recently, we have successfully demonstrated the generation of up to the 63 rd harmonic (λ = 12.6 nm) of a Ti:sapphire laser radiation using boron ablation, and a strong enhancement in the intensity of the 13 th harmonic from indium ablation. These harmonics were generated with a modest laser (10 mJ, 150 fs) and with the pre-pulse to main pulse energy ratio constant. In this paper, we perform systematic investigations of ablation harmonics, using the 200 mJ, 30 fs Ti:sapphire beam line of the Canadian Advanced Laser Light Source (ALLS) facility. ALLS allows studying ablation harmonics over wider experimental parameters, and with independent control over the pre-pulse and main pulse energies. The 10 Hz, 200 mJ Ti:sapphire beam line of ALLS is divided into two beams. Each beam has its own energy control system, which allows independent control over the energy of each beam. One of the beams is used as a pre-pulse for creating ablation, which is focused onto the solid target without pulse compression, with pulse duration of 200 ps. The second beam is used as the main pulse for harmonic generation. The main pulse is delayed in time relative to the pre-pulse by propagating through an optical delay line, and then sent through a pulse compressor. The compressed pulse duration have typical pulse duration of 30 fs FWHM, which is then focused onto the ablation medium using MgF 2

  19. Assessment of ablative margin after radiofrequency ablation for hepatocellular carcinoma; comparison between magnetic resonance imaging with ferucarbotran and enhanced CT with iodized oil deposition

    International Nuclear Information System (INIS)

    Koda, Masahiko; Tokunaga, Shiho; Fujise, Yuki; Kato, Jun; Matono, Tomomitsu; Sugihara, Takaaki; Nagahara, Takakazu; Ueki, Masaru; Murawaki, Yoshikazu; Kakite, Suguru; Yamashita, Eijiro

    2012-01-01

    Background and purpose: Our aim was to investigate whether magnetic resonance imaging (MRI) with ferucarbotran administered prior to radiofrequency ablation could accurately assess ablative margin when compared with enhanced computed tomography (CT) with iodized oil marking. Materials and methods: We enrolled 27 patients with 32 hepatocellular carcinomas in which iodized oil deposits were visible throughout the nodule after transcatheter arterial chemoembolization. For these nodules, radiofrequency ablation was performed after ferucarbotran administration. We then performed T2-weighted MRI after 1 week and enhanced CT after 1 month. T2-weighted MRI demonstrated the ablative margin as a low-intensity rim. We classified the margin into three grades; margin (+): high-intensity area with a continuous low-intensity rim; margin zero: high-intensity area with a discontinuous low-intensity rim; and margin (−): high-intensity area extending beyond the low-intensity rim. Results: In 28 (86%) of 32 nodules, there was agreement between MRI and CT. The overall agreement between for the two modalities in the assessment of ablative margin was good (κ = 0.759, 95% confidence interval: 0.480–1.000, p < 0.001). In four nodules, ablative margins on MRI were underestimated by one grade compared with CT. Conclusion: MRI using ferucarbotran is less invasive and allows earlier assessment than CT. The MRI technique performed similarly to enhanced CT with iodized oil marking in evaluating the ablative margin after radiofrequency ablation.

  20. Innovative approach for in-vivo ablation validation on multimodal images

    Science.gov (United States)

    Shahin, O.; Karagkounis, G.; Carnegie, D.; Schlaefer, A.; Boctor, E.

    2014-03-01

    Radiofrequency ablation (RFA) is an important therapeutic procedure for small hepatic tumors. To make sure that the target tumor is effectively treated, RFA monitoring is essential. While several imaging modalities can observe the ablation procedure, it is not clear how ablated lesions on the images correspond to actual necroses. This uncertainty contributes to the high local recurrence rates (up to 55%) after radiofrequency ablative therapy. This study investigates a novel approach to correlate images of ablated lesions with actual necroses. We mapped both intraoperative images of the lesion and a slice through the actual necrosis in a common reference frame. An electromagnetic tracking system was used to accurately match lesion slices from different imaging modalities. To minimize the liver deformation effect, the tracking reference frame was defined inside the tissue by anchoring an electromagnetic sensor adjacent to the lesion. A validation test was performed using a phantom and proved that the end-to-end accuracy of the approach was within 2mm. In an in-vivo experiment, intraoperative magnetic resonance imaging (MRI) and ultrasound (US) ablation images were correlated to gross and histopathology. The results indicate that the proposed method can accurately correlate invivo ablations on different modalities. Ultimately, this will improve the interpretation of the ablation monitoring and reduce the recurrence rates associated with RFA.

  1. Direct His bundle pacing post AVN ablation.

    Science.gov (United States)

    Lakshmanadoss, Umashankar; Aggarwal, Ashim; Huang, David T; Daubert, James P; Shah, Abrar

    2009-08-01

    Atrioventricular nodal (AVN) ablation with concomitant pacemaker implantation is one of the strategies that reduce symptoms in patients with atrial fibrillation (AF). However, the long-term adverse effects of right ventricular (RV) apical pacing have led to the search for alternating sites of pacing. Biventricular pacing produces a significant improvement in functional capacity over RV pacing in patients undergoing AVN ablation. Another alternative site for pacing is direct His bundle to reduce the adverse outcome of RV pacing. Here, we present a case of direct His bundle pacing using steerable lead delivery system in a patient with symptomatic paroxysmal AF with concurrent AVN ablation.

  2. Bipolar radiofrequency ablation of liver metastases during laparotomy. First clinical experiences with a new multipolar ablation concept.

    Science.gov (United States)

    Ritz, Joerg-Peter; Lehmann, Kai S; Reissfelder, Christoph; Albrecht, Thomas; Frericks, Bernd; Zurbuchen, Urte; Buhr, Heinz J

    2006-01-01

    Radiofrequency ablation (RFA) is a promising method for local treatment of liver malignancies. Currently available systems for radiofrequency ablation use monopolar current, which carries the risk of uncontrolled electrical current paths, collateral damages and limited effectiveness. To overcome this problem, we used a newly developed internally cooled bipolar application system in patients with irresectable liver metastases undergoing laparotomy. The aim of this study was to clinically evaluate the safety, feasibility and effectiveness of this new system with a novel multipolar application concept. Patients with a maximum of five liver metastases having a maximum diameter of 5 cm underwent laparotomy and abdominal exploration to control resectability. In cases of irresectability, RFA with the newly developed bipolar application system was performed. Treatment was carried out under ultrasound guidance. Depending on tumour size, shape and location, up to three applicators were simultaneously inserted in or closely around the tumour, never exceeding a maximum probe distance of 3 cm. In the multipolar ablation concept, the current runs alternating between all possible pairs of consecutively activated electrodes with up to 15 possible electrode combinations. Post-operative follow-up was evaluated by CT or MRI controls 24-48 h after RFA and every 3 months. In a total of six patients (four male, two female; 61-68 years), ten metastases (1.0-5.5 cm) were treated with a total of 14 RF applications. In four metastases three probes were used, and in another four and two metastases, two and one probes were used, respectively. During a mean ablation time of 18.8 min (10-31), a mean energy of 48.8 kJ (12-116) for each metastases was applied. No procedure-related complications occurred. The patients were released from the hospital between 7 and 12 days post-intervention (median 9 days). The post-interventional control showed complete tumour ablation in all cases. Bipolar

  3. Endogenous TSH levels at the time of 131I ablation do not influence ablation success, recurrence-free survival or differentiated thyroid cancer-related mortality

    International Nuclear Information System (INIS)

    Vrachimis, Alexis; Riemann, Burkhard; Maeder, Uwe; Reiners, Christoph; Verburg, Frederik A.

    2016-01-01

    Based on a single older study it is established dogma that TSH levels should be ≥30 mU/l at the time of postoperative 131 I ablation in differentiated thyroid cancer (DTC) patients. We sought to determine whether endogenous TSH levels, i.e. after levothyroxine withdrawal, at the time of ablation influence ablation success rates, recurrence-free survival and DTC-related mortality. A total of 1,873 patients without distant metastases referred for postoperative adjuvant 131 I therapy were retrospectively included from 1991 onwards. Successful ablation was defined as stimulated Tg <1 μg/l. Age, gender and the presence of lymph node metastases were independent determinants of TSH levels at the time of ablation. TSH levels were not significantly related to ablation success rates (p = 0.34), recurrence-free survival (p = 0.29) or DTC -elated mortality (p = 0.82), but established risk factors such as T-stage, lymph node metastases and age were. Ablation was successful in 230 of 275 patients (83.6 %) with TSH <30 mU/l and in 1,359 of 1,598 patients (85.0 %) with TSH ≥30 mU/l. The difference was not significant (p = 0.55). Of the whole group of 1,873 patients, 21 had recurrent disease. There were no significant differences in recurrence rates between patients with TSH <30 mU/l and TSH ≥30 mU/l (p = 0.16). Ten of the 1,873 patients died of DTC. There were no significant differences in DTC-specific survival between patients with TSH <30 mU/l and TSH ≥30 mU/l (p = 0.53). The precise endogenous TSH levels at the time of 131 I ablation are not related to the ablation success rates, recurrence free survival and DTC related mortality. The established dogma that TSH levels need to be ≥30 mU/l at the time of 131 I ablation can be discarded. (orig.)

  4. Diagnostics of laser ablated plasma plumes

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2004-01-01

    The effect of an ambient gas on the expansion dynamics of laser ablated plasmas has been studied for two systems by exploiting different diagnostic techniques. First, the dynamics of a MgB2 laser produced plasma plume in an Ar atmosphere has been investigated by space-and time-resolved optical...... of the laser ablated plasma plume propagation in a background gas. (C) 2003 Elsevier B.V All rights reserved....

  5. Convergent ablation measurements with gas-filled rugby hohlraum on OMEGA

    Science.gov (United States)

    Casner, A.; Jalinaud, T.; Galmiche, D.

    2016-03-01

    Convergent ablation experiments with gas-filled rugby hohlraum were performed for the first time on the OMEGA laser facility. A time resolved 1D streaked radiography of capsule implosion is acquired in the direction perpendicular to hohlraum axis, whereas a 2D gated radiography is acquired at the same time along the hohlraum axis on a x-ray framing camera. The implosion trajectory has been measured for various kinds of uniformly doped ablators, including germanium-doped and silicon-doped polymers (CH), at two different doping fraction (2% and 4% at.). Our experiments aimed also at measuring the implosion performance of laminated capsules. A laminated ablator is constituted by thin alternate layers of un-doped and doped CH. It has been previously shown in planar geometry that laminated ablators could mitigate Rayleigh Taylor growth at ablation front. Our results confirm that the implosion of a capsule constituted with a uniform or laminated ablator behaves similarly, in accordance with post-shot simulations performed with the CEA hydrocode FCI2.

  6. Acute termination of human atrial fibrillation by identification and catheter ablation of localized rotors and sources: first multicenter experience of focal impulse and rotor modulation (FIRM) ablation.

    Science.gov (United States)

    Shivkumar, Kalyanam; Ellenbogen, Kenneth A; Hummel, John D; Miller, John M; Steinberg, Jonathan S

    2012-12-01

    Catheter ablation of atrial fibrillation (AF) currently relies on eliminating triggers, and no reliable method exists to map the arrhythmia itself to identify ablation targets. The aim of this multicenter study was to define the use of Focal Impulse and Rotor Modulation (FIRM) for identifying ablation targets. We prospectively enrolled the first (n = 14, 11 males) consecutive patients undergoing FIRM-guided ablation for persistent (n = 11) and paroxysmal AF at 5 centers. A 64-pole basket catheter was used for panoramic right and left atrial mapping during AF. AF electrograms were analyzed using a novel system to identify sustained rotors (spiral waves), or focal beats (centrifugal activation to surrounding atrium). Ablation was performed first at identified sources. The primary endpoints were acute AF termination or organization (>10% cycle length prolongation). Conventional ablation was performed only after FIRM-guided ablation. Twelve out of 14 cases were mapped. AF sources were demonstrated in all patients (average of 1.9 ± 0.8 per patient). Sources were left atrial in 18 cases, and right atrial in 5 cases, and 21/23 were rotors. FIRM-guided ablation achieved the acute endpoint in all patients, consisting of AF termination in n = 8 (4.9 ± 3.9 minutes at the primary source), and organization in n = 4. Total FIRM time for all patients was 12.3 ± 8.6 minutes. FIRM-guided ablation revealed localized AF rotors/focal sources in patients with paroxysmal, persistent and longstanding persistent AF. Brief targeted FIRM-guided ablation at a priori identified sites terminated or substantially organized AF in all cases prior to any other ablation. © 2012 Wiley Periodicals, Inc.

  7. Ablative thermal protection systems

    International Nuclear Information System (INIS)

    Vaniman, J.; Fisher, R.; Wojciechowski, C.; Dean, W.

    1983-01-01

    The procedures used to establish the TPS (thermal protection system) design of the SRB (solid rocket booster) element of the Space Shuttle vehicle are discussed. A final evaluation of the adequacy of this design will be made from data obtained from the first five Shuttle flights. Temperature sensors installed at selected locations on the SRB structure covered by the TPS give information as a function of time throughout the flight. Anomalies are to be investigated and computer design thermal models adjusted if required. In addition, the actual TPS ablator material loss is to be measured after each flight and compared with analytically determined losses. The analytical methods of predicting ablator performance are surveyed. 5 references

  8. Case Experience of Radiofrequency Ablation for Benign Thyroid Nodules: From an Ex Vivo Animal Study to an Initial Ablation in Taiwan

    Directory of Open Access Journals (Sweden)

    Ming-Tsang Lee

    2016-03-01

    Full Text Available Radiofrequency ablation (RFA is a minimally invasive technique, used with ultrasound or computed tomography guidance, which can produce tissue coagulation necrosis in various kinds of tumors in the human body. In the past 10 years, numerous studies about RFA in benign thyroid nodules have been published. Reviewing these studies, we noticed that the effectiveness of ablation was higher when it was performed with the “moving-shot technique” via an internally cooled electrode. A consensus statement published from the Korean Society of Radiology also suggested the moving-shot technique as a standard ablation procedure for benign thyroid nodule ablation in Korea. In Taiwan, most symptomatic benign nodules are currently treated with surgical removal. RFA for mass lesions is primarily performed for the treatment of metastatic hepatic tumors. In our case, we have attempted to introduce RFA for benign thyroid nodules in Taiwan. Because endocrinologists in Taiwan were not familiar with this technique, we adopted a stepwise approach in learning how to perform RFA. We conducted ex vivo animal ablation exercises to gain experience in setting the radiofrequency generator for the right ablation mode and appropriate power output. The thyroid nodule volume reduction rate after 1 year of follow up was approximately 50% in this case. The most important thing we learned from this trial is that we confirmed the safety of thyroid nodule ablation. To the best of our knowledge, this is the first reported study of RFA of a thyroid nodule in Taiwan.

  9. Radiofrequency ablation of hepatic metastasis: Results of treatment in forty patients

    Directory of Open Access Journals (Sweden)

    Rath G

    2008-01-01

    Full Text Available Aim: To evaluate the local control of hepatic metastasis with radiofrequency ablation treatment. Materials and Methods: We did a retrospective analysis in 40 patients treated with radiofrequency ablation for hepatic metastasis. The tumors ablated included up to two metastatic liver lesions, with primaries in breast, gastrointestinal tract, cervix, etc. Radiofrequency ablation was performed under general anesthesia in all cases, using ultrasound guidance. Radionics Cool-Tip RF System was used to deliver the treatment. Results: The median age of patients treated was 49 years. There were 13 female and 27 male patients. The median tumor size ablated was 1.5 cm (0.75-4.0 cm. A total of 52 radiofrequency ablation cycles were delivered. Successful ablation was achieved in all patients with hepatic metastasis less than 3 cm in size. Pain was the most common complication seen (75%. One patients developed skin burns. At 2-year follow-up 7.5% of patients had locally recurrent disease. Conclusions: Radiofrequency ablation is a minimally invasive treatment modality. It can be useful in a select group of patients with solitary liver metastasis of less than 3 cm size.

  10. Bundle branch block after ablation for Wolff-Parkinson-White syndrome.

    Science.gov (United States)

    Fuenmayor A, Abdel J; Rodríguez S, Yenny A

    2013-09-20

    Bundle branch block (BBB) is a difficult diagnosis in the Wolff-Parkinson-White syndrome (WPW). We investigated the clinical implications of BBB that appears after performing an accessory pathway (AP) ablation. We studied 199 patients with WPW who were submitted to AP ablation. Thirty (15%) exhibited BBB after the ablation. Twenty-two patients had right BBB and 8 had left BBB. Thirteen patients had right-sided AP and 17 had left-sided AP. They were compared with 82 similar patients without BBB after the AP ablation. Among the patients with BBB, 86.66% showed delays in the middle part of the QRS in the ECG recorded before ablation vs. 18.29% of the patients without BBB (p<0.05) (sensitivity 86%, specificity 81%, positive predictive value 67% and negative predictive value 93%). Forty-four percent of the patients with BBB had BBB morphology during orthodromic tachycardia vs. 10% of the patients without BBB (p<0.05) (sensitivity 44%, specificity 89%, positive predictive value 57% and negative predictive value 82%). No relationship was found between AP location and the site of the BBB. Ejection fraction was normal before (0.61 ± 0.03) and upon completion of follow-up (0.61 ± 0.07). BBB disappeared in 95.3% of the patients. Delays in the middle portion of the QRS may predict BBB after AP ablation. BBB after performing AP ablation is frequent, transient, benign, and not related to either the ablation lesion location or progression to structural heart disease. BBB after AP ablation may be related to cardiac memory. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Analysis of plasma-mediated ablation in aqueous tissue

    International Nuclear Information System (INIS)

    Jiao Jian; Guo Zhixiong

    2012-01-01

    Plasma-mediated ablation using ultrafast lasers in transparent media such as aqueous tissues is studied. It is postulated that a critical seed free electron density exists due to the multiphoton ionization in order to trigger the avalanche ionization which causes ablation and during the avalanche ionization process the contribution of laser-induced photon ionization is negligible. Based on this assumption, the ablation process can be treated as two separate processes - the multiphoton and avalanche ionizations - at different time stages; so that an analytical solution to the evolution of plasma formation is obtained for the first time. The analysis is applied to plasma-mediated ablation in corneal epithelium and validated via comparison with experimental data available in the literature. The critical seed free-electron density and the time to initiate the avalanche ionization for sub-picosecond laser pulses are analyzed. It is found that the critical seed free-electron density decreases as the pulse width increases, obeying a t p -5.65 rule. This model is further extended to the estimation of crater size in the ablation of tissue-mimic polydimethylsiloxane (PDMS). The results match well with the available experimental measurements.

  12. Real time assessment of RF cardiac tissue ablation with optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Demos, S G; Sharareh, S

    2008-03-20

    An optical spectroscopy approach is demonstrated allowing for critical parameters during RF ablation of cardiac tissue to be evaluated in real time. The method is based on incorporating in a typical ablation catheter transmitting and receiving fibers that terminate at the tip of the catheter. By analyzing the spectral characteristics of the NIR diffusely reflected light, information is obtained on such parameters as, catheter-tissue proximity, lesion formation, depth of penetration of the lesion, formation of char during the ablation, formation of coagulum around the ablation site, differentiation of ablated from healthy tissue, and recognition of micro-bubble formation in the tissue.

  13. Effect of Radiofrequency Endometrial Ablation on Dysmenorrhea.

    Science.gov (United States)

    Wyatt, Sabrina N; Banahan, Taylor; Tang, Ying; Nadendla, Kavita; Szychowski, Jeff M; Jenkins, Todd R

    To examine rates of dysmenorrhea after radiofrequency endometrial ablation in patients with and without known dysmenorrhea symptoms prior to the procedure in a diverse population. Retrospective cohort study (Canadian Task Force classification II-2). Academic gynecology practice. A total of 307 women underwent endometrial ablation between 2007 and 2013 at our institution. Patients who had preoperative and postoperative pain symptom assessments as well as a description of pain timing recorded were included in our analysis. Exclusion criteria were age dysmenorrhea was evaluated. Demographic information and other outcome variables were used to evaluate factors associated with resolution of dysmenorrhea. A total of 307 patients who underwent radiofrequency endometrial ablation were identified. After exclusions, 296 charts were examined, and 144 patients met our enrollment criteria. The mean age of the study cohort was 45.4 ± 6.2 years; 57 patients (40%) were African American, 16 (11%) had a body mass index (BMI) > 40, and 41 (29%) were of normal weight. Preoperative dysmenorrhea was reported by 100 patients (69%); 48 of these patients (48%) experienced resolution of symptoms postoperatively. Only 3 of the 44 patients (7%) without preoperative dysmenorrhea reported new-onset dysmenorrhea postoperatively. Significantly fewer patients had dysmenorrhea after compared to before radiofrequency ablation (55 of 144 [38%] vs 100 of 144 [69%]; p dysmenorrhea after ablation was associated with reduction in bleeding volume (p = .048) but not with a reduction in frequency of bleeding (p = .12). Approximately one-half of women who undergo radiofrequency endometrial ablation to treat heavy menstrual bleeding who also have preoperative dysmenorrhea exhibit documented pain resolution after the procedure. Resolution of dysmenorrhea is more likely if menstrual flow volume is decreased postprocedure. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  14. Testing and evaluation of light ablation decontamination

    International Nuclear Information System (INIS)

    Demmer, R.L.; Ferguson, R.L.

    1994-10-01

    This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment

  15. Ablative Laser Propulsion: An Update, Part I

    International Nuclear Information System (INIS)

    Pakhomov, Andrew V.; Cohen, Timothy; Lin Jun; Thompson, M. Shane; Herren, Kenneth A.

    2004-01-01

    This paper presents an updated review of studies on Ablative Laser Propulsion conducted by the Laser Propulsion Group (LPG) at the University of Alabama in Huntsville. In particular, we describe the newest results of our experimental study of specific impulses and coupling coefficients achieved by double-pulsed ablation of graphite, aluminum, copper and lead targets

  16. Phrenic Nerve Injury After Catheter Ablation of Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Jacques Clementy

    2007-01-01

    Full Text Available Phrenic Nerve Injury (PNI has been well studied by cardiac surgeons. More recently it has been recognized as a potential complication of catheter ablation with a prevalence of 0.11 to 0.48 % after atrial fibrillation (AF ablation. This review will focus on PNI after AF ablation. Anatomical studies have shown a close relationship between the right phrenic nerve and it's proximity to the superior vena cava (SVC, and the antero-inferior part of the right superior pulmonary vein (RSPV. In addition, the proximity of the left phrenic nerve to the left atrial appendage has been well established. Independent of the type of ablation catheter (4mm, 8 mm, irrigated tip, balloon or energy source used (radiofrequency (RF, ultrasound, cryothermia, and laser; the risk of PNI exists during ablation at the critical areas listed above. Although up to thirty-one percent of patients with PNI after AF ablation remain asymptomatic, dyspnea remain the cardinal symptom and is present in all symptomatic patients. Despite the theoretical risk for significant adverse effect on functional status and quality of life, short-term outcomes from published studies appear favorable with 81% of patients with PNI having a complete recovery after 7 ± 7 months.Conclusion: Existing studies have described PNI as an uncommon but avoidable complication in patients undergoing pulmonary vein isolation for AF. Prior to ablation at the SVC, antero-inferior RSPV ostium or the left atrial appendage, pacing should be performed before energy delivery. If phrenic nerve capture is documented, energy delivery should be avoided at this site. Electrophysiologist's vigilance as well as pacing prior to ablation at high risk sites in close proximity to the phrenic nerve are the currently available tools to avoid the complication of PNI.

  17. Organized Atrial Tachycardias after Atrial Fibrillation Ablation

    Science.gov (United States)

    Castrejón-Castrejón, Sergio; Ortega, Marta; Pérez-Silva, Armando; Doiny, David; Estrada, Alejandro; Filgueiras, David; López-Sendón, José L.; Merino, José L.

    2011-01-01

    The efficacy of catheter-based ablation techniques to treat atrial fibrillation is limited not only by recurrences of this arrhythmia but also, and not less importantly, by new-onset organized atrial tachycardias. The incidence of such tachycardias depends on the type and duration of the baseline atrial fibrillation and specially on the ablation technique which was used during the index procedure. It has been repeatedly reported that the more extensive the left atrial surface ablated, the higher the incidence of organized atrial tachycardias. The exact origin of the pathologic substrate of these trachycardias is not fully understood and may result from the interaction between preexistent regions with abnormal electrical properties and the new ones resultant from radiofrequency delivery. From a clinical point of view these atrial tachycardias tend to remit after a variable time but in some cases are responsible for significant symptoms. A precise knowledge of the most frequent types of these arrhythmias, of their mechanisms and components is necessary for a thorough electrophysiologic characterization if a new ablation procedure is required. PMID:21941669

  18. Pulsed Radiofrequency Ablation for Treating Sural Neuralgia.

    Science.gov (United States)

    Abd-Elsayed, Alaa; Jackson, Markus; Plovanich, Elizabeth

    2018-01-01

    Sural neuralgia is persistent pain in the distribution of the sural nerve that provides sensation to the lateral posterior corner of the leg, lateral foot, and fifth toe. Sural neuralgia is a rare condition but can be challenging to treat and can cause significant limitation. We present 2 cases of sural neuralgia resistant to conservative management that were effectively treated by pulsed radiofrequency ablation. A 65-year-old female developed sural neuralgia after a foot surgery and failed conservative management. She had successful sural nerve blocks, and pulsed radiofrequency ablation led to an 80% improvement in her pain. A 33-year-old female presented with sural neuralgia secondary to two falls. The patient had tried several conservative modalities with no success. We performed diagnostic blocks and pulsed radiofrequency ablation, and the patient reported 80% improvement in her pain. Pulsed radiofrequency ablation may be a safe and effective treatment for patients with sural neuralgia that does not respond to conservative therapy. However, studies are needed to elucidate its effectiveness and safety profile.

  19. A randomized prospective long-term (>1 year) clinical trial comparing the efficacy and safety of radiofrequency ablation to 980 nm laser ablation of the great saphenous vein.

    Science.gov (United States)

    Sydnor, Malcolm; Mavropoulos, John; Slobodnik, Natalia; Wolfe, Luke; Strife, Brian; Komorowski, Daniel

    2017-07-01

    Purpose To compare the short- and long-term (>1 year) efficacy and safety of radiofrequency ablation (ClosureFAST™) versus endovenous laser ablation (980 nm diode laser) for the treatment of superficial venous insufficiency of the great saphenous vein. Materials and methods Two hundred patients with superficial venous insufficiency of the great saphenous vein were randomized to receive either radiofrequency ablation or endovenous laser ablation (and simultaneous adjunctive therapies for surface varicosities when appropriate). Post-treatment sonographic and clinical assessment was conducted at one week, six weeks, and six months for closure, complications, and patient satisfaction. Clinical assessment of each patient was conducted at one year and then at yearly intervals for patient satisfaction. Results Post-procedure pain ( p radiofrequency ablation group. Improvements in venous clinical severity score were noted through six months in both groups (endovenous laser ablation 6.6 to 1; radiofrequency ablation 6.2 to 1) with no significant difference in venous clinical severity score ( p = 0.4066) or measured adverse effects; 89 endovenous laser ablation and 87 radiofrequency patients were interviewed at least 12 months out with a mean long-term follow-up of 44 and 42 months ( p = 0.1096), respectively. There were four treatment failures in each group, and every case was correctable with further treatment. Overall, there were no significant differences with regard to patient satisfaction between radiofrequency ablation and endovenous laser ablation ( p = 0.3009). There were no cases of deep venous thrombosis in either group at any time during this study. Conclusions Radiofrequency ablation and endovenous laser ablation are highly effective and safe from both anatomic and clinical standpoints over a multi-year period and neither modality achieved superiority over the other.

  20. Comparison of the Effectiveness of Ablative and Non-Ablative Fractional Laser Treatments for Early Stage Thyroidectomy Scars

    Directory of Open Access Journals (Sweden)

    Jin-Uk Jang

    2016-11-01

    Full Text Available BackgroundOpen thyroidectomy is conventionally performed at the anterior side of neck, which is a body part with a comparatively great degree of open exposure; due to this, postoperative scarring may cause distress in patients. We aimed to compare the effects of ablative and nonablative fractional laser treatments on thyroidectomy scars. We examined medical records in a retrospective manner and analyzed scars based on their digital images by using the modified Manchester Scar Scale (mMSS.MethodsBetween February 2012 and May 2013, 55 patients with thyroidectomy scars were treated with ablative (34 patients or nonablative (21 patients fractional laser. Each patient underwent 4 laser treatment sessions in 3–4 week intervals, 1–2 months postoperatively. Scar improvement was assessed using patient images and the mMSS scale.ResultsThe mean decrease in scar score was 3.91 and 3.47 in the ablative and nonablative groups, respectively; the reduction between 2 groups did not exhibit any significant difference (P=0.16. We used the scale once again to individually evaluate scar attributes. The nonablative group accounted for a considerably higher color score value (P=0.03; the ablative group accounted for a considerably higher contour score value (P<0.01. Patient satisfaction was high and no complications occurred.ConclusionsBoth types of fractional laser treatments can be used successfully for thyroidectomy scar treatment with minimal complications; however, results indicate that higher effectiveness may be obtained from the use of ablative and nonablative lasers for hypertrophic scars and early erythematous scars, respectively. Therefore, the appropriate laser for scar treatment should be selected according to its specific characteristics.

  1. Targeted Vessel Ablation for More Efficient Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Voogt, Marianne J., E-mail: m.voogt@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands); Stralen, Marijn van [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Ikink, Marlijne E. [University Medical Center Utrecht, Department of Radiology (Netherlands); Deckers, Roel; Vincken, Koen L.; Bartels, Lambertus W. [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Mali, Willem P. Th. M.; Bosch, Maurice A. A. J. van den [University Medical Center Utrecht, Department of Radiology (Netherlands)

    2012-10-15

    Purpose: To report the first clinical experience with targeted vessel ablation during magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) treatment of symptomatic uterine fibroids. Methods: Pretreatment T1-weighted contrast-enhanced magnetic resonance angiography was used to create a detailed map of the uterine arteries and feeding branches to the fibroids. A three-dimensional overlay of the magnetic resonance angiography images was registered on 3D T2-weighted pretreatment imaging data. Treatment was focused primarily on locations where supplying vessels entered the fibroid. Patients were followed 6 months after treatment with a questionnaire to assess symptoms and quality of life (Uterine Fibroid Symptom and Quality of Life) and magnetic resonance imaging to quantify shrinkage of fibroid volumes. Results: In two patients, three fibroids were treated with targeted vessel ablation during MR-HIFU. The treatments resulted in almost total fibroid devascularization with nonperfused volume to total fibroid volume ratios of 84, 68, and 86%, respectively, of treated fibroids. The predicted ablated volumes during MR-HIFU in patients 1 and 2 were 45, 40, and 82 ml, respectively, while the nonperfused volumes determined immediately after treatment were 195, 92, and 190 ml respectively, which is 4.3 (patient 1) and 2.3 (patient 2) times higher than expected based on the thermal dose distribution. Fibroid-related symptoms reduced after treatment, and quality of life improved. Fibroid volume reduction ranged 31-59% at 6 months after treatment. Conclusion: Targeted vessel ablation during MR-HIFU allowed nearly complete fibroid ablation in both patients. This technique may enhance the use of MR-HIFU for fibroid treatment in clinical practice.

  2. Microwave ablation of renal tumors: state of the art and development trends.

    Science.gov (United States)

    Floridi, Chiara; De Bernardi, Irene; Fontana, Federico; Muollo, Alessandra; Ierardi, Anna Maria; Agostini, Andrea; Fonio, Paolo; Squillaci, Ettore; Brunese, Luca; Fugazzola, Carlo; Carrafiello, Gianpaolo

    2014-07-01

    In the last decades an increased incidence of new renal tumor cases has been for clinically localized, small tumors elderly patients, with medical comorbidities whom the risk of surgical complications may pose a greater risk of death than that due to the tumor itself. In these patients, unsuitable for surgical approach, thermal ablation represents a valid alternative to traditional surgery. Thermal ablation is a less invasive, less morbid treatment option thanks to reduced blood loss, lower incidence of complications during the procedure and a less long convalescence. At present, the most widely used thermal ablative techniques are cryoablation, radiofrequency ablation and microwave ablation (MWA). MWA offers many benefits of other ablation techniques and offers several other advantages: higher intratumoral temperatures, larger tumor ablation volumes, faster ablation times, the ability to use multiple applicators simultaneously, optimal heating of cystic masses and tumors close to the vessels and less procedural pain. This review aims to provide the reader with an overview about the state of the art of microwave ablation for renal tumors and to cast a glance on the new development trends of this technique.

  3. Radiofrequency Ablation of Lung Malignancies: Where Do We Stand?

    International Nuclear Information System (INIS)

    Lencioni, Riccardo; Crocetti, Laura; Cioni, Roberto; Mussi, Alfredo; Fontanini, Gabriella; Ambrogi, Marcello; Franchini, Chiara; Cioni, Dania; Fanucchi, Olivia; Gemignani, Raffaello; Baldassarri, Rubia; Angeletti, Carlo Alberto; Bartolozzi, Carlo

    2004-01-01

    Percutaneous radiofrequency (RF) ablation is a minimally invasive technique used to treat solid tumors. Because of its ability to produce large volumes of coagulation necrosis in a controlled fashion, this technique has gained acceptance as a viable therapeutic option for unresectable liver malignancies. Recently, investigation has been focused on the clinical application of RF ablation in the treatment of lung malignancies. In theory, lung tumors are well suited to RF ablation because the surrounding air in adjacent normal parenchyma provides an insulating effect, thus facilitating energy concentration within the tumor tissue. Experimental studies in rabbits have confirmed that lung RF ablation can be safely and effectively performed via a percutaneous, transthoracic approach, and have prompted the start of clinical investigation. Pilot clinical studies have shown that RF ablation enables successful treatment of relatively small lung malignancies with a high rate of complete response and acceptable morbidity, and have suggested that the technique could represent a viable alternate or complementary treatment method for patients with non-small cell lung cancer or lung metastases of favorable histotypes who are not candidates for surgical resection. This article gives an overview of lung RF ablation, discussing experimental animal findings, rationale for clinical application, technique and methodology, clinical results, and complications

  4. Transpiration cooling assisted ablative thermal protection of aerospace substructures

    International Nuclear Information System (INIS)

    Khan, M.B.; Iqbal, N.; Haider, Z.

    2009-01-01

    Ablatives are heat-shielding materials used to protect aerospace substructures. These materials are sacrificial in nature and provide protection primarily through the large endothermic transformation during exposure to hyper thermal environment such as encountered in re-entry modules. The performance of certain ablatives was reported in terms of their TGA/DTA in Advanced Materials-97 (pp 57-65). The focus of this earlier research resided in the consolidation of interface between the refractory inclusion and the host polymeric matrix to improve thermal resistance. In the present work we explore the scope of transpiration cooling in ablative performance through flash evaporation of liquid incorporated in the host EPDM (Ethylene Propylene Diene Monomer) matrix. The compression-molded specimens were exposed separately to plasma flame (15000 C) and oxyacetylene torch (3000 C) and the back face transient temperature is recorded in situ employing a thermocouple/data logger system. Both head on impingement (HOI) and parallel flow (PF) through a central cavity in the ablator were used. It is observed that transpiration cooling is effective and yields (a) rapid thermal equilibrium in the specimen, (b) lower back face temperature and (c) lower ablation rate, compared to conventional ablatives. SEM/EDS analysis is presented to amplify the point. (author)

  5. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    Science.gov (United States)

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to

  6. Radiofrequency ablation of liver metastases; Radiofrequenzablation von Lebermetastasen

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, P.L.; Clasen, S.; Schmidt, D.; Wiskirchen, J.; Tepe, G.; Claussen, C.D. [Abt. fuer Radiologische Diagnostik, Eberhard-Karls-Univ. Tuebingen (Germany); Boss, A. [Abt. fuer Radiologische Diagnostik, Eberhard-Karls-Univ. Tuebingen (Germany); Sektion fuer Experimentelle Radiologie der Abt. fuer Radiologische Diagnostik, Eberhard-Karls-Univ. Tuebingen (Germany); Gouttefangeas, C. [Abt. Immunologie des Inst. fuer Zellbiologie, Eberhard-Karls-Univ. Tuebingen (Germany); Burkart, C. [Zentrum fuer gastroenterologische Onkologie der Medizinischen Klinik, Eberhard-Karls-Univ. Tuebingen (Germany)

    2004-04-01

    The liver is the second only to lymph nodes as the most common site of metastatic disease irrespective of the primary tumor. Up to 50% of all patients with malignant diseases will develop liver metastases with a significant morbidity and mortality. Although the surgical resection leads to an improvement of the survival time, only approximately 20% of the patients are eligible for surgical intervention. Radiofrequency (RF) ablation represents one of the most important alternatives as well as complementary methods for the therapy of liver metastases. RF ablation can lead in a selected patient group to a palliation or to an increased life expectancy. RF ablation appears either safer (vs. cryotherapy) or easier (vs. laser) or more effective (percutaneous ethanol instillation [PEI]), transarterial chemoembolisation [TACE] in comparison with other minimal invasive procedures. RF ablation can be performed percutaneously, laparoscopically or intraoperatively and may be combined with chemotherapy as well as with surgical resection. Permanent technical improvements of RF systems, a better understanding of the underlying electrophysiological principles and an interdisciplinary approach will lead to a prognosis improvement in patients with liver metastases. (orig.) [German] Die Leber ist unabhaengig vom Primaertumor nach den Lymphknoten die zweithaeufigste Lokalisation von Metastasen. Bis zu 50% aller Patienten mit malignen Erkrankungen werden im Verlauf ihrer Erkrankung Lebermetastasen entwickeln, die mit einer signifikanten Morbiditaet und Mortalitaet verbunden sind. Obwohl die chirurgische Resektion zu einer verlaengerten Ueberlebenszeit fuehrt, sind nur ca. 20% der Patienten fuer einen chirurgischen Eingriff geeignet. Die Radiofrequenz-(RF-)Ablation stellt derzeit eine der effektivsten Alternativen und komplementaeren Methoden bei der Therapie von Lebermetastasen dar. In einem selektierten Patientengut fuehrt die RF-Ablation ueber den palliativen Einsatz hinaus zu einer

  7. Endogenous TSH levels at the time of {sup 131}I ablation do not influence ablation success, recurrence-free survival or differentiated thyroid cancer-related mortality

    Energy Technology Data Exchange (ETDEWEB)

    Vrachimis, Alexis; Riemann, Burkhard [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Maeder, Uwe; Reiners, Christoph [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Verburg, Frederik A. [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany)

    2016-02-15

    Based on a single older study it is established dogma that TSH levels should be ≥30 mU/l at the time of postoperative {sup 131}I ablation in differentiated thyroid cancer (DTC) patients. We sought to determine whether endogenous TSH levels, i.e. after levothyroxine withdrawal, at the time of ablation influence ablation success rates, recurrence-free survival and DTC-related mortality. A total of 1,873 patients without distant metastases referred for postoperative adjuvant {sup 131}I therapy were retrospectively included from 1991 onwards. Successful ablation was defined as stimulated Tg <1 μg/l. Age, gender and the presence of lymph node metastases were independent determinants of TSH levels at the time of ablation. TSH levels were not significantly related to ablation success rates (p = 0.34), recurrence-free survival (p = 0.29) or DTC -elated mortality (p = 0.82), but established risk factors such as T-stage, lymph node metastases and age were. Ablation was successful in 230 of 275 patients (83.6 %) with TSH <30 mU/l and in 1,359 of 1,598 patients (85.0 %) with TSH ≥30 mU/l. The difference was not significant (p = 0.55). Of the whole group of 1,873 patients, 21 had recurrent disease. There were no significant differences in recurrence rates between patients with TSH <30 mU/l and TSH ≥30 mU/l (p = 0.16). Ten of the 1,873 patients died of DTC. There were no significant differences in DTC-specific survival between patients with TSH <30 mU/l and TSH ≥30 mU/l (p = 0.53). The precise endogenous TSH levels at the time of {sup 131}I ablation are not related to the ablation success rates, recurrence free survival and DTC related mortality. The established dogma that TSH levels need to be ≥30 mU/l at the time of {sup 131}I ablation can be discarded. (orig.)

  8. Convergent ablation measurements with gas-filled rugby hohlraum on OMEGA

    International Nuclear Information System (INIS)

    Casner, A.; Jalinaud, T.; Galmiche, D.

    2016-01-01

    Convergent ablation experiments with gas-filled rugby hohlraum were performed for the first time on the OMEGA laser facility. A time resolved 1D streaked radiography of capsule implosion is acquired in the direction perpendicular to hohlraum axis, whereas a 2D gated radiography is acquired at the same time along the hohlraum axis on a x-ray framing camera. The implosion trajectory has been measured for various kinds of uniformly doped ablators, including germanium-doped and silicon-doped polymers (CH), at two different doping fraction (2% and 4% at.). Our experiments aimed also at measuring the implosion performance of laminated capsules. A laminated ablator is constituted by thin alternate layers of un-doped and doped CH. It has been previously shown in planar geometry that laminated ablators could mitigate Rayleigh Taylor growth at ablation front. Our results confirm that the implosion of a capsule constituted with a uniform or laminated ablator behaves similarly, in accordance with post-shot simulations performed with the CEA hydrocode FCI2. (paper)

  9. Laser Ablation of Biological Tissue Using Pulsed CO2 Laser

    International Nuclear Information System (INIS)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-01-01

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO 2 laser (wavelength: 10.6 μm; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  10. Reassembling Solid Materials by Femtosecond Laser Ablation: Case of Aluminum Nitride

    Science.gov (United States)

    Kobayashi, Tohru; Matsuo, Yukari

    2013-06-01

    Through atomization and ionization, we could completely alter the composition of a nonconductive material, aluminum nitride, by femtosecond laser ablation. Preferential production of pure aluminum cluster cations Aln+ (n≤32) reflects not only their higher energetic stability compared with mixed clusters AlnNm+ but also completion of thermal relaxation in ablation plasma. Observation of metastable dissociation of Aln+ indicates that cluster cations have still enough internal energy for dissociation to occur, although the process is much slower than the cluster formation. Almost no cluster formation has been observed after nanosecond laser ablation of aluminum nitride, which highlights the distinct nature of ablation plasma produced by femtosecond laser ablation.

  11. Numerical Modeling of Ablation Heat Transfer

    Science.gov (United States)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  12. Kinetic depletion model for pellet ablation

    International Nuclear Information System (INIS)

    Kuteev, Boris V.

    2001-11-01

    A kinetic model for depletion effect, which determines pellet ablation when the pellet passes a rational magnetic surface, is formulated. The model predicts a moderate decrease of the ablation rate compared with the earlier considered monoenergy versions [1, 2]. For typical T-10 conditions the ablation rate reduces by a reactor of 2.5 when the 1-mm pellet penetrates through the plasma center. A substantial deceleration of pellets -about 15% per centimeter of low shire rational q region; is predicted. Penetration for Low Field Side and High Field Side injections is considered taking into account modification of the electron distribution function by toroidal magnetic field. It is shown that Shafranov shift and toroidal effects yield the penetration length for HFS injection higher by a factor of 1.5. This fact should be taken into account when plasma-shielding effects on penetration are considered. (author)

  13. Critical phase transitions during ablation of atrial fibrillation

    Science.gov (United States)

    Iravanian, Shahriar; Langberg, Jonathan J.

    2017-09-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia with significant morbidity and mortality. Pharmacological agents are not very effective in the management of AF. Therefore, ablation procedures have become the mainstay of AF management. The irregular and seemingly chaotic atrial activity in AF is caused by one or more meandering spiral waves. Previously, we have shown the presence of sudden rhythm organization during ablation of persistent AF. We hypothesize that the observed transitions from a disorganized to an organized rhythm is a critical phase transition. Here, we explore this hypothesis by simulating ablation in an anatomically-correct 3D AF model. In 722 out of 2160 simulated ablation, at least one sudden transition from AF to an organized rhythm (flutter) was noted (33%). They were marked by a sudden decrease in the cycle length entropy and increase in the mean cycle length. At the same time, the number of reentrant wavelets decreased from 2.99 ± 0.06 in AF to 1.76 ± 0.05 during flutter, and the correlation length scale increased from 13.3 ± 1.0 mm to 196.5 ± 86.6 mm (both P < 0.0001). These findings are consistent with the hypothesis that transitions from AF to an anatomical flutter behave as phase transitions in complex non-equilibrium dynamical systems with flutter acting as an absorbing state. Clinically, the facilitation of phase transition should be considered a novel mechanism of ablation and may help to design effective ablation strategies.

  14. Percutaneous radiofrequency ablation for benign nodules of the thyroid gland

    International Nuclear Information System (INIS)

    Baek, Jung Hwan; Jeong, Hyun Jo; Kim, Yoon Suk; Kwak, Min Sook; Chang, Sun Hee; Rhim, Hyun Chul

    2005-01-01

    We wanted to evaluate the efficacy and safety of using ultrasound guided percutaneous radiofrequency ablation for the benign nodules of the thyroid gland. We studied 148 patients with benign thyroid nodules (200 total nodules) that were confirmed histopathologically, and we performed ultrasound guided radiofrequency ablation. The radiofrequency ablation was done 1 to 5 times per one nodule, and follow-up ultrasonography was performed one to nineteen months after the ablation procedures. The physical changes and the decrease of volume of the nodules were evaluated, and the complications related to radiofrequency ablation were observed. The mean initial nodule volume was 0.01-95.61 ml (mean; 6.83 ± SD of 10.63 ml) and the nodule volume after radiofrequency ablation was decreased to 0.00-46.56 ml (mean; 1.83 ± SD of 4.69 ml). The mean volume reduction rate was 73.2%. Reduction of more than 50% was noted in 90% of all cases. For 180 nodules (90%), the decrease was 50% or more, in 20 nodules (10%), the decrease was 49% or less. On gray-scale ultrasonogram obtained after ablation, the echogenicity of the nodules changed to darker, and on the doppler-sonogram, the vascular flow within the nodules disappeared in all cases. Most patients complained pain during or right after the procedure, but the pain was transient and subsided after medication. Two patients developed hoarseness that was improved in 1 week and 2 months, respectively. Sonoguided percutaneous radiofrequency ablation can be one of the treatments for benign nodules of the thyroid gland

  15. Tumor Seeding Following Lung Radiofrequency Ablation: A Case Report

    International Nuclear Information System (INIS)

    Yamakado, Koichiro; Akeboshi, Masao; Nakatsuka, Atsuhiro; Takaki, Haruyuki; Takao, Motoshi; Kobayashi, Hiroyasu; Taguchi, Osamu; Takeda, Kan

    2005-01-01

    Lung radiofrequency (RF) ablation was performed for the treatment of a primary lung cancer measuring 2.5 cm in maximum diameter in a 78-year-old man. A contrast-enhanced computed tomography (CT) study performed 3 months after RF ablation showed incomplete ablation of the lung tumor and the appearance of a chest wall tumor 4.0 cm in maximum diameter that was considered to be the result of needle-tract seeding. RF ablation was performed for the treatment of both the lung and the chest wall tumors. Although tumor enhancement was eradicated in both of the treated tumors, follow-up CT studies revealed diffuse intra-pulmonary metastases in both lungs 2 months after the second RF session. He is currently receiving systemic chemotherapy

  16. Radiofrequency catheter ablation for electrical storm in a patient with dilated cardiomyopathy.

    Science.gov (United States)

    Kolettis, Theofilos M; Naka, Katerina K; Katsouras, Christos S

    2005-01-01

    We report a case of successful radiofrequency catheter ablation in a patient with dilated cardiomyopathy, who presented with multiple, haemodynamically poorly tolerated episodes of monomorphic ventricular tachycardia, resistant to antiarrhythmic drug treatment. The ablation procedure consisted of focal ablation of three mapped left ventricular sites, using pace and activation mapping. Additional linear ablation lesions were created across these sites. After the procedure, the patient remained free of tachycardia episodes and seven days post-ablation he underwent implantation of a cardioverter-defibrillator. During a twelve-month follow-up period, the patient has remained free of monomorphic ventricular tachycardia episodes. Radiofrequency catheter ablation is feasible in electrical storm, using conventional mapping techniques, even in haemodynamically unstable tachycardias.

  17. Endoscopic ultrasound-guided radiofrequency ablation of the pancreas

    DEFF Research Database (Denmark)

    Silviu, Ungureanu Bogdan; Daniel, Pirici; Claudiu, Mărgăritescu

    2015-01-01

    ultrasound (EUS)-guided radiofrequency ablation (RFA) probe through a 19G needle in order to achieve a desirable necrosis area in the pancreas. Radiofrequency ablation of the head of the pancreas was performed on 10 Yorkshire pigs with a weight between 25 kg and 35 kg and a length of 40-70 cm. Using an EUS...... analysis revealed increased values of amylase, alkaline phosphatase, and gamma-glutamyl transpeptidase on the 3rd day but a decrease on the 5th day. After necropsy and isolation of the pancreas, the ablated area was easily found, describing a solid necrosis. The pathological examination revealed...

  18. Utility of unipolar recordings for complex Wolff–Parkinson–White ablation

    Directory of Open Access Journals (Sweden)

    Ponnusamy Shunmuga Sundaram

    2015-03-01

    Full Text Available Radiofrequency ablation has been shown to be a safe and effective treatment strategy for the management of symptomatic patients with Wolff–Parkinson–White syndrome. It is supported by a success rate of 95% and a recurrence rate of less than 5%. However, ablation of accessory pathways can be challenging at times. The causes for failure can be grouped into three categories – unusual location of the pathway, technical difficulties in delivering the ablation and localization error [1]. In this case report we are reporting a case of a young male who presented to us with symptomatic Wolff–Parkinson–White syndrome with two failed prior ablations at another institution. This case illustrates the importance of knowing accurate localization and course of the accessory pathway by utilizing the unipolar and bipolar electrograms simultaneously during radiofrequency ablation.

  19. Femtosecond laser ablation of carbon reinforced polymers

    International Nuclear Information System (INIS)

    Moreno, P.; Mendez, C.; Garcia, A.; Arias, I.; Roso, L.

    2006-01-01

    Interaction of intense ultrashort laser pulses (120 fs at 795 nm) with polymer based composites has been investigated. We have found that carbon filled polymers exhibit different ultrafast ablation behaviour depending on whether the filling material is carbon black or carbon fiber and on the polymer matrix itself. The shape and dimensions of the filling material are responsible for some geometrical bad quality effects in the entrance and inner surfaces of drilled microholes. We give an explanation for these non-quality effects in terms of fundamentals of ultrafast ablation process, specifically threshold laser fluences and material removal paths. Since carbon fiber reinforced polymers seemed particularly concerned, this could prevent the use of ultrafast ablation for microprocessing purposes of some of these materials

  20. Single- and multi-pulse femtosecond laser ablation of optical filter materials

    International Nuclear Information System (INIS)

    Krueger, J.; Lenzner, M.; Martin, S.; Lenner, M.; Spielmann, C.; Fiedler, A.; Kautek, W.

    2003-01-01

    Ablation experiments employing Ti:sapphire laser pulses with durations from 30 to 340 fs (centre wavelength 800 nm, repetition rate 1 kHz) were performed in air. Absorbing filters (Schott BG18 and BG36) served as targets. The direct focusing technique was used under single- and multi-pulse irradiation conditions. Ablation threshold fluences were determined from a semi-logarithmic plot of the ablation crater diameter versus laser fluence. The threshold fluence decreases for a shorter pulse duration and an increasing number of pulses. The multi-pulse ablation threshold fluences are similar to those of undoped glass material (∼1 J cm -2 ). That means that the multi-pulse ablation threshold is independent on the doping level of the filters. For more than 100 pulses per spot and all pulse durations applied, the threshold fluence is practically constant. This leads to technically relevant ablation threshold values

  1. Investigation of excimer laser ablation threshold of polymers using a microphone

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Joerg; Niino, Hiroyuki; Yabe, Akira

    2002-09-30

    KrF excimer laser ablation of polyethylene terephthalate (PET), polyimide (PI) and polycarbonate (PC) in air was studied by an in situ monitoring technique using a microphone. The microphone signal generated by a short acoustic pulse represented the etch rate of laser ablation depending on the laser fluence, i.e., the ablation 'strength'. From a linear relationship between the microphone output voltage and the laser fluence, the single-pulse ablation thresholds were found to be 30 mJ cm{sup -2} for PET, 37 mJ cm{sup -2} for PI and 51 mJ cm{sup -2} for PC (20-pulses threshold). The ablation thresholds of PET and PI were not influenced by the number of pulses per spot, while PC showed an incubation phenomenon. A microphone technique provides a simple method to determine the excimer laser ablation threshold of polymer films.

  2. Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air

    International Nuclear Information System (INIS)

    Wang, Z.B.; Hong, M.H.; Lu, Y.F.; Wu, D.J.; Lan, B.; Chong, T.C.

    2003-01-01

    Teflon, polytetrafluorethylene (PTFE), is an important material in bioscience and medical application due to its special characteristics (bio-compatible, nonflammable, antiadhesive, and heat resistant). The advantages of ultrashort laser processing of Teflon include a minimal thermal penetration region and low processing temperatures, precision removal of material, and good-quality feature definition. In this paper, laser processing of PTFE in ambient air by a Ti:sapphire femtosecond laser (780 nm, 110 fs) is investigated. It is found that the pulse number on each irradiated surface area must be large enough for a clear edge definition and the ablated depth increases with the pulse number. The air ionization effect at high laser fluences not only degrades the ablated structures quality but also reduces the ablation efficiency. High quality microstructures are demonstrated with controlling laser fluence below a critical fluence to exclude the air ionization effect. The ablated microstructures show strong adhesion property to liquids and clear edges that are suitable for bio-implantation applications. Theoretical calculation is used to analyze the evolution of the ablated width and depth at various laser fluences

  3. Efficacy of ablation at the anteroseptal line for the treatment of perimitral flutter

    Directory of Open Access Journals (Sweden)

    Bernard Abi-Saleh, MD, FACP, FACC, FHRS

    2015-12-01

    Conclusion: Ablation at the left atrial anteroseptal line is safe and efficacious for the treatment of PMF. Unlike ablation at the traditional mitral isthmus line, ablation at the left atrial anteroseptal line does not require ablation in the coronary sinus.

  4. Pellet-plasma interaction: Local disturbances caused by pellet ablation in tokamaks

    International Nuclear Information System (INIS)

    Lengyel, L.L.

    1989-01-01

    The local disturbance amplitudes caused by ablating pellets in tokamaks are computed in the framework of a magnetohydrodynamic model supplemented by the neutral gas plasma shielding ablation model. The model computes, for a given number of pellet particles locally deposited, the time histories of the ablatant cloud parameters, such as cloud radius, cloud length, electron density, temperature and cloud beta, at a succession of magnetic flux surfaces. The cloud radius thus determined may be fed back into the ablation model, thus adjusting the effect of the shielding cloud on the ablation rate. The model is applied to typical plasma parameter ranges of existing and planned tokamaks. The results show that the ablating pellets may cause massive local disturbances in tokamaks, depending upon the number of particles locally deposited. The peaks of these disturbances are of a spike nature, lasting only a few microseconds (Alfven time-scale). The characteristic decay time of the 'quasi-steady' disturbance values that characterize the after-spike period is of the order of several milliseconds (hydrodynamic time-scale). The peak electron density values may be as high as 10 23 to 10 25 m -3 , with the associated beta peaks exceeding unity. The 'quasi-steady' values of the electron density and the ablatant beta may be of the order of 10 22 to 10 24 m -3 and unity, respectively. Furthermore, the results show the strong dependence of the ablation rate on the dynamic characteristics of the ablatant cloud surrounding the pellet. (author). 25 refs, 6 figs, 2 tabs

  5. Nonlinear Analysis of Two-phase Circumferential Motion in the Ablation Circumstance

    Science.gov (United States)

    Xiao-liang, Xu; Hai-ming, Huang; Zi-mao, Zhang

    2010-05-01

    In aerospace craft reentry and solid rocket propellant nozzle, thermal chemistry ablation is a complex process coupling with convection, heat transfer, mass transfer and chemical reaction. Based on discrete vortex method (DVM), thermal chemical ablation model and particle kinetic model, a computational module dealing with the two-phase circumferential motion in ablation circumstance is designed, the ablation velocity and circumferential field can be thus calculated. The calculated nonlinear time series are analyzed in chaotic identification method: relative chaotic characters such as correlation dimension and the maximum Lyapunov exponent are calculated, fractal dimension of vortex bulbs and particles distributions are also obtained, thus the nonlinear ablation process can be judged as a spatiotemporal chaotic process.

  6. Femtosecond laser ablation and cutting technology on PMP foam

    International Nuclear Information System (INIS)

    Song Chengwei; Li Guo; Huang Yanhua; Du Kai; Yang Liang

    2013-01-01

    The femtosecond laser ablation results of PMP foam (density of 90 mg/cm 3 ) were analyzed. The laser pulses used for the study were 800 nm in wavelength, 50 fs in pulse duration and the repetition rate was 1000 Hz. The ablation threshold of the foam was 0.91 J/cm 2 when it was shot by 100 laser pulses. The impacts of laser power, the pulse number and the numerical aperture of the focusing objective on the crater diameter were obtained. In the same femtosecond laser machining system, comparing with the ablation shape into copper foil, the important factor causing the irregular shape of the ablation region was verified that there were many different sizes and randomly distributed pores inside PMP foam. The carbonation phenomenon was observed on the edge of the ablated areas when the sample was ablated using high laser power or/and more laser pulses. Thermal effect was considered to be the causes of the carbonation. A new method based on coupling laser beam to cut thickness greater than 1 mm film-foam with femtosecond laser was proposed. Using this method, the femtosecond laser cutting thickness was greater than 1.5 mm, the angle between the cutting side wall and the laser beam optical axis might be less than 5°, and the cutting surface was clean. (authors)

  7. Nd:YAG 1.44 laser ablation of human cartilage

    Science.gov (United States)

    Cummings, Robert S.; Prodoehl, John A.; Rhodes, Anthony L.; Black, Johnathan D.; Sherk, Henry H.

    1993-07-01

    This study determined the effectiveness of a Neodymium:YAG 1.44 micrometers wavelength laser on human cartilage. This wavelength is strongly absorbed by water. Cadaveric meniscal fibrocartilage and articular hyaline cartilage were harvested and placed in normal saline during the study. A 600 micrometers quartz fiber was applied perpendicularly to the tissues with a force of 0.098 N. Quantitative measurements were then made of the ablation rate as a function of fluence. The laser energy was delivered at a constant repetition rate of 5 Hz., 650 microsecond(s) pulsewidth, and energy levels ranging from 0.5 joules to 2.0 joules. Following the ablation of the tissue, the specimens were fixed in formalin for histologic evaluation. The results of the study indicate that the ablation rate is 0.03 mm/mj/mm2 for hyaline cartilage and fibrocartilage. Fibrocartilage was cut at approximately the same rate as hyaline cartilage. There was a threshold fluence projected to be 987 mj/mm2 for hyaline cartilage and fibrocartilage. Our results indicate that the pulsed Nd:YAG laser operating at 1.44 micrometers has a threshold fluence above which it will ablate human cartilage, and that its ablation rate is directly proportional to fluence over the range of parameters tested. Fibrocartilage and hyaline cartilage demonstrated similar threshold fluence and ablation rates which is related to the high water content of these tissues.

  8. Experimental investigation of the ribbon-array ablation process

    International Nuclear Information System (INIS)

    Li Zhenghong; Xu Rongkun; Chu Yanyun; Yang Jianlun; Xu Zeping; Ye Fan; Chen Faxin; Xue Feibiao; Ning Jiamin; Qin Yi; Meng Shijian; Hu Qingyuan; Si Fenni; Feng Jinghua; Zhang Faqiang; Chen Jinchuan; Li Linbo; Chen Dingyang; Ding Ning; Zhou Xiuwen

    2013-01-01

    Ablation processes of ribbon-array loads, as well as wire-array loads for comparison, were investigated on Qiangguang-1 accelerator. The ultraviolet framing images indicate that the ribbon-array loads have stable passages of currents, which produce axially uniform ablated plasma. The end-on x-ray framing camera observed the azimuthally modulated distribution of the early ablated ribbon-array plasma and the shrink process of the x-ray radiation region. Magnetic probes measured the total and precursor currents of ribbon-array and wire-array loads, and there exists no evident difference between the precursor currents of the two types of loads. The proportion of the precursor current to the total current is 15% to 20%, and the start time of the precursor current is about 25 ns later than that of the total current. The melting time of the load material is about 16 ns, when the inward drift velocity of the ablated plasma is taken to be 1.5 × 10 7 cm/s.

  9. Efficiency of ablative plasma energy transfer into a massive aluminum target using different atomic number ablators

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Stepniewski, W.; Jach, K.; Swierczynski, R.; Renner, Oldřich; Šmíd, Michal; Ullschmied, Jiří; Cikhart, J.; Klír, D.; Kubeš, P.; Řezáč, K.; Krouský, Eduard; Pfeifer, Miroslav; Skála, Jiří

    2015-01-01

    Roč. 33, č. 3 (2015), s. 379-386 ISSN 0263-0346 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk(CZ) LD14089 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; AVČR(CZ) M100101208 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : ablator atomic number * crater volume * laser energy transfer * plasma ablative pressure Subject RIV: BL - Plasma and Gas Discharge Physics; BH - Optics, Masers, Lasers (UFP-V) Impact factor: 1.649, year: 2015

  10. Tissue Necrosis Monitoring for HIFU Ablation with T1 Contrast MRI Imaging

    Science.gov (United States)

    Hwang, San-Chao; Yao, Ching; Kuo, Ih-Yuan; Tsai, Wei-Cheng; Chang, Hsu

    2011-09-01

    In MR-guided HIFU ablation, MTC (Magnetization Transfer Contrast) or perfusion imaging is usually used after ablation to evaluate the ablated area based on the thermally induced necrosis contrast. In our MR-guided HIFU ablation study, a T1 contrast MRI scan sequence has been used to distinguish between necrotic and non-necrotic tissue. The ablation of porcine meat in-vitro and in-vivo pig leg muscle show that the necrotic area of T1 contrast MRI image coincides with the photographs of sliced specimen. The sequence is considerably easier to apply than MTC or perfusion imaging, while giving good necrosis contrast. In addition, no injection of contrast agent is needed, allowing multiple scans to be applied throughout the entire ablation procedure.

  11. Ablative Fractional 10 600 nm Carbon Dioxide Laser Versus Non-ablative Fractional 1540 nm Erbium-Glass Laser in Egyptian Post-acne Scar patients.

    Science.gov (United States)

    Elsaie, Mohamed L; Ibrahim, Shady M; Saudi, Wael

    2018-01-01

    Introduction: Non-ablative fractional erbium-doped glass 1540 nm and fractional ablative 10600 nm carbon dioxide lasers are regarded as effective modalities for treating acne atrophic scars. In this study, we aimed to compare the effectiveness of fractional CO 2 laser and fractional nonablative 1540 nm erbium doped glass laser in treating post acne atrophic scars in Egyptian patients. Methods: Fifty-eight patients complaining of moderate and severe acne atrophic scars were randomly divided into 2 groups of 29 patients each. Both groups were subjected to 4 treatment sessions with 3 weeks interval and were followed up for 3 months. In group A, enrolled patient sreceived C2 laser, while in group B, patients were treated with 1540 nm erbium glass fractional laser. Results: Clinical assessment revealed that the mean grades of progress and improvement were higher with fractional 10600 nm CO2 laser but with non-significant difference between both treatments ( P = 0.1). The overall patients' satisfaction with both lasers were not significantly different ( P = 0.44). Conclusion: Both fractional ablative CO2 and fractional non-ablative erbium glass lasers are good modalities for treating acne scars with a high efficacy and safety profile and good patient satisfaction. The fractional ablative laser showed higher efficacy while non-ablative laser offered less pain and shorter downtime.

  12. ROLE OF RADIOFREQUENCY ABLATION IN ADENOMA SEBACEUM

    Directory of Open Access Journals (Sweden)

    Ch. Madh

    2016-03-01

    Full Text Available Adenoma sebaceum, pathognomonic of tuberous sclerosis, are tiny angiofibromas which commonly occur over central part of face. Recurrence after treatment is common and hence a need for inexpensive, safe and efficient treatment is required. Radiofrequency ablation is a safe and an economical procedure and has been known to cause less scarring with good aesthetic results compared to other ablative methods such as electrocautery.

  13. Parametric study on femtosecond laser pulse ablation of Au films

    International Nuclear Information System (INIS)

    Ni Xiaochang; Wang Chingyue; Yang Li; Li Jianping; Chai Lu; Jia Wei; Zhang Ruobing; Zhang Zhigang

    2006-01-01

    Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N x φ th (N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research

  14. Thermal ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism.

    Science.gov (United States)

    Duan, Ya-Qi; Liang, Ping

    2013-05-01

    Many studies have been conducted on splenic thermal ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism. In this article, we review the evolution and current status of radiofrequency and microwave ablation in the treatment of spleen diseases. All publications from 1990 to 2011 on radiofrequency and microwave ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism were retrieved by searching PubMed. Thermal ablation in the spleen for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism can preserve part of the spleen and maintain splenic immunologic function. Thermal ablation for assisting hemostasis in partial splenectomy minimizes blood loss during operation. Thermal ablation for spleen trauma reduces the number of splenectomy and the amount of blood transfusion. Thermal ablation for splenic metastasis is minimally invasive and can be done under the guidance of an ultrasound, which helps shorten the recovery time. Thermal ablation for hypersplenism increases platelet (PLT) and white blood cell (WBC) counts and improves liver function. It also helps to maintain splenic immunologic function and even improves splenic immunologic function in the short-term. In conclusion, thermal ablative approaches are promising for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism. In order to improve therapeutic effects, directions for future studies may include standardized therapeutic indications, prolonged observation periods and enlarged sample sizes.

  15. Effect of liquid properties on laser ablation of aluminum and titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Peixuan, E-mail: oypx12@mails.tsinghua.edu.cn [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); Li, Peijie [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Leksina, E.G.; Michurin, S.V. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992 (Russian Federation); He, Liangju [School of Aerospace, Tsinghua University, Beijing 100084 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Porous surfaces are formed in Al alloy after wet ablation due to phase explosion. • A higher ablation rate is produced in glycerin than that in water and isopropanol. • Effect of liquid properties on mass-removal mechanisms was discussed. • Phase explosion and plasma-induced pressure contribute greatly to mass removal. • Density, heat conductivity and shock impendence of liquid affect ablation rates. - Abstract: In order to study the effect of liquid properties on laser ablation in liquids, aluminum 5A06 and titanium TB5 targets were irradiated by single-pulse infrared laser in isopropanol, distilled water, glycerin and as a comparison, in air, respectively. Craters induced by laser ablation were characterized using scanning electron and white-light interferometric microscopies. The results show that for liquid-mediated ablation, craters with porous surface structures were formed in aluminum target through phase explosion, while no micro-cavities were formed in titanium target owing to high critical temperature of titanium. In addition, ablation rates of aluminum and titanium targets vary with types of ambient media in accordance with such sequence: air < isopropanol < water < glycerin. Further, the influence of liquid properties on material-removal mechanisms for laser ablation in liquid is discussed. It is concluded that the density, thermal conductivity and acoustical impedance of liquid play a dominant role in laser ablation efficiency.

  16. A Novel Method to Prevent Phrenic Nerve Injury During Catheter Ablation

    OpenAIRE

    Buch, Eric; Vaseghi, Marmar; Cesario, David A; Shivkumar, Kalyanam

    2006-01-01

    Epicardial catheter ablation is increasingly important in the treatment of ventricular arrhythmias. Collateral damage to adjacent structures like the phrenic nerve is an important concern with epicardial ablation. This report describes the use of a novel method to prevent phrenic nerve injury during epicardial ablation of ventricular tachycardia.

  17. Laser Ablation for Cancer: Past, Present and Future

    Science.gov (United States)

    Schena, Emiliano; Saccomandi, Paola; Fong, Yuman

    2017-01-01

    Laser ablation (LA) is gaining acceptance for the treatment of tumors as an alternative to surgical resection. This paper reviews the use of lasers for ablative and surgical applications. Also reviewed are solutions aimed at improving LA outcomes: hyperthermal treatment planning tools and thermometric techniques during LA, used to guide the surgeon in the choice and adjustment of the optimal laser settings, and the potential use of nanoparticles to allow biologic selectivity of ablative treatments. Promising technical solutions and a better knowledge of laser-tissue interaction should allow LA to be used in a safe and effective manner as a cancer treatment. PMID:28613248

  18. Laser Ablation for Cancer: Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Emiliano Schena

    2017-06-01

    Full Text Available Laser ablation (LA is gaining acceptance for the treatment of tumors as an alternative to surgical resection. This paper reviews the use of lasers for ablative and surgical applications. Also reviewed are solutions aimed at improving LA outcomes: hyperthermal treatment planning tools and thermometric techniques during LA, used to guide the surgeon in the choice and adjustment of the optimal laser settings, and the potential use of nanoparticles to allow biologic selectivity of ablative treatments. Promising technical solutions and a better knowledge of laser-tissue interaction should allow LA to be used in a safe and effective manner as a cancer treatment.

  19. Effect of norbornene content on laser ablation of cyclic olefin copolymers

    International Nuclear Information System (INIS)

    Leech, Patrick W.

    2010-01-01

    The ablation of cyclic olefin copolymers (COC) by 5 ns/248 nm laser has been examined as a function of norbornene content (61-82 wt.%). The dependence of ablation rate on laser fluence, repetition rate and pulse number has been determined over the range of composition of the copolymers. The ablation rate has increased logarithmically with laser fluence in accordance with the Beer-Lambert relationship. An increase in norbornene content has resulted in an increase in ablation rate and a decrease in threshold fluence. These trends have been attributed to a higher intramolecular rigidity of the chain structure in COC with increasing norbornene content. The morphology of the ablated surfaces was characterised by the formation of voids at high norbornene contents.

  20. High-resolution mapping and ablation of recurrent left lateral accessory pathway conduction

    Directory of Open Access Journals (Sweden)

    Francesco Solimene, MD

    2017-08-01

    Full Text Available Proper localization of the anatomical target during ablation of the accessory pathways (AP and the ability to detect clear AP potentials on the ablation catheter are crucial for successful AP ablation. We report a case of recurring AP conduction that was finally eliminated using a novel ablation catheter equipped with high-resolution mini-electrodes. Smaller and closer electrodes result in high mapping resolution with less signal averaging and cancellation effects. Owing to improved sensitivity, the new catheter seems effective in detecting fragmented and high frequency signals, thus allowing more effective radiofrequency application and improving ablation success.

  1. Self-modified quasi-stationary model for the radiation ablation

    International Nuclear Information System (INIS)

    Zhang Jun; Pei Wenbing; Gu Peijun; Sui Chengzhi; Chang Tieqiang

    1996-01-01

    The self-modified quasi-stationary model for radiation ablation has been established based on physical picture of numerical simulations. The objective of the model is to predict quantitatively the scaling laws of various ablation parameters driven by soft-X-ray, such as the dependence of ablation depth, pressure on radiation temperature, energy, pulse width, without resorting to complex computer simulations. The computational results are given for some interesting materials in ICF. Scaling laws obtained are simple and effective in target design and analysis of experimental results

  2. Reactive laser-induced ablation as approach to titanium oxycarbide films

    International Nuclear Information System (INIS)

    Jandova, V.; Fajgar, R.; Dytrych, P.; Kostejn, M.; Drinek, V.; Kupcik, J.

    2015-01-01

    The IR laser-induced reactive ablation of frozen titanium ethoxide target was studied. The method involves the laser ablation of titanium ethoxide at − 140 °C in gaseous methane (4–50 Pa) atmosphere. This process leads to reactions of the ablative species with hydrocarbon in the gaseous phase. During the ablation of the frozen target excited species interact with methane molecules. The reactive ablation process leads to the formation of a smooth thin film. The thickness of prepared films depends on the number of IR pulses and their composition depends on the pressure of gaseous methane. This reactive IR ablation proceeds as a carbidation process providing nanostructured films with good adhesion to various substrates (glass, metals, KBr) depending on the carbon content in prepared films. Particles are also stabilized by layer preventing their surface oxidation in the atmosphere. The described results are important in the general context for the synthesis of reactive particles in the gas phase. The final products are characterized by spectroscopic, microscopic and diffraction techniques: SEM/EDX, HRTEM, electron diffraction, Raman spectroscopy and XPS. - Highlights: • IR laser ablation of frozen target of titanium ethoxide leads to a reduction in the gaseous methane (4-50 Pa). • Films deposited in methane have Ti/O/C stoichiometry and are oxidized in the atmosphere. • Layers deposited in methane are reduced and have less O in the topmost layers

  3. Reactive laser-induced ablation as approach to titanium oxycarbide films

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, V., E-mail: jandova@icpf.cas.cz; Fajgar, R.; Dytrych, P.; Kostejn, M.; Drinek, V.; Kupcik, J.

    2015-09-01

    The IR laser-induced reactive ablation of frozen titanium ethoxide target was studied. The method involves the laser ablation of titanium ethoxide at − 140 °C in gaseous methane (4–50 Pa) atmosphere. This process leads to reactions of the ablative species with hydrocarbon in the gaseous phase. During the ablation of the frozen target excited species interact with methane molecules. The reactive ablation process leads to the formation of a smooth thin film. The thickness of prepared films depends on the number of IR pulses and their composition depends on the pressure of gaseous methane. This reactive IR ablation proceeds as a carbidation process providing nanostructured films with good adhesion to various substrates (glass, metals, KBr) depending on the carbon content in prepared films. Particles are also stabilized by layer preventing their surface oxidation in the atmosphere. The described results are important in the general context for the synthesis of reactive particles in the gas phase. The final products are characterized by spectroscopic, microscopic and diffraction techniques: SEM/EDX, HRTEM, electron diffraction, Raman spectroscopy and XPS. - Highlights: • IR laser ablation of frozen target of titanium ethoxide leads to a reduction in the gaseous methane (4-50 Pa). • Films deposited in methane have Ti/O/C stoichiometry and are oxidized in the atmosphere. • Layers deposited in methane are reduced and have less O in the topmost layers.

  4. Moldable cork ablation material

    Science.gov (United States)

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  5. Thermal Ablation of Lung Tissue: In Vivo Experimental Comparison of Microwave and Radiofrequency

    International Nuclear Information System (INIS)

    Crocetti, Laura; Bozzi, Elena; Faviana, Pinuccia; Cioni, Dania; Della Pina, Clotilde; Sbrana, Alberto; Fontanini, Gabriella; Lencioni, Riccardo

    2010-01-01

    This study was designed to compare feasibility, safety, and effectiveness of microwave (MW) ablation versus radiofrequency (RF) ablation of lung tissue in a rabbit model. Twenty New Zealand White rabbits were submitted to MW (n = 10, group A) or RF ablation (n = 10, group B). The procedures were performed with a prototype MW ablation device with a 1.6-cm radiating section antenna (Valleylab MW Ablation System) and with a 2-cm exposed-tip RF electrode (Cool-tip RF Ablation System). At immediate computed tomography increase in density, maximum diameters (D1-D3) of ablation zones were measured and ablation volume was calculated. Histopathologic assessment was performed 3 and 7 days after the procedure. Technical success was achieved in nine of 10 rabbits in each group. One death occurred in group B. Complications included pneumothorax (group A, n = 4; group B, n = 4), abscess (group A, n = 1; group B, n = 1), and thoracic wall burn (group A, n = 4). No significant differences were demonstrated in attenuation increase (P = 0.73), dimensions (P = 0.28, 0.86, 0.06, respectively, comparing D1-D3) and volume (P = 0.17). At histopathology, ablation zones were similar, with septal necrosis, edema, hemorrhage, and peripheral lymphocytic infiltrate. Complete thrombosis of more than 90% of vessels up to 2 mm in diameter was depicted at the periphery of the ablation zone in group A specimens. In group B specimens, complete thrombosis was depicted in 20% of vessels. Feasibility and safety of MW and RF ablation are similar in a lung rabbit model. MW ablation produces a greater damage to peripheral small vessels inducing thrombosis.

  6. Ablation of polytetrafluoroethylene using a continuous CO2 laser beam

    International Nuclear Information System (INIS)

    Tolstopyatov, E M

    2005-01-01

    The ablation of polytetrafluoroethylene (PTFE) is studied using a continuous CO 2 laser beam of 30-50 W at a mean intensity of 0.05-50 MW m -2 . The ablation products and changes in the target layer are examined using infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction and electron microscopy. The main experiments were conducted with an unfocused beam of intensity 0.9-1.2 MW m -2 . The radiation-polymer interaction characteristics were found to change appreciably as the ablation conditions are approached. Within the polymer layer, light scattering diminishes and true resonant light absorption increases. Two distinct polymer components, which differ primarily in their resistance to CO 2 laser radiation, were found to exist under ablation conditions. The less stable component depolymerizes intensively, while the more resistant component is blown up into fibres by intense gas flow. The reasons behind this behaviour are discussed. Preliminary gamma irradiation of PTFE is found to have a significant influence on the laser ablation process

  7. Microwave Ablation: Comparison of Simultaneous and Sequential Activation of Multiple Antennas in Liver Model Systems.

    Science.gov (United States)

    Harari, Colin M; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T; Lubner, Meghan G; Hinshaw, J Louis; Ziemlewicz, Timothy; Brace, Christopher L

    2016-01-01

    To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015.

  8. Ablation of film stacks in solar cell fabrication processes

    Science.gov (United States)

    Harley, Gabriel; Kim, Taeseok; Cousins, Peter John

    2013-04-02

    A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.

  9. Characterization of superconducting thin films deposited by laser ablation. Caracterisation de films minces supraconducteurs deposes par ablation laser

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, M; Delaporte, P [I.M.F.M., 13 - Marseille (FR); Gerri, M; Marine, W [Aix-Marseille-2 Univ., 13-Marseille (FR). Centre Universitaire de Luminy

    1991-05-01

    Thin films of YBa{sub 2}Cu{sub 3}O{sub 7} are deposited by laser ablation on MgO and YSZ substrates. Deposits by infrared (I.R.) Nd: YAG are non stoechiometric. The films having the best superconductor qualities are deposited by ablation with an excimer U.V. laser ({lambda} = 308 nm). These films are epitaxiated with the c axis perpendicular to the substrate. The film quality depends on the substrate temperature, oxygen pressure and cooling speed.

  10. Laparoscopic microwave thermosphere ablation of malignant liver tumors: an initial clinical evaluation.

    Science.gov (United States)

    Berber, Eren

    2016-02-01

    Microwave ablation (MWA) has been recently recognized as a technology to overcome the limitations of radiofrequency ablation. The aim of the current study was to evaluate the safety and efficacy of a new 2.45-GHz thermosphere MWA system in the treatment of malignant liver tumors. This was a prospective IRB-approved study of 18 patients with malignant liver tumors treated with MWA within a 3-month time period. Tumor sizes and response to MWA were obtained from triphasic liver CT scans done before and after MWA. The ablation zones were assessed for complete tumor response and spherical geometry. There were a total of 18 patients with an average of three tumors measuring 1.4 cm (range 0.2-4). Ablations were performed laparoscopically in all, but three patients who underwent combined liver resection. A single ablation was created in 72% and overlapping ablations in 28% of lesions. Total ablation time per patient was 15.6 ± 1.9 min. There was no morbidity or mortality. At 2-week CT scans, there was 100% tumor destruction, with no residual lesions. Roundness indices A, B and transverse were 1.1, 0.9 and 0.9, respectively, confirming the spherical nature of ablation zones. To the best of our knowledge, this is the first report of a new thermosphere MWA technology in the laparoscopic treatment of malignant liver tumors. The results demonstrate the safety of the technology, with satisfactory spherical ablation zones seen on post-procedural CT scans.

  11. Rapid Recovery of Visual Function Associated with Blue Cone Ablation in Zebrafish

    Science.gov (United States)

    Hagerman, Gordon F.; Noel, Nicole C. L.; Cao, Sylvia Y.; DuVal, Michèle G.; Oel, A. Phillip; Allison, W. Ted

    2016-01-01

    Hurdles in the treatment of retinal degeneration include managing the functional rewiring of surviving photoreceptors and integration of any newly added cells into the remaining second-order retinal neurons. Zebrafish are the premier genetic model for such questions, and we present two new transgenic lines allowing us to contrast vision loss and recovery following conditional ablation of specific cone types: UV or blue cones. The ablation of each cone type proved to be thorough (killing 80% of cells in each intended cone class), specific, and cell-autonomous. We assessed the loss and recovery of vision in larvae via the optomotor behavioural response (OMR). This visually mediated behaviour decreased to about 5% or 20% of control levels following ablation of UV or blue cones, respectively (Pvision recovery following UV cone ablation was robust, as measured by both assays, returning to control levels within four days. In contrast, robust functional recovery following blue cone ablation was unexpectedly rapid, returning to normal levels within 24 hours after ablation. Ablation of cones led to increased proliferation in the retina, though the rapid recovery of vision following blue cone ablation was demonstrated to not be mediated by blue cone regeneration. Thus rapid visual recovery occurs following ablation of some, but not all, cone subtypes, suggesting an opportunity to contrast and dissect the sources and mechanisms of outer retinal recovery during cone photoreceptor death and regeneration. PMID:27893779

  12. Hydrodynamic stability theory of double ablation front structures in inertial confinement fusion

    International Nuclear Information System (INIS)

    Yanez Vico, C.

    2012-11-01

    For moderate-Z materials, the hydrodynamic structure of the ablation region formed by the irradiation of high intensity laser beams differs from that of low-Z materials (hydrogenic ablators). In particular, the role played by the radiative energy flux becomes non-negligible for increasing atomic number material and ended up forming a second ablation front. This structure of two separated ablation fronts, called double ablation (DA) front, was confirmed in the simulations carried out by Fujioka et al. In this work a linear stability theory of DA fronts is developed for direct-drive inertial confinement fusion targets. Two models are proposed. First, a sharp boundary model where the thin front approximation is assumed for both ablation fronts. The information about the corona region that permits to close the sharp boundary model is obtained from a prior self-consistent analysis of the electronic-radiative ablation (ERA) front. Numerical results are presented as well as an analytical approach for the radiation dominated regime of very steep double ablation front structure. Second, a self-consistent numerical method where the finite length of the ablation fronts is considered. Accurate hydrodynamic profiles are taken into account in the theoretical model by means of a fitting parameters method using one-dimensional simulation results. Numerical dispersion relation is compared to the analytical sharp boundary model showing an excellent agreement for the radiation dominated regime, and the stabilization due to smooth profiles. 2D simulations are presented to validate the linear stability theory

  13. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Directory of Open Access Journals (Sweden)

    Chenguo Yao

    Full Text Available Irreversible electroporation (IRE produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs to create a large electroporated area and long low-voltage pulses (LVPs to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  14. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Science.gov (United States)

    Yao, Chenguo; Lv, Yanpeng; Dong, Shoulong; Zhao, Yajun; Liu, Hongmei

    2017-01-01

    Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  15. Persistent Atrial Fibrillation Ablation in Females: Insight from the MAGIC-AF Trial.

    Science.gov (United States)

    Singh, Sheldon M; D'Avila, Andre; Aryana, Arash; Kim, Young-Hoon; Mangrum, J Michael; Michaud, Gregory F; Dukkipati, Srinivas R; Heist, E Kevin; Barrett, Conor D; Thorpe, Kevin E; Reddy, Vivek Y

    2016-07-27

    Atrial fibrillation (AF) ablation is less frequently performed in women when compared to men. There are conflicting data on the safety and efficacy of AF ablation in women. The objective of this study was to compare the clinical characteristics and outcomes in a contemporary cohort of men and women undergoing persistent AF ablation procedures. A total of 182 men and 53 women undergoing a first-ever persistent AF catheter ablation procedure in The Modified Ablation Guided by Ibutilide Use in Chronic Atrial Fibrillation (MAGIC-AF) trial were evaluated. Clinical and procedural characteristics were compared between each gender. The primary efficacy endpoint was the 1-year single procedure freedom from atrial arrhythmia off anti-arrhythmic drugs. Women undergoing catheter ablation procedures were older than men (P Single procedure drug-free atrial arrhythmia recurrence occurred in 53% of the cohort with no difference based on gender (men = 54%, women = 53%; P = 1.0). Procedural (P = 0.04), fluoroscopic (P = 0.02), and ablation times (P = 0.003) were shorter in women compared to men. Periprocedural complications and postablation improvement in quality of life were similar between men and women. Women undergoing a first-ever persistent AF ablation procedure were older but had similar clinical outcomes and complications when compared with men. © 2016 Wiley Periodicals, Inc.

  16. Ablation, Thermal Response, and Chemistry Program for Analysis of Thermal Protection Systems

    Science.gov (United States)

    Milos, Frank S.; Chen, Yih-Kanq

    2010-01-01

    In previous work, the authors documented the Multicomponent Ablation Thermochemistry (MAT) and Fully Implicit Ablation and Thermal response (FIAT) programs. In this work, key features from MAT and FIAT were combined to create the new Fully Implicit Ablation, Thermal response, and Chemistry (FIATC) program. FIATC is fully compatible with FIAT (version 2.5) but has expanded capabilities to compute the multispecies surface chemistry and ablation rate as part of the surface energy balance. This new methodology eliminates B' tables, provides blown species fractions as a function of time, and enables calculations that would otherwise be impractical (e.g. 4+ dimensional tables) such as pyrolysis and ablation with kinetic rates or unequal diffusion coefficients. Equations and solution procedures are presented, then representative calculations of equilibrium and finite-rate ablation in flight and ground-test environments are discussed.

  17. Transcervical, intrauterine ultrasound-guided radiofrequency ablation of uterine fibroids with the VizAblate? System: three- and six-month endpoint results from the FAST-EU study

    OpenAIRE

    Bongers, Marlies; Br?lmann, Hans; Gupta, Janesh; Garza-Leal, Jos? Gerardo; Toub, David

    2014-01-01

    This was a prospective, longitudinal, multicenter, single-arm controlled trial, using independent core laboratory validation of MRI results, to establish the effectiveness and confirm the safety of the VizAblate? System in the treatment of symptomatic uterine fibroids. The VizAblate System is a transcervical device that ablates fibroids with radiofrequency energy, guided by a built-in intrauterine ultrasound probe. Fifty consecutive women with symptomatic uterine fibroids received treatment w...

  18. Optical feedback-induced light modulation for fiber-based laser ablation.

    Science.gov (United States)

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  19. Treatment of Benign Thyroid Nodules: Comparison of Surgery with Radiofrequency Ablation.

    Science.gov (United States)

    Che, Y; Jin, S; Shi, C; Wang, L; Zhang, X; Li, Y; Baek, J H

    2015-07-01

    Nodular goiter is one of the most common benign lesions in thyroid nodule. The main treatment of the disease is still the traditional surgical resection, however there are many problems such as general anesthesia, surgical scar, postoperative thyroid or parathyroid function abnormalities, and high nodules recurrence rate in residual gland. The purpose of this study was to compare the efficacy, safety, and cost-effectiveness of 2 treatment methods, surgery and radiofrequency ablation, for the treatment of benign thyroid nodules. From May 2012 to September 2013, 200 patients with nodular goiters who underwent surgery (group A) and 200 patients treated by radiofrequency ablation (group B) were enrolled in this study. Inclusion criteria were the following: 1) cosmetic problem, 2) nodule-related symptoms, 3) hyperfunctioning nodules related to thyrotoxicosis, and 4) refusal of surgery (for group B). An internally cooled radiofrequency ablation system and an 18-ga internally cooled electrode were used. We compared the 2 groups in terms of efficacy, safety, and cost-effectiveness during a 1-year follow-up. After radiofrequency ablation, the nodule volume decreased significantly from 5.4 to 0.4 mL (P = .002) at the 12-month follow-up. The incidence of complications was significantly higher from surgery than from radiofrequency ablation (6.0% versus 1.0%, P = .002). Hypothyroidism was detected in 71.5% of patients after surgery but in none following radiofrequency ablation. The rate of residual nodules (11.9% versus 2.9%, P = .004) and hospitalization days was significantly greater after surgery (6.6 versus 2.1 days, P radiofrequency ablation are both effective treatments of nodular goiter. Compared with surgery, the advantages of radiofrequency ablation include fewer complications, preservation of thyroid function, and fewer hospitalization days. Therefore, radiofrequency ablation should be considered a first-line treatment for benign thyroid nodules. © 2015 by American

  20. Bilateral cornual abscess after endometrial ablation following Essure sterilization.

    NARCIS (Netherlands)

    Jansen, N.E.; Vleugels, M.P.; Kluivers, K.B.; Vierhout, M.E.

    2007-01-01

    Endometrial ablation is used extensively to treat dysfunctional bleeding. Since the introduction of Essure tubal sterilization, this permanent contraception method has been widely used. Both endometrial ablation and Essure sterilization are procedures reported to have only a few complications. We

  1. Robotic-assisted thermal ablation of liver tumours

    International Nuclear Information System (INIS)

    Abdullah, Basri Johan Jeet; Yeong, Chai Hong; Goh, Khean Lee; Yoong, Boon Koon; Ho, Gwo Fuang; Yim, Carolyn Chue Wai; Kulkarni, Anjali

    2015-01-01

    This study aimed to assess the technical success, radiation dose, safety and performance level of liver thermal ablation using a computed tomography (CT)-guided robotic positioning system. Radiofrequency and microwave ablation of liver tumours were performed on 20 patients (40 lesions) with the assistance of a CT-guided robotic positioning system. The accuracy of probe placement, number of readjustments and total radiation dose to each patient were recorded. The performance level was evaluated on a five-point scale (5-1: excellent-poor). The radiation doses were compared against 30 patients with 48 lesions (control) treated without robotic assistance. Thermal ablation was successfully completed in 20 patients with 40 lesions and confirmed on multiphasic contrast-enhanced CT. No procedure related complications were noted in this study. The average number of needle readjustment was 0.8 ± 0.8. The total CT dose (DLP) for the entire robotic assisted thermal ablation was 1382 ± 536 mGy.cm, while the CT fluoroscopic dose (DLP) per lesion was 352 ± 228 mGy.cm. There was no statistically significant (p > 0.05) dose reduction found between the robotic-assisted versus the conventional method. This study revealed that robotic-assisted planning and needle placement appears to be safe, with high accuracy and a comparable radiation dose to patients. (orig.)

  2. Robotic-assisted thermal ablation of liver tumours

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Basri Johan Jeet; Yeong, Chai Hong [University of Malaya, Department of Biomedical Imaging and University of Malaya Research Imaging Centre, Faculty of Medicine, Kuala Lumpur (Malaysia); University of Malaya, Department of Internal Medicine, Faculty of Medicine, Kuala Lumpur (Malaysia); Goh, Khean Lee [University of Malaya, Department of Internal Medicine, Faculty of Medicine, Kuala Lumpur (Malaysia); Yoong, Boon Koon [University of Malaya, Department of Surgery, Faculty of Medicine, Kuala Lumpur (Malaysia); Ho, Gwo Fuang [University of Malaya, Department of Oncology, Faculty of Medicine, Kuala Lumpur (Malaysia); Yim, Carolyn Chue Wai [University of Malaya, Department of Anesthesia, Faculty of Medicine, Kuala Lumpur (Malaysia); Kulkarni, Anjali [Perfint Healthcare Corporation, Florence, OR (United States)

    2015-01-15

    This study aimed to assess the technical success, radiation dose, safety and performance level of liver thermal ablation using a computed tomography (CT)-guided robotic positioning system. Radiofrequency and microwave ablation of liver tumours were performed on 20 patients (40 lesions) with the assistance of a CT-guided robotic positioning system. The accuracy of probe placement, number of readjustments and total radiation dose to each patient were recorded. The performance level was evaluated on a five-point scale (5-1: excellent-poor). The radiation doses were compared against 30 patients with 48 lesions (control) treated without robotic assistance. Thermal ablation was successfully completed in 20 patients with 40 lesions and confirmed on multiphasic contrast-enhanced CT. No procedure related complications were noted in this study. The average number of needle readjustment was 0.8 ± 0.8. The total CT dose (DLP) for the entire robotic assisted thermal ablation was 1382 ± 536 mGy.cm, while the CT fluoroscopic dose (DLP) per lesion was 352 ± 228 mGy.cm. There was no statistically significant (p > 0.05) dose reduction found between the robotic-assisted versus the conventional method. This study revealed that robotic-assisted planning and needle placement appears to be safe, with high accuracy and a comparable radiation dose to patients. (orig.)

  3. Femtosecond laser ablation of bovine cortical bone

    Science.gov (United States)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  4. Infrared laser ablation atmospheric pressure photoionization mass spectrometry.

    Science.gov (United States)

    Vaikkinen, Anu; Shrestha, Bindesh; Kauppila, Tiina J; Vertes, Akos; Kostiainen, Risto

    2012-02-07

    In this paper we introduce laser ablation atmospheric pressure photoionization (LAAPPI), a novel atmospheric pressure ion source for mass spectrometry. In LAAPPI the analytes are ablated from water-rich solid samples or from aqueous solutions with an infrared (IR) laser running at 2.94 μm wavelength. Approximately 12 mm above the sample surface, the ablation plume is intercepted with an orthogonal hot solvent (e.g., toluene or anisole) jet, which is generated by a heated nebulizer microchip and directed toward the mass spectrometer inlet. The ablated analytes are desolvated and ionized in the gas-phase by atmospheric pressure photoionization using a 10 eV vacuum ultraviolet krypton discharge lamp. The effect of operational parameters and spray solvent on the performance of LAAPPI is studied. LAAPPI offers ~300 μm lateral resolution comparable to, e.g., matrix-assisted laser desorption ionization. In addition to polar compounds, LAAPPI efficiently ionizes neutral and nonpolar compounds. The bioanalytical application of the method is demonstrated by the direct LAAPPI analysis of rat brain tissue sections and sour orange (Citrus aurantium) leaves. © 2012 American Chemical Society

  5. Advances in Imaging for Atrial Fibrillation Ablation

    International Nuclear Information System (INIS)

    D'Silva, A.; Wright, M.; Wright, M.

    2011-01-01

    Over the last fifteen years, our understanding of the pathophysiology of atrial fibrillation (AF) has paved the way for ablation to be utilized as an effective treatment option. With the aim of gaining more detailed anatomical representation, advances have been made using various imaging modalities, both before and during the ablation procedure, in planning and execution. Options have flourished from procedural fluoroscopy, electro anatomic mapping systems, pre procedural computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and combinations of these technologies. Exciting work is underway in an effort to allow the electro physiologist to assess scar formation in real time. One advantage would be to lessen the learning curve for what are very complex procedures. The hope of these developments is to improve the likelihood of a successful ablation procedure and to allow more patients access to this treatment

  6. Laser ablation/ionization studies in a glow discharge

    International Nuclear Information System (INIS)

    Hess, K.R.; Harrison, W.W.

    1985-01-01

    The pin cathode glow discharge is used in the laboratory as an atomization/ionization source for a variety of applications, including solids mass spectrometry. Coupled with a tunable dye laser, the glow discharge may also serve as an atom reservoir for resonance ionization mass spectrometry in which the laser ionizes the discharge sputtered atoms. By tightly focusing the laser onto solid samples, various ablation effects may also be investigated. The laser may be used to generate an ionized plasma which may be directly analyzed by mass spectrometry. Alternatively, the ablated neutral atoms may be used in post-ablation excitation/ionization processes, in this case the glow discharge. The results of these investigations are the basis of this paper

  7. Saphenous Venous Ablation with Hot Contrast in a Canine Model

    International Nuclear Information System (INIS)

    Prasad, Amit; Qian Zhong; Kirsch, David; Eissa, Marna; Narra, Pavan; Lopera, Jorge; Espinoza, Carmen G.; Castaneda, Wifrido

    2008-01-01

    Purpose. To determine the feasibility, efficacy, and safety of thermal ablation of the saphenous vein with hot contrast medium. Methods. Twelve saphenous veins of 6 dogs were percutaneously ablated with hot contrast medium. In all animals, ablation was performed in the vein of one leg, followed by ablation in the contralateral side 1 month later. An occlusion balloon catheter was placed in the infragenicular segment of the saphenous vein via a jugular access to prevent unwanted thermal effects on the non-target segment of the saphenous vein. After inflation of the balloon, 10 ml of hot contrast medium was injected under fluoroscopic control through a sheath placed in the saphenous vein above the ankle. A second 10 ml injection of hot contrast medium was made after 5 min in each vessel. Venographic follow-up of the ablated veins was performed at 1 month (n = 12) and 2 months (n = 6). Results. Follow-up venograms showed that all ablated venous segments were occluded at 1 month. In 6 veins which were followed up to 2 months, 4 (66%) remained occluded, 1 (16%) was partially patent, and the remaining vein (16%) was completely patent. In these latter 2 cases, an inadequate amount of hot contrast was delivered to the lumen due to a closed balloon catheter downstream which did not allow contrast to displace blood within the vessel. Discussion. Hot contrast medium thermal ablation of the saphenous vein appears feasible, safe, and effective in the canine model, provided an adequate amount of embolization agent is used

  8. Adjuvant thyroid remnant ablation in patients with differentiated thyroid carcinoma confined to the thyroid. A comparison of ablation success with different activities of radioiodine (I-131)

    International Nuclear Information System (INIS)

    Prpic, M.; Dabelic, N.; Stanicic, J.; Jukic, T.; Kusic, Z.; Milosevic, M.

    2012-01-01

    The objective of this study was to assess efficiency of various I-131 activities on thyroid remnant ablation in thyroid cancer patients. The significance of patients' characteristics, pathologic features and levels of Tg were analyzed. This study included 259 consecutive differentiated thyroid cancer patients, with disease confined to the thyroid, treated with I-131 after total thyroidectomy. Patients were divided into the three groups: 80 patients receiving low [1110-1850 MBq (30-50 mCi)], 121 intermediate [2775 MBq (75 mCi)] and 58 high [3700 MBq (100 mCi)] postoperative I-131 activities. Six to eight months after the application of radioiodine, measurements of TSH, Tg, anti-Tg antibodies (in hypothyroid state) together with ultrasound exam and whole-body scintigraphy were performed. The ablation was significantly more effective (after the first application) in patients receiving 100 mCi of I-131-89.7% than in patients receiving lower activities (P=0.016). There was no significant difference in ablation rate between the 30-50 mCi (77.5%) and 75 mCi (70.2%) groups. In the group receiving 30-50 mCi, patients with solitary tumors had significantly higher ablation rate (P=0.038). In patients receiving 75 mCi ablation rates were higher among older patients (P=0.005), with infiltration of the single lobe (P=0.005), and with solitary tumor (P=0.012). The rates of successful ablation after the second application of I-131 (after 12-16 months) amounted to 96, 97 and 96% in the 30-50, 75 and 100 mCi groups, respectively. The activity of I-131 and age were independent factors for thyroid ablation failure after the first application of I-131 (model of binary logistic regression). The results of remnant ablation were satisfactory with all activities applied. Although after the first application of I-131 the activity of 100 mCi is significantly more effective in thyroid ablation than the administration of 30-50 mCi and 75 mCi, the ablation rates between all the three groups are

  9. Ultrasound-guided radiofrequency ablation of thyroid gland: a preliminary study in dogs

    International Nuclear Information System (INIS)

    Choi, Ji Won; Yoo, Seung Min; Kwak, Seo Hyun

    2005-01-01

    The purpose of this study was to evaluate the possibility of using radiofrequency ablation as the treatment modality for the benign or malignant thyroid nodules in humans. Therefore, we examined the results of using radiofrequency ablation on the thyroid glands in dogs, in respect of the extent of the ablated tissue and the complications. Five dogs (10 lobes of the thyroid glands) were included in this study. US-guided radiofrequency ablation was undertaken with a 10 mm, uncovered 17 gauge cool-tip needle. The power and duration was 20 wattage and 1 minute in five thyroid lobes (group 1) and 20 wattage and 2 minutes in another 5 thyroid lobes (group 2). The ultrasound scans and the pre-and post-enhancement CT scans were undertaken before and immediately after the procedures, and at 24 hours, 72 hours and 1 week later. The US and CT findings of the ablated tissue and complications were evaluated. Blood sampling was done at the pre-procedure time and 1 week later for evaluating the functional status of the thyroid gland. Laryngoscopy was done at the pre-procedure and post-procedure times, and at 24 hours, 72 hours and 1 week later for the evaluation of any recurrent laryngeal nerve palsy. The echo pattern of the ablated thyroid gland at immediately after the radiofrequency ablation appeared as poorly marginated and hyperechoic. On the US obtained 24 hours after radiofrequency ablation, the echo pattern of the ablated thyroid gland was hypoechoic. The maximum diameters after RFA were 9.4 ρ 0.5 mm in group I and 11.4 ρ 0.5 mm in group II. The pre-enhanced CT scan taken at immediately after the radiofrequency ablation showed ill defined hypodense areas in the ablated thyroid gland. Differentiation between the normal and abnormal portions of the thyroid gland was difficult on the contrast enhanced CT scan. Complications induced by radiofrequency ablation were one recurrent laryngeal nerve palsy, two perforations of esophagus and five thickenings of the esophageal wall

  10. Ultrasound-guided radiofrequency ablation of thyroid gland: a preliminary study in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Won; Yoo, Seung Min [College of Medicine, Chungang University, Seoul, (Korea, Republic of); Kwak, Seo Hyun [Seoul Veterans Hospital, Seoul (Korea, Republic of)

    2005-07-15

    The purpose of this study was to evaluate the possibility of using radiofrequency ablation as the treatment modality for the benign or malignant thyroid nodules in humans. Therefore, we examined the results of using radiofrequency ablation on the thyroid glands in dogs, in respect of the extent of the ablated tissue and the complications. Five dogs (10 lobes of the thyroid glands) were included in this study. US-guided radiofrequency ablation was undertaken with a 10 mm, uncovered 17 gauge cool-tip needle. The power and duration was 20 wattage and 1 minute in five thyroid lobes (group 1) and 20 wattage and 2 minutes in another 5 thyroid lobes (group 2). The ultrasound scans and the pre-and post-enhancement CT scans were undertaken before and immediately after the procedures, and at 24 hours, 72 hours and 1 week later. The US and CT findings of the ablated tissue and complications were evaluated. Blood sampling was done at the pre-procedure time and 1 week later for evaluating the functional status of the thyroid gland. Laryngoscopy was done at the pre-procedure and post-procedure times, and at 24 hours, 72 hours and 1 week later for the evaluation of any recurrent laryngeal nerve palsy. The echo pattern of the ablated thyroid gland at immediately after the radiofrequency ablation appeared as poorly marginated and hyperechoic. On the US obtained 24 hours after radiofrequency ablation, the echo pattern of the ablated thyroid gland was hypoechoic. The maximum diameters after RFA were 9.4 {rho} 0.5 mm in group I and 11.4 {rho} 0.5 mm in group II. The pre-enhanced CT scan taken at immediately after the radiofrequency ablation showed ill defined hypodense areas in the ablated thyroid gland. Differentiation between the normal and abnormal portions of the thyroid gland was difficult on the contrast enhanced CT scan. Complications induced by radiofrequency ablation were one recurrent laryngeal nerve palsy, two perforations of esophagus and five thickenings of the esophageal

  11. Radiofrequency catheter ablation: A study concerning electrode configuration, lesion size and potential complications

    International Nuclear Information System (INIS)

    Anfinsen, Ole-Gunnar

    1999-01-01

    The study was performed to evaluate different methods of increasing the lesion size in radiofrequency catheter ablation, which is an important issue as the clinical indications for RF ablation are extended. The safety aspects of RF ablation are also studied, both with standard catheters and with experimental ones. The studies have been performed in vitro, in an animal model and in patients. The results are presented in 5 papers with titles of: 1) 'Radiofrequency catheter ablation of procine right atrium: Increased lesion size with bipolar two-catheter technique compared to unipolar application in vitro and in vivo. 2) Bipolar radiofrequency catheter ablation creates confluent lesions at a larger interelectrode spacing than does unipolar ablation from two electrodes in porcine heart. 3) Temperature-controlled radiofrequency catheter ablation with a 10 mm tip electrode creates larger lesions without charring in the porcine heart. 4) Radiofrequency catheter ablation in vitro: The difference between tissue and catheter tip temperature depends on location of the temperature sensor. 5) The activation of platelet function, coagulation and fibrinolysis during radiofrequency catheter ablation in heparin zed patients. The main conclusions are: 1) Large RF lesions may be created either by using larger electrodes and more power in the unipolar mode, or by changing the electrode configuration and thereby the geometry of the electrical field during RF current delivery. Both the 10 mm unipolar, the dielectrode and the bipolar mode showed feasible in porcine IVC-TV isthmus and right atrial free wall ablations, but the gain in lesion length was most pronounced in the bipolar mode. 2) Crater formation and intramural haemorrhages may complicate RF ablation using high current density in the right atrial free wall. In our study this was observed with 10 mm unipolar and bipolar two-catheter ablation. Phrenic nerve injury and lesions of the adjacent pulmonary tissue are risks related to

  12. Radiofrequency catheter ablation: A study concerning electrode configuration, lesion size and potential complications

    Energy Technology Data Exchange (ETDEWEB)

    Anfinsen, Ole-Gunnar

    1999-07-01

    The study was performed to evaluate different methods of increasing the lesion size in radiofrequency catheter ablation, which is an important issue as the clinical indications for RF ablation are extended. The safety aspects of RF ablation are also studied, both with standard catheters and with experimental ones. The studies have been performed in vitro, in an animal model and in patients. The results are presented in 5 papers with titles of: 1) 'Radiofrequency catheter ablation of procine right atrium: Increased lesion size with bipolar two-catheter technique compared to unipolar application in vitro and in vivo. 2) Bipolar radiofrequency catheter ablation creates confluent lesions at a larger interelectrode spacing than does unipolar ablation from two electrodes in porcine heart. 3) Temperature-controlled radiofrequency catheter ablation with a 10 mm tip electrode creates larger lesions without charring in the porcine heart. 4) Radiofrequency catheter ablation in vitro: The difference between tissue and catheter tip temperature depends on location of the temperature sensor. 5) The activation of platelet function, coagulation and fibrinolysis during radiofrequency catheter ablation in heparin zed patients. The main conclusions are: 1) Large RF lesions may be created either by using larger electrodes and more power in the unipolar mode, or by changing the electrode configuration and thereby the geometry of the electrical field during RF current delivery. Both the 10 mm unipolar, the dielectrode and the bipolar mode showed feasible in porcine IVC-TV isthmus and right atrial free wall ablations, but the gain in lesion length was most pronounced in the bipolar mode. 2) Crater formation and intramural haemorrhages may complicate RF ablation using high current density in the right atrial free wall. In our study this was observed with 10 mm unipolar and bipolar two-catheter ablation. Phrenic nerve injury and lesions of the adjacent pulmonary tissue are risks

  13. Hydrodynamic model for ultra-short pulse ablation of hard dental tissue

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Bailey, D.S.; Young, D.A.; Alley, W.E.; Feit, M.D.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Neev, J. [Beckman Laser Inst., Irvine, CA (United States)

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 fsec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  14. Laser ablation studies of Deposited Silver Colloids Active in SERS

    International Nuclear Information System (INIS)

    La Porte, R.T.; Moreno, D.S.; Striano, M.C.; Munnoz, M.M.; Garcia-Ramos, J.V.; Cortes, S.S.; Koudoumas, E.

    2002-01-01

    Laser ablation of deposited silver colloids, active in SERS, is carried out at three different laser wavelengths (KrF, XeCl and Nd:YAG at λ = 248, 308 and 532 nm respectively). Emission form excited neutral Ag and Na atoms, present in the ablation plume, is detected with spectral and temporal resolution. The expansion velocity of Ag in the plume is estimated in ∼1x104m s-1, Low-fluence laser ablation of the colloids yields ionized species that are analyzed by time-of-flight mass spectroscopy. Na+ and Agn+(n≤3) are observed. Composition of the mass spectra and widths of the mass peaks are found to be dependent on laser wavelength, suggesting that the dominant ablation mechanisms are different at the different wavelenghts.

  15. Electroporation ablation: A new energy modality for ablation of arrhythmogenic cardiac substrate

    NARCIS (Netherlands)

    van Driel, VJHM

    2016-01-01

    At the very end of the Direct Current (DC) era, low-energy DC ablation was demonstrated to cause myocardial lesions by non-thermal irreversible electroporation (IRE) (permanent formation of pores in the cell membrane, leading to cell death), without arcing and/or barotrauma. To eliminate rather

  16. Subtotal ablation of parietal epithelial cells induces crescent formation.

    NARCIS (Netherlands)

    Sicking, E.M.; Fuss, A.; Uhlig, S.; Jirak, P.; Dijkman, H.; Wetzels, J.; Engel, D.R.; Urzynicok, T.; Heidenreich, S.; Kriz, W.; Kurts, C.; Ostendorf, T.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established

  17. Clinical application and developmental trend of radiofrequency ablation technology

    International Nuclear Information System (INIS)

    Chen Dongfeng

    2009-01-01

    For recent two decades, radiofrequency ablation technology has made great progress in the field of the treatment for neoplasm. At the very beginning, radiofrequency ablation was adopted in treating the hepatic carcinoma, and since then it has been gradually practiced in treating malignancies of lung, bone, kidney, breast, prostate and other solid tumors. Statistical report of the year 2008 has indicated that in the aspect of similar therapeutic measures radiofrequency ablation therapy for tumors holds a 9% market share. Moreover, in the coming years the clinical use of this kind of therapy for tumors will be steadily increasing by 13% every year. (authors)

  18. Vocal cord paralysis following I-131 ablation of a postthyroidectomy remnant

    International Nuclear Information System (INIS)

    Lee, T.C.; Harbert, J.C.; Dejter, S.W.; Mariner, D.R.; VanDam, J.

    1985-01-01

    Vocal cord paralysis has been reported following I-131 therapy of thyrotoxicosis and following ablation of the whole thryoid. However, this rare complication has not previously been described following I-131 ablation of a postthyroidectomy remnant. The authors report a patient who required tracheostomy for bilateral vocal cord paralysis following I-131 ablation after near-total thyroidectomy for papillary thyroid carcinoma

  19. X-ray Micro-Tomography of Ablative Heat Shield Materials

    Science.gov (United States)

    Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.

    2016-01-01

    X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation

  20. Incidence and Cause of Hypertension During Adrenal Radiofrequency Ablation

    International Nuclear Information System (INIS)

    Yamakado, Koichiro; Takaki, Haruyuki; Yamada, Tomomi; Yamanaka, Takashi; Uraki, Junji; Kashima, Masataka; Nakatsuka, Atsuhiro; Takeda, Kan

    2012-01-01

    Purpose: To evaluate the incidence and cause of hypertension prospectively during adrenal radiofrequency ablation (RFA). Methods: For this study, approved by our institutional review board, written informed consent was obtained from all patients. Patients who received RFA for adrenal tumors (adrenal ablation) and other abdominal tumors (nonadrenal ablation) were included in this prospective study. Blood pressure was monitored during RFA. Serum adrenal hormone levels including epinephrine, norepinephrine, dopamine, and cortisol levels were measured before and during RFA. The respective incidences of procedural hypertension (systolic blood pressure >200 mmHg) of the two patient groups were compared. Factors correlating with procedural systolic blood pressure were evaluated by regression analysis.ResultsNine patients underwent adrenal RFA and another 9 patients liver (n = 5) and renal (n = 4) RFA. Asymptomatic procedural hypertension that returned to the baseline by injecting calcium blocker was found in 7 (38.9%) of 18 patients. The incidence of procedural hypertension was significantly higher in the adrenal ablation group (66.7%, 6/9) than in the nonadrenal ablation group (11.1%, 1/9, P 2 = 0.68, P 2 = 0.72, P < 0.0001) levels during RFA. The other adrenal hormones did not show correlation with procedural systolic blood pressure. Conclusion: Hypertension occurs frequently during adrenal RFA because of the release of catecholamine.

  1. A Review of Laser Ablation Propulsion

    International Nuclear Information System (INIS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-01-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  2. Laser ablation of lysozyme with UV, visible and infrared femto- and nanosecond pulses

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Matei, Andreea

    Lysozyme is an interesting molecule for laser ablation of organic materials, because the ablation has been comprehensively studied, it is a medium heavy molecule with a mass of 14305 Da, which can be detected by standard techniques, and because it is used as a bactericidal protein in the food...... industry. Lysozyme molecules do not absorb energy for wavelengths above 310 nm, but nevertheless there is a strong mass loss by ablation for laser irradiation in the visible regime. The total ablation yield of lysozyme at 355 nm and at 2 J/cm2 is about 155 µg/pulse, possibly one of the highest ablation...... the ablation process for different wavelengths and time duration. Measurements for 6-7-ns laser ablation were carried out at DTU on Risø Campus, while measurements with pulses of 300 fs were carried out at the University of Naples in a similar setup. For all wavelengths except at nanosecond laser pulses at 355...

  3. Radiofrequency ablation of osteoid osteomas: five years experience.

    Science.gov (United States)

    Papathanassiou, Zafiria G; Petsas, Theodore; Papachristou, Dionysios; Megas, Panagiotis

    2011-12-01

    The purpose of this study is to retrospectively evaluate the efficacy of radiofrequency ablation as a curative treatment method for benign bone tumours. Twenty-nine osteoid osteomas were treated with radiofrequency ablation. Primary success rate was 89.6% and total secondary success rate was 93.1%. Mean clinical follow-up period was 26.7 months (range: 6-63 months). Statistical analysis of 25 cases of osteoid osteomas with CT follow-up revealed that post-treatment re-ossification does not correlate with clinical outcome (p = 0.14) but is strongly correlated with long-term (> or = 12 months) CT follow-up (p = 0.014). Percutaneous radiofrequency ablation was found to be an effective and safe treatment for osteoid osteomas. CT findings cannot solely differentiate between treatment successes and failures.

  4. Spectroscopic diagnostics for ablation cloud of tracer-encapsulated solid pellet in LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Kalinina, D. V.; Sato, K.; Sudo, S.; Sergeev, V. Yu.; Miroshnikov, I. V.; Sharov, I. A.; Bakhareva, O. A.; Ivanova, D. M.; Timokhin, V. M.; Kuteev, B. V.

    2008-01-01

    In the Large Helical Device (LHD), various spectroscopic diagnostics have been applied to study the ablation process of an advanced impurity pellet, tracer-encapsulated solid pellet (TESPEL). The total light emission from the ablation cloud of TESPEL is measured by photomultipliers equipped with individual interference filters, which provide information about the TESPEL penetration depth. The spectra emitted from the TESPEL ablation cloud are measured with a 250 mm Czerny-Turner spectrometer equipped with an intensified charge coupled device detector, which is operated in the fast kinetic mode. This diagnostic allows us to evaluate the temporal evolution of the electron density in the TESPEL ablation cloud. In order to gain information about the spatial distribution of the cloud parameters, a nine image optical system that can simultaneously acquire nine images of the TESPEL ablation cloud has recently been developed. Several images of the TESPEL ablation cloud in different spectral domains will give us the spatial distribution of the TESPEL cloud density and temperature.

  5. High throughput solar cell ablation system

    Science.gov (United States)

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  6. Contemporary management of patients undergoing atrial fibrillation ablation: in-hospital and 1-year follow-up findings from the ESC-EHRA atrial fibrillation ablation long-term registry.

    Science.gov (United States)

    Arbelo, Elena; Brugada, Josep; Blomström-Lundqvist, Carina; Laroche, Cécile; Kautzner, Josef; Pokushalov, Evgeny; Raatikainen, Pekka; Efremidis, Michael; Hindricks, Gerhard; Barrera, Alberto; Maggioni, Aldo; Tavazzi, Luigi; Dagres, Nikolaos

    2017-05-01

    The ESC-EHRA Atrial Fibrillation Ablation Long-Term registry is a prospective, multinational study that aims at providing an accurate picture of contemporary real-world ablation for atrial fibrillation (AFib) and its outcome. A total of 104 centres in 27 European countries participated and were asked to enrol 20-50 consecutive patients scheduled for first and re-do AFib ablation. Pre-procedural, procedural and 1-year follow-up data were captured on a web-based electronic case record form. Overall, 3630 patients were included, of which 3593 underwent an AFib ablation (98.9%). Median age was 59 years and 32.4% patients had lone atrial fibrillation. Pulmonary vein isolation was attempted in 98.8% of patients and achieved in 95-97%. AFib-related symptoms were present in 97%. In-hospital complications occurred in 7.8% and one patient died due to an atrioesophageal fistula. One-year follow-up was performed in 3180 (88.6%) at a median of 12.4 months (11.9-13.4) after ablation: 52.8% by clinical visit, 44.2% by telephone contact and 3.0% by contact with the general practitioner. At 12-months, the success rate with or without antiarrhythmic drugs (AADs) was 73.6%. A significant portion (46%) was still on AADs. Late complications included 14 additional deaths (4 cardiac, 4 vascular, 6 other causes) and 333 (10.7%) other complications. AFib ablation in clinical practice is mostly performed in symptomatic, relatively young and otherwise healthy patients. Overall success rate is satisfactory, but complication rate remains considerable and a significant portion of patients remain on AADs. Monitoring after ablation shows wide variations. Antithrombotic treatment after ablation shows insufficient guideline-adherence. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For Permissions, please email: journals.permissions@oup.com.

  7. Treatment of Osteoid Osteomas Using a Navigational Bipolar Radiofrequency Ablation System

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Adam N., E-mail: wallacea@mir.wustl.edu; Tomasian, Anderanik, E-mail: tomasiana@mir.wustl.edu [Washington University School of Medicine, Mallinckrodt Institute of Radiology (United States); Chang, Randy O., E-mail: changr@wusm.wustl.edu [Washington University School of Medicine (United States); Jennings, Jack W., E-mail: jenningsj@mir.wustl.edu [Washington University School of Medicine, Mallinckrodt Institute of Radiology (United States)

    2016-05-15

    BackgroundPercutaneous CT-guided radiofrequency ablation is a safe and effective minimally invasive treatment for osteoid osteomas. This technical case series describes the use of a recently introduced ablation system with a probe that can be curved in multiple directions, embedded thermocouples for real-time monitoring of the ablation volume, and a bipolar design that obviates the need for a grounding pad.MethodsMedical records of all patients who underwent radiofrequency ablation of an osteoid osteoma with the STAR Tumor Ablation System (DFINE; San Jose, CA) were reviewed. The location of each osteoid osteoma, nidus volume, and procedural details were recorded. Treatment efficacy and long-term complications were assessed at clinical follow-up.ResultsDuring the study period, 18 osteoid osteomas were radiofrequency ablated with the multidirectional bipolar system. Lesion locations included the femur (50 %; 9/18), tibia (22 %; 4/18), cervical spine (11 %; 2/18), calcaneus (5.5 %; 1/18), iliac bone (5.5 %; 1/18), and fibula (5.5 %; 1/18). The median nidus volume of these cases was 0.33 mL (range 0.12–2.0 mL). All tumors were accessed via a single osseous channel. Median cumulative ablation time was 5 min and 0 s (range 1 min and 32 s–8 min and 50 s). All patients with clinical follow-up reported complete symptom resolution. No complications occurred.ConclusionSafe and effective CT-guided radiofrequency ablation of osteoid osteomas can be performed in a variety of locations using a multidirectional bipolar system.

  8. Treatment of Osteoid Osteomas Using a Navigational Bipolar Radiofrequency Ablation System

    International Nuclear Information System (INIS)

    Wallace, Adam N.; Tomasian, Anderanik; Chang, Randy O.; Jennings, Jack W.

    2016-01-01

    BackgroundPercutaneous CT-guided radiofrequency ablation is a safe and effective minimally invasive treatment for osteoid osteomas. This technical case series describes the use of a recently introduced ablation system with a probe that can be curved in multiple directions, embedded thermocouples for real-time monitoring of the ablation volume, and a bipolar design that obviates the need for a grounding pad.MethodsMedical records of all patients who underwent radiofrequency ablation of an osteoid osteoma with the STAR Tumor Ablation System (DFINE; San Jose, CA) were reviewed. The location of each osteoid osteoma, nidus volume, and procedural details were recorded. Treatment efficacy and long-term complications were assessed at clinical follow-up.ResultsDuring the study period, 18 osteoid osteomas were radiofrequency ablated with the multidirectional bipolar system. Lesion locations included the femur (50 %; 9/18), tibia (22 %; 4/18), cervical spine (11 %; 2/18), calcaneus (5.5 %; 1/18), iliac bone (5.5 %; 1/18), and fibula (5.5 %; 1/18). The median nidus volume of these cases was 0.33 mL (range 0.12–2.0 mL). All tumors were accessed via a single osseous channel. Median cumulative ablation time was 5 min and 0 s (range 1 min and 32 s–8 min and 50 s). All patients with clinical follow-up reported complete symptom resolution. No complications occurred.ConclusionSafe and effective CT-guided radiofrequency ablation of osteoid osteomas can be performed in a variety of locations using a multidirectional bipolar system.

  9. Atrial Fibrillation Ablation in Systolic Dysfunction: Clinical and Echocardiographic Outcomes

    Directory of Open Access Journals (Sweden)

    Tasso Julio Lobo

    2015-01-01

    Full Text Available Background: Heart failure and atrial fibrillation (AF often coexist in a deleterious cycle. Objective: To evaluate the clinical and echocardiographic outcomes of patients with ventricular systolic dysfunction and AF treated with radiofrequency (RF ablation. Methods: Patients with ventricular systolic dysfunction [ejection fraction (EF <50%] and AF refractory to drug therapy underwent stepwise RF ablation in the same session with pulmonary vein isolation, ablation of AF nests and of residual atrial tachycardia, named "background tachycardia". Clinical (NYHA functional class and echocardiographic (EF, left atrial diameter data were compared (McNemar test and t test before and after ablation. Results: 31 patients (6 women, 25 men, aged 37 to 77 years (mean, 59.8±10.6, underwent RF ablation. The etiology was mainly idiopathic (19 p, 61%. During a mean follow-up of 20.3±17 months, 24 patients (77% were in sinus rhythm, 11 (35% being on amiodarone. Eight patients (26% underwent more than one procedure (6 underwent 2 procedures, and 2 underwent 3 procedures. Significant NYHA functional class improvement was observed (pre-ablation: 2.23±0.56; postablation: 1.13±0.35; p<0.0001. The echocardiographic outcome also showed significant ventricular function improvement (EF pre: 44.68%±6.02%, post: 59%±13.2%, p=0.0005 and a significant left atrial diameter reduction (pre: 46.61±7.3 mm; post: 43.59±6.6 mm; p=0.026. No major complications occurred. Conclusion: Our findings suggest that AF ablation in patients with ventricular systolic dysfunction is a safe and highly effective procedure. Arrhythmia control has a great impact on ventricular function recovery and functional class improvement.

  10. Properties of the ablation process for excimer laser ablation of Y1Ba2Cu3O7

    International Nuclear Information System (INIS)

    Neifeld, R.A.; Potenziani, E.; Sinclair, W.R.; Hill III, W.T.; Turner, B.; Pinkas, A.

    1991-01-01

    The process of excimer laser ablation has been studied while varying the laser fluence from 0.237 to 19.1 J/cm 2 . Ion time-of-flight, total charge, target etch depth per pulse, and etch volume per pulse have been measured. Results indicate a maximum ablation volume and minimum ionization fraction occur near 5 J/cm 2 . Several of the parameters measured vary rapidly in the 1--5 J/cm 2 range. Variation in these parameters strongly influences the properties of films grown by this technique

  11. Image and pathological changes after microwave ablation of breast cancer: A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenbin [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Jiang, Yanni [Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Chen, Lin; Ling, Lijun; Liang, Mengdi; Pan, Hong [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Wang, Siqi [Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Ding, Qiang [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Liu, Xiaoan, E-mail: liuxiaoan@126.com [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Wang, Shui, E-mail: ws0801@hotmail.com [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China)

    2014-10-15

    Highlights: • We report successful experience of MWA in breast cancer under local anesthesia. • We report MR imaging evaluation of microwave ablation zone in breast cancer. • Pathological changes after microwave ablation in breast cancer was reported. • 2 min MWA caused an ablation zone with three diameters > 2 cm in breast cancer. - Abstract: Purpose: To prospectively assess MR imaging evaluation of the ablation zone and pathological changes after microwave ablation (MWA) in breast cancer. Materials and methods: Twelve enrolled patients, diagnosed with non-operable locally advanced breast cancer (LABC), were treated by MWA and then neoadjuvant chemotherapy, followed by surgery. MR imaging was applied to evaluate the effect of MWA. Hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) were applied to analyze the ablated area. Results: All MWA procedures were performed successfully under local anesthesia. For a mean duration of 2.15 min, the mean largest, middle and smallest diameters in the ablated zone 24-h post-ablation in MR imaging were 2.98 cm ± 0.53, 2.51 cm ± 0.41 and 2.23 cm ± 0.41, respectively. The general shape of the ablation zone was close to a sphere. The ablated area became gradually smaller in MR imaging. No adverse effects related to MWA were noted in all 12 patients during and after MWA. HE staining could confirm the effect about 3 months after MWA, which was confirmed by TEM. Conclusions: 2 min MWA can cause an ablation zone with three diameters larger than 2 cm in breast cancer, which may be suitable for the local treatment of breast cancer up to 2 cm in largest diameter. However, the long-term effect of MWA in the treatment of small breast cancer should be determined in the future.

  12. Design of Ablation Test Device for Brick Coating of Gun

    Science.gov (United States)

    shirui, YAO; yongcai, CHEN; fei, WANG; jianxin, ZHAO

    2018-03-01

    As a result of the live ammunition test conditions, the barrel resistance of the barrel coating has high cost, time consuming, low efficiency and high test site requirements. This article designed a simple, convenient and efficient test device. Through the internal trajectory calculation by Matlab, the ablation environment produced by the ablation test device has achieved the expected effect, which is consistent with the working condition of the tube in the launching state, which can better reflect the ablation of the coating.

  13. A 6-year review of the outcome of endometrial ablation.

    Science.gov (United States)

    Tsaltas, J; Taylor, N; Healey, M

    1998-02-01

    In June, 1995 a postal questionnaire was distributed to all 232 women who had an endometrial ablation at Monash Medical Centre between July, 1989 and December, 1994. Data was analyzed from the 149 who responded. Length of follow-up ranged from 6 months to 6 years 6 months. Of these 78% were satisfied with their ablation and 84% found their menses to be lighter or to have stopped. The repeat ablation rate was 13% and the hysterectomy rate was 17%.

  14. Density gradient effects in weakly nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Wang, L. F.; Ye, W. H.; He, X. T.

    2012-01-01

    In this research, density gradient effects (i.e., finite thickness of ablation front effects) in ablative Rayleigh-Taylor instability (ARTI), in the presence of preheating within the weakly nonlinear regime, are investigated numerically. We analyze the weak, medium, and strong ablation surfaces which have different isodensity contours, respectively, to study the influences of finite thickness of ablation front on the weakly nonlinear behaviors of ARTI. Linear growth rates, generation coefficients of the second and the third harmonics, and coefficients of the third-order feedback to the fundamental mode are obtained. It is found that the linear growth rate which has a remarkable maximum, is reduced, especially when the perturbation wavelength λ is short and a cut-off perturbation wavelength λ c appears when the perturbation wavelength λ is sufficiently short, where no higher harmonics exists when λ c . The phenomenon of third-order positive feedback to the fundamental mode near the λ c [J. Sanz et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier et al., Phys. Rev. Lett. 90, 185003 (2003); J. Garnier and L. Masse, Phys. Plasmas 12, 062707 (2005)] is confirmed in numerical simulations, and the physical mechanism of the third-order positive feedback is qualitatively discussed. Moreover, it is found that generations and growths of the second and the third harmonics are stabilized (suppressed and reduced) by the ablation effect. Meanwhile, the third-order negative feedback to the fundamental mode is also reduced by the ablation effect, and hence, the linear saturation amplitude (typically ∼0.2λ in our simulations) is increased significantly and therefore exceeds the classical prediction 0.1λ, especially for the strong ablation surface with a small perturbation wavelength. Overall, the ablation effect stabilizes the ARTI in the weakly nonlinear regime. Numerical results obtained are in general agreement with the recent weakly nonlinear theories and simulations

  15. Planar strain analysis of liver undergoing microwave thermal ablation using x-ray CT.

    Science.gov (United States)

    Weiss, Noam; Goldberg, S Nahum; Nissenbaum, Yitzhak; Sosna, Jacob; Azhari, Haim

    2015-01-01

    To study the planar strain effects in liver during microwave (MW) thermal ablation as a means for tracking tissue expansion and contraction as a method for improving ablation monitoring. 1.4 mm circular metallic markers were inserted into 16 ex-vivo bovine fresh liver specimens, that were subsequently ablated (with the markers inside the specimen) by 40 W of microwave energy, for 1, 2, 3, 6, and 10 min. The markers were tracked during the ablation using an x-ray CT scanner. Images were acquired every 5-10 s enabling determination of the markers' coordinates over time. The 2D principal strains were calculated for triangles formed by subgroups of three markers, and their planar strain index, Ω, was plotted vs time. In addition, the radial distance of the markers from the antenna was measured at the end of each ablation. Subsequently, the tissue was sliced parallel to the imaged planes and the ablation zone was traced and digitized. The average ablation radius was then computed and compared to the radial distance. The planar strain, Ω(t), profile demonstrated an ascending pattern until reaching a maximum at about 180 s, with a mean peak value (Ω = 1.31 ± 0.04) indicating tissue expansion. Thereafter, Ω progressively declined over the remaining duration of the ablation treatment, indicating tissue contraction. Furthermore, when plotting the ablation size vs time and the markers' mean radial distance vs time, it was found that the two curves intercepted at a time corresponding to the time of peak planar strain. By detecting the point of maximal planar strain in tissues during MW application, it is possible to noninvasively identify the location of the ablation zone front. The fact that the liver tissue proximal to the ablated zone expands during the first part of the treatment and then contracts when the ablation front reaches it, may serve as an index for monitoring the thermal treatment.

  16. A study of angular dependence in the ablation rate of polymers by nanosecond pulses

    Science.gov (United States)

    Pedder, James E. A.; Holmes, Andrew S.

    2006-02-01

    Measurements of ablation rate have traditionally been carried out only at normal incidence. However, in real-world applications ablation is often carried out at oblique angles, and it is useful to have prior knowledge of the ablation rate in this case. Detailed information about the angular dependence is also important for the development of ablation simulation tools, and can provide additional insight into the ablation mechanism. Previously we have reported on the angular dependence of direct-write ablation at 266 nm wavelength in solgel and polymer materials. In this paper we present a systematic study of angular dependence for excimer laser ablation of two polymer materials of interest for microfabrication: polycarbonate and SU8 photoresist. The results are used to improve simulation models to aid in mask design.

  17. Performance of Er:YAG laser ablation of hard bone under different irrigation water cooling conditions

    Science.gov (United States)

    Beltrán Bernal, Lina M.; Shayeganrad, Gholamreza; Kosa, Gabor; Zelechowski, Marek; Rauter, Georg; Friederich, Niklaus; Cattin, Philippe C.; Zam, Azhar

    2018-02-01

    The biological applicability of the Erbium-doped Yttrium Aluminum Garnet (Er:YAG) laser in surgical processes is so far limited to hard dental tissues. Using the Er:YAG laser for bone ablation is being studied since it has shown good performance for ablating dental hard tissues at the wavelength 2.94 μm, which coincides with the absorption peak of water, one of the main components of hard tissue, like teeth and bone. To obtain a decent performance of the laser in the cutting process, we aim at examining the influence of sequenced water jet irrigation on both, the ablation rate and the prevention of carbonization while performing laser ablation of bone with fixed laser parameters. An Er:YAG laser at 2.94 μm wavelength, 940 mJ energy per pulse, 400 μs pulse width, and 10 Hz repetition rate is used for the ablation of a porcine femur bone under different pulsed water jet irrigation conditions. We used micro-computed tomography (micro-CT) scans to determine the geometry of the ablated areas. In addition, scanning electron microscopy (SEM) is used for qualitative observations for the presence of carbonization and micro-fractures on the ablated surfaces. We evaluate the performance of the laser ablation process for the different water jet conditions in terms of the ablation rate, quantified by the ablated volume per second and the ablation efficiency, calculated as the ablated volume per pulse energy. We provide an optimized system for laser ablation which delivers the appropriate amount of water to the bone and consequently, the bone is ablated in the most efficient way possible without carbonization.

  18. In-vitro ablation of fibrocartilage by XeCl excimer laser

    Science.gov (United States)

    Buchelt, Martin; Papaioannou, Thanassis; Fishbein, Michael C.; Peters, Werner; Beeder, Clain; Grundfest, Warren S.

    1991-07-01

    A 308 nm excimer laser was employed for ablation of human fibrocartilage. Experiments were conducted in vitro. The tissue response was investigated with respect to dosimetry (ablation rate versus radiant exposure) and thermal effect (thermographic analysis). Irradiation was performed via a 600 um fiber, with radiant exposures ranging between 20mj/mm2 and 80mj/mm2, at 20Hz. The ablation rates were found to range from 3um/pulse to 80um/pulse depending on the radiant exposure and/or the applied pressure on the delivery system. Thermographic analysis, during ablation, revealed maximum average temperatures of about 65 degree(s)C. Similar measurements performed, for the purpose of comparison, with a CW Nd:YAG and a CW CO2 laser showed higher values, of the order of 200 degree(s)C.

  19. Radiofrequency ablation of hepatocellular carcinoma: pros and cons.

    Science.gov (United States)

    Rhim, Hyunchul; Lim, Hyo K

    2010-09-01

    Among locoregional treatments for hepatocellular carcinoma (HCC), radiofrequency ablation (RFA) has been accepted as the most popular alternative to curative transplantation or resection, and it shows an excellent local tumor control rate and acceptable morbidity. The benefits of RFA have been universally validated by the practice guidelines of international societies of hepatology. The main advantages of RFA include 1) it is minimally invasive with acceptable morbidity, 2) it enables excellent local tumor control, 3) it has promising long-term survival, and 4) it is a multimodal approach. Based on these pros, RFA will play an important role in managing the patient with early HCC (smaller than 3 cm with fewer than four tumors). The main limitations of current RFA technology in hepatic ablation include 1) limitation of ablation volume, 2) technically infeasible in some tumors due to conspicuity and dangerous location, and 3) the heat-sink effect. Many technical approaches have been introduced to overcome those limitations, including a novel guiding modality, use of artificial fluid or air, and combined treatment strategies. RFA will continue to play a role as a representative ablative modality in the management of HCC, even in the era of targeted agents.

  20. Landau-Darrieus instability in an ablation front

    International Nuclear Information System (INIS)

    Piriz, A.R.; Portugues, R.F.

    2003-01-01

    An analytical model that shows the conditions for the existence of the Landau-Darrieus instability of an ablation front is presented. The model seems to agree with recently claimed simulation results [L. Masse et al., Proceedings of the 1st International Conference on Inertial Fusion Sciences and Applications (Elsevier, Paris, 2000), p. 220]. The model shows that the ablation front can be unstable in absence of gravity when the thermal flux is inhibited within the supercritical region of the corona

  1. Experimental investigations on vessel-hole ablation during severe accidents

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Dinh, T.N.; Green, J.A.; Paladino, D.

    1997-12-01

    This report presents experimental results, and subsequent analyses, of scaled reactor pressure vessel (RPV) failure site ablation tests conducted at the Royal Institute of Technology, Division of Nuclear Power Safety (RIT/NPS). The goal of the test program is to reduce the uncertainty level associated with the phase-change-ablation process, and, thus, improve the characterization of the melt discharge loading on the containment. In a series of moderate temperature experiments, the corium melt is simulated by the binary oxide CaO-B 2 O 3 or the binary eutectic and non-eutectic salts NaNO 3 -KNO 3 , while the RPV head steel is represented by a Pb, Sn or metal alloys plate. A complementary set of experiments was conducted at lower temperatures, using water as melt and salted ice as plate material. These experiments scale well to the postulated prototypical conditions. The multidimensional code HAMISA, developed at RIT/NPS, is employed to analyze the experiments with good pre- and post-test predictions. The effects of melt viscosity and crust surface roughness, along with failure site entrance and exit frictional losses on the ablation characteristics are investigated. Theoretical concept was proposed to describe physical mechanisms which govern the vessel-hole ablation process during core melt discharge from RPV. Experimental data obtained from hole ablation tests and separate-effect tests performed at RIT/NPS were used to validate component physical models of the HAMISA code. It is believed that the hole ablation phenomenology is quite well understood. Detailed description of experiments and experimental data, as well as results of analyses are provided in the appendixes

  2. Growth of anatase and rutile phase TiO{sub 2} nanoparticles using pulsed laser ablation in liquid: Influence of surfactant addition and ablation time variation

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Amita, E-mail: amita-chaturvedi@rrcat.gov.in [Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India); Joshi, M.P. [Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai – 400094 (India); Mondal, P.; Sinha, A.K.; Srivastava, A.K. [Indus Synchrotron Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India)

    2017-02-28

    Highlights: • Ablations of Ti metal target were carried out in DI water and in 0.001 M SDS solution for different times using PLAL process. • Different characterization studies have been carried out to confirm the growth of TiO{sub 2} nanoparticles in both the liquid mediums. • Anatase phase TiO{sub 2} nanoparticles were obtained in DI water and rutile phase in 0.001 M SDS aqueous solution. • In surfactant solution, longer time ablation leads depletion of SDS molecules causes growth of anatase phase for 90 min. • Our studies confirmed the role of liquid ambience conditions variation over the different phase formations of nanoparticles. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles were grown using nanosecond pulsed laser ablation of Ti target in DI water and in 0.001 M sodium dodecyl sulfate (SDS) surfactant aqueous solution. Growth was carried out with varying ablation times i. e. 30 min, 60 min and 90 min. The objective of our study was to investigate the influence of variations in liquid ambience conditions on the growth of the nanoparticles in a pulsed laser ablation in liquid (PLAL) process. Size, composition and optical properties of the grown TiO{sub 2} nanoparticles were investigated using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), optical absorption, photoluminescence (PL) spectroscopy and X-ray diffraction (XRD) studies. The obtained nanoparticles of TiO{sub 2} were found almost spherical in shape and polycrystalline in nature in both the liquid mediums i.e. DI water and aqueous solution of surfactant. Nanoparticles number density was also found to increase with increasing ablation time in both the liquid mediums. However crystalline phase of the grown TiO{sub 2} nanoparticles differs with the change in liquid ambience conditions. Selected area electron diffraction (SAED), PL and XRD studies suggest that DI water ambience is favorable for the growth of anatase phase TiO{sub 2} nanoparticles for all

  3. Propagation profile of ablation front driven by a nonuniform UV laser beam

    International Nuclear Information System (INIS)

    Matsushima, I.; Tanimoto, M.; Kasai, T.; Yano, M.

    1985-01-01

    Spatial profile of ablation front is observed under the irradiation of spatially modulated 0.27-μm laser beam. Propagation depth of the ablation front is derived by means of various methods which detect x-ray radiation from aluminum substrates overcoated with polyethylene layers of different thicknesses. A higher mass ablation rate is observed for the UV laser than the longer wavelength lasers. However, observation with an x-ray television camera shows that the spatial nonuniformity in the laser beam is projected on the ablation front surface without substantial smoothing

  4. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Yan, R.; Aluie, H.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.

    2016-01-01

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume

  5. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    Science.gov (United States)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  6. Percutaneous Ablation of a Mesenteric Cyst Using Ethanol: Is It Feasible?

    International Nuclear Information System (INIS)

    Irie, Toshiyuki; Kuramochi, Masashi; Takahashi, Nobuyuki; Kamoshida, Toshirou

    2010-01-01

    A huge mesenteric cyst in a 61-year-old female was treated by percutaneous ablation using ethanol. Marked shrinkage was achieved and regrowth was not seen 16 months after ablation. Resection is the standard therapy for mesenteric cysts, but it may be valuable to discuss the feasibility of percutaneous ablation before resection if the lesion wall is smooth and thin, and if solid nodules are not depicted on imaging.

  7. Conditional and specific cell ablation in the marine annelid Platynereis dumerilii.

    Directory of Open Access Journals (Sweden)

    Vinoth Babu Veedin-Rajan

    Full Text Available The marine annelid Platynereis dumerilii has become a model system for evo-devo, neurobiology and marine biology. The functional assessment of its cell types, however, has so far been very limited. Here we report on the establishment of a generally applicable, cell type specific ablation technique to overcome this restriction. Using a transgenic strain expressing the bacterial enzyme nitroreductase (ntr under the control of the worm's r-opsin1 locus, we show that the demarcated photoreceptor cells can be specifically ablated by the addition of the prodrug metronidazole (mtz. TUNEL staining indicates that ntr expressing cells undergo apoptotic cell death. As we used a transgenic strain co-expressing ntr with enhanced green fluorescent protein (egfp coding sequence, we were able to validate the ablation of photoreceptors not only in fixed tissue, using r-opsin1 riboprobes, but also by monitoring eGFP+ cells in live animals. The specificity of the ablation was demonstrated by the normal presence of the eye pigment cells, as well as of neuronal markers expressed in other cells of the brain, such as phc2, tyrosine hydroxylase and brn1/2/4. Additional analyses of the position of DAPI stained nuclei, the brain's overall neuronal scaffold, as well as the positions and projections of serotonergic neurons further confirmed that mtz treatment did not induce general abnormalities in the worm's brain. As the prodrug is administered by adding it to the water, targeted ablation of specific cell types can be achieved throughout the life of the animal. We show that ablation conditions need to be adjusted to the size of the worms, likely due to differences in the penetration of the prodrug, and establish ablation conditions for worms containing 10 to 55 segments. Our results establish mtz/ntr mediated conditional cell ablation as a powerful functional tool in Platynereis.

  8. Use of radiofrequency ablation in benign thyroid nodules: a literature review and updates.

    Science.gov (United States)

    Wong, Kai-Pun; Lang, Brian Hung-Hin

    2013-01-01

    Successful thermal ablation using radiofrequency has been reported in various tumors including liver or kidney tumors. Nonsurgical minimally invasive ablative therapy such as radiofrequency ablation (RFA) has been reported to be a safe and efficient treatment option in managing symptomatic cold thyroid nodules or hyperfunctioning thyroid nodules. Pressure and cosmetic symptoms have been shown to be significantly improved both in the short and long terms after RFA. For hyperfunctioning thyroid nodules, RFA is indicated for whom surgery or radioiodine are not indicated or ineffective or for those who refuse surgery or radio-iodine. Improvement of thyroid function with decreased need for antithyroid medications has been reported. Complication rate is relatively low. By reviewing the current literature, we reported its efficacy and complications and compared the efficacy of RFA relative to other ablative options such as ethanol ablation and laser ablation.

  9. Use of Radiofrequency Ablation in Benign Thyroid Nodules: A Literature Review and Updates

    Directory of Open Access Journals (Sweden)

    Kai-Pun Wong

    2013-01-01

    Full Text Available Successful thermal ablation using radiofrequency has been reported in various tumors including liver or kidney tumors. Nonsurgical minimally invasive ablative therapy such as radiofrequency ablation (RFA has been reported to be a safe and efficient treatment option in managing symptomatic cold thyroid nodules or hyperfunctioning thyroid nodules. Pressure and cosmetic symptoms have been shown to be significantly improved both in the short and long terms after RFA. For hyperfunctioning thyroid nodules, RFA is indicated for whom surgery or radioiodine are not indicated or ineffective or for those who refuse surgery or radio-iodine. Improvement of thyroid function with decreased need for antithyroid medications has been reported. Complication rate is relatively low. By reviewing the current literature, we reported its efficacy and complications and compared the efficacy of RFA relative to other ablative options such as ethanol ablation and laser ablation.

  10. Factors associated with initial incomplete ablation for benign thyroid nodules after radiofrequency ablation: First results of CEUS evaluation.

    Science.gov (United States)

    Zhao, Chong-Ke; Xu, Hui-Xiong; Lu, Feng; Sun, Li-Ping; He, Ya-Ping; Guo, Le-Hang; Li, Xiao-Long; Bo, Xiao-Wan; Yue, Wen-Wen

    2017-01-01

    To assess the factors associated with initial incomplete ablation (ICA) after radiofrequency ablation for benign thyroid nodules (BTNs). 69 BTNs (mean volume 6.35±5.66 ml, range 1.00-25.04 ml) confirmed by fine-needle aspiration cytology (FNAC) in fifty-four patients were treated with ultrasound-guided percutaneous radiofrequency ablation (RFA) and the local treatment efficacy was immediately assessed by intra-procedural contrast-enhanced ultrasound (CEUS). The RFA was performed with a bipolar electrode (CelonProSurge 150-T20, output power: 20 W). CEUS was performed with a second generation contrast agent under low acoustic power (i.e. coded phase inversion, CPI). Characteristics of clinical factors, findings on conventional gray-scale ultrasound, color-Doppler ultrasound, and CEUS were evaluated preoperatively. Factors associated with initial ICA and initial ICA patterns on CEUS were assessed. Volume reduction ratios (VRRs) of ICA nodules were compared with those with complete ablation (CA). The RFA procedures were accomplished with a mean ablation time and mean total energy deposition of 11.13±3.39 min (range, 5.38-22.13 min) and 12612±4466 J (range, 6310-26130 J) respectively. CEUS detected initial ICA in 21 of 69 (30.8%) BTNs and 16 (76.2%) of the 21 BTNs with initial ICA achieved CA after additional RFA, leading to a final CA rate of 92.8% (64/69). The factors associated with initial ICA were predominantly solid nodule, nodule close to danger triangle area, nodule close to carotid artery, and peripheral blood flow on color-Doppler ultrasound (all P 50% at the 6-month follow-up, among which 7 nodules (10.1%) had VRRs of >90%. There were significant differences in VRRs between ICA nodules and CA nodules at the 3- and 6-month follow-up (all P ultrasound. CEUS assists quick treatment response evaluation and facilitates subsequent additional RFA and final CA of the nodules. Nodules with CA achieve a better outcome in terms of VRR in comparison with

  11. Radiofrequency Ablation Treatment for Renal Cell Carcinoma: Early Clinical Experience

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hoon; Yoon, Seong Kuk; Cho, Jin Han; Oh, Jong Young; Nam, Kyung Jin; Kwon, Hee Jin; Kim, Su Yeon; Kang, Myong Jin; Choi, Sun Seob; Sung, Gyung Tak [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2008-08-15

    To evaluate the early clinical experience associated with radiofrequency (RF) ablation in patients with renal cell carcinoma (RCC). The RF ablation treatment was performed on 17 tumors from 16 patients (mean age, 60.5 years; range, 43 73 years) with RCC. The treatment indications were localized, solid renal mass, comorbidities, high operation risk, and refusal to perform surgery. All tumors were treated by a percutaneous CT (n = 10), followed by an US-guided (n = 2), laparoscopy-assisted US (n = 2), and an open (n = 2) RF ablation. Furthermore, patients underwent a follow- up CT at one day, one week, one month, three and six months, and then every six months from the onset of treatment. We evaluated the technical success, technical effectiveness, ablation zone, benign periablation enhancement, irregular peripheral enhancement, and complications. All 17 exophytic tumors (mean size, 2.2 cm; range, 1.1 5.0 cm) were completely ablated. Technical success and effectiveness was achieved in all cases and the mean follow-up period was 23.8 months (range, 17 33 months). A local recurrence was not detected in any of the cases; however, five patients developed complications as a result of treatment, including hematuria (n = 2), mild thermal injury of the psoas muscle (n = 1), mild hydronephrosis (n = 1), and fistula formation (n = 1). The RF ablation is an alternative treatment for exophytic RCCs and represents a promising treatment for some patients with small RCCs.

  12. Radiofrequency Ablation Treatment for Renal Cell Carcinoma: Early Clinical Experience

    International Nuclear Information System (INIS)

    Park, Seong Hoon; Yoon, Seong Kuk; Cho, Jin Han; Oh, Jong Young; Nam, Kyung Jin; Kwon, Hee Jin; Kim, Su Yeon; Kang, Myong Jin; Choi, Sun Seob; Sung, Gyung Tak

    2008-01-01

    To evaluate the early clinical experience associated with radiofrequency (RF) ablation in patients with renal cell carcinoma (RCC). The RF ablation treatment was performed on 17 tumors from 16 patients (mean age, 60.5 years; range, 43 73 years) with RCC. The treatment indications were localized, solid renal mass, comorbidities, high operation risk, and refusal to perform surgery. All tumors were treated by a percutaneous CT (n = 10), followed by an US-guided (n = 2), laparoscopy-assisted US (n = 2), and an open (n = 2) RF ablation. Furthermore, patients underwent a follow- up CT at one day, one week, one month, three and six months, and then every six months from the onset of treatment. We evaluated the technical success, technical effectiveness, ablation zone, benign periablation enhancement, irregular peripheral enhancement, and complications. All 17 exophytic tumors (mean size, 2.2 cm; range, 1.1 5.0 cm) were completely ablated. Technical success and effectiveness was achieved in all cases and the mean follow-up period was 23.8 months (range, 17 33 months). A local recurrence was not detected in any of the cases; however, five patients developed complications as a result of treatment, including hematuria (n = 2), mild thermal injury of the psoas muscle (n = 1), mild hydronephrosis (n = 1), and fistula formation (n = 1). The RF ablation is an alternative treatment for exophytic RCCs and represents a promising treatment for some patients with small RCCs

  13. Interactive Volumetry Of Liver Ablation Zones.

    Science.gov (United States)

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-10-20

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm's results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.

  14. Interactive Volumetry Of Liver Ablation Zones

    Science.gov (United States)

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-10-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm’s results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.

  15. Micro Sampling System for Highly Radioactive Specimen by Laser Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sun Ho; Ha, Yeong Keong; Han, Ki Chul; Park, Yang Soon; Jee, Kwang Yong; Kim, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-03-15

    Shielded laser ablation system composed of laser system, image analyser, XYZ translator with motion controller, ablation chamber, manipulator and various optics was designed. Nd:YAG laser which can be tunable from 1064 nm to 266 nm was selected as light source. CCD camera(< x 200) was chosen to analyze a crater less than 50 un in diameter. XYZ translator was composed of three linear stage which can travel 50 w with a minimum movement of 1 {mu}m and motion controller. Before the performance test, each part of system was optically aligned. To perform the ablation test, the specimen was ablated by 50 {mu}m interval and observed by image analyser The shape of crater was almost round, indicating laser beam has homogeneous energy distribution. The resolution and magnification of image system were compatible with the design.

  16. Survival after Radiofrequency Ablation in 122 Patients with Inoperable Colorectal Lung Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Gillams, Alice, E-mail: alliesorting@gmail.com [The London Clinic, Radiology Department (United Kingdom); Khan, Zahid [Countess of Chester Hospital (United Kingdom); Osborn, Peter [Queen Alexandra Hospital (United Kingdom); Lees, William [University College London Medical School (United Kingdom)

    2013-06-15

    Purpose. To analyze the factors associated with favorable survival in patients with inoperable colorectal lung metastases treated with percutaneous image-guided radiofrequency ablation. Methods. Between 2002 and 2011, a total of 398 metastases were ablated in 122 patients (87 male, median age 68 years, range 29-90 years) at 256 procedures. Percutaneous CT-guided cool-tip radiofrequency ablation was performed under sedation/general anesthesia. Maximum tumor size, number of tumors ablated, number of procedures, concurrent/prior liver ablation, previous liver or lung resection, systemic chemotherapy, disease-free interval from primary resection to lung metastasis, and survival from first ablation were recorded prospectively. Kaplan-Meier analysis was performed, and factors were compared by log rank test. Results. The initial number of metastases ablated was 2.3 (range 1-8); the total number was 3.3 (range 1-15). The maximum tumor diameter was 1.7 (range 0.5-4) cm, and the number of procedures was 2 (range 1-10). The major complication rate was 3.9 %. Overall median and 3-year survival rate were 41 months and 57 %. Survival was better in patients with smaller tumors-a median of 51 months, with 3-year survival of 64 % for tumors 2 cm or smaller versus 31 months and 44 % for tumors 2.1-4 cm (p = 0.08). The number of metastases ablated and whether the tumors were unilateral or bilateral did not affect survival. The presence of treated liver metastases, systemic chemotherapy, or prior lung resection did not affect survival. Conclusion. Three-year survival of 57 % in patients with inoperable colorectal lung metastases is better than would be expected with chemotherapy alone. Patients with inoperable but small-volume colorectal lung metastases should be referred for ablation.

  17. Radiofrequency Ablation for the Treatment of Hepatocellular Carcinoma in Patients with Transjugular Intrahepatic Portosystemic Shunts

    International Nuclear Information System (INIS)

    Park, Jonathan K.; Al-Tariq, Quazi Z.; Zaw, Taryar M.; Raman, Steven S.; Lu, David S.K.

    2015-01-01

    PurposeTo assess radiofrequency (RF) ablation efficacy, as well as the patency of transjugular intrahepatic portosystemic shunts (TIPSs), in patients with hepatocellular carcinoma (HCC).Materials and MethodsRetrospective database review of patients with pre-existing TIPS undergoing RF ablation of HCC was conducted over a 159-month period ending in November 2013. TIPS patency pre- and post-RF ablation was assessed by ultrasound, angiography, and/or contrast-enhanced CT or MRI. Patient demographics and immediate post-RF ablation outcomes and complications were also reviewed.Results19 patients with 21 lesions undergoing 25 RF ablation sessions were included. Child-Pugh class A, B, and C scores were seen in 1, 13, and 5 patients, respectively. Eleven patients (58 %) ultimately underwent liver transplantation. Immediate technical success was seen in all ablation sessions without residual tumor enhancement (100 %). No patients (0 %) suffered liver failure within 1 month of ablation. Pre-ablation TIPS patency was demonstrated in 22/25 sessions (88 %). Of 22 cases with patent TIPS prior to ablation, post-ablation patency was demonstrated in 22/22 (100 %) at immediate post-ablation imaging and in 21/22 (95 %) at last follow-up (1 patient was incidentally noted to have occlusion 31 months later). No immediate complications were observed.ConclusionAblation efficacy was similar to the cited literature values for patients without TIPS. Furthermore, TIPS patency was preserved in the majority of cases. Patients with both portal hypertension and HCC are not uncommonly encountered, and a pre-existing TIPS does not appear to be a definite contraindication for RF ablation

  18. Radiofrequency Ablation for the Treatment of Hepatocellular Carcinoma in Patients with Transjugular Intrahepatic Portosystemic Shunts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jonathan K., E-mail: jonathan.park09@gmail.com [David Geffen School of Medicine at UCLA, Department of Radiology (United States); Al-Tariq, Quazi Z., E-mail: qat200@gmail.com [Stanford University School of Medicine, Department of Radiology (United States); Zaw, Taryar M., E-mail: taryar.zaw@gmail.com; Raman, Steven S., E-mail: sraman@mednet.ucla.edu; Lu, David S.K., E-mail: dlu@mednet.ucla.edu [David Geffen School of Medicine at UCLA, Department of Radiology (United States)

    2015-10-15

    PurposeTo assess radiofrequency (RF) ablation efficacy, as well as the patency of transjugular intrahepatic portosystemic shunts (TIPSs), in patients with hepatocellular carcinoma (HCC).Materials and MethodsRetrospective database review of patients with pre-existing TIPS undergoing RF ablation of HCC was conducted over a 159-month period ending in November 2013. TIPS patency pre- and post-RF ablation was assessed by ultrasound, angiography, and/or contrast-enhanced CT or MRI. Patient demographics and immediate post-RF ablation outcomes and complications were also reviewed.Results19 patients with 21 lesions undergoing 25 RF ablation sessions were included. Child-Pugh class A, B, and C scores were seen in 1, 13, and 5 patients, respectively. Eleven patients (58 %) ultimately underwent liver transplantation. Immediate technical success was seen in all ablation sessions without residual tumor enhancement (100 %). No patients (0 %) suffered liver failure within 1 month of ablation. Pre-ablation TIPS patency was demonstrated in 22/25 sessions (88 %). Of 22 cases with patent TIPS prior to ablation, post-ablation patency was demonstrated in 22/22 (100 %) at immediate post-ablation imaging and in 21/22 (95 %) at last follow-up (1 patient was incidentally noted to have occlusion 31 months later). No immediate complications were observed.ConclusionAblation efficacy was similar to the cited literature values for patients without TIPS. Furthermore, TIPS patency was preserved in the majority of cases. Patients with both portal hypertension and HCC are not uncommonly encountered, and a pre-existing TIPS does not appear to be a definite contraindication for RF ablation.

  19. Femtosecond laser ablation of single-wall carbon nanotube-based material

    International Nuclear Information System (INIS)

    Danilov, Pavel A; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Mel’nik, Nikolay N; Rudenko, Andrey A; Yurovskikh, Vladislav I; Zayarny, Dmitry V; Lednev, Vasily N; Obraztsova, Elena D; Pershin, Sergey M; Bunkin, Alexey F

    2014-01-01

    Single- and multi-shot femtosecond laser surface ablation of a single-wall carbon nanotube-based substrate at 515- and 1030 nm wavelengths was studied by scanning electron microscopy and micro-Raman spectroscopy. The laser ablation proceeds in two ways: as the low-fluence mesoscopic shallow disintegration of the surface nanotube packing, preserving the individual integrity and the semiconducting character of the nanotubes or as the high-fluence deep material removal apparently triggered by the strong intrinsic or impurity-mediated ablation of the individual carbon nanotubes on the substrate surface. (letter)

  20. CT imaging of complications of catheter ablation for atrial fibrillation

    International Nuclear Information System (INIS)

    Shroff, G.S.; Guirguis, M.S.; Ferguson, E.C.; Oldham, S.A.A.; Kantharia, B.K.

    2014-01-01

    The complication rate following radiofrequency catheter ablation for atrial fibrillation is low (<5%). Complications include pericardial effusion, cardiac tamponade, pulmonary vein stenosis, oesophageal ulceration or perforation, atrio-oesophageal fistula formation, stroke/transient ischaemic attack, phrenic nerve injury, haematoma at the puncture site, and femoral arteriovenous fistula. Among available imaging tools, computed tomography (CT) can be very useful in diagnosing complications of the procedure, particularly in the subacute and delayed stages after ablation. This review illustrates CT imaging of several of the common and uncommon complications of radiofrequency catheter ablation

  1. Radiofrequency thermal ablation of a metastatic lung nodule

    Energy Technology Data Exchange (ETDEWEB)

    Highland, Adrian M. [Department of Clinical Radiology, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ (United Kingdom); Mack, Paul [Diana Princess of Wales Hospital, Scartho Road, Grimsby, DN33 2BA (United Kingdom); Breen, David J. [Department of Radiology, Southampton University Hospitals, Tremona Road, Southampton, SO16 6YD (United Kingdom)

    2002-07-01

    Pulmonary metastases are a common finding in patients with colonic adenocarcinoma. We report the treatment of a metastatic lung nodule with radiofrequency (RF) ablation under CT guidance. This case illustrates the use of RF ablation in a patient in whom surgical resection was no longer possible and where chemotherapy was unlikely to produce benefit. This technique may offer a viable method of cytoreduction when other treatments have not succeeded. (orig.)

  2. Radiofrequency thermal ablation of a metastatic lung nodule

    International Nuclear Information System (INIS)

    Highland, Adrian M.; Mack, Paul; Breen, David J.

    2002-01-01

    Pulmonary metastases are a common finding in patients with colonic adenocarcinoma. We report the treatment of a metastatic lung nodule with radiofrequency (RF) ablation under CT guidance. This case illustrates the use of RF ablation in a patient in whom surgical resection was no longer possible and where chemotherapy was unlikely to produce benefit. This technique may offer a viable method of cytoreduction when other treatments have not succeeded. (orig.)

  3. CT imaging during microwave ablation: Analysis of spatial and temporal tissue contraction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong; Brace, Christopher L., E-mail: clbrace@wisc.edu [Departments of Radiology and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53705 (United States)

    2014-11-01

    Purpose: To analyze the spatial distribution and temporal development of liver tissue contraction during high-temperature ablation by using intraprocedural computed tomography (CT) imaging. Methods: A total of 46 aluminum fiducial markers were positioned in a 60 × 45 mm grid, in a single plane, around a microwave ablation antenna in each of six ex vivo bovine liver samples. Ablations were performed for 10 min at 100 W. CT data of the liver sample were acquired every 30 s during ablation. Fiducial motion between acquisitions was tracked in postprocessing and used to calculate measures of tissue contraction and contraction rates. The spatial distribution and temporal evolution of contraction were analyzed. Results: Fiducial displacement indicated that the zone measured postablation was 8.2 ± 1.8 mm (∼20%) smaller in the radial direction and 7.1 ± 1.0 mm (∼10%) shorter in the longitudinal direction than the preablation tissue dimension. Therefore, the total ablation volume was reduced from its preablation value by approximately 45%. Very little longitudinal contraction was noted in the distal portion of the ablation zone. Central tissues contracted more than 60%, which was near an estimated limit of ∼70% based on initial water content. More peripheral tissues contracted only 15% in any direction. Contraction rates peaked during the first 60 s of heating with a roughly exponential decay over time. Conclusions: Ablation zones measured posttreatment are significantly smaller than the pretreatment tissue dimensions. Tissue contraction is spatially dependent, with the greatest effect occurring in the central ablation zone. Contraction rate peaks early and decays over time.

  4. Post ablation recanalization of varicose veins of the limbs: Comparison ablation method of mechanochemical and laser procedure

    Science.gov (United States)

    Suhartono, R.; Irfan, W.; Wangge, G.; Moenadjat, Y.; Destanto, W. I.

    2017-08-01

    Endovenous ablation has been performed for varicose veins of the limbs in Indonesia since 2010. Endovenous laser ablation (EVLA) therapy has been performed in Cipto Mangunkusumo Hospital (RSCM) in Jakarta, and mechanochemical ablation (MOCA) has been conducted in Fatmawati Hospital. This was a descriptive analytical study, with a cross-sectional design to analyze post-ablation recanalization after MOCA and EVLA procedures. Patients who had undergone MOCA or EVLA treatment were interviewed 3-18 months after the procedures. All the patients underwent vascular ultrasonography (USG) of the operated limb to assess recanalization. Secondary presurgery data were obtained from the patients’ from patients’ medical records. The clinical characteristics of the subjects were recorded to compare the potential correlation between these characteristics and recanalization post-MOCA and EVLA procedures. All the data were analyzed using SPSS ver. 20.0. The study consisted of 43 limbs: 24 treated by MOCA and 19 treated by EVLA. Most subjects in the MOCA group were 7 mm in 13/19 extremities. In the MOCA group, total recanalization occurred in 2/24 extremities, and partial recanalization occurred in 8/24 extremities. In the EVLA group, total recanalization occurred in 1/19 extremities, and partial recanalization occurred in 3/19 extremities. The association between the clinical characteristics of the patients and recanalization was not statistically significant (p > 0.05). The recanalization tendency was higher in the MOCA group than in the EVLA group. Although there was no statistically significant association between the clinical characteristics of the patients and recanalization, the largest diameter of the VSM presurgery (>7 mm) was higher in 3/4 extremities in the MOCA group, as compared to 3/13 extremities in the EVLA group.

  5. Comparison of soft and hard tissue ablation with sub-ps and ns pulse lasers

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L.B.; Stuart, B.C.; Celliers, P.M.; Feit, M.D.; Glinsky, M.E.; Heredia, N.J.; Herman, S.; Lane, S.M.; London, R.A.; Matthews, D.L.; Perry, M.D.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Chang, T.D. [Veterans Administration Hospital, Martinez, CA (United States); Neev, J. [Beckman Laser Inst. and Medical Clinic, Irvine, CA (United States)

    1996-05-01

    Tissue ablation with ultrashort laser pulses offers several unique advantages. The nonlinear energy deposition is insensitive to tissue type, allowing this tool to be used for soft and hard tissue ablation. The localized energy deposition lead to precise ablation depth and minimal collateral damage. This paper reports on efforts to study and demonstrate tissue ablation using an ultrashort pulse laser. Ablation efficiency and extent of collateral damage for 0.3 ps and 1000 ps duration laser pulses are compared. Temperature measurements of the rear surface of a tooth section is also presented.

  6. Percutaneous Irreversible Electroporation Lung Ablation: Preliminary Results in a Porcine Model

    International Nuclear Information System (INIS)

    Deodhar, Ajita; Monette, Sébastien; Single, Gordon W.; Hamilton, William C.; Thornton, Raymond H.; Sofocleous, Constantinos T.; Maybody, Majid; Solomon, Stephen B.

    2011-01-01

    Objective: Irreversible electroporation (IRE) uses direct electrical pulses to create permanent “pores” in cell membranes to cause cell death. In contrast to conventional modalities, IRE has a nonthermal mechanism of action. Our objective was to study the histopathological and imaging features of IRE in normal swine lung. Materials and Methods: Eleven female swine were studied for hyperacute (8 h), acute (24 h), subacute (96 h), and chronic (3 week) effects of IRE ablation in lung. Paired unipolar IRE applicators were placed under computed tomography (CT) guidance. Some applicators were deliberately positioned near bronchovascular structures. IRE pulse delivery was synchronized with the cardiac rhythm only when ablation was performed within 2 cm of the heart. Contrast-enhanced CT scan was performed immediately before and after IRE and at 1 and 3 weeks after IRE ablation. Representative tissue was stained with hematoxylin and eosin for histopathology. Results: Twenty-five ablations were created: ten hyperacute, four acute, and three subacute ablations showed alveolar edema and necrosis with necrosis of bronchial, bronchiolar, and vascular epithelium. Bronchovascular architecture was maintained. Chronic ablations showed bronchiolitis obliterans and alveolar interstitial fibrosis. Immediate post-procedure CT images showed linear or patchy density along the applicator tract. At 1 week, there was consolidation that resolved partially or completely by 3 weeks. Pneumothorax requiring chest tube developed in two animals; no significant cardiac arrhythmias were noted. Conclusion: Our preliminary porcine study demonstrates the nonthermal and extracellular matrix sparing mechanism of action of IRE. IRE is a potential alternative to thermal ablative modalities.

  7. Treatment of osteoid osteoma using CT-guided radiofrequency ablation versus MR-guided laser ablation: A cost comparison

    International Nuclear Information System (INIS)

    Maurer, M.H.; Gebauer, B.; Wieners, G.; De Bucourt, M.; Renz, D.M.; Hamm, B.; Streitparth, F.

    2012-01-01

    Objective: To compare the costs of CT-guided radiofrequency ablation (RFA) and MR-guided laser ablation (LA) for minimally invasive percutaneous treatment of osteoid osteoma. Materials and methods: Between November 2005 and October 2011, 20 patients (14 males, 6 females, mean age 20.3 ± 9.1 years) underwent CT-guided RFA and 24 patients (18 males, 6 females; mean age, 23.8 ± 13.8 years) MR-guided LA (open 1.0 Tesla, Panorama HFO, Philips, Best, Netherlands) for osteoid osteoma diagnosed on the basis of clinical presentation and imaging findings. Prorated costs of equipment use (purchase, depreciation, and maintenance), staff costs, and expenditure for disposables were identified for CT-guided RFA and MR-guided LA procedures. Results: The average total costs per patient were EUR 1762 for CT-guided RFA and EUR 1417 for MR-guided LA. These were (RFA/LA) EUR 92/260 for equipment use, EUR 149/208 for staff, and EUR 870/300 for disposables. Conclusion: MR-guided LA is less expensive than CT-guided RFA for minimally invasive percutaneous ablation of osteoid osteoma. The higher costs of RFA are primarily due to the higher price of the disposable RFA probes.

  8. High-rate anisotropic ablation and deposition of polytetrafluoroethylene using synchrotron radiation process

    International Nuclear Information System (INIS)

    Inayoshi, Muneto; Ikeda, Masanobu; Hori, Masaru; Goto, Toshio; Hiramatsu, Mineo; Hiraya, Atsunari.

    1995-01-01

    Both anisotropic ablation and thin film formation of polytetrafluoroethylene (PTFE) were successfully demonstrated using synchrotron radiation (SR) irradiation of PTFE, that is, the SR ablation process. Anisotropic ablation by the SR irradiation was performed at an extremely high rate of 3500 μm/min at a PTFE target temperature of 200degC. Moreover, a PTFE thin film was formed at a high rate of 2.6 μm/min using SR ablation of PTFE. The chemical structure of the deposited film was similar to that of the PTFE target as determined from Fourier transform infrared absorption spectroscopy (FT-IR) analysis. (author)

  9. Ablation of musculoskeletal metastases: pain palliation, fracture risk reduction, and oligometastatic disease.

    Science.gov (United States)

    Kurup, Anil Nicholas; Callstrom, Matthew R

    2013-12-01

    Thermal ablation is an effective, minimally invasive alternative to conventional therapies in the palliation of painful musculoskeletal metastases and an emerging approach to obtain local tumor control in the setting of limited metastatic disease. Various thermal ablation technologies have been applied to bone and soft tissue tumors and may be used in combination with percutaneous cement instillation for skeletal lesions with or at risk for pathologic fracture. This article reviews current practices of percutaneous ablation of musculoskeletal metastases with an emphasis on radiofrequency ablation and cryoablation of painful skeletal metastases. © 2013 Elsevier Inc. All rights reserved.

  10. Emergency bypass post percutaneous atrial ablation: a case report.

    LENUS (Irish Health Repository)

    Hargrove, M

    2010-11-01

    A 34-year-old male undergoing percutaneous atrial ablation procedure for paroxysmal fibrillation required emergency sternotomy for cardiac tamponade. The patient had been anticoagulated and had received plavix and aspirin prior to and during the ablation procedure. Seven units of red cell concentrate had been transfused in the cardiac catherisation laboratory. On arrival in theatre, the patient was hypotensive, but was awake on induction of anaesthesia. No recordable blood pressure with non-invasive monitoring was observed. A sternotomy was immediately performed and, on evacuation of the pericardium, a bleeding site was not visible. The patient was commenced on cardiopulmonary bypass. Bleeding site was identified and the defect closed. The patient was weaned from cardiopulmonary bypass with minimal inotropic support and made an uneventful recovery. Bypass time was 38 minutes. A literature review showed a 1% incidence of post-ablation bleeding(1). The incidence of reverting to bypass for such an event has not been reported previously. During these procedures, it might be wise to have the cardiothoracic team notified while atrial ablation procedures are being performed in the cardiac catheterization laboratory.

  11. Lung Tumor Radiofrequency Ablation: Where Do We Stand?

    International Nuclear Information System (INIS)

    Baère, Thierry de

    2011-01-01

    Today, radiofrequency ablation (RFA) of primary and metastatic lung tumor is increasingly used. Because RFA is most often used with curative intent, preablation workup must be a preoperative workup. General anesthesia provides higher feasibility than conscious sedation. The electrode positioning must be performed under computed tomography for sake of accuracy. The delivery of RFA must be adapted to tumor location, with different impedances used when treating tumors with or without pleural contact. The estimated rate of incomplete local treatment at 18 months was 7% (95% confidence interval, 3–14) per tumor, with incomplete treatment depicted at 4 months (n = 1), 6 months (n = 2), 9 months (n = 2), and 12 months (n = 2). Overall survival and lung disease-free survival at 18 months were, respectively, 71 and 34%. Size is a key point for tumor selection because large size is predictive of incomplete local treatment and poor survival. The ratio of ablation volume relative to tumor volume is predictive of complete ablation. Follow-up computed tomography that relies on the size of the ablation zone demonstrates the presence of incomplete ablation. Positron emission tomography might be an interesting option. Chest tube placement for pneumothorax is reported in 8 to 12%. Alveolar hemorrhage and postprocedure hemoptysis occurred in approximately 10% of procedures and rarely required specific treatment. Death was mostly related to single-lung patients and hilar tumors. No modification of forced expiratory volume in the first second between pre- and post-RFA at 2 months was found. RFA in the lung provides a high local efficacy rate. The use of RFA as a palliative tool in combination with chemotherapy remains to be explored.

  12. Junctional rhythm occurring during AV nodal reentrant tachycardia ablation, is it different among Egyptians?

    Directory of Open Access Journals (Sweden)

    Ayman M. Abdel Moteleb

    2013-12-01

    Conclusion: Junctional rhythm is a sensitive predictor of successful ablation. The pattern of JR is a useful predictor of successful ablation. Egyptian population has distinctive patterns of JR during AVNRT ablation.

  13. Cost effectiveness of day stay versus inpatient radiofrequency (RF) ablation for the treatment of supraventricular tachyarrhythmias

    International Nuclear Information System (INIS)

    Weerasooriya, H.R.; Harris, A.H.; Davis, M.J.E.

    1996-01-01

    It is well established that radiofrequency (RF) ablation is the most cost effective treatment strategy for patients with supraventricular tachycardia. Previous cost estimates assumed at least an overnight stay following RF ablation. Day stay RF ablation however appears to be a safe alternative. The aim of this study was to compare day stay and inpatient catheter ablation in terms of cost, efficacy and safety. This was a retrospective cost effectiveness analysis. The study population consisted of 25 consecutive patients who underwent impatient RF ablation (historical controls). Economic analysis was based upon a detailed clinical costing. The mean overall cost per patient of inpatient RF ablation in 1994 Australian dollar values is $2354 (SD, $642) compared with $1876 (SD, $595) for day stay RF ablation (p<0.01). Day stay RF ablation is a cost effective alternative to inpatient RF ablation. 16 refs., 2 tabs

  14. Atmospheric pressure arc discharge with ablating graphite anode

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2015-01-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement. (paper)

  15. Atmospheric pressure arc discharge with ablating graphite anode

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2015-06-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322-6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  16. Spectroscopic photoacoustic imaging of radiofrequency ablation in the left atrium

    NARCIS (Netherlands)

    S. Iskander-Rizk (Sophinese); P. Kruizinga (Pieter); A.F.W. van der Steen (Ton); G. van Soest (Gijs)

    2018-01-01

    textabstractCatheter-based radiofrequency ablation for atrial fibrillation has long-term success in 60-70% of cases. A better assessment of lesion quality, depth, and continuity could improve the procedure’s outcome. We investigate here photoacoustic contrast between ablated and healthy atrial-wall

  17. Low vulnerability of the right phrenic nerve to electroporation ablation

    NARCIS (Netherlands)

    van Driel, Vincent J. H. M.; Neven, KGEJ; van Wessel, Harri; Vink, Aryan; Doevendans, Pieter A. F. M.; Wittkampf, Fred H. M.

    BACKGROUND Circular electroporation ablation is a novel ablation modality for electrical pulmonary vein isolation. With a single 200-3 application, deep circular myocardial lesions can be created. However, the acute and chronic effects of this energy source on phrenic nerve (PN) function are

  18. Stress assisted selective ablation of ITO thin film by picosecond laser

    Science.gov (United States)

    Farid, Nazar; Chan, Helios; Milne, David; Brunton, Adam; M. O'Connor, Gerard

    2018-01-01

    Fast selective pattering with high precession on 175 nm ITO thin film with IR ps lasers is investigated. Ablation parameters are optimized with detailed studies on the scribed depth, topography, and particle generation using AFM and SEM. A comparison of 10 and 150 ps laser revealed that the shorter pulse (10 ps) laser is more appropriate in selective and partial ablation; up to 20 nm resolution for controlled depth with multipulses having energy below the damage threshold is demonstrated. The experimental results are interpreted to involve stress assisted ablation mechanism for the 10 ps laser while thermal ablation along with intense melting occurs for 150 ps laser. The transition between these regimes is estimated to occur at approximately 30 ps.

  19. Radiofrequency Ablation of Liver Tumors

    Science.gov (United States)

    ... have had a surgical procedure in which the liver bile duct has been connected to a loop of bowel are at much greater risk of developing a liver abscess after ablation. Women should always inform their ...

  20. Capsule physics comparison of different ablators for NIF implosion designs

    Science.gov (United States)

    Clark, Daniel; Kritcher, Andrea; Yi, Austin; Zylstra, Alex; Haan, Steven; Ralph, Joseph; Weber, Christopher

    2017-10-01

    Indirect drive implosion experiments on the Naitonal Ignition Facility (NIF) have now tested three different ablator materials: glow discharge polymer (GDP) plastic, high density carbon (HDC), and beryllium. How do these different ablator choices compare in current and future implosion experiments on NIF? What are the relative advantages and disadvantages of each? This talk compares these different ablator options in capsule-only simulations of current NIF experiments and proposed future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Global Endometrial Ablation in the Presence of Essure® Microinserts

    Science.gov (United States)

    Aldape, Diana; Chudnoff, Scott G; Levie, Mark D

    2013-01-01

    Abnormal uterine bleeding (AUB) affects 30% of women at some time during their reproductive years and is one of the most common reasons a woman sees a gynecologist. Many women are turning to endometrial ablation to manage their AUB. This article reviews the data relating to the available endometrial ablation techniques performed with hysteroscopic sterilization, and focuses on data from patients who had Essure® (Conceptus, San Carlos, CA) coils placed prior to performance of endometrial ablation. Reviewed specifically are data regarding safety and efficacy of these two procedures when combined. Data submitted to the US Food and Drug Administration for the three devices currently approved are reviewed, as well as all published case series. Articles included were selected based on a PubMed search for endometrial ablation (also using the brand names of the different techniques currently available), hysteroscopic sterilization, and Essure. PMID:24358407

  2. Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Delong; Sun, Shunkai; Zhao, Yingkui; Ding, Ning; Wu, Jiming; Dai, Zihuan; Yin, Li; Zhang, Yang; Xue, Chuang [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2015-05-15

    In a dynamic hohlraum driven inertial confinement fusion (ICF) configuration, the target may experience two different kinds of implosions. One is driven by hohlraum radiation ablation, which is approximately symmetric at the equator and poles. The second is caused by the radiating shock produced in Z-pinch dynamic hohlraums, only taking place at the equator. To gain a symmetrical target implosion driven by radiation ablation and avoid asymmetric shock compression is a crucial issue in driving ICF using dynamic hohlraums. It is known that when the target is heated by hohlraum radiation, the ablated plasma will expand outward. The pressure in the shocked converter plasma qualitatively varies linearly with the material temperature. However, the ablation pressure in the ablated plasma varies with 3.5 power of the hohlraum radiation temperature. Therefore, as the hohlraum temperature increases, the ablation pressure will eventually exceed the shock pressure, and the expansion of the ablated plasma will obviously weaken the shock propagation and decrease its velocity after propagating into the ablator plasma. Consequently, longer time duration is provided for the symmetrical target implosion driven by radiation ablation. In this paper these processes are numerically investigated by changing drive currents or varying load parameters. The simulation results show that a critical hohlraum radiation temperature is needed to provide a high enough ablation pressure to decelerate the shock, thus providing long enough time duration for the symmetric fuel compression driven by radiation ablation.

  3. Sub-micron-scale femtosecond laser ablation using a digital micromirror device

    International Nuclear Information System (INIS)

    Mills, B; Feinaeugle, M; Sones, C L; Eason, R W; Rizvi, N

    2013-01-01

    Commercial digital multimirror devices offer a cheap and effective alternative to more expensive spatial light modulators for ablation via beam shaping. Here we present femtosecond laser ablation using the digital multimirror device from an Acer C20 Pico Digital Light Projector and show ablation of complex features with feature sizes ranging from sub-wavelength (400 nm) up to ∼30 µm. Simulations are presented that have been used to optimize and understand the experimentally observed resolution. (paper)

  4. Enhanced ablation of small anodes in a carbon nanotube arc discharge

    Science.gov (United States)

    Raitses, Yevgeny; Fetterman, Abraham; Keidar, Michael

    2008-11-01

    An atmospheric pressure helium arc discharge is used for carbon nanotube synthesis. The arc discharge operates in an anodic mode with the ablating anode made from a graphite material. For such conditions, models predict the electron-repelling (negative) anode sheath. In the present experiments, the anode ablation rate is investigated as a function of the anode diameter. It is found that anomalously high ablation occurs for small anode diameters (Fetterman, Y. Raitses and M. Keidar, Carbon (2008).

  5. Contemporary Tools and Techniques for Substrate Ablation of Ventricular Tachycardia in Structural Heart Disease.

    Science.gov (United States)

    Hutchinson, Mathew D; Garza, Hyon-He K

    2018-02-24

    As we have witnessed in other arenas of catheter-based therapeutics, ventricular tachycardia (VT) ablation has become increasingly anatomical in its execution. Multi-modality imaging provides anatomical detail in substrate characterization, which is often complex in nonischemic cardiomyopathy patients. Patients with intramural, intraseptal, and epicardial substrates provide challenges in delivering effective ablation to the critical arrhythmia substrate due to the depth of origin or the presence of adjacent critical structures. Novel ablation techniques such as simultaneous unipolar or bipolar ablation can be useful to achieve greater lesion depth, though at the expense of increasing collateral damage. Disruptive technologies like stereotactic radioablation may provide a tailored approach to these complex patients while minimizing procedural risk. Substrate ablation is a cornerstone of the contemporary VT ablation procedure, and recent data suggest that it is as effective and more efficient that conventional activation guided ablation. A number of specific targets and techniques for substrate ablation have been described, and all have shown a fairly high success in achieving their acute procedural endpoint. Substrate ablation also provides a novel and reproducible procedural endpoint, which may add predictive value for VT recurrence beyond conventional programmed stimulation. Extrapolation of outcome data to nonischemic phenotypes requires caution given both the variability in substrate nonischemic distribution and the underrepresentation of these patients in previous trials.

  6. The effect of elastic modulus on ablation catheter contact area.

    Science.gov (United States)

    Camp, Jon J; Linte, Cristian A; Rettmann, Maryam E; Sun, Deyu; Packer, Douglas L; Robb, Richard A; Holmes, David R

    2015-02-21

    Cardiac ablation consists of navigating a catheter into the heart and delivering RF energy to electrically isolate tissue regions that generate or propagate arrhythmia. Besides the challenges of accurate and precise targeting of the arrhythmic sites within the beating heart, limited information is currently available to the cardiologist regarding intricate electrode-tissue contact, which directly impacts the quality of produced lesions. Recent advances in ablation catheter design provide intra-procedural estimates of tissue-catheter contact force, but the most direct indicator of lesion quality for any particular energy level and duration is the tissue-catheter contact area, and that is a function of not only force, but catheter pose and material elasticity as well. In this experiment, we have employed real-time ultrasound (US) imaging to determine the complete interaction between the ablation electrode and tissue to accurately estimate contact, which will help to better understand the effect of catheter pose and position relative to the tissue. By simultaneously recording tracked position, force reading and US image of the ablation catheter, the differing material properties of polyvinyl alcohol cryogel [1] phantoms are shown to produce varying amounts of tissue depression and contact area (implying varying lesion quality) for equivalent force readings. We have shown that the elastic modulus significantly affects the surface-contact area between the catheter and tissue at any level of contact force. Thus we provide evidence that a prescribed level of catheter force may not always provide sufficient contact area to produce an effective ablation lesion in the prescribed ablation time.

  7. Experimental research on local renal injury of dog with microwave ablation guided by DSA

    International Nuclear Information System (INIS)

    Lin Jianping; Xian Zhengyuan; Shi Rongshu; Zhang Gaofeng; Li Xianlang

    2008-01-01

    Objective: To explore the efficiency, complications and probability of preserving part renal function by local renal microwave ablation. Methods: The fresh pig renal pelvis full filled with 30% diatrizoate meglumine and the dogs kidney taken arterial pyelography were both ablated with microwave. Dogs were divided into three groups: measuring temperature after ablation group, single point ablation both on the two kidneys group and double points ablation on unilateral kidney group. In measuring temperature after ablation group, DSA and pathology were performed immediately after ablation. In the other groups, DSA with blood and urine samplings were taken for routine tests including renal function right after the ablation and 10 days later. Results: Experiment in vitro showed conspicuous renal pelvic contraction and convolution. The group under power rate of 70, 3 min produced urine leak easily. Preliminary test in vivo with DSA showed the disappearance of local kidney blood supply. The residual renal function was related to areas of necrosis. Acute stage pathology revealed acute renal cortex medulla and pelvic cells injury. DSA of chronic stage showed no change in size of the area of ablation. The blood supply of necrotic areas was not restored. The residual kidney possessed the excretion contrast medium with no urine leaks. Upper pole of right kidney adhered with adjacent tissue, together with thickened covering. Pathology revealed fibrous proliferation around the coagulative necrosis. Conclusion: Microwave ablation can inactivate the local renal tissue, and, effectively preserve the big blood vessels and function of residual kidney. No urine leaks occurred in chronic stage but easily to produce adhesions with adjacent tissue. (authors)

  8. Paying attention to radiofrequency ablation therapy for neoplasms

    International Nuclear Information System (INIS)

    Wang Zhongming; Li Linsun

    2010-01-01

    Radiofrequency ablation is an effective treatment for malignant tumors. With the development of imaging technique, it has been widely used in treating different kinds of malignant tumors, such as liver cancer, lung cancer, kidney carcinoma, etc. Radiofrequency ablation has a lot of advantages. As a minimally-invasive, safe and effective treatment with less sufferings and fewer complications, this technique has attracted more and more attention of the experts both at home and abroad. (authors)

  9. Atmospheric pressure imaging mass spectrometry of drugs with various ablating lasers

    International Nuclear Information System (INIS)

    Moshkunov, K A; Alimpiev, S S; Pento, A V; Grechnikov, A A; Nikifirov, S M; Simanovsky, Ya O

    2014-01-01

    The atmospheric pressure mass spectrometric detection efficiency of organic species (tofisopam and verapamil) was measured by means of the laser ablation of dried solution drops containing known amount of the analyte. Ablated molecules were ionized by an atmospheric pressure laser plasma cell and then introduced in the TOF mass-spectrometer. The spot was formed by dripping 2 μl of solution on the stainless steel substrate and consequent drying. Then it was scanned by an intense ablating beam of various lasers (CO 2 , Nd:YAG and femtosecond fiber laser) until the spot was completely eroded during the non-stop MS-analysis of ablated material. The sensitivity was defined as the ratio of the total ion current integral of the relevant mass peaks to the amount of molecules in the spot. All the tested lasers are suitable for the ablation and subsequent MS-detection of organic species in dried solution spots given enough power deposition is provided. The measured sensitivity values reach 0.1 ions/fg of tested analytes

  10. Incidence and Cause of Hypertension During Adrenal Radiofrequency Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Yamakado, Koichiro, E-mail: yama@clin.medic.mie-u.ac.jp; Takaki, Haruyuki [Mie University School of Medicine, Department of Interventional Radiology (Japan); Yamada, Tomomi [Mie University School of Medicine, Department of Translational Medicine (Japan); Yamanaka, Takashi; Uraki, Junji; Kashima, Masataka; Nakatsuka, Atsuhiro; Takeda, Kan [Mie University School of Medicine, Department of Interventional Radiology (Japan)

    2012-12-15

    Purpose: To evaluate the incidence and cause of hypertension prospectively during adrenal radiofrequency ablation (RFA). Methods: For this study, approved by our institutional review board, written informed consent was obtained from all patients. Patients who received RFA for adrenal tumors (adrenal ablation) and other abdominal tumors (nonadrenal ablation) were included in this prospective study. Blood pressure was monitored during RFA. Serum adrenal hormone levels including epinephrine, norepinephrine, dopamine, and cortisol levels were measured before and during RFA. The respective incidences of procedural hypertension (systolic blood pressure >200 mmHg) of the two patient groups were compared. Factors correlating with procedural systolic blood pressure were evaluated by regression analysis.ResultsNine patients underwent adrenal RFA and another 9 patients liver (n = 5) and renal (n = 4) RFA. Asymptomatic procedural hypertension that returned to the baseline by injecting calcium blocker was found in 7 (38.9%) of 18 patients. The incidence of procedural hypertension was significantly higher in the adrenal ablation group (66.7%, 6/9) than in the nonadrenal ablation group (11.1%, 1/9, P < 0.0498). Procedural systolic blood pressure was significantly correlated with serum epinephrine (R{sup 2} = 0.68, P < 0.0001) and norepinephrine (R{sup 2} = 0.72, P < 0.0001) levels during RFA. The other adrenal hormones did not show correlation with procedural systolic blood pressure. Conclusion: Hypertension occurs frequently during adrenal RFA because of the release of catecholamine.

  11. Ganglion Plexus Ablation in Advanced Atrial Fibrillation: The AFACT Study

    NARCIS (Netherlands)

    Driessen, Antoine H. G.; Berger, Wouter R.; Krul, Sébastien P. J.; van den Berg, Nicoline W. E.; Neefs, Jolien; Piersma, Femke R.; Chan Pin Yin, Dean R. P. P.; de Jong, Jonas S. S. G.; van Boven, WimJan P.; de Groot, Joris R.

    2016-01-01

    Patients with long duration of atrial fibrillation (AF), enlarged atria, or failed catheter ablation have advanced AF and may require more extensive treatment than pulmonary vein isolation. The aim of this study was to investigate the efficacy and safety of additional ganglion plexus (GP) ablation

  12. High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films

    International Nuclear Information System (INIS)

    Ko, Seung H.; Pan Heng; Hwang, David J.; Chung, Jaewon; Ryu, Sangil; Grigoropoulos, Costas P.; Poulikakos, Dimos

    2007-01-01

    Ablation of gold nanoparticle films on polymer was explored using a nanosecond pulsed laser, with the goal to achieve feature size reduction and functionality not amenable with inkjet printing. The ablation threshold fluence for the unsintered nanoparticle deposit was at least ten times lower than the reported threshold for the bulk film. This could be explained by the combined effects of melting temperature depression, lower conductive heat transfer loss, strong absorption of the incident laser beam, and the relatively weak bonding between nanoparticles. The ablation physics were verified by the nanoparticle sintering characterization, ablation threshold measurement, time resolved ablation plume shadowgraphs, analysis of ablation ejecta, and the measurement and calculation of optical properties. High resolution and clean feature fabrication with small energy and selective multilayer processing are demonstrated

  13. Single exponential decay waveform; a synergistic combination of electroporation and electrolysis (E2 for tissue ablation

    Directory of Open Access Journals (Sweden)

    Nina Klein

    2017-04-01

    Full Text Available Background Electrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study, we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2. Method A new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW was applied to the pig liver, and the effect of various parameters on the extent of tissue ablation was examined with histology. Results Histological analysis shows that E2 delivered as EDW can produce tissue ablation in volumes of clinical significance, using electrical and temporal parameters which, if used in electroporation or electrolysis separately, cannot ablate the tissue. Discussion The E2 combination has advantages over the three basic technologies of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible electroporation with injection of drugs and irreversible electroporation. E2 ablates clinically relevant volumes of tissue in a shorter period of time than electrolysis and electroporation, without the need to inject drugs as in reversible electroporation or use paralyzing anesthesia as in irreversible electroporation.

  14. Long-wave plasma radiofrequency ablation for treatment of xanthelasma palpebrarum.

    Science.gov (United States)

    Baroni, Adone

    2018-03-01

    Xanthelasma palpebrarum is the most common type of xanthoma affecting the eyelids. It is characterized by asymptomatic soft yellowish macules, papules, or plaques over the upper and lower eyelids. Many treatments are available for management of xanthelasma palpebrarum, the most commonly used include surgical excision, ablative CO 2 or erbium lasers, nonablative Q-switched Nd:YAG laser, trichloroacetic acid peeling, and radiofrequency ablation. This study aims to evaluate the effectiveness of RF ablation in the treatment of xanthelasma palpebrarum, with D.A.S. Medical portable device (Technolux, Italia), a radiofrequency tool working with long-wave plasma energy and without anesthesia. Twenty patients, 15 female and 5 male, affected by xanthelasma palpebrarum, were enrolled for long-wave plasma radiofrequency ablation treatment. The treatment consisted of 3/4 sessions that were carried out at intervals of 30 days. Treatments were well tolerated by all patients with no adverse effects and optimal aesthetic results. The procedure is very fast and can be performed without anesthesia because of the low and tolerable pain stimulation. Long-wave plasma radiofrequency ablation is an effective option for treatment of xanthelasma palpebrarum and adds an additional tool to the increasing list of medical devices for aesthetic treatments. © 2018 Wiley Periodicals, Inc.

  15. Advanced surface ablation for presbyopia using the Nidek EC-5000 laser.

    Science.gov (United States)

    Cantú, Roberto; Rosales, Marco A; Tepichín, Eduardo; Curioca, Andrée; Montes, Victor; Bonilla, Julio

    2004-01-01

    To present 1 to 6-month follow-up results of laser in situ keratomileusis (LASIK) using multizone presbyopic advanced surface ablation (PASA) with a peripheral near zone. LASIK was performed on 28 eyes of 17 patients (10 men and 7 women; mean age 49.8 years with a range of 37 to 62 years). Eyes had primary or enhancement treatments with the Nidek EC-5000 excimer laser. Three techniques were used: 1) total transepithelial ablation, 2) surface ablation for far vision ametropia correction, and 3) concentric peripheral near zone presbyopia correction (technique developed by Dr. A. Telandro with a modified nomogram by Dr. R. Cantú for surface ablation). One surgeon (RC) performed all surgery. We present the preoperative and postoperative measurements for far and near uncorrected visual acuity, total high order aberrations, spherical aberration (Z-12), asphericity Q index, eccentricity corneal shape factor, and total coma and trefoil aberrations. Increases occurred in negative spherical aberration, negative asphericity index, and positive eccentricity corneal shape factor. Advanced surface ablation for presbyopia with a concentric peripheral near zone is a promising approach for surgical correction of presbyopia and potentially could be used with any advanced surface ablation procedure. Increases in negative spherical aberration and asphericity/ eccentricity indices seemed to increase the depth of focus of the eye, improving the near vision.

  16. Echocardiography-guided Radiofrequency Catheter Ablation of Atrioventricular Node and VVI Pacemaker Implantation

    Directory of Open Access Journals (Sweden)

    T Guo

    2014-05-01

    Full Text Available Objective: This study is to evaluate the feasibility and safety of intracardiac radiofrequency catheter ablation (RFCA of the atrioventricular node (AVN and pacemaker implantation using transthoracic echocardiography. Methods: Eleven patients – six males and five females (mean age 66 years – with persistent or permanent atrial fibrillation/atrial flutter received RFCA of AVN and VVI pacemaker implantation (paces and senses the ventricle and is inhibited if it senses ventricular activity. Under transthoracic echocardiography, the electrode catheters were positioned intracardiac, and target ablation was performed, with the permanent pacemaking catheter in the left subclavian vein and the ablation catheter in the right femoral vein. The multi-view imaging and dynamic observation applied during the stable AV dissociation were successful. Results: Atrioventricular node ablation and permanent pacemaker implantation in 11 patients were completed successfully without X-ray exposure. The operation success rate was 100%. All patients recovered well within the follow-up period. Conclusions: Radiofrequency catheter ablation of AVN and VVI pacemaker implantation under transthoracic echocardiography guidance is a safe, easy and feasible approach. This procedure could be an important supplemental measure to catheter ablation of arrhythmia under routine X-ray fluoroscopy.

  17. Synthesis and Properties of Platinum Nanoparticles by Pulsed Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Maria Isabel Mendivil Palma

    2016-01-01

    Full Text Available Platinum (Pt nanoparticles were synthesized by pulsed laser ablation in liquid (PLAL technique in different liquids (acetone, ethanol, and methanol. Ablation was performed using a Q-switched Nd:YAG laser with output energy of 230 mJ/pulse for 532 nm wavelength. Ablation time and laser energy fluence were varied for all the liquids. Effects of laser energy fluence, ablation time, and nature of the liquid were reported. The mean size, size distributions, shape, elemental composition, and optical properties of Pt nanoparticles synthesized by PLAL were examined by transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and UV-Visible absorption spectroscopy.

  18. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    Science.gov (United States)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  19. Optical radiative properties of ablating polymers exposed to high-power arc plasmas

    Science.gov (United States)

    Becerra, Marley; Pettersson, Jonas

    2018-03-01

    The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer

  20. Bump evolution driven by the x-ray ablation Richtmyer-Meshkov effect in plastic inertial confinement fusion Ablators

    Directory of Open Access Journals (Sweden)

    Loomis Eric

    2013-11-01

    Full Text Available Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion capsules (ICF due to ablator and fuel non-uniformities are a primary concern for the ICF program. Recently, observed jetting and parasitic mix into the fuel were attributed to isolated defects on the outer surface of the capsule. Strategies for mitigation of these defects exist, however, they require reduced uncertainties in Equation of State (EOS models prior to invoking them. In light of this, we have begun a campaign to measure the growth of isolated defects (bumps due to x-ray ablation Richtmyer-Meshkov in plastic ablators to validate these models. Experiments used hohlraums with radiation temperatures near 70 eV driven by 15 beams from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY, which sent a ∼1.25Mbar shock into a planar CH target placed over one laser entrance hole. Targets consisted of 2-D arrays of quasi-gaussian bumps (10 microns tall, 34 microns FWHM deposited on the surface facing into the hohlraum. On-axis radiography with a saran (Cl Heα − 2.76keV backlighter was used to measure bump evolution prior to shock breakout. Shock speed measurements were also performed to determine target conditions. Simulations using the LEOS 5310 and SESAME 7592 models required the simulated laser power be turned down to 80 and 88%, respectively to match observed shock speeds. Both LEOS 5310 and SESAME 7592 simulations agreed with measured bump areal densities out to 6 ns where ablative RM oscillations were observed in previous laser-driven experiments, but did not occur in the x-ray driven case. The QEOS model, conversely, over predicted shock speeds and under predicted areal density in the bump.

  1. Unusual tumour ablations: report of difficult and interesting cases

    OpenAIRE

    Mauri, Giovanni; Nicosia, Luca; Varano, Gianluca Maria; Shyn, Paul; Sartori, Sergio; Tombesi, Paola; Di Vece, Francesca; Orsi, Franco; Solbiati, Luigi

    2017-01-01

    Image-guided ablations are nowadays applied in the treatment of a wide group of diseases and in different organs and regions, and every day interventional radiologists have to face more difficult and unusual cases of tumour ablation. In the present case review, we report four difficult and unusual cases, reporting some tips and tricks for a successful image-guided treatment.

  2. Spatial distribution of carbon species in laser ablation of graphite target

    International Nuclear Information System (INIS)

    Ikegami, T.; Ishibashi, S.; Yamagata, Y.; Ebihara, K.; Thareja, R.K.; Narayan, J.

    2001-01-01

    We report on the temporal evolution and spatial distribution of C 2 and C 3 molecules produced by KrF laser ablation of a graphite target using laser induced fluorescence imaging and optical emission spectroscopy. Spatial density profiles of C 2 were measured using two-dimensional fluorescence in various pressures of different ambient (vacuum, nitrogen, oxygen, hydrogen, helium, and argon) gases at various ablation laser fluences and ablation area. A large yield of C 2 is observed in the central part of the plume and near the target surface and its density and distribution was affected by the laser fluence and ambient gas. Fluorescent C 3 was studied in Ar gas and the yield of C 3 is enhanced at higher gas pressure and longer delay times after ablation

  3. Treatment planning for prostate focal laser ablation in the face of needle placement uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Cepek, Jeremy, E-mail: jcepek@robarts.ca; Fenster, Aaron [Robarts Research Institute, London, Ontario N6A 5K8, Canada and Biomedical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Lindner, Uri; Trachtenberg, John [Department of Surgical Oncology, Division of Urology, University Health Network, Toronto, Ontario M5G 2C4 (Canada); Davidson, Sean R. H. [Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9 (Canada); Haider, Masoom A. [Department of Medical Imaging, Sunnybrook Health Sciences Center, Toronto, Ontario M4N 3M5, Canada and Department of Medical Imaging, University of Toronto, Toronto, Ontario M5S 2J7 (Canada); Ghai, Sangeet [Department of Medical Imaging, University Health Network, Toronto, Ontario M5G 2M9 (Canada)

    2014-01-15

    Purpose: To study the effect of needle placement uncertainty on the expected probability of achieving complete focal target destruction in focal laser ablation (FLA) of prostate cancer. Methods: Using a simplified model of prostate cancer focal target, and focal laser ablation region shapes, Monte Carlo simulations of needle placement error were performed to estimate the probability of completely ablating a region of target tissue. Results: Graphs of the probability of complete focal target ablation are presented over clinically relevant ranges of focal target sizes and shapes, ablation region sizes, and levels of needle placement uncertainty. In addition, a table is provided for estimating the maximum target size that is treatable. The results predict that targets whose length is at least 5 mm smaller than the diameter of each ablation region can be confidently ablated using, at most, four laser fibers if the standard deviation in each component of needle placement error is less than 3 mm. However, targets larger than this (i.e., near to or exceeding the diameter of each ablation region) require more careful planning. This process is facilitated by using the table provided. Conclusions: The probability of completely ablating a focal target using FLA is sensitive to the level of needle placement uncertainty, especially as the target length approaches and becomes greater than the diameter of ablated tissue that each individual laser fiber can achieve. The results of this work can be used to help determine individual patient eligibility for prostate FLA, to guide the planning of prostate FLA, and to quantify the clinical benefit of using advanced systems for accurate needle delivery for this treatment modality.

  4. Laser ablation for the synthesis of carbon nanotubes

    Science.gov (United States)

    Holloway, Brian C.; Eklund, Peter C.; Smith, Michael W.; Jordan, Kevin C.; Shinn, Michelle

    2010-04-06

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  5. Laser ablation for the synthesis of carbon nanotubes

    Science.gov (United States)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2012-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  6. Complications associated with radiofrequency ablation of pulmonary veins.

    Science.gov (United States)

    Madrid Pérez, J M; García Barquín, P M; Villanueva Marcos, A J; García Bolao, J I; Bastarrika Alemañ, G

    Radiofrequency ablation is an efficacious alternative in patients with symptomatic atrial fibrillation who do not respond to or are intolerant to at least one class I or class III antiarrhythmic drug. Although radiofrequency ablation is a safe procedure, complications can occur. Depending on the location, these complications can be classified into those that affect the pulmonary veins themselves, cardiac complications, extracardiac intrathoracic complications, remote complications, and those that result from vascular access. The most common complications are hematomas, arteriovenous fistulas, and pseudoaneurysms at the puncture site. Some complications are benign and transient, such as gastroparesis or diaphragmatic elevation, whereas others are potentially fatal, such as cardiac tamponade. Radiologists must be familiar with the complications that can occur secondary to pulmonary vein ablation to ensure early diagnosis and treatment. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.

    Science.gov (United States)

    Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook

    2015-01-01

    Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391  mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.

  8. Impact of radiofrequency ablation geometry on electrical conduction

    Science.gov (United States)

    Rivas, Rhiana N.; Lye, Theresa H.; Hendon, Christine P.

    2018-02-01

    The gold standard of current treatment for atrial fibrillation is radiofrequency ablation (RFA). Single RFA procedures have low long-term, single-procedure success rates, which can be attributed to factors including inability to measure and visualize lesion depth in real time and incomplete knowledge of how atrial fibrillation manifests and persists. One way to address this problem is to develop a heart model that accurately fits lesion dimensions and depth using OCT to extract structural information. Twenty-three lesions of varying transmurality in left and right swine atrial tissue have been imaged with a Thorlabs OCT system with 6.5-micron axial resolution and a custom Ultra High Resolution system with 2.5-micron axial resolution. The boundaries of the ablation lesions were identified by the appearance of the birefringence artifact to identify areas of un-ablated tissue, as well as by changes to depth penetration and structural features, including decreased contrast between the endocardium and myocardium and disappearance of collagen fibers within the ablation lesion. Using these features, the lateral positions of the lesion boundaries were identified. An algorithm that fit ellipses to the lesion contours modeled the ablation geometry in depth. Lesion dimensions and shape were confirmed by comparison with trichrome histological processing. Finite-element models were fitted with these parameters and electrophysiological simulations were run with the Continuity 6 package. Next steps include correlating lesion geometry to conduction velocity, and including further tissue complexity such as varying tissue composition and fiber orientation. Additional models of linear lesions with gaps and adjacent lesions created with non-perpendicular contact will be created. This work will provide insight into how lesion geometry, tissue composition, and fiber organization impact electrophysiological propagation.

  9. Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets

    Science.gov (United States)

    Shigemori, Keisuke; Sakaiya, Tatsuhiko; Otani, Kazuto; Fujioka, Shinsuke; Nakai, Mitsuo; Azechi, Hiroshi; Shiraga, Hiroyuki; Tamari, Yohei; Okuno, Kazuki; Sunahara, Atsushi; Nagatomo, Hideo; Murakami, Masakatsu; Nishihara, Katsunobu; Izawa, Yasukazu

    2004-09-01

    Hydrodynamic instabilities are key issues of the physics of inertial confinement fusion (ICF) targets. Among the instabilities, Rayleigh-Taylor (RT) instability is the most important because it gives the largest growth factor in the ICF targets. Perturbations on the laser irradiated surface grow exponentially, but the growth rate is reduced by ablation flow. The growth rate γ is written as Takabe-Betti formula: γ = [kg/(1+kL)]1/2-βkm/pa, where k is wave number of the perturbation, g is acceleration, L is density scale-length, β is a coefficient, m is mass ablation rate per unit surface, and ρa is density at the ablation front. We experimentally measured all the parameters in the formula for polystyrene (CH) targets. Experiments were done on the HIPER laser facility at Institute of Laser Engineering, Osaka University. We found that the β value in the formula is ~ 1.7, which is in good agreements with the theoretical prediction, whereas the β for certain perturbation wavelengths are larger than the prediction. This disagreement between the experiment and the theory is mainly due to the deformation of the cutoff surface, which is created by non-uniform ablation flow from the ablation surface. We also found that high-Z doped plastic targets have multiablation structure, which can reduce the RT growth rate. When a low-Z target with high-Z dopant is irradiated by laser, radiation due to the high-Z dopant creates secondary ablation front deep inside the target. Since, the secondary ablation front is ablated by x-rays, the mass ablation rate is larger than the laser-irradiated ablation surface, that is, further reduction of the RT growth is expected. We measured the RT growth rate of Br-doped polystyrene targets. The experimental results indicate that of the CHBr targets show significantly small growth rate, which is very good news for the design of the ICF targets.

  10. Should fat in the radiofrequency ablation zone of hepatocellular adenomas raise suspicion for residual tumour?

    International Nuclear Information System (INIS)

    Costa, Andreu F.; Kajal, Dilkash; Pereira, Andre; Atri, Mostafa

    2017-01-01

    To assess the significance of fat in the radiofrequency ablation (RFA) zone of hepatocellular adenomas (HCA), and its association with tumoral fat and hepatic steatosis. The radiological archive was searched for patients with ablated HCAs and follow-up magnetic resonance imaging between January 2008 and June 2014. Age, sex, risk factors and duration of clinical and imaging follow-up were recorded. Pre-RFA imaging was assessed for tumour size, intra-tumoral fat and steatosis. Post-RFA imaging was reviewed for size, enhancement and intra-ablational fat. Intra-ablational fat was classified as peripheral, central or mixed; the association of these distributions with steatosis and tumoral fat was assessed using Fisher's exact test. Sixteen patients with 26 ablated HCAs were included. Fat was present in 23/26 (88 %) ablation zones. Only 1/26 (4 %) showed serial enlargement and enhancement suggestive of residual disease; the enhancing area did not contain fat. All remaining ablations showed involution and/or diminishing fat content without suspicious enhancement (mean follow-up, 27 months; range, 2-84 months). The peripheral and mixed/central patterns of intra-ablational fat were associated with steatosis (P = 0.0005) and tumoral fat (P = 0.0003), respectively. Fat in the ablation zone of HCAs is a common finding which, in isolation, does not indicate residual tumour. (orig.)

  11. Glass particles produced by laser ablation for ICP-MSmeasurements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50 J cm{sup -2}. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloys samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns and fs-laser ablation than for metals alloys.

  12. Dynamics of tissue shrinkage during ablative temperature exposures

    International Nuclear Information System (INIS)

    Rossmann, Christian; Haemmerich, Dieter; Garrett-Mayer, Elizabeth; Rattay, Frank

    2014-01-01

    There is a lack of studies that examine the dynamics of heat-induced shrinkage of organ tissues. Clinical procedures such as radiofrequency ablation, microwave ablation or high-intensity focused ultrasound, use heat to treat diseases such as cancer and cardiac arrhythmia. When heat is applied to tissues, shrinkage occurs due to protein denaturation, dehydration and contraction of collagen at temperatures greater 50 °C. This is particularly relevant for image-guided procedures such as tumor ablation, where pre- and post-treatment images are compared and any changes in dimensions must be considered to avoid misinterpretations of the treatment outcome. We present data from ex vivo, isothermal shrinkage tests in porcine liver tissue, where axial changes in tissue length were recorded during 15 min of heating to temperatures between 60 and 95 °C. A mathematical model was developed to accurately describe the time and temperature-dependent shrinkage behavior. The shrinkage dynamics had the same characteristics independent of temperature; the estimated relative shrinkage, adjusted for time since death, after 15 min heating to temperatures of 60, 65, 75, 85 and 95 °C, was 12.3, 13.8, 16.6, 19.2 and 21.7%, respectively. Our results demonstrate the shrinkage dynamics of organ tissues, and suggest the importance of considering tissue shrinkage for thermal ablative treatments. (paper)

  13. The effect of radiofrequency ablation on different organs: Ex vivo and in vivo comparative studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoo Na [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Rhim, Hyunchul, E-mail: rhimhc@skku.edu [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Choi, Dongil; Kim, Young-sun; Lee, Min Woo; Chang, Ilsoo; Lee, Won Jae; Lim, Hyo K. [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of)

    2011-11-15

    Objective: The purposes of this study are to evaluate the ex vivo and in vivo efficacy of radiofrequency ablation (RFA) on different porcine tissues by the ablation of three different sites simultaneously. Materials and methods: A multichannel RFA system, enables three separate tumors to be ablated simultaneously, was used. RFA procedures were applied to normal porcine liver, kidney, and muscle together ex vivo (n = 12) and in vivo (n = 17). Pre-impedances, defined as baseline systemic impedances of tissues before beginning RFA, and the areas of ablation zones were measured and compared. Results: The areas of ablation zones among three organs had a significant difference in decreasing order as follows: liver, muscle, and kidney in the ex vivo study (p = 0.001); muscle, liver, and kidney in the in vivo study (p < 0.0001). The areas of ablation zones between ex vivo and in vivo had a significant difference in the liver and muscle (each p < 0.05). There was no significant correlation between the areas of ablation zones and pre-impedances in both studies. Conclusions: Renal RFA produced the smallest ablation zone in both in vivo and ex vivo studies. Muscular RFA demonstrated the largest ablation zone in the in vivo study, and hepatic RFA showed the largest ablation zone in the ex vivo study. This variability in the tissues should be considered for performing an optimized RFA for each organ site.

  14. Fiber-delivered mid-infrared (6-7) laser ablation of retinal tissue under perfluorodecalin

    Science.gov (United States)

    Mackanos, Mark A.; Joos, Karen M.; Jansen, E. Duco

    2003-07-01

    The Er:YAG laser (l=2.94mm) is an effective tool in vitreo-retinal surgery. Pulsed mid-infrared (l=6.45 mm) radiation from the Free Electron Laser has been touted as a potentially superior cutting tool. To date, use of this laser has been limited to applications in an air environment. The goal of this study was: 1) determine feasibility of fiberoptic delivery of 6.45mm using silverhalide fibers (d=700mm); 2) use infrared transparent vitreous substitute (perfluorodecalin) to allow non-contact ablation of the retina at 6.45mm. Fiber damage threshold=7.8J/cm2 (0.54GW/cm2) while transmission loss=0.54dB/m, allowing supra-ablative radiant exposures to the target. FTIR measurements of perfluorodecalin at 6.45mm yielded ma=3mm-1. Pump-probe imaging of ablation of a tissue-phantom through perfluorodecalin showed feasibility of non-contact ablation at l=6.45mm. Ablation of the retinal membranes of enucleated pig eyes was carried out under perfluorodecalin (5 Hz, 1.3 J/cm2). Each eye was cut along its equator to expose the retina. Vitreous was replaced by perfluorodecalin and laser radiation was delivered to the retina via the silverhalide fiber. The eye was rotated (at 2 rpm) using a stepper motor (0.9o/step) to create an ablation circle around the central axis of the retina (50% spot-to-spot overlap). Histological analysis of ablation yield and collateral damage will be presented. We have shown that using l=6.45mm delivered via silver halide fibers through perfluorodecalin allowed non-contact laser ablation. Remote structures are shielded, as the radiant exposure falls below the ablation threshold owing non-negligible absorption of perfluorodecalin at 6.45mm. This may optimize efficacy and safety of laser-based vitreoretinal surgery.

  15. Transluminal radio-frequency thermal ablation using a stent-type electrode: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Sun; Rhim, Hyun Chul [Hanyang University College of Medicine, Seoul (Korea, Republic of); Song, Ho Young [Asan Medical Center, Seoul (Korea, Republic of)] [and others

    2003-06-01

    To assess the feasibility of transluminal radiofrequency thermal ablation using a stent-type electrode and to determine, by means of in-vivo and in-vivo animal studies, the appropriate parameters. In-vivo: the radiofrequency electrode used was a self-expandable nitinol stent with 1cm insulated ends. A stent was placed in the portal vein of bovine liver, and ablations at target temperatures of 70, 80, 90, and 100 .deg. C were performed. Ablated sizes were measured longitudinally. In vivo: four mongrel dogs were anesthetized, and a stent was inserted in the common bile duct under fluoroscopic guidance through an ultrasound-guided gall bladder puncture site. The ablation temperature was set at 80 .deg. C, and each dog underwent proximal and distal esophageal ablations lasting 12 minutes. They were sacrificed immediately. In-vivo: ablated sizes showed significant correlation with target temperatures (r>0.04; p<0.05). Although most lesions were fusiform, dumbbell-shaped lesions with central thinning were found in two cases in the 70 .deg. C group. In all cases in the 70 .deg. C and 80 .deg. C group, the length of the insulated segment was less than 1cm. In-vivo: at microscopy, tissues at the center of the biliary stent showed more prominent pathological change than those at the periphery while those remote from the stent showed minimal or no change. In esophageal ablations, the mean highest temperature was 48.6 .deg. C. Microscopy demonstrated the destruction and shedding of mucosa, edema, and coagulation necrosis of submucosa, but in muscle layers no abnormalities were apparent. Transluminal radio-frequency thermal ablation using a stent-type electrode may be useful for elongating patency. The appropriate target temperature for biliary ablation is 80 .deg. C.

  16. Endometrial ablation in the management of abnormal uterine bleeding.

    Science.gov (United States)

    Laberge, Philippe; Leyland, Nicholas; Murji, Ally; Fortin, Claude; Martyn, Paul; Vilos, George; Leyland, Nicholas; Wolfman, Wendy; Allaire, Catherine; Awadalla, Alaa; Dunn, Sheila; Heywood, Mark; Lemyre, Madeleine; Marcoux, Violaine; Potestio, Frank; Rittenberg, David; Singh, Sukhbir; Yeung, Grace

    2015-04-01

    Abnormal uterine bleeding (AUB) is the direct cause of a significant health care burden for women, their families, and society as a whole. Up to 30% of women will seek medical assistance for the problem during their reproductive years. To provide current evidence-based guidelines on the techniques and technologies used in endometrial ablation (EA), a minimally invasive technique for the management of AUB of benign origin. Members of the guideline committee were selected on the basis of individual expertise to represent a range of practical and academic experience in terms of both location in Canada and type of practice, as well as subspecialty expertise and general background in gynaecology. The committee reviewed all available evidence in the English medical literature, including published guidelines, and evaluated surgical and patient outcomes for the various EA techniques. Recommendations were established by consensus. Published literature was retrieved through searches of MEDLINE and The Cochrane Library in 2013 and 2014 using appropriate controlled vocabulary and key words (endometrial ablation, hysteroscopy, menorrhagia, heavy menstrual bleeding, AUB, hysterectomy). RESULTS were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies written in English from January 2000 to November 2014. Searches were updated on a regular basis and incorporated in the guideline to December 2014. Grey (unpublished) literature was identifies through searching the websites of health technology assessment and health technology-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence in this document was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care (Table 1). This document reviews the evidence regarding the available techniques and technologies for EA

  17. [Radiofrequency ablation in the multimodal treatment of liver metastases--preliminary report].

    Science.gov (United States)

    Burcoveanu, C; Dogaru, C; Diaconu, C; Grecu, F; Dragomir, Cr; Pricop, Adriana; Balan, G; Drug, V L

    2007-01-01

    Although the "gold standard" in the multimodal treatment of liver primary and secondary tumors is the surgical ablation, the rate of resection, despite the last decades advances, remains still low (10 - 20%). In addition, the interest for non-surgical ablation therapies is increasing. Among them, regional or systemic chemotherapy, intra-arterial radiotherapy as well as locally targeted therapies--cryotherapy, alcohol instillation and radiofrequency (RF) are the most valuable options as alternative to the surgical approach. Between February 2005 - January 2007, 9 patients with liver metastases underwent open RF ablation of their secondaries in the III-rd Surgical Unit, "St. Spiridon" Hospital. An Elektrotom 106 HiTT Berchtold device with a 60W power generator and a 15 mm monopolar active electrode was used. Destruction of the tumors was certified with intraoperative ultrasound examination. Pre- and postoperative CarcinoEmbryonic Antigen (CEA) together with imaging follow-up was carried out, in order to determine local or systemic recurrencies. Six patients died between 6 month - 4 years after the RF ablation. Median survival is 29.2 months. RF ablation is a challenge alternative in non-resectable liver tumors.

  18. [Catheter ablation in patients with refractory cardiac arrhythmias with radiofrequency techniques].

    Science.gov (United States)

    de Paola, A A; Balbão, C E; Silva Netto, O; Mendonça, A; Villacorta, H; Vattimo, A C; Souza, I A; Guiguer Júnior, N; Portugal, O P; Martinez Filho, E E

    1993-02-01

    evaluate the efficacy of radiofrequency catheter ablation in patients with refractory cardiac arrhythmias. twenty patients with refractory cardiac arrhythmias were undertaken to electrophysiologic studies for diagnosis and radiofrequency catheter ablation of their reentrant arrhythmias. Ten patients were men and 10 women with ages varying from 13 to 76 years (mean = 42.4 years). Nineteen patients had supraventricular tachyarrhythmias: One patient had atrial tachycardia and 1 atrial fibrillation with rapid ventricular rate, 5 patients had reentrant nodal tachycardia, 12 patients had reentrant atrioventricular tachycardia and 1 patient had right ventricular outflow tract tachycardia. the mean time of the procedure was 4.1 hours. The radiofrequency current energy applied was 40-50 V for 30-40 seconds. Ablation was successful in 18/20 (90%) patients; in 15/18 (83%) of successfully treated patients the same study was done for diagnosis and radiofrequency ablation. One patient had femoral arterial occlusion and was treated with no significant sequelae. During a mean follow-up of 4 months no preexcitation or reentrant tachycardia occurred. the results of our experience with radiofrequency catheter ablation of cardiac arrhythmias suggest that this technique can benefit an important number of patients with cardiac arrhythmias.

  19. Indication of the radiofrequency induced lesion size by pre-ablation measurements

    DEFF Research Database (Denmark)

    Stagegaard, Niels; Petersen, Helen Høgh; Chen, Xu

    2005-01-01

    BACKGROUND: During radiofrequency ablation of arrhythmias tissue heating and hence lesion size depend on electrode-tissue contact and cooling of the electrode tip caused by cavitary blood flow. These factors are unique and unknown for each catheter placement in the beating heart. A tool for asses......BACKGROUND: During radiofrequency ablation of arrhythmias tissue heating and hence lesion size depend on electrode-tissue contact and cooling of the electrode tip caused by cavitary blood flow. These factors are unique and unknown for each catheter placement in the beating heart. A tool...... for assessing these factors prior to ablation may indicate the lesion size which will be obtained for any given catheter position. METHODS AND RESULTS: Radiofrequency ablation was performed in vitro on strips of left ventricular porcine myocardium during two different levels of convective cooling (0 or 0.1 m....../s), two different contact pressures (10 or 30 g) and parallel or perpendicular electrode-tissue orientation using 7F 4 mm tip catheters. Prior to ablation the impedance rise (DeltaIMP) caused by the obtained contact and the temperature rise with a 0.6 W 5 s test pulse (DeltaT) were measured. Subsequently...

  20. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies.

    Science.gov (United States)

    van den Bijgaart, Renske J E; Eikelenboom, Dylan C; Hoogenboom, Martijn; Fütterer, Jurgen J; den Brok, Martijn H; Adema, Gosse J

    2017-02-01

    Tumor ablation technologies, such as radiofrequency-, cryo- or high-intensity focused ultrasound (HIFU) ablation will destroy tumor tissue in a minimally invasive manner. Ablation generates large volumes of tumor debris in situ, releasing multiple bio-molecules like tumor antigens and damage-associated molecular patterns. To initiate an adaptive antitumor immune response, antigen-presenting cells need to take up tumor antigens and, following activation, present them to immune effector cells. The impact of the type of tumor ablation on the precise nature, availability and suitability of the tumor debris for immune response induction, however, is poorly understood. In this review, we focus on immune effects after HIFU-mediated ablation and compare these to findings using other ablation technologies. HIFU can be used both for thermal and mechanical destruction of tissue, inducing coagulative necrosis or subcellular fragmentation, respectively. Preclinical and clinical results of HIFU tumor ablation show increased infiltration and activation of CD4 + and CD8 + T cells. As previously observed for other types of tumor ablation technologies, however, this ablation-induced enhanced infiltration alone appears insufficient to generate consistent protective antitumor immunity. Therapies combining ablation with immune stimulation are therefore expected to be key to boost HIFU-induced immune effects and to achieve systemic, long-lasting, antitumor immunity.

  1. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Canteli, D., E-mail: david.canteli@ciemat.es [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Fernandez, S. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Molpeceres, C. [Centro Laser, Universidad Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain); Torres, I.; Gandia, J.J. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. Black-Right-Pointing-Pointer The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. Black-Right-Pointing-Pointer A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 Degree-Sign C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  2. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    International Nuclear Information System (INIS)

    Canteli, D.; Fernandez, S.; Molpeceres, C.; Torres, I.; Gandía, J.J.

    2012-01-01

    Highlights: ► A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. ► The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. ► A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 °C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  3. Analysis of internal ablation for the thermal control of aerospace vehicles

    Science.gov (United States)

    Camberos, Jose A.; Roberts, Leonard

    1989-01-01

    A new method of thermal protection for transatmospheric vehicles is introduced. The method involves the combination of radiation, ablation and transpiration cooling. By placing an ablating material behind a fixed-shape, porous outer shield, the effectiveness of transpiration cooling is made possible while retaining the simplicity of a passive mechanism. A simplified one-dimensional approach is used to derive the governing equations. Reduction of these equations to non-dimensional form yields two parameters which characterize the thermal protection effectiveness of the shield and ablator combination for a given trajectory. The non-dimensional equations are solved numerically for a sample trajectory corresponding to glide re-entry. Four typical ablators are tested and compared with results obtained by using the thermal properties of water. For the present level of analysis, the numerical computations adequately support the analytical model.

  4. Effect of Hashimoto thyroiditis on low-dose radioactive-iodine remnant ablation.

    Science.gov (United States)

    Kwon, Hyungju; Choi, June Young; Moon, Jae Hoon; Park, Hyo Jin; Lee, Won Woo; Lee, Kyu Eun

    2016-04-01

    Radioactive-iodine remnant ablation is an integral part of the papillary thyroid carcinoma (PTC) treatment. Although a minimum dose is usually recommended, there is controversy as to whether the low-dose (1100 MBq) radioactive-iodine remnant ablation is adequate for selected patients. A retrospective cohort study was conducted on 691 patients. Patients with no remnant thyroid on the follow-up whole body scan and low stimulated thyroglobulin (sTg) level (Hashimoto thyroiditis based on histopathology diagnosis (odds ratio [OR] = 3.23; p Hashimoto thyroiditis and elevated sTg are negative predictive factors for successful low-dose radioactive-iodine remnant ablation treatment. An appropriate risk-adjusted approach may improve the efficacy of radioactive-iodine remnant ablation treatment. © 2015 Wiley Periodicals, Inc. Head Neck 38: E730-E735, 2016. © 2015 Wiley Periodicals, Inc.

  5. An experimental study on hepatic ablation using an expandable radio-frequency needle electrode

    International Nuclear Information System (INIS)

    Choi, Dong Il; Lim, Hyo Keun; Park, Jong Min; Kang, Bo Kyung; Woo, Ji Young; Jang, Hyun Jung; Kim, Seung Hoon; Lee, Won Jae; Park, Cheol Keun; Heo, Jin Seok

    1999-01-01

    The purpose of this study was to determine the factors influencing on the size of thermal lesions after ablation using an expendable radio-frequency needle electrode in porcine liver. Ablation procedures involved the use of a monopolar radio-frequency generator and 15-G needle electrodes with four and seven retractable hooks (RITA Medical System, Mountain View, Cal., U.S.A.). The ablation protocol in fresh porcine liver comprised of combinations of varying hook deployment, highest set temperature, and ablation time. Following ablation, the maximum diameter of all thermal lesions was measured on a longitudinal section of the specimen. Ten representive lesions were examined by an experienced pathologist. At 3-cm hook deployment of the needle electrode with four lateral hooks, the size of spherical thermal lesions increased substantially with increases in the highest set temperature and ablation time until 11 minutes. After 11 minutes lesion size remained similar, with a maximum diameter of 3.3 cm. At 2-cm hook deployment, sizes decreased to about 2/3 of those at 3 cm , and at 1-cm hook deployment lesions were oblong. At 3-cm hook deployment of a needle electrode with seven hooks, the size of thermal lesions increased with increasing ablation time until 14 minutes, and the maximum diameter was 4.1 cm. Microscopic examination showed a wide zone of degeneration and focal coagulation necrosis. The size of thermal lesions produced by the use of an expandable radio-frequency needle electrode were predictable, varying according to degree of hook deployment, highest set temperature, and ablation time

  6. Assessing the accuracy of Greenland ice sheet ice ablation measurements by pressure transducer

    Science.gov (United States)

    Fausto, R. S.; van As, D.; Ahlstrøm, A. P.

    2012-04-01

    In the glaciological community there is a need for reliable mass balance measurements of glaciers and ice sheets, ranging from daily to yearly time scales. Here we present a method to measure ice ablation using a pressure transducer. The pressure transducer is drilled into the ice, en-closed in a hose filled with a liquid that is non-freezable at common Greenlandic temperatures. The pressure signal registered by the transducer is that of the vertical column of liquid over the sensor, which can be translated in depth knowing the density of the liquid. As the free-standing AWS moves down with the ablating surface and the hose melts out of the ice, an increasingly large part of the hose will lay flat on the ice surface, and the hydrostatic pressure from the vertical column of liquid in the hose will get smaller. This reduction in pressure provides us with the ablation rate. By measuring at (sub-) daily timescales this assembly is well-suited to monitor ice ablation in remote regions, with clear advantages over other well-established methods of measuring ice ablation in the field. The pressure transducer system has the potential to monitor ice ablation for several years without re-drilling and the system is suitable for high ablation areas. A routine to transform raw measurements into ablation values will also be presented, including a physically based method to remove air pressure variability from the signal. The pressure transducer time-series is compared to that recorded by a sonic ranger for the climatically hostile setting on the Greenland ice sheet.

  7. Percutaneous laser ablation of unresectable primary and metastatic adrenocortical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Pacella, Claudio M. [Regina Apostolorum Hospital, Department of Diagnostic Imaging and Interventional Radiology, Via San Francesco 50, Albano Laziale, Rome 00041 (Italy)], E-mail: claudiomaurizio.pacella@fastwebnet.it; Stasi, Roberto; Bizzarri, Giancarlo; Pacella, Sara; Graziano, Filomena Maria; Guglielmi, Rinaldo; Papini, Enrico [Regina Apostolorum Hospital, Department of Diagnostic Imaging and Interventional Radiology, Via San Francesco 50, Albano Laziale, Rome 00041 (Italy)

    2008-04-15

    Purpose: To evaluate the feasibility, safety, and clinical benefits of percutaneous laser ablation (PLA) in patients with unresectable primary and metastatic adrenocortical carcinoma (ACC). Patients and methods: Four patients with hepatic metastases from ACC and a Cushing's syndrome underwent ultrasound-guided PLA. In one case the procedure was performed also on the primary tumor. Results: After three sessions of PLA, the primary tumor of 15 cm was ablated by 75%. After 1-4 (median 1) sessions of PLA, five liver metastases ranging from 2 to 5 cm were completely ablated, while the sixth tumor of 12 cm was ablated by 75%. There were no major complications. Treatment resulted in an improvement of performance status and a reduction of the daily dosage of mitotane in all patients. The three patients with liver metastases presented a marked decrease of 24-h urine cortisol levels, an improved control of hypertension and a mean weight loss of 2.8 kg. After a median follow-up after PLA of 27.0 months (range, 9-48 months), two patients have died of tumor progression, while two other patients remain alive and free of disease. Conclusions: Percutaneous laser ablation is a feasible, safe and well tolerated procedure for the palliative treatment of unresectable primary and metastatic ACC. Further study is required to evaluate the impact of PLA on survival.

  8. Percutaneous laser ablation of unresectable primary and metastatic adrenocortical carcinoma

    International Nuclear Information System (INIS)

    Pacella, Claudio M.; Stasi, Roberto; Bizzarri, Giancarlo; Pacella, Sara; Graziano, Filomena Maria; Guglielmi, Rinaldo; Papini, Enrico

    2008-01-01

    Purpose: To evaluate the feasibility, safety, and clinical benefits of percutaneous laser ablation (PLA) in patients with unresectable primary and metastatic adrenocortical carcinoma (ACC). Patients and methods: Four patients with hepatic metastases from ACC and a Cushing's syndrome underwent ultrasound-guided PLA. In one case the procedure was performed also on the primary tumor. Results: After three sessions of PLA, the primary tumor of 15 cm was ablated by 75%. After 1-4 (median 1) sessions of PLA, five liver metastases ranging from 2 to 5 cm were completely ablated, while the sixth tumor of 12 cm was ablated by 75%. There were no major complications. Treatment resulted in an improvement of performance status and a reduction of the daily dosage of mitotane in all patients. The three patients with liver metastases presented a marked decrease of 24-h urine cortisol levels, an improved control of hypertension and a mean weight loss of 2.8 kg. After a median follow-up after PLA of 27.0 months (range, 9-48 months), two patients have died of tumor progression, while two other patients remain alive and free of disease. Conclusions: Percutaneous laser ablation is a feasible, safe and well tolerated procedure for the palliative treatment of unresectable primary and metastatic ACC. Further study is required to evaluate the impact of PLA on survival

  9. Endometrial ablation with paracervical block

    NARCIS (Netherlands)

    Penninx, Josien P. M.; Mol, Ben Willem; Bongers, Marlies Y.

    2009-01-01

    OBJECTIVE: To evaluate the safety, feasibility and efficacy of endometrial ablation under local anesthesia. STUDY DESIGN: A prospective cohort study was performed at the gynecology department of a large teaching hospital. Women with dysfunctional uterine bleeding were included to undergo NovaSure

  10. Effect of Undiagnosed Deep Adenomyosis After Failed NovaSure Endometrial Ablation

    NARCIS (Netherlands)

    Mengerink, B.B.; Wurff, A.A. van der; Haar, J.F. ter; Rooij, I.A.L.M. van; Pijnenborg, J.M.

    2015-01-01

    STUDY OBJECTIVE: To determine the prevalence of adenomyosis and deep adenomyosis after NovaSure (Hologic Inc., Newark, DE) endometrial ablation in hysterectomy specimens after NovaSure endometrial ablation failure. DESIGN: Prospective observational study (Canadian Task Force classification II-2).

  11. Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kalupka, C., E-mail: christian.kalupka@llt.rwth-aachen.de; Finger, J. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Reininghaus, M. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Fraunhofer Institute for Laser Technology ILT, Steinbachstraße 15, Aachen 52074 (Germany)

    2016-04-21

    We report on the in-situ analysis of the ablation dynamics of the, so-called, laser induced non-thermal ablation process of graphite. A highly oriented pyrolytic graphite is excited by femtosecond laser pulses with fluences below the classic thermal ablation threshold. The ablation dynamics are investigated by axial pump-probe reflection measurements, transversal pump-probe shadowgraphy, and time-resolved transversal emission photography. The combination of the applied analysis methods allows for a continuous and detailed time-resolved observation of the non-thermal ablation dynamics from several picoseconds up to 180 ns. Formation of large, μm-sized particles takes place within the first 3.5 ns after irradiation. The following propagation of ablation products and the shock wave front are tracked by transversal shadowgraphy up to 16 ns. The comparison of ablation dynamics of different fluences by emission photography reveals thermal ablation products even for non-thermal fluences.

  12. Numerical simulation of anisotropic preheating ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Wang Lifeng; Ye Wenhua; Li Yingjun

    2010-01-01

    The linear growth rate of the anisotropic preheating ablative Rayleigh-Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T)=κ SH [1+f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse. (authors)

  13. Infrared Laser Ablation with Vacuum Capture for Fingermark Sampling

    Science.gov (United States)

    Donnarumma, Fabrizio; Camp, Eden E.; Cao, Fan; Murray, Kermit K.

    2017-09-01

    Infrared laser ablation coupled to vacuum capture was employed to collect material from fingermarks deposited on surfaces of different porosity and roughness. Laser ablation at 3 μm was performed in reflection mode with subsequent capture of the ejecta with a filter connected to vacuum. Ablation and capture of standards from fingermarks was demonstrated on glass, plastic, aluminum, and cardboard surfaces. Using matrix assisted laser desorption ionization (MALDI), it was possible to detect caffeine after spiking with amounts as low as 1 ng. MALDI detection of condom lubricants and detection of antibacterial peptides from an antiseptic cream was demonstrated. Detection of explosives from fingermarks left on plastic surfaces as well as from direct deposition on the same surface using gas chromatography mass spectrometry (GC-MS) was shown. [Figure not available: see fulltext.

  14. The contemporary role of ablative treatment approaches in the management of renal cell carcinoma (RCC): focus on radiofrequency ablation (RFA), high-intensity focused ultrasound (HIFU), and cryoablation.

    Science.gov (United States)

    Klatte, Tobias; Kroeger, Nils; Zimmermann, Uwe; Burchardt, Martin; Belldegrun, Arie S; Pantuck, Allan J

    2014-06-01

    Currently, most of renal tumors are small, low grade, with a slow growth rate, a low metastatic potential, and with up to 30 % of these tumors being benign on the final pathology. Moreover, they are often diagnosed in elderly patients with preexisting medical comorbidities in whom the underlying medical conditions may pose a greater risk of death than the small renal mass. Concerns regarding overdiagnosis and overtreatment of patients with indolent small renal tumors have led to an increasing interest in minimally invasive, ablative as an alternative to extirpative interventions for selected patients. To provide an overview about the state of the art in radiofrequency ablation (RFA), high-intensity focused ultrasound, and cryoablation in the clinical management of renal cell carcinoma. A PubMed wide the literature search of was conducted. International consensus panels recommend ablative techniques in patients who are unfit for surgery, who are not considered candidates for or elect against elective surveillance, and who have small renal masses. The most often used techniques are cryoablation and RFA. These ablative techniques offer potentially curative outcomes while conferring several advantages over extirpative surgery, including improved patient procedural tolerance, faster recovery, preservation of renal function, and reduction in the risk of intraoperative and postsurgical complications. While it is likely that outcomes associated with ablative modalities will improve with further advances in technology, their application will expand to more elective indications as longer-term efficacy data become available. Ablative techniques pose a valid treatment option in selected patients.

  15. Comparison of microbubble presence in the right heart during mechanochemical and radiofrequency ablation for varicose veins.

    Science.gov (United States)

    Moon, K H; Dharmarajah, B; Bootun, R; Lim, C S; Lane, Tra; Moore, H M; Sritharan, K; Davies, A H

    2017-07-01

    Objective Mechanochemical ablation is a novel technique for ablation of varicose veins utilising a rotating catheter and liquid sclerosant. Mechanochemical ablation and radiofrequency ablation have no reported neurological side-effect but the rotating mechanism of mechanochemical ablation may produce microbubbles. Air emboli have been implicated as a cause of cerebrovascular events during ultrasound-guided foam sclerotherapy and microbubbles in the heart during ultrasound-guided foam sclerotherapy have been demonstrated. This study investigated the presence of microbubbles in the right heart during varicose vein ablation by mechanochemical abaltion and radiofrequency abaltion. Methods Patients undergoing great saphenous vein ablation by mechanochemical abaltion or radiofrequency ablation were recruited. During the ablative procedure, the presence of microbubbles was assessed using transthoracic echocardiogram. Offline blinded image quantification was performed using International Consensus Criteria grading guidelines. Results From 32 recruited patients, 28 data sets were analysed. Eleven underwent mechanochemical abaltion and 17 underwent radiofrequency abaltion. There were no neurological complications. In total, 39% (11/28) of patients had grade 1 or 2 microbubbles detected. Thirty-six percent (4/11) of mechanochemical abaltion patients and 29% (5/17) of radiofrequency ablation patients had microbubbles with no significant difference between the groups ( p=0.8065). Conclusion A comparable prevalence of microbubbles between mechanochemical abaltion and radiofrequency ablation both of which are lower than that previously reported for ultrasound-guided foam sclerotherapy suggests that mechanochemical abaltion may not confer the same risk of neurological events as ultrasound-guided foam sclerotherapy for treatment of varicose veins.

  16. Ablation acceleration of macroparticle in spiral magnetic fields

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1981-05-01

    The rocket motion of macroparticles heated by energetic pulses in a spiral magnetic field was studied. The purpose of the present work is to study the ablation acceleration of a macroparticle in a spiral magnetic field with the help of the law of conservation of angular momentum. The basic equation of motion of ablatively accelerated projectile in a spiral magnetic field was derived. Any rocket which is ejecting fully ionized plasma in an intense magnetic field with rotational transform is able to have spin by the law of conservation of momentum. The effect of spiral magnetic field on macroparticle acceleration is discussed. The necessary mass ratio increase exponentially with respect to the field parameter. The spiral field should be employed with care to have only to stabilize the position of macroparticles. As conclusion, it can be said that the ablation acceleration of the projectile in a spiral field can give the accelerated body spin quite easily. (Kato, T.)

  17. Assessment of liver tumor response by high-field (3 T) MRI after radiofrequency ablation: Short- and mid-term evolution of diffusion parameters within the ablation zone

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Tri-Linh, E-mail: tluonmac@gmail.com [Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Rue du Bugnon 46, 1011 Lausanne (Switzerland); Becce, Fabio; Bize, Pierre; Denys, Alban; Meuli, Reto; Schmidt, Sabine [Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Rue du Bugnon 46, 1011 Lausanne (Switzerland)

    2012-09-15

    Purpose: To compare the apparent diffusion coefficient (ADC) values of malignant liver lesions on diffusion-weighted MRI (DWI) before and after successful radiofrequency ablation (RF ablation). Materials and methods: Thirty-two patients with 43 malignant liver lesions (23/20: metastases/hepatocellular carcinomas (HCC)) underwent liver MRI (3.0 T) before (<1 month) and after RF ablation (at 1, 3 and 6 months) using T2-, gadolinium-enhanced T1- and DWI-weighted MR sequences. Jointly, two radiologists prospectively measured ADCs for each lesion by means of two different regions of interest (ROIs), first including the whole lesion and secondly the area with the visibly most restricted diffusion (MRDA) on ADC map. Changes of ADCs were evaluated with ANOVA and Dunnett tests. Results: Thirty-one patients were successfully treated, while one patient was excluded due to focal recurrence. In metastases (n = 22), the ADC in the whole lesion and in MRDA showed an up-and-down evolution. In HCC (n = 20), the evolution of ADC was more complex, but with significantly higher values (p = 0.013) at 1 and 6 months after RF ablation. Conclusion: The ADC values of malignant liver lesions successfully treated by RF ablation show a predictable evolution and may help radiologists to monitor tumor response after treatment.

  18. Should fat in the radiofrequency ablation zone of hepatocellular adenomas raise suspicion for residual tumour?

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Andreu F. [University Health Network and Mount Sinai Hospital, University of Toronto, Joint Department of Medical Imaging, Toronto, Ontario (Canada); Dalhousie University, Department of Diagnostic Radiology, QE II Health Sciences Centre - VG Site, Halifax, Nova Scotia (Canada); Kajal, Dilkash; Pereira, Andre; Atri, Mostafa [University Health Network and Mount Sinai Hospital, University of Toronto, Joint Department of Medical Imaging, Toronto, Ontario (Canada)

    2017-04-15

    To assess the significance of fat in the radiofrequency ablation (RFA) zone of hepatocellular adenomas (HCA), and its association with tumoral fat and hepatic steatosis. The radiological archive was searched for patients with ablated HCAs and follow-up magnetic resonance imaging between January 2008 and June 2014. Age, sex, risk factors and duration of clinical and imaging follow-up were recorded. Pre-RFA imaging was assessed for tumour size, intra-tumoral fat and steatosis. Post-RFA imaging was reviewed for size, enhancement and intra-ablational fat. Intra-ablational fat was classified as peripheral, central or mixed; the association of these distributions with steatosis and tumoral fat was assessed using Fisher's exact test. Sixteen patients with 26 ablated HCAs were included. Fat was present in 23/26 (88 %) ablation zones. Only 1/26 (4 %) showed serial enlargement and enhancement suggestive of residual disease; the enhancing area did not contain fat. All remaining ablations showed involution and/or diminishing fat content without suspicious enhancement (mean follow-up, 27 months; range, 2-84 months). The peripheral and mixed/central patterns of intra-ablational fat were associated with steatosis (P = 0.0005) and tumoral fat (P = 0.0003), respectively. Fat in the ablation zone of HCAs is a common finding which, in isolation, does not indicate residual tumour. (orig.)

  19. Requirements and prototype for supporting the planning of patient specific thermal ablation interventions

    International Nuclear Information System (INIS)

    Schramm, W.

    2010-01-01

    Background Thermal ablation is the process of destroying pathological tissue by either high temperatures of approximately 105 o C as achieved in radiofrequency ablation or low temperatures of approximately - 40 o C as used in cryotherapy. Ablations are widely used in clinical practice and provide a safe and generally well tolerated minimal invasive treatment if surgery is not an option. Thermal ablations are usually performed under image guidance, either by ultrasound, CT or MR. Even though ablations are widely used, very little textbook knowledge is available. Because of the treatment complexity there is a need for a well defined process which can be followed by an experienced radiologist as well as an inexperienced one. There is also a need for a planning platform which is capable of supporting the physician in planning the intervention on the basis of the patient's anatomy. For additional benefit this platform should also provide the means for estimating the final coagulation zone by simulations based on the patient's anatomy. The most widely used method to simulate the extend of a coagulation zone is by the usage of finite element analysis (FEA). FEA uses a defined geometry with the physical properties of the tissue and the ablation modality to create a model which can then be solved to make estimations about the extend of the final coagulation zone. Method and Results To deal with the problem of ablation knowledge being only available in distributed form, a workflow was abstracted and translated into diagrams. These workflow diagrams visualize the required steps and decisions when performing thermal ablations. The workflow is split into a planning, applicator placement, ablation and result evaluation phase. The information gained from this knowledge is then used to define the requirements for a platform which is capable of helping the physician when performing the ablation. In the next step I examined the possibility to increase an ablation's coagulation zone

  20. Modeling of beam-target interaction during pulsed electron beam ablation of graphite: Case of melting

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Muddassir, E-mail: mx1_ali@laurentian.ca; Henda, Redhouane

    2017-02-28

    Highlights: • Modeling of ablation stage induced during pulsed electron beam ablation (PEBA). • Thermal model to describe heating, melting and vaporization of a graphite target. • Model results show good accordance with reported data in the literature. - Abstract: A one-dimensional thermal model based on a two-stage heat conduction equation is employed to investigate the ablation of graphite target during nanosecond pulsed electron beam ablation. This comprehensive model accounts for the complex physical phenomena comprised of target heating, melting and vaporization upon irradiation with a polyenergetic electron beam. Melting and vaporization effects induced during ablation are taken into account by introducing moving phase boundaries. Phase transition induced during ablation is considered through the temperature dependent thermodynamic properties of graphite. The effect of electron beam efficiency, power density, and accelerating voltage on ablation is analyzed. For an electron beam operating at an accelerating voltage of 15 kV and efficiency of 0.6, the model findings show that the target surface temperature can reach up to 7500 K at the end of the pulse. The surface begins to melt within 25 ns from the pulse start. For the same process conditions, the estimated ablation depth and ablated mass per unit area are about 0.60 μm and 1.05 μg/mm{sup 2}, respectively. Model results indicate that ablation takes place primarily in the regime of normal vaporization from the surface. The results obtained at an accelerating voltage of 15 kV and efficiency factor of 0.6 are satisfactorily in good accordance with available experimental data in the literature.

  1. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    International Nuclear Information System (INIS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-01-01

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F_t_h = 0.087 J/cm"2) than that for the femtosecond laser ablation of ABS (F_t_h = 1.576 J/cm"2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α"−"1 = 223 nm) than that for femtosecond laser ablation (α"−"1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas C=C bond is partially

  2. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    Energy Technology Data Exchange (ETDEWEB)

    See, Tian Long, E-mail: tianlong.see@postgrad.manchester.ac.uk [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Liu, Zhu [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Li, Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Zhong, Xiang Li [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom)

    2016-02-28

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F{sub th} = 0.087 J/cm{sup 2}) than that for the femtosecond laser ablation of ABS (F{sub th} = 1.576 J/cm{sup 2}), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α{sup −1} = 223 nm) than that for femtosecond laser ablation (α{sup −1} = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas

  3. Near-field mapping by laser ablation of PMMA coatings

    DEFF Research Database (Denmark)

    Fiutowski, J.; Maibohm, C.; Kostiucenko, O.

    2011-01-01

    The optical near-field of lithography-defined gold nanostructures, arranged into regular arrays on a gold film, is characterized via ablation of a polymer coating by laser illumination. The method utilizes femto-second laser pulses from a laser scanning microscope which induces electrical field...... that the different stages in the ablation process can be controlled and characterized making the technique suitable for characterizing optical near-fields of metal nanostructures....

  4. Ablative fractional laser alters biodistribution of ingenol mebutate in the skin

    DEFF Research Database (Denmark)

    Erlendsson, A M; Taudorf, E H; Eriksson, A. H.

    2015-01-01

    Topically applied ingenol mebutate (IngMeb) is approved for field-treatment of actinic keratosis and is currently being investigated for treatment of non-melanoma skin cancer (NMSC). Ablative fractional lasers (AFXLs) generate microscopic ablation zones (MAZs) in the skin, which may help induce...

  5. Superhydrophobic/superoleophilic magnetic elastomers by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Milionis, Athanasios, E-mail: am2vy@virginia.edu [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Fragouli, Despina; Brandi, Fernando; Liakos, Ioannis; Barroso, Suset [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Athanassiou, Athanassia, E-mail: athanassia.athanassiou@iit.it [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy)

    2015-10-01

    Highlights: • We report the development of magnetic nanocomposite sheets. • Laser irradiation of the nanocomposites induces chemical and structural changes to the surface. • The laser-patterned surfaces exhibit superhydrophobicity and superoleophilicity. • The particle contribution in altering the surface and bulk properties of the material is studied. - Abstract: We report the development of magnetic nanocomposite sheets with superhydrophobic and supeoleophilic surfaces generated by laser ablation. Polydimethylsiloxane elastomer free-standing films, loaded homogeneously with 2% wt. carbon coated iron nanoparticles, were ablated by UV (248 nm), nanosecond laser pulses. The laser irradiation induces chemical and structural changes (both in micro- and nano-scale) to the surfaces of the nanocomposites rendering them superhydrophobic. The use of nanoparticles increases the UV light absorption efficiency of the nanocomposite samples, and thus facilitates the ablation process, since the number of pulses and the laser fluence required are greatly reduced compared to the bare polymer. Additionally the magnetic nanoparticles enhance significantly the superhydrophobic and oleophilic properties of the PDMS sheets, and provide to PDMS magnetic properties making possible its actuation by a weak external magnetic field. These nanocomposite elastomers can be considered for applications requiring magnetic MEMS for the controlled separation of liquids.

  6. Economic and clinical benefits of endometrial radiofrequency ablation compared with other ablation techniques in women with menorrhagia: a retrospective analysis with German health claims data

    Directory of Open Access Journals (Sweden)

    Bischoff-Everding C

    2016-01-01

    Full Text Available Christoph Bischoff-Everding,1 Ruediger Soeder,2 Benno Neukirch3 1HGC GesundheitsConsult GmbH, Duesseldorf, Germany; 2Gynecological Joint Practice, Mainz, Germany; 3Faculty of Health Care, Hochschule Niederrhein – University of Applied Sciences, Krefeld, Germany Objective: To evaluate the economic and clinical benefits of endometrial radiofrequency ablation (RFA compared with other ablation techniques for the treatment of menorrhagia.Methods: Using German health claims data, women meeting defined inclusion criteria for the intervention group (RFA were selected. A comparable control group (other endometrial ablations was established using propensity score matching. These two groups were compared during the quarter of treatment (QoT and a follow-up of 2 years for the following outcomes: costs during QoT and during follow-up, repeated menorrhagia diagnoses during follow-up and necessary retreatments during follow-up. Results: After performing propensity score matching, 50 cases could be allocated to the intervention group, while 38 were identified as control cases. Patients in the RFA group had 5% fewer repeat menorrhagia diagnoses (40% vs 45%; not significant and 5% fewer treatments associated with recurrent menorrhagia (6% vs 11%; not significant than cases in the control group. During the QoT, the RFA group incurred €578 additional costs (€2,068 vs €1,490; ns. However, during follow-up, the control group incurred €1,254 additional costs (€4,561 vs €5,815; ns, with medication, outpatient physician consultations, and hospitals costs being the main cost drivers. However, none of the results were statistically significant. Conclusion: Although RFA was more cost-intensive in the QoT compared with other endometrial ablation techniques, an average total savings of €676 was generated during the follow-up period. While having evidence that RFA is clinically equivalent to other endometrial ablation procedures, we generated indications that

  7. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Science.gov (United States)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  8. Ablative overlays for Space Shuttle leading edge ascent heat protection

    Science.gov (United States)

    Strauss, E. L.

    1975-01-01

    Ablative overlays were evaluated via a plasma-arc simulation of the ascent pulse on the leading edge of the Space Shuttle Orbiter. Overlay concepts included corkboard, polyisocyanurate foam, low-density Teflon, epoxy, and subliming salts. Their densities ranged from 4.9 to 81 lb per cu ft, and the thicknesses varied from 0.107 to 0.330 in. Swept-leading-edge models were fabricated from 30-lb per cu ft silicone-based ablators. The overlays were bonded to maintain the surface temperature of the base ablator below 500 F during ascent. Foams provided minimum-weight overlays, and subliming salts provided minimum-thickness overlays. Teflon left the most uniform surface after ascent heating.

  9. Effect of absorbing coating on ablation of diamond by IR laser pulses

    Science.gov (United States)

    Kononenko, T. V.; Pivovarov, P. A.; Khomich, A. A.; Khmel'nitskii, R. A.; Konov, V. I.

    2018-03-01

    We study the possibility of increasing the efficiency and quality of laser ablation microprocessing of diamond by preliminary forming an absorbing layer on its surface. The laser pulses having a duration of 1 ps and 10 ns at a wavelength of 1030 nm irradiate the polycrystalline diamond surface coated by a thin layer of titanium or graphite. We analyse the dynamics of the growth of the crater depth as a function of the number of pulses and the change in optical transmission of the ablated surface. It is found that under irradiation by picosecond pulses the preliminary graphitisation allows one to avoid the laser-induced damage of the internal diamond volume until the appearance of a self-maintained graphitised layer. The absorbing coating (both graphite and titanium) much stronger affects ablation by nanosecond pulses, since it reduces the ablation threshold by more than an order of magnitude and allows full elimination of a laser-induced damage of deep regions of diamond and uncontrolled explosive ablation in the nearsurface layer.

  10. 12-month efficacy of a single radiofrequency ablation on autonomously functioning thyroid nodules.

    Science.gov (United States)

    Bernardi, Stella; Stacul, Fulvio; Michelli, Andrea; Giudici, Fabiola; Zuolo, Giulia; de Manzini, Nicolò; Dobrinja, Chiara; Zanconati, Fabrizio; Fabris, Bruno

    2017-09-01

    Radiofrequency ablation has been advocated as an alternative to radioiodine and/or surgery for the treatment of autonomously functioning benign thyroid nodules. However, only a few studies have measured radiofrequency ablation efficacy on autonomously functioning benign thyroid nodules. The aim of this work was to evaluate the 12-month efficacy of a single session of radiofrequency ablation (performed with the moving shot technique) on solitary autonomously functioning benign thyroid nodules. Thirty patients with a single, benign autonomously functioning benign thyroid nodules, who were either unwilling or ineligible to undergo surgery and radioiodine, were treated with radiofrequency ablation between April 2012 and May 2015. All the patients underwent a single radiofrequency ablation, performed with the 18-gauge needle and the moving shot technique. Clinical, laboratory, and ultrasound evaluations were scheduled at baseline, and after 1, 3, 6, and 12 months from the procedure. A single radiofrequency ablation reduced thyroid nodule volume by 51, 63, 69, and 75 % after 1, 3, 6, and 12 months, respectively. This was associated with a significant improvement of local cervical discomfort and cosmetic score. As for thyroid function, 33 % of the patients went into remission after 3 months, 43 % after 6 months, and 50 % after 12 months from the procedure. This study demonstrates that a single radiofrequency ablation allowed us to withdraw anti-thyroid medication in 50 % of the patients, who remained euthyroid afterwards. This study shows that a single radiofrequency ablation was effective in 50 % of patients with autonomously functioning benign thyroid nodules. Patients responded gradually to the treatment. It is possible that longer follow-up studies might show greater response rates.

  11. Variables associated with vaginal discharge after ultrasound-guided percutaneous microwave ablation for adenomyosis.

    Science.gov (United States)

    Xu, Rui-Fang; Zhang, Jing; Han, Zhi-Yu; Zhang, Bing-Song; Liu, Hui; Li, Xiu-Mei; Ge, Hai-Long; Dong, Xue-Juan

    2016-08-01

    Objective The aim of this study was to analyse the significant variables for vaginal discharge after ultrasound-guided percutaneous microwave ablation (PMWA) therapy. Materials and methods PMWA was performed on 117 patients with adenomyosis from October 2012 to July 2014. The presence or absence, colour, quantity and duration of vaginal discharge, which was different from pre-ablation, were recorded within 1 year after PMWA. Patients were categorised into G1 (n = 26, without vaginal discharge), G2 (n = 40, vaginal discharge lasting 1 to 19 days), and G3 (n = 51, vaginal discharge lasting ≥20 days) groups. The potentially correlative variables were analysed. Variables with significant correlations with vaginal discharge post-ablation were identified via binary logistic regression analysis. Results The differences in adenomyosis type, pre-ablation uterine volume, total microwave ablation energy, total non-perfused volume (NPV) and minimum distance from the non-perfused lesion (NPL) margin to the endomyometrial junction (EMJ) among groups were statistically significant (p = 0.005, p = 0.000, p = 0.000, p = 0.005 and p = 0.000, respectively). Minimum distance from the NPL margin to the EMJ was the strongest predictor of vaginal discharge post-ablation with odds ratio (OR) 0.632, p = 0.018, 95% CI 0.432-0.923. Patients with diffuse adenomyosis were more likely to have prolonged vaginal discharge (≥20 days) post-ablation (OR 3.461, p = 0.000, 95% CI 1.759-7.536). Conclusion The minimum distance from the NPL margin to the EMJ and adenomyosis type were significantly associated with vaginal discharge post-ablation.

  12. Comparative study of excimer and erbium:YAG lasers for ablation of structural components of the knee

    Science.gov (United States)

    Vari, Sandor G.; Shi, Wei-Qiang; van der Veen, Maurits J.; Fishbein, Michael C.; Miller, J. M.; Papaioannou, Thanassis; Grundfest, Warren S.

    1991-05-01

    This study was designed to compare the efficiency and thermal effect of a 135 ns pulsed-stretched XeCl excimer laser (308 nm) and a free-running Erbium:YAG laser (2940 nm) with 200 microsecond(s) pulse duration for ablation of knee joint structures (hyaline and fibrous cartilage, tendon and bone). The radiant exposure used for tissue ablation ranged from 2 to 15 J/cm2 for the XeCl excimer and from 33 to 120 J/cm2 for Er:YAG. The excimer and Er:YAG lasers were operated at 4 and 5 Hz respectively. The ablative laser energy was delivered to tissue through fibers. Ablation rates of soft tissues (hyaline and fibrous cartilage, tendon) varied from 8.5 to 203 micrometers /pulse for excimer and from 8.2 to 273 micrometers /pulse for Er:YAG lasers. Ablation rates of soft tissues are linearly dependent on the radiant exposure. Within the range of parameters tested all the tissues except the bone could be rapidly ablated by both lasers. Bone ablation was much less efficient, requiring 15 J/cm2 and 110 J/cm2 radiant exposure for excimer and Er:YAG lasers to ablate 9.5 and 8.2 micrometers tissue per pulse. However, excimer laser ablation produced less thermal damage in the tissues studied compared to Er:YAG at the same laser parameters. The authors conclude that both lasers are capable of efficient knee joint tissue ablation. XeCl excimer laser requires an order of magnitude less energy than Er:YAG laser for comparable tissue ablation.

  13. Radiofrequency ablation of neuroendocrine liver metastases: the Middlesex experience.

    Science.gov (United States)

    Gillams, A; Cassoni, A; Conway, G; Lees, W

    2005-01-01

    Current treatment options for neuroendocrine liver metastases are not widely applicable or not that effective. Image-guided thermal ablation offers the possibility of a minimally invasive, albeit palliative, treatment that decreases tumor volume, preserves most of the normal liver, and can be repeated several times. We report our experience with image-guided thermal ablation in 25 patients with unresectable liver metastases. Since 1990 we have treated 189 tumors at 66 treatment sessions in 25 patients (12 female, 13 male; median age, 56 years; age range, 26--78 years). Thirty treatments were performed with a solid-state laser, and 36 treatments were performed with radiofrequency ablation. All but one treatment was performed percutaneously under image guidance. Sixteen patients had metastases from carcinoid primaries, three from gastrinoma, two from insulinoma, and four from miscellaneous causes. Fourteen of 25 had symptoms from hormone secretion. Imaging follow-up was available in 19 patients at a median of 21 months (range, 4--75 months). There was a complete response in six patients, a partial response in seven, and stable disease in one; hence, tumor load was controlled in 14 of 19 patients (74%). Relief of hormone-related symptoms was achieved in nine of 14 patients (69%). The median survival period from the diagnosis of liver metastases was 53 months. One patient with end-stage cardiac disease died after a carcinoid crisis. There were eight (12%) complications: five local and three distant, four major and four minor. As a minimally invasive, readily repeatable procedure that can be used to ablate small tumors, preferably before patients become severely symptomatic, radiofrequency ablation can provide effective control of liver tumor volume in most patients over many years.

  14. Microwave ablation of liver metastases guided by contrast-enhanced ultrasound

    DEFF Research Database (Denmark)

    Lorentzen, T; Skjoldbye, B O; Nolsoe, C P

    2011-01-01

    The aim of our study was to evaluate the efficacy of microwave (MW) ablation of liver metastases guided by B-mode ultrasound (US) and contrast-enhanced US (CEUS).......The aim of our study was to evaluate the efficacy of microwave (MW) ablation of liver metastases guided by B-mode ultrasound (US) and contrast-enhanced US (CEUS)....

  15. Rail gun performance and plasma characteristics due to wall ablation

    Science.gov (United States)

    Ray, P. K.

    1986-01-01

    The experiment of Bauer, et al. (1982) is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time.

  16. Catheter Ablation of Focal Atrial Tachycardia Using Remote Magnetic Navigation

    DEFF Research Database (Denmark)

    Liu, Xiao-Yu; Jacobsen, Peter Karl; Pehrson, Steen

    2018-01-01

    , a total of 56 atrial foci were found. Acute success of the primary ablation was obtained in 52 patients (98%). Mean procedure duration was 109 ± 35 min, ablation duration was 401 sec (interquartile range [IQR], 332 sec), and fluoroscopy time was 5.0 min (IQR, 3.0 min). After a mean follow-up of 31 ± 18...

  17. Molybdenum oxide nanocolloids prepared by an external field-assisted laser ablation in water

    Directory of Open Access Journals (Sweden)

    Spadaro Salvatore

    2018-01-01

    Full Text Available he synthesis of extremely stable molybdenum oxide nanocolloids by pulsed laser ablation was studied. This green technique ensures the formation of contaminant-free nanostructures and the absence of by-products. A focused picosecond pulsed laser beam was used to ablate a solid molybdenum target immersed in deionized water. Molybdenum oxide nearly spherical nanoparticles with dimensions within few nanometers (20-100 nm are synthesized when the ablation processes were carried out, in water, at room temperature and 80°C. The application of an external electric field during the ablation process induces a nanostructures reorganization, as indicated by Scanning-Transmission Electron Microscopy images analysis. The ablation products were also characterized by some spectroscopic techniques: conventional UV-vis optical absorption, atomic absorption, dynamic light scattering, micro-Raman and X-ray photoelectron spectroscopies. Finally, NIH/3T3 mouse fibroblasts were used to evaluate cell viability by the sulforhodamine B assay

  18. Radiofrequency ablation of hepatocellular carcinoma: Mono or multipolar?

    Science.gov (United States)

    Cartier, Victoire; Boursier, Jérôme; Lebigot, Jérôme; Oberti, Frédéric; Fouchard-Hubert, Isabelle; Aubé, Christophe

    2016-03-01

    Thermo-ablation by radiofrequency is recognized as a curative treatment for early-stage hepatocellular carcinoma. However, local recurrence may occur because of incomplete peripheral tumor destruction. Multipolar radiofrequency has been developed to increase the size of the maximal ablation zone. We aimed to compare the efficacy of monopolar and multipolar radiofrequency for the treatment of hepatocellular carcinoma and determine factors predicting failure. A total of 171 consecutive patients with 214 hepatocellular carcinomas were retrospectively included. One hundred fifty-eight tumors were treated with an expandable monopolar electrode and 56 with a multipolar technique using several linear bipolar electrodes. Imaging studies at 6 weeks after treatment, then every 3 months, assessed local effectiveness. Radiofrequency failure was defined as persistent residual tumor after two sessions (primary radiofrequency failure) or local tumor recurrence during follow-up. This study received institutional review board approval (number 2014/77). Imaging showed complete tumor ablation in 207 of 214 lesions after the first session of radiofrequency. After a second session, only two cases of residual viable tumor were observed. During follow-up, there were 46 local tumor recurrences. Thus, radiofrequency failure occurred in 48/214 (22.4%) cases. By multivariate analysis, technique (P radiofrequency failure. Failure rate was lower with the multipolar technique for tumors radiofrequency, multipolar radiofrequency improves tumor ablation with a subsequent lower rate of local tumor recurrence. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  19. Catheter ablation as a treatment of atrioventricular block.

    Science.gov (United States)

    Tuohy, Stephen; Saliba, Walid; Pai, Manjunath; Tchou, Patrick

    2018-01-01

    Symptomatic second-degree atrioventricular (AV) block is typically treated by implantation of a pacemaker. An otherwise healthy AV conduction system can nevertheless develop AV block due to interference from junctional extrasystoles. When present with a high burden, these can produce debilitating symptoms from AV block despite an underlying normal AV node and His-Purkinje system properties. The purpose of this study was to describe a catheter ablation approach for alleviating symptomatic AV block due to a ventricular nodal pathway interfering with AV conduction. Common clinical monitoring techniques such as Holter and event recorders were used. Standard electrophysiological study techniques using multipolar recording and ablation catheters were utilized during procedures. A 55-year-old woman presented with highly symptomatic, high-burden second-degree AV block due to concealed and manifest junctional premature beats. Electrophysiological characteristics indicated interference of AV conduction due to a concealed ventricular nodal pathway as the cause of the AV block. The patient's AV nodal and His-Purkinje system conduction characteristics were otherwise normal. Radiofrequency catheter ablation of the pathway was successful in restoring normal AV conduction and eliminating her clinical symptoms. Pathways inserting into the AV junction can interfere with AV conduction. When present at a high burden, this type of AV block can be highly symptomatic. Catheter ablation techniques can be used to alleviate this type of AV block and restore normal AV conduction. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  20. Sonography-guided percutaneous microwave ablation of intrahepatic primary cholangiocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yu Mingan [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Liang Ping, E-mail: Liangping301@hotmail.com [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Yu Xiaoling; Cheng Zhigang; Han Zhiyu; Liu Fangyi; Yu Jie [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China)

    2011-11-15

    Objective: To evaluate the efficacy and safety of sonography-guided percutaneous microwave ablation of intrahepatic primary cholangiocarcinoma. Materials and methods: From May 2006 to March 2010, 15 patients (11 men, 4 women; mean age, 57.4 years) with 24 histologically proven intrahepatic primary cholangiocarcinoma lesions (mean tumor size, 3.2 {+-} 1.9 cm; range, 1.3-9.9 cm) were treated with microwave ablation. Results: Thirty-eight sessions were performed for 24 nodules in 15 patients. The follow-up period was 4-31 months (mean, 12.8 {+-} 8.0 months). The ablation success rate, the technique effectiveness rate, and the local tumor progression rate were 91.7% (22/24), 87.5% (21/24), and 25% (6/24) respectively according to the results of follow-up. The cumulative overall 6, 12, 24 month survival rates were 78.8%, 60.0%, and 60.0%, respectively. Major complication occurred including liver abscess in two patients (13.3%) and needle seeding in one patient (6.7%). Both complications were cured satisfied with antibiotic treatment combined to catheter drainage for abscess and resection for needle seeding. The minor complications and side effects were experienced by most patients which subsided with supportive treatment. Conclusion: Microwave ablation can be used as a safe and effective technique to treat intrahepatic primary cholangiocarcinoma.

  1. Radiofrequency ablation of small hepatocellular carcinoma : early experience of efficacy and safety

    International Nuclear Information System (INIS)

    Choi, Dongil; Lim, Hyo Keun; Kim, Seung Hoon; And Others

    2000-01-01

    To evaluate the efficacy and safety of radiofrequency (RF) ablation for the treatment of small hepatocellular carcinoma (HCC). Forty-four patients with 51 HCCs underwent ultrasound guided RF ablation using expandable needle electrodes and monopolar RF generator. The patients were not considered suitable candidates for surgery or declined this option, and had no history of previous treatment. Mean tumor diameter was 2.5 cm (range, 1.0-4.0 cm). Therapeutic efficacy was evaluated by means of three-phase helical computed tomography (CT) performed at least one month after the completion of ablation. The recurrence rate was also evaluated by follow-up CT at least four months after treatment. Using RF ablation, complete necrosis was achieved in 48 of 51 tumors (94%). Among 20 patients in whom follow-up CT was performed at least four months after ablation, one (5%) showed marginal recurrence and in another (5%) there was recurrence in remote liver parenchyma. We experienced neither procedure-related mortality nor major complications which required specific treatment. Three minor complications (one small pneumothorax and two cases of intraperitoneal bleeding) occurred, but these disappeared without specific treatment. RF ablation using an expandable needle electrode showed a high rate of complete necrosis and a low rate of complications. The technique is therefore considered effective and safe for the local control of small HCCs. (author)

  2. Transcervical, intrauterine ultrasound-guided radiofrequency ablation of uterine fibroids with the VizAblate® System: three- and six-month endpoint results from the FAST-EU study.

    Science.gov (United States)

    Bongers, Marlies; Brölmann, Hans; Gupta, Janesh; Garza-Leal, José Gerardo; Toub, David

    This was a prospective, longitudinal, multicenter, single-arm controlled trial, using independent core laboratory validation of MRI results, to establish the effectiveness and confirm the safety of the VizAblate® System in the treatment of symptomatic uterine fibroids. The VizAblate System is a transcervical device that ablates fibroids with radiofrequency energy, guided by a built-in intrauterine ultrasound probe. Fifty consecutive women with symptomatic uterine fibroids received treatment with the VizAblate System. Patients had a minimum Menstrual Pictogram score of 120, no desire for fertility, and met additional inclusion and exclusion criteria. The VizAblate System was inserted transcervically and individual fibroids were ablated with radiofrequency energy. An integrated intrauterine ultrasound probe was used for fibroid imaging and targeting. Anesthesia was at the discretion of each investigator. The primary study endpoint was the percentage change in perfused fibroid volume, as assessed by contrast-enhanced MRI at 3 months. Secondary endpoints, reached at 6 months, included safety, percentage reductions in the Menstrual Pictogram (MP) score and the Symptom Severity Score (SSS) subscale of the Uterine Fibroid Symptom-Quality of Life questionnaire (UFS-QOL), along with the rate of surgical reintervention for abnormal uterine bleeding and the mean number of days to return to normal activity. Additional assessments included the Health-Related Quality of Life (HRQOL) subscale of the UFS-QOL, medical reintervention for abnormal uterine bleeding, and procedure times. Fifty patients were treated, representing 92 fibroids. Perfused fibroid volumes were reduced at 3 months by an average of 68.8 ± 27.8 % ( P  abnormal uterine bleeding associated with fibroids, with appropriate safety and a low reintervention rate.

  3. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh–Taylor Instability

    International Nuclear Information System (INIS)

    Li-Feng, Wang; Wen-Hua, Ye; Ying-Jun, Li

    2010-01-01

    The linear growth rate of the anisotropic preheating ablative Rayleigh–Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T) = κ SH [1 + f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse [Phys. Rev. Lett. 98 (2007) 245001]. (physics of gases, plasmas, and electric discharges)

  4. Experimental study on ablating goat liver tissue with ultrasound imaging guided percutaneous irreversible electroporation

    Directory of Open Access Journals (Sweden)

    Ying LIU

    2011-03-01

    Full Text Available Objective To investigate the proper method of percutaneous irreversible electroporation(IRE to ablate goat liver tissue under ultrasonic guidance,and observe the features of ultrasound imaging and histological changes.Methods The pulse electric fields(PEFs with permanent duration(100 μs,frequency(1Hz,voltage(2000V and pulses(120 pieces were applied to the electrodes,and the electrodes were placed into goats’ liver under ultrasound guidance through the animal skin to the target area.The treated area was observed by real-time ultrasound scanning,and the histopathological changes were assessed by hematoxylin and eosin(HE staining under light microscope at the time of 0h and 24h after IRE ablation.The circumscribed ablated area was compared with that of finite element modeling(FEM calculation method.Results Ultrasound imaging guidance was accurate in focusing on the target area.Imaging captured by the ultrasound after IRE procedure was quite different from that of the normal liver imaging.Complete hepatic cell death with a sharp demarcation between the ablated zone and the non-ablated zone was well visualized 24 hours after the procedure.Necrospy-based measurement demonstrated a high consistence with FEM-anticipated ablation zones.Conclusion With real-time monitoring by ultrasonography and well-controlled ablation of the target tissue,percutaneous IRE can provide a novel and unique ablative method for cancer treatment.The present paper provides a fundamental experimental work for future studies on clinical application of IRE.

  5. Desorption/ablation of lithium fluoride induced by extreme ultraviolet laser radiation

    Directory of Open Access Journals (Sweden)

    Blejchař Tomáš

    2016-06-01

    Full Text Available The availability of reliable modeling tools and input data required for the prediction of surface removal rate from the lithium fluoride targets irradiated by the intense photon beams is essential for many practical aspects. This study is motivated by the practical implementation of soft X-ray (SXR or extreme ultraviolet (XUV lasers for the pulsed ablation and thin film deposition. Specifically, it is focused on quantitative description of XUV laser-induced desorption/ablation from lithium fluoride, which is a reference large band-gap dielectric material with ionic crystalline structure. Computational framework was proposed and employed here for the reconstruction of plume expansion dynamics induced by the irradiation of lithium fluoride targets. The morphology of experimentally observed desorption/ablation craters were reproduced using idealized representation (two-zone approximation of the laser fluence profile. The calculation of desorption/ablation rate was performed using one-dimensional thermomechanic model (XUV-ABLATOR code taking into account laser heating and surface evaporation of the lithium fluoride target occurring on a nanosecond timescale. This step was followed by the application of two-dimensional hydrodynamic solver for description of laser-produced plasma plume expansion dynamics. The calculated plume lengths determined by numerical simulations were compared with a simple adiabatic expansion (blast-wave model.

  6. Discrete prepotential as an indicator of successful ablation in patients with coronary cusp ventricular arrhythmia.

    Science.gov (United States)

    Hachiya, Hitoshi; Yamauchi, Yasuteru; Iesaka, Yoshito; Yagishita, Atsuhiko; Sasaki, Takeshi; Higuchi, Koji; Kawabata, Mihoko; Sugiyama, Koji; Tanaka, Yasuaki; Kusa, Shigeki; Nakamura, Hiroaki; Miyazaki, Shinsuke; Taniguchi, Hiroshi; Isobe, Mitsuaki; Hirao, Kenzo

    2013-10-01

    Although coronary cusp (CC) ventricular arrhythmia (VA) can be treated by catheter ablation, reliable indicators of successful ablation sites have not been fully identified. This study comprised 392 patients undergoing radiofrequency catheter ablation for outflow tract-VA at 3 institutions from January 2007 to August 2012. The successful ablation site was on the left CC or right CC in 35 (8.9%) of the 392 patients. In 9 (26%) of these 35 patients, a discrete prepotential was recognized, 5 of whom had left CC-VAs and 4 of whom had right CC-VAs. Radiofrequency catheter ablation was successful at the site of the prepotential in all 9 of these patients. The duration of the isoelectric line between the end of the discrete prepotential and the onset of the ventricular electrogram was 27±13 ms. The time from onset of the discrete prepotential at the successful ablation site on the CC to the QRS onset (activation time) was 69±20 ms (range, 50-98 ms). Pace mapping was graded as excellent at the successful ablation site in only 1 patient. No discrete prepotential was recorded in any successful right outflow tract-VA ablation case in this study. A discrete prepotential was seen in 9 (26%) of 35 patients with CC-VA. In left and right CC-VA, the site of a discrete prepotential with ≥50 ms activation time may indicate a successful ablation site.

  7. Moving-shot versus fixed electrode techniques for radiofrequency ablation: Comparison in an ex-vivo bovine liver tissue model

    International Nuclear Information System (INIS)

    Ha, Eun Ju; Baek, Jung Hwan; Lee, Jeong Hyun

    2014-01-01

    To compare the ablation characteristics of the moving-shot technique (MST) and the fixed electrode technique (FET) for radiofrequency (RF) ablation in an ex-vivo bovine liver tissue model. We performed RF ablation using FET in 110 bovine liver blocks using 11 different ablation times ranging from 5 seconds to 5 minutes (10 blocks per each time duration). Ten bovine liver blocks at each ablation time of 1- or 2-minute, were ablated with MST, which treated conceptual ablation units by moving the electrode tip. We evaluated the ablation volume obtained with FET across ablation time lengths. The results of FET and MST performed with the same ablation time lengths, i.e., 1- and 2-minute ablation time were also compared. The ablation volume achieved with FET gradually increased with increasing ablation time; however, the pair-wise statistical comparison between 2 neighboring ablation time lengths was not significant after 30 seconds. MST with either 1- or 2-minute ablation time achieved larger ablation volumes (1.1 +/- 0.2 mL vs. 2.7 +/- 0.3 mL, p < 0.001; and 1.4 +/- 0.2 mL vs. 5.6 +/- 0.4 mL, p < 0.001, respectively), longer true RF times (46.7 +/- 4.6 seconds vs. 60 seconds, p < 0.001; and 64.8 +/- 4.6 seconds vs. 120 seconds, p < 0.001, respectively), fewer numbers of RF cut-offs (1.6 +/- 0.5 vs. 0, p < 0.001; and 5.5 +/- 0.5 vs. 0, p < 0.001, respectively), and greater energy deposition (2050.16 +/- 209.2 J vs. 2677.76 +/- 83.68 J, p < 0.001; and 2970.64 +/- 376.56 J vs. 5564.72 +/- 5439.2 J, p < 0.001, respectively), than FET. The MST can achieve a larger ablation volume by preventing RF cut-off, compared with the FET in an ex-vivo bovine liver model.

  8. Characterization of laser ablation of copper in the irradiance regime of laser-induced breakdown spectroscopy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Picard, J., E-mail: jessica.picard@cea.fr [Commissariat à l' Energie Atomique, DAM, Valduc, F-21120 Is-sur-Tille (France); Sirven, J.-B.; Lacour, J.-L. [Commissariat à l' Energie Atomique, DEN/DANS/DPC/SEARS/LANIE, Saclay, F-91191 Gif-sur-Yvette (France); Musset, O. [Université de Bourgogne, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 5209, F-21000 Dijon (France); Cardona, D.; Hubinois, J.-C. [Commissariat à l' Energie Atomique, DAM, Valduc, F-21120 Is-sur-Tille (France); Mauchien, P. [Commissariat à l' Energie Atomique, DEN/DANS/DPC/SEARS/LANIE, Saclay, F-91191 Gif-sur-Yvette (France)

    2014-11-01

    The LIBS signal depends both on the ablated mass and on the plasma excitation temperature. These fundamental parameters depend in a complex manner on laser ablation and on laser–plasma coupling. As several works in the literature suggest that laser ablation processes play a predominant role compared to plasma heating phenomena in the LIBS signal variations, this paper focuses on the study of laser ablation. The objective was to determine an interaction regime enabling to maximally control the laser ablation. Nanosecond laser ablation of copper at 266 nm was characterized by scanning electron microscopy and optical profilometry analysis, in air at 1 bar and in the vacuum. The laser beam spatial profile at the sample surface was characterized in order to give realistic values of the irradiance. The effect of the number of accumulated laser shots on the crater volume was studied. Then, the ablation crater morphology, volume, depth and diameter were measured as a function of irradiance between 0.35 and 96 GW/cm². Results show that in the vacuum, a regular trend is observed over the whole irradiance range. In air at 1 bar, below a certain irradiance, laser ablation is very similar to the vacuum case, and the ablation efficiency of copper was estimated at 0.15 ± 0.03 atom/photon. Beyond this irradiance, the laser beam propagation is strongly disrupted by the expansion of the dense plasma, and plasma shielding appears. The fraction of laser energy used for laser ablation and for plasma heating is estimated in the different irradiance regimes. - Highlights: • The morphology of copper's craters was studied as a function of the pulse energy. • Correlation at low energy and two pressures between crater volume and pulse energy • The ablation efficiency of copper at 1 bar is equal to 0.15 atom/photon. • Ablation efficiency in the vacuum is not limited by laser–plasma interaction. • Physical mechanisms of laser ablation at both pressures are discussed.

  9. The internal structure and dynamics of the railgun plasma armature between infinitely wide ablating rails

    International Nuclear Information System (INIS)

    Frese, M.F.

    1991-01-01

    This paper reports on computer simulations of the plasma flow in two-dimensionally symmetric railgun plasma arcs that were performed. The direction of symmetry is normal to the insulator surface, so that the rails are effectively infinite in width. The rail surface ablates according to one of two ablation models, in which either all absorbed energy flux, or only the excess over that which the rail material can conduct away, ablates mass. A number of combinations of initial conditions, boundary conditions and resistivity models were explored. The full ablation model produces an arc of continuously growing mass and length, in which the current distribution reaches from the projectile half-way to the breech. The conduction limited ablation model produces a compact arc approximately eight times the bore height in length, which ceases to ablate material from the rails before the projectile reaches a velocity of 1 km/s. There is need for further study in several areas. These include the arc initiation process, the ablation of the insulators, and three-dimensional effects

  10. Effect of ablation geometry on the dynamics, composition, and geometrical shape of thin film plasma

    Science.gov (United States)

    Mondal, Alamgir; Singh, R. K.; Kumar, Ajai

    2018-01-01

    The characteristics of plasma plume produced by front and back ablation of thin films have been investigated using fast imaging and optical emission spectroscopy. Ablation geometry dependence of the plume dynamics, its geometrical aspect and composition is emphasized. Also, the effect of an ambient environment and the beam diameter of an ablating laser on the front and back ablations is briefly discussed. Analysis of time resolved images and plasma parameters indicates that the energetic and spherical plasma formed by front ablation is strikingly different in comparison to the slow and nearly cylindrical plasma plume observed in the case of back ablation. Further shock formation, plume confinement, thermalization and validity of different expansion models in these two ablation geometries are also presented. The present study demonstrates the manipulation of kinetic energy, shape, ion/neutral compositions and directionality of the expanding plume by adjusting the experimental configuration, which is highly relevant to its utilization in various applications e.g., generation of energetic particles, tokamak edge plasma diagnostics, thin film deposition, etc.

  11. Ablation and formation by plasma of silver metallic films on poly aniline

    International Nuclear Information System (INIS)

    Palacios, J.C.; Olayo, G.; Morales, J.; Cruz, G.J.

    1999-01-01

    This work shows a study about the ablation by plasma conditions in which is possible to form silver layers over polymeric surfaces with the purpose to increase the electric conductivity of the surface. The adhesion between layers formed by polymerization and ablation by plasma respectively is high, with this it is possible to find adequate conditions for getting the polymerization and ablation simultaneously forming with this a thin polymer matrix which would have metallic elements dispersed in its structure. (Author)

  12. Ion extraction from positively biased laser-ablation plasma

    International Nuclear Information System (INIS)

    Isono, Fumika; Nakajima, Mitsuo; Hasegawa, Jun; Horioka, Kazuhiko

    2016-01-01

    Ions were extracted through a grounded grid from a positively biased laser-ablation plasma and the behaviors were investigated. Since the plasma was positively biased against the grounded wall, we could extract the ions without insulated gap. We confirmed formation of a virtual anode when we increased the distance between the grid and the ion collector. Results also indicated that when the ion flux from the ablation plasma exceeded a critical value, the current was strongly suppressed to the space charge limited level due to the formation of virtual anode.

  13. 915 MHz microwave ablation with high output power in in vivo porcine spleens

    International Nuclear Information System (INIS)

    Gao Yongyan; Wang Yang; Duan Yaqi; Li Chunling; Sun Yuanyuan; Zhang Dakun; Lu Tong; Liang Ping

    2010-01-01

    Objective: The purpose of this study was to evaluate the efficacy of 915 MHz microwave (MW) ablation with high output power in in vivo porcine spleens. Materials and methods: MW ablations were performed in 9 porcine spleens with an internally cooled 915 MHz antenna. Thermocouples were placed at 5, 10, 15, 20 mm away from the antenna to measure temperatures in real-time during MW emission. The energy was applied for 10 min at high output power of 60 W, 70 W or 80 W. Gross specimens were sectioned and measured to determine ablation size. Representative areas were examined by light microscopy and electron microscopy. Coagulation sizes and temperatures were compared among the three power groups. Results: Hematoxylin-eosin staining showed irreversible necrosis in the splenic coagulation area after MW ablation. As the power was increased, long-axis diameter enlarged significantly (p .05). The coagulation size of long-axis and short-axis diameter with 80 W in vivo spleen ablation was 6.43 ± 0.52 and 4.95 ± 0.30 cm, respectively. With the increase of output power, maximum temperatures at 5, 10, 15, 20 mm from the antenna were increased accordingly (p o C respectively. Conclusion: With internally cooled antenna and high output power, 915 MHz MW ablation in the spleen could produce irreversible tissue necrosis of clinical significance. MW ablation may be used as a promising minimally invasive method for the treatment of splenic diseases.

  14. A study of photothermal laser ablation of various polymers on microsecond time scales.

    Science.gov (United States)

    Kappes, Ralf S; Schönfeld, Friedhelm; Li, Chen; Golriz, Ali A; Nagel, Matthias; Lippert, Thomas; Butt, Hans-Jürgen; Gutmann, Jochen S

    2014-01-01

    To analyze the photothermal ablation of polymers, we designed a temperature measurement setup based on spectral pyrometry. The setup allows to acquire 2D temperature distributions with 1 μm size and 1 μs time resolution and therefore the determination of the center temperature of a laser heating process. Finite element simulations were used to verify and understand the heat conversion and heat flow in the process. With this setup, the photothermal ablation of polystyrene, poly(α-methylstyrene), a polyimide and a triazene polymer was investigated. The thermal stability, the glass transition temperature Tg and the viscosity above Tg were governing the ablation process. Thermal decomposition for the applied laser pulse of about 10 μs started at temperatures similar to the start of decomposition in thermogravimetry. Furthermore, for polystyrene and poly(α-methylstyrene), both with a Tg in the range between room and decomposition temperature, ablation already occurred at temperatures well below the decomposition temperature, only at 30-40 K above Tg. The mechanism was photomechanical, i.e. a stress due to the thermal expansion of the polymer was responsible for ablation. Low molecular weight polymers showed differences in photomechanical ablation, corresponding to their lower Tg and lower viscosity above the glass transition. However, the difference in ablated volume was only significant at higher temperatures in the temperature regime for thermal decomposition at quasi-equilibrium time scales.

  15. Morphologic changes in the vein after different numbers of radiofrequency ablation cycles.

    Science.gov (United States)

    Shaidakov, Evgeny V; Grigoryan, Arsen G; Korzhevskii, Dmitriy E; Ilyukhin, Evgeny A; Rosukhovski, Dmitriy A; Bulatov, Vasiliy L; Tsarev, Oleg I

    2015-10-01

    It has not yet been clarified whether it is possible to decrease the percentage of recurrences after radiofrequency (RF) ablation by way of increasing the number of RF ablation cycles. The aim of this study was to assess the morphologic changes in excised vein fragments after different durations of RF ablation exposure. In the first part of the study, we performed a morphologic analysis of eight cases of great saphenous vein (GSV) recanalization 6 months after RF ablation. The second part was performed on a suprafascial segment of the GSV with a length of >22 cm and a minimum diameter of 5 mm in 10 patients, who had given their consent to intraoperative excision of suprafascial GSV segments after RF ablation treatment through four 1-cm-long diametrical cuts. Prior ultrasound analysis had shown an average 6.9-mm diameter of the suprafascial segments. The segment was divided into three 7-cm-long subsegments and one control segment. The first, second, and third segments were treated with three, two, and one RF ablation cycles (ClosureFast; Covidien, Mansfield, Mass), respectively; the control segment was not exposed to RF ablation at all. Morphologic study of 160 sections of the vein (five sections of each segment and 10 control specimens) was carried out. The specimens were dyed with hematoxylin and orcein. The ensuing analysis was performed by an experienced expert with the blind study method (the specimens were numbered without any hint as to the quantity of RF ablation cycles performed on them). The intergroup comparison of the depth of venous wall damage was based on comparison of the coefficient of alteration, which is calculated as the relation of damage depth to thickness of the vein. After one RF ablation cycle, the depth of blurring of the structural elements only on some portions reached the middle of the muscle layer of the wall (coefficient of alteration, α = 26%). After two cycles, blurring of the structural elements on some portions extended to the

  16. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    International Nuclear Information System (INIS)

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-01-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  17. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon [Manufacturing Processes Department, Fundacion TEKNIKER, Av. Otaola 20, 20600, Eibar, Guipuzcoa (Spain); Lejardi, Ainhoa; Sarasua, Jose-Ramon [Department of Mining and Metallurgy Engineering and Materials Science, School of Engineering, University of the Basque Country (EHU-UPV), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  18. Relationship between LIBS Ablation and Pit Volume for Geologic Samples: Applications for in situ Absolute Geochronology

    Science.gov (United States)

    Devismes, D.; Cohen, Barbara A.

    2014-01-01

    In planetary sciences, in situ absolute geochronology is a scientific and engineering challenge. Currently, the age of the Martian surface can only be determined by crater density counting. However this method has significant uncertainties and needs to be calibrated with absolute ages. We are developing an instrument to acquire in situ absolute geochronology based on the K-Ar method. The protocol is based on the laser ablation of a rock by hundreds of laser pulses. Laser Induced Breakdown Spectroscopy (LIBS) gives the potassium content of the ablated material and a mass spectrometer (quadrupole or ion trap) measures the quantity of 40Ar released. In order to accurately measure the quantity of released 40Ar in cases where Ar is an atmospheric constituent (e.g., Mars), the sample is first put into a chamber under high vacuum. The 40Arquantity, the concentration of K and the estimation of the ablated mass are the parameters needed to give the age of the rocks. The main uncertainties with this method are directly linked to the measures of the mass (typically some µg) and of the concentration of K by LIBS (up to 10%). Because the ablated mass is small compared to the mass of the sample, and because material is redeposited onto the sample after ablation, it is not possible to directly measure the ablated mass. Our current protocol measures the ablated volume and estimates the sample density to calculate ablated mass. The precision and accuracy of this method may be improved by using knowledge of the sample's geologic properties to predict its response to laser ablation, i.e., understanding whether natural samples have a predictable relationship between laser energy deposited and resultant ablation volume. In contrast to most previous studies of laser ablation, theoretical equations are not highly applicable. The reasons are numerous, but the most important are: a) geologic rocks are complex, polymineralic materials; b) the conditions of ablation are unusual (for example

  19. The ablated volume and the thermal field distribution in swine vertebral body created by multi-polar radiofrequency ablation: an experiment in vitro

    International Nuclear Information System (INIS)

    Peng Zhaohong; Zhao Wei; Shen Jin; Hu Jihong; Li Zhaopeng; Wang Tao

    2009-01-01

    Objective: To observe the extent of bone coagulation and the thermal field distribution created in ablating the swine vertebral bodies in vitro with multi-polar radiofrequency and to discuss the correlation between the electrode position in the vertebral body and the safety of the spinal cord as well as the soft tissue injury around the vertebral body. Methods: Thirty fresh adult porcine vertebrae were randomly and equally divided into two groups. The depth of the electrode needle was 10 mm or 20 mm.When the ablation process reached to a stable state, the temperature at the scheduled spots was estimated. Twenty minutes after ablation, the vertebral body was cut along the electrode needle plane and also along the plane perpendicular to the electrode needle to observe the extent of bone coagulation. Results: The temperature at the scheduled spots reached to a stable state in 3.5 minutes. The more close to the electrode the spot was, the more quickly the temperature rose. No soft tissue injury around the vertebral body was observed in both groups and no spinal cord injury occurred when the electrode needle was 10 mm or 20 mm deep in the vertebral body. Conclusion: In treating vertebral metastases, the radiofrequency ablation is safe and reliable if the posterior wall of the vertebral body remains intact. (authors)

  20. Mapping and ablating stable sources for atrial fibrillation: summary of the literature on Focal Impulse and Rotor Modulation (FIRM).

    Science.gov (United States)

    Baykaner, Tina; Lalani, Gautam G; Schricker, Amir; Krummen, David E; Narayan, Sanjiv M

    2014-09-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia and the most common indication for catheter ablation. However, despite substantial technical advances in mapping and energy delivery, ablation outcomes remain suboptimal. A major limitation to AF ablation is that the areas targeted for ablation are rarely of proven mechanistic importance, in sharp contrast to other arrhythmias in which ablation targets demonstrated mechanisms in each patient. Focal impulse and rotor modulation (FIRM) is a new approach to demonstrate the mechanisms that sustain AF ("substrates") in each patient that can be used to guide ablation then confirm elimination of each mechanism. FIRM mapping reveals that AF is sustained by 2-3 rotors and focal sources, with a greater number in patients with persistent than paroxysmal AF, lying within spatially reproducible 2.2 ± 1.4-cm(2) areas in diverse locations. This temporospatial reproducibility, now confirmed by several groups using various methods, changes the concepts regarding AF-sustaining mechanisms, enabling localized rather than widespread ablation. Mechanistically, the role of rotors and focal sources in sustaining AF has been demonstrated by the acute and chronic success of source (FIRM) ablation alone. Clinically, adding FIRM to conventional ablation substantially improves arrhythmia freedom compared with conventional ablation alone, and ongoing randomized trials are comparing FIRM-ablation with and without conventional ablation to conventional ablation alone. In conclusion, ablation of patient-specific AF-sustaining mechanisms (substrates), as exemplified by FIRM, may be central to substantially improving AF ablation outcomes.

  1. Histopathology of breast cancer after magnetic resonance-guided high-intensity focused ultrasound and radiofrequency ablation

    NARCIS (Netherlands)

    Knuttel, Floor; Waaijer, Laurien; Merckel, LG; van den Bosch, Maurice A A J; Witkamp, Arjen J.; Deckers, Roel; van Diest, Paul J.

    AIMS: Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation and radiofrequency ablation (RFA) are being researched as possible substitutes for surgery in breast cancer patients. The histopathological appearance of ablated tissue has not been studied in great detail. This

  2. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  3. Radiofrequency ablation of atrial tachyarrhythmias in adults with tetralogy of Fallot - predictors of success and outcome.

    Science.gov (United States)

    Ezzat, Vivienne A; Ryan, Matthew J; O'Leary, Justin; Ariti, Cono; Deanfield, John; Pandya, Bejal; Cullen, Shay; Walker, Fiona; Khan, Fakhar; Abrams, Dominic J; Lambiase, Pier D; Lowe, Martin D

    2017-03-01

    Adults with tetralogy of Fallot experience atrial tachyarrhythmias; however, there are a few data on the outcomes of radiofrequency ablation. We examined the characteristics, outcome, and predictors of recurrence of atrial tachyarrhythmias after radiofrequency ablation in tetralogy of Fallot patients. Methods/results Retrospective data were collected from 2004 to 2013. In total, 56 ablations were performed on 37 patients. We identified two matched controls per case: patients with tetralogy of Fallot but no radiofrequency ablation and not known to have atrial tachyarrhythmias. Acute success was 98%. Left atrial arrhythmias increased in frequency over time. The mean follow-up was 41 months; 78% were arrhythmia-free. Number of cardiac surgeries, age, and presence of atrial fibrillation were predictors of recurrence. Lone cavo-tricuspid isthmus-dependent flutter reduced the likelihood of atrial fibrillation. Right and left atria in patients with tetralogy of Fallot were larger in ablated cases than controls. NYHA class was worse in cases and improved after ablation; baseline status predicted death. Of matched non-ablated controls, a number of them had atrial fibrillation. These patients were excluded from the case-control study but analysed separately. Most of them had died during follow-up, whereas of the matched ablated cases all were alive and the majority in sinus rhythm. Patients with tetralogy of Fallot and atrial tachyarrhythmias have more dilated atria than those without atrial tachyarrhythmias. Radiofrequency ablation improves functional status. Left atrial ablation is more commonly required with repeat procedures. There is a high prevalence of atrial tachyarrhythmias, particularly atrial fibrillation, in patients with tetralogy of Fallot; early radiofrequency ablation may have a protective effect against this.

  4. Clinical impact of rotor ablation in atrial fibrillation: a systematic review.

    Science.gov (United States)

    Parameswaran, Ramanathan; Voskoboinik, Aleksandr; Gorelik, Alexandra; Lee, Geoffrey; Kistler, Peter M; Sanders, Prashanthan; Kalman, Jonathan M

    2018-01-11

    Rotor mapping and ablation have gained favour over the recent years as an emerging ablation strategy targeting drivers of atrial fibrillation (AF). Their efficacy, however, has been a topic of great debate with variable outcomes across centres. The aim of this study was to systematically review the recent medical literature to determine the medium-term outcomes of rotor ablation in patients with paroxysmal atrial fibrillation (PAF) and persistent atrial fibrillation (PeAF). A systematic search of the contemporary scientific literature (PubMed and EMBASE) was performed in August 2017. Only studies assessing arrhythmia-free survival from rotor ablation of AF were included. We used the random-effects model to assess the primary outcome of pooled medium-term single-procedure AF-free survival for both PAF and PeAF. Success rates from multiple procedures and complication rates were also examined. We included 11 observational studies (4 PAF and 10 PeAF) with a total of 556 patients (166 PAF and 390 PeAF). Pooled single-procedure freedom from AF was 37.8% [95% confidence interval 5.6-86.3%] at a mean follow-up period of 13.8 ± 1.8 months for PAF and 59.2% (95% CI 41.4-74.9%) at a mean follow-up period of 12.9 ± 6 months for PeAF. There was a marked heterogeneity between studies (I2 = 93.8% for PAF and 88.3% for PeAF). The mean complication rate of rotor ablation among the reported studies was 3.4%. The wide variability in success rate between different centres performing rotor ablations suggests that the optimal ablation strategy, particularly targeting rotors, is unclear. Results from randomized studies are necessary before this technique can be considered as an established clinical tool. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2018. For permissions, please email: journals.permissions@oup.com.

  5. Chemical nonequilibrium Navier-Stokes solutions for hypersonic flow over an ablating graphite nosetip

    Science.gov (United States)

    Chen, Y. K.; Henline, W. D.

    1993-01-01

    The general boundary conditions including mass and energy balances of chemically equilibrated or nonequilibrated gas adjacent to ablating surfaces have been derived. A computer procedure based on these conditions was developed and interfaced with the Navier-Stokes solver for predictions of the flow field, surface temperature, and surface ablation rates over re-entry space vehicles with ablating Thermal Protection Systems (TPS). The Navier-Stokes solver with general surface thermochemistry boundary conditions can predict more realistic solutions and provide useful information for the design of TPS. A test case with a proposed hypersonic test vehicle configuration and associated free stream conditions was developed. Solutions with various surface boundary conditions were obtained, and the effect of nonequilibrium gas as well as surface chemistry on surface heating and ablation rate were examined. The solutions of the GASP code with complete ablating surface conditions were compared with those of the ASC code. The direction of future work is also discussed.

  6. Therapy of Pancreatic Neuroendocrine Tumors: Fine Needle Intervention including Ethanol and Radiofrequency Ablation

    Directory of Open Access Journals (Sweden)

    Sundeep Lakhtakia

    2017-11-01

    Full Text Available Pancreatic neuroendocrine tumors (PNETs are increasingly being detected, though usually as incidental findings. Majority of the PNETs are non-functional and surgical resection is the standard of care for most of them. However, in patients with small PNETs localized within the pancreas, who are unfit or unwilling for surgery, alternate methods of treatment are needed. Direct methods of ablation of PNETs, using either ethanol injection or radiofrequency ablation (RFA, are emerging as effective methods. The limited literature available as case reports or case series on endoscopic ultrasound (EUS-guided local ablation using either ethanol or RFA has demonstrated safety and efficacy along with short- to medium-term sustained relief. Long-term benefits with these local ablative therapies are awaited. Comparative studies are needed to show which of these two competing technologies is superior. Finally, comparative trials of EUS-guided ablation with surgical resection in terms of efficacy and safety will ensure their place in the management algorithm.

  7. Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol

    Science.gov (United States)

    Kudryashov, S. I.; Saraeva, I. N.; Lednev, V. N.; Pershin, S. M.; Rudenko, A. A.; Ionin, A. A.

    2018-05-01

    Single-shot IR femtosecond-laser ablation of gold surfaces in ambient air and liquid isopropyl alcohol was studied by scanning electron microscopy characterization of crater topographies and time-resolved optical emission spectroscopy of ablative plumes in regimes, typical for non-filamentary and non-fragmentation laser production of nanoparticle sols. Despite one order of magnitude shorter (few nanoseconds) lifetimes and almost two orders of magnitude lower intensities of the quenched ablative plume emission in the alcohol ambient at the same peak laser fluence, craters for the dry and wet conditions appeared with rather similar nanofoam-like spallative topographies and the same thresholds. These facts envision the underlying surface spallation as one of the basic ablation mechanisms relevant for both dry and wet advanced femtosecond laser surface nano/micro-machining and texturing, as well as for high-throughput femtosecond laser ablative production of colloidal nanoparticles by MHz laser-pulse trains via their direct nanoscale jetting from the nanofoam in air and fluid environments.

  8. Effect of Twisted Fiber Anisotropy in Cardiac Tissue on Ablation with Pulsed Electric Fields.

    Directory of Open Access Journals (Sweden)

    Fei Xie

    Full Text Available Ablation of cardiac tissue with pulsed electric fields is a promising alternative to current thermal ablation methods, and it critically depends on the electric field distribution in the heart.We developed a model that incorporates the twisted anisotropy of cardiac tissue and computed the electric field distribution in the tissue. We also performed experiments in rabbit ventricles to validate our model. We find that the model agrees well with the experimentally determined ablation volume if we assume that all tissue that is exposed to a field greater than 3 kV/cm is ablated. In our numerical analysis, we considered how tissue thickness, degree of anisotropy, and electrode configuration affect the geometry of the ablated volume. We considered two electrode configurations: two parallel needles inserted into the myocardium ("penetrating needles" configuration and one circular electrode each on epi- and endocardium, opposing each other ("epi-endo" configuration.For thick tissues (10 mm and moderate anisotropy ratio (a = 2, we find that the geometry of the ablated volume is almost unaffected by twisted anisotropy, i.e. it is approximately translationally symmetric from epi- to endocardium, for both electrode configurations. Higher anisotropy ratio (a = 10 leads to substantial variation in ablation width across the wall; these variations were more pronounced for the penetrating needle configuration than for the epi-endo configuration. For thinner tissues (4 mm, typical for human atria and higher anisotropy ratio (a = 10, the epi-endo configuration yielded approximately translationally symmetric ablation volumes, while the penetrating electrodes configuration was much more sensitive to fiber twist.These results suggest that the epi-endo configuration will be reliable for ablation of atrial fibrillation, independently of fiber orientation, while the penetrating electrode configuration may experience problems when the fiber orientation is not consistent

  9. Real-time monitoring of indium tin oxide laser ablation in liquid crystal display patterning

    International Nuclear Information System (INIS)

    Hong, M.H.; Lu, Y.F.; Meng, M.; Low, T.S.

    1998-01-01

    Audible acoustic wave detection is applied to investigate KrF excimer laser ablation of Indium Tin Oxide (ITO) thin film layer for Liquid Crystal Display (LCD) patterning. It is found that there is no acoustic wave generation if laser fluence is lower than ITO ablation threshold. For laser fluence higher than the threshold, audible acoustic wave will be detected due to shock wave generation during ITO laser ablation. The amplitude of the acoustic wave is closely related to the laser ablation rate. With more laser pulse applied, the amplitude is dropped to zero because the ITO layer is completely removed. However, if laser fluence is increased higher than ablation threshold for glass substrate, the amplitude is also dropped with pulse number but not to zero. It is due to laser ablation of ITO layer and glass substrate at the same time. Since the thickness of ITO layer is in a scale of 100 nm, laser interaction with glass substrate will happen even at the first pulse of higher laser fluence irradiation. Laser ablation induced ITO plasma emission spectrum in visible light region is analyzed by an Optical Multi-channel Analyzer (OMA). Specific spectral lines are In I (325.8, 410.2 and 451.1 nm) and In II 591.1 nm. Spectral intensities of 410.2 and 451.1 nm lines are selected to characterize the evolution of ITO plasma intensity with laser fluence and pulse number. It is found that the spectral intensities are reduced to zero with laser pulse number. It is also found that spectral lines other than ITO plasma will appear for laser fluence higher than ablation threshold for glass substrate. Threshold fluences for glass and ITO ablation are estimated for setting up a parameter window to control LCD patterning in real-time

  10. Effect of Twisted Fiber Anisotropy in Cardiac Tissue on Ablation with Pulsed Electric Fields.

    Science.gov (United States)

    Xie, Fei; Zemlin, Christian W

    2016-01-01

    Ablation of cardiac tissue with pulsed electric fields is a promising alternative to current thermal ablation methods, and it critically depends on the electric field distribution in the heart. We developed a model that incorporates the twisted anisotropy of cardiac tissue and computed the electric field distribution in the tissue. We also performed experiments in rabbit ventricles to validate our model. We find that the model agrees well with the experimentally determined ablation volume if we assume that all tissue that is exposed to a field greater than 3 kV/cm is ablated. In our numerical analysis, we considered how tissue thickness, degree of anisotropy, and electrode configuration affect the geometry of the ablated volume. We considered two electrode configurations: two parallel needles inserted into the myocardium ("penetrating needles" configuration) and one circular electrode each on epi- and endocardium, opposing each other ("epi-endo" configuration). For thick tissues (10 mm) and moderate anisotropy ratio (a = 2), we find that the geometry of the ablated volume is almost unaffected by twisted anisotropy, i.e. it is approximately translationally symmetric from epi- to endocardium, for both electrode configurations. Higher anisotropy ratio (a = 10) leads to substantial variation in ablation width across the wall; these variations were more pronounced for the penetrating needle configuration than for the epi-endo configuration. For thinner tissues (4 mm, typical for human atria) and higher anisotropy ratio (a = 10), the epi-endo configuration yielded approximately translationally symmetric ablation volumes, while the penetrating electrodes configuration was much more sensitive to fiber twist. These results suggest that the epi-endo configuration will be reliable for ablation of atrial fibrillation, independently of fiber orientation, while the penetrating electrode configuration may experience problems when the fiber orientation is not consistent across the

  11. Use of Radiofrequency Ablation in Benign Thyroid Nodules: A Literature Review and Updates

    OpenAIRE

    Wong, KP; Lang, HHB

    2013-01-01

    Successful thermal ablation using radiofrequency has been reported in various tumors including liver or kidney tumors. Nonsurgical minimally invasive ablative therapy such as radiofrequency ablation (RFA) has been reported to be a safe and efficient treatment option in managing symptomatic cold thyroid nodules or hyperfunctioning thyroid nodules. Pressure and cosmetic symptoms have been shown to be significantly improved both in the short and long terms after RFA. For hyperfunctioning thyroid...

  12. Longitudinal outcomes of radiofrequency ablation versus surveillance endoscopy for Barrett's esophagus with low-grade dysplasia.

    Science.gov (United States)

    Kahn, A; Al-Qaisi, M; Kommineni, V T; Callaway, J K; Boroff, E S; Burdick, G E; Lam-Himlin, D M; Temkit, M; Vela, M F; Ramirez, F C

    2018-04-01

    Radiofrequency ablation of Barrett's esophagus with low-grade dysplasia is recommended in recent American College of Gastroenterology guidelines, with endoscopic surveillance considered a reasonable alternative. Few studies have directly compared outcomes of radiofrequency ablation to surveillance and those that have are limited by short duration of follow-up. This study aims to compare the long-term effectiveness of radiofrequency ablation versus endoscopic surveillance in a large, longitudinal cohort of patients with Barrett's esophagus, and low-grade dysplasia.We conducted a retrospective analysis of patients with confirmed low-grade dysplasia at a single academic medical center from 1991 to 2014. Patients progressing to high-grade dysplasia or esophageal adenocarcinoma within one year of index LGD endoscopy were defined as missed dysplasia and excluded. Risk factors for progression were assessed via Cox proportional hazards model. Comparison of progression risk was conducted using a Kaplan-Meier analysis. Subset analyses were conducted to examine the effect of reintroducing early progressors and excluding patients diagnosed prior to the advent of ablative therapy. Of 173 total patients, 79 (45.7%) underwent radiofrequency ablation while 94 (54.3%) were untreated, with median follow up of 90 months. Seven (8.9%) patients progressed to high-grade dysplasia or adenocarcinoma despite ablation, compared with 14 (14.9%) undergoing surveillance (P = 0.44). This effect was preserved when patients diagnosed prior to the introduction of radiofrequency ablation were excluded (8.9% vs 13%, P = 0.68). Reintroduction of patients progressing within the first year of follow-up resulted in a trend toward significance for ablation versus surveillance (11.1% vs 23.8%, P = 0.053).In conclusion, progression to high-grade dysplasia or adenocarcinoma was not significantly reduced in the radiofrequency ablation cohort when compared to surveillance. Despite recent studies

  13. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets.

    Science.gov (United States)

    Chang, Nan; Lu, Shukuan; Qin, Dui; Xu, Tianqi; Han, Meng; Wang, Supin; Wan, Mingxi

    2018-07-01

    A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration. Copyright © 2018. Published by Elsevier B.V.

  14. Initial Results of Image-Guided Percutaneous Ablation as Second-Line Treatment for Symptomatic Vascular Anomalies

    International Nuclear Information System (INIS)

    Thompson, Scott M.; Callstrom, Matthew R.; McKusick, Michael A.; Woodrum, David A.

    2015-01-01

    PurposeThe purpose of this study was to determine the feasibility, safety, and early effectiveness of percutaneous image-guided ablation as second-line treatment for symptomatic soft-tissue vascular anomalies (VA).Materials and MethodsAn IRB-approved retrospective review was undertaken of all patients who underwent percutaneous image-guided ablation as second-line therapy for treatment of symptomatic soft-tissue VA during the period from 1/1/2008 to 5/20/2014. US/CT- or MRI-guided and monitored cryoablation or MRI-guided and monitored laser ablation was performed. Clinical follow-up began at one-month post-ablation.ResultsEight patients with nine torso or lower extremity VA were treated with US/CT (N = 4) or MRI-guided (N = 2) cryoablation or MRI-guided laser ablation (N = 5) for moderate to severe pain (N = 7) or diffuse bleeding secondary to hemangioma–thrombocytopenia syndrome (N = 1). The median maximal diameter was 9.0 cm (6.5–11.1 cm) and 2.5 cm (2.3–5.3 cm) for VA undergoing cryoablation and laser ablation, respectively. Seven VA were ablated in one session, one VA initially treated with MRI-guided cryoablation for severe pain was re-treated with MRI-guided laser ablation due to persistent moderate pain, and one VA was treated in a planned two-stage session due to large VA size. At an average follow-up of 19.8 months (range 2–62 months), 7 of 7 patients with painful VA reported symptomatic pain relief. There was no recurrence of bleeding at five-year post-ablation in the patient with hemangioma–thrombocytopenia syndrome. There were two minor complications and no major complications.ConclusionImage-guided percutaneous ablation is a feasible, safe, and effective second-line treatment option for symptomatic VA

  15. Initial Results of Image-Guided Percutaneous Ablation as Second-Line Treatment for Symptomatic Vascular Anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Scott M., E-mail: Thompson.scott@mayo.edu [Mayo Clinic, Mayo Graduate School, Mayo Medical School and the Mayo Clinic Medical Scientist Training Program, College of Medicine (United States); Callstrom, Matthew R., E-mail: callstrom.matthew@mayo.edu; McKusick, Michael A., E-mail: mckusick.michael@mayo.edu; Woodrum, David A., E-mail: woodrum.david@mayo.edu [Mayo Clinic, Department of Radiology, College of Medicine (United States)

    2015-10-15

    PurposeThe purpose of this study was to determine the feasibility, safety, and early effectiveness of percutaneous image-guided ablation as second-line treatment for symptomatic soft-tissue vascular anomalies (VA).Materials and MethodsAn IRB-approved retrospective review was undertaken of all patients who underwent percutaneous image-guided ablation as second-line therapy for treatment of symptomatic soft-tissue VA during the period from 1/1/2008 to 5/20/2014. US/CT- or MRI-guided and monitored cryoablation or MRI-guided and monitored laser ablation was performed. Clinical follow-up began at one-month post-ablation.ResultsEight patients with nine torso or lower extremity VA were treated with US/CT (N = 4) or MRI-guided (N = 2) cryoablation or MRI-guided laser ablation (N = 5) for moderate to severe pain (N = 7) or diffuse bleeding secondary to hemangioma–thrombocytopenia syndrome (N = 1). The median maximal diameter was 9.0 cm (6.5–11.1 cm) and 2.5 cm (2.3–5.3 cm) for VA undergoing cryoablation and laser ablation, respectively. Seven VA were ablated in one session, one VA initially treated with MRI-guided cryoablation for severe pain was re-treated with MRI-guided laser ablation due to persistent moderate pain, and one VA was treated in a planned two-stage session due to large VA size. At an average follow-up of 19.8 months (range 2–62 months), 7 of 7 patients with painful VA reported symptomatic pain relief. There was no recurrence of bleeding at five-year post-ablation in the patient with hemangioma–thrombocytopenia syndrome. There were two minor complications and no major complications.ConclusionImage-guided percutaneous ablation is a feasible, safe, and effective second-line treatment option for symptomatic VA.

  16. A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics

    International Nuclear Information System (INIS)

    Jiang Lan; Tsai, H.-L.

    2008-01-01

    It remains a big challenge to theoretically predict the material removal mechanism in femtosecond laser ablation. To bypass this unresolved problem, many calculations of femtosecond laser ablation of nonmetals have been based on the free electron density distribution without the actual consideration of the phase change mechanism. However, this widely used key assumption needs further theoretical and experimental confirmation. By combining the plasma model and improved two-temperature model developed by the authors, this study focuses on investigating ablation threshold fluence, depth, and shape during femtosecond laser ablation of dielectrics through nonthermal processes (the Coulomb explosion and electrostatic ablation). The predicted ablation depths and shapes in fused silica, by using (1) the plasma model only and (2) the plasma model plus the two-temperature equation, are both in agreement with published experimental data. The widely used assumptions for threshold fluence, ablation depth, and shape in the plasma model based on free electron density are validated by the comparison study and experimental data

  17. Percutaneous Radiofrequency Ablation with Multiple Electrodes for Medium-Sized Hepatocellular Carcinomas

    Science.gov (United States)

    Lee, Jung; Yoon, Jung-Hwan; Lee, Jae Young; Kim, Se Hyung; Lee, Jeong Eun; Han, Joon Koo; Choi, Byung Ihn

    2012-01-01

    Objective To prospectively evaluate the safety and short-term therapeutic efficacy of switching monopolar radiofrequency ablation (RFA) with multiple electrodes to treat medium-sized (3.1-5.0 cm), hepatocellular carcinomas (HCC). Materials and Methods In this prospective study, 30 patients with single medium-sized HCCs (mean, 3.5 cm; range, 3.1-4.4 cm) were enrolled. The patients were treated under ultrasonographic guidance by percutaneous switching monopolar RFA with a multichannel RF generator and two or three internally cooled electrodes. Contrast-enhanced CT scans were obtained immediately after RFA, and the diameters and volume of the ablation zones were then measured. Follow-up CT scans were performed at the first month after ablation and every three months thereafter. Technical effectiveness, local progression and remote recurrence of HCCs were determined. Results There were no major immediate or periprocedural complications. However, there was one bile duct stricture during the follow-up period. Technical effectiveness was achieved in 29 of 30 patients (97%). The total ablation time of the procedures was 25.4 ± 8.9 minutes. The mean ablation volume was 73.8 ± 56.4 cm3 and the minimum diameter was 4.1 ± 7.3 cm. During the follow-up period (mean, 12.5 months), local tumor progression occurred in three of 29 patients (10%) with technical effectiveness, while new HCCs were detected in six of 29 patients (21%). Conclusion Switching monopolar RFA with multiple electrodes in order to achieve a sufficient ablation volume is safe and efficient. This method also showed relatively successful therapeutic effectiveness on short-term follow up for the treatment of medium-sized HCCs. PMID:22247634

  18. Fast and automatic depth control of iterative bone ablation based on optical coherence tomography data

    Science.gov (United States)

    Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias

    2015-07-01

    Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.

  19. Laser-induced shockwave propagation from ablation in a cavity

    International Nuclear Information System (INIS)

    Zeng Xianzhong; Mao Xianglei; Mao, Samuel S.; Wen, S.-B.; Greif, Ralph; Russo, Richard E.

    2006-01-01

    The propagation of laser-induced shockwaves from ablation inside of cavities was determined from time-resolved shadowgraph images. The temperature and electron number density of the laser-induced plasma was determined from spectroscopic measurements. These properties were compared to those for laser ablation on the flat surface under the same energy and background gas condition. A theoretical model was proposed to determine the amount of energy and vaporized mass stored in the vapor plume based on these measurements

  20. Femtosecond laser ablation profile near an interface: Analysis based on the correlation with superficial properties of individual materials

    Energy Technology Data Exchange (ETDEWEB)

    Nicolodelli, Gustavo, E-mail: nicolodelli@ursa.ifsc.usp.br [Instituto de Fisica de Sao Carlos, University of Sao Paulo, Grupo de Optica, Av. Trabalhador Sancarlense 400, P.O. Box 369, CEP 13560-970, Sao Carlos, SP (Brazil); Kurachi, Cristina; Bagnato, Vanderlei Salvador [Instituto de Fisica de Sao Carlos, University of Sao Paulo, Grupo de Optica, Av. Trabalhador Sancarlense 400, P.O. Box 369, CEP 13560-970, Sao Carlos, SP (Brazil)

    2011-01-15

    Femtosecond laser ablation of materials is turning to be an important tool for micromachining as well as for selective removal of biological tissues. In a great number of applications, laser ablation has to process through interfaces separating media of different properties. The investigation of the ablation behavior within materials and passing through interfaces is the main aim of this study. Especially, the analysis of the discontinuity in the ablation profile close to interfaces between distinct materials can reveal some of the phenomena involved in the formation of an ablated microcavity geometry. We have used a method that correlates the ablation cross sectional area with the local laser intensity. The effective intensity ablation properties were obtained from surface ablation data of distinct materials. The application of this method allows the prediction of the occurrence of a size discontinuity in the ablation geometry at the interface of distinct media, a fact which becomes important when planning applications in different media.

  1. Laparoscopic microwave thermosphere ablation of malignant liver tumors: An analysis of 53 cases.

    Science.gov (United States)

    Zaidi, Nisar; Okoh, Alexis; Yigitbas, Hakan; Yazici, Pinar; Ali, Noaman; Berber, Eren

    2016-02-01

    Microwave thermosphere ablation (MTA) is a new technology that is designed to create spherical zones of ablation using a single antenna. The aim of this study is to assess the results of MTA in a large series of patients. This was a prospective study assessing the use of MTA in patients with malignant liver tumors. The procedures were done mostly laparoscopically and ablation zones created were assessed for completeness of tumor response, spherical geometry and recurrence on tri-phasic CT scans done on follow-up. There were a total of 53 patients with an average of 3 tumors measuring 1.5 cm. Ablations were performed laparoscopically in all but eight patients. Morbidity was 11.3% (n = 6), and mortality zero. On postoperative scans, there was 99.3% tumor destruction. Roundness indices A, B, and transverse were 1.1, 1.0, and 0.9, respectively. At a median follow-up of 4.5 months, incomplete ablation was seen in 1 of 149 lesions treated (0.7%) and local tumor recurrence in 1 lesion (0.7%). The results of this series confirm the safety and feasibility of MTA technology. The 99.3% rate of complete tumor ablation and low rate of local recurrence at short-term follow up are promising. © 2015 Wiley Periodicals, Inc.

  2. Non-coaxial-based microwave ablation antennas for creating symmetric and asymmetric coagulation zones

    Science.gov (United States)

    Mohtashami, Yahya; Luyen, Hung; Hagness, Susan C.; Behdad