WorldWideScience

Sample records for ablation

  1. Catheter Ablation

    ... ablation. Visit Cardiac ablation procedures and Cardiac conduction system for more information about this topic. Related ... National Institutes of Health Department of Health and Human Services USA.gov

  2. Laser ablation principles and applications

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  3. Radiofrequency ablation in dermatology

    Sachdeva Silonie

    2007-01-01

    Full Text Available Radiofreqeuency ablation is a versatile dermatosurgical procedure used for surgical management of skin lesions by using various forms of alternating current at an ultra high frequency. The major modalities in radiofrequency are electrosection, electrocoagulation, electrodessication and fulguration. The use of radiofrequency ablation in dermatosurgical practice has gained importance in recent years as it can be used to treat most of the skin lesions with ease in less time with clean surgical field due to adequate hemostasis and with minimal side effects and complications. This article focuses on the major tissue effects and factors influencing radiofrequency ablation and its application for various dermatological conditions.

  4. Moldable cork ablation material

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  5. femtosecond laser ablation

    Margetic, Vanja

    2003-01-01

    Femtosecond laser ablation was investigated as a solid sampling method for elemental chemical analysis. In comparison to the sampling with longer laser pulses, two aspects could be improved by using ultrashort pulses: elimination of the elemental fractionation from the ablation crater, which is necessary for an accurate quantitative analysis, and better control of the material removal (especially for metals), which increases the spatial resolution of microanalysis. Basic aspects of ultrashort...

  6. Power Laser Ablation Symposia

    Phipps, Claude

    2007-01-01

    Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficu...

  7. Transient Ablation of Teflon Hemispheres

    Arai, Norio; Karashima, Kei-ichi; Sato, Kiyoshi

    1997-01-01

    For high-speed entry of space vehicles into atmospheric environments, ablation is a practical method for alleviating severe aerodynamic heating. Several studies have been undertaken on steady or quasi-steady ablation. However, ablation is a very complicated phenomenon in which a nonequilibrium chemical process is associated with an aerodynamic process that involves changes in body shape with time. Therefore, it seems realistic to consider that ablation is an unsteady phenomenon. In the design of an ablative heat-shield system, since the ultimate purpose of the heat shield is to keep the internal temperature of the space vehicle at a safe level during entry, the transient heat conduction characteristics of the ablator may be critical in the selection of the material and its thickness. This note presents an experimental study of transient ablation of Teflon, with particular emphasis on the change in body shape, the instantaneous internal temperature distribution, and the effect of thermal expansion on ablation rate.

  8. Tumor ablations in IMRI

    Roberto Blanco Sequeiros

    2002-01-01

    @@ IntroductionMagnetic resonance imaging based guidance control and monitoring of minimally invasive intervention has developed from a hypothetical concept to a practical possibility. Magnetic-resonance-guided interstitial therapy in principle is defined as a treatment technique for ablating deepseated tumors in the human body.

  9. Lesion size in relation to ablation site during radiofrequency ablation

    Petersen, H H; Chen, X; Pietersen, A;

    1998-01-01

    convective cooling by induction of a flow around the electrode tip increases lesion dimensions and power consumptions. Furthermore we conclude that for the given target temperature the power consumption is positively correlated with lesion volume (p ...This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation...... larger for septal applications than apical applications (p convective cooling by induction of flow yielded larger lesion volume, depth and width (p

  10. Radiofrequency ablation of pulmonary tumors

    Crocetti, Laura, E-mail: l.crocetti@med.unipi.i [Division of Diagnostic Imaging and Intervention, Department of Liver Transplants, Hepatology and Infectious Diseases, Pisa University School of Medicine (Italy); Lencioni, Riccardo [Division of Diagnostic Imaging and Intervention, Department of Liver Transplants, Hepatology and Infectious Diseases, Pisa University School of Medicine (Italy)

    2010-07-15

    The development of image-guided percutaneous techniques for local tumor ablation has been one of the major advances in the treatment of solid tumors. Among these methods, radiofrequency (RF) ablation is currently established as the primary ablative modality at most institutions. RF ablation is accepted as the best therapeutic choice for patients with early-stage hepatocellular carcinoma when liver transplantation or surgical resection are not suitable options and is considered as a viable alternate to surgery for inoperable patients with limited hepatic metastatic disease, especially from colorectal cancer. Recently, RF ablation has been demonstrated to be a safe and valuable treatment option for patients with unresectable or medically inoperable lung malignancies. Resection should remain the standard therapy for non-small cell lung cancer (NSCLC) but RF ablation may be better than conventional external-beam radiation for the treatment of the high-risk individual with NSCLC. Initial favourable outcomes encourage combining radiotherapy and RF ablation, especially for treating larger tumors. In the setting of colorectal cancer lung metastases, survival rates provided by RF ablation in selected patients, are substantially higher than those obtained with any chemotherapy regimens and provide indirect evidence that RF ablation therapy improves survival in patients with limited lung metastatic disease.

  11. Ablation of solids by femtosecond lasers ablation mechanism and ablation thresholds for metals and dielectrics

    Gamaly, E G; Tikhonchuk, V T; Luther-Davies, B

    2001-01-01

    The mechanism of ablation of solids by intense femtosecond laser pulses is described in an explicit analytical form. It is shown that at high intensities when the ionization of the target material is complete before the end of the pulse, the ablation mechanism is the same for both metals and dielectrics. The physics of this new ablation regime involves ion acceleration in the electrostatic field caused by charge separation created by energetic electrons escaping from the target. The formulae for ablation thresholds and ablation rates for metals and dielectrics, combining the laser and target parameters, are derived and compared to experimental data. The calculated dependence of the ablation thresholds on the pulse duration is in agreement with the experimental data in a femtosecond range, and it is linked to the dependence for nanosecond pulses.

  12. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics

    Gamaly, E. G.; Rode, A. V.; Tikhonchuk, V. T.; Luther-Davies, B.

    2001-01-01

    The mechanism of ablation of solids by intense femtosecond laser pulses is described in an explicit analytical form. It is shown that at high intensities when the ionization of the target material is complete before the end of the pulse, the ablation mechanism is the same for both metals and dielectrics. The physics of this new ablation regime involves ion acceleration in the electrostatic field caused by charge separation created by energetic electrons escaping from the target. The formulae ...

  13. Radiofrequency ablation of osteoid osteoma

    Vanderschueren, Geert Maria Joris Michael

    2009-01-01

    The main purpose of this thesis was to evaluate the effectiveness and safety of CT-guided radiofrequency ablation for the treatment of spinal and non-spinal osteoid osteomas. Furthermore, the technical requirements needed for safe radiofrequency ablation and the clinical outcome after radiofrequency

  14. Laser ablation in analytical chemistry.

    Russo, Richard E; Mao, Xianglei; Gonzalez, Jhanis J; Zorba, Vassilia; Yoo, Jong

    2013-07-02

    In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology.

  15. Radiofrequency ablation of atrial fibrillation

    Wiesfeld, ACP; Tan, ES; Van Veldhuisen, DJ; Crijns, HJGM; Van Gelder, IC

    2004-01-01

    Twenty-five patients (16 males, mean age 46 years.) underwent radiofrequency ablation because of either paroxysmal (13 patients) or persistent atrial fibrillation (12 patients). Ablation aimed at earliest activation of spontaneous and catheter-induced repetitive ectopy in left and right atria and ap

  16. Simulation of Pellet Ablation

    Parks, P. B.; Ishizaki, Ryuichi

    2000-10-01

    In order to clarify the structure of the ablation flow, 2D simulation is carried out with a fluid code solving temporal evolution of MHD equations. The code includes electrostatic sheath effect at the cloud interface.(P.B. Parks et al.), Plasma Phys. Contr. Fusion 38, 571 (1996). An Eulerian cylindrical coordinate system (r,z) is used with z in a spherical pellet. The code uses the Cubic-Interpolated Psudoparticle (CIP) method(H. Takewaki and T. Yabe, J. Comput. Phys. 70), 355 (1987). that divides the fluid equations into non-advection and advection phases. The most essential element of the CIP method is in calculation of the advection phase. In this phase, a cubic interpolated spatial profile is shifted in space according to the total derivative equations, similarly to a particle scheme. Since the profile is interpolated by using the value and the spatial derivative value at each grid point, there is no numerical oscillation in space, that often appears in conventional spline interpolation. A free boundary condition is used in the code. The possibility of a stationary shock will also be shown in the presentation because the supersonic ablation flow across the magnetic field is impeded.

  17. Magnetic and robotic navigation for catheter ablation: "joystick ablation".

    Ernst, Sabine

    2008-10-01

    Catheter ablation has become the treatment of choice to cure various arrhythmias in the last decades. The newest advancement of this general concept is made on the navigation ability using remote-controlled ablation catheters. This review summarizes the concept of the two currently available systems, followed by a critical review of the published clinical reports for each system, respectively. Despite the limited amount of data, an attempt to compare the two systems is made.

  18. Field enhancement induced laser ablation

    Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob

    Sub-diffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures...

  19. Radiofrequency Ablation in Barrett's Esophagus

    Vani J.A. Konda

    2014-01-01

    Full Text Available Radiofrequency ablation (RFA is an endoscopic modality used in the treatment of Barrett's esophagus. RFA may be performed using a balloon-based catheter or using one of the probe catheters that attaches to the distal end of the endoscope. Here we demonstrate step-by-step instruction in using radiofrequency ablation in the treatment of Barrett's esophagus and highlight key concepts in the technique.

  20. Ablative Approaches for Pulmonary Metastases.

    Boyer, Matthew J; Ricardi, Umberto; Ball, David; Salama, Joseph K

    2016-02-01

    Pulmonary metastases are common in patients with cancer for which surgery is considered a standard approach in appropriately selected patients. A number of patients are not candidates for surgery due to a medical comorbidities or the extent of surgery required. For these patients, noninvasive or minimally invasive approaches to ablate pulmonary metastases are potential treatment strategies. This article summarizes the rationale and outcomes for non-surgical treatment approaches, including radiotherapy, radiofrequency and microwave ablation, for pulmonary metastases.

  1. Esophageal papilloma: Flexible endoscopic ablation byradiofrequency

    Gianmattia del Genio; Federica del Genio; Pietro Schettino; Paolo Limongelli; Salvatore Tolone; Luigi Brusciano; Manuela Avellino; Chiara Vitiello; Giovanni Docimo; Angelo Pezzullo; Ludovico Docimo

    2015-01-01

    Squamous papilloma of the esophagus is a rare benignlesion of the esophagus. Radiofrequency ablation is anestablished endoscopic technique for the eradication ofBarrett esophagus. No cases of endoscopic ablation ofesophageal papilloma by radiofrequency ablation (RFA)have been reported. We report a case of esophagealpapilloma successfully treated with a single sessionof radiofrequency ablation. Endoscopic ablation ofthe lesion was achieved by radiofrequency using anew catheter inserted through the working channelof endoscope. The esophageal ablated tissue wasremoved by a specifically designed cup. Completeablation was confirmed at 3 mo by endoscopy withbiopsies. This case supports feasibility and safety of asa new potential indication for BarrxTM RFA in patientswith esophageal papilloma.

  2. Femtosecond laser ablation of enamel

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  3. Laser ablation studies of nanocomposites

    Oleg V. Mkrtychev

    2015-03-01

    Full Text Available The first experimental measurements of the threshold energy density values for the laser ablation of glass nanocomposites with nanodimensional coatings have been carried out under the action of the YAG–Nd laser power pulse radiation. The coatings in question were of different compositions and had been created by the sol–gel technology. The procedure for determining the laser ablation threshold energy density values was worked out on the base of the breakdown probability level of 0.5. The statistical processing of the measurement data over all the samples allowed obtaining the dependence of the ablation destruction threshold energy parameters on the coating physical and chemical properties such as the sample transmission in the visible region of the spectrum, coating thickness, the chemical composition of the film-forming solution, and on the pulse duration of laser radiation.

  4. Microwave ablation of hepatocellular carcinoma

    2015-01-01

    Although surgical resection is still the optimal treatmentoption for early-stage hepatocellular carcinoma(HCC) in patients with well compensated cirrhosis,thermal ablation techniques provide a valid nonsurgicaltreatment alternative, thanks to their minimalinvasiveness, excellent tolerability and safety profile,proven efficacy in local disease control, virtuallyunlimited repeatability and cost-effectiveness. Differentenergy sources are currently employed in clinics asphysical agents for percutaneous or intra-surgicalthermal ablation of HCC nodules. Among them, radiofrequency(RF) currents are the most used, whilemicrowave ablations (MWA) are becoming increasinglypopular. Starting from the 90s', RF ablation (RFA) rapidlybecame the standard of care in ablation, especially inthe treatment of small HCC nodules; however, RFAexhibits substantial performance limitations in thetreatment of large lesions and/or tumors located nearmajor heat sinks. MWA, first introduced in the FarEastern clinical practice in the 80s', showing promisingresults but also severe limitations in the controllabilityof the emitted field and in the high amount of poweremployed for the ablation of large tumors, resultingin a poor coagulative performance and a relativelyhigh complication rate, nowadays shows better resultsboth in terms of treatment controllability and of overallcoagulative performance, thanks to the improvementof technology. In this review we provide an extensiveand detailed overview of the key physical and technicalaspects of MWA and of the currently available systems,and we want to discuss the most relevant published dataon MWA treatments of HCC nodules in regard to clinicalresults and to the type and rate of complications, both inabsolute terms and in comparison with RFA.

  5. Laser ablation at the hydrodynamic regime

    Gojani Ardian B.

    2013-04-01

    Full Text Available Laser ablation of several metals and PVC polymer by high energy nanosecond laser pulses is investigated experimentaly. Visualization by shadowgraphy revealed the dynamics of the discontinuities in ambient air and ablation plume above the target surface, while surface profiling allowed for determination of the ablated mass.

  6. Laser ablation at the hydrodynamic regime

    Gojani Ardian B.

    2013-01-01

    Laser ablation of several metals and PVC polymer by high energy nanosecond laser pulses is investigated experimentaly. Visualization by shadowgraphy revealed the dynamics of the discontinuities in ambient air and ablation plume above the target surface, while surface profiling allowed for determination of the ablated mass.

  7. Laser ablation and optical surface damage

    Chase, L. L.; Hamza, A. V.; Lee, H. W. H.

    Laser ablation usually accompanies optical surface damage to bare surfaces and coatings. Investigations of optical damage mechanisms by observation of ablation processes at laser fluences very close to the optical damage threshold are described. Several promising surface characterization methods for investigating damage mechanisms are also described. The possible role of laser ablation in initiating or promoting optical surface damage is discussed.

  8. Laser ablation mechanisms and optical surface damage

    Chase, L. L.; Hamza, A. V.; Lee, H. W. H.

    1991-05-01

    Laser ablation usually accompanies optical surface damage to bare surfaces and coatings. Investigations of optical damage mechanisms by observation of ablation processes at laser fluences very close to the optical damage threshold are described. Several promising surface characterization methods for investigating damage mechanisms are also described. The possible role of laser ablation in initiating or promoting optical surface damage is discussed.

  9. Soft thrombus formation in radiofrequency catheter ablation

    Demolin, JM; Eick, OJ; Munch, K; Koullick, E; Nakagawa, H; Wittkampf, FHM

    2002-01-01

    During RF catheter ablation, local temperature elevation can result in coagulum formation on the ablation electrode, resulting in impedance rise. A recent study has also demonstrated the formation of a so-called soft thrombus during experimental ablations. This deposit poorly adhered to the catheter

  10. Catheter ablation of parahisian premature ventricular complex.

    Kim, Jun; Kim, Jeong Su; Park, Yong Hyun; Kim, June Hong; Chun, Kook Jin

    2011-12-01

    Catheter ablation is performed in selected patients with a symptomatic premature ventricular complex (PVC) or PVC-induced cardiomyopathy. Ablation of PVC from the His region has a high risk of inducing a complete atrioventricular block. Here we report successful catheter ablation of a parahisian PVC in a 63-year-old man.

  11. Ablation of Solid Hydrogen in a Plasma

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment....

  12. Nanosecond laser ablation of bulk Al, Bronze, and Cu: ablation rate saturation and laserinduced oxidation

    R. Maisterrena-Epstein; S. Camacho-López; L. Escobar-Alarcón; M. A. Camacho-López

    2007-01-01

    In this work we report about the characteristics of nanosecond laser ablation, in atmospheric air, of bulk Al, Bronze, and Cu. Average per pulse laser ablation rate and its dependence on ablation depth is presented for these three metals. We will demonstrate and discuss some distinctive features of the ablation saturation effect of the above metals. We will also present results on laser-induced oxidation of the metals which results off the ablation event. We studied the laser-induced oxidatio...

  13. Photochemical Ablation of Organic Solids

    Garrison, Barbara

    2004-03-01

    As discovered by Srinivasan in 1982, irradiation of materials by far UV laser light can lead to photochemical ablation, a process distinct from normal thermal ablation in which the laser primarily heats the material. A versatile mesoscopic model for molecular dynamics simulations of the laser ablation phenomena is presented. The model incorporates both the thermal and photochemical events, that is, both heating of the system and UV induced bond-cleavage followed by abstraction and radical-radical recombination reactions. The results from the simulations are compared to experimental data and the basic physics and chemistry for each irradiation regime are discussed. Initial results from polymer ablation simulations will be presented. L. V. Zhigilei, P. B. S. Kodali and B. J. Garrison, J. Phys. Chem. B, 102, 2845-2853 (1998); L. V. Zhigilei and B. J. Garrison, Journal of Applied Physics, 88, 1281-1298 (2000). Y. G. Yingling, L. V. Zhigilei and B. J. Garrison, J. Photochemistry and Photobiology A: Chemistry, 145, 173-181 (2001); Y. G. Yingling and B. J. Garrison, Chem. Phys. Lett., 364, 237-243 (2002).

  14. Hydrodynamic instabilities in an ablation front

    Piriz, A R; Portugues, R F [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2004-06-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved.

  15. Laser Ablation Propulsion A Study

    Irfan, Sayed A.; Ugalatad, Akshata C.

    Laser Ablation Propulsion (LAP) will serve as an alternative propulsion system for development of microthrusters. The principle of LAP is that when a laser (pulsed or continuous wave) with sufficient energy (more than the vaporization threshold energy of material) is incident on material, ablation or vaporization takes place which leads to the generation of plasma. The generated plasma has the property to move away from the material hence pressure is generated which leads to the generation of thrust. Nowadays nano satellites are very common in different space and defence applications. It is important to build micro thruster which are useful for orienting and re-positioning small aircraft (like nano satellites) above the atmosphere. modelling of LAP using MATLAB and Mathematica. Schematic is made for the suitable optical configuration of LAP. Practical experiments with shadowgraphy and self emission techniques and the results obtained are analysed taking poly (vinyl-chloride) (PVC) as propellant to study the

  16. Transient Ablation Regime in Circuit Breakers

    Alexandre MARTIN; Jean-Yves TREPANIER; Marcelo REGGIO; GUO Xue-yan

    2007-01-01

    Nozzle wall ablation caused by high temperature electric arcs is studied in the context of high voltage SF6 circuit breakers.The simplified ablation model used in litterature has been updated to take into account the unsteady state of ablation.Ablation rate and velocity are now calculated by a kinetic model using two layers of transition,between the bulk plasma and the ablating wall.The first layer (Knudsen layer),right by the wall,is a kinetic layer of a few mean-free path of thickness.The second layer is collision dominated and makes the transition between the kinetic layer and the plasma bulk.With this new coupled algorithm,it is now possible to calculate the temperature distribution inside the wall,as well as more accurate ablation rates.

  17. Neocuproine Ablates Melanocytes in Adult Zebrafish

    O'Reilly-Pol, Thomas; Johnson, Stephen L.

    2008-01-01

    The simplest regeneration experiments involve the ablation of a single cell type. While methods exist to ablate the melanocytes of the larval zebrafish,1,2 no convenient method exists to ablate melanocytes in adult zebrafish. Here, we show that the copper chelator neocuproine (NCP) causes fragmentation and disappearance of melanin in adult zebrafish melanocytes. Adult melanocytes expressing eGFP under the control of a melanocyte-specific promoter also lose eGFP fluorescence in the presence of...

  18. Computer-aided hepatic tumour ablation

    Voirin, D; Amavizca, M; Leroy, A; Letoublon, C; Troccaz, J; Voirin, David; Payan, Yohan; Amavizca, Miriam; Leroy, Antoine; Letoublon, Christian; Troccaz, Jocelyne

    2001-01-01

    Surgical resection of hepatic tumours is not always possible. Alternative techniques consist in locally using chemical or physical agents to destroy the tumour and this may be performed percutaneously. It requires a precise localisation of the tumour placement during ablation. Computer-assisted surgery tools may be used in conjunction to these new ablation techniques to improve the therapeutic efficiency whilst benefiting from minimal invasiveness. This communication introduces the principles of a system for computer-assisted hepatic tumour ablation.

  19. Cryoballoon Catheter Ablation in Atrial Fibrillation

    Cevher Ozcan

    2011-01-01

    Full Text Available Pulmonary vein isolation with catheter ablation is an effective treatment in patients with symptomatic atrial fibrillation refractory or intolerant to antiarrhythmic medications. The cryoballoon catheter was recently approved for this procedure. In this paper, the basics of cryothermal energy ablation are reviewed including its ability of creating homogenous lesion formation, minimal destruction to surrounding vasculature, preserved tissue integrity, and lower risk of thrombus formation. Also summarized here are the publications describing the clinical experience with the cryoballoon catheter ablation in both paroxysmal and persistent atrial fibrillation, its safety and efficacy, and discussions on the technical aspect of the cryoballoon ablation procedure.

  20. Aromatic Thermosetting Copolyesters for Ablative TPS Project

    National Aeronautics and Space Administration — Better performing ablative thermal protection systems than currently available are needed to satisfy requirements of the most severe crew exploration vehicles, such...

  1. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    Wu, Po-hung; Brace, Chris L.

    2016-08-01

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm-1), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm-1) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm-1). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility was

  2. Possible role for cryoballoon ablation of right atrial appendage tachycardia when conventional ablation fails.

    Amasyali, Basri; Kilic, Ayhan

    2015-06-01

    Focal atrial tachycardia arising from the right atrial appendage usually responds well to radiofrequency ablation; however, successful ablation in this anatomic region can be challenging. Surgical excision of the right atrial appendage has sometimes been necessary to eliminate the tachycardia and prevent or reverse the resultant cardiomyopathy. We report the case of a 48-year-old man who had right atrial appendage tachycardia resistant to multiple attempts at ablation with use of conventional radiofrequency energy guided by means of a 3-dimensional mapping system. The condition led to cardiomyopathy in 3 months. The arrhythmia was successfully ablated with use of a 28-mm cryoballoon catheter that had originally been developed for catheter ablation of paroxysmal atrial fibrillation. To our knowledge, this is the first report of cryoballoon ablation without isolation of the right atrial appendage. It might also be an alternative to epicardial ablation or surgery when refractory atrial tachycardia originates from the right atrial appendage.

  3. Effective temperatures of polymer laser ablation

    Furzikov, Nickolay P.

    1991-09-01

    Effective temperatures of laser ablation of certain polymers are extracted from experimental dependences of ablation depths on laser fluences. Dependence of these temperatures on laser pulse durations is established. Comparison with the known thermodestruction data shows that the effective temperature corresponds to transient thermodestruction proceeding by the statistically most probable way.

  4. VUV laser ablation of polymers. Photochemical aspect

    Castex, M. C.; Bityurin, N.; Olivero, C.; Muraviov, S.; Bronnikova, N.; Riedel, D.

    2000-12-01

    A photochemical theory of laser ablation owing to the direct chain scission process is considered in quite general form taking into account the modification of material. The formulas obtained can be used for estimating mechanisms of VUV laser ablation of polymers.

  5. Therapy of HCC-radiofrequency ablation.

    Buscarini, L; Buscarini, E

    2001-01-01

    Radiofrequency interstitial hyperthermia has been used for percutaneous ablation of hepatocellular carcinoma, under ultrasound guidance in local anesthesia. Conventional needle electrodes require a mean number of 3 sessions to treat tumors of diameter hemotorax in one case; a fluid collection in the site of ablated tumor in one patient treated by combination of transcatheter arterial embolization and radiofrequency application.

  6. Attitudes Towards Catheter Ablation for Atrial Fibrillation

    Vadmann, Henrik; Pedersen, Susanne S; Nielsen, Jens Cosedis;

    2015-01-01

    BACKGROUND: Catheter ablation for atrial fibrillation (AF) is an important but expensive procedure that is the subject of some debate. Physicians´ attitudes towards catheter ablation may influence promotion and patient acceptance. This is the first study to examine the attitudes of Danish...

  7. High Heat Flux Block Ablator-in-Honeycomb Heat Shield Using Ablator/Aerogel-Filled Foam Project

    National Aeronautics and Space Administration — Ultramet and ARA Ablatives Laboratory previously developed and demonstrated advanced foam-reinforced carbon/phenolic ablators that offer substantially increased high...

  8. Femtosecond ablation of ultrahard materials

    Dumitru, G.; Romano, V.; Weber, H. P.; Sentis, M.; Marine, W.

    Several ultrahard materials and coatings of definite interest for tribological applications were tested with respect to their response when irradiated with fs laser pulses. Results on cemented tungsten carbide and on titanium carbonitride are reported for the first time and compared with outcomes of investigations on diamond and titanium nitride. The experiments were carried out in air, in a regime of 5-8 J/cm2 fluences, using the beam of a commercial Ti:sapphire laser. The changes induced in the surface morphology were analysed with a Nomarski optical microscope, and with SEM and AFM techniques. From the experimental data and from the calculated incident energy density distributions, the damage and ablation threshold values were determined. As expected, the diamond showed the highest threshold, while the cemented tungsten carbide exhibited typical values for metallic surfaces. The ablation rates determined (under the above-mentioned experimental conditions) were in the range 0.1-0.2 μm per pulse for all the materials investigated.

  9. Tumor ablation with irreversible electroporation.

    Bassim Al-Sakere

    Full Text Available We report the first successful use of irreversible electroporation for the minimally invasive treatment of aggressive cutaneous tumors implanted in mice. Irreversible electroporation is a newly developed non-thermal tissue ablation technique in which certain short duration electrical fields are used to permanently permeabilize the cell membrane, presumably through the formation of nanoscale defects in the cell membrane. Mathematical models of the electrical and thermal fields that develop during the application of the pulses were used to design an efficient treatment protocol with minimal heating of the tissue. Tumor regression was confirmed by histological studies which also revealed that it occurred as a direct result of irreversible cell membrane permeabilization. Parametric studies show that the successful outcome of the procedure is related to the applied electric field strength, the total pulse duration as well as the temporal mode of delivery of the pulses. Our best results were obtained using plate electrodes to deliver across the tumor 80 pulses of 100 micros at 0.3 Hz with an electrical field magnitude of 2500 V/cm. These conditions induced complete regression in 12 out of 13 treated tumors, (92%, in the absence of tissue heating. Irreversible electroporation is thus a new effective modality for non-thermal tumor ablation.

  10. Analysis of infrared laser tissue ablation

    McKenzie, Gordon P.; Timmerman, Brenda H.; Bryanston-Cross, Peter J.

    2005-04-01

    The mechanisms involved in infrared laser tissue ablation are studied using a free electron laser (FELIX) in order to clarify whether the increased ablation efficiency reported in literature for certain infrared wavelengths is due to a wavelength effect or to the specific pulse structure of the lasers that are generally used in these studies. Investigations are presented of ablation of vitreous from pigs" eyes using several techniques including protein gel electrophoresis and ablation plume visualization. The ablation effects of three different infrared wavelengths are compared: 3 mm, which is currently in clinical surgical use, and the wavelengths associated with the amide I and amide II bands, i.e. 6.2 mm and 6.45mm, respectively. The results suggest a different ablation mechanism to be in operation for each studied wavelength, thus indicating that the generally reported increased ablation efficiency in the 6-6.5 micron range is due to the wavelength rather than the typical free electron laser pulse structure.

  11. Ablation response testing of aerospace power supplies

    Lutz, S. A.; Chan, C. C.

    1993-01-01

    An experimental program was performed to assess the aerothermal ablation response of aerospace power supplies. Full-scale General Purpose Heat Source (GPHS) test articles, Graphite Impact Shell (GIS) test articles, and Lightweight Radioisotope Heater Unit (LWRHU) test articles were all tested without nuclear fuel in simulated reentry environments at the NASA Ames Research Center. Stagnation heating, stagnation pressure, stagnation surface temperature, stagnation surface recession profile, and weight loss measurements were obtained for diffusion-limited and sublimation ablation conditions. The recession profile and weight loss measurements showed an effect of surface features on the stagnation face. The surface features altered the local heating which in turn affected the local ablation.

  12. UV Laser Ablation of Electronically Conductive Polymers

    1992-06-16

    deionized water. The polymerization solution for polyaniline was prepared by mixing equal volumes of a solution that was 0.25 M in ammonium persulfate with a...rum2,0 vvcsL) TbeUV.layer ablation of thin polypyrrole and polyaniline films coated on an insulating substrate is described. UV laser ablation is used to...11liiii929. 6 1 2:- A ABSTRACT The UV laser ablation of thin polypyrrole and polyaniline films coated on an insulating substrate is described. UV laser

  13. Diamond Ablators for Inertial Confinement Fusion

    Biener, J; Mirkarimi, P B; Tringe, J W; Baker, S L; Wang, Y M; Kucheyev, S O; Teslich, N E; Wu, K J; Hamza, A V; Wild, C; Woerner, E; Koidl, P; Bruehne, K; Fecht, H

    2005-06-21

    Diamond has a unique combination of physical properties for the inertial confinement fusion ablator application, such as appropriate optical properties, high atomic density, high yield strength, and high thermal conductivity. Here, we present a feasible concept to fabricate diamond ablator shells. The fabrication of diamond capsules is a multi-step process, which involves diamond chemical vapor deposition on silicon mandrels followed by polishing, microfabrication of holes, and removing of the silicon mandrel by an etch process. We also discuss the pros and cons of coarse-grained optical quality and nanocrystalline chemical vapor deposition diamond films for the ablator application.

  14. Typical flutter ablation as an adjunct to catheter ablation of atrial fibrillation

    Dipen Shah

    2008-12-01

    Full Text Available Typical atrial flutter and atrial fibrillation are frequently observed to coexist(1 .  In the current context of interventional electrophysiology, curative or at least definitive ablation is available for both arrhythmias. Despite their coexistence, it is not clear whether typical flutter ablation is necessary in all patients undergoing catheter ablation of atrial fibrillation. The following review explores the pathophysiology of both arrhythmias, their interrelationships and the available data pertaining to this theme.

  15. Use of a circular mapping and ablation catheter for ablation of atypical right ventricular outflow tract arrhythmia.

    Katritsis, Demosthenes G; Giazitzoglou, Eleftherios; Paxinos, George

    2010-02-01

    A new technique for ablation of persistent ectopic activity with atypical electrocardiographic characteristics at the vicinity of the right ventricular outflow tract is described. A new circular mapping and ablation catheter initially designed for pulmonary vein ablation was used. Abolition of ectopic activity was achieved with minimal fluoroscopy and ablation times.

  16. Cryoballoon or Radiofrequency Ablation for Paroxysmal Atrial Fibrillation.

    Chun, KR; Bestehorn, K; Pocock, SJ; FIRE AND ICE Investigators; , COLLABORATORS; Kuck, KH; Metzner, A; Ouyang, F; Chun, J; Fürnkranz, A; Elvan, A.; Arentz, T.; Kühne, M.; Sticherling, C; Gellér, L

    2016-01-01

    BACKGROUND: Current guidelines recommend pulmonary-vein isolation by means of catheter ablation as treatment for drug-refractory paroxysmal atrial fibrillation. Radiofrequency ablation is the most common method, and cryoballoon ablation is the second most frequently used technology. METHODS: We conducted a multicenter, randomized trial to determine whether cryoballoon ablation was noninferior to radiofrequency ablation in symptomatic patients with drug-refractory paroxysmal atrial fibrillatio...

  17. Physical processes of laser tissue ablation

    Furzikov, Nickolay P.

    1991-05-01

    The revised ablation model applicable to homogeneous tissues is presented. It is based on the thermal mechanism and involves the instability of the laserinduced evaporation (thermodestruction) front the growth of the surface ripple structure the interference of the laser wave and of the surface wave arising by diffraction on the ripples Beer''s law violation the pulsed thermodestruction of the organic structural component the tissue water boiling and gas dynamic expansion of the resulting products into the surrounding medium which is followed by the shock wave formation. The UV and IR ablation schemes were implemented and compared to the corneal ablation experiments. The initial ablation pressure and temperature are given restored from the timeofflight measurements of the supersonic expansion of the product. 1.

  18. Nanosecond laser ablation of silver nanoparticle film

    Chung, Jaewon; Han, Sewoon; Lee, Daeho; Ahn, Sanghoon; Grigoropoulos, Costas P.; Moon, Jooho; Ko, Seung H.

    2013-02-01

    Nanosecond laser ablation of polyvinylpyrrolidone (PVP) protected silver nanoparticle (20 nm diameter) film is studied using a frequency doubled Nd:YAG nanosecond laser (532 nm wavelength, 6 ns full width half maximum pulse width). In the sintered silver nanoparticle film, absorbed light energy conducts well through the sintered porous structure, resulting in ablation craters of a porous dome shape or crown shape depending on the irradiation fluence due to the sudden vaporization of the PVP. In the unsintered silver nanoparticle film, the ablation crater with a clean edge profile is formed and many coalesced nanoparticles of 50 to 100 nm in size are observed inside the ablation crater. These results and an order of magnitude analysis indicate that the absorbed thermal energy is confined within the nanoparticles, causing melting of nanoparticles and their coalescence to larger agglomerates, which are removed following melting and subsequent partial vaporization.

  19. Ablative Ceramic Foam Based TPS Project

    National Aeronautics and Space Administration — A novel composite material ablative TPS for planetary vehicles that can survive a dual heating exposure is proposed. NextGen's TPS concept is a bi-layer functional...

  20. Nanoscale ablation through optically trapped microspheres

    Fardel, Romain; McLeod, Euan; Tsai, Yu-Cheng; Arnold, Craig B.

    2010-10-01

    The ability to directly create patterns with size scales below 100 nm is important for many applications where the production or repair of high resolution and density features is needed. Laser-based direct-write methods have the benefit of being able to quickly and easily modify and create structures on existing devices, but ablation can negatively impact the overall technique. In this paper we show that self-positioning of near-field objectives through the optical trap assisted nanopatterning (OTAN) method allows for ablation without harming the objective elements. Small microbeads are positioned in close proximity to a substrate where ablation is initiated. Upon ablation, these beads are temporarily displaced from the trap but rapidly return to the initial position. We analyze the range of fluence values for which this process occurs and find that there exists a critical threshold beyond which the beads are permanently ejected.

  1. Laser ablation in analytical chemistry - A review

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  2. Support for High Power Laser Ablation 2010

    2010-04-16

    Femtosecond Pulsed laser Ablation and Deposition Marta Castillejo Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain Tel:+34...system to transition the laser cavity’s low pressure to the ambient pressure outside the device. Diffusers use a series of shocks in a duct to...especially the incident laser fluence and ambient pressure. New results highlight the influence of the ambient pressure on ablation physics from the

  3. ROLE OF RADIOFREQUENCY ABLATION IN ADENOMA SEBACEUM

    Ch. Madh

    2016-03-01

    Full Text Available Adenoma sebaceum, pathognomonic of tuberous sclerosis, are tiny angiofibromas which commonly occur over central part of face. Recurrence after treatment is common and hence a need for inexpensive, safe and efficient treatment is required. Radiofrequency ablation is a safe and an economical procedure and has been known to cause less scarring with good aesthetic results compared to other ablative methods such as electrocautery.

  4. Principles of the radiative ablation modeling

    Saillard, Yves; Arnault, Philippe; Silvert, Virginie

    2010-12-01

    Indirectly driven inertial confinement fusion (ICF) rests on the setting up of a radiation temperature within a laser cavity and on the optimization of the capsule implosion ablated by this radiation. In both circumstances, the ablation of an optically thick medium is at work. The nonlinear radiation conduction equations that describe this phenomenon admit different kinds of solutions called generically Marshak waves. In this paper, a completely analytic model is proposed to describe the ablation in the subsonic regime relevant to ICF experiments. This model approximates the flow by a deflagrationlike structure where Hugoniot relations are used in the stationary part from the ablation front up to the isothermal sonic Chapman-Jouguet point and where the unstationary expansion from the sonic point up to the external boundary is assumed quasi-isothermal. It uses power law matter properties. It can also accommodate arbitrary boundary conditions provided the ablation wave stays very subsonic and the surface temperature does not vary too quickly. These requirements are often met in realistic situations. Interestingly, the ablated mass rate, the ablation pressure, and the absorbed radiative energy depend on the time history of the surface temperature, not only on the instantaneous temperature values. The results compare very well with self-similar solutions and with numerical simulations obtained by hydrodynamic code. This analytic model gives insight into the physical processes involved in the ablation and is helpful for optimization and sensitivity studies in many situations of interest: radiation temperature within a laser cavity, acceleration of finite size medium, and ICF capsule implosion, for instance.

  5. Fractional ablative erbium YAG laser

    Taudorf, Elisabeth H; Haak, Christina S; Erlendsson, Andrés M

    2014-01-01

    BACKGROUND AND OBJECTIVES: Treatment of a variety of skin disorders with ablative fractional lasers (AFXL) is driving the development of portable AFXLs. This study measures micropore dimensions produced by a small 2,940 nm AFXL using a variety of stacked pulses, and determines a model correlating...... laser parameters with tissue effects. MATERIALS AND METHODS: Ex vivo pig skin was exposed to a miniaturized 2,940 nm AFXL, spot size 225 µm, density 5%, power levels 1.15-2.22 W, pulse durations 50-225 microseconds, pulse repetition rates 100-500 Hz, and 2, 20, or 50 stacked pulses, resulting in pulse...... 190 to 347 µm. CONCLUSIONS: Pulse stacking with a small, low power 2,940 nm AFXL created reproducible shallow to deep micropores, and influenced micropore configuration. Mathematical modeling established relations between laser settings and micropore dimensions, which assists in choosing laser...

  6. Dust ablation in Pluto's atmosphere

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  7. Percutaneous Microwave Ablation of Renal Angiomyolipomas

    Cristescu, Mircea, E-mail: mcristescu@uwhealth.org [University of Wisconsin, Department of Radiology (United States); Abel, E. Jason, E-mail: abel@urology.wisc.edu [University of Wisconsin, Department of Urology (United States); Wells, Shane, E-mail: swells@uwhealth.org; Ziemlewicz, Timothy J., E-mail: tziemlewicz@uwhealth.org [University of Wisconsin, Department of Radiology (United States); Hedican, Sean P., E-mail: hedican@surgery.wisc.edu [University of Wisconsin, Department of Urology (United States); Lubner, Megan G., E-mail: mlubner@uwhealth.org; Hinshaw, J. Louis, E-mail: jhinshaw@uwhealth.org; Brace, Christopher L., E-mail: cbrace@uwhealth.org; Lee, Fred T., E-mail: flee@uwhealth.org [University of Wisconsin, Department of Radiology (United States)

    2016-03-15

    PurposeTo evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML).Materials and MethodsFrom January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4–4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits.ResultsAll ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60–70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3–8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8 % (3.4–3.3 cm) and 1.7 % (27.5–26.3 cm{sup 3}), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9–47) demonstrated mean tumor diameter and volume decreases of 29 % (3.4–2.4 cm) and 47 % (27.5–12.1 cm{sup 3}), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation.ConclusionOur early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.

  8. Femtosecond laser ablation of silicon in air and vacuum

    Zehua Wu; Nan Zhang; Mingwei Wang; Xiaonong Zhu

    2011-01-01

    Femtosecond (fs) pulse laser ablation of silicon targets in air and in vacuum is investigated using a time-resolved shadowgraphic method. The observed dynamic process of the fs laser ablation of silicon in air is significantly different from that in vacuum. Similar to the ablation of metallic targets, while the shock wave front and a series of nearly concentric and semicircular stripes, as well as the contact front, are clearly identifiable in the process of ablation under 1 x 105 Pa, these phenomena are no longer observed when the ablation takes place in vacuum. Although the ambient air around the target strongly affects the evolution of the ablation plume, the three rounds of material ejection clearly observed in the shadowgraphs of fs laser ablation in standard air can also be distinguished in the process of ablation in vacuum. It is proven that the three rounds of material ejection are caused by different ablation mechanisms.%@@ Femtosecond(fs)pulse laser ablation of silicon targets in air and in vacuum is investigated using a timeresolved shadowgraphic method.The observed dynamic process of the fs laser ablation of silicon in air is significantly different from that in vacuum.Similar to the ablation of metallic targets,while the shock wave front and a series of nearly concentric and semicircular stripes,as well as the contact front,are clearly identifiable in the process of ablation under 1 x 105 Pa,these phenomena are no longer observed when the ablation takes place in vacuum.Although the ambient air around the target strongly affects the evolution of the ablation plume,the three rounds of material ejection clearly observed in the shadowgraphs of fs laser ablation in standard air can also be distinguished in the process of ablation in vacuum.It is proven that the three rounds of material ejection are caused by different ablation mechanisms.

  9. Ablation enhancement of silicon by ultrashort double-pulse laser ablation

    Zhao, Xin; Shin, Yung C. [Center for Laser-Based Manufacturing, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-09-15

    In this study, the ultrashort double-pulse ablation of silicon is investigated. An atomistic simulation model is developed to analyze the underlying physics. It is revealed that the double-pulse ablation could significantly increase the ablation rate of silicon, compared with the single pulse ablation with the same total pulse energy, which is totally different from the case of metals. In the long pulse delay range (over 1 ps), the enhancement is caused by the metallic transition of melted silicon with the corresponding absorption efficiency. At ultrashort pulse delay (below 1 ps), the enhancement is due to the electron excitation by the first pulse. The enhancement only occurs at low and moderate laser fluence. The ablation is suppressed at high fluence due to the strong plasma shielding effect.

  10. Photoacoustic characterization of radiofrequency ablation lesions

    Bouchard, Richard; Dana, Nicholas; Di Biase, Luigi; Natale, Andrea; Emelianov, Stanislav

    2012-02-01

    Radiofrequency ablation (RFA) procedures are used to destroy abnormal electrical pathways in the heart that can cause cardiac arrhythmias. Current methods relying on fluoroscopy, echocardiography and electrical conduction mapping are unable to accurately assess ablation lesion size. In an effort to better visualize RFA lesions, photoacoustic (PA) and ultrasonic (US) imaging were utilized to obtain co-registered images of ablated porcine cardiac tissue. The left ventricular free wall of fresh (i.e., never frozen) porcine hearts was harvested within 24 hours of the animals' sacrifice. A THERMOCOOLR Ablation System (Biosense Webster, Inc.) operating at 40 W for 30-60 s was used to induce lesions through the endocardial and epicardial walls of the cardiac samples. Following lesion creation, the ablated tissue samples were placed in 25 °C saline to allow for multi-wavelength PA imaging. Samples were imaged with a VevoR 2100 ultrasound system (VisualSonics, Inc.) using a modified 20-MHz array that could provide laser irradiation to the sample from a pulsed tunable laser (Newport Corp.) to allow for co-registered photoacoustic-ultrasound (PAUS) imaging. PA imaging was conducted from 750-1064 nm, with a surface fluence of approximately 15 mJ/cm2 maintained during imaging. In this preliminary study with PA imaging, the ablated region could be well visualized on the surface of the sample, with contrasts of 6-10 dB achieved at 750 nm. Although imaging penetration depth is a concern, PA imaging shows promise in being able to reliably visualize RF ablation lesions.

  11. Mechanism of Spatiotemporal Distribution of Laser Ablated Materials

    XU Rong-Qing; CUI Yi-Ping; LU Jian; NI Xiao-Wu

    2009-01-01

    Interaction between subsequent laser and ablated materials in laser processing changes the laser spatiotemporal distribution and has influences on the efficiency and quality of laser processing. The theoretical and experimental researches on transportation behayiour of ablated materials are provided. It is shown that the velocity distribution of ablated materials is determined by ablation mechanism. The transportation behaviour of ablated materials is controlled by diffusion mechanism and light field force during laser pulse duration while it is only determined by diffusion mechanism when the laser pulse terminates. In addition, the spatiotemporal distribution of ablated materials is presented.

  12. Laser ablation of hepatocellular carcinoma-A review

    2008-01-01

    A wide range of local thermal ablative therapies have been developed in the treatment of non resectable hepatocellular carcinoma (HCC) in the last decade. Laser ablation (LA) and radiofrequency ablation (RFA) are the two most widely used of these. This article provides an up to date overview of the role of laser ablation in the local treatment of HCC. General principles, technique, image guidance and patient selection are discussed. A review of published data on treatment efficacy, long term outcome and complication rates of laser ablation is included and comparison with RFA made. The role of laser ablation in combination with transcatheter arterial chemoembolisation is also discussed.

  13. Fundamental studies of pulsed laser ablation

    Claeyssens, F

    2001-01-01

    dopant) have resulted in a coherent view of the resulting plume, which exhibits a multi-component structure correlated with different regimes of ablation, which are attributed to ejection from ZnO and ablation from a Zn melt. OES measurements show that the emitting Zn component within the plume accelerates during expansion in vacuum - an observation attributable to the presence of hot, fast electrons in the plume. The same acceleration behaviour is observed in the case of Al atomic emissions resulting from ablation of an Al target in vacuum. Deposition conditions, substrate temperature and background gas pressure were all varied in a quest for optimally aligned, high quality ZnO thin films. Initial ab initio calculations were performed also, to aid in understanding the stability of these c-axis aligned films. The pulsed ultraviolet (lambda = 193, 248 nm) laser ablation of graphite, polycrystalline diamond and ZnO targets has been investigated. Characteristics of the resulting plumes of ablated material have b...

  14. Imaging in percutaneous ablation for atrial fibrillation

    Maksimovic, Ruzica [Erasmus Medical Center, Department of Radiology, GD Rotterdam (Netherlands); Institute for Cardiovascular Diseases of the University Medical Center, Belgrade (Czechoslovakia); Dill, Thorsten [Kerckhoff-Heart Center, Department of Cardiology, Bad Nauheim (Germany); Ristic, Arsen D.; Seferovic, Petar M. [Institute for Cardiovascular Diseases of the University Medical Center, Belgrade (Czechoslovakia)

    2006-11-15

    Percutaneous ablation for electrical disconnection of the arrhythmogenic foci using various forms of energy has become a well-established technique for treating atrial fibrillation (AF). Success rate in preventing recurrence of AF episodes is high although associated with a significant incidence of pulmonary vein (PV) stenosis and other rare complications. Clinical workup of AF patients includes imaging before and after ablative treatment using different noninvasive and invasive techniques such as conventional angiography, transoesophageal and intracardiac echocardiography, computed tomography (CT) and magnetic resonance imaging (MRI), which offer different information with variable diagnostic accuracy. Evaluation before percutaneous ablation involves assessment of PVs (PV pattern, branching pattern, orientation and ostial size) to facilitate position and size of catheters and reduce procedure time as well as examining the left atrium (presence of thrombi, dimensions and volumes). Imaging after the percutaneous ablation is important for assessment of overall success of the procedure and revealing potential complications. Therefore, imaging methods enable depiction of PVs and the anatomy of surrounding structures essential for preprocedural management and early detection of PV stenosis and other ablation-related procedures, as well as long-term follow-up of these patients. (orig.)

  15. Percutaneous tumor ablation in medical radiology

    Vogl, T.J.; Mack, M.G. [University Hospital Frankfurt Univ. (Germany). Inst. for Diagnostic and Interventional Radiology; Helmberger, T.K. [Klinikum Bogenhausen, Academic Teaching Hospital of the Technical Univ. Munich (Germany). Dept. for Diagnostic and Interventional Radiology and Nuclear Medicine; Reiser, M.F. (eds.) [University Hospitals - Grosshadern and Innenstadt Munich Univ. (Germany). Dept. of Clinical Radiology

    2008-07-01

    Thermal ablation has become an integral part of oncology, especially in the field of interventional oncology. This very comprehensive book encompasses the different technologies employed in thermal ablation, its indications and the results achieved in various clinical conditions. The first part of the book clearly explains the basics of thermal ablative techniques such as laser-induced thermotherapy, radiofrequency ablation, microwave ablation, cryotherapy, and localized tumor therapy. The latest developments in the application of minimally invasive therapies in localized neoplastic disease are demonstrated. In the main part of the book, techniques of guiding the applicators to the target structures by use of different imaging tools such as ultrasound, computed tomography and magnetic resonance imaging are discussed. The results are presented for a variety of clinical indications, including liver and lung tumors and metastases and some rather rare conditions involving the kidney, the head and neck, the prostate, and soft tissue structures. A large number of acknowledged experts have contributed to the book, which benefits from a lucid structure and excellent images. (orig.)

  16. Interactive Volumetry Of Liver Ablation Zones

    Egger, Jan; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-01-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm's results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each o...

  17. Ultrafast laser ablation of transparent materials

    Bauer, Lara; Russ, Simone; Kaiser, Myriam; Kumkar, Malte; Faißt, Birgit; Weber, Rudolf; Graf, Thomas

    2016-03-01

    The present work investigates the influence of the pulse duration and the temporal spacing between pulses on the ablation of aluminosilicate glass by comparing the results obtained with pulse durations of 0.4 ps and 6 ps. We found that surface modifications occur already at fluences below the single pulse ablation threshold and that laser-induced periodic surface structures (LIPSS) emerge as a result of those surface modifications. For 0.4 ps the ablation threshold fluences is lower than for 6 ps. Scanning electron micrographs of LIPSS generated with 0.4 ps exhibit a more periodic and less coarse structure as compared to structures generated with 6 ps. Furthermore we report on the influence of temporal spacing between the pulses on the occurrence of LIPSS and the impact on the quality of the cutting edge. Keywords: LIPSS,

  18. Kinetic depletion model for pellet ablation

    Kuteev, Boris V. [State Technical Univ., St. Petersburg (Russian Federation)

    2001-11-01

    A kinetic model for depletion effect, which determines pellet ablation when the pellet passes a rational magnetic surface, is formulated. The model predicts a moderate decrease of the ablation rate compared with the earlier considered monoenergy versions [1, 2]. For typical T-10 conditions the ablation rate reduces by a reactor of 2.5 when the 1-mm pellet penetrates through the plasma center. A substantial deceleration of pellets -about 15% per centimeter of low shire rational q region; is predicted. Penetration for Low Field Side and High Field Side injections is considered taking into account modification of the electron distribution function by toroidal magnetic field. It is shown that Shafranov shift and toroidal effects yield the penetration length for HFS injection higher by a factor of 1.5. This fact should be taken into account when plasma-shielding effects on penetration are considered. (author)

  19. Deep Dive Topic: Choosing between ablators

    Hurricane, O. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thomas, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Olson, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-14

    Recent data on implosions using identical hohlraums and very similar laser drives underscores the conundrum of making a clear choice of one ablator over another. Table I shows a comparison of Be and CH in a nominal length, gold, 575 μm-diameter, 1.6 mg/cc He gas-fill hohlraum while Table II shows a comparison of undoped HDC and CH in a +700 length, gold, 575 μm diameter, 1.6 mg/cc He gas fill hohlraum. As can be seen in the tables, the net integrated fusion performance of these ablators is the same to within error bars. In the case of the undoped HDC and CH ablators, the hot spot shapes of the implosions were nearly indistinguishable for the experiments listed in Table II.

  20. Thermal Ablation Modeling for Silicate Materials

    Chen, Yih-Kanq

    2016-01-01

    A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).

  1. Numerical Modeling of Ablation Heat Transfer

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  2. Complete regeneration of ablated eyestalk in penaeid prawn, Penaeus monodon

    Desai, U.M.; Achuthankutty, C.T.

    Ablation of one eyestalk is generally practised in all commercial prawn hatcheries to induce gonad maturation and spawning. An observation was made that the ablated eyestalk of spent females of the tiger prawn Penaeus monodon was completely...

  3. Alcohol septal ablation in patients with hypertrophic obstructive cardiomyopathy

    Jensen, Morten K; Prinz, Christian; Horstkotte, Dieter;

    2013-01-01

    The infarction induced by alcohol septal ablation (ASA) may predispose to arrhythmia and sudden cardiac death (SCD).......The infarction induced by alcohol septal ablation (ASA) may predispose to arrhythmia and sudden cardiac death (SCD)....

  4. Thermal ablation of liver metastases from colorectal cancer: radiofrequency, microwave and laser ablation therapies.

    Vogl, Thomas J; Farshid, Parviz; Naguib, Nagy N N; Darvishi, Abbas; Bazrafshan, Babak; Mbalisike, Emmanuel; Burkhard, Thorsten; Zangos, Stephan

    2014-07-01

    Surgery is currently considered the treatment of choice for patients with colorectal cancer liver metastases (CRLM) when resectable. The majority of these patients can also benefit from systemic chemotherapy. Recently, local or regional therapies such as thermal ablations have been used with acceptable outcomes. We searched the medical literature to identify studies and reviews relevant to radiofrequency (RF) ablation, microwave (MW) ablation and laser-induced thermotherapy (LITT) in terms of local progression, survival indexes and major complications in patients with CRLM. Reviewed literature showed a local progression rate between 2.8 and 29.7 % of RF-ablated liver lesions at 12-49 months follow-up, 2.7-12.5 % of MW ablated lesions at 5-19 months follow-up and 5.2 % of lesions treated with LITT at 6-month follow-up. Major complications were observed in 4-33 % of patients treated with RF ablation, 0-19 % of patients treated with MW ablation and 0.1-3.5 % of lesions treated with LITT. Although not significantly different, the mean of 1-, 3- and 5-year survival rates for RF-, MW- and laser ablated lesions was (92.6, 44.7, 31.1 %), (79, 38.6, 21 %) and (94.2, 61.5, 29.2 %), respectively. The median survival in these methods was 33.2, 29.5 and 33.7 months, respectively. Thermal ablation may be an appropriate alternative in patients with CRLM who have inoperable liver lesions or have operable lesions as an adjunct to resection. However, further competitive evaluation should clarify the efficacy and priority of these therapies in patients with colorectal cancer liver metastases.

  5. Ablative Rocket Deflector Testing and Computational Modeling

    Allgood, Daniel C.; Lott, Jeffrey W.; Raines, Nickey

    2010-01-01

    A deflector risk mitigation program was recently conducted at the NASA Stennis Space Center. The primary objective was to develop a database that characterizes the behavior of industry-grade refractory materials subjected to rocket plume impingement conditions commonly experienced on static test stands. The program consisted of short and long duration engine tests where the supersonic exhaust flow from the engine impinged on an ablative panel. Quasi time-dependent erosion depths and patterns generated by the plume impingement were recorded for a variety of different ablative materials. The erosion behavior was found to be highly dependent on the material s composition and corresponding thermal properties. For example, in the case of the HP CAST 93Z ablative material, the erosion rate actually decreased under continued thermal heating conditions due to the formation of a low thermal conductivity "crystallization" layer. The "crystallization" layer produced near the surface of the material provided an effective insulation from the hot rocket exhaust plume. To gain further insight into the complex interaction of the plume with the ablative deflector, computational fluid dynamic modeling was performed in parallel to the ablative panel testing. The results from the current study demonstrated that locally high heating occurred due to shock reflections. These localized regions of shock-induced heat flux resulted in non-uniform erosion of the ablative panels. In turn, it was observed that the non-uniform erosion exacerbated the localized shock heating causing eventual plume separation and reversed flow for long duration tests under certain conditions. Overall, the flow simulations compared very well with the available experimental data obtained during this project.

  6. Stereotactic Body Radiotherapy and Ablative Therapies for Lung Cancer.

    Abbas, Ghulam; Danish, Adnan; Krasna, Mark J

    2016-07-01

    The treatment paradigm for early stage lung cancer and oligometastatic disease to the lung is rapidly changing. Ablative therapies, especially stereotactic body radiation therapy, are challenging the surgical gold standard and have the potential to be the standard for operable patients with early stage lung cancer who are high risk due to co- morbidities. The most commonly used ablative modalities include stereotactic body radiation therapy, microwave ablation, and radiofrequency ablation.

  7. Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser

    Baek, Jung Hwan; Lee, Jeong Hyun [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Valcavi, Roberto [Endocrinology Division and Thyroid Disease Center, Arcispedale Santa Maria Nuova, Reggio Emilia (Italy); Pacella, Claudio M. [Diagnostic Imaging and Interventional Radiology Department, Ospedale Regina Apostolorum, Albano Laziale-Rome (IT); Rhim, Hyun Chul [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Na, Dong Kyu [Human Medical Imaging and Intervention Center, Seoul (Korea, Republic of)

    2011-10-15

    Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation.

  8. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  9. Ablation of carbide materials with femtosecond pulses

    Dumitru, Gabriel; Romano, Valerio; Weber, Heinz P.; Sentis, Marc; Marine, Wladimir

    2003-01-01

    The response of cemented tungsten carbide and of titanium carbonitride was investigated with respect to damage and ablation properties, under interaction with ultrashort laser pulses. These carbide materials present high microhardness and are of significant interest for tribological applications. The experiments were carried out in air with a commercial Ti:sapphire laser at energy densities on the target up to 6.5 J/cm 2. The irradiated target surfaces were analyzed with optical, SEM and AFM techniques and the damage and ablation threshold values were determined using the measured spot diameters and the calculated incident energy density distributions.

  10. Testing of Advanced Conformal Ablative TPS

    Gasch, Matthew; Agrawal, Parul; Beck, Robin

    2013-01-01

    In support of the CA250 project, this paper details the results of a test campaign that was conducted at the Ames Arcjet Facility, wherein several novel low density thermal protection (TPS) materials were evaluated in an entry like environment. The motivation for these tests was to investigate whether novel conformal ablative TPS materials can perform under high heat flux and shear environment as a viable alternative to rigid ablators like PICA or Avcoat for missions like MSL and beyond. A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL, and honeycomb-based Avcoat on the Orion Multi Purpose Crew Vehicle (MPCV)). The compliant (high strain to failure) nature of the conformable ablative materials will allow better integration of the TPS with the underlying aeroshell structure and enable monolithic-like configuration and larger segments to be used in fabrication.A novel SPRITE1 architecture, developed by the researchers at NASA Ames was used for arcjet testing. This small probe like configuration with 450 spherecone, enabled us to test the materials in a combination of high heat flux, pressure and shear environment. The heat flux near the nose were in the range of 500-1000 W/sq cm whereas in the flank section of the test article the magnitudes were about 50 of the nose, 250-500W/sq cm range. There were two candidate conformable materials under consideration for this test series. Both test materials are low density (0.28 g/cu cm) similar to Phenolic Impregnated Carbon Ablator (PICA) or Silicone Impregnated Refractory Ceramic Ablator (SIRCA) and are comprised of: A flexible carbon substrate (Carbon felt) infiltrated with an ablative resin system: phenolic (Conformal-PICA) or silicone (Conformal-SICA). The test demonstrated a successful performance of both the conformable ablators for heat flux conditions between 50

  11. Efficacy and satisfaction rate comparing endometrial ablation by rollerball electrocoagulation to uterine balloon thermal ablation in a randomised controlled trial.

    Zon-Rabelink, I.A.A. van; Vleugels, M.P.; Merkus, J.M.W.M.; Graaf, R.M. de

    2004-01-01

    OBJECTIVE: To compare two methods of endometrial ablation, hysteroscopic rollerball electrocoagulation (RBE) and non-hysteroscopic uterine balloon thermal ablation (Thermachoice trade mark ), regarding efficacy for reducing dysfunctional uterine bleeding and patients satisfaction rate. METHODS: A ra

  12. Experimental measurement of ablation effects in plasma armature railguns

    Parker, J.V.; Parsons, W.M.

    1986-01-01

    Experimental evidence supporting the importance of ablation in plasma armature railguns is presented. Experiments conducted using the HYVAX and MIDI-2 railguns are described. Several indirect effects of ablation are identified from the experimental results. An improved ablation model of plasma armature dynamics is proposed which incorporates the restrike process.

  13. Cardiac ablation by transesophageal high intensity focused ultrasound

    JIANG Chen-xi; YU Rong-hui; MA Chang-sheng

    2010-01-01

    @@ Cardiac ablation is an important modality of invasive therapy in modern cardiology, especially in the treatment of arrhythmias, as well as other diseases such as hypertrophic obstructive cardiomyopathy (HOCM). Since Huang et al1 used radiofrequency (RF) to ablate canine atrial ventricular junction, RF has developed into the leading energy source in catheter ablation of arrhythmias.

  14. Monitoring of tumor radio frequency ablation using derivative spectroscopy

    Spliethoff, J.W.; Tanis, E.; Evers, Daniel James; Hendriks, B.H.; Prevoo, W.; Ruers, T.J.M.

    2014-01-01

    Despite the widespread use of radio frequency (RF) ablation, an effective way to assess thermal tissue damage during and after the procedure is still lacking. We present a method for monitoring RF ablation efficacy based on thermally induced methemoglobin as a marker for full tissue ablation. Diffus

  15. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D. E-mail: lumd@21cn.com; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up.

  16. A review of the safety aspects of radio frequency ablation

    Abhishek Bhaskaran

    2015-09-01

    Full Text Available In light of recent reports showing high incidence of silent cerebral infarcts and organized atrial arrhythmias following radiofrequency (RF atrial fibrillation (AF ablation, a review of its safety aspects is timely. Serious complications do occur during supraventricular tachycardia (SVT ablations and knowledge of their incidence is important when deciding whether to proceed with ablation. Evidence is emerging for the probable role of prophylactic ischemic scar ablation to prevent VT. This might increase the number of procedures performed. Here we look at the various complications of RF ablation and also the methods to minimize them. Electronic database was searched for relevant articles from 1990 to 2015. With better awareness and technological advancements in RF ablation the incidence of complications has improved considerably. In AF ablation it has decreased from 6% to less than 4% comprising of vascular complications, cardiac tamponade, stroke, phrenic nerve injury, pulmonary vein stenosis, atrio-esophageal fistula (AEF and death. Safety of SVT ablation has also improved with less than 1% incidence of AV node injury in AVNRT ablation. In VT ablation the incidence of major complications was 5–11%, up to 3.4%, up to 1.8% and 4.1–8.8% in patients with structural heart disease, without structural heart disease, prophylactic ablations and epicardial ablations respectively. Vascular and pericardial complications dominated endocardial and epicardial VT ablations respectively. Up to 3% mortality and similar rates of tamponade were reported in endocardial VT ablation. Recent reports about the high incidence of asymptomatic cerebral embolism during AF ablation are concerning, warranting more research into its etiology and prevention.

  17. Diagnostics of laser ablated plasma plumes

    Amoruso, S.; Toftmann, B.; Schou, Jørgen;

    2004-01-01

    The effect of an ambient gas on the expansion dynamics of laser ablated plasmas has been studied for two systems by exploiting different diagnostic techniques. First, the dynamics of a MgB2 laser produced plasma plume in an Ar atmosphere has been investigated by space-and time-resolved optical...

  18. Modeling sublimation of a charring ablator

    Balhoff, J. F.; Pike, R. W.

    1973-01-01

    The Hertz-Knudsen analysis is shown to accurately predict the sublimation rate from a charring ablator. Porosity is shown to have a significant effect on the surface temperature. The predominant carbon species found in the vapor is C3, which agrees well with the results of previous investigations.

  19. Combining Electrolysis and Electroporation for Tissue Ablation.

    Phillips, Mary; Rubinsky, Liel; Meir, Arie; Raju, Narayan; Rubinsky, Boris

    2015-08-01

    Electrolytic ablation is a method that operates by delivering low magnitude direct current to the target region over long periods of time, generating electrolytic products that destroy cells. This study was designed to explore the hypothesis stating that electrolytic ablation can be made more effective when the electrolysis-producing electric charges are delivered using electric pulses with field strength typical in reversible electroporation protocols. (For brevity we will refer to tissue ablation protocols that combine electroporation and electrolysis as E(2).) The mechanistic explanation of this hypothesis is related to the idea that products of electrolysis generated by E(2) protocols can gain access to the interior of the cell through the electroporation permeabilized cell membrane and therefore cause more effective cell death than from the exterior of an intact cell. The goal of this study is to provide a first-order examination of this hypothesis by comparing the charge dosage required to cause a comparable level of damage to a rat liver, in vivo, when using either conventional electrolysis or E(2) approaches. Our results show that E(2) protocols produce tissue damage that is consistent with electrolytic ablation. Furthermore, E(2) protocols cause damage comparable to that produced by conventional electrolytic protocols while delivering orders of magnitude less charge to the target tissue over much shorter periods of time.

  20. Bending diamonds by femtosecond laser ablation

    Balling, Peter; Esberg, Jakob; Kirsebom, Kim;

    2009-01-01

    We present a new method based on femtosecond laser ablation for the fabrication of statically bent diamond crystals. Using this method, curvature radii of 1 m can easily be achieved, and the curvature obtained is very uniform. Since diamond is extremely tolerant to high radiation doses, partly due...

  1. The Atrial Fibrillation Ablation Pilot Study

    Arbelo, Elena; Brugada, Josep; Hindricks, Gerhard;

    2014-01-01

    was achieved in 40.7% of patients (43.7% in paroxysmal AF; 30.2% in persistent AF; 36.7% in long-lasting persistent AF). A second ablation was required in 18% of the cases and 43.4% were under antiarrhythmic treatment. Thirty-three patients (2.5%) suffered an adverse event, 272 (21%) experienced a left atrial...

  2. Outpatient laser tonsillar ablation under local anaesthetic.

    Andrews, Peter J; Latif, Abdul

    2004-11-01

    Outpatient laser ablation of the palatine tonsils under local anaesthetic is an alternative technique to capsular tonsillectomy for recurrent tonsillitis under general anaesthetic. Laser tonsillotomy ablates up to 70% of the tonsillar tissue and is performed when patients choose not to have a conventional tonsillectomy, or are unfit for a general anaesthetic. The technique described here is an adaptation of Krespis' laser-assisted serial tonsillectomy (LAST) whereby only one sitting is required. Krespis' technique effectively eliminates recurrent tonsillitis in 96% of the cases over a 4-year follow-up period and represents the only substantial study looking at treating recurrent tonsillitis with outpatient laser ablation. This study is a retrospective postal survey of 19 patients who underwent laser tonsillar ablation under local anaesthetic for recurrent chronic tonsillitis from 1997 to 2001 and was performed in liaison with the clinical audit department at Basildon Hospital. We had a response rate of 74% and an admission rate of 0%, which compares favourably with day case tonsillectomy surgery. Of the patients, 75% did not experience further episodes of tonsillitis 12 months after the procedure and 77% of the patients were glad they had the operation. Although this technique does not completely eliminate tonsillitis, it offers an alternative for those patients who prefer a procedure that is done quickly in an outpatient setting without the additional problems of general anaesthesia, overnight hospital admission and long waiting lists.

  3. Barium Ferrite Films Grown by Laser Ablation

    Lisfi, A.; Lodder, J.C.; Haan, de P.; Smithers, M.A.; Roesthuis, F.J.G.

    1998-01-01

    Pulsed laser ablation (PLA) has been used to grow barium ferrite films on Al2O3 single crystal substrates. When deposition occurs in an oxidising atmosphere at high temperatures, the films are single BaFe12O19 phase, very well oriented with (001) texture, and exhibit a large perpendicular magnetic a

  4. A chemical model of meteoric ablation

    T. Vondrak

    2008-07-01

    Full Text Available Most of the extraterrestrial dust entering the Earth's atmosphere ablates to produce metal vapours, which have significant effects on the aeronomy of the upper mesosphere and lower thermosphere. A new Chemical Ablation Model (CAMOD is described which treats the physics and chemistry of ablation, by including the following processes: sputtering by inelastic collisions with air molecules before the meteoroid melts; evaporation of atoms and oxides from the molten particle; diffusion-controlled migration of the volatile constituents (Na and K through the molten particle; and impact ionization of the ablated fragments by hyperthermal collisions with air molecules. Evaporation is based on thermodynamic equilibrium in the molten meteoroid (treated as a melt of metal oxides, and between the particle and surrounding vapour phase. The loss rate of each element is then determined assuming Langmuir evaporation. CAMOD successfully predicts the meteor head echo appearance heights, observed from incoherent scatter radars, over a wide range of meteoroid velocities. The model also confirms that differential ablation explains common-volume lidar observations of K, Ca and Ca+ in fresh meteor trails. CAMOD is then used to calculate the injection rates into the atmosphere of a variety of elements as a function of altitude, integrated over the meteoroid mass and velocity distributions. The most abundant elements (Fe, Mg and Si have peak injection rates around 85 km, with Na and K about 8 km higher. The more refractory element Ca ablates around 82 km with a Na:Ca ratio of 4:1, which does therefore not explain the depletion of atomic Ca to Na, by more than 2 orders of magnitude, in the upper mesosphere. Diffusion of the most volatile elements (Na and K does not appear to be rate-limiting except in the fastest meteoroids. Non-thermal sputtering causes ~35% mass loss from the fastest (~60–70 km s−1 and smallest (10−17–10

  5. A chemical model of meteoric ablation

    T. Vondrak

    2008-12-01

    Full Text Available Most of the extraterrestrial dust entering the Earth's atmosphere ablates to produce metal vapours, which have significant effects on the aeronomy of the upper mesosphere and lower thermosphere. A new Chemical Ablation Model (CAMOD is described which treats the physics and chemistry of ablation, by including the following processes: sputtering by inelastic collisions with air molecules before the meteoroid melts; evaporation of atoms and oxides from the molten particle; diffusion-controlled migration of the volatile constituents (Na and K through the molten particle; and impact ionization of the ablated fragments by hyperthermal collisions with air molecules. Evaporation is based on thermodynamic equilibrium in the molten meteoroid (treated as a melt of metal oxides, and between the particle and surrounding vapour phase. The loss rate of each element is then determined assuming Langmuir evaporation. CAMOD successfully predicts the meteor head echo appearance heights, observed from incoherent scatter radars, over a wide range of meteoroid velocities. The model also confirms that differential ablation explains common-volume lidar observations of K, Ca and Ca+ in fresh meteor trails. CAMOD is then used to calculate the injection rates into the atmosphere of a variety of elements as a function of altitude, integrated over the meteoroid mass and velocity distributions. The most abundant elements (Fe, Mg and Si have peak injection rates around 85 km, with Na and K about 8 km higher. The more refractory element Ca ablates around 82 km with a Na:Ca ratio of 4:1, which does therefore not explain the depletion of atomic Ca to Na, by more than 2 orders of magnitude, in the upper mesosphere. Diffusion of the most volatile elements (Na and K does not appear to be rate-limiting except in the fastest meteoroids. Non-thermal sputtering causes ~35% mass loss from the fastest (~60–70 km s−1 and smallest (10−17–10

  6. Thermochemical Ablation Analysis of the Orion Heatshield

    Sixel, William

    2015-01-01

    The Orion Multi-Purpose Crew Vehicle will one day carry astronauts to the Moon and beyond, and Orion's heatshield is a critical component in ensuring their safe return to Earth. The Orion heatshield is the structural component responsible for absorbing the intense heating environment caused by re-entry to Earth's atmosphere. The heatshield is primarily composed of Avcoat, an ablative material that is consumed during the re-entry process. Ablation is primarily characterized by two processes: pyrolysis and recession. The decomposition of in-depth virgin material is known as pyrolysis. Recession occurs when the exposed surface of the heatshield reacts with the surrounding flow. The Orion heatshield design was changed from an individually filled Avcoat honeycomb to a molded block Avcoat design. The molded block Avcoat heatshield relies on an adhesive bond to keep it attached to the capsule. In some locations on the heatshield, the integrity of the adhesive bond cannot be verified. For these locations, a mechanical retention device was proposed. Avcoat ablation was modelled in CHAR and the in-depth virgin material temperatures were used in a Thermal Desktop model of the mechanical retention device. The retention device was analyzed and shown to cause a large increase in the maximum bondline temperature. In order to study the impact of individual ablation modelling parameters on the heatshield sizing process, a Monte Carlo simulation of the sizing process was proposed. The simulation will give the sensitivity of the ablation model to each of its input parameters. As part of the Monte Carlo simulation, statistical uncertainties on material properties were required for Avcoat. Several properties were difficult to acquire uncertainties for: the pyrolysis gas enthalpy, non-dimensional mass loss rate (B´c), and Arrhenius equation parameters. Variability in the elemental composition of Avcoat was used as the basis for determining the statistical uncertainty in pyrolysis gas

  7. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  8. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  9. Burn, freeze, or photo-ablate?: comparative symptom profile in Barrett's dysplasia patients undergoing endoscopic ablation

    Gill, Kanwar Rupinder S.; Gross, Seth A.; Greenwald, Bruce D.; Hemminger, Lois L.; Wolfsen, Herbert C.

    2009-06-01

    Background: There are few data available comparing endoscopic ablation methods for Barrett's esophagus with high-grade dysplasia (BE-HGD). Objective: To determine differences in symptoms and complications associated with endoscopic ablation. Design: Prospective observational study. Setting: Two tertiary care centers in USA. Patients: Consecutive patients with BE-HGD Interventions: In this pilot study, symptoms profile data were collected for BE-HGD patients among 3 endoscopic ablation methods: porfimer sodium photodynamic therapy, radiofrequency ablation and low-pressure liquid nitrogen spray cryotherapy. Main Outcome Measurements: Symptom profiles and complications from the procedures were assessed 1-8 weeks after treatment. Results: Ten BE-HGD patients were treated with each ablation modality (30 patients total; 25 men, median age: 69 years (range 53-81). All procedures were performed in the clinic setting and none required subsequent hospitalization. The most common symptoms among all therapies were chest pain, dysphagia and odynophagia. More patients (n=8) in the porfimer sodium photodynamic therapy group reported weight loss compared to radio-frequency ablactation (n=2) and cryotherapy (n=0). Four patients in the porfimer sodium photodynamic therapy group developed phototoxicity requiring medical treatment. Strictures, each requiring a single dilation, were found in radiofrequency ablactation (n=1) and porfimer sodium photodynamic therapy (n=2) patients. Limitations: Small sample size, non-randomized study. Conclusions: These three endoscopic therapies are associated with different types and severity of post-ablation symptoms and complications.

  10. Electrolytic Effects During Tissue Ablation by Electroporation.

    Rubinsky, Liel; Guenther, Enric; Mikus, Paul; Stehling, Michael; Rubinsky, Boris

    2016-10-01

    Nonthermal irreversible electroporation is a new tissue ablation technique that consists of applying pulsed electric fields across cells to induce cell death by creating permanent defects in the cell membrane. Nonthermal irreversible electroporation is of interest because it allows treatment near sensitive tissue structures such as blood vessels and nerves. Two recent articles report that electrolytic reaction products at electrodes can be combined with electroporation pulses to augment and optimize tissue ablation. Those articles triggered a concern that the results of earlier studies on nonthermal irreversible electroporation may have been tainted by unaccounted for electrolytic effects. The goal of this study was to reexamine previous studies on nonthermal irreversible electroporation in the context of these articles. The study shows that the results from some of the earlier studies on nonthermal irreversible electroporation were affected by unaccounted for electrolysis, in particular the research with cells in cuvettes. It also shows that tissue ablation ascribed in the past to irreversible electroporation is actually caused by at least 3 different cytotoxic effects: irreversible electroporation without electrolysis, irreversible electroporation combined with electrolysis, and reversible electroporation combined with electrolysis. These different mechanisms may affect cell and tissue ablation in different ways, and the effects may depend on various clinical parameters such as the polarity of the electrodes, the charge delivered (voltage, number, and length of pulses), and the distance of the target tissue from the electrodes. Current clinical protocols employ ever-increasing numbers of electroporation pulses to values that are now an order of magnitude larger than those used in our first fundamental nonthermal irreversible electroporation studies in tissues. The different mechanisms of cell death, and the effect of the clinical parameters on the mechanisms may

  11. Silicon-Class Ablators for NIC Ignition Capsules

    Ho, Darwin; Salmonson, Jay; Haan, Steve

    2012-10-01

    We present design studies using silicon-class ablators (i.e., Si, SiC, SiB6, and SiB14) for NIC ignition capsules. These types of ablators have several advantages in that they: (a) require no internal dopant layers and are robust to M-band radiation; (b) have smooth outer surfaces; (c) have stable fuel-ablator interface; and (d) have good 1-D performance. The major disadvantage for some of the ablators in this class is the relatively smaller ablation stabilization. Consequently, the ablator is more susceptible to breakup caused by RT instabilities. However, smoother outer surfaces on this class of ablators can reduce the effect of RT instabilities. 2-D simulations of SiC ablators show ignition failure despite smooth surfaces and good 1-D performance. But SiB6 and SiB14 ablators exhibit promising behaviors. SiB6 (SiB14) ablators have high 1-D ignition margin and high peak core hydrodynamic pressure 880 (900) Gbar. The ablation scale length for SiB6 is longer than that for SiC and for SiB14 is comparable to that of plastic. Therefore, we expect acceptable performance for SiB6 and less RT growth for SiB14. 2-D simulations are now in progress.

  12. Tissue temperatures and lesion size during irrigated tip catheter radiofrequency ablation: an in vitro comparison of temperature-controlled irrigated tip ablation, power-controlled irrigated tip ablation, and standard temperature-controlled ablation

    Petersen, H H; Chen, X; Pietersen, A;

    2000-01-01

    in the power-controlled mode with high power and high infusion rate, and is associated with an increased risk of crater formation, which is related to high tissue temperatures. The present study explored the tissue temperatures during temperature-controlled irrigated tip ablation, comparing it with standard......The limited success rate of radiofrequency catheter ablation in patients with ventricular tachycardias related to structural heart disease may be increased by enlarging the lesion size. Irrigated tip catheter ablation is a new method for enlarging the size of the lesion. It was introduced...... temperature-controlled ablation and power-controlled irrigated tip ablation. In vitro strips of porcine left ventricular myocardium were ablated. Temperature-controlled irrigated tip ablation at target temperatures 60 degrees C, 70 degrees C, and 80 degrees C with infusion of 1 mL saline/min were compared...

  13. Ablation of GaN Using a Femtosecond Laser

    刘伟民; 朱荣毅; 钱土雄; 袁述; 张国义

    2002-01-01

    We study the pulsed laser ablation of wurtzite gallium nitride (GaN) films grown on sapphire, using the fem tosecond laser beam at a central wavelength of 800nm as the source for the high-speed ablation of GaN films. By measuring the backscattered Raman spectrum of ablated samples, the dependence of the ablation depth on laser fluence with one pulse was obtained. The threshold laser fluence for the ablation of GaN films was determined to be about 0.25J/cm2. Laser ablation depth increases with the increasing laser fluence until the amount of removed material is not further increased. The ablated surface was investigated by an optical surface interference profile meter.

  14. Wavelength dependence of soft tissue ablation by using pulsed lasers

    Xianzeng Zhang; Shusen Xie; Qing Ye; Zhenlin Zhan

    2007-01-01

    Pulsed laser ablation of soft biological tissue was studied at 10.6-, 2.94-, and 2.08-μm wavelengths. The ablation effects were assessed by means of optical microscope, the ablation crater depths were measured with reading microscope. It was shown that Er:YAG laser produced the highest quality ablation with clear,sharp cuts following closely the patial contour of the incident beam and the lowest fluence threshold. The pulsed CO2 laser presented the moderate quality ablation with the highest ablation efficiency. The craters drilled with Ho:YAG laser were generally larger than the incident laser beam spot, irregular in shape, and clearly dependent on the local morphology of biotissue. The blation characteristics, including fluence threshold and ablation efficiency, varied substantially with wavelength. It is not evident that water is the only dominant chromophore in tissue.

  15. Ablation of steel using picosecond laser pulses in burst mode

    Lickschat, Peter; Demba, Alexander; Weissmantel, Steffen

    2017-02-01

    Results obtained in picosecond laser processing of steel applying the burst mode are presented. Using the burst mode, pulse trains, i.e., bursts, consisting of a number of picosecond pulses with an inter-pulse delay of 12.5 ns and 10 ps pulse duration are applied for material processing. Small cavities with sizes in the range of the laser beam diameter made by single-burst ablation are compared to quadratic cavities of 0.5 × 0.5 mm² produced by multiburst ablation and simultaneous scanning of the laser beam across the steel sample surface. The ablated volume per pulse within the burst was calculated either from the ablated volume per burst or from the ablation depth of the quadratic cavities. With the second to fourth pulses in the bursts, a reduction of the ablated volume per pulse in comparison with the first pulse in the bursts (i.e., to the use of single pulses) was found for both single- and multiburst ablation, which is assumed to be due to plasma shielding. By contrast, the ablated volume per pulse within the bursts increases for the fifth to eighth pulses. Heat accumulation effect and the influence of the heated plasma can be assumed to be the reason for these higher ablation rates. SEM micrographs also show that there is a higher melt ejection out of the laser processed area. This is indicated by the formation of bulges about the ablated area.

  16. Percutaneous thermal ablation of renal neoplasms; Perkutane Thermoablation von Nierentumoren

    Tacke, J. [Inst. fuer Diagnostische und Interventionelle Radiologie/Neuroradiologie, Klinikum Passau (Germany); Mahnken, A.H.; Guenther, R.W. [Klinik fuer Radiologische Diagnostik, Universitaetsklinikum Aachen (Germany)

    2005-12-15

    Due to modern examination techniques such as multidetector computed tomography and high-field magnetic resonance imaging, the detection rate of renal neoplasms is continually increasing. Even though tumors exceeding 4 cm in diameter rarely metastasize, all renal lesions that are possible neoplasms should be treated. Traditional treatment techniques include radical nephrectomy or nephron-sparing resection, which are increasingly performed laparoscopically. Modern thermal ablation techniques such as hyperthermal techniques like radiofrequency ablation RFA, laser induced thermal ablation LITT, focused ultrasound FUS and microwave therapy MW, as well as hypothermal techniques (cryotherapy) may be a useful treatment option for patients who are unfit for or refuse surgical resection. Cryotherapy is the oldest and best known thermal ablation technique and can be performed laparoscopically or percutaneously. Since subzero temperatures have no antistyptic effect, additional maneuvers must be performed to control bleeding. Percutaneous cryotherapy of renal tumors is a new and interesting method, but experience with it is still limited. Radiofrequency ablation is the most frequently used method. Modern probe design allows volumes between 2 and 5 cm in diameter to be ablated. Due to hyperthermal tract ablation, the procedure is deemed to be safe and has a low complication rate. Although there are no randomized comparative studies to open resection, the preliminary results for renal RFA are promising and show RFA to be superior to other thermal ablation techniques. Clinical success rates are over 90% for both, cryo- and radiofrequency ablation. Whereas laser induced thermal therapy is established in hepatic ablation, experience is minimal with respect to renal application. For lesions of more than 2 cm in diameter, additional cooling catheters are required. MR thermometry offers temperature control during ablation. Microwave ablation is characterized by small ablation volumes

  17. [Atrial fibrillation ablation: application of nurse methodology].

    Ramos-González-Serna, Amelia; Mateos-García, M Dolores

    2011-01-01

    Ablation of pulmonary veins for treatment of atrial fibrillation involves applying radiofrequency energy wave by a catheter that causes a circumferential lesion to achieve electrical isolation and voltage drop in the interior. It is mainly applied when there is resistance to treatment and recurrence of symptoms affecting the quality of life of patients. The nurse is an important part of the multidisciplinary team who care for patients who undergo this procedure. The provision of comprehensive nursing care should include nursing procedures prior to, during, and after treatment to ensure the careful and systematic quality required. The aims of this article are: to provide specialised knowledge on the procedure of atrial fibrillation ablation, to describe the preparation of the electrophysiology laboratory, analyse nursing care and develop a standardized care plan for patients on whom this procedure is performed using the NANDA (North American Nursing Association) taxonomy and NIC (Nursing Intervention Classification).

  18. 3D Multifunctional Ablative Thermal Protection System

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  19. Design calculations for NIF convergent ablator experiments

    Olson R.E.

    2013-11-01

    Full Text Available The NIF convergent ablation tuning effort is underway. In the early experiments, we have discovered that the design code simulations over-predict the capsule implosion velocity and shock flash ρr, but under-predict the hohlraum x-ray flux measurements. The apparent inconsistency between the x-ray flux and radiography data implies that there are important unexplained aspects of the hohlraum and/or capsule behavior.

  20. Radiofrequency ablation of two femoral head chondroblastomas

    Petsas, Theodore [Department of Radiology, University of Patras (Greece); Megas, Panagiotis [Department of Orthopaedic Surgery, University of Patras (Greece)]. E-mail: panmegas@med.upatras.gr; Papathanassiou, Zafiria [Department of Radiology, University of Patras (Greece)

    2007-07-15

    Chondroblastoma is a rare benign cartilaginous bone tumor. Surgical resection is the treatment of choice for pain relief and prevention of further growth. Open surgical techniques are associated with complications, particularly when the tumors are located in deep anatomical sites. The authors performed RF ablation in two cases of subarticular femoral head chondroblastomas and emphasize its positive impact. The clinical course, the radiological findings and the post treatment results are discussed.

  1. A tubular electrode for radiofrequency ablation therapy

    Antunes, Carlos Lemos Lemos Lemos

    2012-07-06

    Purpose – Due to its good mechanical and biocompatibility characteristics, nitinol SEMS is a popular endoprothesis used for relieving stricture problems in hollow organs due to carcinomas. Besides its mechanical application, SEMS can be regarded as well as potential electrode for performing RF ablation therapy on the tumor. The purpose of this work is to perform numerical and experimental analyses in order to characterize the lesion volume induced in biological tissue using this kind of tubular electrode. Design/methodology/approach – Data concerning electrical conductivity and dimension of the damaged tissue after RF ablation procedure were obtained from ex vivo samples. Next, numerical models using 3D finite element method were obtained reassembling the conditions considered at experimentation setup and results were compared. Findings – Numerical and experimental results show that a regular volume of damaged tissue can be obtained considering this type of electrode. Also, results obtained from numerical simulation are close to those obtained by experimentation. Originality/value – SEMSs, commonly used as devices to minimize obstruction problems due to the growth of tumors, may still be considered as an active electrode for RF ablation procedures. A method considering this observation is presented in this paper. Also, numerical simulation can be regarded in this case as a tool for determining the lesion volume.

  2. Radiative Ablation of Disks Around Massive Stars

    Kee, N D

    2015-01-01

    Hot, massive stars (spectral types O and B) have extreme luminosities ($10^4 -10^6 L_\\odot$) that drive strong stellar winds through UV line-scattering. Some massive stars also have disks, formed by either decretion from the star (as in the rapidly rotating "Classical Be stars"), or accretion during the star's formation. This dissertation examines the role of stellar radiation in driving (ablating) material away from these circumstellar disks. A key result is that the observed month to year decay of Classical Be disks can be explained by line-driven ablation without, as previously done, appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of O stars leads to ablation of optically thin disks on dynamical timescales of order a day, providing a natural explanation for the lack of observed Oe stars. In addition to the destruction of Be disks, this dissertation also introduces a model for their formation by coupling observationally inferred non-radial pulsation modes and rapid stellar...

  3. Ultraviolet laser ablation of polyimide films

    Srinivasan, R.; Braren, B.; Dreyfus, R. W.

    1987-01-01

    Pulsed laser radiation at 193, 248, or 308 nm can etch films of polyimide (DuPont KaptonTM). The mechanism of this process has been examined by the chemical analysis of the condensible products, by laser-induced fluorescence analysis of the diatomic products, and by the measurement of the etch depth per pulse over a range of fluences of the laser pulse. The most important product as well as the only one condensible at room temperature is carbon. Laser-induced fluorescence analysis showed that C2 and CN were present in the ablation plume. At 248 nm, even well below the fluence threshold of 0.08 J/cm2 for significant ablation, these diatomic species are readily detected and are measured to leave the polymer surface with translational energy of ˜5 eV. These results, when combined with the photoacoustic studies of Dyer and Srinivasan [Appl. Phys. Lett. 48, 445 (1986)], show that a simple photochemical mechanism in which one photon or less (on average) is absorbed per monomer is inadequate. The ablation process must involve many photons per monomer unit to account for the production of predominantly small (<4 atoms) products and the ejection of these fragments at supersonic velocities.

  4. Laser ablation cell sorting in scanning cytometry

    Shen, Feimo; Price, Jeffrey H.

    2001-05-01

    Flow cytometry has been an important tool for automated cells sorting. However, the lack of good sensitivity prevents it from being used for rare events sorting; furthermore, fragile cells, anchorage-dependent cells, and clump forming cells cannot be sorted this way. A fully automated, high-speed scanning cytometer with autofocus and image segmentation is capable of accurately locating contaminant cells in a monolayer cell population. A laser ablation system was incorporated into the cytometer to negatively sort out the unwanted cells by applying a focused, ultra-short laser pulse (sub-micron diameter, pulse duration = 4 nsec, wavelength - 500 nm) to each targeted cell. Due to the high power density (approximately 1010 W/cm2) that was present at the focal point, disruptive mechanical forces were generated and were responsible for the kill. Fluorescently stained NIH-3T3 fibroblast cells were used as a model contaminant target ells in an unstained NIH-3T3 population to determine the identification-kill effectiveness. The contaminant cells were stained with the fluorochrome CellTracker Blue CMAC, whereas the background cells were left intact. Ablation pulses were applied in frame-by-frame increment batches to the cell culture on the microscope. The negative sorting effectiveness was analyzed by automatically re-scanning the post-ablation cell culture in phase contrast and propidium iodide stained epi fluorescent fields to verify cell death.

  5. Microwave soft tissue ablation (Invited Paper)

    Clegg, Peter J.; Cronin, Nigel J.

    2005-04-01

    Microsulis, in conjunction with the University of Bath have developed a set of novel microwave applicators for the ablation of soft tissues. These interstitial applicators have been designed for use in open surgical, laparoscopic and percutaneous settings and range in diameter from 2.4 to 7 mm. A 20 mm diameter flat faced interface applicator was developed as an adjunct to the open surgical interstitial applicator and has been applied to the treatment of surface breaking lesions in hepatobiliary surgery. Taken as a complete tool set the applicators are capable of treating a wide range of conditions in a safe and efficacious manner. The modality employs a radiated electromagnetic field at the allocated medical frequency of 2.45 GHz and powers between 30 and 150 Watts. Computer simulations, bench testing, safety and efficacy testing, ex-vivo and in-vivo work plus clinical trials have demonstrated that these systems are capable of generating large volumes of ablation in short times with favourable ablation geometries. Clinical studies have shown very low complication rates with minimal local recurrence. It is considered that this modality offers major advantages over currently marketed products. The technique is considered to be particularly safe as it is quick and there is no passage of current obviating the requirement for grounding pads. Since the microwave field operates primarily on water and all soft tissues with the exception of fat are made up of approximately 70% water the heating pattern is highly predictable making repeatability a key factor for this modality.

  6. Transient Newton rings in dielectrics upon fs laser ablation

    Garcia-Lechuga, Mario; Hernandez-Rueda, Javier; Solis, Javier

    2014-01-01

    We report the appearance of transient Newton rings in dielectrics (sapphire and lead-oxide glass) during ablation with single fs laser pulses. Employing femtosecond microscopy with 800 nm excitation and 400 nm illumination, we observe a characteristic ring pattern that dynamically changes for increasing delay times between pump and probe pulse. Such transient Newton rings have been previously observed in metals and semiconductors at fluences above the ablation threshold and were related to optical interference of the probe beam reflected at the front surface of the ablating layer and at the interface of the non-ablating substrate. Yet, it had been generally assumed that this phenomenon cannot be (and has not been) observed in dielectrics due to the different ablation mechanism and optical properties of dielectrics. The fact that we are able to observe them has important consequences for the comprehension of the ablation mechanisms in dielectrics and provides a new method for investigating these mechanisms in ...

  7. Ablation Performance of a Novel Super-hybrid Composite

    Jun QIU; Xiaoming CAO; Chong TIAN; Jinsong ZHANG

    2005-01-01

    A novel super-hybrid composite (NSHC) was boron-modified phenolic resin (BPR) with three-dimensional reticulated SiC ceramic (3DRC) and high silica fibers. Ablation performance of the NSHC was studied. The results show that the linear ablation rate of NSHC was lower than that of pure BPR and the high silica/BPR composite. Its linear ablation rate is 1/17 of the high silica/BPR. Mass ablation rate of the NSHC is very close to that of the pure BPR and the high silica/BPR composite. Scanning electron microscope (SEM) analysis indicates that 3DRC has scarcely changed its shape at the ablation temperature. Its special reticulated structure can restrict the materials deformation and prevent high velocity heat flow from eroding the surface of the materials largely and thus increase ablation resistance of the NSHC.

  8. Steerable sheath technology in the ablation of atrial fibrillation.

    Joseph, Jubin; Wong, Kelvin C K; Ginks, Matthew R; Bashir, Yaver; Betts, Timothy R; Rajappan, Kim

    2013-12-01

    Steerable sheaths have been shown to reduce procedure time in the catheter ablation of atrial fibrillation (AF), where catheter positioning and stability is typically challenging. This review critically addresses and highlights the recent developments in design of sheaths used to manipulate the ablation catheter and how these developments may impact on the ablation procedure itself, in particular the likelihood of first-time success. Patents relating to steerable sheaths are reviewed and discussed to gauge potential future developments in this area.

  9. [Moist ablation of the corneal surface with the Er:YAG laser. Results of optimizing ablation].

    Bende, T; Jean, B; Matallana, M; Seiler, T; Steiner, R

    1994-10-01

    The Er:YAG laser, emitting light at 2.94 microns, may be an alternative to the 193 nm excimer laser for photorefractive keratectomy. Compared to the excimer laser, the ablation rate is very high. Surface roughness is also more pronounced than for the excimer laser. Using a precorneal liquid film, these two factors can be reduced, as shown in ablation experiments performed on porcine corneas. Thermal damage of the remaining corneal tissue is another side effect. There is no significant decrease in the amount of thermal damage with this new technique,--not even when the pulse length is reduced.

  10. Numerical simulation of copper ablation by ultrashort laser pulses

    Ding, PengJi; Li, YuHong

    2011-01-01

    Using a modified self-consistent one-dimensional hydrodynamic lagrangian fluid code, laser ablation of solid copper by ultrashort laser pulses in vacuum was simulated to study fundamental mechanisms and to provide a guide for drilling periodic microholes or microgratings on the metal surface. The simulated laser ablation threshold is a approximate constancy in femtosecond regime and increases as the square root of pulse duration in picosecond regime. The ablation depth as a function of pulse duration shows four different regimes and a minimum for a pulse duration of ~ 12ps for various laser fluences. The influence of laser-induced plasma shielding on ablation depth is also studied.

  11. Effects of laser ablation on cemented tungsten carbide surface quality

    Tan, J.L.; Butler, D.L.; Sim, L.M.; Jarfors, A.E.W. [Singapore Institute of Manufacturing Technology, Singapore (Singapore)

    2010-11-15

    Although laser micromachining has been touted as being the most promising way to fabricate micro tools, there has been no proper evaluation of the effects of laser ablation on bulk material properties. The current work demonstrates the effects of laser ablation on the properties of a cemented tungsten carbide surface. Of particular interest is the resultant increase in compressive residual stresses in the ablated surface. From this study it is seen that there are no adverse effects from laser ablation of cemented tungsten carbide that would preclude its use for the fabrication of micro-tools but a finishing process may not be avoidable. (orig.)

  12. Effects of laser ablation on cemented tungsten carbide surface quality

    Tan, J. L.; Butler, D. L.; Sim, L. M.; Jarfors, A. E. W.

    2010-11-01

    Although laser micromachining has been touted as being the most promising way to fabricate micro tools, there has been no proper evaluation of the effects of laser ablation on bulk material properties. The current work demonstrates the effects of laser ablation on the properties of a cemented tungsten carbide surface. Of particular interest is the resultant increase in compressive residual stresses in the ablated surface. From this study it is seen that there are no adverse effects from laser ablation of cemented tungsten carbide that would preclude its use for the fabrication of micro-tools but a finishing process may not be avoidable.

  13. Thermal character in organic polymers with nanojoule femtosecond laser ablation

    Xiaochang Ni(倪晓昌); Ching-Yue Wang(王清月); Yanfeng Li(栗岩峰); Minglie Hu(胡明列); Zhuan Wang(王专); Lu Chai(柴路)

    2003-01-01

    Ablation experiments with femtosecond (fs) laser pulse (pulse duration 37 fs, wavelength 800 nm) on organic polymers have been performed in air. The ablation threshold is found to be only several nanojoules. The diameters of the dots ablated in the organic polymers are influenced by the laser fluence and the number of laser pulses. It is observed that heat is diffused in a threadlike manner in all directions around the central focus region. Explanations of the observed phenomena are presented. A one-dimensional waveguide is also ablated in the organic polymers.

  14. Excimer laser ablation of thin titanium oxide films on glass

    Overschelde, O. van [Condensed Matter Physics Group, University of Mons-Hainaut, B-7000 Mons (Belgium); Dinu, S. [University of ' Valahia' , Targoviste (Romania); Guisbiers, G. [Condensed Matter Physics Group, University of Mons-Hainaut, B-7000 Mons (Belgium); Monteverde, F. [Materia Nova, Unit of Electronic Microscopy, B-7000 Mons (Belgium); Nouvellon, C. [Materia Nova, Inorganic and Analytical Chemistry, B-7000 Mons (Belgium); Wautelet, M. [Condensed Matter Physics Group, University of Mons-Hainaut, B-7000 Mons (Belgium)]. E-mail: michel.wautelet@umh.ac.be

    2006-04-30

    Thin titanium dioxide films are deposited on glass substrates by magnetron sputter deposition. They are irradiated in air, by means of a KrF excimer laser. The ablation rate is measured as a function of the laser fluence per pulse, F, and of the number of pulses, N. Above a fluence threshold, the films are partially ablated. The ablated thickness does not vary linearly with N. This is the signature of a negative feedback between the film thickness and the ablation rate. The origin of this negative feedback is shown to be due to either thermal or electronic effects, or both. At high F, the film detachs from the substrate.

  15. Development of laser ablation plasma by anisotropic self-radiation

    Ohnishi Naofumi

    2013-11-01

    Full Text Available We have proposed a method for reproducing an accurate solution of low-density ablation plasma by properly treating anisotropic radiation. Monte-Carlo method is employed for estimating Eddington tensor with limited number of photon samples in each fluid time step. Radiation field from ablation plasma is significantly affected by the anisotropic Eddington tensor. Electron temperature around the ablation surface changes with the radiation field and is responsible for the observed emission. An accurate prediction of the light emission from the laser ablation plasma requires a careful estimation of the anisotropic radiation field.

  16. CT-guided radiofrequency tumor ablation in children

    Botsa, Evanthia [National and Kapodistrian University of Athens, First Pediatric Clinic, Agia Sofia Children' s Hospital, Athens (Greece); Poulou, Loukia S.; Koundouraki, Antonia; Thanos, Loukas [Sotiria General Hospital for Chest Diseases, Department of Medical Imaging and Interventional Radiology, Athens (Greece); Koutsogiannis, Ioannis [General Military Hospital NIMTS, Department of Medical Imaging, Athens (Greece); Ziakas, Panayiotis D. [Warren Alpert Medical School of Brown University Rhode Island Hospital, Division of Infectious Diseases, Providence, RI (United States); Alexopoulou, Efthimia [Attikon University Hospital, Second Department of Radiology, Athens University School of Medicine, Athens (Greece)

    2014-11-15

    Image-guided radiofrequency ablation is a well-accepted technique of interventional oncology in adults. To evaluate the efficacy and safety of CT-guided radiofrequency ablation as a minimally invasive treatment for metastatic neoplasms in children. A total of 15 radiofrequency ablation sessions were performed in 12 children and young adults (median age 9.5; range 5-18 years) with metastatic malignancies. Seven children and young adults had secondary hepatic lesions, three had pulmonary and two had bone lesions. Radiofrequency ablation was performed under conscious sedation. The median lesion size was 1.7 cm (range 1.3-2.8 cm). The median time for ablation was 8 min (range 7-10 min). Radiofrequency procedures were technically successful in all tumors. Postablation imaging immediately after, and 1 month and 3 months after radiofrequency ablation showed total necrosis in all patients. At 6-month follow-up, three patients (all with lesion size >2 cm) had local recurrence and underwent a second radiofrequency ablation session. At 2-year follow-up no patient had recurrence of the treated tumor. Post-ablation syndrome occurred in four children. No major complication occurred. CT-guided radiofrequency tumor ablation was safe and efficient for palliative treatment in our cohort of patients. (orig.)

  17. CT-guided Bipolar and Multipolar Radiofrequency Ablation (RF Ablation) of Renal Cell Carcinoma: Specific Technical Aspects and Clinical Results

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Lemm, G.; Hohenstein, E. [Minimally Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Clinic for Radiology (Germany); Bellemann, N.; Stampfl, U. [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Goezen, A. S.; Rassweiler, J. [Clinic for Urology, SLK Kliniken Heilbronn GmbH (Germany); Kauczor, H. U.; Radeleff, B. A. [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Pereira, P. L. [Minimally Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Clinic for Radiology (Germany)

    2013-06-15

    Purpose. This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. Methods. We included 22 consecutive patients (3 women; age 74.2 {+-} 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 {+-} 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Results. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 {+-} 13.6 min and 43.7 {+-} 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 {+-} 8.8 months, local recurrence-free survival was 14.4 {+-} 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 {+-} 16.6 ml/min/1.73 m{sup 2} before RF ablation vs. 47.2 {+-} 11.9 ml/min/1.73 m{sup 2} after RF ablation; not significant). Conclusions. CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  18. Similarities and differences in ablative and non-ablative iron oxide nanoparticle hyperthermia cancer treatment

    Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. Jack

    2015-03-01

    The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. It has been demonstrated by many research groups that ablative temperatures and cytotoxicity can be produced with locally NP-based hyperthermia. Such ablative NP techniques have demonstrated the potential for success. Much attention has also been given to the fact that NP may be administered systemically, resulting in a broader cancer therapy approach, a lower level of tumor NP content and a different type of NP cancer therapy (most likely in the adjuvant setting). To use NP based hyperthermia successfully as a cancer treatment, the technique and its goal must be understood and utilized in the appropriate clinical context. The parameters include, but are not limited to, NP access to the tumor (large vs. small quantity), cancer cell-specific targeting, drug carrying capacity, potential as an ionizing radiation sensitizer, and the material properties (magnetic characteristics, size and charge). In addition to their potential for cytotoxicity, the material properties of the NP must also be optimized for imaging, detection and direction. In this paper we will discuss the differences between, and potential applications for, ablative and non-ablative magnetic nanoparticle hyperthermia.

  19. Electroporation ablation: A new energy modality for ablation of arrhythmogenic cardiac substrate

    van Driel, VJHM

    2016-01-01

    At the very end of the Direct Current (DC) era, low-energy DC ablation was demonstrated to cause myocardial lesions by non-thermal irreversible electroporation (IRE) (permanent formation of pores in the cell membrane, leading to cell death), without arcing and/or barotrauma. To eliminate rather smal

  20. Micrometeorological processes driving snow ablation in an Alpine catchment

    R. Mott

    2011-08-01

    Full Text Available Mountain snow covers typically become patchy over the course of a melting season. The snow pattern during melt is mainly governed by the end of winter snow depth distribution and the local energy balance. The objective of this study is to investigate micrometeorological processes driving snow ablation in an Alpine catchment. For this purpose we combine a meteorological model (ARPS with a fully distributed energy balance model (Alpine3D. Turbulent fluxes above melting snow are further investigated by using data from eddy-correlation systems. We compare modelled snow ablation to measured ablation rates as obtained from a series of Terrestrial Laser Scanning campaigns covering a complete ablation season. The measured ablation rates indicate that the advection of sensible heat causes locally increased ablation rates at the upwind edges of the snow patches. The effect, however, appears to be active over rather short distances except for very strong wind conditions. Neglecting this effect, the model is able to capture the mean ablation rates for early ablation periods but strongly overestimates snow ablation once the fraction of snow coverage is below a critical value. While radiation dominates snow ablation early in the season, the turbulent flux contribution becomes important late in the season. Simulation results indicate that the air temperatures appear to overestimate the local air temperature above snow patches once the snow coverage is below a critical value. Measured turbulent fluxes support these findings by suggesting a stable internal boundary layer close to the snow surface causing a strong decrease of the sensible heat flux towards the snow cover. Thus, the existence of a stable internal boundary layer above a patchy snow cover exerts a dominant control on the timing and magnitude of snow ablation for patchy snow covers.

  1. Metal particles produced by laser ablation for ICP-MSmeasurements

    Gonzalez, Jhanis J.; Liu, Chunyi; Wen, Sy-Bor; Mao, Xianglei; Russo, Richard E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate metal particles of Zn and Al alloys using femtosecond (150 fs) and nanosecond (4 ns) laser pulses with identical fluences of 50 J cm{sup -2}. Characterization of particles and correlation with Inductively Coupled Plasma Mass Spectrometer (ICP-MS) performance was investigated. Particles produced by nanosecond laser ablation were mainly primary particles with irregular shape and hard agglomerates (without internal voids). Particles produced by femtosecond laser ablation consisted of spherical primary particles and soft agglomerates formed from numerous small particles. Examination of the craters by white light interferometric microscopy showed that there is a rim of material surrounding the craters formed after nanosecond laser ablation. The determination of the crater volume by white light interferometric microscopy, considering the rim of material surrounding ablation craters, revealed that the volume ratio (fs/ns) of the craters on the selected samples was approximately 9 (Zn), 7 (NIST627 alloy) and 5 (NIST1711 alloy) times more ablated mass with femtosecond pulsed ablation compared to nanosecond pulsed ablation. In addition, an increase of Al concentration from 0 to 5% in Zn base alloys caused a large increase in the diameter of the particles, up to 65% while using nanosecond laser pulses. When the ablated particles were carried in argon into an ICP-MS, the Zn and Al signals intensities were greater by factors of {approx} 50 and {approx} 12 for fs vs. ns ablation. Femtosecond pulsed ablation also reduced temporal fluctuations in the {sup 66}Zn transient signal by a factor of ten compared to nanosecond laser pulses.

  2. Thermal Performance of Ablative/ Ceramic Composite

    Adriana STEFAN

    2014-12-01

    Full Text Available A hybrid thermal protection system for atmospheric earth re-entry based on ablative materials on top of ceramic matrix composites is investigated for the protection of the metallic structure in oxidative and high temperature environment of the space vehicles. The paper focuses on the joints of ablative material (carbon fiber based CALCARB® or cork based NORCOAT TM and Ceramic Matrix Composite (CMC material (carbon fibers embedded in silicon carbide matrix, Cf/SiC, SICARBON TM or C/C-SiC using commercial high temperature inorganic adhesives. To study the thermal performance of the bonded materials the joints were tested under thermal shock at the QTS facility. For carrying out the test, the sample is mounted into a holder and transferred from outside the oven at room temperature, inside the oven at the set testing temperature (1100°C, at a heating rate that was determined during the calibration stage. The dwell time at the test temperature is up to 2 min at 1100ºC at an increasing rate of temperature up to ~ 9,5°C/s. Evaluating the atmospheric re-entry real conditions we found that the most suited cooling method is the natural cooling in air environment as the materials re-entering the Earth atmosphere are subjected to similar conditions. The average weigh loss was calculated for all the samples from one set, without differentiating the adhesive used as the weight loss is due to the ablative material consumption that is the same in all the samples and is up to 2%. The thermal shock test proves that, thermally, all joints behaved similarly, the two parts withstanding the test successfully and the assembly maintaining its integrity.

  3. Laser systems for ablative fractional resurfacing

    Paasch, Uwe; Haedersdal, Merete

    2011-01-01

    ablative laser systems. Fractionated CO(2) (10,600-nm), erbium yttrium aluminum garnet, 2940-nm and yttrium scandium gallium garnet, 2790-nm lasers are available. In this article, we present an overview of AFR technology, devices and histopathology, and we summarize the current clinical possibilities...... of a variety of skin conditions, primarily chronically photodamaged skin, but also acne and burn scars. In addition, it is anticipated that AFR can be utilized in the laser-assisted delivery of topical drugs. Clinical efficacy coupled with minimal downtime has driven the development of various fractional...

  4. Solar cell contact formation using laser ablation

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2015-07-21

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  5. Solar cell contact formation using laser ablation

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  6. Solar cell contact formation using laser ablation

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  7. Radiofrequency ablation for benign thyroid nodules.

    Bernardi, S; Stacul, F; Zecchin, M; Dobrinja, C; Zanconati, F; Fabris, B

    2016-09-01

    Benign thyroid nodules are an extremely common occurrence. Radiofrequency ablation (RFA) is gaining ground as an effective technique for their treatment, in case they become symptomatic. Here we review what are the current indications to RFA, its outcomes in terms of efficacy, tolerability, and cost, and also how it compares to the other conventional and experimental treatment modalities for benign thyroid nodules. Moreover, we will also address the issue of treating with this technique patients with cardiac pacemakers (PM) or implantable cardioverter-defibrillators (ICD), as it is a rather frequent occurrence that has never been addressed in detail in the literature.

  8. Rail gun performance and plasma characteristics due to wall ablation

    Ray, P. K.

    1986-01-01

    The experiment of Bauer, et al. (1982) is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time.

  9. Ablation of various materials with intense XUV radiation

    Juha, Libor E-mail: juha@fzu.cz; Krasa, Josef; Cejnarova, Andrea; Chvostova, Dagmar; Vorlicek, V.; Krzywinski, Jacek; Sobierajski, Ryszard; Andrejczuk, Andrzej; Jurek, Marek; Klinger, Dorota; Fiedorowicz, Henryk; Bartnik, Andrzej; Pfeifer, Miroslav; Kubat, Pavel; Pina, Ladislav; Kravarik, Jozef; Kubes, Pavel; Bakshaev, Y.L.; Korolev, V.D.; Chernenko, A.S.; Ivanov, M.I.; Scholz, Marek; Ryc, Leszek; Feldhaus, Josef; Ullschmied, Jiri; Boody, F.P

    2003-07-11

    Ablation behavior of organic polymer (polymethylmethacrylate) and elemental solid (silicon) irradiated by single pulses of XUV radiation emitted from Z-pinch, plasma-focus, and laser-produced plasmas was investigated. The ablation characteristics measured for these plasma-based sources will be compared with those obtained for irradiation of samples with XUV radiation generated by a free-electron laser.

  10. Transonic ablation flow regimes of high-Z pellets

    Kim, Hyoungkeun; Parks, Paul

    2015-01-01

    In this letter, we report results of numerical studies of the ablation of argon and neon pellets in tokamaks and compare them with theoretical predictions and studies of deuterium pellets. Results demonstrate the influence of atomic physics processes on the pellet ablation process.

  11. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation

    Cosedis Nielsen, Jens; Johannessen, Arne; Raatikainen, Pekka;

    2012-01-01

    There are limited data comparing radiofrequency catheter ablation with antiarrhythmic drug therapy as first-line treatment in patients with paroxysmal atrial fibrillation.......There are limited data comparing radiofrequency catheter ablation with antiarrhythmic drug therapy as first-line treatment in patients with paroxysmal atrial fibrillation....

  12. Trowelable ablative coating composition and method of use

    Headrick, Stephen E. (Inventor); Hill, Roger L. (Inventor)

    1989-01-01

    A trowelable ablative coating composition is disclosed. The composition comprises an epoxy resin, an amide curing agent, glass microspheres and ground cork. A method for protecting a substrate is also disclosed. The method comprises applying the trowelable ablative coating discussed above to a substrate and curing the coating composition.

  13. Percutaneous transluminal coronary rotary ablation with rotablator (European experience)

    M.E. Bertrand (Michel); J.M. Lablanche (Jean Marc); C. Bauters; P.P.T. de Jaegere (Peter); P.W.J.C. Serruys (Patrick); J. Meyer (Jurgen); U. Dietz; R. Erbel (Raimund)

    1992-01-01

    textabstractThis study reports the results from 3 European centers using rotary ablation with Rotablator, a device that is inserted into the coronary artery and removes atheroma by grinding it into millions of tiny fragments. Rotary ablation was performed in 129 patients. Primary success (reduction

  14. Ablation techniques for primary and metastatic liver tumors

    2016-01-01

    Ablative treatment methods have emerged as safe and effective therapies for patients with primary andsecondary liver tumors who are not surgical candidatesat the time of diagnosis. This article reviews the currentliterature and describes the techniques, complicationsand results for radiofrequency ablation, microwaveablation, cryoablation, and irreversible electroporation.

  15. Low vulnerability of the right phrenic nerve to electroporation ablation

    van Driel, Vincent J. H. M.; Neven, KGEJ; van Wessel, Harri; Vink, Aryan; Doevendans, Pieter A. F. M.; Wittkampf, Fred H. M.

    2015-01-01

    BACKGROUND Circular electroporation ablation is a novel ablation modality for electrical pulmonary vein isolation. With a single 200-3 application, deep circular myocardial lesions can be created. However, the acute and chronic effects of this energy source on phrenic nerve (PN) function are unknown

  16. Cold ablation driven by localized forces in alkali halides

    Hada, Masaki; Zhang, Dongfang; Pichugin, Kostyantyn; Hirscht, Julian; Kochman, Micha A.; Hayes, Stuart A.; Manz, Stephanie; Gengler, Regis Y. N.; Wann, Derek A.; Seki, Toshio; Moriena, Gustavo; Morrison, Carole A.; Matsuo, Jiro; Sciaini, German; Miller, R. J. Dwayne

    2014-01-01

    Laser ablation has been widely used for a variety of applications. Since the mechanisms for ablation are strongly dependent on the photoexcitation level, so called cold material processing has relied on the use of high-peak-power laser fluences for which nonthermal processes become dominant; often r

  17. Dynamics of Laser Ablation in Superfluid ^4{He}

    Buelna, X.; Popov, E.; Eloranta, J.

    2017-02-01

    Pulsed laser ablation of metal targets immersed in superfluid ^4{He} is visualized by time-resolved shadowgraph photography and the products are analyzed by post-experiment atomic force microscopy (AFM) measurements. The expansion dynamics of the gaseous ablation half-bubble on the target surface appears underdamped and follows the predicted behavior for the thermally induced bubble growth mechanism. An inherent instability of the ablation bubble appears near its maximum radius and no tightly focused cavity collapse or rebound events are observed. During the ablation bubble retreat phase, the presence of sharp edges in the target introduces flow patterns that lead to the creation of large classical vortex rings. Furthermore, on the nanometer scale, AFM data reveal that the metal nanoparticles created by laser ablation are trapped in spherical vortex tangles and quantized vortex rings present in the non-equilibrium liquid.

  18. Laser ablation with applied magnetic field for electric propulsion

    Batishcheva, Alla; Batishchev, Oleg; Cambier, Jean-Luc

    2012-10-01

    Using ultrafast lasers with tera-watt-level power allows efficient ablation and ionization of solid-density materials [1], creating dense and hot (˜100eV) plasma. We propose ablating small droplets in the magnetic nozzle configurations similar to mini-helicon plasma source [2]. Such approach may improve the momentum coupling compared to ablation of solid surfaces and facilitate plasma detachment. Results of 2D modeling of solid wire ablation in the applied magnetic field are presented and discussed. [4pt] [1] O. Batishchev et al, Ultrafast Laser Ablation for Space Propulsion, AIAA technical paper 2008-5294, -16p, 44th JPC, Hartford, 2008.[0pt] [2] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  19. Chemothermal Therapy for Localized Heating and Ablation of Tumor

    Zhong-Shan Deng

    2013-01-01

    Full Text Available Chemothermal therapy is a new hyperthermia treatment on tumor using heat released from exothermic chemical reaction between the injected reactants and the diseased tissues. With the highly minimally invasive feature and localized heating performance, this method is expected to overcome the ubiquitous shortcomings encountered by many existing hyperthermia approaches in ablating irregular tumor. This review provides a relatively comprehensive review on the latest advancements and state of the art in chemothermal therapy. The basic principles and features of two typical chemothermal ablation strategies (acid-base neutralization-reaction-enabled thermal ablation and alkali-metal-enabled thermal/chemical ablation are illustrated. The prospects and possible challenges facing chemothermal ablation are analyzed. The chemothermal therapy is expected to open many clinical possibilities for precise tumor treatment in a minimally invasive way.

  20. Radiofrequency Ablation for Treatment of Symptomatic Uterine Fibroids

    Siân Jones

    2012-01-01

    Full Text Available The use of thermal energy-based systems to treat uterine fibroids has resulted in a plethora of devices that are less invasive and potentially as effective in reducing symptoms as traditional options such as myomectomy. Most thermal ablation devices involve hyperthermia (heating of tissue, which entails the conversion of an external electromagnetic or ultrasound waves into intracellular mechanical energy, generating heat. What has emerged from two decades of peer-reviewed research is the concept that hyperthermic fibroid ablation, regardless of the thermal energy source, can create large areas of necrosis within fibroids resulting in reductions in fibroid volume, associated symptoms and the need for reintervention. When a greater percentage of a fibroid's volume is ablated, symptomatic relief is more pronounced, quality of life increases, and it is more likely that such improvements will be durable. We review radiofrequency ablation (RFA, one modality of hyperthermic fibroid ablation.

  1. A numerical algorithm for magnetohydrodynamics of ablated materials.

    Lu, Tianshi; Du, Jian; Samulyak, Roman

    2008-07-01

    A numerical algorithm for the simulation of magnetohydrodynamics in partially ionized ablated material is described. For the hydro part, the hyperbolic conservation laws with electromagnetic terms is solved using techniques developed for free surface flows; for the electromagnetic part, the electrostatic approximation is applied and an elliptic equation for electric potential is solved. The algorithm has been implemented in the frame of front tracking, which explicitly tracks geometrically complex evolving interfaces. An elliptic solver based on the embedded boundary method were implemented for both two- and three-dimensional simulations. A surface model on the interface between the solid target and the ablated vapor has also been developed as well as a numerical model for the equation of state which accounts for atomic processes in the ablated material. The code has been applied to simulations of the pellet ablation in a magnetically confined plasma and the laser-ablated plasma plume expansion in magnetic fields.

  2. Radiofrequency ablation of hepatic tumors: lessons learned from 3000 procedures.

    Rhim, Hyunchul; Lim, Hyo K; Kim, Young-sum; Choi, Dongil; Lee, Won Jae

    2008-10-01

    Radiofrequency ablation has been accepted as the most popular local ablative therapy for unresectable malignant hepatic tumors. For 9 years from April 1999, we performed 3000 radiofrequency ablation procedures for hepatic tumors in our institution. Our results on the safety (mortality, 0.15%/patient) and therapeutic efficacy (5-year survival rate, 58%) are similar to those of previous studies reported, supporting the growing evidence of a clear survival benefit, excellent results for local tumor control and improved quality of life. The most important lesson learned from our 3000 procedures is that the best planning, safe ablation and complete ablation are key factors for patient outcome. Furthermore, multimodality treatment is the best strategy for recurrent hepatocellular carcinoma encountered after any kind of first-line treatment.

  3. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation

    González-Castillo, Jr.; Rodriguez, E.; Jimenez-Villar, E.; Rodríguez, D.; Salomon-García, I.; de Sá, Gilberto F.; García-Fernández, T.; Almeida, DB; Cesar, CL; Johnes, R.; Ibarra, Juana C.

    2015-10-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag+ concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM).

  4. Computational modeling of ultra-short-pulse ablation of enamel

    London, R.A.; Bailey, D.S.; Young, D.A. [and others

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 sec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  5. Oestrogen sulfotransferase ablation sensitizes mice to sepsis.

    Chai, Xiaojuan; Guo, Yan; Jiang, Mengxi; Hu, Bingfang; Li, Zhigang; Fan, Jie; Deng, Meihong; Billiar, Timothy R; Kucera, Heidi R; Gaikwad, Nilesh W; Xu, Meishu; Lu, Peipei; Yan, Jiong; Fu, Haiyan; Liu, Youhua; Yu, Lushan; Huang, Min; Zeng, Su; Xie, Wen

    2015-08-10

    Sepsis is the host's deleterious systemic inflammatory response to microbial infections. Here we report an essential role for the oestrogen sulfotransferase (EST or SULT1E1), a conjugating enzyme that sulfonates and deactivates estrogens, in sepsis response. Both the caecal ligation and puncture (CLP) and lipopolysaccharide models of sepsis induce the expression of EST and compromise the activity of oestrogen, an anti-inflammatory hormone. Surprisingly, EST ablation sensitizes mice to sepsis-induced death. Mechanistically, EST ablation attenuates sepsis-induced inflammatory responses due to compromised oestrogen deactivation, leading to increased sepsis lethality. In contrast, transgenic overexpression of EST promotes oestrogen deactivation and sensitizes mice to CLP-induced inflammatory response. The induction of EST by sepsis is NF-κB dependent and EST is a NF-κB-target gene. The reciprocal regulation of inflammation and EST may represent a yet-to-be-explored mechanism of endocrine regulation of inflammation, which has an impact on the clinical outcome of sepsis.

  6. CT Guided Laser Ablation of Osteoid Osteoma

    Manohar Kachare

    2015-10-01

    Full Text Available To present our experience of Computed Tomography (CT guided laser ablation of radiologically proven osteoid osteoma in the inter trochantric region of the femur. A19 year old female presented with severe pain in left upper thigh region since 6-7 months, which was exaggerated during nights and was relived on taking oral Non Steroid Anti Inflammatory Drugs (NSAIDs. On CT scan hypodense lesion with surrounding dense sclerosis noted in intertrochanteric region in left femur. Magnetic Resonance Imaging (MRI revealed small focal predominantly cortical, oval lytic lesion in the intertrochanteric region which appeared hypointense on T1 Weighted Image (T1WI and hyperintense on T2 Weighted Image (T2WI and Short Tau Inversion Recovery (STIR image. Diffuse extensive sclerosis and hyperostosis of bone was noted surrounding the lesion appearing hypointense on T1W and T2W images. Under local anesthesia the laser fibre was inserted in the nidus under CT guidance through bone biopsy needle and 1800 joules energy delivered in the lesion continuous mode. Complete relief of pain noted after 24 hours after the treatment. CT guided LASER ablation is a safe, simple and effective method of treatment for osteoid osteoma.

  7. Post-Ablation Endometrial Carcinoma (PAEC) Following Radiofrequency Endometrial Ablation: A Case Report and Its Implications for Management of Endometrial Ablation Failures.

    Wortman, Morris; Dawkins, Josette C

    2016-10-26

    Endometrial ablation (EA) has become one of the most commonly performed gynecologic procedures in the United States and other developed countries. Global endometrial ablation (GEA) devices have supplanted resectoscopic ablation primarily because they have brought with them technical simplicity and unprecedented safety. These devices, all of which received FDA approval between 1997 and 2001, are typically used to treat abnormal uterine bleeding (AUB) in premenopausal women. Several million women in the US who have undergone a previous EA procedure are about to enter the risk pool for the development of endometrial cancer (EC). Ours is the 18th reported case of post-ablation endometrial carcinoma (PAEC) in the English literature. This case underscores the diagnostic challenges faced in evaluating women with a history of a previous EA who cannot be properly evaluated with conventional techniques such as endometrial biopsy and sonohysterography.

  8. Percutaneous Renal Tumor Ablation: Radiation Exposure During Cryoablation and Radiofrequency Ablation

    McEachen, James C., E-mail: james.mceachen2@gmail.com [Mayo Clinic, Division of Preventive, Occupational, and Aerospace Medicine (United States); Leng, Shuai; Atwell, Thomas D. [Mayo Clinic, Department of Radiology (United States); Tollefson, Matthew K. [Mayo Clinic, Department of Urology (United States); Friese, Jeremy L. [Mayo Clinic, Department of Radiology (United States); Wang, Zhen; Murad, M. Hassan [Mayo Clinic, Division of Preventive, Occupational, and Aerospace Medicine (United States); Schmit, Grant D. [Mayo Clinic, Department of Radiology (United States)

    2016-02-15

    IntroductionOnce reserved solely for non-surgical cases, percutaneous ablation is becoming an increasingly popular treatment option for a wider array of patients with small renal masses and the radiation risk needs to be better defined as this transition continues.Materials and MethodsRetrospective review of our renal tumor ablation database revealed 425 patients who underwent percutaneous ablation for treatment of 455 renal tumors over a 5-year time period. Imparted radiation dose information was reviewed for each procedure and converted to effective patient dose and skin dose using established techniques. Statistical analysis was performed with each ablative technique.ResultsFor the 331 cryoablation procedures, the mean DLP was 6987 mGycm (SD = 2861) resulting in a mean effective dose of 104.7 mSv (SD = 43.5) and the mean CTDI{sub vol} was 558 mGy (SD = 439) resulting in a mean skin dose of 563.2 mGy (SD = 344.1). For the 124 RFA procedures, the mean DLP was 3485 mGycm (SD = 1630) resulting in a mean effective dose of 50.3 mSv (SD = 24.0) and the mean CTDI{sub vol} was 232 mGy (SD = 149) resulting in a mean skin dose of 233.2 mGy (SD = 117.4). The difference in patient radiation exposure between the two renal ablation techniques was statistically significant (p < 0.001).ConclusionBoth cryoablation and RFA imparted an average skin dose that was well below the 2 Gy deterministic threshold for appreciable sequela. Renal tumor cryoablation resulted in a mean skin and effective radiation dose more than twice that for RFA. The radiation exposure for both renal tumor ablation techniques was at the high end of the medical imaging radiation dose spectrum.

  9. Transarterial ablation of hepatocellular carcinoma. Status and developments; Transvaskulaere Ablation des hepatozellulaeren Karzinoms. Ist Chemotherapie alles

    Radeleff, B.A.; Stampfl, U.; Sommer, C.M.; Bellemann, N.; Kauczor, H.U. [Universitaetsklinikum Heidelberg, Abt. Diagnostische und Interventionelle Radiologie, Radiologische Klinik, Heidelberg (Germany); Hoffmann, K. [Universitaetsklinikum Heidelberg, Abt. fuer Allgemein-, Viszeral- und Transplantationschirurgie, Chirurgische Klinik, Heidelberg (Germany); Ganten, T.; Ehehalt, R. [Universitaetsklinikum Heidelberg, Medizinische Klinik IV, Gastroenterologie, Infektionskrankheiten, Vergiftungen, Heidelberg (Germany)

    2012-01-15

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and represents the main cause of death among European patients with liver cirrhosis. Only 30-40% of patients diagnosed with HCC are candidates for curative treatment options (e.g. surgical resection, liver transplantation or ablation). The remaining majority of patients must undergo local regional and palliative therapies. Transvascular ablation of HCC takes advantage of the fact that the hypervascularized HCC receives most of its blood supply from the hepatic artery. In this context transvascular ablation describes different therapy regimens which can be assigned to four groups: cTACE (conventional transarterial chemoembolization), bland embolization (transarterial embolization TAE), DEB-TACE (TACE with drug-eluting beads, DEB) and SIRT (selective internal radiation therapy, radioembolization). Conventional TACE is the most common type of transvascular ablation and represents a combination of intra-arterial chemotherapy and embolization with occlusion of the arterial blood supply. However, there is no standardized regimen with respect to the chemotherapeutic drug, the embolic agent, the usage of lipiodol and the interval between the TACE procedures. Even the exact course of a cTACE procedure (order of chemotherapy or embolization) is not standardized. It remains unclear whether or not intra-arterial chemotherapy is definitely required as bland embolization using very small, tightly calibrated spherical particles (without intra-arterial administration of a chemotherapeutic drug) shows tumor necrosis comparable to cTACE. For DEB-TACE microparticles loaded with a chemotherapeutic drug combine the advantages of cTACE and bland embolization. Thereby, a continuing chemotherapeutic effect within the tumor might cause a further increase in intratumoral cytotoxicity and at the same time a decrease in systemic toxicity. (orig.) [German] Das hepatozellulaere Karzinom (HCC) ist weltweit betrachtet das

  10. Ablation-cooled material removal with ultrafast bursts of pulses

    Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K.; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D.; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer

    2016-09-01

    The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.

  11. Diagnosing Implosion Velocity and Ablator Dynamics at NIF

    Grim, Gary; Hayes, Anna; Jungman, Jerry; Wilson, Doug; Wilhelmy, Jerry; Bradley, Paul; Rundberg, Bob; Cerjan, Charlie

    2009-10-01

    An enhanced understanding of the environment in a burning NIF capsule is of interest to both astrophysics and thermonuclear ignition. In this talk we introduce a new diagnostic idea, designed to measure dynamic aspects of the capsule implosion that are not currently accessible. During the burn,the NIF capsule ablator is moving relative to the 14.1 MeV dt neutrons that are traversing the capsule. The resulting neutron-ablator Doppler shift causes a few unique nuclear reactions to become sensitive detectors of the ablator velocity at peak burn time. The ``point-design'' capsule at the NIF will be based on a ^9Be ablator, and the ^9Be(n,p)^9Li reaction has an energy threshold of 14.2 MeV, making it the ideal probe. As discussed in detail below, differences in the ablator velocity lead to significant differences in the rate of ^9Li production. We present techniques for measuring this ^9Li implosion velocity diagnostic at the NIF. The same experimental techniques, measuring neutron reactions on the ablator material, will allow us to determine other important dynamical quantities, such as the areal density and approximate thickness of the ablator at peak burn.

  12. [Anesthetic consideration in patients undergoing catheter ablation for atrial fibrillation].

    Oda, Toshiyuki; Takahama, Yutaka

    2012-11-01

    This chapter describes anesthetic consideration in patients undergoing catheter ablation for atrial fibrillation (AF) based on electrophysiologic or pharmacological aspects. In the 2011 guidelines of the Japanese Circulation Society for non-pharmacotherapy of cardiac arrhythmias, catheter ablation is recommended as Class I therapeutic modality for the patients with drug-refractory paroxysmal AF. Catheter ablation of AF is an invasive and long-lasting procedure necessitating sedation during treatment. However, in the most of the patients, sedation or anesthesia is possibly performed by cardiologists using propofol, midazolam or dexmedetomidine. Deep sedation accompanies a high risk of ventilatory or circulatory derangement. Furthermore, life-threatening complications, such as cerebral infarction or cardiac tamponade, can occur during ablation. Patients with AF are increasing in number as a trend in the aging society, resulting in an increase in catheter ablation in high risk patients. To accomplish safe anesthetic management of the patients for catheter ablations, anesthesiologists are required to have fundamental knowledge and skill in the performance of the catheter ablation.

  13. Actual role of radiofrequency ablation of liver metastases

    Pereira, Philippe L. [Eberhard-Karls-University of Tuebingen, Department of Diagnostic Radiology, Tuebingen (Germany)

    2007-08-15

    The liver is, second only to lymph nodes, the most common site for metastatic disease irrespective of the primary tumour. More than 50% of all patients with malignant diseases will develop liver metastases with a significant morbidity and mortality. Although the surgical resection leads to an improved survival in patients with colorectal metastases, only approximately 20% of patients are eligible for surgery. Thermal ablation and especially radiofrequency ablation emerge as an important additional therapy modality for the treatment of liver metastases. RF ablation shows a benefit in life expectancy and may lead in a selected patient group to cure. Percutaneous RF ablation appears safer (versus cryotherapy), easier (versus laser), and more effective (versus ethanol instillation and transarterial chemoembolisation) compared with other minimally invasive procedures. RF ablation can be performed by a percutaneous, laparoscopical or laparotomic approach, and may be potentially combined with chemotherapy and surgery. At present ideal candidates have tumours with a maximum diameter less than 3.5 cm. An untreatable primary tumour or a systemic disease represents contraindications for performing local therapies. Permanent technical improvements of thermal ablation devices and a better integration of thermal ablation in the overall patient care may lead to prognosis improvement in patients with liver metastases. (orig.)

  14. LAPAROSCOPIC NEPHRECTOMY USING RADIOFREQUENCY THERMAL ABLATION

    B. Ya. Alekseev

    2012-01-01

    Full Text Available The wide use of current diagnostic techniques, such as ultrasound study, computed tomography, and magnetic resonance imaging, has led to significantly increased detection rates for disease in its early stages. This gave rise to a change in the standards for the treatment of locally advanced renal cell carcinoma (RCC. Laparoscopic nephrectomy (LN has recently become the standard treatment of locally advanced RCC in the clinics having much experience with laparoscopic surgery. The chief drawback of LN is difficulties in maintaining intraoperative hemostasis and a need for creating renal tissue ischemia. The paper gives the intermediate results of application of the new procedure of LN using radiofrequency thermal ablation in patients with non-ischemic early-stage RCC.

  15. Emerging indications of endoscopic radiofrequency ablation

    Becq, Aymeric; Camus, Marine; Rahmi, Gabriel; de Parades, Vincent; Marteau, Philippe

    2015-01-01

    Introduction Radiofrequency ablation (RFA) is a well-validated treatment of dysplastic Barrett's esophagus. Other indications of endoscopic RFA are under evaluation. Results Four prospective studies (total 69 patients) have shown that RFA achieved complete remission of early esophageal squamous intra-epithelial neoplasia at a rate of 80%, but with a substantial risk of stricture. In the setting of gastric antral vascular ectasia, two prospective monocenter studies, and a retrospective multicenter study, (total 51 patients), suggest that RFA is efficacious in terms of reducing transfusion dependency. In the setting of chronic hemorrhagic radiation proctopathy, a prospective monocenter study and a retrospective multicenter study (total 56 patients) suggest that RFA is an efficient treatment. A retrospective comparative study (64 patients) suggests that RFA improves stents patency in malignant biliary strictures. Conclusions Endoscopic RFA is an upcoming treatment modality in early esophageal squamous intra-epithelial neoplasia, as well as in gastric, rectal, and biliary diseases. PMID:26279839

  16. Laser systems for ablative fractional resurfacing

    Paasch, Uwe; Haedersdal, Merete

    2011-01-01

    of a variety of skin conditions, primarily chronically photodamaged skin, but also acne and burn scars. In addition, it is anticipated that AFR can be utilized in the laser-assisted delivery of topical drugs. Clinical efficacy coupled with minimal downtime has driven the development of various fractional...... ablative laser systems. Fractionated CO(2) (10,600-nm), erbium yttrium aluminum garnet, 2940-nm and yttrium scandium gallium garnet, 2790-nm lasers are available. In this article, we present an overview of AFR technology, devices and histopathology, and we summarize the current clinical possibilities...... with AFR incorporating our personal experience. AFR is still in the exploratory era, and systematic investigations of clinical outcomes related to various system settings are needed....

  17. Nanosecond laser ablation and deposition of silicon

    Siew, Wee Ong; Tou, Teck Yong [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yap, Seong Shan; Reenaas, Turid Worren [Norwegian University of Science and Technology, Department of Physics, Trondheim (Norway); Ladam, Cecile; Dahl, Oeystein [SINTEF Materials and Chemistry, Trondheim (Norway)

    2011-09-15

    Nanosecond-pulsed KrF (248 nm, 25 ns) and Nd:YAG (1064 nm, 532 nm, 355 nm, 5 ns) lasers were used to ablate a polycrystalline Si target in a background pressure of <10{sup -4} Pa. Si films were deposited on Si and GaAs substrates at room temperature. The surface morphology of the films was characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Round droplets from 20 nm to 5 {mu}m were detected on the deposited films. Raman Spectroscopy indicated that the micron-sized droplets were crystalline and the films were amorphous. The dependence of the properties of the films on laser wavelengths and fluence is discussed. (orig.)

  18. Radiofrequency interstitial tumor ablation: dry electrode.

    Johnson, D Brooke; Cadeddu, Jeffrey A

    2003-10-01

    With the shift in the treatment of small renal tumors from radical extirpative surgery to nephron-sparing approaches, dry-electrode radiofrequency ablation (RFA) has emerged as one potential modality. This application of RF energy leads to the production of heat within the treatment zone secondary to the native impedance of living tissue. Animal studies and human clinical series have demonstrated that RFA can create controlled, targeted, reproducible, and lethal lesions. Most clinical series have reported promising results, although some authors question the totality of tumor destruction by RFA. With time, the efficacy of RFA, as measured by patient survival, will be determined. Once this is known, RFA may be compared with other therapeutic modalities for small renal tumors to determine its place.

  19. Radiofrequency ablation of a misdiagnosed Brodie's abscess.

    Chan, Rs; Abdullah, Bjj; Aik, S; Tok, Ch

    2011-04-01

    Radiofrequency ablation (RFA) therapy is recognised as a safe and effective treatment option for osteoid osteoma. This case report describes a 27-year-old man who underwent computed tomography (CT)-guided percutaneous RFA for a femoral osteoid osteoma, which was diagnosed based on his clinical presentation and CT findings. The patient developed worsening symptoms complicated by osteomyelitis after the procedure. His clinical progression and subsequent MRI findings had led to a revised diagnosis of a Brodie's abscess, which was further supported by the eventual resolution of his symptoms following a combination of antibiotics treatment and surgical irrigations. This case report illustrates the unusual MRI features of osteomyelitis mimicking soft tissue tumours following RFA of a misdiagnosed Brodie's abscess and highlights the importance of a confirmatory histopathological diagnosis for an osteoid osteoma prior to treatment.

  20. Ablation dynamics in laser sclerotomy ab externo

    Brinkmann, Ralf; Droege, Gerit; Mohrenstecher, Dirk; Scheu, M.; Birngruber, Reginald

    1996-01-01

    Laser sclerostomy ab externo with flashlamp excited mid-IR laser systems emitting in the 2-3 micrometer spectral range is in phase II clinical trials. Although acutely high success rates were achieved, the restenosis rate after several months is about 40%. Laser pulses of several hundreds of microseconds, known to induce thermo-mechanical explosive evaporation were used for this procedure. We investigated the ablation dynamics in tissue and the cavitation bubble dynamics in water by means of an Er:YAG laser system to estimate the extent of mechanical damage zones in the sclera and in the anterior chamber, which may contribute to the clinical failure. We found substantial mechanical tissue deformation during the ablation process caused by the cavitation effects. Stress waves up to several bar generated by explosive evaporization were measured. The fast mechanical stretching and collapsing of the scleral tissue induced by cavitation resulted in tissue dissection as could be proved by flash photography and histology. The observed high restenosis might be a result of a subsequent enhanced wound healing process. Early fistula occlusions due to iris adherences, observed in about 20% of the clinical cases may be attributed to intraocular trauma induced by vapor bubble expansion through the anterior chamber after scleral perforation. An automatic feedback system minimizing adverse effects by steering and terminating the laser process during scleral fistulization is demonstrated. Moreover, a new approach in laser sclerostomy ab externo is presented using a cw-IR laser diode system emitting at the 1.94 micrometer mid-IR water absorption peak. This system was used in vitro and showed smaller damage zones compared to the pulsed laser radiation.

  1. Laparoscopic radiofrequency ablation of neuroendocrine liver metastases.

    Berber, Eren; Flesher, Nora; Siperstein, Allan E

    2002-08-01

    We previously reported on the safety and efficacy of laparoscopic radiofrequency thermal ablation (RFA) for treating hepatic neuroendocrine metastases. The aim of this study is to report our 5-year RFA experience in the treatment of these challenging group of patients. Of the 222 patients with 803 liver primary and secondary tumors undergoing laparoscopic RFA between January 1996 and August 2001, a total of 34 patients with 234 tumors had neuroendocrine liver metastases. There were 25 men and 9 women with a mean +/- SEM age of 52 +/- 2 years who underwent 42 ablations. Primary tumor types included carcinoid tumor in 18 patients, medullary thyroid cancer in 7, secreting islet cell tumor in 5, and nonsecreting islet cell tumor in 4. There was no mortality, and the morbidity was 5%. The mean hospital stay was 1.1 days. Symptoms were ameliorated in 95%, with significant or complete symptom control in 80% of the patients for a mean of 10+ months (range 6-24 months). All patients were followed for a mean +/- SEM of 1.6 +/- 0.2 years (range 1.0-5.4 years). During this period new liver lesions developed in 28% of patients, new extrahepatic disease in 25%, and local liver recurrence in 13%; existing liver lesions progressed in 13%. Overall 41% of patients showed no progression of their cancer. Nine patients (27%) died. Mean +/- SEM survivals after diagnosis of primary disease, detection of liver metastases, and performance of RFA were 5.5 +/- 0.8 years, 3.0 +/- 0.3 years, and 1.6 +/- 0.2 years, respectively. Sixty-five percent of the patients demonstrated a partial or significant decrease in their tumor markers during follow-up. In conclusion, RFA provides excellent local tumor control with overnight hospitalization and low morbidity in the treatment of liver metastases from neuroendocrine tumors. It is a useful modality in the management of these challenging group of patients.

  2. Deflection of uncooperative targets using laser ablation

    Thiry, Nicolas; Vasile, Massimiliano

    2015-09-01

    Owing to their ability to move a target in space without requiring propellant, laser-based deflection methods have gained attention among the research community in the recent years. With laser ablation, the vaporized material is used to push the target itself allowing for a significant reduction in the mass requirement for a space mission. Specifically, this paper addresses two important issues which are thought to limit seriously the potential efficiency of a laser-deflection method: the impact of the tumbling motion of the target as well as the impact of the finite thickness of the material ablated in the case of a space debris. In this paper, we developed a steady-state analytical model based on energetic considerations in order to predict the efficiency range theoretically allowed by a laser deflection system in absence of the two aforementioned issues. A numerical model was then implemented to solve the transient heat equation in presence of vaporization and melting and account for the tumbling rate of the target. This model was also translated to the case where the target is a space debris by considering material properties of an aluminium 6061-T6 alloy and adapting at every time-step the size of the computational domain along with the recession speed of the interface in order to account for the finite thickness of the debris component. The comparison between the numerical results and the analytical predictions allow us to draw interesting conclusions regarding the momentum coupling achievable by a given laser deflection system both for asteroids and space debris in function of the flux, the rotation rate of the target and its material properties. In the last section of this paper, we show how a reasonably small spacecraft could deflect a 56m asteroid with a laser system requiring less than 5kW of input power.

  3. Ablation from metals induced by visible and UV laser irradiation

    Svendsen, Winnie Edith; Schou, Jørgen; Thestrup Nielsen, Birgitte

    1996-01-01

    The deposition rate of laser-ablated silver has been determined for fluences between 0.5 and 15 J/cm2 at the wavelengths 532 and 355 nm for a beam spot area of around 0.01 cm2. The ablated metal was collected on a quartz crystal microbalance. The rate at 5 J/cm2 was about 4 × 1013 Ag/cm2 per pulse...... for 532 nm, and somewhat lower for 355 nm. The initial vaporization during the ablation has been studied numerically as well....

  4. Ablative Thermal Response Analysis Using the Finite Element Method

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  5. Analysis of illicit drugs by direct ablation of solid samples.

    Bermúdez, Celina; Cabezas, Carlos; Mata, Santiago; Berdakin, Matias; Tejedor, Jesús M; Alonso, José L

    2015-01-01

    Analysis of illicit drugs arises as an important field of work given the high social impacts presented by drugs in the modern society. Direct laser ablation of solid compounds allows their analysis without sampling or preparation procedures. For that purpose, an experimental set-up that combines laser ablation with time-of- flight mass spectrometry has been constructed very recently to perform studies on the mass spectra of such drugs as 3,4-methylenedioxy-N-methylamphetamine, commonly known as MDMA or ecstasy. Analysis of the observed fragmentation pattern in mass spectra may elucidate the ablation-induced photofragmentation phenomena produced, which differ from those previously observed with conventional ionization methods.

  6. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  7. Effects of Confined Laser Ablation on Laser Plasma Propulsion

    ZHENG Zhi-Yuan; ZHANG Jie; LU Xin; HAO Zuo-Qiang; XU Miao-Hua; WANG Zhao-Hua; WEI Zhi-Yi

    2005-01-01

    @@ We investigate the effects of confined laser ablation on laser plasma propulsion. Compared with planar ablation,the cavity ablation provides an effective way to obtain a large target momentum and a high coupling coefficient.When laser pukes are focused into a cavity with 1 mm diameter and 2mm depth, a high coupling coefficient is obtained. By using a glass layer to cover the cavity, the coupling coefficient is enhanced by 10 times. Meanwhile,it is found that with the increase of the target surface size, the target momentum presents a linear increase.

  8. Ablation response testing of simulated radioisotope power supplies

    Lutz, Steven A.; Chan, Chris C.

    1994-05-01

    Results of an experimental program to assess the aerothermal ablation response of simulated radioisotope power supplies are presented. Full-scale general purpose heat source, graphite impact shell, and lightweight radioisotope heater unit test articles are all tested without nuclear fuel in simulated reentry environments. Convective stagnation heating, stagnation pressure, stagnation surface temperature, surface recession profile, and weight loss measurements are obtained for diffusion-limited and sublimation ablation conditions. The recession profile and weight loss measurements show an effect of surface features on the stagnation face. The surface features alter the local heating which in turn affects the local ablation.

  9. Micrometeorological processes driving snow ablation in an Alpine catchment

    R. Mott

    2011-11-01

    Full Text Available Mountain snow covers typically become patchy over the course of a melting season. The snow pattern during melt is mainly governed by the end of winter snow depth distribution and the local energy balance. The objective of this study is to investigate micro-meteorological processes driving snow ablation in an Alpine catchment. For this purpose we combine a meteorological boundary-layer model (Advanced Regional Prediction System with a fully distributed energy balance model (Alpine3D. Turbulent fluxes above melting snow are further investigated by using data from eddy-correlation systems. We compare modeled snow ablation to measured ablation rates as obtained from a series of Terrestrial Laser Scanning campaigns covering a complete ablation season. The measured ablation rates indicate that the advection of sensible heat causes locally increased ablation rates at the upwind edges of the snow patches. The effect, however, appears to be active over rather short distances of about 4–6 m. Measurements suggest that mean wind velocities of about 5 m s−1 are required for advective heat transport to increase snow ablation over a long fetch distance of about 20 m. Neglecting this effect, the model is able to capture the mean ablation rates for early ablation periods but strongly overestimates snow ablation once the fraction of snow coverage is below a critical value of approximately 0.6. While radiation dominates snow ablation early in the season, the turbulent flux contribution becomes important late in the season. Simulation results indicate that the air temperatures appear to overestimate the local air temperature above snow patches once the snow coverage is low. Measured turbulent fluxes support these findings by suggesting a stable internal boundary layer close to the snow surface causing a strong decrease of the sensible heat flux towards the snow cover. Thus, the existence of a stable internal boundary layer above a patchy snow cover

  10. Radiofrequency Ablation for Iatrogenic Thyroid Artery Pseudoaneurysm: Initial Experience.

    Jun, Ye Kyeong; Jung, So Lyung; Byun, Ho Kyun; Baek, Jung Hwan; Sung, Jin Yong; Sim, Jung Suk

    2016-10-01

    Eight iatrogenic thyroid pseudoaneurysms (ITPAs) after thyroid biopsy are reported. The mean ITPA diameter was 7.2 mm (range 4 to 12 mm). Ultrasound (US)-guided compression was initially performed at the neck of the ITPA in all cases. Among them, 4 ITPAs persisted (50%) in which radiofrequency (RF) ablation was performed. Mean RF ablation time and power were 13.5 seconds (range 5 to 24 seconds) and 20 W (range 10 to 50 W), respectively. All 4 cases were treated with RF ablation without any complications.

  11. Enhanced coupling of optical energy during liquid-confined metal ablation

    Kang, Hyun Wook, E-mail: wkang@pknu.ac.kr [Department of Biomedical Engineering, Pukyong National University, Busan, South Korea and Center for Marine-integrated Biomedical Technology (MIBT), Pukyong National University, Busan (Korea, Republic of); Welch, Ashley J. [Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712 (United States)

    2015-10-21

    Liquid-confined laser ablation was investigated with various metals of indium, aluminum, and nickel. Ablation threshold and rate were characterized in terms of surface deformation, transient acoustic responses, and plasma emissions. The surface condition affected the degree of ablation dynamics due to variations in reflectance. The liquid confinement yielded up to an order of larger ablation crater along with stronger acoustic transients than dry ablation. Enhanced ablation performance resulted possibly from effective coupling of optical energy at the interface during explosive vaporization, plasma confinement, and cavitation. The deposition of a liquid layer can induce more efficient ablation for laser metal processing.

  12. Endovascular Radiofrequency Ablation for Varicose Veins

    2011-01-01

    Executive Summary Objective The objective of the MAS evidence review was to conduct a systematic review of the available evidence on the safety, effectiveness, durability and cost–effectiveness of endovascular radiofrequency ablation (RFA) for the treatment of primary symptomatic varicose veins. Background The Ontario Health Technology Advisory Committee (OHTAC) met on August 26th, 2010 to review the safety, effectiveness, durability, and cost-effectiveness of RFA for the treatment of primary symptomatic varicose veins based on an evidence-based review by the Medical Advisory Secretariat (MAS). Clinical Condition Varicose veins (VV) are tortuous, twisted, or elongated veins. This can be due to existing (inherited) valve dysfunction or decreased vein elasticity (primary venous reflux) or valve damage from prior thrombotic events (secondary venous reflux). The end result is pooling of blood in the veins, increased venous pressure and subsequent vein enlargement. As a result of high venous pressure, branch vessels balloon out leading to varicosities (varicose veins). Symptoms typically affect the lower extremities and include (but are not limited to): aching, swelling, throbbing, night cramps, restless legs, leg fatigue, itching and burning. Left untreated, venous reflux tends to be progressive, often leading to chronic venous insufficiency (CVI). A number of complications are associated with untreated venous reflux: including superficial thrombophlebitis as well as variceal rupture and haemorrhage. CVI often results in chronic skin changes referred to as stasis dermatitis. Stasis dermatitis is comprised of a spectrum of cutaneous abnormalities including edema, hyperpigmentation, eczema, lipodermatosclerosis and stasis ulceration. Ulceration represents the disease end point for severe CVI. CVI is associated with a reduced quality of life particularly in relation to pain, physical function and mobility. In severe cases, VV with ulcers, QOL has been rated to be as bad

  13. Universal threshold for femtosecond laser ablation with oblique illumination

    Liu, Xiao-Long; Cheng, Weibo; Petrarca, Massimo; Polynkin, Pavel

    2016-10-01

    We quantify the dependence of the single-shot ablation threshold on the angle of incidence and polarization of a femtosecond laser beam, for three dissimilar solid-state materials: a metal, a dielectric, and a semiconductor. Using the constant, linear value of the index of refraction, we calculate the laser fluence transmitted through the air-material interface at the point of ablation threshold. We show that, in spite of the highly nonlinear ionization dynamics involved in the ablation process, the so defined transmitted threshold fluence is universally independent of the angle of incidence and polarization of the laser beam for all three material types. We suggest that angular dependence of ablation threshold can be utilized for profiling fluence distributions in ultra-intense femtosecond laser beams.

  14. Morphology Characterization of Uranium Particles From Laser Ablated Uranium Materials

    2011-01-01

    In the study, metallic uranium and uranium dioxide material were ablated by laser beam in order to simulate the process of forming the uranium particles in pyrochemical process. The morphology characteristic of uranium particles and the surface of

  15. Efficiency of Planetesimal Ablation in Giant Planetary Envelopes

    Pinhas, Arazi; Clarke, Cathie

    2016-01-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. I...

  16. Intra-cardiac echocardiography in alcohol septal ablation

    Cooper, Robert M; Shahzad, Adeel; Newton, James;

    2015-01-01

    Alcohol septal ablation (ASA) in hypertrophic obstructive cardiomyopathy reduces left ventricular outflow tract gradients. A third of patients do not respond; inaccurate localisation of the iatrogenic infarct can be responsible. Transthoracic echocardiography (TTE) using myocardial contrast can b...

  17. Computer-aided hepatic tumour ablation requirements and preliminary results

    Voirin, D; Amavizca, M; Letoublon, C; Troccaz, J; Voirin, David; Payan, Yohan; Amavizca, Miriam; Letoublon, Christian; Troccaz, Jocelyne

    2002-01-01

    Surgical resection of hepatic tumours is not always possible, since it depends on different factors, among which their location inside the liver functional segments. Alternative techniques consist in local use of chemical or physical agents to destroy the tumour. Radio frequency and cryosurgical ablations are examples of such alternative techniques that may be performed percutaneously. This requires a precise localisation of the tumour placement during ablation. Computer-assisted surgery tools may be used in conjunction with these new ablation techniques to improve the therapeutic efficiency, whilst they benefit from minimal invasiveness. This paper introduces the principles of a system for computer-assisted hepatic tumour ablation and describes preliminary experiments focusing on data registration evaluation. To keep close to conventional protocols, we consider registration of pre-operative CT or MRI data to intra-operative echographic data.

  18. Anatomical Consideration in Catheter Ablation of Idiopathic Ventricular Arrhythmias.

    Yamada, Takumi; Kay, G Neal

    2016-01-01

    Idiopathic ventricular arrhythmias (VAs) are ventricular tachycardias (VTs) or premature ventricular contractions (PVCs) with a mechanism that is not related to myocardial scar. The sites of successful catheter ablation of idiopathic VA origins have been progressively elucidated and include both the endocardium and, less commonly, the epicardium. Idiopathic VAs usually originate from specific anatomical structures such as the ventricular outflow tracts, aortic root, atrioventricular (AV) annuli, papillary muscles, Purkinje network and so on, and exhibit characteristic electrocardiograms based on their anatomical background. Catheter ablation of idiopathic VAs is usually safe and highly successful, but can sometimes be challenging because of the anatomical obstacles such as the coronary arteries, epicardial fat pads, intramural and epicardial origins, AV conduction system and so on. Therefore, understanding the relevant anatomy is important to achieve a safe and successful catheter ablation of idiopathic VAs. This review describes the anatomical consideration in the catheter ablation of idiopathic VAs.

  19. Mechanochemical endovenous Ablation versus RADiOfrequeNcy Ablation in the treatment of primary great saphenous vein incompetence (MARADONA) : study protocol for a randomized controlled trial

    van Eekeren, Ramon R. J. P.; Boersma, Doeke; Holewijn, Suzanne; Vahl, Anco; de Vries, Jean Paul P. M.; Zeebregts, Clark J.; Reijnen, Michel M. P. J.

    2014-01-01

    Background: Radiofrequency ablation (RFA) is associated with an excellent outcome in the treatment of great saphenous vein (GSV) incompetence. The use of thermal energy as a treatment source requires the instillation of tumescence anesthesia. Mechanochemical endovenous ablation (MOCA) combines mecha

  20. Spectroscopy Measurements on Ablation Testing in High Enthalpy Plasma Flows

    2010-11-01

    stagnation point, are located on the ablative material sample. 3.5 InfraRed THERMOGRAPHY Surface temperature measurement is a topic of great concern...high temperature material at two different narrow wavelengths. The temperature is calculated by building the ratio of the radiation intensities. The...this work is to develop the capability of testing and characterization of ablative materials exposed to high enthalpy plasma flows including both

  1. Simulation of femtosecond pulsed laser ablation of metals

    Davydov, R. V.; Antonov, V. I.

    2016-11-01

    In this paper a mathematical model for femtosecond laser ablation of metals is proposed, based on standard two-temperature model connected with 1D hydrodynamic equations. Wide-range equation of state has been developed. The simulation results are compared with experimental data for aluminium and copper. A good agreement for both metals with numerical results and experiment shows that this model can be employed for choosing laser parameters to better accuracy in nanoparticles production by ablation of metals.

  2. Optimization of the generator settings for endobiliary radiofrequency ablation

    Maximilien; Barret; Sarah; Leblanc; Ariane; Vienne; Alexandre; Rouquette; Frederic; Beuvon; Stanislas; Chaussade; Frederic; Prat

    2015-01-01

    AIM:To determine the optimal generator settings for endobiliary radiofrequency ablation. METHODS:Endobiliary radiofrequency ablation was performed in live swine on the ampulla of Vater,the common bile duct and in the hepatic parenchyma. Radiofrequency ablation time,"effect",and power were allowed to vary. The animals were sacrificed two hours after the procedure. Histopathological assessment of the depth of the thermal lesions was performed. RESULTS:Twenty-five radiofrequency bursts were applied in three swine. In the ampulla of Vater(n = 3),necrosis of the duodenal wall was observed starting with an effect set at 8,power output set at 10 W,and a 30 s shot duration,whereas superficial mucosal damage of up to 350 μm in depth was recorded for an effect set at 8,power output set at 6 W and a 30 s shot duration. In the common bile duct(n = 4),a 1070 μm,safe and efficient ablation was obtained for an effect set at 8,a power output of 8 W,and an ablation time of 30 s. Within the hepatic parenchyma(n = 18),the depth of tissue damage varied from 1620 μm(effect = 8,power = 10 W,ablation time = 15 s) to 4480 μm(effect = 8,power = 8 W,ablation time = 90 s). CONCLUSION:The duration of the catheter application appeared to be the most important parameter influencing the depth of the thermal injury during endobiliary radiofrequency ablation. In healthy swine,the currently recommended settings of the generator may induce severe,supratherapeutic tissue damage in the biliary tree,especially in the high-risk area of the ampulla of Vater.

  3. Pulsed laser ablation and deposition of niobium carbide

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J. V.; Galasso, A.; Teghil, R.

    2016-06-01

    NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation-deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  4. The characteristics of confined ablation in laser propulsion

    Zheng Zhi-Yuan; Zhang Jie; Hao Zuo-Qiang; Yuan Xiao-Hui; Zhang Zhe; Lu Xin; Wang Zhao-Hua; Wei Zhi-Yi

    2006-01-01

    Compared with direct ablation, confined ablation provides an effective way to obtain a large target momentum and a high coupling coefficient. By using a transparent glass layer to cover the target surface, the coupling coefficient is enhanced by an order of magnitude. With the increase of the gap width between the target surface and the cover layer, the coupling coefficient exponentially decreases. It is found that the coupling coefficient is also related to the thickness of the cover layer.

  5. Isotope Effects of Solid Hydrogenic Pellet Ablation in Fusion Plasma

    PENGLilin; DENGBaiquan; YANJiancheng; WANGXiaoyu

    2003-01-01

    The isotope effects of ablation processes in fusion plasma for five combinations of solid isotopic hydrogenic pellets H2, HD, D2,DT, T2 have been first time studied. The resuits show that the modifications caused by isotope effects for pellet erosion speeds range from 1 for hydrogen pellet down to 0. 487 for tritium pellet and are not negligible in ablation rate calculations. These effects lead to deeper mass deposition and improved core fueling efficiency.

  6. Langmuir probe study of plasma expansion in pulsed laser ablation

    Hansen, T.N.; Schou, Jørgen; Lunney, J.G.

    1999-01-01

    Langmuir probes were used to monitor the asymptotic expansion of the plasma produced by the laser ablation of a silver target in a vacuum. The measured angular and temporal distributions of the ion flux and electron temperature were found to be in good agreement with the self-similar isentropic...... and adiabatic solution of the gas dynamics equations describing the expansion. The value of the adiabatic index gamma was about 1.25, consistent with the ablation plume being a low temperature plasma....

  7. UV laser ablation of parylene films from gold substrates

    O. R. Musaev, P. Scott, J. M. Wrobel, and M. B. Kruger

    2009-11-19

    Parylene films, coating gold substrates, were removed by laser ablation using 248 nm light from an excimer laser. Each sample was processed by a different number of pulses in one of three different environments: air at atmospheric pressure, nitrogen at atmospheric pressure, and vacuum. The laser-induced craters were analyzed by optical microscopy and x-ray photoelectron spectroscopy. Multi-pulse ablation thresholds of gold and parylene were estimated.

  8. A case of splenic abscess after radiofrequency ablation

    Dimitris Zacharoulis; Emmanuel Katsogridakis; Constantinos Hatzitheofilou

    2006-01-01

    Radiofrequency ablation (RFA) is an innovative technique used primarily for the palliative treatment of unresectable liver tumors. Its therapeutic indications however, have been expanded and now include various other organs and diseases. There is a paucity of data regarding technical details and complications of the use of RFA in the spleen. We report a case of partial splenectomy using radiofrequency ablation for splenic hydatid disease,complicated by an abscess formation.

  9. Plasma mediated ablation of biological tissues with ultrashort laser pulses

    Oraevsky, A.A. [Lawrence Livermore National Lab., CA (United States)]|[Rice Univ., Houston, TX (United States). Dept. of Electrical Engineering; DaSilva, L.B.; Feit, M.D. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-03-08

    Plasma mediated ablation of collagen gels and porcine cornea was studied at various laser pulse durations in the range from 350 fs to 1 ns at 1,053 nm wavelength. A time resolved stress detection technique was employed to measure transient stress profiles and amplitudes. Optical microscopy was used to characterize ablation craters qualitatively, while a wide band acoustic transducer helped to quantify tissue mechanical response and the ablation threshold. The ablation threshold was measured as a function of laser pulse duration and linear absorption coefficient. For nanosecond pulses the ablation threshold was found to have a strong dependence on the linear absorption coefficient of the material. As the pulse length decreased into the subpicosecond regime the ablation threshold became insensitive to the linear absorption coefficient. The ablation efficiency was found to be insensitive to both the laser pulse duration and the linear absorption coefficient. High quality ablation craters with no thermal or mechanical damage to surrounding material were obtained with 350 fs laser pulses. The mechanism of optical breakdown at the tissue surface was theoretically investigated. In the nanosecond regime, optical breakdown proceeds as an electron collisional avalanche ionization initiated by thermal seed electrons. These seed electrons are created by heating of the tissue by linear absorption. In the ultrashort pulse range, optical breakdown is initiated by the multiphoton ionization of the irradiated medium (6 photons in case of tissue irradiated at 1,053 nm wavelength), and becomes less sensitive to the linear absorption coefficient. The energy deposition profile is insensitive to both the laser pulse duration and the linear absorption coefficient.

  10. A Rare Complication of Radiofrequency Tonsil Ablation: Horner Syndrome

    Cuneyt Kucur

    2015-01-01

    Full Text Available Chronic tonsillitis is a common disease, and several different surgical techniques are used to treat this condition. In recent years, techniques such as radiofrequency ablation and coblation have been commonly used for tonsil surgery. In this report, we present the cases of two pediatric patients who developed ptosis, miosis, and enophthalmos (Horner syndrome after radiofrequency ablation for tonsil reduction and discuss the technique of radiofrequency ablation of the tonsils. In the early postoperative period, miosis and ptosis were observed on the right side in one patient and on the left side in the other patient. Both patients were treated with 1 mg/kg/day methylprednisolone, which were tapered by halving the dose every 3 days. Miosis and ptosis improved after treatment in both patients. Along with the case presentation, we discuss the effectiveness and complications of radiofrequency ablation of the tonsils. These unusual complications of tonsil ablation may help ENT physicians who do not yet have a preferred surgical technique for tonsillectomy to make an informed decision. Limited data are available about the possible complications of radiofrequency ablation of the tonsils. The present report contributes to the literature on this topic.

  11. A Rare Complication of Radiofrequency Tonsil Ablation: Horner Syndrome

    Ozbay, Isa; Yildirim, Nadir; Zeybek Sivas, Zuhal; Canbaz Kabay, Sibel

    2015-01-01

    Chronic tonsillitis is a common disease, and several different surgical techniques are used to treat this condition. In recent years, techniques such as radiofrequency ablation and coblation have been commonly used for tonsil surgery. In this report, we present the cases of two pediatric patients who developed ptosis, miosis, and enophthalmos (Horner syndrome) after radiofrequency ablation for tonsil reduction and discuss the technique of radiofrequency ablation of the tonsils. In the early postoperative period, miosis and ptosis were observed on the right side in one patient and on the left side in the other patient. Both patients were treated with 1 mg/kg/day methylprednisolone, which were tapered by halving the dose every 3 days. Miosis and ptosis improved after treatment in both patients. Along with the case presentation, we discuss the effectiveness and complications of radiofrequency ablation of the tonsils. These unusual complications of tonsil ablation may help ENT physicians who do not yet have a preferred surgical technique for tonsillectomy to make an informed decision. Limited data are available about the possible complications of radiofrequency ablation of the tonsils. The present report contributes to the literature on this topic. PMID:26064747

  12. A Rare Complication of Radiofrequency Tonsil Ablation: Horner Syndrome.

    Kucur, Cuneyt; Ozbay, Isa; Oghan, Fatih; Yildirim, Nadir; Zeybek Sivas, Zuhal; Canbaz Kabay, Sibel

    2015-01-01

    Chronic tonsillitis is a common disease, and several different surgical techniques are used to treat this condition. In recent years, techniques such as radiofrequency ablation and coblation have been commonly used for tonsil surgery. In this report, we present the cases of two pediatric patients who developed ptosis, miosis, and enophthalmos (Horner syndrome) after radiofrequency ablation for tonsil reduction and discuss the technique of radiofrequency ablation of the tonsils. In the early postoperative period, miosis and ptosis were observed on the right side in one patient and on the left side in the other patient. Both patients were treated with 1 mg/kg/day methylprednisolone, which were tapered by halving the dose every 3 days. Miosis and ptosis improved after treatment in both patients. Along with the case presentation, we discuss the effectiveness and complications of radiofrequency ablation of the tonsils. These unusual complications of tonsil ablation may help ENT physicians who do not yet have a preferred surgical technique for tonsillectomy to make an informed decision. Limited data are available about the possible complications of radiofrequency ablation of the tonsils. The present report contributes to the literature on this topic.

  13. Thermal melting and ablation of silicon by femtosecond laser radiation

    Ionin, A. A.; Kudryashov, S. I., E-mail: sikudr@lebedev.ru; Seleznev, L. V.; Sinitsyn, D. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Bunkin, A. F.; Lednev, V. N.; Pershin, S. M. [Russian Academy of Sciences, General Physics Institute (Russian Federation)

    2013-03-15

    The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.

  14. High-Density Carbon (HDC) Ablator for NIC Ignition Capsules

    Ho, D.; Haan, S.; Salmonson, J.; Milovich, J.; Callahan, D.

    2012-10-01

    HDC ablators show high performance based on simulations, despite the fact that the shorter pulses for HDC capsules result in higher M-band radiation compared to that for plastic capsules. HDC capsules have good 1-D performance because HDC has relatively high density (3.5 g/cc), which results in a thinner ablator that absorbs more radiation. HDC ablators have good 2-D performance because the ablator surface is more than an order-of-magnitude smoother than Be or plastic ablators. Refreeze of the ablator near the fuel region can be avoided by appropriate dopant placement. Here we present two HDC ignition designs doped with W and Si. For the design with maximum W concentration of 1.0 at% (and respectively with maximum Si concentration of 2.0 at%): peak velocity = 0.395 (0.397) mm/ns, mass weighted fuel entropy = 0.463 (0.469) kJ/mg/eV, peak core hydrodynamic stagnation pressure = 690 (780) Gbar, and yield = 17.3 (20.2) MJ. 2-D simulations show that yield is close to 80% YoC even with 2.5x of nominal surface roughness on all surfaces. The clean fuel fraction is about 75% at peak velocity. Doping HDC with the required concentration of W and Si is in progress. A first undoped HDC Symcap is scheduled to be fielded later this year.

  15. Pulsed laser ablation of dental calculus in the near ultraviolet.

    Schoenly, Joshua E; Seka, Wolf; Rechmann, Peter

    2014-02-01

    Pulsed lasers emitting wavelengths near 400 nm can selectively ablate dental calculus without damaging underlying and surrounding sound dental hard tissue. Our results indicate that calculus ablation at this wavelength relies on the absorption of porphyrins endogenous to oral bacteria commonly found in calculus. Sub- and supragingival calculus on extracted human teeth, irradiated with 400-nm, 60-ns laser pulses at ≤8  J/cm2, exhibits a photobleached surface layer. Blue-light microscopy indicates this layer highly scatters 400-nm photons, whereas fluorescence spectroscopy indicates that bacterial porphyrins are permanently photobleached. A modified blow-off model for ablation is proposed that is based upon these observations and also reproduces our calculus ablation rates measured from laser profilometry. Tissue scattering and a stratified layering of absorbers within the calculus medium explain the gradual decrease in ablation rate from successive pulses. Depending on the calculus thickness, ablation stalling may occur at <5  J/cm2 but has not been observed above this fluence.

  16. The effect of asteroid topography on surface ablation deflection

    McMahon, Jay W.; Scheeres, Daniel J.

    2017-02-01

    Ablation techniques for deflecting hazardous asteroids deposit energy into the asteroid's surface, causing an effective thrust on the asteroid as the ablating material leaves normal to the surface. Although it has long been recognized that surface topography plays an important role in determining the deflection capabilities, most studies to date have ignored this aspect of the model. This paper focuses on understanding the topography for real asteroid shapes, and how this topography can change the deflection performance of an ablation technique. The near Earth asteroids Golevka, Bennu, and Itokawa are used as the basis for this study, as all three have high-resolution shape models available. This paper shows that naive targeting of an ablation method without accounting for the surface topography can lower the deflection performance by up to 20% in the cases studied in terms of the amount of acceleration applied in the desired direction. If the ablation thrust level is assumed to be 100 N, as used elsewhere in the literature, this misapplication of thrust translates to tens of kilometers per year in decreased semimajor axis change. However, if the ablation method can freely target any visible point on the surface of the asteroid, almost all of this performance can be recovered.

  17. Radiofrequency Ablation Treatment for Renal Cell Carcinoma: Early Clinical Experience

    Park, Seong Hoon; Yoon, Seong Kuk; Cho, Jin Han; Oh, Jong Young; Nam, Kyung Jin; Kwon, Hee Jin; Kim, Su Yeon; Kang, Myong Jin; Choi, Sun Seob; Sung, Gyung Tak [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2008-08-15

    To evaluate the early clinical experience associated with radiofrequency (RF) ablation in patients with renal cell carcinoma (RCC). The RF ablation treatment was performed on 17 tumors from 16 patients (mean age, 60.5 years; range, 43 73 years) with RCC. The treatment indications were localized, solid renal mass, comorbidities, high operation risk, and refusal to perform surgery. All tumors were treated by a percutaneous CT (n = 10), followed by an US-guided (n = 2), laparoscopy-assisted US (n = 2), and an open (n = 2) RF ablation. Furthermore, patients underwent a follow- up CT at one day, one week, one month, three and six months, and then every six months from the onset of treatment. We evaluated the technical success, technical effectiveness, ablation zone, benign periablation enhancement, irregular peripheral enhancement, and complications. All 17 exophytic tumors (mean size, 2.2 cm; range, 1.1 5.0 cm) were completely ablated. Technical success and effectiveness was achieved in all cases and the mean follow-up period was 23.8 months (range, 17 33 months). A local recurrence was not detected in any of the cases; however, five patients developed complications as a result of treatment, including hematuria (n = 2), mild thermal injury of the psoas muscle (n = 1), mild hydronephrosis (n = 1), and fistula formation (n = 1). The RF ablation is an alternative treatment for exophytic RCCs and represents a promising treatment for some patients with small RCCs.

  18. Mapping and monitoring of ablative thermal therapy for improved results

    Gustafson, David E.; Nadadur, Desikachari; Dalmadge, Gary W.; Nields, Morgan

    2007-02-01

    We demonstrate a method which incorporates state-of-the-art x-ray imaging with novel thermal therapy monitoring to enable improved minimally invasive thermal-therapy delivery for benign or malignant tumors. Thermal ablative techniques including RFA, microwave, and laser ablation are gaining acceptance. Incomplete treatments are common since there is no reliable method to monitor treatment zones during ablation. Treatment that doesn't encompass the entire tumor results in recurrence usually within one year. We describe a method to monitor tumor ablation zones during ablations performed under CT image guidance. This method allows the operator to predict necrosis while avoiding injury to critical structures. We validated the model using tissue and animal experiments. We also report on initial clinical results from patients receiving RFA treatments for primary or metastatic lesions. Following CT image-guidance to position RFA devices in a patient's tumor, intraprocedural CT data was acquired and processed offline. In this paper we describe the methods to monitor and provide feedback on the ablation during the study. By demonstrating the creation of accurate thermal maps in tissue and animal models, and extending this in preliminary treatment of tumors in patients, we hope to encourage the broader adoption of these methods by improving both safety and efficacy.

  19. Heat effects of metals ablated with femtosecond laser pulses

    Hirayama, Yoichi; Obara, Minoru

    2002-09-01

    Heat effects of metallic bulk crystals of Au, Ag, Cu, and Fe ablated with femtosecond Ti:sapphire laser pulses is experimentally studied. As a result of X-ray diffraction (XRD) measurements, the XRD peak signal of the area ablated with Ti:sapphire laser is much smaller than that of the crystalline metal sample. While the crystal form of the metal sample is crystalline before laser ablation, the crystal form in the ablated area is partially changed into the amorphous form. The residual pulse energy that did not contribute to the ablation process remains, which leads to the formation of thin layer of melted phase. The melted layer is abruptly cooled down not to be re-crystallized, but to transform into amorphous form. It is evident that the area ablated with femtosecond laser is changed into amorphous metals. This mechanism would be the same as the melt-quenching generally used as the fabrication method of amorphous metals. This experimental result is consistent with the theoretical result.

  20. Successful treatment of hepatic oligometastases with stereotactic ablative radiotherapy and radiofrequency ablation in an anaplastic lymphoma kinase fusion-positive lung cancer patient

    Weber, Britta; Liu, Mitchell; Sobkin, Paul;

    2016-01-01

    Local ablative therapy with stereotactic ablative radiotherapy may improve survival in oncogene‐addicted lung cancer patients with extracranial oligometastatic disease treated with targeted therapies. There is limited data on the use of radiofrequency ablation (RFA) in this same setting. We present...

  1. MR thermometry for monitoring tumor ablation

    Senneville, Baudouin D. de; Quesson, Bruno; Dragonu, Iulius; Moonen, Chrit T.W. [CNRS/Universite Bordeaux 2, Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, Bordeaux (France); Mougenot, Charles [CNRS/Universite Bordeaux 2, Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, Bordeaux (France); Philips Systemes Medicaux, Suresnes (France); Grenier, Nicolas [CNRS/Universite Bordeaux 2, Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, Bordeaux (France); Service de Radiologie-CHU Pellegrin, Bordeaux (France)

    2007-09-15

    Local thermal therapies are increasingly used in the clinic for tissue ablation. During energy deposition, the actual tissue temperature is difficult to estimate since physiological processes may modify local heat conduction and energy absorption. Blood flow may increase during temperature increase and thus change heat conduction. In order to improve the therapeutic efficiency and the safety of the intervention, mapping of temperature and thermal dose appear to offer the best strategy to optimize such interventions and to provide therapy endpoints. MRI can be used to monitor local temperature changes during thermal therapies. On-line availability of dynamic temperature mapping allows prediction of tissue death during the intervention based on semi-empirical thermal dose calculations. Much progress has been made recently in MR thermometry research, and some applications are appearing in the clinic. In this paper, the principles of MRI temperature mapping are described with special emphasis on methods employing the temperature dependency of the water proton resonance frequency. Then, the prospects and requirements for widespread applications of MR thermometry in the clinic are evaluated. (orig.)

  2. RADIOFREQUENCY ABLATION OF IDIOPATHIC RIGHT VENTRICULAR TACHYCARDIA

    华伟; JituVohra

    1998-01-01

    This paper presents our experieaee with radioreqencey ablation (RFA) for idiopathic ventricular tschycardia (VT) arising from right ventricle in 12 patients(pts). The age range d patients was 21~50, with a mean of 38. 5 years. Ten out of 12 were females, 1 patient had eandia failure due to almost incessant VT while the rest had normal left ventricular function.Twelve pts had VT arising from the fight ventricle; of those, 9 were from the outflow truct, 2 from the RV apex, and l from the RV inflow. In all tats the diagnostic study and therapeutic RFA were combined in a single procedure, pacemapping and local aetlvition time were used to guide the site of RFA in Ors with VT arising froth the tight ventricle.RFA was successful in 11 of the 12 pts ( 91%). Ntmaher of RF applications were 1~27, mean 9. 6; fluoroscopy time were 4~75, mean 26. 9 minutes. RFA for idiopathic RV has a high success rate. This mode of treament should be considered as a nonphartaaeologieal curative treatment for symptomatic pts.

  3. Modeling of multi-burst mode pico-second laser ablation for improved material removal rate

    Hu, Wenqian; Shin, Yung C.; King, Galen

    2010-02-01

    This paper deals with the unique phenomena occurring during the multi-burst mode picosecond (ps) laser ablation of metals through modeling and experimental studies. The two-temperature model (TTM) is used and expanded to calculate the ablation depth in the multi-burst mode. A nonlinear increment of ablation volume is found during the multi-burst laser ablation. The deactivation of ablated material and the application of temperature-dependent electron-phonon coupling are demonstrated to be important to provide reliable results. The simulation results based on this expanded laser ablation model are experimentally validated. A significant increase of ablation rate is found in the multi-burst mode, compared with the single-pulse mode under the same total fluence. This numerical model provides a physical perspective into the energy transport process during multi-burst laser ablation and can be used to study the pulse-to-pulse separation time effect on the ablation rate.

  4. Modeling of multi-burst mode pico-second laser ablation for improved material removal rate

    Hu, Wenqian; Shin, Yung C.; King, Galen [Purdue University, Center for Laser-based Manufacturing, School of Mechanical Engineering, West Lafayette, IN (United States)

    2010-02-15

    This paper deals with the unique phenomena occurring during the multi-burst mode picosecond (ps) laser ablation of metals through modeling and experimental studies. The two-temperature model (TTM) is used and expanded to calculate the ablation depth in the multi-burst mode. A nonlinear increment of ablation volume is found during the multi-burst laser ablation. The deactivation of ablated material and the application of temperature-dependent electron-phonon coupling are demonstrated to be important to provide reliable results. The simulation results based on this expanded laser ablation model are experimentally validated. A significant increase of ablation rate is found in the multi-burst mode, compared with the single-pulse mode under the same total fluence. This numerical model provides a physical perspective into the energy transport process during multi-burst laser ablation and can be used to study the pulse-to-pulse separation time effect on the ablation rate. (orig.)

  5. Atrium-atrioventricular node block: an unusual complication during catheter ablation of persistent atrial fibrillation

    MIAO Cheng-long; SANG Cai-hua; DONG Jian-zeng; MA Chang-sheng

    2011-01-01

    Ablation of persistent atrial fibrillation is still a challenge for the ablationist. Extensive ablation is required under some conditions and could lead to some unintended complications. Here we report a case of atrium-atrioventricular node block complicating multiple catheter ablation procedures for persistent atrial fibrillation. After extensive ablation, including circumferential pulmonary vein ablation, linear ablation at the left atrial roof, mitral isthmus, atrial septum, cavotricuspid isthmus, and complex fractionated atrial electrogram ablation, conduction obstacle was found, and sinus impulse could not travel from the right atrium, atrial septum and left atrium to atrioventricular node. The case indicated that intensive ablation at some key sites, especially the interatrial septum, should be careful during ablation of atrial fibrillation.

  6. Diagnosing implosion velocity and ablator dynamics at NIF (u)

    Hayes, Anna [Los Alamos National Laboratory; Grim, Gary [Los Alamos National Laboratory; Jungnam, Jerry [Los Alamos National Laboratory; Bradley, Paul [Los Alamos National Laboratory; Rundberg, Bob [Los Alamos National Laboratory; Wilhelmy, Jerry [Los Alamos National Laboratory; Wilson, Doug [Los Alamos National Laboratory

    2009-07-09

    An enhanced understanding of the unique physics probed in a burning NIP capsule is important for both nuclear weapons physics and thermonuclear ignition. In this talk we introduce a new diagnostic idea, designed to measure dynamic aspects of the capsule implosion that are not currently accessible. The current set of diagnostics for the NIF experiments includes reaction history (a time resolved measure of the d + t burn), neutron time-of-flight and spectrometry and spatial imaging of the neutron production and scattering. Although valuable, this abbreviated set of diagnostics cannot determine key dynamical properties of the implosion, such as implosion velocity (v{sub impl}) and ablator thickness. To surpass the present limits of {approx} 10{sup 15} d+t reactions, it will be necessary to increase significantly the implosion energy delivered to the DT fuel by finely tuning the balance between the remaining (imploding) ablator mass and velocity. If too much mass remains, the implosion velocity will be too slow, and the subsecpwnt PdV work will not be sufficient to overcome cooling via conduction and radiation. If too little mass remains, hydrodynamic instabilities will occur, resulting in unpredictable and degraded performance. Detailed calculations suggest the ablator must reach an implosion velocity of 3-4 x 10{sup 7} cm/sec and an areal density of {rho}{Delta}R {approx}200 mg/cm{sup 2} in order to achieve ignition. The authors present a new scheme to measure these important quantities using neutron reactions on the ablator material. During the burn, the ablator is moving relative to the 14.1 MeV d+t neutrons that are traversing the capsule. The resulting neutron-ablator Doppler shift causes a few unique nuclear reactions to become sensitive detectors of the ablator velocity at peak burn time. The 'point-design' capsule at the NIF will be based on a {sup 9}Be ablator, and the {sup 9}Be(n,p){sup 9}Li reaction has an energy threshold of 14.2 MeV, making it

  7. Radiofrequency ablation with epinephrine injection: in vivo study in normal pig livers

    Kim, Hyoung Jung; Lee, Dong Hoo; Lim, Joo Won; Ko, Young Tae; Kim, Youn Wha; Choi, Bong Keun [Kyung Hee University Medical Center, Seoul (Korea, Republic of)

    2007-07-15

    We wanted to evaluate whether epinephrine injection prior to radiofrequency (RF) ablation can increase the extent of thermally mediated coagulation in vivo normal pig liver tissue. Eighteen RF ablation zones were created in six pigs using a 17-gauge internally cooled electrode under ultrasound guidance. Three RF ablation zones were created in each pig under three conditions: RF ablation alone, RF ablation after the injection of 3 mL of normal saline, and RF ablation after the injection of 3 mL of epinephrine (1:10,000 solution). After the RF ablation, we measured the short and long diameters of the white zones in the gross specimens. Three of the RF ablations were technically unsuccessful; therefore, measurement of white zone was finally done in 15 RF ablation zones. The mean short and long diameters of the white zone of the RF ablation after epinephrine injection (17.2 mm {+-} 1.8 and 20.8 mm {+-} 3.7, respectively) were larger than those of RF ablation only (10 mm {+-} 1.2 and 12.2 mm {+-} 1.1, respectively) and RF ablation after normal saline injection (12.8 mm {+-} 1.5 and 15.6 mm {+-} 2.5, respectively) ({rho} < .05). RF ablation with epinephrine injection can increase the diameter of the RF ablation zone in normal pig liver tissue.

  8. Hard tissue ablation with a spray-assisted mid-IR laser

    Kang, H W [American Medical Systems, Minnetonka, MN (United States); Rizoiu, I [BioLase Technology, Irvine, CA (United States); Welch, A J [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX (United States)

    2007-12-21

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  9. Atrial Fibrillation Ablation in Systolic Dysfunction: Clinical and Echocardiographic Outcomes

    Tasso Julio Lobo

    2015-01-01

    Full Text Available Background: Heart failure and atrial fibrillation (AF often coexist in a deleterious cycle. Objective: To evaluate the clinical and echocardiographic outcomes of patients with ventricular systolic dysfunction and AF treated with radiofrequency (RF ablation. Methods: Patients with ventricular systolic dysfunction [ejection fraction (EF <50%] and AF refractory to drug therapy underwent stepwise RF ablation in the same session with pulmonary vein isolation, ablation of AF nests and of residual atrial tachycardia, named "background tachycardia". Clinical (NYHA functional class and echocardiographic (EF, left atrial diameter data were compared (McNemar test and t test before and after ablation. Results: 31 patients (6 women, 25 men, aged 37 to 77 years (mean, 59.8±10.6, underwent RF ablation. The etiology was mainly idiopathic (19 p, 61%. During a mean follow-up of 20.3±17 months, 24 patients (77% were in sinus rhythm, 11 (35% being on amiodarone. Eight patients (26% underwent more than one procedure (6 underwent 2 procedures, and 2 underwent 3 procedures. Significant NYHA functional class improvement was observed (pre-ablation: 2.23±0.56; postablation: 1.13±0.35; p<0.0001. The echocardiographic outcome also showed significant ventricular function improvement (EF pre: 44.68%±6.02%, post: 59%±13.2%, p=0.0005 and a significant left atrial diameter reduction (pre: 46.61±7.3 mm; post: 43.59±6.6 mm; p=0.026. No major complications occurred. Conclusion: Our findings suggest that AF ablation in patients with ventricular systolic dysfunction is a safe and highly effective procedure. Arrhythmia control has a great impact on ventricular function recovery and functional class improvement.

  10. CT thermometry for cone-beam CT guided ablation

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  11. Very-high-growth-factor Planar Ablative Rayleigh Taylor Experiments

    Bradley, D K; Braun, D G; Glendinning, S G; Edwards, M J; Milovich, J L; Sorce, C M; Collins, G W; Haan, S W; Page, R H

    2006-10-30

    The Rayleigh-Taylor (RT) instability is an important factor in bounding the performance envelope of ignition targets. This paper describes an experiment for ablative RT instability that for the first time achieves growth factors close to those expected to occur in ignition targets at the National Ignition Facility (NIF). The large growth allows small seed perturbations to be detected and can be used to place an upper bound on perturbation growth at the ablation front resulting from microstructure in the preferred Be ablator. The experiments were performed on the Omega laser using a halfraum 1.2 mm long by 2 mm diameter with a 75% laser entrance hole. The halfraum was filled with {approx} 1 atm of neopentane to delay gold plasma from closing the diagnostic line of sight down the axis of the halfraum. The ablator was mounted at the base of the halfraum, and was accelerated by a two stepped X-ray pulse consisting of an early time section {approx} 100 eV to emulate the NIF foot followed by an approximately constant {approx} 150 eV drive sustained over an additional 5-7ns. It is this long pulse duration and late time observation that distinguishes the present work from previous experiments, and is responsible for the large growth that is achieved. The growth of a 2D sinusoidal perturbation machined on the drive side of the ablator was measured using face-on radiography. The diagnostic view remained open until {approx} 11 ns with maximum growth factors measured to be {approx} 200. The trajectory of the ablator was measured using streaked backlit radiography. The design and analysis of the experiments is described, and implications for experiments on ignition target ablators are discussed.

  12. Near-field ablation threshold of cellular samples at mid-IR wavelengths

    Raghu, Deepa; Gamari, Benjamin; Reeves, M E

    2012-01-01

    We report the near-field ablation of material from cellulose acetate coverslips in water and my- oblast cell samples in growth media, with a spot size as small as 1.5 {\\mu}m under 3 {\\mu}m wavelength radiation. The power dependence of the ablation process has been studied and comparisons have been made to models of photomechanical and plasma-induced ablation. The ablation mechanism is mainly dependent on the acoustic relaxation time and optical properties of the materials. We find that for all near-field experiments, the ablation thresholds are very high, pointing to plasma-induced ablation as the dominant mechanism.

  13. Percutaneous radiofrequency ablation in painful bone metastases

    German Garabano

    2015-09-01

    Full Text Available Backgraund There are different treatment for painful bone metastases (mtts, with different results. CT-guided Percutaneous Radiofrequency Ablation (CT-PRA is one of them. The pupose of this retrospective study was to assess the initial results using this methods, focusing on pain relief, showing details of the surgical technique. Methods 18 patients with an average age of 59.2 years and 15 months follow-up were treated. Nine mtts were located in the femur, 4 dorsal / lumbar spine, 3 in scapula and 2 in Iliac. The Mtts origin were Breast Ca 7 cases, lung in 4, Kidney in 4 and 3 in Thyroid. The rachis mtts were found at more than 10mm of the medullary cavity and mtts of long bones showed low risk of fracture. Lesions >3cm were treated whit CT-PRA  using Valleylab Rita needle and these <3cm with CoolTip needle. Pain was assessed by Visual Analog Scale (VAS preoperatively, at 2, 7 and 30 days, and then at 3 and 6 months. Results Preoperative pain score was 8.33 on average. At 7 days of ablatión de VAS score was 5 on average and at 30 days was 2 points. After at 3 and 6 months de VAS average was 1. This method had excellent patients tolerance and no complications. There were two recurrences which underwent endoprosthesis unconventional proximal femur and knee respectively, evolving favorably. Conclusion CT-guided APRF impresses a promising, simple and effective tool in the treatment of painfull bone mtts, achieving excellent pain control with good tolerance by the patient.

  14. Pyrolysis of phenolic impregnated carbon ablator (PICA).

    Bessire, Brody K; Lahankar, Sridhar A; Minton, Timothy K

    2015-01-28

    Molar yields of the pyrolysis products of thermal protection systems (TPSs) are needed in order to improve high fidelity material response models. The volatile chemical species evolved during the pyrolysis of a TPS composite, phenolic impregnated carbon ablator (PICA), have been probed in situ by mass spectrometry in the temperature range 100 to 935 °C. The relative molar yields of the desorbing species as a function of temperature were derived by fitting the mass spectra, and the observed trends are interpreted in light of the results of earlier mechanistic studies on the pyrolysis of phenolic resins. The temperature-dependent product evolution was consistent with earlier descriptions of three stages of pyrolysis, with each stage corresponding to a temperature range. The two main products observed were H2O and CO, with their maximum yields occurring at ∼350 °C and ∼450 °C, respectively. Other significant products were CH4, CO2, and phenol and its methylated derivatives; these products tended to desorb concurrently with H2O and CO, over the range from about 200 to 600 °C. H2 is presumed to be the main product, especially at the highest pyrolysis temperatures used, but the relative molar yield of H2 was not quantified. The observation of a much higher yield of CO than CH4 suggests the presence of significant hydroxyl group substitution on phenol prior to the synthesis of the phenolic resin used in PICA. The detection of CH4 in combination with the methylated derivatives of phenol suggests that the phenol also has some degree of methyl substitution. The methodology developed is suitable for real-time measurements of PICA pyrolysis and should lend itself well to the validation of nonequilibrium models whose aim is to simulate the response of TPS materials during atmospheric entry of spacecraft.

  15. Left atrium segmentation for atrial fibrillation ablation

    Karim, R.; Mohiaddin, R.; Rueckert, D.

    2008-03-01

    Segmentation of the left atrium is vital for pre-operative assessment of its anatomy in radio-frequency catheter ablation (RFCA) surgery. RFCA is commonly used for treating atrial fibrillation. In this paper we present an semi-automatic approach for segmenting the left atrium and the pulmonary veins from MR angiography (MRA) data sets. We also present an automatic approach for further subdividing the segmented atrium into the atrium body and the pulmonary veins. The segmentation algorithm is based on the notion that in MRA the atrium becomes connected to surrounding structures via partial volume affected voxels and narrow vessels, the atrium can be separated if these regions are characterized and identified. The blood pool, obtained by subtracting the pre- and post-contrast scans, is first segmented using a region-growing approach. The segmented blood pool is then subdivided into disjoint subdivisions based on its Euclidean distance transform. These subdivisions are then merged automatically starting from a seed point and stopping at points where the atrium leaks into a neighbouring structure. The resulting merged subdivisions produce the segmented atrium. Measuring the size of the pulmonary vein ostium is vital for selecting the optimal Lasso catheter diameter. We present a second technique for automatically identifying the atrium body from segmented left atrium images. The separating surface between the atrium body and the pulmonary veins gives the ostia locations and can play an important role in measuring their diameters. The technique relies on evolving interfaces modelled using level sets. Results have been presented on 20 patient MRA datasets.

  16. Thermal Ablation for the Treatment of Abdominal Tumors

    2011-01-01

    Percutaneous thermal ablation is an emerging treatment option for many tumors of the abdomen not amenable to conventional treatments. During a thermal ablation procedure, a thin applicator is guided into the target tumor under imaging guidance. Energy is then applied to the tissue until temperatures rise to cytotoxic levels (50-60 °C). Various energy sources are available to heat biological tissues, including radiofrequency (RF) electrical current, microwaves, laser light and ultrasonic waves. Of these, RF and microwave ablation are most commonly used worldwide. During RF ablation, alternating electrical current (~500 kHz) produces resistive heating around the interstitial electrode. Skin surface electrodes (ground pads) are used to complete the electrical circuit. RF ablation has been in use for nearly 20 years, with good results for local tumor control, extended survival and low complication rates1,2. Recent studies suggest RF ablation may be a first-line treatment option for small hepatocellular carcinoma and renal-cell carcinoma3-5. However, RF heating is hampered by local blood flow and high electrical impedance tissues (eg, lung, bone, desiccated or charred tissue)6,7. Microwaves may alleviate some of these problems by producing faster, volumetric heating8-10. To create larger or conformal ablations, multiple microwave antennas can be used simultaneously while RF electrodes require sequential operation, which limits their efficiency. Early experiences with microwave systems suggest efficacy and safety similar to, or better than RF devices11-13. Alternatively, cryoablation freezes the target tissues to lethal levels (-20 to -40 °C). Percutaneous cryoablation has been shown to be effective against RCC and many metastatic tumors, particularly colorectal cancer, in the liver14-16. Cryoablation may also be associated with less post-procedure pain and faster recovery for some indications17. Cryoablation is often contraindicated for primary liver cancer due to

  17. Thermal ablation for the treatment of abdominal tumors.

    Brace, Christopher L; Hinshaw, J Louis; Lubner, Meghan G

    2011-03-07

    Percutaneous thermal ablation is an emerging treatment option for many tumors of the abdomen not amenable to conventional treatments. During a thermal ablation procedure, a thin applicator is guided into the target tumor under imaging guidance. Energy is then applied to the tissue until temperatures rise to cytotoxic levels (50-60 °C). Various energy sources are available to heat biological tissues, including radiofrequency (RF) electrical current, microwaves, laser light and ultrasonic waves. Of these, RF and microwave ablation are most commonly used worldwide. During RF ablation, alternating electrical current (~500 kHz) produces resistive heating around the interstitial electrode. Skin surface electrodes (ground pads) are used to complete the electrical circuit. RF ablation has been in use for nearly 20 years, with good results for local tumor control, extended survival and low complication rates. Recent studies suggest RF ablation may be a first-line treatment option for small hepatocellular carcinoma and renal-cell carcinoma. However, RF heating is hampered by local blood flow and high electrical impedance tissues (eg, lung, bone, desiccated or charred tissue). Microwaves may alleviate some of these problems by producing faster, volumetric heating. To create larger or conformal ablations, multiple microwave antennas can be used simultaneously while RF electrodes require sequential operation, which limits their efficiency. Early experiences with microwave systems suggest efficacy and safety similar to, or better than RF devices. Alternatively, cryoablation freezes the target tissues to lethal levels (-20 to -40 °C). Percutaneous cryoablation has been shown to be effective against RCC and many metastatic tumors, particularly colorectal cancer, in the liver. Cryoablation may also be associated with less post-procedure pain and faster recovery for some indications. Cryoablation is often contraindicated for primary liver cancer due to underlying coagulopathy and

  18. Incidence and Cause of Hypertension During Adrenal Radiofrequency Ablation

    Yamakado, Koichiro, E-mail: yama@clin.medic.mie-u.ac.jp; Takaki, Haruyuki [Mie University School of Medicine, Department of Interventional Radiology (Japan); Yamada, Tomomi [Mie University School of Medicine, Department of Translational Medicine (Japan); Yamanaka, Takashi; Uraki, Junji; Kashima, Masataka; Nakatsuka, Atsuhiro; Takeda, Kan [Mie University School of Medicine, Department of Interventional Radiology (Japan)

    2012-12-15

    Purpose: To evaluate the incidence and cause of hypertension prospectively during adrenal radiofrequency ablation (RFA). Methods: For this study, approved by our institutional review board, written informed consent was obtained from all patients. Patients who received RFA for adrenal tumors (adrenal ablation) and other abdominal tumors (nonadrenal ablation) were included in this prospective study. Blood pressure was monitored during RFA. Serum adrenal hormone levels including epinephrine, norepinephrine, dopamine, and cortisol levels were measured before and during RFA. The respective incidences of procedural hypertension (systolic blood pressure >200 mmHg) of the two patient groups were compared. Factors correlating with procedural systolic blood pressure were evaluated by regression analysis.ResultsNine patients underwent adrenal RFA and another 9 patients liver (n = 5) and renal (n = 4) RFA. Asymptomatic procedural hypertension that returned to the baseline by injecting calcium blocker was found in 7 (38.9%) of 18 patients. The incidence of procedural hypertension was significantly higher in the adrenal ablation group (66.7%, 6/9) than in the nonadrenal ablation group (11.1%, 1/9, P < 0.0498). Procedural systolic blood pressure was significantly correlated with serum epinephrine (R{sup 2} = 0.68, P < 0.0001) and norepinephrine (R{sup 2} = 0.72, P < 0.0001) levels during RFA. The other adrenal hormones did not show correlation with procedural systolic blood pressure. Conclusion: Hypertension occurs frequently during adrenal RFA because of the release of catecholamine.

  19. EUV ablation of organic polymers at a high fluence

    Chiara; Liberatore; Klaus; Mann; Matthias; Mller; Ladislav; Pina; Libor; Juha; Jorge; J.Rocca; Akira; Endo; Tomas; Mocek

    2014-01-01

    A preliminary investigation on short-wavelength ablation mechanisms of poly(methyl methacrylate)(PMMA) and poly(1,4-phenylene ether ether-sulfone)(PPEES) by extreme ultraviolet(EUV) radiation at 13.5 nm using a table-top laserproduced plasma from a gas-puff target at LLG(Gttingen) and at 46.9 nm by a 10 Hz desktop capillary discharge laser operated at the Institute of Physics(Prague) is presented.Ablation of polymer materials is initiated by photoinduced polymer chain scissions.The ablation occurs due to the formation of volatile products by the EUV radiolysis removed as an ablation plume from the irradiated material into the vacuum.In general,cross-linking of polymer molecules can compete with the chain decomposition.Both processes may influence the efficiency and quality of micro(nano)structuring in polymer materials.Wavelength is a critical parameter to be taken into account when an EUV ablation process occurs,because different wavelengths result in different energy densities in the near-surface region of the polymer exposed to nanosecond pulses of intense EUV radiation.

  20. Late atypical atrial flutter after ablation of atrial fibrillation.

    Ferreira, Raquel; Primo, João; Adão, Luís; Gonzaga, Anabela; Gonçalves, Helena; Santos, Rui; Fonseca, Paulo; Santos, José; Gama, Vasco

    2016-10-01

    Cardiac surgery for structural heart disease (often involving the left atrium) and radiofrequency catheter ablation of atrial fibrillation have led to an increased incidence of regular atrial tachycardias, often presenting as atypical flutters. This type of flutter is particularly common after pulmonary vein isolation, especially after extensive atrial ablation including linear lesions and/or defragmentation. The authors describe the case of a 51-year-old man, with no relevant medical history, referred for a cardiology consultation in 2009 for paroxysmal atrial fibrillation. After failure of antiarrhythmic therapy, he underwent catheter ablation, with criteria of acute success. Three years later he again suffered palpitations and atypical atrial flutter was documented. The electrophysiology study confirmed the diagnosis of atypical left flutter and reappearance of electrical activity in the right inferior pulmonary vein. This vein was again ablated successfully and there has been no arrhythmia recurrence to date. In an era of frequent catheter ablation it is essential to understand the mechanism of this arrhythmia and to recognize such atypical flutters.

  1. Laser ablation of Al-Ni alloys and multilayers

    Roth, Johannes; Trebin, Hans-Rainer; Kiselev, Alexander; Rapp, Dennis-Michael

    2016-05-01

    Laser ablation of Al-Ni alloys and multilayers has been studied by molecular dynamics simulations. The method was combined with a two-temperature model to describe the interaction between the laser beam, the electrons, and the atoms. As a first step, electronic parameters for the alloys had to be found and the model developed originally for pure metals had to be generalized to multilayers. The modifications were verified by computing melting depths and ablation thresholds for pure Al and Ni. Here known data could be reproduced. The improved model was applied to the alloys Al_3Ni, AlNi and AlNi_3. While melting depths and ablation thresholds for AlNi behave unspectacular, sharp drops at high fluences are observed for Al_3Ni and AlNi_3. In both cases, the reason is a change in ablation mechanism from phase explosion to vaporization. Furthermore, a phase transition occurs in Al_3Ni. Finally, Al layers of various thicknesses on a Ni substrate have been simulated. Above threshold, 8 nm Al films are ablated as a whole while 24 nm Al films are only partially removed. Below threshold, alloying with a mixture gradient has been observed in the thin layer system.

  2. Percutaneous laser ablation of unresectable primary and metastatic adrenocortical carcinoma

    Pacella, Claudio M. [Regina Apostolorum Hospital, Department of Diagnostic Imaging and Interventional Radiology, Via San Francesco 50, Albano Laziale, Rome 00041 (Italy)], E-mail: claudiomaurizio.pacella@fastwebnet.it; Stasi, Roberto; Bizzarri, Giancarlo; Pacella, Sara; Graziano, Filomena Maria; Guglielmi, Rinaldo; Papini, Enrico [Regina Apostolorum Hospital, Department of Diagnostic Imaging and Interventional Radiology, Via San Francesco 50, Albano Laziale, Rome 00041 (Italy)

    2008-04-15

    Purpose: To evaluate the feasibility, safety, and clinical benefits of percutaneous laser ablation (PLA) in patients with unresectable primary and metastatic adrenocortical carcinoma (ACC). Patients and methods: Four patients with hepatic metastases from ACC and a Cushing's syndrome underwent ultrasound-guided PLA. In one case the procedure was performed also on the primary tumor. Results: After three sessions of PLA, the primary tumor of 15 cm was ablated by 75%. After 1-4 (median 1) sessions of PLA, five liver metastases ranging from 2 to 5 cm were completely ablated, while the sixth tumor of 12 cm was ablated by 75%. There were no major complications. Treatment resulted in an improvement of performance status and a reduction of the daily dosage of mitotane in all patients. The three patients with liver metastases presented a marked decrease of 24-h urine cortisol levels, an improved control of hypertension and a mean weight loss of 2.8 kg. After a median follow-up after PLA of 27.0 months (range, 9-48 months), two patients have died of tumor progression, while two other patients remain alive and free of disease. Conclusions: Percutaneous laser ablation is a feasible, safe and well tolerated procedure for the palliative treatment of unresectable primary and metastatic ACC. Further study is required to evaluate the impact of PLA on survival.

  3. Insights into secondary reactions occurring during atmospheric ablation of micrometeoroids

    Court, Richard W.; Tan, Jonathan

    2016-06-01

    Ablation of micrometeoroids during atmospheric entry yields volatile gases such as water, carbon dioxide, and sulfur dioxide, capable of altering atmospheric chemistry and hence the climate and habitability of the planetary surface. While laboratory experiments have revealed the yields of these gases during laboratory simulations of ablation, the reactions responsible for the generation of these gases have remained unclear, with a typical assumption being that species simply undergo thermal decomposition without engaging in more complex chemistry. Here, pyrolysis-Fourier transform infrared spectroscopy reveals that mixtures of meteorite-relevant materials undergo secondary reactions during simulated ablation, with organic matter capable of taking part in carbothermic reduction of iron oxides and sulfates, resulting in yields of volatile gases that differ from those predicted by simple thermal decomposition. Sulfates are most susceptible to carbothermic reduction, producing greater yields of sulfur dioxide and carbon dioxide at lower temperatures than would be expected from simple thermal decomposition, even when mixed with meteoritically relevant abundances of low-reactivity Type IV kerogen. Iron oxides were less susceptible, with elevated yields of water, carbon dioxide, and carbon monoxide only occurring when mixed with high abundances of more reactive Type III kerogen. We use these insights to reinterpret previous ablation simulation experiments and to predict the reactions capable of occurring during ablation of carbonaceous micrometeoroids in atmospheres of different compositions.

  4. Chemical and Spectroscopic Aspects of Polymer Ablation-Special Features and Novel Directions-

    Lippert, Thomas

    2004-03-01

    Laser ablation of polymers has become an established technique in the electronic industry and the large number of studies published annually indicates that this is still an attractive area of research. Several new approaches with new techniques and materials have given new insights in the ablation process. One of these approaches is the development of polymers designed specifically for laser ablation which are a unique tool for probing the ablation mechanisms as well as for improving ablation properties. These novel polymers exhibit very low thresholds of ablation, with high ablation rates (even at low fluences), and excellent ablation quality. New commercial applications will require improved ablation rates and control of undesirable surface effects, such as debris. The complexity of the interactions between polymers and laser photons are illustrated by the various processes associated with different irradiation conditions. i) Photothermal-photochemical laser ablation under excimer laser irradiation. ii) Dopant-induced laser ablation. iii) Photo-oxidative etching with lamps in an oxidizing atmosphere. iv) VUV etching in the absence of oxidizing conditions. v) Photokinetic etching with CW UV lasers. vi) Ultrafast laser ablation, affected by pulse length, wavelength, and possibly shock waves. vii) Shock assisted photothermal ablation on picosecond time scales. viii) VUV laser ablation: purely photochemical? ix) Synchrotron structuring. x) Mid-IR ablation (FEL and CO2 laser), the influence of exciting various functional groups. Several of these new approaches and processes will be discussed to emphasize the importance of different approaches but also to review some fundamental processes. The combination of various experimental techniques (new approaches and 'well-known') with materials made to measure has given new insights in the ablation mechanisms, but has also shown new possible future directions of laser polymer ablation.

  5. Ablation Resistance of C/C Composites with Atmospheric Plasma-Sprayed W Coating

    Zhou, Zhe; Wang, Yuan; Gong, Jieming; Ge, Yicheng; Peng, Ke; Ran, Liping; Yi, Maozhong

    2016-12-01

    To improve the ablation resistance of carbon/carbon (C/C) composites, tungsten (W) coating with thickness of 1.2 mm was applied by atmospheric plasma spraying. The antiablation property of the coated composites was evaluated by oxyacetylene flame ablation experiments. The phase composition of the coating was investigated by a combination of x-ray diffraction analysis and scanning electron microscopy with energy-dispersive x-ray spectroscopy analysis. The ablation resistance of the coated C/C substrates was compared with that of uncoated C/C composites and C/C-CuZr composites after ablation for 30 s. The properties of the coated C/C composites after ablation time of 10, 30, 60, 90, 120, and 180 s were further studied. The results indicated that the mass and linear ablation rates of the W-coated C/C composites were lower than those of uncoated C/C or C/C-CuZr composites after ablation for 30 s. The coating exhibited heat stability after 120 s of ablation, with mass loss and linear ablation rates of 7.39 × 10-3 g/s and 3.50 × 10-3 mm/s, respectively. However, the W coating became ineffective and failed after ablation for 180 s. Three ablation regions could be identified, in which the ablation mechanism of the coating changed from thermochemical to thermophysical erosion to mechanical scouring with increasing ablation time.

  6. Sphere-Enhanced Microwave Ablation (sMWA) Versus Bland Microwave Ablation (bMWA): Technical Parameters, Specific CT 3D Rendering and Histopathology

    Gockner, T. L., E-mail: theresa.gockner@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Zelzer, S., E-mail: s.zelzer@dkfz-heidelberg.de [German Cancer Research Center (dkfz), Medical and Biological Informatics (Germany); Mokry, T., E-mail: theresa.mokry@med.uni-heidelberg.de; Gnutzmann, D., E-mail: daniel.gnutzmann@med.uni-heidelberg.de; Bellemann, N., E-mail: nadine.bellemann@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Mogler, C., E-mail: carolin.mogler@med.uni-heidelberg.de [University Hospital Heidelberg, Department of General Pathology (Germany); Beierfuß, A., E-mail: anja.beierfuss@ethianum.de; Köllensperger, E., E-mail: eva.koellensperger@ethianum.de; Germann, G., E-mail: guenter.germann@ethianum.de [Ethianum Heidelberg, Clinic for Plastic Reconstructive Surgery and Aesthetic Surgery (Germany); Radeleff, B. A., E-mail: boris.radeleff@med.uni-heidelberg.de; Stampfl, U., E-mail: ulrike.stampfl@med.uni-heidelberg.de; Kauczor, H. U., E-mail: hu.kauczor@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Pereira, P. L., E-mail: philippe.pereira@slk-kliniken.de [SLK Kliniken Heilbronn GmbH, Clinic for Radiology, Minimally-invasive Therapies and Nuclear Medicine (Germany); Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany)

    2015-04-15

    PurposeThis study was designed to compare technical parameters during ablation as well as CT 3D rendering and histopathology of the ablation zone between sphere-enhanced microwave ablation (sMWA) and bland microwave ablation (bMWA).MethodsIn six sheep-livers, 18 microwave ablations were performed with identical system presets (power output: 80 W, ablation time: 120 s). In three sheep, transarterial embolisation (TAE) was performed immediately before microwave ablation using spheres (diameter: 40 ± 10 μm) (sMWA). In the other three sheep, microwave ablation was performed without spheres embolisation (bMWA). Contrast-enhanced CT, sacrifice, and liver harvest followed immediately after microwave ablation. Study goals included technical parameters during ablation (resulting power output, ablation time), geometry of the ablation zone applying specific CT 3D rendering with a software prototype (short axis of the ablation zone, volume of the largest aligned ablation sphere within the ablation zone), and histopathology (hematoxylin-eosin, Masson Goldner and TUNEL).ResultsResulting power output/ablation times were 78.7 ± 1.0 W/120 ± 0.0 s for bMWA and 78.4 ± 1.0 W/120 ± 0.0 s for sMWA (n.s., respectively). Short axis/volume were 23.7 ± 3.7 mm/7.0 ± 2.4 cm{sup 3} for bMWA and 29.1 ± 3.4 mm/11.5 ± 3.9 cm{sup 3} for sMWA (P < 0.01, respectively). Histopathology confirmed the signs of coagulation necrosis as well as early and irreversible cell death for bMWA and sMWA. For sMWA, spheres were detected within, at the rim, and outside of the ablation zone without conspicuous features.ConclusionsSpecific CT 3D rendering identifies a larger ablation zone for sMWA compared with bMWA. The histopathological signs and the detectable amount of cell death are comparable for both groups. When comparing sMWA with bMWA, TAE has no effect on the technical parameters during ablation.

  7. Impact of different ablation strategies on the delayed cure after trans-catheter ablation for treating patients with atrial fibrillation

    DONG Jian-zeng; MA Chang-sheng; LIU Xing-peng; LONG De-yong; LIU Xiao-qing; WANG Jing; Fang Dong-ping; HAO Peng; LI Yong-sheng; LIU Chuang

    2005-01-01

    Background Delayed cure had been observed in recurrent cases after index ablation of atrial fibrillation (AF), however, its mechanism and incidence have not been elucidated in detail. This study aims to investigate the impact of different ablation strategies on the incidence of delayed cure and its possible mechanisms after trans-catheter ablation of AF. Methods One hundred and fifty-one consecutive cases with highly symptomatic, drug refractory AF were included in this study [M/F=109/42, mean age (56.0±11.2) (18-79) years]. Segmental pulmonary vein ablation (SPVA) was performed in 83 patients with the guidance of circular mapping catheter (SPVA Group), circumferential PV linear ablation (CPVA) was carried out in the rest 68 cases under the guidance of 3 dimensional mapping system in conjunction with circular mapping catheter (CPVA Group). Delayed cure was defined as that early recurrence of atrial tachyarrhythmias (AF, atrial tachycardia, or atrial flutter) after ablation procedure was no longer observed during subsequent follow-up, and stable sinus rhythm was maintained ≥2 months. Results Early recurrence of atrial tachyarrhythmias was detected in 41 cases from SPVA group and 23 cases from CPVA group, and delayed cure occurred in 21.9% (9/41) of the cases from SPVA group and 47.8% (11/23) of the cases from CPVA group, more delayed cure in later group was observed (P<0.05). Meanwhile, patients in SPVA group took a longer time to achieve a delayed cure [(27.0±18.0) days vs (14.0±8.1) days, P<0.05], and presented more recurrent episodes [(3.50±1.08) times a week vs (2.42±1.11) times a week, P<0.05]. However, recurrent episodes after index ablation were markedly decreased in cases with delayed cure from both groups (P<0.05). Conclusions Despite of an early recurrence of atrial tachyarrhythimas after index ablation of AF, delayed cure occurs in a significant number of patients undergoing either SPVA or CPVA. However, different ablation strategies place

  8. Near-field mapping by laser ablation of PMMA coatings

    Fiutowski, Jacek; Maibohm, Christian; Kostiucenko, Oksana

    The optical near-field of lithography-defined gold nanostructures, arranged into regular arrays on a gold film, is characterized via ablation of a polymer coating by laser illumination. The method utilizes femto-second laser pulses from a laser scanning microscope which induces electrical field...... that the different stages in the ablation process can be controlled and characterized making the technique suitable for characterizing optical near-fields of metal nanostructures....... enhancements on and around the gold nanostructures. At the positions of the enhancements, the ablation threshold of the polymer coating is significantly lowered creating subdiffractional topographic modifications on the surface which are quantified via scanning electron microscopy and atomic force microscopy...

  9. Metal cathode patterning for OLED by nanosecond pulsed laser ablation

    LIU Chen; ZHU Guang-xi; LIU De-ming

    2006-01-01

    In this paper,nanosecond pulsed laser is introduced to selectively ablate away indium tin oxide film and metal film without destroying the underlying layers for fabricating organic light-emitting diodes. By varying density of energy, pulse number and width of the laser, the influence on morphology of the laser trenches of indium tin oxide and metal films are investigated. It is presented that uniform ablation trench can be obtained with 16 laser pulses at 0.15 J/cm2 for aluminum film and 10 laser pulses at 0.65 J/cm2 for indium tin oxide film. It is found that the characteristics of the organic light-emitting diodes prepared with laser ablation are almost the same as those of that prepared with conventional patterning method.

  10. Near-field mapping by laser ablation of PMMA coatings

    Fiutowski, Jacek; Maibohm, Christian; Kostiucenko, Oksana

    The optical near-field of lithography-defined gold nanostructures, arranged into regular arrays on a gold film, is characterized via ablation of a polymer coating by laser illumination. The method utilizes femto-second laser pulses from a laser scanning microscope which induces electrical field...... that the different stages in the ablation process can be controlled and characterized making the technique suitable for characterizing optical near-fields of metal nanostructures....... enhancements on and around the gold nanostructures. At the positions of the enhancements, the ablation threshold of the polymer coating is significantly lowered creating sub-diffractional topographic modifications on the surface which are quantified via scanning electron microscopy and atomic force microscopy...

  11. Ablation of silicon with bursts of femtosecond laser pulses

    Gaudiuso, Caterina; Kämmer, Helena; Dreisow, Felix; Ancona, Antonio; Tünnermann, Andreas; Nolte, Stefan

    2016-03-01

    We report on an experimental investigation of ultrafast laser ablation of silicon with bursts of pulses. The pristine 1030nm-wavelength 200-fs pulses were split into bursts of up to 16 sub-pulses with time separation ranging from 0.5ps to 4080ps. The total ablation threshold fluence was measured depending on the burst features, finding that it strongly increases with the number of sub-pulses for longer sub-pulse delays, while a slowly increasing trend is observed for shorter separation time. The ablation depth per burst follows two different trends according to the time separation between the sub-pulses, as well as the total threshold fluence. For delays shorter than 4ps it decreases with the number of pulses, while for time separations longer than 510ps, deeper craters were achieved by increasing the number of subpulses in the burst, probably due to a change of the effective penetration depth.

  12. Plastic ablator ignition capsule design for the National Ignition Facility

    Clark, D S; Haan, S W; Hammel, B A; Salmonson, J D; Callahan, D A; Town, R P

    2009-12-01

    The National Ignition Campaign, tasked with designing and fielding targets for fusion ignition experiments on the National Ignition Facility (NIF), has carried forward three complementary target designs for the past several years: a beryllium ablator design, a plastic ablator design, and a high-density carbon or synthetic diamond design. This paper describes current simulations and design optimization to develop the plastic ablator capsule design as a candidate for the first ignition attempt on NIF. The trade-offs in capsule scale and laser energy that must be made to achieve a comparable ignition probability to that with beryllium are emphasized. Large numbers of 1-D simulations, meant to assess the statistical behavior of the target design, as well as 2-D simulations to assess the target's susceptibility to Rayleigh-Taylor growth are presented.

  13. Laser ablation for the synthesis of carbon nanotubes

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2012-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  14. UV-laser ablation of sensory cells in living insects

    Fuhr, G.; Ronacher, B.; Krahe, R.; Fest, S.; Shirley, S. G.; Rogaschewski, S.

    An experimental set-up for applying pulsed UV-laser ablation to the integument of insects and the high precision of ablation is demonstrated. In order to test for possible detrimental effects on physiological responses, this technique was applied to the ears of migratory locust (Locusta migratoria L.). The handling of living insects, the survival, and physiological response after treatment are described. We selectively interrupted the d-receptor of the tympanal organ, which is the receptor system responsible for the locust's sensitivity in the high-frequency range (>10 kHz). The effects of the laser treatment were tested by determining hearing thresholds in electrophysiological recordings from the tympanal nerves. In agreement with the literature, the interruption of the d-receptors led to a significant shift towards higher values of the thresholds in the high-frequency range. Future perspectives and biological applications of UV-laser ablation are discussed.

  15. Ablative fractional laser resurfacing helps treat restrictive pediatric scar contractures.

    Krakowski, Andrew C; Goldenberg, Alina; Eichenfield, Lawrence F; Murray, Jill-Peck; Shumaker, Peter R

    2014-12-01

    Conventional management of debilitating pediatric scar contractures, including hand therapy and surgery, may often be beset by delayed treatment, suboptimal results, and additional surgical morbidity. Ablative fractional laser resurfacing is an emerging adjunctive procedural option for scar contractures because of its promising efficacy and safety profile. However, its use to improve function has not been studied in the pediatric population. Herein we report 2 pediatric patients with recalcitrant scar contractures, causing persistent functional deficits, treated with an ablative fractional laser protocol. Both patients experienced rapid and cumulative subjective and objective improvements in range of motion and function as measured by an independent occupational therapist without reported complications. We highlight ablative fractional laser resurfacing as a novel and promising tool in the management of function-limiting scar contractures in children and propose that the technique be incorporated into existing scar treatment paradigms, guided by future research.

  16. Dendrin ablation prolongs life span by delaying kidney failure.

    Weins, Astrid; Wong, Jenny S; Basgen, John M; Gupta, Ritu; Daehn, Ilse; Casagrande, Lisette; Lessman, David; Schwartzman, Monica; Meliambro, Kristin; Patrakka, Jaakko; Shaw, Andrey; Tryggvason, Karl; He, John Cijiang; Nicholas, Susanne B; Mundel, Peter; Campbell, Kirk N

    2015-08-01

    Podocyte loss is central to the progression of proteinuric kidney diseases leading to end-stage kidney disease (ESKD), requiring renal replacement therapy, such as dialysis. Despite modern tools and techniques, the 5-year mortality of some patients requiring dialysis remains at about 70% to 80%. Thus, there is a great unmet need for podocyte-specific treatments aimed at preventing podocyte loss and the ensuing development of ESKD. Here, we show that ablation of the podocyte death-promoting protein dendrin delays the onset of ESKD, thereby expanding the life span of mice lacking the adapter protein CD2AP. Ablation of dendrin delays onset and severity of proteinuria and podocyte loss. In addition, dendrin ablation ameliorates mesangial volume expansion and up-regulation of mesangial fibronectin expression, which is mediated by a podocyte-secreted factor. In conclusion, onset of ESKD and death can be markedly delayed by blocking the function of dendrin.

  17. Laser ablation for the synthesis of carbon nanotubes

    Holloway, Brian C; Eklund, Peter C; Smith, Michael W; Jordan, Kevin C; Shinn, Michelle

    2012-11-27

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  18. Image-guided ablation therapy of bone tumors.

    Sabharwal, Tarun; Katsanos, Konstantinos; Buy, Xavier; Gangi, Afshin

    2009-04-01

    A wide range of thermal and cryoablation methods is currently available for the curative eradication or palliative treatment of a variety of bone and soft-tissue tumors. Radiofrequency ablation has been developed as a multipurpose tool for the skeletal system. Cryoablation has the added advantages of direct computed tomography or magnetic resonance visualization and monitoring of treatment outcome with less peri- and postoperative pain. Use of appropriate thermo-sensors and insulation techniques, like carbon dioxide insufflation, results in enhanced safety and efficacy. Ablation of weight-bearing bones has to be supplemented with cement consolidation. The authors present an overview of the current status of percutaneous image-guided ablation therapy of bone and soft-tissue tumors, analyze the merits and limitations of the various systems available, and discuss possible new applications for the future.

  19. Fatigue life of ablation-cast 6061-T6 components

    Tiryakioglu, Murat, E-mail: m.tiryakioglu@unf.edu [School of Engineering. University of North Florida, Jacksonville, FL 32224 (United States); Eason, Paul D. [School of Engineering. University of North Florida, Jacksonville, FL 32224 (United States); Campbell, John [Department of Metallurgy and Materials, University of Birmingham, Edgbaston B15 2TT (United Kingdom)

    2013-01-01

    The fatigue life of 6061-T6 alloy, normally used in its wrought form, was investigated in this study in cast form from parts produced by the new ablation casting process. All specimens were excised from military castings. Unidirectional tensile test results yielded elongation values comparable to forgings and extrusions. A total of 39 fatigue specimens were tested by the rotating cantilever beam technique at five maximum stress levels. Moreover nine specimens excised from a forging were also tested for comparison. Results revealed that the fatigue life of ablation-cast 6061-T6 (i) follows a three-parameter Weibull distribution, and (ii) is comparable to data from the 6061 forging and is superior to conventionally cast Al-7% Si-Mg alloy castings published in the literature. Analysis of the fracture surfaces of ablation-cast 6061-T6 via scanning electron microscopy showed the existence of fracture surface facets and multiple cracks propagating in different directions.

  20. Radiofrequency catheter ablation maintains its efficacy better than antiarrhythmic medication in patients with paroxysmal atrial fibrillation

    Raatikainen, M J Pekka; Hakalahti, Antti; Uusimaa, Paavo;

    2015-01-01

    BACKGROUND: The Medical ANtiarrhythmic Treatment or Radiofrequency Ablation in Paroxysmal Atrial Fibrillation (MANTRA-PAF) is a randomized trial comparing radiofrequency catheter ablation (RFA) to antiarrhythmic drugs (AADs) as first-line treatment of paroxysmal atrial fibrillation (PAF). In order...

  1. 78 FR 11207 - Clinical Study Designs for Surgical Ablation Devices for Treatment of Atrial Fibrillation...

    2013-02-15

    ... Treatment of Atrial Fibrillation; Guidance for Industry and Food and Drug Administration Staff; Availability... Ablation Devices for Treatment of Atrial Fibrillation.'' This guidance provides FDA's recommendations on clinical trial designs for surgical ablation devices intended for the treatment of atrial...

  2. Efficacy of percutaneous radiofrequency ablation of osteoid osteoma in children

    Donkol, Ragab H. [Cairo University, Department of Radiology, Faculty of Medicine, Cairo (Egypt); Assir Central Hospital, Department of Radiology, P.O. Box 34, Abha (Saudi Arabia); Al-Nammi, Ahmed [Assir Central Hospital, Department of Radiology, P.O. Box 34, Abha (Saudi Arabia); Moghazi, Khaled [Alexandria University, Faculty of Medicine, Alexandria (Egypt)

    2008-02-15

    Percutaneous radiofrequency (RF) ablation of osteoid osteoma has high technical and clinical success rates. However, there are limited data on its use in the treatment of osteoid osteoma in children. To assess the safety and efficacy of CT-guided percutaneous RF ablation of osteoid osteoma in children and compare the outcomes with published data on its use in patients unselected for age. From January 2003 to July 2006, 23 children with osteoid osteoma were treated with CT-guided RF ablation using a straight rigid electrode. Their mean age was 11 years (range 3.5-16 years) and there were 15 boys and 8 girls. The procedures were carried out under general anaesthesia. Follow-up was performed to assess technical and clinical outcome. The mean follow-up period was 2.5 years (range 13-49 months). Technical success was achieved in 21 children (91.3%). Failure occurred in two children, in one due to failure to adequately localize the nidus within the dense sclerosis and in the other because of a short ablation time (2 min) because he developed hyperthermia. Clinical success was achieved in 18 patients within 2-5 days (primary clinical success rate 78.2%).These patients were allowed to fully weight-bear and function without limitation 1 week after the procedure. Pain recurrence was observed in two patients; one was treated successfully with a second ablation after 6 months (secondary clinical success rate 82.6%). Hyperthermia was observed in two patients during the procedure. Three other minor complications were observed: wound infection in one child and skin burn in two children. No major immediate or delayed complications were observed. Percutaneous CT-guided RF ablation is an effective and safe minimally invasive procedure for the treatment of osteoid osteoma in children. It has high technical and clinical success rates that are slightly lower than those of patients with a wider range of ages. (orig.)

  3. Multidiagnostic analysis of ultrafast laser ablation of metals with pulse pair

    LUNNEY, JAMES

    2010-01-01

    PUBLISHED Copper targets are irradiated in the ablation regime by pairs of equal, time-delayed collinear laser pulses separated on a timescale going from 2 ps to 2 ns. The ablation plume is characterized by ion probe diagnostic, fast imaging, and temporally and spatially resolved optical emission spectroscopy. The variation in the ablation efficiency with the delay between the pulses is analyzed by measuring the ablation crater profile with a contact profilometer. The second ...

  4. Catheter ablation of atrial fibrillation in a patient with dextrocardia: what is the challenge?

    WANG Xin-hua; SHI Hai-feng; HAN Bing; TAN Hong-wei; JIANG Wei-feng; LIU Xu

    2010-01-01

    @@ Catheter ablation has been an established strategy for treating paroxysmal atrial fibrillation (AF).Pulmonary vein isolation is the predominant approach of catheter ablation. This procedure is characterized as transseptal catheterization and point-by-point ablation around the ipsilateral pulmonary veins (PVs). Although catheter ablation can be safely performed in a heart with normal structures, it may be challenging to be performed in a dextrocardia.

  5. Femtosecond laser ablation of Au film around single pulse threshold

    Xiaochang Ni; Ching-Yue Wang; Yinzhong Wu; Li Yang; Wei Jia; Lu Chai

    2006-01-01

    @@ Ablation process of 1-kHz femtosecond lasers (pulse duration of 148 fs, wavelength of 775 nm) of Au film on silica substrates is studied. The thresholds for single and multi pulses can be obtained directly from the relation between the squared diameter D2 of the ablated craters and the laser fluence φo. From the plot of the accumulated laser fluence Nφth(N) and the number of laser pulses N, incubation coefficient of Au film is obtained to be 0.765. Some experimental data obtained around the single pulse threshold are in good agreement with the theoretical calculation.

  6. In situ Diagnostics During Carbon Nanotube Production by Laser Ablation

    Arepalli, Sivaram

    1999-01-01

    The preliminary results of spectral analysis of the reaction zone during the carbon nanotube production by laser ablation method indicate synergetic dependence on dual laser setup. The emission spectra recorded from different regions of the laser ablated plume at different delay times from the laser pulses are used to map the temperatures of C2 and C3. These are compared with Laser Induced Fluorescence (LIF) spectra also obtained during production to model the growth mechanism of carbon nanotubes. Experiments conducted to correlate the spectral features with nanotube yields as a function of different production parameters will be discussed.

  7. Mechanisms of Carbon Nanotube Production by Laser Ablation Process

    Scott, Carl D.; Arepalli, Sivaram; Nikolaev, Pavel; Smalley, Richard E.; Nocholson, Leonard S. (Technical Monitor)

    2000-01-01

    We will present possible mechanisms for nanotube production by laser oven process. Spectral emission of excited species during laser ablation of a composite graphite target is compared with that of laser irradiated C60 vapor. The similarities in the transient and spectral data suggest that fullerenes are intermediate precursors for nanotube formation. The confinement of the ablation products by means of a 25-mm diameter tube placed upstream of the target seems to improve the production and purity of nanotubes. Repeated laser pulses vaporize the amorphous/graphitic carbon and possibly catalyst particles, and dissociate fullerenes yielding additional feedstock for SWNT growth.

  8. Pressure Venting Tests of Phenolic Impregnated Carbon Ablator (PICA)

    Blosser, Max L.; Knutson, Jeffrey R.

    2015-01-01

    A series of tests was devised to investigate the pressure venting behavior of one of the candidate ablators for the Orion capsule heat shield. Three different specimens of phenolic impregnated carbon ablator (PICA) were instrumented with internal pressure taps and subjected to rapid pressure changes from near vacuum to one atmosphere and simulated Orion ascent pressure histories. The specimens vented rapidly to ambient pressure and sustained no detectable damage during testing. Peak pressure differences through the thickness of a 3-inch-thick specimen were less than 1 psi during a simulated ascent pressure history.

  9. Mitral isthmus ablation in patients with prosthetic mitral valves

    LONG De-yong; MA Chang-sheng; JIANG Hong; DONG Jian-zeng; LIU Xing-peng; HUANG He; TANG Yan-hong; WU Gang; HUANG Cong-xin

    2010-01-01

    Background Previous studies have investigated the technique of linear ablation at the mitral isthmus (MI) in patients with idopathic atrial fibrillation (AF), but MI ablation in patients with prosthetic natural mitral valves (MVs) was not described in detail. Present study sought to summarize our initial experience of ablating MI in patients with prosthetic MVs Methods Patients with drug refractory AF and prosthetic MVs were eligible for this study, and the patients with natural MVs but received MI ablation served as control group. Left atrium (LA) mapping and ablation was carried out guided by CARTO system. The anatomy of MI was assessed via computer topography scan.Results During the study period, a consecutive of 19 patients (male/female=12/7, mean age of (48±-6) years) with prosthetic MVs (16 with metal valves, 3 with biologic valves) entered for AF ablation, other 35 patients served as control group. In study group, mapping along MI documented lower voltages ((2.0±1.0) vs. (3.1±1.3) mV, P=0.002), more fragmented potentials (19/19 vs. 20/15, P<0.001 ), and higher impedance ((132±34) vs. (110±20) Ω, P=0.004). After initial ablation, more residual gaps along the MI lesions were found in study group (2.4±0.4 vs. 1.7±0.3, P <0.001). The mean length of MI ((6.2±3.3) vs. (7.1±2.3) cm, P=0.25) was comparable between 2 groups, but the MI in study group was much thicker ((3.1 ±1.8) vs. (2.1±1.07) cm, P=0.01 ) and all were found as pouch type (19/19 vs. 2/35, P <0.001). The follow-up results were comparable (65.1% vs. 72.3%, P=0.30).Conclusion For patients with prosthetic MVs, linear ablation at MI could be successfully carried out despite anatomical and pathological changes.

  10. Endoscopic ultrasound-guided radiofrequency ablation of the pancreas

    Silviu, Ungureanu Bogdan; Daniel, Pirici; Claudiu, Mărgăritescu;

    2015-01-01

    ultrasound (EUS)-guided radiofrequency ablation (RFA) probe through a 19G needle in order to achieve a desirable necrosis area in the pancreas. Radiofrequency ablation of the head of the pancreas was performed on 10 Yorkshire pigs with a weight between 25 kg and 35 kg and a length of 40-70 cm. Using an EUS...... a coagulative necrosis area with minimal invasion and inflammatory tissue at about 2 cm surrounding the lesion. CONCLUSION: EUS-RFA is a feasible technique and might represent a promising therapy for the future treatment of pancreatic cancer. However, further studies are necessary to investigate EUS-guided RFA...

  11. Enthalpy model for heating, melting, and vaporization in laser ablation

    Vasilios Alexiades

    2010-09-01

    Full Text Available Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu target in a helium (He background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model that connects the thermodynamics and underlying kinetics of this challenging phase change problem in a self-consistent way.

  12. [Mechanism of ablation with nanosecond pulsed electric field].

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  13. Plan for PLEX X-Ray Ablation Experiments and Analysis

    Latkowski, J F; Reyes, S

    2001-09-27

    PLEX is a Z-pinch based x-ray source that can produce x-rays with fluences (0.3-18 J/cm{sup 2}), pulselengths (10-30 ns), repetition rates (<10 Hz), and energies (50-500 eV) of interest for IFE chambers and optics. It provides an affordable, dedicated method to advance our understanding of x-ray damage to materials. The PLEX x-ray source will be used to experimentally validate and further develop the ABLATOR x-ray ablation code for use in inertial fusion energy (IFE) studies.

  14. Intraductal radiofrequency ablation for management of malignant biliary obstruction.

    Rustagi, Tarun; Jamidar, Priya A

    2014-11-01

    Self-expandable metal stents (SEMS) are the current standard of care for the palliative management of malignant biliary strictures. Recently, endoscopic ablative techniques with direct affect to local tumor have been developed to improve SEMS patency. Several reports have demonstrated the technical feasibility and safety of intraductal radiofrequency ablation (RFA), by both endoscopic and percutaneous approaches, in palliation of malignant strictures of the bile duct. Intraductal RFA has also been used in the treatment of occlusion of both covered and uncovered SEMS occlusion from tumor ingrowth or overgrowth. This article provides a comprehensive review of intraductal RFA in the management of malignant biliary obstruction.

  15. Radiofrequency ablation of liver metastases; Radiofrequenzablation von Lebermetastasen

    Pereira, P.L.; Clasen, S.; Schmidt, D.; Wiskirchen, J.; Tepe, G.; Claussen, C.D. [Abt. fuer Radiologische Diagnostik, Eberhard-Karls-Univ. Tuebingen (Germany); Boss, A. [Abt. fuer Radiologische Diagnostik, Eberhard-Karls-Univ. Tuebingen (Germany); Sektion fuer Experimentelle Radiologie der Abt. fuer Radiologische Diagnostik, Eberhard-Karls-Univ. Tuebingen (Germany); Gouttefangeas, C. [Abt. Immunologie des Inst. fuer Zellbiologie, Eberhard-Karls-Univ. Tuebingen (Germany); Burkart, C. [Zentrum fuer gastroenterologische Onkologie der Medizinischen Klinik, Eberhard-Karls-Univ. Tuebingen (Germany)

    2004-04-01

    The liver is the second only to lymph nodes as the most common site of metastatic disease irrespective of the primary tumor. Up to 50% of all patients with malignant diseases will develop liver metastases with a significant morbidity and mortality. Although the surgical resection leads to an improvement of the survival time, only approximately 20% of the patients are eligible for surgical intervention. Radiofrequency (RF) ablation represents one of the most important alternatives as well as complementary methods for the therapy of liver metastases. RF ablation can lead in a selected patient group to a palliation or to an increased life expectancy. RF ablation appears either safer (vs. cryotherapy) or easier (vs. laser) or more effective (percutaneous ethanol instillation [PEI]), transarterial chemoembolisation [TACE] in comparison with other minimal invasive procedures. RF ablation can be performed percutaneously, laparoscopically or intraoperatively and may be combined with chemotherapy as well as with surgical resection. Permanent technical improvements of RF systems, a better understanding of the underlying electrophysiological principles and an interdisciplinary approach will lead to a prognosis improvement in patients with liver metastases. (orig.) [German] Die Leber ist unabhaengig vom Primaertumor nach den Lymphknoten die zweithaeufigste Lokalisation von Metastasen. Bis zu 50% aller Patienten mit malignen Erkrankungen werden im Verlauf ihrer Erkrankung Lebermetastasen entwickeln, die mit einer signifikanten Morbiditaet und Mortalitaet verbunden sind. Obwohl die chirurgische Resektion zu einer verlaengerten Ueberlebenszeit fuehrt, sind nur ca. 20% der Patienten fuer einen chirurgischen Eingriff geeignet. Die Radiofrequenz-(RF-)Ablation stellt derzeit eine der effektivsten Alternativen und komplementaeren Methoden bei der Therapie von Lebermetastasen dar. In einem selektierten Patientengut fuehrt die RF-Ablation ueber den palliativen Einsatz hinaus zu einer

  16. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation

    Walfridsson, H; Walfridsson, U; Nielsen, J Cosedis

    2015-01-01

    AIMS: The Medical ANtiarrhythmic Treatment or Radiofrequency Ablation in Paroxysmal Atrial Fibrillation (MANTRA-PAF) trial assessed the long-term efficacy of an initial strategy of radiofrequency ablation (RFA) vs. antiarrhythmic drug therapy (AAD) as first-line treatment for patients with PAF. I......L and symptom burden in patients with PAF. Patients randomized to RFA showed greater improvement in physical scales (SF-36) and the EQ-visual analogue scale. CLINICAL TRIAL REGISTRATION: URL http://www.clinicaltrials.gov. Unique identifier: NCT00133211....

  17. Endovenous radiofrequency ablation for the treatment of varicose veins.

    Kayssi, Ahmed; Pope, Marc; Vucemilo, Ivica; Werneck, Christiane

    2015-04-01

    Varicose veins are a common condition that can be treated surgically. Available operative modalities include saphenous venous ligation and stripping, phlebectomy, endovenous laser therapy and radiofrequency ablation. Radiofrequency ablation is the newest of these technologies, and to our knowledge our group was the first to use it in Canada. Our experience suggests that it is a safe and effective treatment for varicose veins, with high levels of patient satisfaction reported at short-term follow-up. More studies are needed to assess long-term effectiveness and compare the various available treatment options for varicose veins.

  18. Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage.

    Schomacker, K T; Domankevitz, Y; Flotte, T J; Deutsch, T F

    1991-01-01

    The wavelength dependence of the ablation threshold of a variety of tissues has been studied by using a tunable pulsed Co:MgF2 laser to determine how closely it tracks the optical absorption length of water. The Co:MgF2 laser was tuned between 1.81 and 2.14 microns, a wavelength region in which the absorption length varies by a decade. For soft tissues the ablation threshold tracks the optical absorption length; for bone there is little wavelength dependence, consistent with the low water content of bone. Thermal damage vs. wavelength was also studied for cornea and bone. Thermal damage to cornea has a weak wavelength dependence, while that to bone shows little wavelength dependence. Framing-camera pictures of the ablation of both cornea and liver show explosive removal of material, but differ as to the nature of the explosion.

  19. Is the VUV laser ablation of polymers a pure photochemical process?

    Castex, M. C.; Bityurin, N.

    2002-09-01

    Within the pure photochemical model of laser ablation of polymers, developed in our previous publications, we estimate the value of the surface temperature at the ablation front for several important examples. Derived formulas allow probing physical self-consistency of the pure photochemical ablation model.

  20. Coverage planning in computer-assisted ablation based on Genetic Algorithm.

    Ren, Hongliang; Guo, Weian; Sam Ge, Shuzhi; Lim, Wancheng

    2014-06-01

    An ablation planning system plays a pivotal role in tumor ablation procedures, as it provides a dry run to guide the surgeons in a complicated anatomical environment. Over-ablation, over-perforation or under-ablation may result in complications during the treatments. An optimal solution is desired to have complete tumor coverage with minimal invasiveness, including minimal number of ablations and minimal number of perforation trajectories. As the planning of tumor ablation is a multi-objective problem, it is challenging to obtain optimal covering solutions based on clinician׳s experiences. Meanwhile, it is effective for computer-assisted systems to decide a set of optimal plans. This paper proposes a novel approach of integrating a computational optimization algorithm into the ablation planning system. The proposed ablation planning system is designed based on the following objectives: to achieve complete tumor coverage and to minimize the number of ablations, number of needle trajectories and over-ablation to the healthy tissue. These objectives are taken into account using a Genetic Algorithm, which is capable of generating feasible solutions within a constrained search space. The candidate ablation plans can be encoded in generations of chromosomes, which subsequently evolve based on a fitness function. In this paper, an exponential weight-criterion fitness function has been designed by incorporating constraint parameters that were reflective of the different objectives. According to the test results, the proposed planner is able to generate the set of optimal solutions for tumor ablation problem, thereby fulfilling the aforementioned multiple objectives.

  1. Scar dechanneling: new method for scar-related left ventricular tachycardia substrate ablation

    Berruezo, A.; Fernandez-Armenta, J.; Andreu, D.; Penela, D.; Herczku, C.; Evertz, R.; Cipolletta, L.; Acosta, J.; Borras, R.; Arbelo, E.; Tolosana, J.M.; Brugada, J.; Mont, L.

    2015-01-01

    BACKGROUND: Ventricular tachycardia (VT) substrate ablation usually requires extensive ablation. Scar dechanneling technique may limit the extent of ablation needed. METHODS AND RESULTS: The study included 101 consecutive patients with left ventricular scar-related VT (75 ischemic patients; left ven

  2. Voltage-guided ablation technique for cavotricuspid isthmus-dependent atrial flutter

    Jacobsen, Peter K; Klein, George J; Gula, Lorne J;

    2012-01-01

    Ablation of the cavotricuspid isthmus has become first-line therapy for "isthmus-dependent" atrial flutter. The goal of ablation is to produce bidirectional cavotricuspid isthmus block. Traditionally, this has been obtained by creation of a complete ablation line across the isthmus from the ventr...

  3. No-Touch Radiofrequency Ablation: A Comparison of Switching Bipolar and Switching Monopolar Ablation in Ex Vivo Bovine Liver

    Chang, Won; Lee, Sang Min; Han, Joon Koo

    2017-01-01

    Objective To evaluate the feasibility, efficiency, and safety of no-touch switching bipolar (SB) and switching monopolar (SM) radiofrequency ablation (RFA) using ex vivo bovine livers. Materials and Methods A pork loin cube was inserted as a tumor mimicker in the bovine liver block; RFA was performed using the no-touch technique in the SM (group A1; 10 minutes, n = 10, group A2; 15 minutes, n = 10) and SB (group B; 10 minutes, n = 10) modes. The groups were compared based on the creation of confluent necrosis with sufficient safety margins, the dimensions, and distance between the electrode and ablation zone margin (DEM). To evaluate safety, small bowel loops were placed above the liver surface and 30 additional ablations were performed in the same groups. Results Confluent necroses with sufficient safety margins were created in all specimens. SM RFA created significantly larger volumes of ablation compared to SB RFA (all p < 0.001). The DEM of group B was significantly lower than those of groups A1 and A2 (all p < 0.001). Although thermal injury to the small bowel was noted in 90%, 100%, and 30% of the cases in groups A1, A2, and B, respectively, full depth injury was noted only in 60% of group A2 cases. Conclusion The no-touch RFA technique is feasible in both the SB and SM modes; however, SB RFA appears to be more advantageous compared to SM RFA in the creation of an ablation zone while avoiding the unnecessary creation of an adjacent parenchymal ablation zone or adjacent small bowel injuries.

  4. Regional pericarditis status post cardiac ablation: A case report

    Joseph Orme

    2014-01-01

    Full Text Available Context: Regional pericarditis is elusive and difficult to diagnosis. Healthcare providers should be familiar with post-cardiac ablation complications as this procedure is now widespread and frequently performed. The management of regional pericarditis differs greatly from that of acute myocardial infarction. Case report: A 52 year-old male underwent atrial fibrillation ablation and developed severe mid-sternal chest pain the following day with electrocardiographic findings suggestive of acute myocardial infarction, and underwent coronary angiography, a left ventriculogram, and 2D transthoracic echocardiogram, all of which were unremarkable without evidence of obstructive coronary disease, wall motion abnormalities, or pericardial effusions. Ultimately, the patient was diagnosed with regional pericarditis. After diagnosis, the patient′s presenting symptoms resolved with treatment including nonsteroidal anti-inflammatory agents and colchicine. Conclusion: This is the first reported case study of regional pericarditis status post cardiac ablation. Electrocardiographic findings were classic for an acute myocardial infarction; however, coronary angiography and left ventriculogram demonstrated no acute coronary occlusion or ventricular wall motion abnormalities. Healthcare professionals must remember that the electrocardiographic findings in pericarditis are not always classic and that pericarditis can occur status post cardiac ablation.

  5. A Tight Spot After Pulmonary Vein Catheter Ablation

    Amir, Rabia; Yeh, Lu; Montealegre-Gallegos, Mario; Saraf, Rabya; Matyal, Robina; Mahmood, Feroze

    2016-01-01

    A 52-YEAR-OLD woman with a history of embolic stroke due to paroxysmal atrial fibrillation was referred to the authors’ institution for epicardial surgical pulmonary vein isolation with left atrial appendage resection. The patient had 2 previous failed pulmonary vein catheter ablations. Dense fibrou

  6. Radiofrequency ablation of hepatocellular carcinoma: pros and cons.

    Rhim, Hyunchul; Lim, Hyo K

    2010-09-01

    Among locoregional treatments for hepatocellular carcinoma (HCC), radiofrequency ablation (RFA) has been accepted as the most popular alternative to curative transplantation or resection, and it shows an excellent local tumor control rate and acceptable morbidity. The benefits of RFA have been universally validated by the practice guidelines of international societies of hepatology. The main advantages of RFA include 1) it is minimally invasive with acceptable morbidity, 2) it enables excellent local tumor control, 3) it has promising long-term survival, and 4) it is a multimodal approach. Based on these pros, RFA will play an important role in managing the patient with early HCC (smaller than 3 cm with fewer than four tumors). The main limitations of current RFA technology in hepatic ablation include 1) limitation of ablation volume, 2) technically infeasible in some tumors due to conspicuity and dangerous location, and 3) the heat-sink effect. Many technical approaches have been introduced to overcome those limitations, including a novel guiding modality, use of artificial fluid or air, and combined treatment strategies. RFA will continue to play a role as a representative ablative modality in the management of HCC, even in the era of targeted agents.

  7. Emergency bypass post percutaneous atrial ablation: a case report.

    Hargrove, M

    2010-11-01

    A 34-year-old male undergoing percutaneous atrial ablation procedure for paroxysmal fibrillation required emergency sternotomy for cardiac tamponade. The patient had been anticoagulated and had received plavix and aspirin prior to and during the ablation procedure. Seven units of red cell concentrate had been transfused in the cardiac catherisation laboratory. On arrival in theatre, the patient was hypotensive, but was awake on induction of anaesthesia. No recordable blood pressure with non-invasive monitoring was observed. A sternotomy was immediately performed and, on evacuation of the pericardium, a bleeding site was not visible. The patient was commenced on cardiopulmonary bypass. Bleeding site was identified and the defect closed. The patient was weaned from cardiopulmonary bypass with minimal inotropic support and made an uneventful recovery. Bypass time was 38 minutes. A literature review showed a 1% incidence of post-ablation bleeding(1). The incidence of reverting to bypass for such an event has not been reported previously. During these procedures, it might be wise to have the cardiothoracic team notified while atrial ablation procedures are being performed in the cardiac catheterization laboratory.

  8. Nonstationary heating during VUV photochemical ablation of polymers

    Bityurin, N.; Castex, M. C.

    According to a previously developed pure photochemical model of VUV laser ablation of polymers, the velocity of ablation front is proportional to surface intensity, and a stationary value of the surface temperature does not depend on laser intensity. Previous estimations show, however, that this stationary surface temperature could be too high to be relevant to the photochemical mechanism. This raises a question of whether the stationary value of the surface temperature can be achieved for a given time shape of light intensity coming to the surface irradiated by a laser pulse of high enough fluence. The intensity time shape is connected not only with the time shape of a laser pulse but also with screening of laser radiation by the plume. This problem is discussed in the present communication. Specifically, it is shown that with a hyperbolic surface intensity time shape, heat diffusion can successfully compete with laser heating decreasing maximum surface temperature compared to its stationary value. The hyperbolic surface laser intensity corresponds to a rectangular laser pulse screened by plume during the photochemical ablation. This allows one to estimate that the photochemical model for a multiple-pulse VUV laser ablation with a high plume extinction coefficient is self-consistent even for a high value of stationary temperature and for high enough laser fluences.

  9. Voluntary Genital Ablations: Contrasting the Cutters and Their Clients

    Robyn A. Jackowich, BA

    2014-08-01

    Conclusions: This study may help identify individuals who are at risk of performing illegal castrations. That information may help healthcare providers protect individuals with extreme castration ideations from injuring themselves or others. Jackowich RA, Vale R, Vale K, Wassersug RJ, and Johnson TW. Voluntary genital ablations: Contrasting the cutters and their clients. Sex Med 2014;2:121–132.

  10. Direct laser interference ablating nanostructures on organic crystals

    Fang, Hong-Hua; Ding, Ran; Lu, Shi-Yang; Wang, Lei; Feng, Jing; Chen, Qi-Dai; Sun, Hong-Bo; Fang, Honghua

    2012-01-01

    Two-beam interference ablation of 1,4-Bis(4-methylstyryl) benzene organic crystal by short laser pulses (10 ns, 355 nm) is presented. The influence of laser fluence, interference period, and pulse number on the morphology have been studied. The morphology is closely associated with the molecular int

  11. Atmospheric pressure arc discharge with ablating graphite anode

    Nemchinsky, V. A. [Keiser University, Fort Lauderdale Campus, FL, 33309, USA; Raitses, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2015-05-18

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  12. Simulation of intracardiac electrograms around acute ablation lesions

    Greiner Joachim

    2016-09-01

    Full Text Available Radiofrequency ablation (RFA is a widely used clinical treatment for many types of cardiac arrhythmias. However, nontransmural lesions and gaps between linear lesions often lead to recurrence of the arrhythmia. Intracardiac electrograms (IEGMs provide real-time information regarding the state of the cardiac tissue surrounding the catheter tip. Nevertheless, the formation and interpretation of IEGMs during the RFA procedure is complex and yet not fully understood. In this in-silico study, we propose a computational model for acute ablation lesions. Our model consists of a necrotic scar core and a border zone, describing irreversible and reversible temperature induced electrophysiological phenomena. These phenomena are modeled by varying the intra- and extracellular conductivity of the tissue as well as a regulating zone factor. The computational model is evaluated regarding its feasibility and validity. Therefore, this model was compared to an existing one and to clinical measurements of five patients undergoing RFA. The results show that the model can indeed be used to recreate IEGMs. We computed IEGMs arising from complex ablation scars, such as scars with gaps or two overlapping ellipsoid scars. For orthogonal catheter orientation, the presence of a second necrotic core in the near-field of a punctiform acute ablation lesion had minor impact on the resulting signal morphology. The presented model can serve as a base for further research on the formation and interpretation of IEGMs.

  13. Ablation of Hydrogen Pellets in Hydrogen and Helium Plasmas

    Jørgensen, L W; Sillesen, Alfred Hegaard; Øster, Flemming

    1975-01-01

    Measurements on the interaction between solid hydrogen pellets and rotating plasmas are reported. The investigations were carried out because of the possibility of refuelling fusion reactors by the injection of pellets. The ablation rate found is higher than expected on the basis of a theory...

  14. THYROID CANCER Successful remnant ablation-what is success?

    Links, Thera P.; van der Horst-Schrivers, Anouk N. A.

    2012-01-01

    Radioactive iodine ablation therapy is a standard treatment for most patients with differentiated thyroid cancer to prevent relapse. The effective dose of radioactive iodine and optimal preparation has been investigated in two recent studies but these factors still need to be confirmed.

  15. Optimizing safety and efficacy of catheter ablation procedures

    F. Akca (Ferdi)

    2015-01-01

    markdownabstractAbstract In this thesis new developments in the field of invasive electrophysiology are studied and discussed. The aim of this work is to find strategies to optimize safety and efficacy of catheter ablation procedures. The most important developments that are studied in this thesis

  16. Radiofrequency ablation for the treatment of gastric antral vascular ectasia

    Dray, X.; Repici, A.; Gonzalez, P.;

    2014-01-01

    Background and study aims: The traditional endoscopic treatment for gastric antral vascular ectasia (GAVE) is argon plasma coagulation, but results are not always positive. Radiofrequency ablation (RFA) is a new endoscopic therapy that may be an attractive option for the treatment of GAVE. The ai...

  17. Feasibility of remote magnetic navigation for epicardial ablation

    P. Abraham; L.D. Abkenari; E.C.H. Peters; T. Szili-Torok (Tamas)

    2013-01-01

    textabstractPercutaneous epicardial mapping and ablation is an emerging method to treat ventricular tachycardias (VT), premature ventricular complexes (PVC), and accessory pathways. The use of a remote magnetic navigation system (MNS) could enhance precision and maintain safety. This multiple case h

  18. Zinc nanoparticles in solution by laser ablation technique

    S C Singh; R Gopal

    2007-06-01

    Colloidal zinc metallic nanoparticles are synthesized using pulsed laser ablation of metal plate in an aqueous solution of suitable surfactant to prevent aggregation. UV-visible absorption, TEM, small angle X-ray diffraction and wide-angle X-ray diffraction are used for the characterization of colloidal zinc metallic nanoparticles. Colloidal nanoparticles are found highly stable for a long time.

  19. Funktionel mitralinsufficiens efter His-ablation og pacemakerimplantation

    Lund, Janna; Gill, Sabine

    2012-01-01

    We describe the case of a 63 year-old patient with normal ejection fraction and trivial mitral regurgitation, who developed severe functional mitral incompetence (FMI) with pulmonary oedema the day after uncomplicated His ablation and implantation of VVI pacemaker. Mitral annuloplasty was performed...

  20. Formation of nanostructures under femtosecond laser ablation of metals

    Ashitkov, S I; Romashevskii, S A; Komarov, P S; Burmistrov, A A; Agranat, M B [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Zhakhovskii, V V [All-Russian Institute of Automatics, Moscow (Russian Federation); Inogamov, N A [Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region (Russian Federation)

    2015-06-30

    We present the results of studying the morphology of the modified surface of aluminium, nickel and tantalum after ablation of the surface layer by a femtosecond laser pulse. The sizes of characteristic elements of a cellular nanostructure are found to correlate with thermo-physical properties of the material and the intensity of laser radiation. (superstrong light fields)

  1. Radiofrequency Ablation of Hepatic Metastases from Thyroid Carcinoma

    Wertenbroek, Marieke W. J. L. A. E.; Links, Thera P.; Prins, Ted R.; Plukker, John T. M.; van der Jagt, Erik J.; de Jong, Koert P.

    2008-01-01

    Background: Radiofrequency ablation (RFA) is performed for various types of liver tumors. It might also have a role in the palliative treatment of liver metastases from thyroid carcinoma. Summary: Three patients with liver metastases of thyroid carcinoma were retrieved from our database of 125 patie

  2. Glass particles produced by laser ablation for ICP-MSmeasurements

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50 J cm{sup -2}. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloys samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns and fs-laser ablation than for metals alloys.

  3. Sonography-guided percutaneous microwave ablation of intrahepatic primary cholangiocarcinoma

    Yu Mingan [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Liang Ping, E-mail: Liangping301@hotmail.com [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Yu Xiaoling; Cheng Zhigang; Han Zhiyu; Liu Fangyi; Yu Jie [Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China)

    2011-11-15

    Objective: To evaluate the efficacy and safety of sonography-guided percutaneous microwave ablation of intrahepatic primary cholangiocarcinoma. Materials and methods: From May 2006 to March 2010, 15 patients (11 men, 4 women; mean age, 57.4 years) with 24 histologically proven intrahepatic primary cholangiocarcinoma lesions (mean tumor size, 3.2 {+-} 1.9 cm; range, 1.3-9.9 cm) were treated with microwave ablation. Results: Thirty-eight sessions were performed for 24 nodules in 15 patients. The follow-up period was 4-31 months (mean, 12.8 {+-} 8.0 months). The ablation success rate, the technique effectiveness rate, and the local tumor progression rate were 91.7% (22/24), 87.5% (21/24), and 25% (6/24) respectively according to the results of follow-up. The cumulative overall 6, 12, 24 month survival rates were 78.8%, 60.0%, and 60.0%, respectively. Major complication occurred including liver abscess in two patients (13.3%) and needle seeding in one patient (6.7%). Both complications were cured satisfied with antibiotic treatment combined to catheter drainage for abscess and resection for needle seeding. The minor complications and side effects were experienced by most patients which subsided with supportive treatment. Conclusion: Microwave ablation can be used as a safe and effective technique to treat intrahepatic primary cholangiocarcinoma.

  4. Ins and outs of endovenous laser ablation: Afterthoughts

    H.A.M. Neumann (Martino); M.J.C. van Gemert (Martin)

    2014-01-01

    textabstractPhysicists and medical doctors "speak" different languages. Endovenous laser ablation (EVLA) is a good example in which technology is essential to guide the doctor to the final result: optimal treatment. However, for the doctor, it is by far insufficient just to turn on the knobs of the

  5. Irreversible Electroporation for Focal Ablation at the Porta Hepatis

    Kasivisvanathan, Veeru, E-mail: vk103@ic.ac.uk [Imperial College London, Department of Radiology (United Kingdom); Thapar, Ankur, E-mail: a.thapar09@imperial.ac.uk; Oskrochi, Youssof, E-mail: Youssof.Oskrochi09@imperial.ac.uk [Imperial College London, Department of Surgery and Cancer (United Kingdom); Picard, John, E-mail: John.picard@imperial.nhs.uk [Imperial College Healthcare NHS Trust, Department of Anaesthesia (United Kingdom); Leen, Edward L. S., E-mail: Edward.leen@imperial.ac.uk [Imperial College London, Department of Radiology (United Kingdom)

    2012-12-15

    Patients with chemotherapy-refractory liver metastases who are not candidates for surgery may be treated with focal ablation techniques with established survival benefits. Irreversible electroporation is the newest of these and has the putative advantages of a nonthermal action, preventing damage to adjacent biliary structures and bowel. This report describes the use of irreversible electroporation in a 61-year-old man with a solitary chemoresistant liver metastasis unsuitable for radiofrequency ablation as a result of its proximity to the porta hepatis. At 3 months, tumor size was decreased on computed tomography from 28 Multiplication-Sign 19 to 20 Multiplication-Sign 17 mm, representing stable disease according to the response evaluation criteria in solid tumors. This corresponded to a decrease in tumor volume size from 5.25 to 3.16 cm{sup 3}. There were no early or late complications. Chemoresistant liver metastases in the proximity of the porta hepatis that are considered to be too high a risk for conventional surgery or thermal ablation may be considered for treatment by the novel ablation technique of irreversible electroporation.

  6. Robotic-assisted thermal ablation of liver tumours

    Abdullah, Basri Johan Jeet; Yeong, Chai Hong [University of Malaya, Department of Biomedical Imaging and University of Malaya Research Imaging Centre, Faculty of Medicine, Kuala Lumpur (Malaysia); University of Malaya, Department of Internal Medicine, Faculty of Medicine, Kuala Lumpur (Malaysia); Goh, Khean Lee [University of Malaya, Department of Internal Medicine, Faculty of Medicine, Kuala Lumpur (Malaysia); Yoong, Boon Koon [University of Malaya, Department of Surgery, Faculty of Medicine, Kuala Lumpur (Malaysia); Ho, Gwo Fuang [University of Malaya, Department of Oncology, Faculty of Medicine, Kuala Lumpur (Malaysia); Yim, Carolyn Chue Wai [University of Malaya, Department of Anesthesia, Faculty of Medicine, Kuala Lumpur (Malaysia); Kulkarni, Anjali [Perfint Healthcare Corporation, Florence, OR (United States)

    2015-01-15

    This study aimed to assess the technical success, radiation dose, safety and performance level of liver thermal ablation using a computed tomography (CT)-guided robotic positioning system. Radiofrequency and microwave ablation of liver tumours were performed on 20 patients (40 lesions) with the assistance of a CT-guided robotic positioning system. The accuracy of probe placement, number of readjustments and total radiation dose to each patient were recorded. The performance level was evaluated on a five-point scale (5-1: excellent-poor). The radiation doses were compared against 30 patients with 48 lesions (control) treated without robotic assistance. Thermal ablation was successfully completed in 20 patients with 40 lesions and confirmed on multiphasic contrast-enhanced CT. No procedure related complications were noted in this study. The average number of needle readjustment was 0.8 ± 0.8. The total CT dose (DLP) for the entire robotic assisted thermal ablation was 1382 ± 536 mGy.cm, while the CT fluoroscopic dose (DLP) per lesion was 352 ± 228 mGy.cm. There was no statistically significant (p > 0.05) dose reduction found between the robotic-assisted versus the conventional method. This study revealed that robotic-assisted planning and needle placement appears to be safe, with high accuracy and a comparable radiation dose to patients. (orig.)

  7. Atrial fibrillation: Is ablation the way of the future?

    Brian Olshansky

    2004-01-01

    @@ This issue of the Journal of Geriatric Cardiology features a manuscript entitled "A three-pulmonary vein isolation approach to treat paroxysmal atrial fibrillation".Dr. Lexin Wang addresses an important issue, and is to be congratulated for taking a new look at an approach to ablate atrial fibrillation.

  8. Plasma properties of laser—ablated Si target in air

    王象泰; 许炳璋; 等

    1996-01-01

    In plasma emission spectra produced by pulsed laser ablation of Si target in air under the assumption of local thermodynamic equilibrium(LTE),the electron temperature and the electron number density are calculated.respectively,It seems that LTE is valid in early stage of the laser induced plasma evolution.

  9. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  10. Thermochemical ablation of spherical cone during re-entry

    2001-01-01

    Presents the use of the similar transform and potential theoryfor calculation of the bypass flow factor and pressure gradient and the analysis of the influence of bypass flow factor and pressure gradient on heat transfer is analyzed, and the distribution of nose cone ablation obtained by combining the controlling equations of boundary layer, the compatible relation of interface and the heat conduction of interior.

  11. Laser ablation of titanium in liquid in external electric field

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.

  12. Recombinant TSH stimulated remnant ablation therapy in thyroid cancer: the success rate depends on the definition of ablation success--an observational study.

    Anouk N A van der Horst-Schrivers

    Full Text Available Patients with differentiated thyroid cancer (DTC are treated with (near-total thyroidectomy followed by remnant ablation. Optimal radioiodine-131 (131I uptake is achieved by withholding thyroid hormone (THW, pretreatment with recombinant human Thyrotropin Stimulating Hormone (rhTSH is an alternative. Six randomized trials have been published comparing THW and rhTSH, however comparison is difficult because an uniform definition of ablation success is lacking. Using a strict definition, we performed an observational study aiming to determine the efficacy of rhTSH as preparation for remnant ablation.Adult DTC patients with, tumor stage T1b to T3, Nx, N0 and N1, M0 were included in a prospective multicenter observational study with a fully sequential design, using a stopping rule. All patients received remnant ablation with 131I using rhTSH. Ablation success was defined as no visible uptake in the original thyroid bed on a rhTSH stimulated 150 MBq 131I whole body scan (WBS 9 months after remnant ablation, or no visible uptake in the original thyroid bed on a post therapeutic WBS when a second high dose was necessary.After interim analysis of the first 8 patients, the failure rate was estimated to be 69% (90% confidence interval (CI 20-86% and the inclusion of new patients had to be stopped. Final analysis resulted in an ablation success in 11 out of 17 patients (65%, 95% CI 38-86%.According to this study, the efficacy of rhTSH in the preparation of 131I ablation therapy is inferior, when using a strict definition of ablation success. The current lack of agreement as to the definition of successful remnant ablation, makes comparison between different ablation strategies difficult. Our results point to the need for an international consensus on the definition of ablation success, not only in routine patient's care but also for scientific reasons.Dutch Trial Registration NTR2395.

  13. Pre-ablative high-resolution MRA facilitates electrophysiologic pulmonary vein ablation and reduces fluoroscopy time in patients with paroxysmal atrial fibrillation

    Collins, Jeremy D.; Pereles, F. S.; Bello, David; Betts, Timothy; Zachariah, Anish; Kaliney, Ryan; Song, Gina K.; Shors, Stephanie M.; Carr, James C.; Finn, John P.

    2003-05-01

    Pulmonary MRA generates high-resolution images of the pulmonary veins (PV) and left atrium (LA), permitting characterization of complex PV anatomy, which is useful in electrophysiologic PV catheter ablation, a proven technique for the treatment of paroxysmal atrial fibrillation (PAF). The purpose of this study was to determine if pre-ablative pulmonary MRA with intra-ablative viewing facilitates ablation by reducing fluoroscopy time. We studied the morphology of the LA and PV at 1.5T (Magnetom Sonata, Siemens Medical Solutions, Erlangen Germany) with breath-held gadolinium-enhanced 3D MRA in 7 patients with PAF undergoing PV ablation. Data was volume rendered (VR) on a stereoscopic workstation. PV ostial diameter and cross-sectional area measurements were obtained on multi-planar reformatted (MPR) images. VR datasets were converted into digital movies and were viewed on a laptop computer adjacent to real-time fluoroscopic images. Fluoroscopy times for patients undergoing pre-ablative MPA mapping were compared with a cohort of 22 consecutive patients diagnosed with PAF who underwent catheter ablation without pre-ablative MRA planning. Mean PV ablation fluoroscopic time with MRA planning versus fluoroscopic imaging alone were 84+/-20 minutes and 114+/-20 minutes respectively. Pre-ablative MRA planning resulted in a significant mean fluoroscopy time savings of 26% (p<0.05). In patients with PAF undergoing PV ablation, analysis of MRA datasets depicting PV anatomy confirms that there is great variability in anatomy between veins. Pre-ablative 3D PV mapping by MRA greatly facilitates fluoroscopic identification of individual veins and significantly reduces fluoroscopic radiation time.

  14. Feasibility evaluation of the monolithic braided ablative nozzle

    Director, Mark N.; McPherson, Douglass J., Sr.

    1992-02-01

    The feasibility of the monolithic braided ablative nozzle was evaluated as part of an independent research and development (IR&D) program complementary to the National Aeronautics and Space Administration/Marshall Space Flight Center (NASA/MSFC) Low-Cost, High-Reliability Case, Insulation and Nozzle for Large Solid Rocket Motors (LOCCIN) Program. The monolithic braided ablative nozzle is a new concept that utilizes a continuous, ablative, monolithic flame surface that extends from the nozzle entrance, through the throat, to the exit plane. The flame surface is fabricated using a Through-the-Thickness braided carbon-fiber preform, which is impregnated with a phenolic or phenolic-like resin. During operation, the braided-carbon fiber/resin material ablates, leaving the structural backside at temperatures which are sufficiently low to preclude the need for any additional insulative materials. The monolithic braided nozzle derives its potential for low life cycle cost through the use of automated processing, one-component fabrication, low material scrap, low process scrap, inexpensive raw materials, and simplified case attachment. It also has the potential for high reliability because its construction prevents delamination, has no nozzle bondlines or leak paths along the flame surface, is amenable to simplified analysis, and is readily inspectable. In addition, the braided construction has inherent toughness and is damage-tolerant. Two static-firing tests were conducted using subscale, 1.8 - 2.0-inch throat diameter, hardware. Tests were approximately 15 seconds in duration, using a conventional 18 percent aluminum/ammonium perchlorate propellant. The first of these tests evaluated the braided ablative as an integral backside insulator and exit cone; the second test evaluated the monolithic braided ablative as an integral entrance/throat/exit cone nozzle. Both tests met their objectives. Radial ablation rates at the throat were as predicted, approximately 0.017 in

  15. Plasma YKL-40 is elevated in patients with recurrent atrial fibrillation after catheter ablation

    Henningsen, Kristoffer Mads; Nilsson, Brian; Johansen, Julia S;

    2010-01-01

    -81) with paroxysmal/persistent AF were treated with RF catheter ablation; Holter monitoring for 14 days was performed before ablation and after 3 months. Recurrent symptomatic AF or atrial tachycardia >10 min was considered failure, and the patients were offered a second ablation session. YKL-40 was determined...... to ablation compared to patients with recurrence of AF (31 vs. 62 microg/l, P = 0.029). Plasma YKL-40 was not an independent predictor of recurrence of AF after ablation. No significant changes in plasma YKL-40 levels were seen from baseline to follow-up at 12 months. CONCLUSION: In patients with paroxysmal...

  16. XUV-laser induced ablation of PMMA with nano-, pico-, and femtosecond pulses

    Juha, L. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic)]. E-mail: juha@fzu.cz; Bittner, M. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Chvostova, D. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic)] (and others)

    2005-06-15

    For conventional wavelength (UV-vis-IR) lasers delivering radiation energy to the surface of materials, ablation thresholds, etch (ablation) rates, and the quality of ablated structures often differ dramatically between short (typically nanosecond) and ultrashort (typically femtosecond) pulses. Various very short-wavelength ({lambda} < 100 nm) lasers, emitting pulses with durations ranging from {approx}10 fs to {approx}1 ns, have recently been placed into routine operation. This has facilitated the investigation of how ablation characteristics depend on the pulse duration in the XUV spectral region. Ablation of poly(methyl methacrylate) (PMMA) induced by three particular short-wavelength lasers emitting pulses of various durations, is reported in this contribution.

  17. Novel approaches to treatment of hepatocellular carcinoma and hepatic metastases using thermal ablation and thermosensitive liposomes.

    Dewhirst, Mark W; Landon, Chelsea D; Hofmann, Christina L; Stauffer, Paul R

    2013-07-01

    Because of the limitations of surgical resection, thermal ablation is commonly used for the treatment of hepatocellular carcinoma and liver metastases. Current methods of ablation can result in marginal recurrences of larger lesions and in tumors located near large vessels. This review presents a novel approach for extending treatment out to the margins where temperatures do not provide complete treatment with ablation alone, by combining thermal ablation with drug-loaded thermosensitive liposomes. A history of the development of thermosensitive liposomes is presented. Clinical trials have shown that the combination of radiofrequency ablation and doxorubicin-loaded thermosensitive liposomes is a promising treatment.

  18. Resonant holographic measurements of laser ablation plume expansion in vacuum and argon gas backgrounds

    Lindley, R.A. [Michigan Univ., Ann Arbor, MI (United States)

    1993-10-01

    This thesis discusses the following on resonant holographic measurements of laser ablation plume expansion: Introduction to laser ablation; applications of laser ablation; The study of plume expansion; holographic interferometry; resonant holographic interferometry; accounting for finite laser bandwidth; The solution for doppler broadening and finite bandwidth; the main optical table; the lumonics laser spot shape; developing and reconstructing the holograms; plume expansion in RF/Plasma Environments; Determining {lambda}{sub o}; resonant refraction effects; fringe shift interpretation; shot-to-shot consistency; laser ablation in vacuum and low pressure, inert, background gas; theoretically modeling plume expansion in vacuum and low pressure, inert, background gas; and laser ablation in higher pressure, inert, background gas.

  19. Real time assessment of RF cardiac tissue ablation with optical spectroscopy

    Demos, S G; Sharareh, S

    2008-03-20

    An optical spectroscopy approach is demonstrated allowing for critical parameters during RF ablation of cardiac tissue to be evaluated in real time. The method is based on incorporating in a typical ablation catheter transmitting and receiving fibers that terminate at the tip of the catheter. By analyzing the spectral characteristics of the NIR diffusely reflected light, information is obtained on such parameters as, catheter-tissue proximity, lesion formation, depth of penetration of the lesion, formation of char during the ablation, formation of coagulum around the ablation site, differentiation of ablated from healthy tissue, and recognition of micro-bubble formation in the tissue.

  20. Ablation of high-Z material dust grains in edge plasmas of magnetic fusion devices

    Marenkov, E. D.; Krasheninnikov, S. I.

    2014-12-01

    The model, including shielding effects of high-Z dust grain ablation in tokamak edge plasma, is presented. In a contrast to shielding models developed for pellets ablation in a hot plasma core, this model deals with the dust grain ablation in relatively cold edge plasma. Using some simplifications, a closed set of equations determining the grain ablation rate Γ is derived and analyzed both analytically and numerically. The scaling law for Γ versus grain radius and ambient plasma parameters is obtained and confirmed by the results of numerical solutions. The results obtained are compared with both dust grain models containing no shielding effects and the pellet ablation models.

  1. UV solid state laser ablation of intraocular lenses

    Apostolopoulos, A.; Lagiou, D. P.; Evangelatos, Ch.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-06-01

    Commercially available intraocular lenses (IOLs) are manufactured from silicone and acrylic, both rigid (e.g. PMMA) and foldable (hydrophobic or hydrophilic acrylic biomaterials), behaving different mechanical and optical properties. Recently, the use of apodizing technology to design new diffractive-refractive multifocals improved the refractive outcome of these intraocular lenses, providing good distant and near vision. There is also a major ongoing effort to refine laser refractive surgery to correct other defects besides conventional refractive errors. Using phakic IOLs to treat high myopia potentially provides better predictability and optical quality than corneal-based refractive surgery. The aim of this work was to investigate the effect of laser ablation on IOL surface shaping, by drilling circular arrays of holes, with a homemade motorized rotation stage, and scattered holes on the polymer surface. In material science, the most popular lasers used for polymer machining are the UV lasers, and, therefore, we tried in this work the 3rd and the 5th harmonic of a Q-switched Nd:YAG laser (λ=355 nm and λ=213 nm respectively). The morphology of the ablated IOL surface was examined with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variations in surface height and, finally, the ablation rates were also mathematically simulated for depicting the possible laser ablation mechanism(s). The experimental results and the theoretical modelling of UV laser interaction with polymeric IOLs are discussed in relation with the physical (optical, mechanical and thermal) properties of the material, in addition to laser radiation parameters (laser energy fluence, number of pulses). The qualitative aspects of laser ablation at λ=213 nm reveal a

  2. Influence of laser ablation parameters on trueness of imaging

    Vaculovič, T.; Warchilová, T. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); CEITEC, Masaryk University, Kamenice 5, Brno 62500 (Czech Republic); Čadková, Z.; Száková, J.; Tlustoš, P. [Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka 129, Praha 16521 (Czech Republic); Otruba, V. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Kanický, V., E-mail: viktork@chemi.muni.cz [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); CEITEC, Masaryk University, Kamenice 5, Brno 62500 (Czech Republic)

    2015-10-01

    Highlights: • Laser ablation conditions vs. quality of LA-ICP-MS imaging (resolution, detection). • Increase in laser spot size improves detection limit, while deteriorates resolution. • Decrease in scan speed improves resolution but prolongs time of analysis. • Compromise spot size and scan speed meet required quality of imaging. • Metal-enriched/depleted zones in tapeworm sections were resolved by LA-ICP-MS. - Abstract: Influence of laser ablation conditions on limit of detection, spatial resolution and time of analysis was studied for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) applied to elemental mapping. Laser repetition rate and laser fluence were investigated in tapeworm thin section to attain optimum ablation rate, yielding appropriately low detection limit which complies with elemental contents in the tissue. Effect of combinations of laser spot size and scan speed on relative broadening (Δw{sub rel}) of image of the ablated pattern (line) was investigated with the aim to quantify the trueness of imaging. Ink lines printed on paper were employed for the study of influence of spot size and scan speed on limit of detection, relative broadening of elemental image and duration of elemental mapping. An uneven distribution of copper in a printed line (coffee stain effect) was observed. The Δw{sub rel} is strongly reduced (down to 2%) at low scan speed (10 μm s{sup −1}) and laser spot diameter of 10 μm but resulting in unacceptably long time of mapping (up to 3000 min). Finally, tapeworm thin-section elemental maps (4 mm × 5 mm) were obtained at the laser spot diameter of 65 μm and the scan speed of 65 μm s{sup −1} within 100 min. A dissimilar lateral distribution of Pb was observed in comparison with that of Cu or Zn due to different pathways of element uptake.

  3. Feasibility and safety of remote-controlled magnetic navigation for ablation of atrial fibrillation.

    Katsiyiannis, William T; Melby, Daniel P; Matelski, Jayme L; Ervin, Vanessa L; Laverence, Kerri L; Gornick, Charles C

    2008-12-15

    Radiofrequency ablation for atrial fibrillation (AF) involves complex catheter manipulation resulting in prolonged procedure time and fluoroscopy exposure. Remote magnetic navigation (RMN) represents a novel approach toward improving the ability to perform complex ablation. Forty patients underwent ablation for AF, 20 using RMN (NIOBE II, Stereotaxis, Inc) with a 4-mm-tip magnetic catheter (Celsius, Biosense Webster) and 20 using a conventional 8-mm-tip bidirectional ablation catheter (Blazer, Boston Scientific). All patients underwent a combined wide area circumferential ablation and segmental pulmonary vein (PV) isolation using a circular mapping catheter and cavotricuspid isthmus ablation for right atrial flutter. The procedural end point was PV entrance block. There was no difference in atrial size, left ventricular systolic function, or type of AF between groups. PV entrance block was achieved in all patients. Mean procedure time was 279 +/- 60 minutes in the conventional group versus 209 +/- 56 minutes in the RMN group (p RMN group (p RMN group free from clinical AF and off antiarrhythmic drugs (p = NS). There were 2 additional ablations performed for atypical atrial flutter in the conventional group and 3 in the RMN group (p = ns). Ablation catheter char formation was not observed. There were no procedural complications. In conclusion, radiofrequency ablation of AF performed with RMN is safe and feasible. Compared with conventional hand-navigated ablation, RMN ablation results in similar clinical outcomes with decreased fluoroscopy and procedure times.

  4. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors

    Chen, H.; Li, H.; Sun, Yc.; Wang, Y.; Lü, Pj.

    2016-02-01

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application.

  5. Ultra-high temperature ablation behavior of Ti2AlC ceramics under an oxyacetylene flame

    Song, G.M.; Li, S.B.; Zhao, C.X.; Sloof, W.G.; Zwaag, S. van der; Pei, Y.T.; Hosson, J.Th.M. De

    2011-01-01

    The linear and mass ablation rates of Ti2AlC ceramics under an oxyacetylene flame at a temperature up to 3000 degrees C were examined by measuring the dimensions and weight change of the ablated samples. The linear ablation rate was decreased from 0.14 mu m s(-1) the first 30s of the ablation to 0.0

  6. Electrophysiological properties and the results of catheter ablation of symptomatic atrial tachyarrhythmia after surgical ablation of atrial fibrillation

    Bockeria L.A.; Bockeria O.L.; Sergeev A.V.; Melikulov A.Kh.; Klimchuk I.Ya.; Temirbulatov I.A.; Fatulaev Z.F.

    2016-01-01

    Objective. To characterize electrophysiological properties of postablational arrhythmia and to assess shortand long-term efficacy of catheter radiofrequency ablation of these arrhythmias. Material and methods. We analyzed retrospectively 20 consecutive patients with highly symptomatic postsurgical atrial arrhythmia operated on valvular heart disease in conjunction with paroxysmal, persistent, longstanding persistent and permanent forms of atrial fibrillation during 2010–2013. Medi...

  7. Factors Associated with Recurrence of Varicose Veins after Thermal Ablation: Results of The Recurrent Veins after Thermal Ablation Study

    R. G. Bush

    2014-01-01

    Full Text Available Background. The goal of this retrospective cohort study (REVATA was to determine the site, source, and contributory factors of varicose vein recurrence after radiofrequency (RF and laser ablation. Methods. Seven centers enrolled patients into the study over a 1-year period. All patients underwent previous thermal ablation of the great saphenous vein (GSV, small saphenous vein (SSV, or anterior accessory great saphenous vein (AAGSV. From a specific designed study tool, the etiology of recurrence was identified. Results. 2,380 patients were evaluated during this time frame. A total of 164 patients had varicose vein recurrence at a median of 3 years. GSV ablation was the initial treatment in 159 patients (RF: 33, laser: 126, 52 of these patients had either SSV or AAGSV ablation concurrently. Total or partial GSV recanalization occurred in 47 patients. New AAGSV reflux occurred in 40 patients, and new SSV reflux occurred in 24 patients. Perforator pathology was present in 64% of patients. Conclusion. Recurrence of varicose veins occurred at a median of 3 years after procedure. The four most important factors associated with recurrent veins included perforating veins, recanalized GSV, new AAGSV reflux, and new SSV reflux in decreasing frequency. Patients who underwent RF treatment had a statistically higher rate of recanalization than those treated with laser.

  8. Extending the Frontiers Beyond Thermal Ablation by Radiofrequency Ablation: SBRT, Brachytherapy, SIRT (Radioembolization).

    Hass, Peter; Mohnike, Konrad

    2014-08-01

    Metastatic spread of the primary is still defined as the systemic stage of disease in treatment guidelines for various solid tumors. This definition is the rationale for systemic therapy. Interestingly and despite the concept of systemic involvement, surgical resection as a local treatment has proven to yield long-term outcomes in a subset of patients with limited metastatic disease, supporting the concept of oligometastatic disease. Radiofrequency ablation has yielded favorable outcomes in patients with hepatocellular carcinoma and colorectal metastases, and some studies indicate its prognostic potential in combined treatments with systemic therapies. However, some significant technical limitations apply, such as size limitation, heat sink effects, and unpredictable heat distribution to adjacent risk structures. Interventional and non-invasive radiotherapeutic techniques may overcome these limitations, expanding the options for oligometastatic patients and cytoreductive concepts. Current data suggest very high local control rates even in large tumors at any given location in the human body. The article focusses on the characteristics and possibilities of stereotactic body radiation therapy, interstitial high-dose-rate brachytherapy, and Yttrium-90 radioembolization. In this article, we discuss the differences of the technical preferences as well as their impact on indications. Current data is presented and discussed with a focus on application in oligometastatic or cytoreductive concepts in different tumor biologies.

  9. Thermal-mechanical modeling of laser ablation hybrid machining

    Matin, Mohammad Kaiser

    2001-08-01

    Hard, brittle and wear-resistant materials like ceramics pose a problem when being machined using conventional machining processes. Machining ceramics even with a diamond cutting tool is very difficult and costly. Near net-shape processes, like laser evaporation, produce micro-cracks that require extra finishing. Thus it is anticipated that ceramic machining will have to continue to be explored with new-sprung techniques before ceramic materials become commonplace. This numerical investigation results from the numerical simulations of the thermal and mechanical modeling of simultaneous material removal from hard-to-machine materials using both laser ablation and conventional tool cutting utilizing the finite element method. The model is formulated using a two dimensional, planar, computational domain. The process simulation acronymed, LAHM (Laser Ablation Hybrid Machining), uses laser energy for two purposes. The first purpose is to remove the material by ablation. The second purpose is to heat the unremoved material that lies below the ablated material in order to ``soften'' it. The softened material is then simultaneously removed by conventional machining processes. The complete solution determines the temperature distribution and stress contours within the material and tracks the moving boundary that occurs due to material ablation. The temperature distribution is used to determine the distance below the phase change surface where sufficient ``softening'' has occurred, so that a cutting tool may be used to remove additional material. The model incorporated for tracking the ablative surface does not assume an isothermal melt phase (e.g. Stefan problem) for laser ablation. Both surface absorption and volume absorption of laser energy as function of depth have been considered in the models. LAHM, from the thermal and mechanical point of view is a complex machining process involving large deformations at high strain rates, thermal effects of the laser, removal of

  10. Ablation study of tungsten-based nuclear thermal rocket fuel

    Smith, Tabitha Elizabeth Rose

    The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the

  11. Effects of caudolateral neostriatal ablations on pain-related behaviour in the chicken.

    Gentle, M J; Hunter, L N; Corr, S A

    1997-04-01

    As a measure of pain-related behaviour, beak guarding was investigated by recording the pecking response of adult chickens to a visually attractive stimulus before and after bilateral suction ablation of the caudolateral neostriatum (CLN). Two control groups of birds were used: a sham-operated group and an ablated group, in which the ablation was confined to the rostral dorsolateral telencephalon. Comparing the birds that had undergone ablation with the sham-operated controls showed that the ablation did not affect pecking behaviour. Five days after ablation, all birds were subjected to partial amputation of one third of the beak. A significant reduction in pecking behaviour (beak-guarding) was observed in both control groups, but was not observed in those birds that had previously received CLN ablations. In a second experiment, where beak amputation preceeded CLN ablation by 6 days, ablation did not affect the reduced pecking. The absence of guarding or other pain-related behaviours would indicate that an intact CLN was necessary for these behaviours to develop but, once they had developed, ablation had no effect.

  12. Atrial Tachycardias Arising from Ablation of Atrial Fibrillation: A Proarrhythmic Bump or an Antiarrhythmic Turn?

    Ashok J. Shah

    2010-01-01

    Full Text Available The occurrence of atrial tachycardias (AT is a direct function of the volume of atrial tissue ablated in the patients with atrial fibrillation (AF. Thus, the incidence of AT is highest in persistent AF patients undergoing stepwise ablation using the strategic combination of pulmonary vein isolation, electrogram based ablation and left atrial linear ablation. Using deductive mapping strategy, AT can be divided into three clinical categories viz. the macroreentry, the focal and the newly described localized reentry all of which are amenable to catheter ablation with success rate of 95%. Perimitral, roof dependent and cavotricuspid isthmus dependent AT involve large reentrant circuits which can be successfully ablated at the left mitral isthmus, left atrial roof and tricuspid isthmus respectively. Complete bidirectional block across the sites of linear ablation is a necessary endpoint. Focal and localized reentrant AT commonly originate from but are not limited to the septum, posteroinferior left atrium, venous ostia, base of the left atrial appendage and left mitral isthmus and they respond quickly to focal ablation. AT not only represents ablation-induced proarrhythmia but also forms a bridge between AF and sinus rhythm in longstanding AF patients treated successfully with catheter ablation.

  13. Ablation behavior and mechanism analysis of C/SiC composites

    Yang Wang

    2016-04-01

    Full Text Available Ablation is an erosive phenomenon with removal of material by a combination of thermo-mechanical, thermo-chemical, and thermo-physical factors with high temperature, pressure, and velocity of combustion flame. Materials with outstanding thermo-mechanical and thermo-chemical properties are required for future high-temperature components. C/SiC is a kind of great potential high-temperature structural material in aeronautics and astronautics with low specific weight, high specific strength, good thermal stability, oxidation resistance and excellent resistance to ablation. In this paper, the ablation phenomenon and mechanisms were summarized adequately. The ablated surface of C/SiC composites could be divided into three regions from center to external. In general, the higher the density, the lower the ablation rate; the lower the ablation temperature and less time, the lower the ablation rate, and the preparation methods also had a great influence on the ablation property. Thermo-physical and thermo-mechanical attacks were the main ablation behavior in the center region; oxidation was the main ablation behavior in the transition region and the border oxidation region.

  14. Ablation characteristics of electrospun core-shell nanofiber by femtosecond laser.

    Park, ChangKyoo; Xue, Ruipeng; Lannutti, John J; Farson, Dave F

    2016-08-01

    This study examined the femtosecond laser ablation properties of core and shell polymers their relationship to the ablation characteristics of core-shell nanofibers. The single-pulse ablation threshold of bulk polycaprolactone (PCL) was measured to be 2.12J/cm(2) and that of bulk polydimethylsiloxane (PDMS) was 4.07J/cm(2). The incubation coefficients were measured to be 0.82±0.02 for PCL and 0.53±0.03 for PDMS. PDMS-PCL core-shell and pure PCL nanofibers were fabricated by electrospinning. The energy/volume of pure PCL and PDMS-PCL core-shell nanofiber ablation was investigated by measuring linear ablation grooves made at different scanning speeds. At large scanning speed, higher energy/volume was required for machining PDMS-PCL nanofiber than for PCL nanofiber. However, at small scanning speed, comparable energy/volume was measured for PDMS-PCL and PCL nanofiber ablation. Additionally, in linear scanned ablation of PDMS-PCL fibers at small laser pulse energy and large scanning speed, there were partially ablated fibers where the shell was ablated but the core remained. This was attributed to the lower ablation threshold of the shell material.

  15. Increasing the penetration depth for ultrafast laser tissue ablation using glycerol based optical clearing

    Gabay, Ilan; Subramanian, Kaushik G.; Martin, Chris; Yildirim, Murat; Tuchin, Valery V.; Ben-Yakar, Adela

    2016-03-01

    Background: Deep tissue ablation is the next challenge in ultrafast laser microsurgery. By focusing ultrafast pulses below the tissue surface one can create an ablation void confined to the focal volume. However, as the ablation depth increases in a scattering tissue, increase in the required power can trigger undesired nonlinear phenomena out of focus that restricts our ability to ablate beyond a maximum ablation depth of few scattering lengths. Optical clearing (OC) might reduce the intensity and increase the maximal ablation depth by lowering the refractive index mismatch, and therefore reducing scattering. Some efforts to ablate deeper showed out of focus damage, while others used brutal mechanical methods for clearing. Our clinical goal is to create voids in the scarred vocal folds and inject a biomaterial to bring back the tissue elasticity and restore phonation. Materials and methods: Fresh porcine vocal folds were excised and applied a biocompatible OC agent (75% glycerol). Collimated transmittance was monitored. The tissue was optically cleared and put under the microscope for ablation threshold measurements at different depths. Results: The time after which the tissue was optically cleared was roughly two hours. Fitting the threshold measurements to an exponential decay graph indicated that the scattering length of the tissue increased to 83+/-16 μm, which is more than doubling the known scattering length for normal tissue. Conclusion: Optical clearing with Glycerol increases the tissue scattering length and therefore reduces the energy for ablation and increases the maximal ablation depth. This technique can potentially improve clinical microsurgery.

  16. Detection of the Single-Session Complete Ablation Rate by Contrast-Enhanced Ultrasound during Ultrasound-Guided Laser Ablation for Benign Thyroid Nodules: A Prospective Study

    Shuhua Ma

    2016-01-01

    Full Text Available This study aimed to investigate the single-session complete ablation rate of ultrasound-guided percutaneous laser ablation (LA for benign thyroid nodules. LA was performed in 90 patients with 118 benign thyroid nodules. Contrast-enhanced ultrasound (CEUS was used to evaluate complete nodule ablation one day after ablation. Thyroid nodule volumes, thyroid functions, clinical symptoms and complications were evaluated 1, 3, 6, 12, and 18 months after ablation. Results showed that all benign thyroid nodules successfully underwent LA. The single-session complete ablation rates for nodules with maximum diameters ≤2 cm, 2-3 cm and ≥3 cm were 93.4%, 70.3% and 61.1%, respectively. All nodule volumes significantly decreased than that one day after ablation (P0.05. Three patients had obvious pain during ablation; one (1.1% had recurrent laryngeal nerve injury, but the voice returned to normal within 6 months after treatment. Thus, ultrasound-guided LA can effectively inactivate benign thyroid nodules. LA is a potentially viable minimally invasive treatment that offers good cosmetic effects.

  17. Radiofrequency Ablation for the Treatment of Hepatocellular Carcinoma in Patients with Transjugular Intrahepatic Portosystemic Shunts

    Park, Jonathan K., E-mail: jonathan.park09@gmail.com [David Geffen School of Medicine at UCLA, Department of Radiology (United States); Al-Tariq, Quazi Z., E-mail: qat200@gmail.com [Stanford University School of Medicine, Department of Radiology (United States); Zaw, Taryar M., E-mail: taryar.zaw@gmail.com; Raman, Steven S., E-mail: sraman@mednet.ucla.edu; Lu, David S.K., E-mail: dlu@mednet.ucla.edu [David Geffen School of Medicine at UCLA, Department of Radiology (United States)

    2015-10-15

    PurposeTo assess radiofrequency (RF) ablation efficacy, as well as the patency of transjugular intrahepatic portosystemic shunts (TIPSs), in patients with hepatocellular carcinoma (HCC).Materials and MethodsRetrospective database review of patients with pre-existing TIPS undergoing RF ablation of HCC was conducted over a 159-month period ending in November 2013. TIPS patency pre- and post-RF ablation was assessed by ultrasound, angiography, and/or contrast-enhanced CT or MRI. Patient demographics and immediate post-RF ablation outcomes and complications were also reviewed.Results19 patients with 21 lesions undergoing 25 RF ablation sessions were included. Child-Pugh class A, B, and C scores were seen in 1, 13, and 5 patients, respectively. Eleven patients (58 %) ultimately underwent liver transplantation. Immediate technical success was seen in all ablation sessions without residual tumor enhancement (100 %). No patients (0 %) suffered liver failure within 1 month of ablation. Pre-ablation TIPS patency was demonstrated in 22/25 sessions (88 %). Of 22 cases with patent TIPS prior to ablation, post-ablation patency was demonstrated in 22/22 (100 %) at immediate post-ablation imaging and in 21/22 (95 %) at last follow-up (1 patient was incidentally noted to have occlusion 31 months later). No immediate complications were observed.ConclusionAblation efficacy was similar to the cited literature values for patients without TIPS. Furthermore, TIPS patency was preserved in the majority of cases. Patients with both portal hypertension and HCC are not uncommonly encountered, and a pre-existing TIPS does not appear to be a definite contraindication for RF ablation.

  18. Anatomic approach for ganglionic plexi ablation in patients with paroxysmal atrial fibrillation.

    Katritsis, Demosthenes; Giazitzoglou, Eleftherios; Sougiannis, Demetrios; Goumas, Nicolaos; Paxinos, George; Camm, A John

    2008-08-01

    There is evidence that parasympathetic denervation may prevent atrial fibrillation (AF) recurrences. This study aimed at applying an anatomic approach for ablation of atrial ganglionic plexi (GPs) in patients with paroxysmal AF. Nineteen patients with symptomatic, paroxysmal AF underwent anatomically guided radiofrequency ablation at the location of the 4 main left atrial GPs and were prospectively assessed for recurrence of AF or other atrial arrhythmia. This group was compared with 19 age- and gender-matched patients who previously underwent conventional circumferential pulmonary vein ablation. All ablation procedures were uneventful. Circumferential and GP ablations were accomplished with a radiofrequency delivery time of 28 +/- 5 versus 18 +/- 3 min (p <0.001) and a fluoroscopy time of 31 +/- 5 versus 18 +/- 5 min (p <0.001), respectively. Parasympathetic reflexes during radiofrequency ablation were elicited in 4 patients (21%). Arrhythmia recurred in 7 patients (37%) with circumferential ablation and 14 patients (74%) with GP ablation, during 1-year follow-up (p for log-rank test = 0.017). In 2 patients with GP ablation, left atrial flutters were documented in addition to AF during follow-up. Patients who underwent GP ablation had an almost 2.5 times higher risk of AF recurrence compared with those who underwent circumferential ablation (hazard ratio 2.6, 95% confidence interval 1.0 to 6.6, p = 0.038). In conclusion, anatomically guided GP ablation is feasible and safe in the electrophysiology laboratory, but this approach yields inferior clinical results compared with circumferential ablation.

  19. Synthesis of selenium nanoparticles by pulsed laser ablation

    Quintana, M.; Haro-Poniatowski, E.; Morales, J.; Batina, N.

    2002-07-01

    The synthesis of selenium nanoparticles by pulsed laser ablation using a YAG laser at 532 nm is reported. The nanoparticles were deposited on three different substrates: metallic gold films, silicon wafers and glass, and subsequently visualized and characterized by atomic force microscopy (AFM). It was found that the size, shape and population of the selenium nanoparticles are strongly dependent on the experimental conditions during the ablation process; in particular on the energy density, number of laser pulses and the nature of the substrate. Atomic force microscopy imaging allows recognition, quantitative and qualitative characterization of individual selenium nanoparticles and their aggregates as well. In most of the experiments just a few laser pulses (up to five), were sufficient to produce a noticeable amount of nanoparticles on the substrate surface.

  20. Pulsed laser ablation of polymers for display applications

    Pedder, James E. A.; Holmes, Andrew S.; Booth, Heather J.

    2008-02-01

    Laser micromachining by ablation is a well established technique used for the production of 2.5D and 3D features in a wide variety of materials. The fabrication of stepped, multi-level, structures can be achieved using a number of binary mask projection techniques using excimer lasers. Alternatively, direct-writing of complex 2.5D features can easily be achieved with solid-state lasers. Excimer laser ablation using half-tone masks allows almost continuous surface relief and the generation of features with low surface roughness. We have developed techniques to create large arrays of repeating micro-optical structures on polymer substrates. Here, we show our recent developments in laser structuring with the combination of half-tone and binary mask techniques.

  1. A unified model in the pulsed laser ablation process

    HU De-zhi

    2008-01-01

    In this unified model, we introduce the electron-phonon coupling time (t) and laser pulse width (t). For long pulses, it can substitute for the traditional thermal conduction model; while for ultrashort pulses, it can substitute for the standard two-temperature model. As an example of the gold target, we get the dependence of the electron and ion temperature evolvement on the time and position by solving the thermal conduction equation using the finite-difference time-domain (FDTD) method.It is in good agreement with experimental data. We obtain the critical temperature of the onset of ablation using the Saha equation and then obtain the theoretical value of the laser ablation threshold when the laser pulse width ranges from nanosecond to femtosecond timescale, which consists well with the experimental data.

  2. Ablation and nanostructuring of metals by femtosecond laser pulses

    Ashitkov, S I; Komarov, P S; Ovchinnikov, A V; Struleva, E V; Agranat, M B [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Zhakhovskii, V V [All-Russian Institute of Automatics, Moscow (Russian Federation); Inogamov, N A [Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region (Russian Federation)

    2014-06-30

    Using an interferometric continuous monitoring technique, we have investigated the motion of the surface of an aluminium target in the case of femtosecond laser ablation at picosecond time delays relative to the instant of laser exposure. Measurements of the temporal target dispersion dynamics, molecular dynamics simulation results and the morphology of the ablation crater have demonstrated a thermomechanical (spall) nature of the disruption of the condensed phase due to the cavitation-driven formation and growth of vapour phase nuclei upon melt expansion, followed by the formation of surface nanostructures upon melt solidification. The tensile strength of heated aluminium in a condensed state has been determined experimentally at an expansion rate of ∼10{sup 9} s{sup -1}. (extreme light fields and their applications)

  3. High pressure generation by hot electrons driven ablation

    Piriz, A. R. [E.T.S.I. Industriales, CYTEMA, and Instituto de Investigaciones Energéticas, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Piriz, S. A. [Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Tahir, N. A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt (Germany)

    2013-11-15

    A previous model [Piriz et al. Phys. Plasmas 19, 122705 (2012)] for the ablation driven by the hot electrons generated in collisionless laser-plasma interactions in the framework of shock ignition is revisited. The impact of recent results indicating that for a laser wavelength λ = 0.35 μm the hot electron temperature θ{sub H} would be independent of the laser intensity I, on the resulting ablation pressure is considered. In comparison with the case when the scaling law θ{sub H}∼(Iλ{sup 2}){sup 1/3} is assumed, the generation of the high pressures needed for driving the ignitor shock may be more demanding. Intensities above 10{sup 17} W/cm{sup 2} would be required for θ{sub H}=25−30 keV.

  4. Carbon nanotubes/laser ablation gold nanoparticles composites

    Lascialfari, Luisa [Department of Chemistry, Università di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze 50019 (Italy); Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, Sesto Fiorentino, Firenze 50019 (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, Firenze 50123 (Italy); Marsili, Paolo [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, Sesto Fiorentino, Firenze 50019 (Italy); Caporali, Stefano [Department of Chemistry, Università di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze 50019 (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, Firenze 50123 (Italy); Muniz-Miranda, Maurizio [Department of Chemistry, Università di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze 50019 (Italy); Margheri, Giancarlo [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, Sesto Fiorentino, Firenze 50019 (Italy); Serafini, Andrea; Brandi, Alberto [Department of Chemistry, Università di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze 50019 (Italy); Giorgetti, Emilia, E-mail: emilia.giorgetti@fi.isc.cnr.it [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, Sesto Fiorentino, Firenze 50019 (Italy); Cicchi, Stefano, E-mail: stefano.cicchi@unifi.it [Department of Chemistry, Università di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze 50019 (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, Firenze 50123 (Italy)

    2014-10-31

    The production of nanohybrids formed by oxidized multiwalled carbon nanotubes (MWCNTs) and nanoparticles, produced by pulsed laser ablation in liquids process, is described. The use of linkers, obtained by transformation of pyrene-1-butanol, is mandatory to generate an efficient and stable interaction between the two components. Transmission electron microscopy and X-ray photoelectron spectroscopy analysis showed the obtainment of the efficient coverage of the MWCNTs by nanoparticles composed by metal gold and, partially, by oxides. - Highlights: • Laser ablation is a used for the production of gold nanoparticle colloids • An efficient decoration of carbon nanotubes with nanoparticles is obtained through the use of a linker • This method allows an efficient and tunable preparation of carbon nanotube hybrids.

  5. Frequency mixing in boron carbide laser ablation plasmas

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; de Nalda, R.; Castillejo, M.

    2015-05-01

    Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B4C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  6. [Radiofrequency ablation of a symptomatic benign thyroid nodule].

    van Ginhoven, T M; Massolt, E T; Bijdevaate, D C; Peeters, R P; Burgers, J W A; Moelker, A

    2016-01-01

    Radiofrequency ablation (RFA) enables the ablation of selected tissue by means of heat. For the first time in the Netherlands, RFA is being used to treat patients with benign thyroid nodules. RFA is able to reduce the volume of a nodule that may be causing cosmetic complaints or problems due to mass effect. This avoids the need for surgery or treatment with radioactive iodine in this benign condition. The average reduction in size is 80% in the first year, leading to a considerable decrease in both symptomatic and cosmetic complaints. At Erasmus Medical Centre, Rotterdam, the Netherlands, this technique has been introduced in accordance with current guidelines, and it is expected that other centres of excellence will follow in implementing it. It is important that the initial experiences with this technique in the Netherlands in terms of effectiveness, risks and patient satisfaction should be monitored before RFA becomes routine treatment.

  7. Laser ablation mass spectroscopy of nineteenth century daguerreotypes

    Hogan, Danel L. [Life Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6125 (United States); Golovlev, Valerie V. [Life Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6125 (United States); Gresalfi, Michael J. [Life Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6125 (United States); Chaney, John A. [Life Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6125 (United States); Feigerle, Charles S. [Life Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6125 (United States); Miller, John C. [Life Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6125 (United States); Romer, Grant [International Museum of Photography and Film, George Eastman House, 900 East Ave., Rochester, New York 14607-2298 (United States); Messier, Paul [Boston Art Conservation, 60 Oak Square Ave., Boston, Massachusetts 02135 (United States)

    1999-10-01

    Laser desorption mass spectroscopy has been used to characterize both modern and {approx}150-year-old daguerreotypes. Such investigations are a necessary prelude to attempts to clean them of tarnish and other contaminants by laser ablation of the surface layers. Both positive- and negative-ion time-of-flight spectra were obtained following YAG laser ablation/desorption at 1064, 532, and 355 nm. Major peaks obtained from several daguerreotypes reveal expected elements from the substrate (Ag, Cu) as well as the developing (Hg) and gilding (Au) processes. Silver clusters (Ag{sub n}) may reflect surface desorption of molecules or, alternatively, aggregates formed in the ejection process. Silver sulfide molecules observed from old daguerreotypes are the signature of the tarnishing process. (c) 2000 Society for Applied Spectroscopy.

  8. Nanostructured films of metal particles obtained by laser ablation

    Muniz-Miranda, M., E-mail: muniz@unifi.it [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Gellini, C. [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Giorgetti, E.; Margheri, G.; Marsili, P. [Istituto Sistemi Complessi (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Lascialfari, L.; Becucci, L. [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Trigari, S. [Istituto Sistemi Complessi (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Giammanco, F. [Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)

    2013-09-30

    Colloidal dispersions of silver and gold nanoparticles were obtained in pure water by ablation with nanosecond pulsed laser. Then, by filtration of the metal particles on alumina, we fabricated nanostructured films, whose surface morphology was examined by atomic force microscopy (AFM) and related to surface-enhanced Raman scattering (SERS) after adsorption of adenine. - Highlights: • Ag and Au colloidal nanoparticles were obtained by laser ablation. • Nanostructured Ag and Au films were fabricated by filtration of metal nanoparticles. • Surface morphology of metal films was investigated by atomic force microscopy. • Surface-enhanced Raman spectra (SERS) of adenine on metal films were obtained. • SERS enhancements were related to the surface roughness of the metal films.

  9. Topography-guided custom ablation treatment for treatment of keratoconus

    Rohit Shetty

    2013-01-01

    Full Text Available Keratoconus is a progressive ectatic disorder of the cornea which often presents with fluctuating refraction and high irregular astigmatism. Correcting the vision of these patients is often a challenge because glasses are unable to correct the irregular astigmatism and regular contact lenses may not fit them very well. Topography-guided custom ablation treatment (T-CAT is a procedure of limited ablation of the cornea using excimer laser with the aim of regularizing the cornea, improving the quality of vision and possibly contact lens fit. The aim of the procedure is not to give a complete refractive correction. It has been tried with a lot of success by various groups of refractive surgeons around the world but a meticulous and methodical planning of the procedure is essential to ensure optimum results. In this paper, we attempt to elucidate the planning for a T-CAT procedure for various types of cones and asphericities.

  10. Aerospace Laser Ignition/Ablation Variable High Precision Thruster

    Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)

    2015-01-01

    A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.

  11. Laser ablation dynamics and production of thin films of lysozyme

    Schou, Jørgen; Canulescu, Stela; Matei, Andreea;

    at the Technical University of Denmark (DTU) produced thin films of average thickness up to 300 nm, which not only contained a significant amount of intact molecules, but also maintained the bioactivity. These films were produced by a nanosecond laser in the UV regime at 355 nm with 2 J/cm2. The surprising fact......, there was a considerable ablation weight loss of lysozyme from each shot. This is the first time the ablation by fs-lasers of a protein has been recorded quantitatively. Films of lysozyme produced by fs-laser irradiation will be analysed by MALDI in order to explore if there also is a significant amount of intact...... molecules in the films for fs-laser deposition....

  12. Endoscopic removal or ablation of oesophageal and gastric superficial tumours.

    Deprez, P H; Aouattah, T; Piessevaux, H

    2006-01-01

    Endoscopic mucosal resection was developed in Eastern countries as a curative treatment for superficial carcinomas in the stomach and oesophagus. Experience in Western countries is more recent and limited due to less frequent diagnosis of early gastric cancers compared to the Japanese and Korean populations and to more frequent use of ablation techniques such as argon plasma coagulation and photodynamic therapy in pre-neoplastic lesions and superficial tumours. This review summarizes the respective indications, advantages, disadvantages, limitations and complications of the different ablative and resection techniques in the upper gastrointestinal tract. Several methods are described such as electrocoagulation, argon plasma coagulation, photodynamic therapy, lift and cut resection, cap assisted aspiration and band ligation mucosectomy, and endoscopic submucosal dissection. Local results in more than 170 patients managed with endoscopic resection of oesophageal high grade dysplasia or squamous cell carcinoma and gastric or Barrett's epithelium high grade dysplasia or adenocarcinoma furthermore demonstrate the safety and effectiveness of endoscopic resection practiced in experienced centres.

  13. Immunologic response to tumor ablation with irreversible electroporation.

    Xiaoxiang Li

    Full Text Available BACKGROUND: Irreversible electroporation (IRE is a promising technique for the focal treatment of pathologic tissues, which involves placing minimally invasive electrodes within the targeted region. However, the knowledge about the therapeutic efficacy and immune reactions in response to IRE remains in its infancy. METHODS: In this work, to detect whether tumor ablation with IRE could trigger the immunologic response, we developed an osteosarcoma rat model and applied IRE directly to ablate the tumor. In the experiment, 118 SD rats were randomized into 4 groups: the control, sham operation, surgical resection, and IRE groups. Another 28 rats without tumor cell implantation served as the normal non-tumor-bearing group. We analyzed the changes in T lymphocyte subsets, sIL-2R and IL-10 levels in the peripheral blood one day before operation, as well as at 1, 3, 7,14 and 21 days after the operation. Moreover, splenocytes were assayed for IFN-γ and IL-4 production using intracellular cytokine staining one day before the operation, as well as at 7 and 21 days after operation. RESULTS: We found that direct IRE completely ablated the tumor cells. A significant increase in peripheral lymphocytes, especially CD3(+ and CD4(+ cells, as well as an increased ratio of CD4(+/CD8(+ were detectable 7 days after operation in both the IRE and surgical resection groups. Compared with the surgical resection group, the IRE group exhibited a stronger cellular immune response. The sIL-2R level of the peripheral blood in the IRE group decreased with time and was significantly different from that in the surgical resection group. Moreover, ablation with IRE significantly increased the percentage of IFN-γ-positive splenocytes. CONCLUSION: These findings indicated that IRE could not only locally destroy the tumor but also change the status of cellular immunity in osteosarcoma-bearing rats. This provides experimental evidence for the clinical application of IRE in

  14. Angular distributions and total yield of laser ablated silver

    Svendsen, Winnie Edith; Nordskov, A.; Schou, Jørgen;

    1997-01-01

    The angular distribution of laser ablated silver has been measured in situ with a newly constructed setup with an array of microbalances. The distribution is strongly peaked in the forward direction corresponding to cospθ, where p varies between 5 and 9 for laser fluences from 2 to 7 J/cm2 at 355...... nm for a beam spot of 0.015 cm2. The total deposited yield is of the order 1015 Ag-atoms per pulse....

  15. Management of refractory atrial fibrillation post surgical ablation

    Altman, Robert K.; PROIETTI, RICCARDO; Barrett, Conor D.; Paoletti Perini, Alessandro; Santangeli, Pasquale; Danik, Stephan B.; Di Biase, Luigi; Natale, Andrea

    2014-01-01

    Over the past two decades, invasive techniques to treat atrial fibrillation (AF) including catheter-based and surgical procedures have evolved along with our understanding of the pathophysiology of this arrhythmia. Surgical treatment of AF may be performed on patients undergoing cardiac surgery for other reasons (concomitant surgical ablation) or as a stand-alone procedure. Advances in technology and technique have made surgical intervention for AF more widespread. Despite improvements in out...

  16. Percutaneous Ablation for Small Renal Masses—Complications

    Kurup, A. Nicholas

    2014-01-01

    Although percutaneous ablation of small renal masses is generally safe, interventional radiologists should be aware of the various complications that may arise from the procedure. Renal hemorrhage is the most common significant complication. Additional less common but serious complications include injury to or stenosis of the ureter or ureteropelvic junction, infection/abscess, sensory or motor nerve injury, pneumothorax, needle tract seeding, and skin burn. Most complications may be treated ...

  17. Primary papillary thyroid carcinoma previously treated incompletely with radiofrequency ablation

    Kim Hoon; Ryu Woo; Woo Sang; Son Gil; Lee Eun; Lee Jae; Bae Jeoung

    2010-01-01

    Radiofrequency ablation (RFA) recently has been applied to benign thyroid nodules, mainly for the cosmetic reasons, and limited cases of local recurrences or focal distant metastases of well-differentiated thyroid cancer, in the high-risk reoperative condition or for the palliative purpose. But no report has been made on the RFA for primary thyroid cancer to date. We report on a patient with primary papillary carcinoma of thyroid gland who had undergone RFA before the cytological diagnosis of...

  18. Rupture of benign thyroid tumors after radio-frequency ablation.

    Shin, J H; Jung, S L; Baek, J H; Kim, J-H

    2011-12-01

    Rupture of benign thyroid tumors after RFA is very rare. We experienced 6 cases in 4 institutions. All patients presented with abrupt neck swelling and pain between 9 and 60 days after RFA. Imaging and clinical findings of the ruptured tumors were anterior subcapsular location, mixed composition, large size, and repeated ablations. Conservative treatment was sufficient in 3 cases, whereas surgical management was required in 3.

  19. Surgical and Pathological Changes after Radiofrequency Ablation of Thyroid Nodules

    Chiara Dobrinja; Stella Bernardi; Bruno Fabris; Rita Eramo; Petra Makovac; Gabriele Bazzocchi; Lanfranco Piscopello; Enrica Barro; Nicolò de Manzini; Deborah Bonazza; Maurizio Pinamonti; Fabrizio Zanconati; Fulvio Stacul

    2015-01-01

    Background. Radiofrequency ablation (RFA) has been recently advocated as an effective technique for the treatment of symptomatic benign thyroid nodules. It is not known to what extent it may affect any subsequent thyroid surgery and/or histological diagnosis. Materials and Methods. RFA was performed on 64 symptomatic Thy2 nodules (benign nodules) and 6 symptomatic Thy3 nodules (follicular lesions/follicular neoplasms). Two Thy3 nodules regrew after the procedure, and these patients accepted t...

  20. Radiofrequency ablation for postsurgical thyroid removal of differentiated thyroid carcinoma

    Xu, Dong; Wang, Lipin; Long, Bin; Ye, Xuemei; Ge, MingHua; Wang, Kejing; Guo, Liang; Li, Linfa

    2016-01-01

    Differentiated thyroid carcinoma (DTC) is the most common endocrine malignancy. Surgical removal with radioactive iodine therapy is recommended for recurrent thyroid carcinoma, and the postsurgical thyroid removal is critical. This study evaluated the clinical values of radiofrequency ablation (RFA) in the postsurgical thyroid removal for DTC. 35 DTC patients who had been treated by subtotal thyroidectomy received RFA for postsurgical thyroid removal. Before and two weeks after RFA, the thyro...

  1. Electrophysiological characteristics and radiofrequency ablation of right atrial flutter

    Yoga Yuniadi

    2007-09-01

    Full Text Available This study aimed to elaborate the electrophysiology characteristics and radiofrequency ablation (RFA results of atrial flutter (AFL which has not been established in Indonesia. Three multipolar catheters were inserted percutaneously and positioned into coronary sinus (CS, His bundle area and around tricuspid annulus. Eight mm ablation catheter was used to make linear ablation at CTI of typical and reverse typical AFL. Bidirectional block was confirmed by conduction time prolongation of more than 90 msec from low lateral to CS ostium and vice versa, and/or by means of differential pacing. Thirty AFL from 27 patients comprised of 19 typical AFL, 5 reverse typical AFL and 6 atypical AFL enrolled the study. Mean tachycardia cycle length (TCL were 261.8 ± 42.84, 226.5 ± 41.23, and 195.4 ± 9.19 msec, respectively (p = 0.016. CTI conduction time occupied up to 60% of TCL with mean conduction time of 153.0 ± 67.37 msec. CS activation distributed to three categories which comprised of proximal to distal, distal to proximal and fusion activation. Only nine of 27 patients had no structural heart disease. RFA of symptomatic typical and reverse typical AFL demonstrated 96% success and 4.5 % recurrence rate during 13 ± 8 months follow up. Typical AFL is the predominant type of AFL in our population. The majority of AFL cases suffered from structural heart disease. RFA was highly effective to cure typical and reverse typical AFL. (Med J Indones 2007; 16:151-8 Keywords: atrial flutter, electrophysiology, ablation

  2. Delivery validation of VMAT stereotactic ablative body radiotherapy at commissioning

    Olding, T.; Alexander, K. M.; Jechel, C.; Nasr, A. T.; Joshi, C.

    2015-01-01

    Dosimetric validation of two volumetric modulated arc therapy (VMAT) stereotactic ablative radiotherapy (SABR) plans was completed as part of the commissioning process of this technique in our clinic. Static and dynamic ion chamber, EBT3 film and leuco crystal violet (LCV) micelle gel measurements were acquired using a motion phantom with appropriate inserts for each dosimeter. The results show good agreement between measured and calculated plan dose.

  3. Optical feedback signal for ultrashort laser pulse ablation of tissue

    Kim, B.-M.; Feit, M.D.; Rubenchik, A.M.; Mammini, B.M.; Da Silva, L.B.

    1997-07-01

    An optical feedback system for controlled precise tissue ablation is discussed. Our setup includes an ultrashort pulse laser (USPL), and a diagnostic system using analysis of either tissue fluorescence or plasma emission luminescence. Current research is focused on discriminating hard and soft tissues such as bone and spinal cord during surgery using either technique. Our experimental observations exhibit considerable spectroscopic contrast between hard and soft tissue, and both techniques offer promise for a practical diagnostic system.

  4. Space Vehicle Heat Shield Having Edgewise Strips of Ablative Material

    Blosser, Max L. (Inventor); Poteet, Carl C. (Inventor); Bouslog, Stan A. (Inventor)

    2015-01-01

    A heat shield for a space vehicle comprises a plurality of phenolic impregnated carbon ablator (PICA) blocks secured to a surface of the space vehicle and arranged in a pattern with gaps therebetween. The heat shield further comprises a plurality of PICA strips disposed in the gaps between the PICA blocks. The PICA strips are mounted edgewise, such that the structural orientation of the PICA strips is substantially perpendicular to the structural orientation of the PICA blocks.

  5. Ultrafast laser ablation in liquids for nanomaterials and applications.

    Rao, S Venugopal; Podagatlapalli, G Krishna; Hamad, Syed

    2014-02-01

    We present an inclusive overview of the ultrafast ablation technique performed in liquids. Being a comparatively new method, we bring out the recent progress achieved, present the challenges ahead, and outline the future prospects for this technique. The review is conveniently divided into five parts: (a) a succinct preamble to the technique of ultrafast ablation in liquids (ULAL) is provided. A brief introduction to the conventional ns ablation is also presented for the sake of completeness (b) fundamental physical processes involved in this technique are elaborated (c) specific advantages of the technique compared to other physical and chemical methodologies are enumerated (d) applications of this technique in photonics; biomedical and explosives detection [using surface-enhanced Raman scattering (SERS)] is updated (e) future prospects describing the potential of this technique for creating unique nanoparticles (NPs) and nanostructures (NSs) for niche applications. We also discuss some of the recently reported significant results achieved in a variety of materials, especially metals, using this technique. Furthermore, we present some of our own experimental data obtained from ULAL of Ag, Cu, and Zn in a variety of liquids such as acetone, water, acetonitrile etc. The generated NPs (colloidal solutions) and NSs (on substrates) have been successfully utilized for nonlinear optical, SERS, and biomedical applications.

  6. Laser ablation loading of a radiofrequency ion trap

    Zimmermann, K; Herrera-Sancho, O A; Peik, E

    2012-01-01

    The production of ions via laser ablation for the loading of radiofrequency (RF) ion traps is investigated using a nitrogen laser with a maximum pulse energy of 0.17 mJ and a peak intensity of about 250 MW/cm^2. A time-of-flight mass spectrometer is used to measure the ion yield and the distribution of the charge states. Singly charged ions of elements that are presently considered for the use in optical clocks or quantum logic applications could be produced from metallic samples at a rate of the order of magnitude 10^5 ions per pulse. A linear Paul trap was loaded with Th+ ions produced by laser ablation. An overall ion production and trapping efficiency of 10^-7 to 10^-6 was attained. For ions injected individually, a dependence of the capture probability on the phase of the RF field has been predicted. In the experiment this was not observed, presumably because of collective effects within the ablation plume.

  7. Superhydrophobic/superoleophilic magnetic elastomers by laser ablation

    Milionis, Athanasios, E-mail: am2vy@virginia.edu [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Fragouli, Despina; Brandi, Fernando; Liakos, Ioannis; Barroso, Suset [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Athanassiou, Athanassia, E-mail: athanassia.athanassiou@iit.it [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy)

    2015-10-01

    Highlights: • We report the development of magnetic nanocomposite sheets. • Laser irradiation of the nanocomposites induces chemical and structural changes to the surface. • The laser-patterned surfaces exhibit superhydrophobicity and superoleophilicity. • The particle contribution in altering the surface and bulk properties of the material is studied. - Abstract: We report the development of magnetic nanocomposite sheets with superhydrophobic and supeoleophilic surfaces generated by laser ablation. Polydimethylsiloxane elastomer free-standing films, loaded homogeneously with 2% wt. carbon coated iron nanoparticles, were ablated by UV (248 nm), nanosecond laser pulses. The laser irradiation induces chemical and structural changes (both in micro- and nano-scale) to the surfaces of the nanocomposites rendering them superhydrophobic. The use of nanoparticles increases the UV light absorption efficiency of the nanocomposite samples, and thus facilitates the ablation process, since the number of pulses and the laser fluence required are greatly reduced compared to the bare polymer. Additionally the magnetic nanoparticles enhance significantly the superhydrophobic and oleophilic properties of the PDMS sheets, and provide to PDMS magnetic properties making possible its actuation by a weak external magnetic field. These nanocomposite elastomers can be considered for applications requiring magnetic MEMS for the controlled separation of liquids.

  8. Intracardiac Echocardiography during Catheter-Based Ablation of Atrial Fibrillation

    Jürgen Biermann

    2012-01-01

    Full Text Available Accurate delineation of the variable left atrial anatomy is of utmost importance during anatomically based ablation procedures for atrial fibrillation targeting the pulmonary veins and possibly other structures of the atria. Intracardiac echocardiography allows real-time visualisation of the left atrium and adjacent structures and thus facilitates precise guidance of catheter-based ablation of atrial fibrillation. In patients with abnormal anatomy of the atria and/or the interatrial septum, intracardiac ultrasound might be especially valuable to guide transseptal access. Software algorithms like CARTOSound (Biosense Webster, Diamond Bar, USA offer the opportunity to reconstruct multiple two-dimensional ultrasound fans generated by intracardiac echocardiography to a three-dimensional object which can be merged to a computed tomography or magnetic resonance imaging reconstruction of the left atrium. Intracardiac ultrasound reduces dwell time of catheters in the left atrium, fluoroscopy, and procedural time and is invaluable concerning early identification of potential adverse events. The application of intracardiac echocardiography has the great capability to improve success rates of catheter-based ablation procedures.

  9. Virtual cardioscopy: interactive endocardial visualization to guide RF cardiac ablation

    Holmes, David R., III; Rettmann, Maryam E.; Cameron, Bruce M.; Camp, Jon J.; Robb, Richard A.

    2006-03-01

    Cardiac arrhythmias are a debilitating, potentially life threatening condition involving aberrant electrical activity in the heart which results in abnormal heart rhythm. Virtual cardioscopy can play an important role in minimally invasive treatment of cardiac arrhythmias. Second and third generation image-guidance systems are now available for the treatment of arrhythmias using RF ablation catheters. While these 3D tools provide useful information to the clinician, additional enhancements to the virtual cardioscopy display paradigm are critical for optimal therapy guidance. Based on input from clinical collaborators, several key visualization techniques have been developed to enhance the use of virtual cardioscopy during cardiac ablation procedures. We have identified, designed and incorporated several visual cues important to successful virtual cardioscopy. These features include the use of global reference maps, parametric mapping, and focused navigation and targeting using abnormal electro-physiologic activity. Our virtual cardioscopy system is designed for real-time use during RF cardiac ablation procedures. Several unique visualizations from our virtual cardioscopy system will be presented. Evaluation of the system with phantom and animal studies will be presented. This research is supported by grant EB002834 from the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health.

  10. Micropatterned polysaccharide surfaces via laser ablation for cell guidance

    Barbucci, Rolando; Lamponi, Stefania; Pasqui, Daniela; Rossi, Antonella; Weber, Elisabetta

    2003-03-03

    Micropatterned materials were obtained by a controlled laser ablation of a photoimmobilised homogeneous layer of hyaluronic acid (Hyal) and its sulphated derivative (HyalS). The photoimmobilisation was performed by coating the polysaccharide, adequately functionalised with a photoreactive group, on aminosilanised glass substrate and immobilising it on the surface under UV light. Hyal or HyalS photoimmobilised samples were then subjected to laser ablation with wavelengths in the UV regions in order to drill the pattern. Four different patterns with stripes of 100, 50, 25 and 10 {mu}m were generated. A chemical characterisation by attenuated total reflection/Fourier transform infrared (ATR/FT-IR) and time of flight-secondary ions mass spectrometry (TOF-SIMS) confirmed the success of the laser ablation procedure and the presence of alternating stripes of polysaccharide and native glass. The exact dimensions of the stripes were determined by atomic force microscopy. The analysis of cell behaviour in terms of adhesion, proliferation and movement using mouse fibroblasts (3T3 line) and bovine aortic endothelial cells (BAEC) was also performed.

  11. CT-guided percutaneous radiofrequency ablation of spinal osteoid osteoma

    LIU Chen; LIU Xiao-guang; ZHU Bin; YUAN Hui-shu; HAN Song-bo; MA Yong-qiang

    2011-01-01

    Background This study evaluated the feasibility,efficacy and safety of CT-guided percutaneous radiofrequency ablation in patients with spinal osteoid osteoma.Methods Two patients suffered spinal osteoid osteoma were treated with CT-guided percutaneous radiofrequency ablation under local anesthesia.Lesions located in sacral vertebrae and cervical vertebrae,which were adjacent to nerve root and spinal canal respectively.Tumors were treated under 90°C radiofrequency temperature lasting 4 minutes by an electrode placement.Visual analog scale was used to evaluate the pain improvement.Results No complications were observed pre- and post-operation.Patients recovered to normal activities immediately and achieved complete pain relief in 24 hours.No symptoms were recurrent in 5 months and 4 months follow up.Mild scoliosis has been recovered in case 2.Conclusions CT-guided percutaneous radiofrequency ablation of spinal osteoid osteoma is safe,effective and has more clinical benefits.The long-term outcome needs further observation.

  12. Synergistic Combination of Electrolysis and Electroporation for Tissue Ablation.

    Stehling, Michael K; Guenther, Enric; Mikus, Paul; Klein, Nina; Rubinsky, Liel; Rubinsky, Boris

    2016-01-01

    Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs "Synergistic electrolysis and electroporation" (SEE). The goal of this pre-clinical study is to expand on earlier studies with small animals and use the pig liver to establish SEE treatment parameters of clinical utility. We examined two SEE methods. One of the methods employs multiple electrochemotherapy-type reversible electroporation magnitude pulses, designed in such a way that the charge delivered during the electroporation pulses generates the electrolytic products. The second SEE method combines the delivery of a small number of electrochemotherapy magnitude electroporation pulses with a low voltage electrolysis generating DC current in three different ways. We show that both methods can produce lesion with dimensions of clinical utility, without the need to inject drugs as in electrochemotherapy, faster than with conventional electrolysis and with lower electric fields than irreversible electroporation and nanosecond pulsed ablation.

  13. Analytical model of neutral gas shielding for hydrogen pellet ablation

    Kuteev, Boris V.; Tsendin, Lev D. [State Technical Univ., St. Petersburg (Russian Federation)

    2001-11-01

    A kinetic gasdynamic scaling for hydrogen pellet ablation is obtained in terms of a neural gas shielding model using both numerical and analytical approaches. The scaling on plasma and pellet parameters proposed in the monoenergy approximation by Milora and Foster dR{sub pe}/dt{approx}S{sub n}{sup 2/3}R{sub p}{sup -2/3}q{sub eo}{sup 1/3}m{sub i}{sup -1/3} is confirmed. Here R{sub p} is the pellet radius, S{sub n} is the optical thickness of a cloud, q{sub eo} is the electron energy flux density and m{sub i} is the molecular mass. Only the numeral factor is approximately two times less than that for the monoenergy approach. Due to this effect, the pellet ablation rates, which were obtained by Kuteev on the basis of the Milora scaling, should be reduced by a factor of 1.7. Such a modification provides a reasonable agreement (even at high plasma parameters) between the two-dimensional kinetic model and the one-dimensional monoenergy approximation validated in contemporary tokamak experiments. As the could (in the kinetic approximation) is significantly thicker than that for the monoenergy case as well as the velocities of the gas flow are much slower, the relative effect of plasma and magnetic shielding on the ablation rate is strongly reduced. (author)

  14. Numerical simulations on artificial reduction of snow and ice ablation

    Olefs, M.; Obleitner, F.

    2007-06-01

    This snow modeling study investigates two methods to artificially reduce ablation in Alpine glacier ski resorts. Using the snow cover model SNTHERM, a first set of sensitivity studies focuses on the potential effects of artificial compaction of snow during winter. In comparison to a reference run representing the natural conditions, a stepwise increase of the model's new snow density toward 500 kg m-3 yields no more than 218 kg m-2 water equivalent being saved at the end of the ablation period. Further studies consider effects of covering the snow surface with different materials in spring. The physical properties and the energetic processes at the model's surface node are parameterized accordingly. The results show that 2489 kg m-2 water equivalent are saved compared to the reference run. Thus 15% of the winter snow cover as well as the whole amount of the underlying glacier ice are preserved. This indicates that surface covering reduces snow and ice ablation more effectively than snow compaction, which is confirmed by field measurements.

  15. Management of refractory atrial fibrillation post surgical ablation

    Altman, Robert K.; Proietti, Riccardo; Barrett, Conor D.; Paoletti Perini, Alessandro; Santangeli, Pasquale; Danik, Stephan B.; Di Biase, Luigi

    2014-01-01

    Over the past two decades, invasive techniques to treat atrial fibrillation (AF) including catheter-based and surgical procedures have evolved along with our understanding of the pathophysiology of this arrhythmia. Surgical treatment of AF may be performed on patients undergoing cardiac surgery for other reasons (concomitant surgical ablation) or as a stand-alone procedure. Advances in technology and technique have made surgical intervention for AF more widespread. Despite improvements in outcome of both catheter-based and surgical treatment for AF, recurrence of atrial arrhythmias following initial invasive therapy may occur.Atrial arrhythmias may occur early or late in the post-operative course after surgical ablation. Early arrhythmias are generally treated with prompt electrical cardioversion with or without antiarrhythmic therapy and do not necessarily represent treatment failure. The mechanism of persistent or late occurring atrial arrhythmias is complex, and these arrhythmias may be resistant to antiarrhythmic drug therapy. The characterization and management of recurrent atrial arrhythmias following surgical ablation of AF are discussed below. PMID:24516805

  16. Frequency mixing in boron carbide laser ablation plasmas

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; Nalda, R. de, E-mail: r.nalda@iqfr.csic.es; Castillejo, M.

    2015-05-01

    Graphical abstract: - Highlights: • Two-color frequency mixing has been studied in a laser ablation boron carbide plasma. • A space- and time-resolved study mapped the nonlinear optical species in the plasma. • The nonlinear process maximizes when charge recombination is expected to be completed. • Neutral atoms and small molecules are the main nonlinear species in this medium. • Evidence points to six-wave mixing as the most likely process. - Abstract: Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B{sub 4}C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  17. Epicardial Ventricular Tachycardia Ablation: Clinical Practice and Recent Developments

    Michalis Efremidis MD

    2011-08-01

    Full Text Available Mapping and radiofrequency (RF catheter ablation of ventricular tachycardia (VT is a demanding procedure, with variable success rates (1. The presence of deep subendocardial or epicardial re-entry circuits is regarded as one of the reasons of failure of endocardial ablation, and these circuits have been acknowledged in ischemic and non-ischemic dilated cardiomyopathy (CMP, other types of CMP and especially in arrhythmogenic right ventricular cardiomyopathy (ARVC.The significance of epicardial VT circuits was brought to light in Chagas’ disease, which characteristically results in epicardial involvement in approximately 70% of patients (2. A recent study found one third of VTs to be epicardial in origin among patients with nonischemic CMP, about double the incidence among those with ischemic heart disease(3. Mapping and ablation of these epicardial circuits is quite exigent. Although coronary veins can be used to perform epicardial mapping, the manipulation of the catheter is strictly limited to the anatomical distribution of these vessels. Thus, the subxiphoid percutaneous approach to the pericardial space is the only technique that allows extensive, unhampered mapping of the epicardial surface of both ventricles.

  18. Subpicosecond and picosecond laser ablation of dental enamel: comparative analysis

    Rode, Andrei V.; Madsen, Nathan R.; Kolev, Vesselin Z.; Gamaly, Eugene G.; Luther-Davies, Barry; Dawes, Judith M.; Chan, A.

    2004-06-01

    We report the use of sub-picosecond near-IR and ps UV pulsed lasers for precision ablation of freshly extracted human teeth. The sub-picosecond laser wavelength was ~800nm, with pulsewidth 150 fs and pulse repetition rate of 1kHz; the UV laser produced 10 ps pulses at 266 nm with pulse rate of ~1.2x105 pulses/s; both lasers produced ~1 W of output energy, and the laser fluence was kept at the same level of 10-25 J/cm2. Laser radiation from both laser were effectively absorbed in the teeth enamel, but the mechanisms of absorption were radically different: the near-IR laser energy was absorbed in a plasma layer formed through the optical breakdown mechanism initiated by multiphoton absorption, while the UV-radiation was absorbed due to molecular photodissociation of the enamel and conventional thermal deposition. The rise in the intrapulpal temperature was monitored by embedded thermocouples, and was shown to remain low with subpicosecond laser pulses, but risen up to 30°C, well above the 5°C pain level with the UV-laser. This study demonstrates the potential for ultra-short-pulsed lasers to precision and painless ablation of dental enamel, and indicated the optimal combination of laser parameters in terms of pulse energy, duration, intensity, and repetition rate, required for the laser ablation rates comparable to that of mechanical drill.

  19. Radiofrequency ablation for postsurgical thyroid removal of differentiated thyroid carcinoma.

    Xu, Dong; Wang, Lipin; Long, Bin; Ye, Xuemei; Ge, Minghua; Wang, Kejing; Guo, Liang; Li, Linfa

    2016-01-01

    Differentiated thyroid carcinoma (DTC) is the most common endocrine malignancy. Surgical removal with radioactive iodine therapy is recommended for recurrent thyroid carcinoma, and the postsurgical thyroid removal is critical. This study evaluated the clinical values of radiofrequency ablation (RFA) in the postsurgical thyroid removal for DTC. 35 DTC patients who had been treated by subtotal thyroidectomy received RFA for postsurgical thyroid removal. Before and two weeks after RFA, the thyroid was examined by ultrasonography and (99m)TcO4 (-) thyroid imaging, and the serum levels of free triiodothyronine (FT3), free thyroxin (FT4), thyroid stimulating hormone (TSH) and thyroglobulin (Tg) were detected. The efficacy and complications of RFA were evaluated. Results showed that, the postsurgical thyroid removal by RFA was successfully performed in 35 patients, with no significant complication. After RFA, the average largest diameter and volume were significantly decreased in 35 patients (P > 0.05), and no obvious contrast media was observed in ablation area in the majority of patients. After RFA, the serum FT3, FT4 and Tg levels were markedly decreased (P RFA, radioiodine concentration in the ablation area was significantly reduced in the majority of patients. The reduction rate of thyroid update was 0.69±0.20%. DTC staging and interval between surgery and RFA had negative correlation (Pearson coefficient = -0.543; P = 0.001), with no obvious correlation among others influential factors. RFA is an effective and safe method for postsurgical thyroid removal of DTC.

  20. Bilateral Intra-Articular Radiofrequency Ablation for Cervicogenic Headache

    Tang, Teresa; Taftian, David; Chhatre, Akhil

    2017-01-01

    Introduction. Cervicogenic headache is characterized by unilateral neck or face pain referred from various structures such as the cervical joints and intervertebral disks. A recent study of patients with cervical pain showed significant pain relief after cervical medial branch neurotomy but excluded patients with C1-2 joint pain. It remains unclear whether targeting this joint has potential for symptomatic relief. To address this issue, we present a case report of C1-2 joint ablation with positive outcomes. Case Presentation. A 27-year-old female presented with worsening cervicogenic headache. Her pain was 9/10 by visual analog scale (VAS) and described as cramping and aching. Pain was localized suboccipitally with radiation to her jaw and posterior neck, worse on the right. Associated symptoms included clicking of her temporomandibular joint, neck stiffness, bilateral headaches with periorbital pain, numbness, and tingling. History, physical exam, and diagnostic studies indicated localization to the C1-2 joint with 80% decrease in pain after C1-2 diagnostic blocks. She underwent bilateral intra-articular radiofrequency ablation of the C1-C2 joint. Follow-up at 2, 4, 8, and 12 weeks showed improved function and pain relief with peak results at 12 weeks. Conclusion. Clinicians may consider C1-C2 joint ablation as a viable long-term treatment option for cervicogenic headaches. PMID:28149652

  1. ASHERMAN’S SYNDROME FOLLOWING THERMAL ABLATION OF THE ENDOMETRIUM

    Sheila K.

    2014-02-01

    Full Text Available Intrauterine adhesions develop as a result of varying degrees of intrauterine trauma. The extent of intrauterine adhesion formation and the impact of the adhesions on the contour of the uterine cavity vary widely. Extensive intrauterine adhesions with amenorrhea and hematometra can develop following endometrial ablation. Thirty one year old parous lady with history of thermal endometrial ablation for menorrhagia presented with complaints of amenorrhea and pain abdomen for two years. Hormonal assays were normal. Transvaginal scan showed absent endometrial stripe with patchy fluid collections in cavity suggestive of adhesions. The findings were corroborated by sonohysterogram and MRI pelvis. Patient did not respond to gonadotrophins. In view of persistent symptoms she was counseled for adhesiolysis under hysteroscopic guidance. Patient opted for hysterectomy. An atrophic uterus was noted intraoperatively and cut section revealed obliterated cavity with adhesive bands and mucoid collections supporting the diagnosis which was later confirmed on histopathological evaluation Extensive intrauterine adhesions with amenorrhea and hematometra can develop following endometrial ablation. Hysteroscopic adhesiolysis with cervical dilatation is the treatment of choice, but hysterectomy can be beneficial in a small subset of patients.

  2. Nanosecond pulsed electric field ablation of hepatocellular carcinoma.

    Beebe, Stephen J; Chen, Xinhua; Liu, Jie A; Schoenbach, Karl H

    2011-01-01

    Hepatocellular carcinoma often evades effective therapy and recurrences are frequent. Recently, nanosecond pulsed electric field (nsPEF) ablation using pulse power technology has emerged as a local-regional, non-thermal, and non-drug therapy for skin cancers. In the studies reported here we use nsPEFs to ablate murine, rat and human HCCs in vitro and an ectopic murine Hepa 1-6 HCC in vivo. Using pulses with 60 or 300 ns and electric fields as high as 60 kV/cm, murine Hepa 1-6, rat N1S1 and human HepG2 HCC are readily eliminated with changes in caspase-3 activity. Interestingly caspase activities increase in the mouse and human model and decrease in the rat model as electric field strengths are increased. In vivo, while sham treated control mice survived an average of 15 days after injection and before humane euthanasia, Hepa 1-6 tumors were eliminated for longer than 50 days with 3 treatments using one hundred pulses with 100 ns at 55 kV/cm. Survival was 40% in mice treated with 30 ns pulses at 55 kV/cm. This study demonstrates that nsPEF ablation is not limited to effectively treating skin cancers and provides a rationale for treating orthotopic hepatocellular carcinoma in pre-clinical applications and ultimately in clinical trials.

  3. Cyanate Ester and Phthalonitrile Impregnated Carbon Ablative TPS

    Boghozian, Tane; Stackpoole, Margaret M.; Gasch, Matt

    2016-01-01

    Phenolic resin has extensive heritage as a TPS (Thermal Protection Systems) material, however, alternative resin systems such as Cyanate Ester and Phthalonitrile may offer improved performance compared to state-of-the-art phenolic resin. These alternative resin systems may have higher char yield, higher char strength, lower thermal conductivity and improved mechanical properties. In current work at NASA Ames alternative resin systems were uniformly infused into fibrous substrates and preliminary properties characterized. The density of the cyanate ester infused in fibrous substrate ranged from 0.25-0.3 grams per cubic centimeter compared to PICA (Phenolic resin impregnated carbon ablative) having a density of approximately 0.25 grams per cubic centimeter. The density of Phthalonitrile varies from 0.22-0.25 grams per cubic centimeter. Initial formulations of these new resin systems were recently tested at the LARC HyMETs (Hypersonic Materials Environmental Test System) facility to evaluate their performance and data such as back face temperature, char yield, and recession are compared to PICA. Cyanate Ester and Phthalonitrile impregnated carbon ablative samples showed comparable performance to phenolic resin impregnated carbon ablative samples.

  4. Reconfigurable tapered coaxial slot antenna for hepatic microwave ablation.

    Malhotra, Neeru; Marwaha, Anupma; Kumar, Ajay

    2016-01-01

    Microwave ablation is rapidly being rediscovered and developed for treating many cancers of liver, lung, kidney and bone, as well as arrhythmias and other medical conditions. The microwaves ablate tissue by heating it to cytotoxic temperatures. The microwave antenna design suffers the challenges of effective coupling and penetration into body tissues, uncontrolled power deposition due to applicator construction limitations affecting uniform heating of target region, and narrowband operation leading to mismatch for many patients and detrimental heating. To meet out the requirements of wideband operation and localized lesion reconfigurable linearly tapered slot interstitial wideband antenna has been proposed for working in the 1.38 GHz to 4.31 GHz frequency band. The performance of the antenna is evaluated by using FEM-based HFSS software. The slot height and taper height are reconfigured for parametric analysis achieving maximum impedance matching and spherical ablation zone without requiring any additional adjustable structures. The tapering of the slot in coaxial antenna generates current distribution at the edges of the slot for maximizing specific absorption rate.

  5. [RADIOFREQUENCY ABLATION FOR THE TREATMENT OF VARICOSE VEINS].

    Sugiyama, Satoru; Miyade, Yoshio; Inaki, Yasuhiko

    2015-05-01

    Significant advances in the endovenous technique for treating incompetent saphenous veins could change the surgical strategy in patients with varicose veins. Radiofrequency ablation (RFA) was approved as a new technique for the treatment of varicose veins in Japan in June 2014. In RFA, the ablation temperature is controlled by a sensor at the upper end of the catheter. The vein wall is heated with stable conductive power of 120 degrees C, resulting in endothelial denudation. The RFA method was approved in 1998 in Europe and in 1999 in the USA. The ClosurePLUS catheter was developed in 2003 and ClosureFAST in 2006. High occlusion rates and lower postoperative complication rates were reported with ClosureFAST than with ClosurePLUS. It is expected that this new ablation technique will control saphenous vein reflux with less pain and less ecchymosis after surgery. The treatment of varicose veins is less invasive with RFA devices and will become widely accepted as an alternative to conventional surgery for varicose veins in Japan.

  6. Femtosecond laser ablation profile near an interface: Analysis based on the correlation with superficial properties of individual materials

    Nicolodelli, Gustavo, E-mail: nicolodelli@ursa.ifsc.usp.br [Instituto de Fisica de Sao Carlos, University of Sao Paulo, Grupo de Optica, Av. Trabalhador Sancarlense 400, P.O. Box 369, CEP 13560-970, Sao Carlos, SP (Brazil); Kurachi, Cristina; Bagnato, Vanderlei Salvador [Instituto de Fisica de Sao Carlos, University of Sao Paulo, Grupo de Optica, Av. Trabalhador Sancarlense 400, P.O. Box 369, CEP 13560-970, Sao Carlos, SP (Brazil)

    2011-01-15

    Femtosecond laser ablation of materials is turning to be an important tool for micromachining as well as for selective removal of biological tissues. In a great number of applications, laser ablation has to process through interfaces separating media of different properties. The investigation of the ablation behavior within materials and passing through interfaces is the main aim of this study. Especially, the analysis of the discontinuity in the ablation profile close to interfaces between distinct materials can reveal some of the phenomena involved in the formation of an ablated microcavity geometry. We have used a method that correlates the ablation cross sectional area with the local laser intensity. The effective intensity ablation properties were obtained from surface ablation data of distinct materials. The application of this method allows the prediction of the occurrence of a size discontinuity in the ablation geometry at the interface of distinct media, a fact which becomes important when planning applications in different media.

  7. Monte Carlo Simulation of Laser-Ablated Particle Splitting Dynamic in a Low Pressure Inert Gas

    Ding, Xuecheng; Zhang, Zicai; Liang, Weihua; Chu, Lizhi; Deng, Zechao; Wang, Yinglong

    2016-06-01

    A Monte Carlo simulation method with an instantaneous density dependent mean-free-path of the ablated particles and the Ar gas is developed for investigating the transport dynamics of the laser-ablated particles in a low pressure inert gas. The ablated-particle density and velocity distributions are analyzed. The force distributions acting on the ablated particles are investigated. The influence of the substrate on the ablated-particle velocity distribution and the force distribution acting on the ablated particles are discussed. The Monte Carlo simulation results approximately agree with the experimental data at the pressure of 8 Pa to 17 Pa. This is helpful to investigate the gas phase nucleation and growth mechanism of nanoparticles. supported by the Natural Science Foundation of Hebei Province, China (No. A2015201166) and the Natural Science Foundation of Hebei University, China (No. 2013-252)

  8. New discrimination method for ablative control mechanism in solid-propellant rocket nozzle

    2010-01-01

    A reasonable discrimination method for ablative control mechanism in solid-propellant rocket nozzle can improve the calculation accuracy of ablation rate. Based on the different rate constants for reactions of C with H2O and CO2,a new discrimination method for ablative control mechanism,which comprehensively considers the influence of nozzle surface temperature and gas component concentration,is presented. Using this new discrimination method,calculations were performed to simulate the nozzle throat insert ablation. The numerical results showed that the calculated ablation rate,which was more close to the measured values,was less than the value calculated by diffusion control mechanisms or by double control mechanisms. And H2O was proved to be the most detrimental oxidizing species in nozzle ablation.

  9. Use of Radiofrequency Ablation in Benign Thyroid Nodules: A Literature Review and Updates

    Kai-Pun Wong

    2013-01-01

    Full Text Available Successful thermal ablation using radiofrequency has been reported in various tumors including liver or kidney tumors. Nonsurgical minimally invasive ablative therapy such as radiofrequency ablation (RFA has been reported to be a safe and efficient treatment option in managing symptomatic cold thyroid nodules or hyperfunctioning thyroid nodules. Pressure and cosmetic symptoms have been shown to be significantly improved both in the short and long terms after RFA. For hyperfunctioning thyroid nodules, RFA is indicated for whom surgery or radioiodine are not indicated or ineffective or for those who refuse surgery or radio-iodine. Improvement of thyroid function with decreased need for antithyroid medications has been reported. Complication rate is relatively low. By reviewing the current literature, we reported its efficacy and complications and compared the efficacy of RFA relative to other ablative options such as ethanol ablation and laser ablation.

  10. Use of radiofrequency ablation in benign thyroid nodules: a literature review and updates.

    Wong, Kai-Pun; Lang, Brian Hung-Hin

    2013-01-01

    Successful thermal ablation using radiofrequency has been reported in various tumors including liver or kidney tumors. Nonsurgical minimally invasive ablative therapy such as radiofrequency ablation (RFA) has been reported to be a safe and efficient treatment option in managing symptomatic cold thyroid nodules or hyperfunctioning thyroid nodules. Pressure and cosmetic symptoms have been shown to be significantly improved both in the short and long terms after RFA. For hyperfunctioning thyroid nodules, RFA is indicated for whom surgery or radioiodine are not indicated or ineffective or for those who refuse surgery or radio-iodine. Improvement of thyroid function with decreased need for antithyroid medications has been reported. Complication rate is relatively low. By reviewing the current literature, we reported its efficacy and complications and compared the efficacy of RFA relative to other ablative options such as ethanol ablation and laser ablation.

  11. Ablation, Thermal Response, and Chemistry Program for Analysis of Thermal Protection Systems

    Milos, Frank S.; Chen, Yih-Kanq

    2010-01-01

    In previous work, the authors documented the Multicomponent Ablation Thermochemistry (MAT) and Fully Implicit Ablation and Thermal response (FIAT) programs. In this work, key features from MAT and FIAT were combined to create the new Fully Implicit Ablation, Thermal response, and Chemistry (FIATC) program. FIATC is fully compatible with FIAT (version 2.5) but has expanded capabilities to compute the multispecies surface chemistry and ablation rate as part of the surface energy balance. This new methodology eliminates B' tables, provides blown species fractions as a function of time, and enables calculations that would otherwise be impractical (e.g. 4+ dimensional tables) such as pyrolysis and ablation with kinetic rates or unequal diffusion coefficients. Equations and solution procedures are presented, then representative calculations of equilibrium and finite-rate ablation in flight and ground-test environments are discussed.

  12. Voltage-guided ablation technique for cavotricuspid isthmus-dependent atrial flutter: refining the continuous line.

    Jacobsen, Peter K; Klein, George J; Gula, Lorne J; Krahn, Andrew D; Yee, Raymond; Leong-Sit, Peter; Mechulan, Alexis; Skanes, Allan C

    2012-06-01

    Ablation of the cavotricuspid isthmus has become first-line therapy for "isthmus-dependent" atrial flutter. The goal of ablation is to produce bidirectional cavotricuspid isthmus block. Traditionally, this has been obtained by creation of a complete ablation line across the isthmus from the ventricular end to the inferior vena cava. This article describes an alternative method used in our laboratory. There is substantial evidence that conduction across the isthmus occurs preferentially over discrete separate bundles of tissue. Consequently, voltage-guided ablation targeting only these bundles with large amplitude atrial electrograms results in a highly efficient alternate method for the interruption of conduction across the cavotricuspid isthmus. Understanding the bundle structure of conduction over the isthmus facilitates more flexible approaches to its ablation and targeting maximum voltages in our hands has resulted in reduction of ablation time and fewer recurrences.

  13. Bump evolution driven by the x-ray ablation Richtmyer-Meshkov effect in plastic inertial confinement fusion Ablators

    Loomis Eric

    2013-11-01

    Full Text Available Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion capsules (ICF due to ablator and fuel non-uniformities are a primary concern for the ICF program. Recently, observed jetting and parasitic mix into the fuel were attributed to isolated defects on the outer surface of the capsule. Strategies for mitigation of these defects exist, however, they require reduced uncertainties in Equation of State (EOS models prior to invoking them. In light of this, we have begun a campaign to measure the growth of isolated defects (bumps due to x-ray ablation Richtmyer-Meshkov in plastic ablators to validate these models. Experiments used hohlraums with radiation temperatures near 70 eV driven by 15 beams from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY, which sent a ∼1.25Mbar shock into a planar CH target placed over one laser entrance hole. Targets consisted of 2-D arrays of quasi-gaussian bumps (10 microns tall, 34 microns FWHM deposited on the surface facing into the hohlraum. On-axis radiography with a saran (Cl Heα − 2.76keV backlighter was used to measure bump evolution prior to shock breakout. Shock speed measurements were also performed to determine target conditions. Simulations using the LEOS 5310 and SESAME 7592 models required the simulated laser power be turned down to 80 and 88%, respectively to match observed shock speeds. Both LEOS 5310 and SESAME 7592 simulations agreed with measured bump areal densities out to 6 ns where ablative RM oscillations were observed in previous laser-driven experiments, but did not occur in the x-ray driven case. The QEOS model, conversely, over predicted shock speeds and under predicted areal density in the bump.

  14. Treatment of osteoid osteoma using CT-guided radiofrequency ablation versus MR-guided laser ablation: A cost comparison

    Maurer, M.H., E-mail: martin.maurer@charite.de [Charite - Universitaetsmedizin Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin (Germany); Gebauer, B., E-mail: bernhard.gebauer@charite.de [Charite - Universitaetsmedizin Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin (Germany); Wieners, G., E-mail: gero.wieners@charite.de [Charite - Universitaetsmedizin Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin (Germany); De Bucourt, M., E-mail: maximilian.de-bucourt@charite.de [Charite - Universitaetsmedizin Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin (Germany); Renz, D.M., E-mail: diane.renz@charite.de [Charite - Universitaetsmedizin Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin (Germany); Hamm, B., E-mail: bernd.hamm@charite.de [Charite - Universitaetsmedizin Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin (Germany); Streitparth, F., E-mail: florian.streitparth@charite.de [Charite - Universitaetsmedizin Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin (Germany)

    2012-11-15

    Objective: To compare the costs of CT-guided radiofrequency ablation (RFA) and MR-guided laser ablation (LA) for minimally invasive percutaneous treatment of osteoid osteoma. Materials and methods: Between November 2005 and October 2011, 20 patients (14 males, 6 females, mean age 20.3 {+-} 9.1 years) underwent CT-guided RFA and 24 patients (18 males, 6 females; mean age, 23.8 {+-} 13.8 years) MR-guided LA (open 1.0 Tesla, Panorama HFO, Philips, Best, Netherlands) for osteoid osteoma diagnosed on the basis of clinical presentation and imaging findings. Prorated costs of equipment use (purchase, depreciation, and maintenance), staff costs, and expenditure for disposables were identified for CT-guided RFA and MR-guided LA procedures. Results: The average total costs per patient were EUR 1762 for CT-guided RFA and EUR 1417 for MR-guided LA. These were (RFA/LA) EUR 92/260 for equipment use, EUR 149/208 for staff, and EUR 870/300 for disposables. Conclusion: MR-guided LA is less expensive than CT-guided RFA for minimally invasive percutaneous ablation of osteoid osteoma. The higher costs of RFA are primarily due to the higher price of the disposable RFA probes.

  15. Thermochemical ablation of carbon/carbon composites with non-linear thermal conductivity

    2014-01-01

    Carbon/carbon composites have been typically used to protect a rocket nozzle from high temperature oxidizing gas. Based on the Fourier’s law of heat conduction and the oxidizing ablation mechanism, the ablation model with non-linear thermal conductivity for a rocket nozzle is established in order to simulate the one-dimensional thermochemical ablation rate on the surface and the temperature distributions by using a written computer code. As the presented re...

  16. Radiofrequency ablation of recurrent cholangiocarcinoma after orthotopic liver transplantation - a case report

    Rakesh Rai; Derek Manas; John Rose

    2005-01-01

    AIM: To report the use of radiofrequency ablation in the treatment of recurrenct cholangiocarcinoma in the transplanted liver.METHODS: A lady who underwent orthotopic liver transplantation (OLT) for intrahepatic cholangiocarcinoma recurrence of tumour 13 mo after tralsplantation inspite of adjuvant chemotherapy. Her recurrent tumour was treated with radiofrequency ablation.RESULTS: She survived for 18 mo following the recurrence of her tumour.CONCLUSION: Radiofrequency ablation can be used safely in the transplanted liver to treat recurrent tumour.

  17. Use of Radiofrequency Ablation in Benign Thyroid Nodules: A Literature Review and Updates

    Kai-Pun Wong; Brian Hung-Hin Lang

    2013-01-01

    Successful thermal ablation using radiofrequency has been reported in various tumors including liver or kidney tumors. Nonsurgical minimally invasive ablative therapy such as radiofrequency ablation (RFA) has been reported to be a safe and efficient treatment option in managing symptomatic cold thyroid nodules or hyperfunctioning thyroid nodules. Pressure and cosmetic symptoms have been shown to be significantly improved both in the short and long terms after RFA. For hyperfunctioning thyroid...

  18. Left-sided approach of AV junction ablation for drug refractory atrial fibrillation

    Yoga Yuniadi

    2006-06-01

    Full Text Available AV junction ablation has been proven effective to treat symptomatic atrial fibrillation refractory to antiarrhythmias or fail of pulmonary vein isolation. However, about 15% of conventional right-sided approach AV junction ablation failed to produce complete heart block. This study aimed to characterize His bundle potential at ablation site during conventional or left-sided approach of AV junction ablation. Twenty symptomatic AF patient (age of 60.5 ± 9.28 and 11 are females underwent conventional AV junction ablation. If 10 applications of radiofrequency energy are failed, then the ablation was performed by left-sided approach. Seventeen patients are successfully ablated by conventional approach. In 3 patients, conventional was failed but successfully ablated by left-sided approach. The His bundle amplitude at ablation site was significantly larger in left-sided than correspondence right-sided (16.0 ± 4.99 mm vs. 6.9 ± 4.02 mm respectively, p = 0.001, 95% CI -14.0 to -4.3. ROC analysis of His bundle potential amplitude recorded from right-sided revealed that cut off point of > 4.87 mm given the sensitivity of 81.3% and specificity of 53.8% for successful right-sided approach of AV junction ablation. In case of failed conventional approach, the left-sided approach is effective for AV junction ablation. An early switch to the left-sided approach may avoid multiple RF applications in patients with a low amplitude His-bundle potential (< 4.87 mm. (Med J Indones 2006; 15:109-14Keywords: Atrial fibrillation, AV junction ablation, left-sided approach

  19. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-02-01

    This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser-material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (Fth = 0.087 J/cm2) than that for the femtosecond laser ablation of ABS (Fth = 1.576 J/cm2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α-1 = 223 nm) than that for femtosecond laser ablation (α-1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the Cdbnd C bond completely through the chain scission process whereas Cdbnd C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the Cdbnd C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (Csbnd O and Cdbnd O bond) and nitrogen-rich (Csbnd N) functional groups.

  20. Thermochemical Ablation Therapy of VX2 Tumor Using a Permeable Oil-Packed Liquid Alkali Metal

    2015-01-01

    Objective Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors. Methods Permeable oil-packed sodium–potassium (NaK) was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluat...

  1. Ablation Properties of the Carbon-Based Composites Used in Artificial Heat Source Under Fire Accident

    TANG; Xian; HUANG; Jin-ming; ZHOU; Shao-jian; LUO; Zhi-fu

    2012-01-01

    <正>The ablation properties of the carbon-based composites used in artificial heat source under fire accident were investigated by the arc heater. In this work, we tested the carbon-based composites referring to Fig. 1. Their linear/mass ablation ratio and ablation morphologies were studied. The results showed that the carbon-based composites used in artificial heat source behaved well

  2. Ultrafast properties of femtosecond-laser-ablated GaAs and its application to terahertz optoelectronics.

    Madéo, Julien; Margiolakis, Athanasios; Zhao, Zhen-Yu; Hale, Peter J; Man, Michael K L; Zhao, Quan-Zhong; Peng, Wei; Shi, Wang-Zhou; Dani, Keshav M

    2015-07-15

    We report on the first terahertz (THz) emitter based on femtosecond-laser-ablated gallium arsenide (GaAs), demonstrating a 65% enhancement in THz emission at high optical power compared to the nonablated device. Counter-intuitively, the ablated device shows significantly lower photocurrent and carrier mobility. We understand this behavior in terms of n-doping, shorter carrier lifetime, and enhanced photoabsorption arising from the ablation process. Our results show that laser ablation allows for efficient and cost-effective optoelectronic THz devices via the manipulation of fundamental properties of materials.

  3. Indication of the radiofrequency induced lesion size by pre-ablation measurements

    Stagegaard, Niels; Petersen, Helen Høgh; Chen, Xu;

    2005-01-01

    for assessing these factors prior to ablation may indicate the lesion size which will be obtained for any given catheter position. METHODS AND RESULTS: Radiofrequency ablation was performed in vitro on strips of left ventricular porcine myocardium during two different levels of convective cooling (0 or 0.1 m......, during unchanged conditions, radiofrequency ablation was performed as either temperature-controlled, power-controlled or irrigated tip ablation and lesion size was determined. DeltaIMP increased significantly (P convective cooling. Delta......T was significantly increased by increasing contact pressure (P correlation between the obtained lesion size and power output...

  4. Combination therapy of temporary tracheal stenting and radiofrequency ablation for multinodular thyroid goiter with airway compression

    Shin, Ji Hoon; Beak, Jung Hwan; Oh, Yeon Mok; Ha, Eun Ju; Lee, Jeong Hyun [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2013-10-15

    We report a case of multinodular thyroid goiter in an 80-year-old man who successfully underwent tracheal stent placement for respiratory distress caused by the thyroid goiter and following two radiofrequency (RF) ablation sessions performed for thyroid volume reduction. This sequential treatment allowed elective stent removals four weeks after the second RF ablation session because the thyroid volume had been progressively reduced. Combination therapy of temporary airway stenting and RF ablation for the treatment of thyroid goiter has two advantages, i.e., immediate reliefs of dyspnea with airway stenting and reductions of the thyroid volume with RF ablation, and thus, allowing symptom reliefs even after the stent removals.

  5. Comparison of percutaneous cryoablation with microwave ablation in a porcine liver model.

    Niu, Lizhi; Li, Jialiang; Zeng, Jianying; Zhou, Liang; Wang, Song; Zhou, Xulong; Sheng, Lin; Chen, Jibing; Xu, Kecheng

    2014-04-01

    We compared imaging and pathological changes between argon-helium cryosurgical (AH) and microwave (MW) ablation in a porcine liver model. Immediately after ablation, computed tomography (CT) imaging showed that the area affected by MW ablation was considerably greater than that affected by AH ablation; moreover, the surface area of necrotic tissue was considerably greater in the AH group, whereas the depth of the necrotic area was similar. Seven days after ablation, the affected area had not changed much in the AH group, but it had significantly increased in the MW group; similarly, the surface and depth of the necrotic areas had not changed much in the AH group, but they had increased significantly in the MW group. The pathological findings showed similar definitive areas for both groups at both time points. The findings indicated that long time after both therapies, complete tissue necrosis can be achieved, but the extent and depth of necrosis differ: necrosis foci after AH ablation could be predicted by ice ball under CT image, and necrosis foci after MW ablation will increase obviously. MW ablation might therefore be suitable for tumors with a larger volume and simple anatomical structures, and AH ablation might be suitable for tumors with complex anatomical structures or those located near important organs. These two methods could therefore be used in combination in clinical settings, but details of the procedure need to be studied.

  6. Graded Density Carbon Bonded Carbon Fiber (CBCF) Preforms for Lightweight Ablative Thermal Protection Systems (TPS) Project

    National Aeronautics and Space Administration — FMI has developed graded density CBCF preforms for graded density phenolic impregnated carbon ablator (PICA) material to meet NASA's future exploration mission...

  7. Graded Density Carbon Bonded Carbon Fiber (CBCF) Preforms for Lightweight Ablative Thermal Protection Systems (TPS) Project

    National Aeronautics and Space Administration — FMI currently manufactures Phenolic Impregnated Carbon Ablator (PICA) material for Thermal Protection Systems (TPS) systems, such as the Stardust Sample Return...

  8. Phenolic Impregnated Carbon Ablator (PICA) Gap Filler for Heat Shield Assemblies Project

    National Aeronautics and Space Administration — During this program, Fiber Materials, Inc. (FMI) will develop practical methods for preparing Phenolic Impregnated Carbon Ablator (PICA) materials for joining...

  9. Femtosecond laser bone ablation with a high repetition rate fiber laser source.

    Mortensen, Luke J; Alt, Clemens; Turcotte, Raphaël; Masek, Marissa; Liu, Tzu-Ming; Côté, Daniel C; Xu, Chris; Intini, Giuseppe; Lin, Charles P

    2015-01-01

    Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, the system is demonstrated for the in vivo study of bone regeneration. Image-guided creation of a bone defect and longitudinal evaluation of cellular injury response in the defect provides insight into the bone regeneration process.

  10. Phenolic Impregnated Carbon Ablator (PICA) Gap Filler for Heat Shield Assemblies Project

    National Aeronautics and Space Administration — During this program Fiber Materials, Inc. (FMIREG) will develop practical methods for preparing Phenolic Impregnated Carbon Ablator (PICA) materials for joining...

  11. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    See, Tian Long, E-mail: tianlong.see@postgrad.manchester.ac.uk [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Liu, Zhu [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Li, Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Zhong, Xiang Li [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom)

    2016-02-28

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F{sub th} = 0.087 J/cm{sup 2}) than that for the femtosecond laser ablation of ABS (F{sub th} = 1.576 J/cm{sup 2}), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α{sup −1} = 223 nm) than that for femtosecond laser ablation (α{sup −1} = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas

  12. Heat-affected zone of metals ablated with femtosecond laser pulses

    Hirayama, Yoichi; Obara, Minoru

    2003-07-01

    The melted area is found on the surface ablated by nanosecond and picosecond laser pulses. However, the heat effect is little on the ablated surface in the case of femtosecond laser due to non-thermal ablation process. Heat-affected zone of metallic bulk crystal ablated with femtosecond Ti:sapphire laser pulses is experimentally studied. As a result of XRD (X-ray diffraction) measurements, the XRD peak signal of the area ablated with Ti:sapphire laser becomes smaller than that of the crystalline metal sample. While the crystallinity of the metal sample is crystalline before the laser ablation, the crystallinity in the ablated area is partially changed into the amorphous form. Because the residual pulse energy that is not used for the ablation process remains, leading to the formation of thin layer of melt phase. The melt layer is abruptly cooled down not to be re-crystallized, but to transform into the amorphous form. It is evident that the area ablated with femtosecond laser is changed into the amorphous metal. Additionally XRD measurements and AR+ etching are performed alternately to measure the thickness of the amorphous layer. In the case of iron, the thickness is measured to be 1 μm approximately, therefore heat-affected zone is quite small.

  13. Thermal ablation of liver metastases. Current status and perspectives; Thermische Ablation von Lebermetastasen. Aktueller Stand und Perspektiven

    Vogl, T.; Mack, M.; Straub, R.; Zangos, S.; Woitaschek, D.; Eichler, K.; Engelmann, K. [Inst. fuer Diagnostische und Interventionelle Radiologie, Univ. Frankfurt (Germany)

    2001-01-01

    Purpose. To present thermal ablation of liver metastases via laser induced thermotherapy. Material and methods. Different technical procedures of thermal ablation and online monitoring are used, as there are the MR-guided laser induced thermotherapy (LITT) and the radiofrequency ablation thermotherapy (RF). Results. In a prospective non randomized study 606 patients with liver metastases were treated via MR-guided laserinduced thermotherapy. Inclusion criteria were the exclusion of extrahepatic tumor spread and a number of metastases lower than 5 and a size lower than 50 mm in diameter. The local tumor control rate in the 3 month and 6 month control study was 98,3%, the complication rate 3,5% (clinically relevant: 1,2%). The mean survival rate was 40,9 months for all patients with liver metastases without statistically relevant differences for various primaries, like colorectal carcinoma, breast cancer and various other tumors. Results for radiofrequency are so far limited with incidence of a higher local tumor recurrence rate versus LITT. Conclusion. MR-guided LITT results in a high local tumor control rate with improved survival. (orig.) [German] Zielsetzung. Vorstellung der thermischen Ablation von Lebermetastasen mittels laserinduzierter Thermotherapie (LITT). Material und Methodik. Verschiedene technische Verfahren der Ablation sowie 'Online-monitoring-Verfahren' werden vorgestellt. Derzeit gaengige Verfahren der Thermoablation stellen die MR-gesteuerte laserinduzierte Thermotherapie (LITT) sowie die Radiofrequenzablation (RF) dar. Ergebnisse. Im Rahmen einer prospektiven, nichtrandomisierten Studie wurden bislang 606 Patienten mit Lebermetastasen unterschiedlicher Primaertumoren mittels LITT perkutan therapiert. Die erzielte lokale Tumorkontrolle in der 3- bzw. 6-Monatskontrolle betrug dabei 98,3%, die Rate klinisch nicht relevanter Komplikationen 3,5%, die Rate klinisch relevanter Komplikationen 1,2%. Die mittlere Ueberlebensrate fuer das

  14. Role of debris cover to control specific ablation of adjoining Batal and Sutri Dhaka glaciers in Chandra Basin (Himachal Pradesh) during peak ablation season

    Parmanand Sharma; Lavkush K Patel; Rasik Ravindra; Ajit Singh; K Mahalinganathan; Meloth Thamban

    2016-04-01

    As part of the on-going annual mass balance measurements on Batal and Sutri Dhaka glaciers, observationswere made during peak ablation (August–September) season in 2013 to understand the responseof debris covered and clean-ice (debris free) glacier surface to melting processes. Though, both the Bataland Sutri Dhaka glaciers have almost similar geographical disposition, Batal shows extensive debriscover (90% of the ablation area), while the latter is free from debris (only 5% of the ablation area). Thethickness of debris in Batal glacier is inversely proportional to altitude, whereas Sutri Dhaka mostlyexperienced debris-free zone except snout area. Observation revealed that the vertical gradient of ablationrate in ablation area is contrastingly opposite in these two glaciers, reflecting significant control ofdebris thickness and their distribution over glacier surface on the ablation rates. While different thickness(2–100 cm) of debris have attenuated melting rates up to 70% of total melting, debris cover of 2 cm thickness has accelerated melting up to 10% of the total melting. Estimated melt ratio revealsthat about 90% of the ablation area has experienced inhibited melting in Batal glacier, whereas only lessthan 5% ablation area of Sutri Dhaka has undergone inhibited melting. Comparison of topographicalmaps of 1962 with successive satellite images of the area demonstrates a terminus retreat of 373 ± 33.5 mand 579 ± 33.5 m for Batal and Sutri Dhaka glaciers for the period 1962–2013, respectively.

  15. Case Experience of Radiofrequency Ablation for Benign Thyroid Nodules: From an Ex Vivo Animal Study to an Initial Ablation in Taiwan

    Ming-Tsang Lee

    2016-03-01

    Full Text Available Radiofrequency ablation (RFA is a minimally invasive technique, used with ultrasound or computed tomography guidance, which can produce tissue coagulation necrosis in various kinds of tumors in the human body. In the past 10 years, numerous studies about RFA in benign thyroid nodules have been published. Reviewing these studies, we noticed that the effectiveness of ablation was higher when it was performed with the “moving-shot technique” via an internally cooled electrode. A consensus statement published from the Korean Society of Radiology also suggested the moving-shot technique as a standard ablation procedure for benign thyroid nodule ablation in Korea. In Taiwan, most symptomatic benign nodules are currently treated with surgical removal. RFA for mass lesions is primarily performed for the treatment of metastatic hepatic tumors. In our case, we have attempted to introduce RFA for benign thyroid nodules in Taiwan. Because endocrinologists in Taiwan were not familiar with this technique, we adopted a stepwise approach in learning how to perform RFA. We conducted ex vivo animal ablation exercises to gain experience in setting the radiofrequency generator for the right ablation mode and appropriate power output. The thyroid nodule volume reduction rate after 1 year of follow up was approximately 50% in this case. The most important thing we learned from this trial is that we confirmed the safety of thyroid nodule ablation. To the best of our knowledge, this is the first reported study of RFA of a thyroid nodule in Taiwan.

  16. PREFACE AND CONFERENCE INFORMATION: Eighth International Conference on Laser Ablation

    Hess, Wayne P.; Herman, Peter R.; Bäuerle, Dieter; Koinuma, Hideomi

    2007-04-01

    Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11-16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in a unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications. Laser ablation continues to grow and evolve, touching forefront areas in science and driving new technological trends in laser processing applications. Please

  17. Evaluation of the analytical capability of NIR femtosecond laser ablation-inductively coupled plasma mass spectrometry.

    Hirata, Takafumi; Kon, Yoshiaki

    2008-03-01

    A laser ablation-inductively coupled plasma-mass spectrometric (LA-ICPMS) technique utilizing a titanium-sapphire (TiS) femtosecond laser (fs-laser) has been developed for elemental and isotopic analysis. The signal intensity profile, depth of the ablation pit and level of elemental fractionation were investigated in order to evaluate the analytical capability of the present fs-laser ablation-ICPMS technique. The signal intensity profile of (57)Fe, obtained from iron sulfide (FeS(2)), demonstrated that the resulting signal intensity of (57)Fe achieved by the fs-laser ablation was almost 4-times higher than that obtained by ArF excimer laser ablation under a similar energy fluence (5 J/cm(2)). In fs-laser ablation, there is no significant difference in a depth of the ablation pit between glass and zircon material, while in ArF laser ablation, the resulting crater depth on the zircon crystal was almost half the level than that obtained for glass material. Both the thermal-induced and particle size-related elemental fractionations, which have been thought to be main sources of analytical error in the LA-ICPMS analysis, were measured on a Harvard 91500 zircon crystal. The resulting fractionation indexes on the (206)Pb/(238)U (f(Pb/U)) and (238)U/(232)Th (f(U/Th)) ratios obtained by the present fs-laser ablation system were significantly smaller than those obtained by a conventional ArF excimer laser ablation system, demonstrative of smaller elemental fractionation. Using the present fs-laser ablation technique, the time profile of the signal intensity of (56)Fe and the isotopic ratios ((57)Fe/(54)Fe and (56)Fe/(54)Fe) have been measured on a natural pyrite (FeS(2)) sample. Repeatability in signal intensity of (56)Fe achieved by the fs-laser ablation system was significantly better than that obtained by ArF excimer laser ablation. Moreover, the resulting precision in (57)Fe/(54)Fe and (56)Fe/(54)Fe ratio measurements could be improved by the fs-laser ablation system

  18. Effect of air-flow on the evaluation of refractive surgery ablation patterns.

    Dorronsoro, Carlos; Schumacher, Silvia; Pérez-Merino, Pablo; Siegel, Jan; Mrochen, Michael; Marcos, Susana

    2011-02-28

    An Allegretto Eye-Q laser platform (Wavelight GmbH, Erlangen, Germany) was used to study the effect of air-flow speed on the ablation of artificial polymer corneas used for testing refractive surgery patterns. Flat samples of two materials (PMMA and Filofocon A) were ablated at four different air flow conditions. The shape and profile of the ablated surfaces were measured with a precise non-contact optical surface profilometer. Significant asymmetries in the measured profiles were found when the ablation was performed with the clinical air aspiration system, and also without air flow. Increasing air-flow produced deeper ablations, improved symmetry, and increased the repeatability of the ablation pattern. Shielding of the laser pulse by the plume of smoke during the ablation of plastic samples reduced the central ablation depth by more than 40% with no-air flow, 30% with clinical air aspiration, and 5% with 1.15 m/s air flow. A simple model based on non-inertial dragging of the particles by air flow predicts no central shielding with 2.3 m/s air flow, and accurately predicts (within 2 μm) the decrease of central ablation depth by shielding. The shielding effects for PMMA and Filofocon A were similar despite the differences in the ablation properties of the materials and the different full-shielding transmission coefficient, which is related to the number of particles ejected and their associated optical behavior. Air flow is a key factor in the evaluation of ablation patterns in refractive surgery using plastic models, as significant shielding effects are found with typical air-flow levels used under clinical conditions. Shielding effects can be avoided by tuning the air flow to the laser repetition rate.

  19. Image and pathological changes after microwave ablation of breast cancer: A pilot study

    Zhou, Wenbin [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Jiang, Yanni [Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Chen, Lin; Ling, Lijun; Liang, Mengdi; Pan, Hong [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Wang, Siqi [Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Ding, Qiang [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Liu, Xiaoan, E-mail: liuxiaoan@126.com [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Wang, Shui, E-mail: ws0801@hotmail.com [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China)

    2014-10-15

    Highlights: • We report successful experience of MWA in breast cancer under local anesthesia. • We report MR imaging evaluation of microwave ablation zone in breast cancer. • Pathological changes after microwave ablation in breast cancer was reported. • 2 min MWA caused an ablation zone with three diameters > 2 cm in breast cancer. - Abstract: Purpose: To prospectively assess MR imaging evaluation of the ablation zone and pathological changes after microwave ablation (MWA) in breast cancer. Materials and methods: Twelve enrolled patients, diagnosed with non-operable locally advanced breast cancer (LABC), were treated by MWA and then neoadjuvant chemotherapy, followed by surgery. MR imaging was applied to evaluate the effect of MWA. Hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) were applied to analyze the ablated area. Results: All MWA procedures were performed successfully under local anesthesia. For a mean duration of 2.15 min, the mean largest, middle and smallest diameters in the ablated zone 24-h post-ablation in MR imaging were 2.98 cm ± 0.53, 2.51 cm ± 0.41 and 2.23 cm ± 0.41, respectively. The general shape of the ablation zone was close to a sphere. The ablated area became gradually smaller in MR imaging. No adverse effects related to MWA were noted in all 12 patients during and after MWA. HE staining could confirm the effect about 3 months after MWA, which was confirmed by TEM. Conclusions: 2 min MWA can cause an ablation zone with three diameters larger than 2 cm in breast cancer, which may be suitable for the local treatment of breast cancer up to 2 cm in largest diameter. However, the long-term effect of MWA in the treatment of small breast cancer should be determined in the future.

  20. Palliative Treatment of Rectal Carcinoma Recurrence Using Radiofrequency Ablation

    Mylona, Sophia, E-mail: mylonasophia@yahoo.com; Karagiannis, Georgios, E-mail: gekaragiannis@yahoo.gr; Patsoura, Sofia, E-mail: sofia.patsoura@yahoo.gr [Hellenic Red Cross Hospital ' Korgialenio-Benakio' (Greece); Galani, Panagiota, E-mail: gioulagalani@yahoo.com [Amalia Fleming Hospital (Greece); Pomoni, Maria, E-mail: marypomoni@gmail.com [Evgenidion Hospital (Greece); Thanos, Loukas, E-mail: loutharad@yahoo.com [Sotiria Hospital (Greece)

    2012-08-15

    Purpose: To evaluate the safety and efficacy of CT-guided radiofrequency (RF) ablation for the palliative treatment of recurrent unresectable rectal tumors. Materials and Methods: Twenty-seven patients with locally recurrent rectal cancer were treated with computed tomography (CT)-guided RF ablation. Therapy was performed with the patient under conscious sedation with a seven- or a nine-array expandable RF electrode for 8-10 min at 80-110 Degree-Sign C and a power of 90-110 W. All patients went home under instructions the next day of the procedure. Brief Pain Inventory score was calculated before and after (1 day, 1 week, 1 month, 3 months, and 6 months) treatment. Results: Complete tumor necrosis rate was 77.8% (21 of a total 27 procedures) despite lesion location. BPI score was dramatically decreased after the procedure. The mean preprocedure BPI score was 6.59, which decreased to 3.15, 1.15, and 0.11 at postprocedure day 1, week 1, and month 1, respectively, after the procedure. This decrease was significant (p < 0.01 for the first day and p < 0.001 for the rest of the follow-up intervals (paired Student t test; n - 1 = 26) for all periods during follow-up. Six patients had partial tumor necrosis, and we were attempted to them with a second procedure. Although the necrosis area showed a radiographic increase, no complete necrosis was achieved (secondary success rate 65.6%). No immediate or delayed complications were observed. Conclusion: CT-guided RF ablation is a minimally invasive, safe, and highly effective technique for treatment of malignant rectal recurrence. The method is well tolerated by patients, and pain relief is quickly achieved.

  1. X-ray ablation measurements and modeling for ICF applications

    Anderson, Andrew Thomas [Univ. of California, Berkeley, CA (United States)

    1996-09-01

    X-ray ablation of material from the first wall and other components of an ICF (Inertial Confinement Fusion) chamber is a major threat to the laser final optics. Material condensing on these optics after a shot may cause damage with subsequent laser shots. To ensure the successful operation of the ICF facility, removal rates must be predicted accurately. The goal for this dissertation is to develop an experimentally validated x-ray response model, with particular application to the National Ignition Facility (NIF). Accurate knowledge of the x-ray and debris emissions from ICF targets is a critical first step in the process of predicting the performance of the target chamber system. A number of 1-D numerical simulations of NIF targets have been run to characterize target output in terms of energy, angular distribution, spectrum, and pulse shape. Scaling of output characteristics with variations of both target yield and hohlraum wall thickness are also described. Experiments have been conducted at the Nova laser on the effects of relevant x-ray fluences on various materials. The response was diagnosed using post-shot examinations of the surfaces with scanning electron microscope and atomic force microscope instruments. Judgments were made about the dominant removal mechanisms for each material. Measurements of removal depths were made to provide data for the modeling. The finite difference ablation code developed here (ABLATOR) combines the thermomechanical response of materials to x-rays with models of various removal mechanisms. The former aspect refers to energy deposition in such small characteristic depths (~ micron) that thermal conduction and hydrodynamic motion are significant effects on the nanosecond time scale. The material removal models use the resulting time histories of temperature and pressure-profiles, along with ancillary local conditions, to predict rates of surface vaporization and the onset of conditions that would lead to spallation.

  2. Influence of Radiofrequency Ablation of Lung Cancer on Pulmonary Function

    Tada, Akihiro, E-mail: tdakihiro@gmail.com; Hiraki, Takao [Okayama University Medical School, Department of Radiology (Japan); Iguchi, Toshihiro [Fukuyama City Hospital, Department of Radiology (Japan); Gobara, Hideo; Mimura, Hidefumi [Okayama University Medical School, Department of Radiology (Japan); Toyooka, Shinichi [Okayama University Medical School, Department of Cancer and Thoracic Surgery (Japan); Kiura, Katsuyuki [Okayama University Medical School, Department of Respiratory Medicine (Japan); Tsuda, Toshihide [Okayama University Graduate School, Department of Environmental Epidemiology, Graduate School of Environmental Science (Japan); Mitsuhashi, Toshiharu [Okayama University Medical School, Department of Epidemiology (Japan); Kanazawa, Susumu [Okayama University Medical School, Department of Radiology (Japan)

    2012-08-15

    Purpose: The purpose of this study was to evaluate altered pulmonary function retrospectively after RFA. Methods: This retrospective study comprised 41 ablation sessions for 39 patients (22 men and 17 women; mean age, 64.8 years). Vital capacity (VC) and forced expiratory volume in 1 s (FEV{sub 1}) at 1 and 3 months after RFA were compared with the baseline (i.e., values before RFA). To evaluate the factors that influenced impaired pulmonary function, univariate analysis was performed by using multiple variables. If two or more variables were indicated as statistically significant by univariate analysis, these variables were subjected to multivariate analysis to identify independent factors. Results: The mean VC and FEV{sub 1} before RFA and 1 and 3 months after RFA were 3.04 and 2.24 l, 2.79 and 2.11 l, and 2.85 and 2.13 l, respectively. The values at 1 and 3 months were significantly lower than the baseline. Severe pleuritis after RFA was identified as the independent factor influencing impaired VC at 1 month (P = 0.003). For impaired FEV{sub 1} at 1 month, only severe pleuritis (P = 0.01) was statistically significant by univariate analysis. At 3 months, severe pleuritis (VC, P = 0.019; FEV{sub 1}, P = 0.003) and an ablated parenchymal volume {>=}20 cm{sup 3} (VC, P = 0.047; FEV{sub 1}, P = 0.038) were independent factors for impaired VC and FEV{sub 1}. Conclusions: Pulmonary function decreased after RFA. RFA-induced severe pleuritis and ablation of a large volume of marginal parenchyma were associated with impaired pulmonary function.

  3. X-ray ablation measurements and modeling for ICF applications

    Anderson, A.T.

    1996-09-01

    X-ray ablation of material from the first wall and other components of an ICF (Inertial Confinement Fusion) chamber is a major threat to the laser final optics. Material condensing on these optics after a shot may cause damage with subsequent laser shots. To ensure the successful operation of the ICF facility, removal rates must be predicted accurately. The goal for this dissertation is to develop an experimentally validated x-ray response model, with particular application to the National Ignition Facility (NIF). Accurate knowledge of the x-ray and debris emissions from ICF targets is a critical first step in the process of predicting the performance of the target chamber system. A number of 1-D numerical simulations of NIF targets have been run to characterize target output in terms of energy, angular distribution, spectrum, and pulse shape. Scaling of output characteristics with variations of both target yield and hohlraum wall thickness are also described. Experiments have been conducted at the Nova laser on the effects of relevant x-ray fluences on various materials. The response was diagnosed using post-shot examinations of the surfaces with scanning electron microscope and atomic force microscope instruments. Judgments were made about the dominant removal mechanisms for each material. Measurements of removal depths were made to provide data for the modeling. The finite difference ablation code developed here (ABLATOR) combines the thermomechanical response of materials to x-rays with models of various removal mechanisms. The former aspect refers to energy deposition in such small characteristic depths ({approx} micron) that thermal conduction and hydrodynamic motion are significant effects on the nanosecond time scale. The material removal models use the resulting time histories of temperature and pressure-profiles, along with ancillary local conditions, to predict rates of surface vaporization and the onset of conditions that would lead to spallation.

  4. Efficacy of catheter ablation of atrial fibrillation beyond HATCH score

    TANG Ri-bo; DONG Jian-zeng; LONG De-yong; YU Rong-hui; NING Man; JIANG Chen-xi; SANG Cai-hua; LIU Xiao-hui; MA Chang-sheng

    2012-01-01

    Background HATCH score is an established predictor of progression from paroxysmal to persistent atrial fibrillation (AF).The purpose of this study was to determine if HATCH score could predict recurrence after catheter ablation of AF.Methods The data of 488 consecutive paroxysmal AF patients who underwent an index circumferential pulmonary veins (PV) ablation were retrospectively analyzed.Of these patients,250 (51.2%) patients had HATCH score=0,185(37.9%) patients had HATCH score=1,and 53 (10.9%) patients had HATCH score >2 (28 patients had HATCH score=2,23 patients had HATCH score=3,and 2 patients had HATCH score=4).Results The patients with HATCH score >2 had significantly larger left atrium size,the largest left ventricular end systolic diameter,and the lowest ejection fraction.After a mean follow-up of (823±532) days,the recurrence rates were 36.4%,37.8% and 28.3% from the HATCH score=0,HATCH score=1 to HATCH score >2 categories (P=0.498).Univariate analysis revealed that left atrium size,body mass index,and failure of PV isolation were predictors of AF recurrence.After adjustment for body mass index,left atrial size and PV isolation,the HATCH score was not an independent predictor of recurrence (HR=0.92,95% confidence interval=0.76-1.12,P=0.406) in multivariate analysis.Conclusion HATCH score has no value in prediction of AF recurrence after catheter ablation.

  5. Laser ablation of basal cell carcinomas guided by confocal microscopy

    Sierra, Heidy; Cordova, Miguel; Nehal, Kishwer; Rossi, Anthony; Chen, Chih-Shan Jason; Rajadhyaksha, Milind

    2016-02-01

    Laser ablation offers precise and fast removal of superficial and early nodular types of basal cell carcinomas (BCCs). Nevertheless, the lack of histological confirmation has been a limitation. Reflectance confocal microscopy (RCM) imaging combined with a contrast agent can offer cellular-level histology-like feedback to detect the presence (or absence) of residual BCC directly on the patient. We conducted an ex vivo bench-top study to provide a set of effective ablation parameters (fluence, number of passes) to remove superficial BCCs while also controlling thermal coagulation post-ablation to allow uptake of contrast agent. The results for an Er:YAG laser (2.9 um and pulse duration 250us) show that with 6 passes of 25 J/cm2, thermal coagulation can be effectively controlled, to allow both the uptake of acetic acid (contrast agent) and detection of residual (or absence) BCCs. Confirmation was provided with histological examination. An initial in vivo study on 35 patients shows that the uptake of contrast agent aluminum chloride) and imaging quality is similar to that observed in the ex vivo study. The detection of the presence of residual tumor or complete clearance was confirmed in 10 wounds with (additional) histology and in 25 lesions with follow-up imaging. Our results indicate that resolution is sufficient but further development and use of appropriate contrast agent are necessary to improve sensitivity and specificity. Advances in RCM technology for imaging of lateral and deep margins directly on the patient may provide less invasive, faster and less expensive image-guided approaches for treatment of BCCs.

  6. Laser ablation deposition measurements from silver and nickel

    Svendsen, Winnie Edith; Ellegaard, Ole; Schou, Jørgen

    1996-01-01

    The deposition rate for laser ablated metals has been studied in a standard geometry for fluences up to 20 J/cm(2). The rate for silver and nickel is a few percent of a monolayer per pulse at the laser wavelengths 532 nm and 355 nm. The rate for nickel is significantly higher than that for silver...... at 532 nm, whereas the rate for the two metals is similar at 355 nm. This behaviour disagrees with calculations based on the thermal properties at low intensities as well as predictions based on formation of an absorbing plasma at high intensities. The deposition rate falls strongly with increasing...

  7. Dynamic stabilization of Rayleigh-Taylor instability in ablation fronts

    Piriz A.R.

    2013-11-01

    Full Text Available Dynamic stabilization of Rayleigh-Taylor instability in an ablation front is studied by considering the simplest possible modulations in the acceleration. Explicit analytical expressions for the instability growth rate and for the boundaries of the stability region are obtained by considering a sequence of Dirac deltas. Besides, general square waves allow for studying the effect of the driving asymmetries on the stability region as well as the optimization process. The essential role of compressibility is phenomenologically addressed in order to find the constraints it imposes on the stability region.

  8. Laser machining of special designed photopolymers-photochemical ablation mechanism

    Lippert, T. [Los Alamos National Lab., NM (United States); Dickinson, J.T.; Langford, S.C. [Washington State University, Dept. of Physics, Pullman, WA (United States); Furutani, H.; Fukumura, H.; Masuhara, H. [Osaka University, Dept. of Applied Physics, Osaka, (Japan); Kunz, T.; Wokaun, A. [Paul Scherrer Institute, Villigen, (Switzerland)

    1997-08-01

    Photopolymers based on the triazeno chromophore group (-N=N-N{lt}) have been developed. The absorption properties can be tailored for a specific irradiation wavelength. The photochemical exothermic decomposition yields high energetic gaseous products which are not contaminating the surface. The polymer can be structured with high resolution. No debris has been found around the etched corners. Maximum ablation rates of about 3 micrometer/pulse were achieved due to the dynamic absorption behavior (bleaching during the pulse). No physical or chemical modifications of the polymer surface could be detected after irradiation at the tailored absorption wavelength, whereas irradiation at different wavelengths resulted in modified (physical and chemical) surfaces.

  9. Oligodendrocyte ablation as a tool to study demyelinating diseases

    Ahdeah Pajoohesh-Ganji; Robert H. Miller

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune mediated neurodegenerative disease characterized by demyelin-ation and oligodendrocyte (OL) loss in the central nervous system and accompanied by local inlfammation and inifltration of peripheral immune cells. Although many risk factors and symptoms have been iden-tified in MS, the pathology is complicated and the cause remains unknown. It is also unclear whether OL apoptosis precedes the inlfammation or whether the local inlfammation is the cause of OL death and demyelination. This review brielfy discusses several models that have been developed to speciifcally ablate oligodendrocytes in an effort to separate the effects of demyelination from inlfammation.

  10. Tactile Sensing From Laser-Ablated Metallized PET Films

    Nag, Anindya

    2016-10-17

    This paper reports the design, fabrication, and implementation of a novel sensor patch developed from commercial polyethylene terephthalate films metallized with aluminum on one side. The aluminum was ablated with laser to form interdigitated electrodes to make sensor prototypes. The interdigitated electrodes were patterned on the substrate with a laser cutter. Characterization of the prototypes was done to determine their operating frequency followed by experimentation. The prototypes have been used as a tactile sensor showing promising results for using these patches in applications with contact pressures considerably lesser than normal human contact pressure.

  11. Radiofrequency Ablation of Hepatic Paragonimiasis:a Case Report

    Wei-gang Cao; Bao-an Qiu

    2012-01-01

    HEPATIC paragonimiasis is a rare disease with non-specific manifestation,which is often misdiagnosed in clinical practice.Long-time drug therapy treating this disease would be accompanied by the possible development of side effects.Given the fact that this disease has seldom been reported in the literature,we provide in this article a detailed report of one case with hepatic paragonimiases treated by radiofrequency ablation,which brought favorable outcome,aiming to shed some light on the understanding of this rare condition.

  12. Plasma Diagnostic in laser ablation plumes for isotope separation applications

    Matos, Juliana B. de [Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil)]. E-mail: juliana@ieav.cta.br; Rodrigues, Nicolau A.S.; Neri, Jose W.; Silveira, Carlos A.B. [Instituto de Estudos Avancados (IEAv/EFO), Sao Jose dos Campos, SP (Brazil). Div. de Fotonica

    2008-07-01

    The plasma plume produced in vacuum by ablation of copper, aluminum and tungsten samples, illuminated by copper laser pulses, was investigated. A Langmuir probe was used to study the macroscopic parameters electron number density (Ne) and electron temperature (Te). Plasma expansion velocity (Vp) was also investigated and it was studied the dependence of these parameters with the laser irradiance. Typical values are respectively N{sub e} {approx} 10{sup 8}-10{sup 9}/cm{sup 3}, T{sub e} {approx} 15 eV and Vp {approx} 10 km/s. (author)

  13. Laser ablation dynamics and production of thin films of lysozyme

    Canulescu, Stela; Schou, Jørgen; Amoruso, S.;

    produced thin films of average thickness up to 300 nm, which not only contained a significant amount of intact molecules, but also maintained the bioactivity. These films were produced by a nanosecond laser in the UV regime at 355 nm with 2 J/cm2. The surprising fact that these molecules can be transferred....... This is the first time the ablation by fs-lasers of a protein has been recorded quantitatively. Films of lysozyme produced by fs-laser irradiation were analyzed by MALDI and a significant number of intact molecules in the films with fs-laser deposition was found as well....

  14. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  15. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Pena-Diaz, M; Ponce, L; Arronte, M; Flores, T [Laboratorio TecnologIa Laser, CICATA-IPN, Unidad Altamira, Carretera Tampico-Puerto Ind. Altamira, 89600, TAMPS (Mexico)

    2007-04-15

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  16. Radiofrequency ablation for incidentally identified primary intrahepatic cholangiocarcinoma

    Witold Zgodzinski; N.Joseph Espat

    2005-01-01

    Cholangiocarcinoma is the second most common primary hepato-biliary malignancy. The majority of patients with primary hepatic tumors are not suitable candidates for resection, due to advanced stage of the disease at presentation, anatomic limitations and medical comorbidities. At present, radiofrequency ablation (RFA) may offer an alternative, feasible and safe therapy for selected patients with hepatic tumors, who are not otherwise candidates for hepatic resection. Herein, we present the case of successful RFA in a patient with a solitary, primary intrahepatic cholangiocarcinoma. The patient remained free of disease 24 mo after the procedure, and is still followed up. This is the first report of RFA application inthe treatment of primary intrahepatic cholangiocarcinoma.

  17. Local recurrence of hepatocellular carcinoma after radiofrequency ablation

    2010-01-01

    A 51-year-old Chinese male with a 20-year history of hepatitis B was diagnosed with hepatocellular carcinoma in the right anterior portion of the liver, sized 3.5 cm × 3.2 cm, and was treated with radiofrequency ablation (RFA) on December 18, 2001. The patient did not receive antiviral therapy for hepatitis B virus after RFA. The treated lesion reduced gradually and reached its minimum size of 1.7 cm × 1.5 cm seven years later on November 18, 2008. However computed tomography findings revealed that a recurr...

  18. Percutaneous radiofrequency ablation for lung tumors beneath the rib under CT fluoroscopic guidance with gantry tilt

    Suzuki, Takanobu; Yamagami, Takuji; Tanaka, Osamu; Yoshimatsu, Rika; Miura, Hiroshi; Nishimura, Tsunehiko (Dept. of Radiology, Graduate School of Medical Science, Kyoto Prefectural Univ. of Medicine, Kamigyo, Kyoto (Japan)), e-mail: yamagami@koto.kpu-m.ac.jp

    2010-05-15

    Background: Radiofrequency (RF) ablation of lung tumors has become a treatment of choice, especially for unresectable cases. However, RF ablation of small lung lesions located just beneath the rib is difficult. Purpose: To evaluate the efficacy and safety of gantry tilting for the performance of RF ablation of peripheral lesions located beneath the rib. Material and Methods: Our study was based on 18 of 293 lesions in the lung for which RF ablation was performed under CT scan fluoroscopic guidance at our institution between October 2004 and March 2009. For these 18 lesions, RF ablation was performed with gantry tilting because a rib blocked visualization of the RF ablation route even after other attempts had been made to change the relationship between the target and the rib. Results: All RF needles, with only one exception, were successfully advanced to hit the tumor. The commonest complication was a pneumothorax, which occurred in seven procedures. No serious complications occurred. The progression-free rates were 82.4% at 6 months, 62.5% at 12 months, and 30% at 24 months. Mean local progression-free duration was 17.6+-11.6 months (range 4-36 months). Conclusion: RF ablation under CT scan fluoroscopic guidance with gantry tilt is a useful and safe technique for RF ablation of lung nodules located beneath the rib

  19. Approximate theory of highly absorbing polymer ablation by nanosecond laser pulses

    Furzikov, N. P.

    1990-04-01

    Surface interference, nonlinearly saturated instability of laser-induced thermodestruction, and subsequent oscillation of absorption mode permit the description of analytical ablation thresholds and depths per pulse of polymers having high absorption at laser wavelengths, e.g., polyimide and poly(ethylene terephtalate). Inverse problem solution for polycarbonate and ablation invariant designing are also realized.

  20. Human cornea wound healing in organ culture after Er:YAG laser ablation

    Shen, Jin-Hui; Joos, Karen M.; Robinson, Richard D.; Shetlar, Debra J.; O'Day, Denis M.

    1998-06-01

    Purpose: To study the healing process in cultured human corneas after Er:YAG laser ablation. Methods: Human cadaver corneas within 24 hours post mortem were ablated with a Q- switched Er:YAG laser at 2.94 micrometer wavelength. The radiant exposure was 500 mJ/cm2. The cornea was cultured on a tissue supporting frame immediately after the ablation. Culture media consisted of 92% minimum essential media, 8% fetal bovine serum, 0.125% HEPES buffer solution, 0.125% gentamicin, and 0.05% fungizone. The entire tissue frame and media container were kept in an incubator at 37 degrees Celsius and 5% CO2. Serial macroscopic photographs of the cultured corneas were taken during the healing process. Histology was performed after 30 days of culture. Results: A clear ablated crater into the stroma was observed immediately after the ablation. The thickness of thermal damage ranges between 1 and 25 micrometer. Haze development within the crater varies from the third day to the fourteenth day according to the depth and the roughness of the crater. Histologic sections of the cultured cornea showed complete re- epithelization of the lased area. Loose fibrous tissue is observed filling the ablated space beneath the epithelium. The endothelium appeared unaffected. Conclusions: The intensity and time of haze development appears dependent upon the depth of the ablation. Cultured human corneas may provide useful information regarding the healing process following laser ablation.

  1. MRI-guided ablation of wide complex tachycardia in a univentricular heart.

    Reiter, Theresa; Ritter, Oliver; Nordbeck, Peter; Beer, Meinrad; Bauer, Wolfgang Rudolf

    2012-08-26

    Magnetic resonance imaging can be used for preprocedural assessment of complex anatomy for radiofrequency (RF) ablations, e.g., in a univentricular heart. This case report features the treatment of a young patient with a functionally univentricular heart who suffered from persistent sudden onset tachycardia with wide complexes that required RF ablation as treatment.

  2. Clinical outcome after hydrothermal ablation treatment of menorrhagia in patients with and without submucous myomas

    Hachmann-Nielsen, Elise; Rudnicki, Peter Martin

    2013-01-01

    To analyze the long-term efficacy of hydrothermal ablation (HTA) in women with a normal uterine cavity and submucous uterine myomas.......To analyze the long-term efficacy of hydrothermal ablation (HTA) in women with a normal uterine cavity and submucous uterine myomas....

  3. Radiofrequency Ablation of Benign Thyroid Nodules and Recurrent Thyroid Cancers: Consensus Statement and Recommendations

    Na, Dong Gyu [Human Medical Imaging and Intervention Center, Seoul (Korea, Republic of); Lee, Jeong Hyun [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Jung, So Lyung [Seoul St. Marys Hospital, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2012-06-15

    Radiofrequency ablation is a new non-surgical treatment modality for patients with benign thyroid nodules and recurrent thyroid cancers. The Task Force Committee of the Korean Society of Thyroid Radiology has developed recommendations for the treatment of benign thyroid nodules and recurrent thyroid cancers using radiofrequency ablation. These recommendations are based on evidence from the current literature and expert consensus

  4. Endobronchial laser ablation in the management of epithelial-myoepithelial carcinoma of the trachea

    David McCracken

    2015-01-01

    We present the first documented case to be treated with endobronchial laser ablation therapy with discussion of the incidence, presentation and characteristics of these tumours including the treatment options, as well as the use of laser ablation in the management of benign and malignant endobronchial lesions.

  5. Modeling of beam-target interaction during pulsed electron beam ablation of graphite: Case of melting

    Ali, Muddassir; Henda, Redhouane

    2017-02-01

    A one-dimensional thermal model based on a two-stage heat conduction equation is employed to investigate the ablation of graphite target during nanosecond pulsed electron beam ablation. This comprehensive model accounts for the complex physical phenomena comprised of target heating, melting and vaporization upon irradiation with a polyenergetic electron beam. Melting and vaporization effects induced during ablation are taken into account by introducing moving phase boundaries. Phase transition induced during ablation is considered through the temperature dependent thermodynamic properties of graphite. The effect of electron beam efficiency, power density, and accelerating voltage on ablation is analyzed. For an electron beam operating at an accelerating voltage of 15 kV and efficiency of 0.6, the model findings show that the target surface temperature can reach up to 7500 K at the end of the pulse. The surface begins to melt within 25 ns from the pulse start. For the same process conditions, the estimated ablation depth and ablated mass per unit area are about 0.60 μm and 1.05 μg/mm2, respectively. Model results indicate that ablation takes place primarily in the regime of normal vaporization from the surface. The results obtained at an accelerating voltage of 15 kV and efficiency factor of 0.6 are satisfactorily in good accordance with available experimental data in the literature.

  6. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses

    2017-01-01

    Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols. PMID:28253331

  7. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.

    Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook

    2015-01-01

    Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391  mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.

  8. Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization

    Mackenzie, David; Buron, Jonas Christian Due; Whelan, Patrick Rebsdorf;

    2015-01-01

    Selective laser ablation of a wafer-scale graphene film is shown to provide flexible, high speed (1 wafer/hour) device fabrication while avoiding the degradation of electrical properties associated with traditional lithographic methods. Picosecond laser pulses with single pulse peak fluences of 140......-effect mobility, doping level, on–off ratio, and conductance minimum before and after laser ablation fabrication....

  9. Sand laser-ablation as source of elements laser isotope separation: preliminary results

    Rodrigues, N.A.S.; Destro, M.G.; Vasconcelos, G; Neri, J.W.; Silveira, C.A.B.; Riva, R. [Institute for Advanced Studies, Sao Jose dos Campos, SP (Brazil)]. E-mail: nicolau@ieav.cta.br

    2008-07-01

    This paper presents preliminary results of emission spectroscopy experiments, performed with the aim to verify the presence of monoatomic neutral material in the jet produced by laser ablation of simple and complex targets. All studied materials (copper, graphite, alumina and beach sand) showed emission of single atoms, indicating the presence of monoatomic material in the ablated plume. (author)

  10. Epiphysiodesis Made with Radio Frequency Ablation: First Results From a Pilot Study

    Shiguetomi Medina, Juan Manuel; Gottliebsen, Martin; Rahbek, Ole;

    . 3 non-mature 40 kg pigs were used. A control leg was randomly selected and the contralateral treated at two ablation sites (lateral and medial) identified at the proximal tibia growth plate using x-ray. A probe was inserted and the ablation performed. MR images were performed right after...

  11. 'Zero' fluoroscopic exposure for ventricular tachycardia ablation in a patient with situs viscerum inversus totalis.

    Giaccardi, Marzia; Chiodi, Leandro; Del Rosso, Attilio; Colella, Andrea

    2012-03-01

    Situs viscerum inversus totalis (SVIT) is a congenital disorder characterized by mirror reversal of the thoracic and abdominal organs. Different studies have shown that the ablation procedure can be performed without fluoroscopy with safety and effectiveness, in the setting of supraventricular tachycardia. We successfully performed an anatomical map and a radiofrequency catheter ablation of ventricular arrhythmia in a patient with SVIT without fluoroscopy.

  12. Temporal changes in patient characteristics and prior pharmacotherapy in patients undergoing radiofrequency ablation of atrial fibrillation

    Karasoy, Deniz; Gislason, Gunnar Hilmar; Hansen, Jim;

    2013-01-01

    Trends in patient selection and pharmacotherapy before radiofrequency ablation (RFA) of atrial fibrillation are not well studied. We examined temporal trends in RFA utilization on a nationwide scale in Denmark.......Trends in patient selection and pharmacotherapy before radiofrequency ablation (RFA) of atrial fibrillation are not well studied. We examined temporal trends in RFA utilization on a nationwide scale in Denmark....

  13. Calculation of Nozzle Ablation During Arcing Period in an SF6 Auto-Expansion Circuit Breaker

    Zhang, Junmin; Lu, Chunrong; Guan, Yonggang; Liu, Weidong

    2016-05-01

    The nozzle ablation process is described as two phases of heat and ablation in the interruption for an SF6 circuit breaker in this paper. Their mathematical models are established with the Fourier heat conduction differential equation respectively. The masses of nozzle ablation with different arc durations and arc currents are calculated through the model of the nozzle ablation combined with an MHD (magneto-hydrodynamic) arc model. The time of the temperature rise on the inner surface of the nozzle under a given energy flux and of reaching the pyrolysis temperature under different energy fluxes is respectively analyzed. The relations between the mass of nozzle ablation and breaking current and arc duration are obtained. The result shows that the absorbing energy process before the nozzle ablation can be neglected under the condition of the energy flux entering into nozzle q > 109 W/m2. The ablation is the severest during the high-current phase and the ablation mass increases rapidly with the breaking current and with arc duration respectively. supported by National Natural Science Foundation of China (Nos. 51177005 and 51477004)

  14. Atrial fibrillation ablation guided with electroanatomical mapping system: A one year follow up

    Yoga Yuniadi

    2010-08-01

    Full Text Available Aim AF is the most common arrhythmia in clinical practice and associated with an increased long-term risk of stroke, heart failure, and all-cause mortality. Catheter ablation of AF is relatively new modality to convert AF to sinus rhythm. This study was aimed to elaborate efficacy of catheter ablation in mixed type of AF.Methods Thirty patients (age of 52 ± 8 yo comprised of 19 paroxysmal and 11 chronic AF underwent radiofrequency catheter ablation guided by electroanatomical CARTO™ mapping system. We used step wise ablation approach with circumferential pulmonary vein isolation (PVI as a cornerstone. Additional ablation comprised of roof line, mitral isthmus line, complex fractionated atrial electrogram (CFAE, septal line and coronary sinus ablation was done respectively if indicated. All patients were followed up to 1 year for AF recurrence.Results Circumferential PVI was successfully performed in all patients but one. Average follow up period was 11.5 months. More than 80% of all patients remain in sinus rhythm at the end of follow period which 62% of them were free from any anti-arrhythmic drug. No major complication in all patients series.Conclusion Radiofrequency ablation guided with electroanatomical mapping is effective and safe in mixed type of AF. (Med J Indones 2009;19:172-8Key words: Ablation, atrial fibrillation, electroanatomical, Indonesia

  15. Novel energy modalities for catheter ablation of cardiac arrhythmias : Pitfalls and possibilities of potent power sources

    Neven, K.G.E.J.

    2014-01-01

    The acceptance of catheter ablation as treatment for cardiac arrhythmias is amongst others dependent on its success rate, a high initial success rate will increase physician and patient acceptance. One of the reasons why recurrence of arrhythmia after ablation is substantial is non-transmurality of

  16. Microwave ablation of liver metastases guided by contrast-enhanced ultrasound

    Lorentzen, T; Skjoldbye, B O; Nolsoe, C P

    2011-01-01

    The aim of our study was to evaluate the efficacy of microwave (MW) ablation of liver metastases guided by B-mode ultrasound (US) and contrast-enhanced US (CEUS).......The aim of our study was to evaluate the efficacy of microwave (MW) ablation of liver metastases guided by B-mode ultrasound (US) and contrast-enhanced US (CEUS)....

  17. Energy distribution of ions produced by laser ablation of silver in vacuum

    Christensen, Bo Toftmann; Schou, Jørgen; Canulescu, Stela

    2013-01-01

    The ion energy in a silver ablation plume for fluence in the range of 0.6–2.4Jcm−2, typical for a pulsed laser deposition (PLD) experiment has been investigated. In this fluence range the ion fraction of the ablated particles becomes gradually dominant and can be utilized to characterize the abla...

  18. Comparison of the Outcomes of Monopolar and Bipolar Radiofrequency Ablation in Surgical Treatment of Atrial Fibrillation

    Wei-zhao Huang; Ying-meng Wu; Hong-yu Ye; Hai-ming Jiang

    2014-01-01

    Objective To compare the therapeutic effects and safety of monopolar and bipolar radiofrequency (RF) ablation used during cardiac surgery to treat atrial fibrillation. Methods We retrospectively studied a total of 81 patients with chronic atrial fibrillation who underwent open cardiac surgery with concomitant RF ablation between January 2007 and March 2011. Fifty-eight patients received bipolar RF ablation and 23 received monopolar RF ablation, respectively. The sinus rhythm restoration rate, the procedural duration, the frequency of severe perioperative complications, and mortality were compared between the two groups. Results The sinus rhythm restoration rate did not differ significantly between the two groups after follow-up of 15.1 ± 12.6 months (P=0.199). The frequencies of severe perioperative complications and mortality were also similar in the two groups. The total procedural time using bipolar RF ablation was significantly shorter than that using monopolar ablation (19.7±4.6 minutes vs. 28.1±8.5 minutes, P Conclusions Both monopolar and bipolar RF ablation are safe and effective in treating chronic atrial fibrillation patients during open cardiac surgery, but bipolar RF ablation is more convenient in practice.

  19. Radiofrequency ablation of hepatic metastasis: Results of treatment in forty patients

    Rath G

    2008-01-01

    Full Text Available Aim: To evaluate the local control of hepatic metastasis with radiofrequency ablation treatment. Materials and Methods: We did a retrospective analysis in 40 patients treated with radiofrequency ablation for hepatic metastasis. The tumors ablated included up to two metastatic liver lesions, with primaries in breast, gastrointestinal tract, cervix, etc. Radiofrequency ablation was performed under general anesthesia in all cases, using ultrasound guidance. Radionics Cool-Tip RF System was used to deliver the treatment. Results: The median age of patients treated was 49 years. There were 13 female and 27 male patients. The median tumor size ablated was 1.5 cm (0.75-4.0 cm. A total of 52 radiofrequency ablation cycles were delivered. Successful ablation was achieved in all patients with hepatic metastasis less than 3 cm in size. Pain was the most common complication seen (75%. One patients developed skin burns. At 2-year follow-up 7.5% of patients had locally recurrent disease. Conclusions: Radiofrequency ablation is a minimally invasive treatment modality. It can be useful in a select group of patients with solitary liver metastasis of less than 3 cm size.

  20. Percutaneous ablation of pulmonary tumours: state-of-the-art 2004; Perkutane Ablation von Lungentumoren: Standortbestimmung 2004

    Diederich, S. (Institut fuer Diagnostische und Interventionelle Radiologie/Nuklearmedizin, Marienhospital Duesseldorf; Institut fuer Diagnostische und Interventionelle Radiologie/Nuklearmedizin, Marienhospital, Rochusstr. 2, 40479, Duesseldorf); Hosten, N. (Institut fuer Diagnostische Radiologie und Neuroradiologie, Ernst-Moritz-Arndt-Universitaet Greifswald)

    2004-07-01

    Percutaneous radiofrequency ablation (RFA) and laser-induced interstitial thermotherapy (LITT) are well established since many years in liver and other soft tissue tumors. During the past 2 years there are increasing reports on applications in pulmonary tumors. There are, however, numerous differences to ablations in other organs: indications in pulmonary metastases and lung cancer have to be balanced against the specific possibilities of well-established surgical resections. Tissue specific features require different concepts of energy deployment and complications and methods for assessment of therapeutic effectiveness vary from other applications. Other aspects, however, are quite clear, yet. There are specific established indications particularly for thermoablation of pulmonary metastases. Tumor ablation is easily performed by experienced interventional radiologists and serious complications are rare. Patient acceptance is good. Further studies are required on indications, technical requirements, therapy control and particularly long-term results. (orig.) [German] Nachdem perkutane Radiofrequenzablation (RFA) und Lasertherapie (LITT) an der Leber und anderen Weichteilstrukturen seit Jahren regelmaessig durchgefuehrt werden, werden in den letzten 2 Jahren zunehmend auch Anwendungen bei Lungentumoren mitgeteilt. Allerdings bestehen zahlreiche Unterschiede zu Ablationen an anderen Organen: Indikationen bei Lungenmetastasen und Bronchialkarzinom muessen sich an den spezifischen Moeglichkeiten der etablierten operativen Verfahren der Lungenresektion messen, gewebespezifische Unterschiede erfordern andere Konzepte der Energieuebertragung. Unterschiede bestehen auch bei Komplikationen und Methoden der Therapiekontrolle. Andere Aspekte sind dagegen relativ klar: Es existieren bereits heute einzelne eindeutige Indikationen insbesondere fuer die Therapie von Lungenmetastasen. Die Technik der Tumorablation ist fuer den erfahrenen interventionellen Radiologen gut

  1. [Ablation of incessant ventricular tachycardia with the use of epicardial approach in a patient after CABG - a case report].

    Buchta, Piotr; Arya, Arash; Hindricks, Gerhard; Piorkowski, Christopher; Poloński, Lech; Gąsior, Mariusz; Zembala, Marian

    2011-01-01

    Percutaneous epicardial catheter ablation of ventricular tachycardia (VT) is used when ablation by a conventional endocardial access has been unsuccessful. In patients after cardiac surgery operations, due to high risk, an open chest approach for ablation is usually used. We report a case of 66 year-old man after bypass surgery operation admitted to the hospital with incessant VT, which was successfully ablated from the epicardial aspect achieved by subxyphoidal approach.

  2. Case Experience of Radiofrequency Ablation for Benign Thyroid Nodules: From an Ex Vivo Animal Study to an Initial Ablation in Taiwan

    Ming-Tsang Lee; Chih-Yuan Wang

    2016-01-01

    Radiofrequency ablation (RFA) is a minimally invasive technique, used with ultrasound or computed tomography guidance, which can produce tissue coagulation necrosis in various kinds of tumors in the human body. In the past 10 years, numerous studies about RFA in benign thyroid nodules have been published. Reviewing these studies, we noticed that the effectiveness of ablation was higher when it was performed with the “moving-shot technique” via an internally cooled electrode. A consensus state...

  3. Growth of anatase and rutile phase TiO2 nanoparticles using pulsed laser ablation in liquid: Influence of surfactant addition and ablation time variation

    Chaturvedi, Amita; Joshi, M. P.; Mondal, P.; Sinha, A. K.; Srivastava, A. K.

    2017-02-01

    Titanium dioxide (TiO2) nanoparticles were grown using nanosecond pulsed laser ablation of Ti target in DI water and in 0.001 M sodium dodecyl sulfate (SDS) surfactant aqueous solution. Growth was carried out with varying ablation times i. e. 30 min, 60 min and 90 min. The objective of our study was to investigate the influence of variations in liquid ambience conditions on the growth of the nanoparticles in a pulsed laser ablation in liquid (PLAL) process. Size, composition and optical properties of the grown TiO2 nanoparticles were investigated using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), optical absorption, photoluminescence (PL) spectroscopy and X-ray diffraction (XRD) studies. The obtained nanoparticles of TiO2 were found almost spherical in shape and polycrystalline in nature in both the liquid mediums i.e. DI water and aqueous solution of surfactant. Nanoparticles number density was also found to increase with increasing ablation time in both the liquid mediums. However crystalline phase of the grown TiO2 nanoparticles differs with the change in liquid ambience conditions. Selected area electron diffraction (SAED), PL and XRD studies suggest that DI water ambience is favorable for the growth of anatase phase TiO2 nanoparticles for all ablation times. While Surfactant added water ambience is favorable for the growth of rutile phase TiO2 nanoparticles but for shorter ablation times of 30 min and 60 min only, for longer ablation time of 90 min anatase phase was also observed along with the rutile phase TiO2 nanoparticles. The formation of anatase phase in DI water and rutile and anatase phase in aqueous solution of surfactant is explained on the basis of varying thermodynamic conditions with the two different liquid ambiences and different ablation times.

  4. Discrimination for ablative control mechanism in solid-propellant rocket nozzle

    2009-01-01

    The ablation in solid-propellant rocket nozzle is a coupling process resulted by chemistry, heat and mass transfer. Based on the heat and mass transfer theory, the aero-thermo-dynamic, and thermo-chemical kinetics, the thermal-chemical ablation model is established. Simulations are completed on the heat flow field and chemical ablation in the nozzle with different concentrations, frequency factors and activation energy of H2. The calculation results show that the concentration and the activation energy of H2 can provoke the transformation of control mechanism, whereas the influence brought by the frequency factor of H2 is feeble under a high-temperature and high-pressure combustion circumstance. The discrimination for ablative control mechanism is dependent on both concentration and activation energy of H2. This study will be useful in handling ablation and thermal protection problem in the design of solid-propellant rocket.

  5. Thermochemical ablation of carbon/carbon composites with non-linear thermal conductivity

    Li Wei-Jie

    2014-01-01

    Full Text Available Carbon/carbon composites have been typically used to protect a rocket nozzle from high temperature oxidizing gas. Based on the Fourier’s law of heat conduction and the oxidizing ablation mechanism, the ablation model with non-linear thermal conductivity for a rocket nozzle is established in order to simulate the one-dimensional thermochemical ablation rate on the surface and the temperature distributions by using a written computer code. As the presented results indicate, the thermochemical ablation rate of a solid rocket nozzle calculated by using actual thermal conductivity, which is a function of temperature, is higher than that by a constant thermal conductivity, so the effect of thermal conductivity on the ablation rate of a solid rocket nozzle made of carbon/carbon composites cannot be neglected.

  6. Atrioesophageal fistula in the era of atrial fibrillation ablation: a review.

    Nair, Girish M; Nery, Pablo B; Redpath, Calum J; Lam, Buu-Khanh; Birnie, David H

    2014-04-01

    The purpose of this review is to understand the epidemiology, clinical features, etiopathogenesis, and management of atrioesophageal fistula (AEF) after atrial fibrillation (AF) ablation. The incidence of AEF after AF ablation is 0.015%-0.04%. The principal clinical features include fever, dysphagia, upper gastrointestinal bleeding, sepsis, and embolic strokes. The close proximity of the esophagus to the posterior left atrial wall is responsible for esophageal injury during ablation. Prophylactic proton pump inhibitors, esophageal temperature monitoring, visualization of the esophagus during catheter ablation, esophageal protection devices, and avoidance of energy delivery in close proximity to the esophagus play an important role in preventing esophageal injury. Early surgical repair or esophageal stenting are the mainstay of treatment. Eliminating esophageal injury during AF ablation is of utmost importance in preventing AEF. A high index of suspicion and early intervention is necessary to prevent fatal outcomes.

  7. RADIOFREQUENCY ABLATION USING HYPERTONIC SALINE SOLUTION INSTILLATION: AN EX VIVO STUDY

    2007-01-01

    Objective To determine whether radiofrequency ablation using hypertonic saline solution instillation can increase the extent of thermally mediated coagulation in ex vivo pig liver tissue. Methods Fifty-six radiofrequency ablation lesions were produced in fresh ex vivo pig's liver. According to different saline solutions, the lesions were divided into six groups: 25% acetic acid, 18% NaCl, 10% NaCl, 5% NaCl, 0.9% NaCl, and distilled water. After radiofrequency ablation, the lesions size and morphology were measured and compared.Results Using different instillation, the volume of coagulation necrosis was different: 25% acetic acid >18% NaCl >10% NaCl >5% NaCl >0.9% NaCl>distilled water. Conclusion Radiofrequency ablation using hypertonic saline solution instillation can increase the volume of radiofrequency ablation induced necrosis.

  8. Selective Ablation of thin Nickel-chromium-alloy Films Using Ultrashort Pulsed Laser

    Pabst, Linda; Ebert, Robby; Exner, Horst

    The selective ablation of 100nm thin Nickel-Chromium-alloy films on glass substrate was investigated using femtosecond laser pulses (λ=1030nm, τp=170 fs, Ep,max=7μJ). The influence of the processing parameters such as fluence, pulse number and pulse repetition rate on the ablation process was examined. Single and multiple pulses ablation thresholds of the Nickel-Chromium-alloy film were determined and the incubation coefficient calculated. Optical and electron microscopy were employed to characterize the patterned area. As a result, different irradiation morphologies were observed, dependent from the processing parameters. A processing window for film side ablation of the Nickel-Chromium-alloy film without damaging the underlying glass substrate was found, however, the edge of the ablation craters were covered with laser induced periodic surface structures (LIPSS).

  9. Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell

    Garcia-Lechuga, M.; Siegel, J., E-mail: j.siegel@io.cfmac.csic.es; Hernandez-Rueda, J.; Solis, J. [Laser Processing Group, Instituto de Optica, Serrano 121, 28006 Madrid (Spain)

    2014-09-15

    Phase transition pathways of matter upon ablation with ultrashort laser pulses have been considered to be understood long-since for metals and semiconductors. We provide evidence that also certain dielectrics follow the same pathway, even at high pulse energies triggering optical breakdown. Employing femtosecond microscopy, we observe a characteristic ring pattern within the ablating region that dynamically changes for increasing time delays between pump and probe pulse. These transient Newton rings are related to optical interference of the probe beam reflected at the front surface of the ablating layer with the reflection at the interface of the non-ablating substrate. Analysis of the ring structure shows that the ablation mechanism is initiated by a rarefaction wave leading within a few tens of picoseconds to the formation of a transparent thin shell of reduced density and refractive index, featuring optically sharp interfaces. The shell expands and eventually detaches from the solid material at delays of the order of 100 ps.

  10. Three-dimension finite-element analyses of multiple electrodes bipolar RF global endometrial ablation

    Hu, Tao; Panhao, Tang; Xiao, Jiahua

    2015-03-01

    Radio-frequency ablation (RFA) is a minimally invasive surgical procedure to thermally ablate the targeted diseased tissue. There have been many finite-element method (FEM) studies of cardiac and hepatic RFA, but hardly find any FEM study on endometrial ablation for abnormal uterine bleeding. In this paper, a FEM model was generated to analyze the temperature distribution of bipolar RF global endometrial ablation with three pairs of bipolar electrodes placed at the perimeter of the uterine cavity. COMSOL was utilized to calculate the RF electric fields and temperature fields by numerically solving the bioheat equation in the triangle uterine cavity range. The 55°C isothermal surfaces show the shape of the ablation dimensions (depth and width), which reasonably matched the experimental results.

  11. Reinforce the study of treatment of atrial fibrillation by catheter ablation

    HUANG Cong-xin

    2005-01-01

    @@ In the past decade, there is a great progress in the treatment of atrial fibrillation (AF) by transcatheter ablation. The catheter-based procedures have developed from Maze-like linear lesion, focal lesion to segmental electrical isolation of pulmonary veins and circumferential ablation under guidance of anatomical mapping, ablation energy developed from radiofrequency to multiple energy such as radiofrequency, ultrasound and cryoablation; and success rate has risen to 90% from around 30% in the past.1 Catheter ablation has been widely accepted as a treatment of AF and tends to substitute pharmacological therapy and become first-line treatment gradually. It must point out that, however, catheter ablation of AF is not perfect and there are many issues desiderating resolution.

  12. Chemical nonequilibrium Navier-Stokes solutions for hypersonic flow over an ablating graphite nosetip

    Chen, Y. K.; Henline, W. D.

    1993-01-01

    The general boundary conditions including mass and energy balances of chemically equilibrated or nonequilibrated gas adjacent to ablating surfaces have been derived. A computer procedure based on these conditions was developed and interfaced with the Navier-Stokes solver for predictions of the flow field, surface temperature, and surface ablation rates over re-entry space vehicles with ablating Thermal Protection Systems (TPS). The Navier-Stokes solver with general surface thermochemistry boundary conditions can predict more realistic solutions and provide useful information for the design of TPS. A test case with a proposed hypersonic test vehicle configuration and associated free stream conditions was developed. Solutions with various surface boundary conditions were obtained, and the effect of nonequilibrium gas as well as surface chemistry on surface heating and ablation rate were examined. The solutions of the GASP code with complete ablating surface conditions were compared with those of the ASC code. The direction of future work is also discussed.

  13. Ablation and radar-wave transmission performances of the nitride ceramic matrix composites

    2008-01-01

    The 2.5 dimensional silica fiber reinforced nitride matrix composites (2.5D SiO2f/Si3N4-BN) were prepared through the preceramic polymer impregnation pyrolysis (PIP) method. The ablation and radar-wave transparent performances of the composite at high temperature were evaluated under arc jet. The composition and ablation surface microstructures were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that the 2.5D SiO2f/Si3N4-BN composites have a linear ablation rate of 0.33 mm/s and high radar-wave transparent ratio of 98.6%. The fused layer and the matrix are protected by each other, and no fused layer accumulates on the ablation surface. The nitride composite is a high-temperature ablation resistivity and microwave transparent material.

  14. Ablation and radar-wave transmission performances of the nitride ceramic matrix composites

    2008-01-01

    The 2.5 dimensional silica fiber reinforced nitride matrix composites (2.5D SiO2f/Si3N4-BN) were prepared through the preceramic polymer impregnation pyro- lysis (PIP) method. The ablation and radar-wave transparent performances of the composite at high temperature were evaluated under arc jet. The composition and ablation surface microstructures were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that the 2.5D SiO2f/Si3N4-BN composites have a linear ablation rate of 0.33 mm/s and high radar-wave trans- parent ratio of 98.6%. The fused layer and the matrix are protected by each other, and no fused layer accumulates on the ablation surface. The nitride composite is a high-temperature ablation resistivity and microwave transparent material.

  15. Catheter ablation of persistent atrial fibrillation in a patient with dextrocardia

    XUE Zeng-ming; SANG Cai-hua; DONG Jian-zeng; MA Chang-sheng

    2012-01-01

    The technique of catheter ablation for atrial fibrillation (AF) has advanced rapidly over the last ten years.Catheter ablation of AF with special anatomy like dextrocardia was seldomly reported,1,2 which may be difficult for its complex anatomy.Three-dimensional electroanatomical mapping system and image integration system may be helpful during the procedure.We report a case with drug refractory persistent AF and dextrocardia,who underwent an ablation procedure.%Dextrocardia is a rare anomaly where the heart is located on the right side of the chest instead of the normal left side.Ablation of atrial fibrillation (AF) with such an inverted anatomy may be challenging for the manipulation of the catheters.Here we report a case of dextrocardia who underwent ablation for persistent AF guided by image integration system.

  16. Hydrodynamic model for ultra-short pulse ablation of hard dental tissue

    London, R.A.; Bailey, D.S.; Young, D.A.; Alley, W.E.; Feit, M.D.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Neev, J. [Beckman Laser Inst., Irvine, CA (United States)

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 fsec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  17. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells.

    Wang, Mian; Holmes, Benjamin; Cheng, Xiaoqian; Zhu, Wei; Keidar, Michael; Zhang, Lijie Grace

    2013-01-01

    Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atmospheric plasma (CAP) is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa) cells and bone marrow derived human mesenchymal stem cells (MSCs) were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy.

  18. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells.

    Mian Wang

    Full Text Available Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atmospheric plasma (CAP is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa cells and bone marrow derived human mesenchymal stem cells (MSCs were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy.

  19. Photonic Doppler velocimetry of laser-ablated ultrathin metals.

    Valenzuela, A R; Rodriguez, G; Clarke, S A; Thomas, K A

    2007-01-01

    Obtaining velocity information from the interaction of a laser pulse on a metal layer provides insight into the rapid dynamics of material removal and plasma plume physics during ablation. A traditional approach involves using a velocity interferometer system for any reflector (VISAR) on a reflective metal surface. However, when the target is a thin metal layer, the cohesion of the surface is quickly lost resulting in a large spread of particle velocities that cannot be easily resolved by VISAR. This is due to material ejection"confusing" the VISAR measurement surface, effectively washing out the spatial fringe visibility in the VISAR interferometer. A new heterodyne-based optical velocimeter method is the photonic Doppler velocimeter (PDV). Because PDV tracks motion in a frequency encoded temporal electro-optical signal, velocity information is preserved and allows for multiple velocity components to be recorded simultaneously. The challenge lies in extracting PDV velocity information at short (nanosecond) laser ablation time scales with rapidly varying heterodyne beats by using electronic, optical, and analytical techniques to recover the velocity information from a fleeting signal. Here we show how we have been able to obtain velocity information on the nanosecond time scale and are able to compare it to hydrodynamic simulations. Also, we examine refinements to our PDV system by increasing the bandwidth, utilizing different probes, and sampling different analysis techniques.

  20. Histological evaluation of vertical laser channels from ablative fractional resurfacing

    Skovbølling Haak, Christina; Illes, Monica; Paasch, Uwe

    2011-01-01

    and efficient treatment outcome. The aim of this study was to establish a standard model to document the histological tissue damage profiles after AFR and to test a new laser device at diverse settings. Ex vivo abdominal pig skin was treated with a MedArt 620, prototype fractional carbon dioxide (CO(2)) laser......Ablative fractional resurfacing (AFR) represents a new treatment potential for various skin conditions and new laser devices are being introduced. It is important to gain information about the impact of laser settings on the dimensions of the created laser channels for obtaining a safe...... measurements for each laser setting (n¿=¿28). AFR created cone-shaped laser channels. Ablation depths varied from reaching the superficial dermis (2 mJ, median 41 µm) to approaching the subcutaneous fat (144 mJ, median 1,943 µm) and correlated to the applied energy levels in an approximate linear relation (r(2...

  1. Histological evaluation of vertical laser channels from ablative fractional resurfacing

    Skovbølling Haak, Christina; Illes, Monica; Paasch, Uwe

    2011-01-01

    and efficient treatment outcome. The aim of this study was to establish a standard model to document the histological tissue damage profiles after AFR and to test a new laser device at diverse settings. Ex vivo abdominal pig skin was treated with a MedArt 620, prototype fractional carbon dioxide (CO(2)) laser......Ablative fractional resurfacing (AFR) represents a new treatment potential for various skin conditions and new laser devices are being introduced. It is important to gain information about the impact of laser settings on the dimensions of the created laser channels for obtaining a safe...... measurements for each laser setting (n = 28). AFR created cone-shaped laser channels. Ablation depths varied from reaching the superficial dermis (2 mJ, median 41 μm) to approaching the subcutaneous fat (144 mJ, median 1,943 μm) and correlated to the applied energy levels in an approximate linear relation (r(2...

  2. Atrio-oesophageal fistula after transcatheter radiofrequency ablation.

    Moss, Caroline E; Fernandez-Caballero, Sandra; Walker, David

    2015-01-05

    A 68-year-old woman presented 3 weeks following unsuccessful transcatheter radiofrequency ablation (TcRFA) for treatment of her chronic atrial fibrillation. Neurological signs manifested on day 2 of admission with generalised tonic-clonic seizures and reduced Glasgow Coma Score. She was treated for presumed central nervous system (CNS) infection, intubated and transferred to the intensive care unit. CT of the head showed bilateral oedema secondary to acute embolic stroke. Blood cultures grew Streptococcus viridans, and lumbar puncture findings were consistent with CNS infection. Echocardiography showed only a septostomy puncture from the atrial fibrillation ablation procedure. Thoracic CT demonstrated air in the left atrium, consistent with the diagnosis of atrio-oesophageal fistula, a rarely reported iatrogenic complication of TcRFA. MRI of the head showed significant neurological injury with innumerable embolic infarcts. After discussion with her family regarding the significant neurological insult, and with no signs of any clinical improvement, the patient died on day 8 of admission.

  3. Alantolactone selectively ablates acute myeloid leukemia stem and progenitor cells

    Yahui Ding

    2016-09-01

    Full Text Available Abstract Background The poor outcomes for patients diagnosed with acute myeloid leukemia (AML are largely attributed to leukemia stem cells (LSCs which are difficult to eliminate with conventional therapy and responsible for relapse. Thus, new therapeutic strategies which could selectively target LSCs in clinical leukemia treatment and avoid drug resistance are urgently needed. However, only a few small molecules have been reported to show anti-LSCs activity. Methods The aim of the present study was to identify alantolactone as novel agent that can ablate acute myeloid leukemia stem and progenitor cells from AML patient specimens and evaluate the anticancer activity of alantolactone in vitro and in vivo. Results The present study is the first to demonstrate that alantolactone, a prominent eudesmane-type sesquiterpene lactone, could specifically ablate LSCs from AML patient specimens. Furthermore, in comparison to the conventional chemotherapy drug, cytosine arabinoside (Ara-C, alantolactone showed superior effects of leukemia cytotoxicity while sparing normal hematopoietic cells. Alantolactone induced apoptosis with a dose-dependent manner by suppression of NF-kB and its downstream target proteins. DMA-alantolactone, a water-soluble prodrug of alantolactone, could suppress tumor growth in vivo. Conclusions Based on these results, we propose that alantolactone may represent a novel LSCs-targeted therapy and eudesmane-type sesquiterpene lactones offer a new scaffold for drug discovery towards anti-LSCs agents.

  4. Production of silver nanoparticles by laser ablation in open air

    Boutinguiza, M., E-mail: mohamed@uvigo.es [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9. Vigo, 36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo, 36310 (Spain); Lusquiños, F.; Riveiro, A.; Val, J. del; Pou, J. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9. Vigo, 36310 (Spain)

    2015-05-01

    Highlights: • Silver nanoparticles have been obtained by laser ablation of metallic Ag in open air using nanosecond laser. • The continuous process enables increasing the production yield. • The obtained particles are rounded shape with narrow size distribution. - Abstract: Silver nanoparticles have attracted much attention as a subject of investigation due to their well-known properties, such as good conductivity, antibacterial and catalytic effects, etc. They are used in many different areas, such as medicine, industrial applications, scientific investigation, etc. There are different techniques for producing Ag nanoparticles, chemical, electrochemical, sonochemical, etc. These methods often lead to impurities together with nanoparticles or colloidal solutions. In this work, laser ablation of solids in open air conditions (LASOA) is used to produce silver nanoparticles and collect them on glass substrates. Production and deposition of silver nanoparticles are integrated in the same step to reduce the process. The obtained particles are analysed and the nanoparticles formation mechanism is discussed. The obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV/VIS absorption spectroscopy. The obtained nanoparticles consisted of Ag nanoparticles showing rounded shape with diameters ranging from few to 50 nm.

  5. Ultrasonography guided percutaneous radiofrequency ablation for hepatic cavernous hemangioma

    Yan Cui; Hong-Wen Zhang; Li-Yan Zhou; Man-Ku Dong; Ping Wang; Min Ji; Xiao-Ou Li; Chang-Wei Chen; Zi-Pei Liu; Yong-Jie Xu

    2003-01-01

    AIM: Hepatic cavernous hemangioma (HCH) is the mostcommon benign tumor of the liver and its management isstill controversial. Recent successin situ radiofrequencyablation of hepatic malignancies has led us to consider usingthis technique in patients with HCH. This study was to assessthe efficacy, safety, and complications of percutaneousradiofrequency ablation (PRFA) under ultrasonographyguidance in patients with HCH.METHODS: Twelve patients (four men and eight women,age ranged 33-56 years, mean age was 41.7 years) with 15hepatic cavernous hemangiomas (2.5 cm to 9.5 cm) weretreated using the RF-2000 generator and 10-needle LeVeenelectrode percutaneously guided by B-ultrasound. Lesionslarger than 3 cm were treated by multiple overlappingablations that encompass the entire lesion as well as a rimof normal liver tissue (approximately 0.5 cm).RESULTS: All the patients who received PRFA therapy hadno severe pain, bleeding or bile leakage during and afterthe procedures. Nine to 34 months′ follow-up (mean, 21months) by ultrasound and/or spiral CT scan demonstratedthat the ablated lesions in this group were shrunk remarkably,and the shrunken range was 38-79 % (mean, 67 % per 21months). The contrast enhancement was disappeared withinthe tumor or at its periphery in all cases on spiral CT scansobtained 3 to 6 months after treatment.CONCLUSION: The results of this study suggest that PRFAtherapy is a mini-invasive, simple, safe, and effective methodfor the treatment of selected patients with HCH.

  6. Surgery or ablative radiotherapy for breast cancer oligometastases.

    Salama, Joseph K; Chmura, Steven J

    2015-01-01

    Precisely focused radiation or surgical resection of limited metastases resulted in long-term disease control and survival in multiple studies of patients with oligometastatic breast cancer. The integration of these ablative techniques into standard systemic therapy regimens has the potential to be paradigm shifting, leaving many patients without evidence of disease. Although an attractive treatment option, the utility of these therapies have not been proven in controlled studies, and improved outcomes may be because of patient selection or favorable biology alone. Ongoing studies continue to refine radiation techniques and determine the role for ablative therapies in the management of patients with metastatic breast cancer (MBC). Additionally, patient selection for metastasis-directed therapies is based on clinical criteria, with many not benefiting from therapies that may have substantial toxicities. Recent reports are beginning to uncover the biology of oligometastatic cancer, but much work is needed. Current and developing trials that integrate both clinical and translational endpoints have the potential to transform management strategies in women with limited MBC.

  7. Technology update: bronchoscopic thermal vapor ablation for managing severe emphysema

    Gompelmann D

    2014-09-01

    Full Text Available Daniela Gompelmann,1,2 Ralf Eberhardt,1,2 Felix JF Herth1,21Pneumology and Critical Care Medicine, Thoraxklinik at University of Heidelberg, 2German Center for Lung Research, Heidelberg, GermanyAbstract: Bronchoscopic thermal vapor ablation (BTVA is an endoscopic lung volume reduction therapy that presents an effective treatment approach in patients with severe upper lobe-predominant emphysema. By instillation of heated water vapor, an inflammatory reaction is induced, leading to fibrosis and scarring of the lung parenchyma, resulting in lobar volume reduction. Clinical single-arm trials demonstrated great outcomes, with significant improvement of lung function, exercise capacity, and quality of life. As the BTVA-induced local inflammatory response that seems to be essential for the desired lobar volume reduction can be associated with transient clinical worsening, strict monitoring of the patients is required. In future, the balance between efficacy and safety will constitute a major challenge. This review summarizes the BTVA procedure, the mechanism of action, and the results of the clinical trials, including the efficacy and safety data.Keywords: emphysema, bronchoscopy, bronchoscopic thermal vapor ablation

  8. Novel microwave applicators for thermal therapy, ablation, and hemostasis

    Ryan, Thomas P.; Clegg, Peter

    2009-02-01

    Microwave applicators are becoming more prevalent in cancer ablation therapy due to factors of penetration, high power, and shortened treatment time. These applicators create the largest zones of necrosis of available energy sources. Progress has been made both with interstitial applicators for surgical, laparoscopic, or radiological approaches, as well as surface applicators that provide hemostasis or precoagulation prior to resection. Most commonly, the applicators operate at 915 MHz or 2450 MHz, and are well matched to tissue. Surgical applicators are as large as 5.6 mm and have the capability to operate at 100-200 W. With smaller applicators, internal cooling may be required to avoid heating sensitive skin surfaces if used percutaneously or laparoscopically. With the interstitial applicators, animal studies have shown a strong relationship between power and ablation volume, including reaching a steady-state plateau in performance based more on power level and less on time. As shown in-vivo, MW surface applicators are very efficient in surface coagulation for hemostasis or precoagulation and in the treatment of surface breaking lesions. These applicators are also capable of deep penetration as applied from the surface. Characteristic treatment times for interstitial applicators are four minutes and for surface applicators, one minute or less is sufficient. Examples will be shown of multi-organ results with surface coagulation using high-power microwaves. Finally, future trends will be discussed that include treatment planning, multiple applicators, and navigation.

  9. Injectable liquid alkali alloy based-tumor thermal ablation therapy.

    Rao, Wei; Liu, Jing

    2009-01-01

    The alkali metal was recently found to be a very useful agent for inducing minimally invasive tumor hyperthermia therapy. However, the solid-like metal makes it somewhat inconvenient to perform the surgery. Here, to overcome this drawback, the NaK alloy in liquid state at room temperature was proposed as a highly efficient thermal ablative agent for tumor treatment. For illustration purposes, the functionalized liquid NaK alloy at a mass ratio 1:1 was obtained and an amount of 0.35 ml was injected into in vitro pork. The sizes of the damage region and temperature response were measured. It was found that significant temperature increase by a magnitude of > 80 degrees C can easily be obtained. This produced a large coagulation and necrotic area within selected areas for in vitro tests and the necrotic region volume is three times that of the NaK injection quantity. Furthermore, for the in vivo experiment, breast EMT6 tumor in mouse was subjected to treatment by NaK alloy. Tumor was harvested after the experiment to assess its viability. Histological section showed complete necrosis at the target site. These conceptual results demonstrate that using injectable liquid alkali alloy to ablate tumor is rather promising. This study also raised interesting issues waiting for clarification in future technical and animal studies aiming to assess efficacy, side effects and safety of the new therapy.

  10. Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation

    Wang GJ

    2012-04-01

    Full Text Available Hsiao-Wei Wang1, Chung-Wei Cheng2, Ching-Wen Li3, Han-Wei Chang4, Ping-Han Wu2, Gou-Jen Wang 1Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan, 2Laser Application Technology Center, Industrial Technology Research Institute, Tainan County, Taiwan, 3Department of Mechanical Engineering, 4Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, People’s Republic of ChinaAbstract: One of the persistent challenges confronting tissue engineering is the lack of intrinsic microvessels for the transportation of nutrients and metabolites. An artificial microvascular system could be a feasible solution to this problem. In this study, the femtosecond laser ablation technique was implemented for the fabrication of pillared microvessel scaffolds of polylactic-co-glycolic acid (PLGA. This novel scaffold facilitates implementation of the conventional cell seeding process. The progress of cell growth can be observed in vitro by optical microscopy. The problems of becoming milky or completely opaque with the conventional PLGA scaffold after cell seeding can be resolved. In this study, PLGA microvessel scaffolds consisting of 47 µm × 80 µm pillared branches were produced. Results of cell culturing of bovine endothelial cells demonstrate that the cells adhere well and grow to surround each branch of the proposed pillared microvessel networks.Keywords: femtosecond laser ablation, pillared microvessel scaffold, polylactic-co-glycolic acid, bovine endothelial cells

  11. Stereotactic Ablative Radiotherapy for Oligometastatic Disease in Liver

    Myungsoo Kim

    2014-01-01

    Full Text Available Liver metastasis in solid tumors, including colorectal cancer, is the most frequent and lethal complication. The development of systemic therapy has led to prolonged survival. However, in selected patients with a finite number of discrete lesions in liver, defined as oligometastatic state, additional local therapies such as surgical resection, radiofrequency ablation, cryotherapy, and radiotherapy can lead to permanent local disease control and improve survival. Among these, an advance in radiation therapy made it possible to deliver high dose radiation to the tumor more accurately, without impairing the liver function. In recent years, the introduction of stereotactic ablative radiotherapy (SABR has offered even more intensive tumor dose escalation in a few fractions with reduced dose to the adjacent normal liver. Many studies have shown that SABR for oligometastases is effective and safe, with local control rates widely ranging from 50% to 100% at one or two years. And actuarial survival at one and two years has been reported ranging from 72% to 94% and from 30% to 62%, respectively, without severe toxicities. In this paper, we described the definition and technical aspects of SABR, clinical outcomes including efficacy and toxicity, and related parameters after SABR in liver oligometastases from colorectal cancer.

  12. Radiofrequency Ablation of Hepatocellular Carcinoma: A Literature Review

    Yasunori Minami

    2011-01-01

    Full Text Available Radiofrequency ablation (RFA of liver cancers can be performed safely using percutaneous, laparoscopic, or open surgical techniques, and much of the impetus for the use of RFA has come from cohort series that have provided an evidence base for this technique. Here, we give an overview of the current status of radiofrequency ablation (RFA for hepatocellular carcinoma (HCC, including its physical properties, to assess the characteristics that make this technique applicable in clinical practice. We review the technical development of probe design and summarize current indications and outcomes of reported clinical use. An accurate evaluation of treatment response is very important to secure successful RFA therapy since a sufficient safety margin (at least 0.5 cm can prevent local tumor recurrences. We also provide a profile of side effects and information on the integration of this technique into the general management of patients with HCC. To minimize complications of RFA, physicians should be familiar with each feature of complication. Appropriate management of complications is essential for successful RFA treatment. Moreover, adjuvant therapy, such as molecular targeted therapies following curative therapy, is expected to further improve survival after RFA.

  13. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    Buxiang Zheng

    2014-02-01

    Full Text Available The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter, ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloy were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm2.

  14. Effect of ablation of complex fractionated atrial electrogram on vagal modulation in dogs

    ZHANG Shu-long; YANG Yan-zong; DONG Ying-xue; JIANG Peng; GAO Lian-jun; CHA Yong-mei; Douglas L.Packer; XIA Yun-long; YIN Xiao-meng; CHANG Dong

    2010-01-01

    Background Clinical observations have shown that the complex fractionated atrial electrogram (CFAE) associates with ganglionated plexus activity in the cardiac autonomic nervous system. This study aimed to investigate the impact of CFAE ablation on vagal modulation to atria and vulnerability to develop atrial fibrillation (AF).Methods Ten adult mongrel dogs were involved. Cervical sympathovagal trunks were decentralized and sympathetic effects were blocked. CFAE was color tagged on the atrial 3-dimensional image and ablated during AF induced by S1S2 programmed stimulation plus sympathovagal trunk stimulation. Atrial effective refractory period (ERP) and vulnerability window (VW) of AF were measured on baseline and at vagal stimulation at 4 atrium sites. Serial tissue sections from ablative and control specimens received hematoxylin and eosin staining for microscopic examination.Results Most CFAE areas were localized at the right superior pulmonary quadrant, distal coronary sinus (CSd)quadrant, and proximal coronary sinus (CSp) quadrant (21.74%, separately). Sinus rhythm cycle length (SCL) shortening did not decrease significantly after ablation at the sites, including right atrial appendage, left atrial appendage, CSd, and CSp (P >0.05). ERP shortening during vagal stimulation significantly decreased after ablation (P <0.01); the VW to vagal stimulation significantly decreased after ablation (P <0.05). The architecture of individual ganglia altered after ablation.Conclusions CFAE has an autonomic basis in dogs. The decreased SCL and ERP shortening to vagal stimulation after CFAE ablation demonstrate that CFAE ablation attenuates vagal modulation to the atria, thereby suppressing AF mediated by enhanced vagal activity. CFAE ablation could suppress AF mediated by enhanced vagal activity.

  15. Endogenous TSH levels at the time of {sup 131}I ablation do not influence ablation success, recurrence-free survival or differentiated thyroid cancer-related mortality

    Vrachimis, Alexis; Riemann, Burkhard [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Maeder, Uwe; Reiners, Christoph [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Verburg, Frederik A. [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany)

    2016-02-15

    Based on a single older study it is established dogma that TSH levels should be ≥30 mU/l at the time of postoperative {sup 131}I ablation in differentiated thyroid cancer (DTC) patients. We sought to determine whether endogenous TSH levels, i.e. after levothyroxine withdrawal, at the time of ablation influence ablation success rates, recurrence-free survival and DTC-related mortality. A total of 1,873 patients without distant metastases referred for postoperative adjuvant {sup 131}I therapy were retrospectively included from 1991 onwards. Successful ablation was defined as stimulated Tg <1 μg/l. Age, gender and the presence of lymph node metastases were independent determinants of TSH levels at the time of ablation. TSH levels were not significantly related to ablation success rates (p = 0.34), recurrence-free survival (p = 0.29) or DTC -elated mortality (p = 0.82), but established risk factors such as T-stage, lymph node metastases and age were. Ablation was successful in 230 of 275 patients (83.6 %) with TSH <30 mU/l and in 1,359 of 1,598 patients (85.0 %) with TSH ≥30 mU/l. The difference was not significant (p = 0.55). Of the whole group of 1,873 patients, 21 had recurrent disease. There were no significant differences in recurrence rates between patients with TSH <30 mU/l and TSH ≥30 mU/l (p = 0.16). Ten of the 1,873 patients died of DTC. There were no significant differences in DTC-specific survival between patients with TSH <30 mU/l and TSH ≥30 mU/l (p = 0.53). The precise endogenous TSH levels at the time of {sup 131}I ablation are not related to the ablation success rates, recurrence free survival and DTC related mortality. The established dogma that TSH levels need to be ≥30 mU/l at the time of {sup 131}I ablation can be discarded. (orig.)

  16. Is Very High Thyroid Stimulating Hormone Level Required in Differentiated Thyroid Cancer for Ablation Success?

    Zekiye Hasbek

    2016-06-01

    Full Text Available Objective: Remnant ablation with radioactive iodine (I-131 is a successful form of treatment that aims to destroy the remaining residual tissue and/or metastatic tissue after total thyroidectomy in differentiated thyroid cancer (DTC patients. High level of thyroid stimulating hormone (TSH (≥30 mIU/L is recommended for success of ablation treatment. In this retrospective study, our aim was to investigate whether the TSH levels at the time of ablation effect the success of radioactive iodine remnant ablation. Methods: Patients who were diagnosed with DTC, treated with bilateral total/near total thyroidectomy and who were referred for I-131 remnant ablation were included in this study. Patients with undetectable TSH-stimulated serum thyroglobulin (Tg level, normal physical examination, negative results on whole body scan with I-131, and no evidence of neck lymph node metastasis on ultrasound were defined as disease-free. The correlation between TSH level at the time of ablation and ablation success was assessed. Results: Two hundred sixty one consecutive patients were included in the present study. Mean TSH level was 19.47±6 mIU/L in the 34 patients with TSH <30 mIU/L, while mean TSH level was 73.65±27 mIU/L in the 227 patients with TSH ≥30 mIU/L during I-131 remnant ablation. Ablation was unsuccessful in only one patient with TSH <30 mIU/L who had lung metastasis. Ablation was unsuccessful in 5.1% of patients with TSH ≥30 mIU/L. The effect of TSH level was not significant on ablation success (p=0.472. Conclusion: In conclusion, we think that a high TSH serum level alone is not a factor for the success of ablation. Age, presence of metastasis, extent of residual thyroid mass should also be considered. Especially, in the presence of metastatic tissue, obtaining adequate increase in TSH level is not always possible. The success of ablation at lower levels of TSH elevations may be sufficient for patients, and long-term hypothyroidism may not

  17. Ultrasound-guided radiofrequency ablation of thyroid gland: a preliminary study in dogs

    Choi, Ji Won; Yoo, Seung Min [College of Medicine, Chungang University, Seoul, (Korea, Republic of); Kwak, Seo Hyun [Seoul Veterans Hospital, Seoul (Korea, Republic of)

    2005-07-15

    The purpose of this study was to evaluate the possibility of using radiofrequency ablation as the treatment modality for the benign or malignant thyroid nodules in humans. Therefore, we examined the results of using radiofrequency ablation on the thyroid glands in dogs, in respect of the extent of the ablated tissue and the complications. Five dogs (10 lobes of the thyroid glands) were included in this study. US-guided radiofrequency ablation was undertaken with a 10 mm, uncovered 17 gauge cool-tip needle. The power and duration was 20 wattage and 1 minute in five thyroid lobes (group 1) and 20 wattage and 2 minutes in another 5 thyroid lobes (group 2). The ultrasound scans and the pre-and post-enhancement CT scans were undertaken before and immediately after the procedures, and at 24 hours, 72 hours and 1 week later. The US and CT findings of the ablated tissue and complications were evaluated. Blood sampling was done at the pre-procedure time and 1 week later for evaluating the functional status of the thyroid gland. Laryngoscopy was done at the pre-procedure and post-procedure times, and at 24 hours, 72 hours and 1 week later for the evaluation of any recurrent laryngeal nerve palsy. The echo pattern of the ablated thyroid gland at immediately after the radiofrequency ablation appeared as poorly marginated and hyperechoic. On the US obtained 24 hours after radiofrequency ablation, the echo pattern of the ablated thyroid gland was hypoechoic. The maximum diameters after RFA were 9.4 {rho} 0.5 mm in group I and 11.4 {rho} 0.5 mm in group II. The pre-enhanced CT scan taken at immediately after the radiofrequency ablation showed ill defined hypodense areas in the ablated thyroid gland. Differentiation between the normal and abnormal portions of the thyroid gland was difficult on the contrast enhanced CT scan. Complications induced by radiofrequency ablation were one recurrent laryngeal nerve palsy, two perforations of esophagus and five thickenings of the esophageal

  18. Endometrial ablation in the management of abnormal uterine bleeding.

    Laberge, Philippe; Leyland, Nicholas; Murji, Ally; Fortin, Claude; Martyn, Paul; Vilos, George; Leyland, Nicholas; Wolfman, Wendy; Allaire, Catherine; Awadalla, Alaa; Dunn, Sheila; Heywood, Mark; Lemyre, Madeleine; Marcoux, Violaine; Potestio, Frank; Rittenberg, David; Singh, Sukhbir; Yeung, Grace

    2015-04-01

    Contexte : Les saignements utérins anormaux (SUA) sont directement à l’origine d’un fardeau de santé considérable que doivent porter les femmes, leur famille et la société en général. Jusqu’à 30 % des femmes chercheront à obtenir l’aide d’un médecin pour contrer ce problème au cours de leurs années de fertilité. Objectif : Fournir des lignes directrices factuelles à jour quant aux techniques et aux technologies utilisées aux fins de l’ablation de l’endomètre (AE), soit une intervention à effraction minimale permettant la prise en charge des SUA d’origine bénigne. Méthodes : Les membres du comité sur la directive clinique ont été sélectionnés en fonction de leurs spécialisations respectives en vue de représenter une gamme d’expériences pratiques et universitaires : le milieu de pratique au Canada, le type de pratique, la sous-spécialité et les antécédents généraux en gynécologie ont donc été pris en considération. Le comité a analysé les données pertinentes issues de la littérature médicale anglophone (y compris les lignes directrices publiées), en plus d’évaluer les issues chirurgicales et les issues qu’ont connues les patientes à la suite de l’utilisation de diverses techniques d’AE. Les recommandations ont été formulées par consensus. Données : La littérature publiée a été récupérée par l’intermédiaire de recherches menées dans MEDLINE et The Cochrane Library en 2013 et en 2014 au moyen d’un vocabulaire contrôlé et de mots clés appropriés (p. ex. « endometrial ablation », « hysteroscopy », « menorrhagia », « heavy menstrual bleeding », « AUB », « hysterectomy »). Les résultats ont été restreints aux analyses systématiques, aux études observationnelles et aux essais comparatifs randomisés / essais cliniques comparatifs publiés en anglais entre janvier 2000 et novembre 2014. Les recherches ont été mises à jour de façon r

  19. A study of particle generation during laser ablation with applications

    Liu, Chunyi [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    A study has been made of the generation of particles during laser ablation and has included size distribution measurements and observation of the formation processes. The particle size distribution with respect to different laser parameters was obtained in-line using a differential mobility analyzer (DMA) and a particle counter. The experimental results show that the particle size varies with laser energy, laser pulsewidth, ambient gas flow rate and sample properties. The results serve as a basis for controlling the size of nanoparticles generated by laser ablation. Laser shadowgraph imaging was used to study mass ejection processes and mechanisms. At higher laser irradiance, some particles were ejected in the liquid and even in the solid phase. Time-resolved images show the propagation of the shockwaves: external shockwaves propagate outward and decelerate, and internal shockwaves reflect back and forth between the gas contact surface and the sample surface. The internal shockwave is proposed to cause the ejection of liquid particles when the internal shockwave strikes the liquid molten layer. A simulation based on vapor plume expansion was carried out and provides satisfactory agreement with experimental results. Different material properties result in different particle ejection behavior:particle ejection for most materials including metals result in a conically shaped envelope for the ejected material while ejection for silicon resembles a liquid jet. The difference in density change when the materials melt was proposed to be an important factor in the different ejection behavior. The characteristics of particles generated by laser ablation have a strong influence on the chemical analysis of the irradiated sample. Large particles are more difficult to completely vaporize and ionize, and induced preferential vaporization causes fractionation (i.e. a detected chemical composition that differs from the sample material). Large particles also result in spikes in

  20. Ablation and optical third-order nonlinearities in Ag nanoparticles

    Carlos Torres-Torres

    2010-11-01

    Full Text Available Carlos Torres-Torres1, Néstor Peréa-López2, Jorge Alejandro Reyes-Esqueda3, Luis Rodríguez-Fernández3, Alejandro Crespo-Sosa3, Juan Carlos Cheang-Wong3, Alicia Oliver31Section of Graduate Studies and Research, School of Mechanical and Electrical Engineering, National Polytechnic Institute, Zacatenco, Distrito Federal, Mexico; 2Laboratory for Nanoscience and Nanotechnology Research and Advanced Materials Department, IPICYT, Camino a la Presa San Jose, San Luis Potosi, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000, MéxicoAbstract: The optical damage associated with high intensity laser excitation of silver nanoparticles (NPs was studied. In order to investigate the mechanisms of optical nonlinearity of a nanocomposite and their relation with its ablation threshold, a high-purity silica sample implanted with Ag ions was exposed to different nanosecond and picosecond laser irradiations. The magnitude and sign of picosecond refractive and absorptive nonlinearities were measured near and far from the surface plasmon resonance (SPR of the Ag NPs with a self-diffraction technique. Saturable optical absorption and electronic polarization related to self-focusing were identified. Linear absorption is the main process involved in nanosecond laser ablation, but nonlinearities are important for ultrashort picosecond pulses when the absorptive process become significantly dependent on the irradiance. We estimated that near the resonance, picosecond intraband transitions allow an expanded distribution of energy among the NPs, in comparison to the energy distribution resulting in a case of far from resonance, when the most important absorption takes place in silica. We measured important differences in the ablation threshold and we estimated that the high selectiveness of the SPR of Ag NPs as well as their corresponding optical nonlinearities can be strongly significant for laser