WorldWideScience

Sample records for ablation-inductively coupled plasma-mass

  1. Determination of elemental content off rocks by laser ablation inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Lichte, F.E.

    1995-01-01

    A new method of analysis for rocks and soils is presented using laser ablation inductively coupled plasma mass spectrometry. It is based on a lithium borate fusion and the free-running mode of a Nd/YAG laser. An Ar/N2 sample gas improves sensitivity 7 ?? for most elements. Sixty-three elements are characterized for the fusion, and 49 elements can be quantified. Internal standards and isotopic spikes ensure accurate results. Limits of detection are 0.01 ??g/g for many trace elements. Accuracy approaches 5% for all elements. A new quality assurance procedure is presented that uses fundamental parameters to test relative response factors for the calibration.

  2. A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis

    International Nuclear Information System (INIS)

    A novel signal smoothing device for laser ablation inductively coupled plasma mass spectrometry was developed. The “wire” signal smoothing device consists of a copper cylinder filled with steel wire, with an internal volume of approx. 94 cm3. The effectiveness of the “wire” signal smoothing device was evaluated with respect to both signal stability and decay time. With the developed “wire” smoothing device, no oscillation of the signal intensity was observed, even at a repetition rate of 1 Hz. This finding indicates that this device is well suited for routine optimization of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The signal stability was improved by a factor of 11 compared to the absence of a signal smoothing device at a repetition rate of 1 Hz. Another significant advantage of the “wire” smoothing device is that the signal decay time is similar to that without the signal smoothing device. These properties cause the “wire” smoothing device to be well suited for low repetition rate laser ablation analysis, which provides smaller elemental fractionation and better spatial resolution. The proposed “wire” signal smoothing device has been successfully used for high depth resolution zircon dating. - Highlights: ► The wire stabilizer is able to provide smooth signals at a repetition rate of 1 Hz. ► The signal decay time is similar to that in the absence of a signal stabilizer. ► The wire stabilizer has been successfully used for zircon dating.

  3. Minimally-invasive Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis of model ancient copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walaszek, Damian [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Senn, Marianne; Wichser, Adrian [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Faller, Markus [Laboratory for Jointing Technology and Corrosion, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Wagner, Barbara; Bulska, Ewa [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Ulrich, Andrea [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2014-09-01

    This work describes an evaluation of a strategy for multi-elemental analysis of typical ancient bronzes (copper, lead bronze and tin bronze) by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).The samples originating from archeological experiments on ancient metal smelting processes using direct reduction in a ‘bloomery’ furnace as well as historical casting techniques were investigated with the use of the previously proposed analytical procedure, including metallurgical observation and preliminary visual estimation of the homogeneity of the samples. The results of LA-ICPMS analysis were compared to the results of bulk composition obtained by X-ray fluorescence spectrometry (XRF) and by inductively coupled plasma mass spectrometry (ICPMS) after acid digestion. These results were coherent for most of the elements confirming the usefulness of the proposed analytical procedure, however the reliability of the quantitative information about the content of the most heterogeneously distributed elements was also discussed in more detail. - Highlights: • The previously proposed procedure was evaluated by analysis of model copper alloys. • The LA-ICPMS results were comparable to the obtained by means of XRF and ICPMS. • LA-ICPMS results indicated the usefulness of the proposed analytical procedure.

  4. Minimally-invasive Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis of model ancient copper alloys

    International Nuclear Information System (INIS)

    This work describes an evaluation of a strategy for multi-elemental analysis of typical ancient bronzes (copper, lead bronze and tin bronze) by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).The samples originating from archeological experiments on ancient metal smelting processes using direct reduction in a ‘bloomery’ furnace as well as historical casting techniques were investigated with the use of the previously proposed analytical procedure, including metallurgical observation and preliminary visual estimation of the homogeneity of the samples. The results of LA-ICPMS analysis were compared to the results of bulk composition obtained by X-ray fluorescence spectrometry (XRF) and by inductively coupled plasma mass spectrometry (ICPMS) after acid digestion. These results were coherent for most of the elements confirming the usefulness of the proposed analytical procedure, however the reliability of the quantitative information about the content of the most heterogeneously distributed elements was also discussed in more detail. - Highlights: • The previously proposed procedure was evaluated by analysis of model copper alloys. • The LA-ICPMS results were comparable to the obtained by means of XRF and ICPMS. • LA-ICPMS results indicated the usefulness of the proposed analytical procedure

  5. Laser ablation inductively coupled plasma mass spectrometry imaging of metals in experimental and clinical Wilson's disease.

    Science.gov (United States)

    Boaru, Sorina Georgiana; Merle, Uta; Uerlings, Ricarda; Zimmermann, Astrid; Flechtenmacher, Christa; Willheim, Claudia; Eder, Elisabeth; Ferenci, Peter; Stremmel, Wolfgang; Weiskirchen, Ralf

    2015-04-01

    Wilson's disease is an autosomal recessive disorder in which the liver does not properly release copper into bile, resulting in prominent copper accumulation in various tissues. Affected patients suffer from hepatic disorders and severe neurological defects. Experimental studies in mutant mice in which the copper-transporting ATPase gene (Atp7b) is disrupted revealed a drastic, time-dependent accumulation of hepatic copper that is accompanied by formation of regenerative nodes resembling cirrhosis. Therefore, these mice represent an excellent exploratory model for Wilson's disease. However, the precise time course in hepatic copper accumulation and its impact on other trace metals within the liver is yet poorly understood. We have recently established novel laser ablation inductively coupled plasma mass spectrometry protocols allowing quantitative metal imaging in human and murine liver tissue with high sensitivity, spatial resolution, specificity and quantification ability. By use of these techniques, we here aimed to comparatively analyse hepatic metal content in wild-type and Atp7b deficient mice during ageing. We demonstrate that the age-dependent accumulation of hepatic copper is strictly associated with a simultaneous increase in iron and zinc, while the intrahepatic concentration and distribution of other metals or metalloids is not affected. The same findings were obtained in well-defined human liver samples that were obtained from patients suffering from Wilson's disease. We conclude that in Wilson's disease the imbalances of hepatic copper during ageing are closely correlated with alterations in intrahepatic iron and zinc content.

  6. Comparison of femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McIntosh, Kathryn Gallagher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Judge, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dirmyer, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Campbell, Keri [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Jhanis J. [Applied Spectra Inc., Fremont, CA (United States)

    2016-10-20

    Feasibility tests were conducted using femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for rapid uranium isotopic measurements. The samples used in this study consisted of a range of pg quantities of known 235/238 U solutions as dried spot residues of 300 pL drops on silicon substrates. The samples spanned the following enrichments of 235U: 0.5, 1.5, 2, 3, and 15.1%. In this direct comparison using these particular samples both pulse durations demonstrated near equivalent data can be produced on either system with respect to accuracy and precision. There is no question that either LA-ICP-MS method offers the potential for rapid, accurate and precise isotopic measurements of U10Mo materials whether DU, LEU or HEU. The LA-ICP-MS equipment used for this work is commercially available. The program is in the process of validating this work for large samples using center samples strips from Y-12 MP-1 LEU-Mo Casting #1.

  7. Study of plasma parameters influencing fractionation in laser ablation-inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Methods permitting to test the influence of the matrix as well as of its local and temporal distribution on the plasma conditions in laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) are developed. For this purpose, the MS interface is used as plasma probe allowing to investigate the average plasma condition within the ICP zone observed in terms of temporal and spatial distribution of the matrix. Inserted matrix particles, particularly when being atomized and ionized, can cause considerable changes in both electron density and plasma temperature thus influencing the ionization equilibrium of the individual analytes. In this context, the plasma probe covers a region of the plasma for which no local thermodynamic equilibrium can be assumed. The differences in temperature, identified within the region of the plasma observed, amounted up to 3000 K. While in the central region conditions were detected that would not allow efficient atomization and ionization of the matrix, these conditions improve considerably towards the margin of the area observed. Depending on the nature as well as on the temporally and locally variable density of the matrix, this can lead to varying intensity ratios of the analytes and explain fractionation effects. By means of a derived equation it is shown that the deviation of the intensity ratio from the concentration ratio turns out to be more serious the higher the difference of the ionization potential of the analytes observed, the lower the plasma temperature and the higher the matrix concentration within the area observed.

  8. Improved Cd determination in glasses by laser ablation inductively coupled plasma mass spectrometry using nitrogen as a matrix modifier

    Institute of Scientific and Technical Information of China (English)

    Qian Ni; Zhao Chu Hu; Zheng Yu Bao; Ya Feng Zhang

    2009-01-01

    The addition of 5-10 mL min-1 nitrogen to the central channel of plasma in Laser ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) increases the sensitivities of Cd by a factor of 3 and decreases oxide interferences by one order of magnitude, which allows the direct analysis of trace levels of Cd in glass samples. This simple method shows a great potential for the direct determination of Cd in various kinds of samples.

  9. Biomonitoring of hair samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

    Science.gov (United States)

    Sela, H.; Karpas, Z.; Zoriy, M.; Pickhardt, C.; Becker, J. S.

    2007-03-01

    An analytical method for determining essential elements (Zn, Fe and Cu) and toxic elements (Cr, Pb and U) on single hair strands by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-SFMS) using a double focusing sector field mass spectrometer was developed. Results obtained directly using LA-ICP-SFMS of hair were compared with those measured by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) of solutions of digested hair samples and the analytical methods were found to agree well. Different quantification strategies for trace element determination in hair samples such as external calibration, standard addition and isotope dilution were compared and demonstrated for uranium. For uranium determination in powdered hair by LA-ICP-MS solution-based calibration was applied by coupling the laser ablation chamber to an ultrasonic nebulizer. The significance of single hair analysis by LA-ICP-SFMS was demonstrated by a case study of a person who changed living environment. Differences in the uranium content observed along the single hair strand correlated with the changes in the level of uranium in drinking water. The uranium concentration in a single hair decreased from 212 to 18 ng g-1 with a change in the uranium concentration in drinking water from 2000 to 30 ng l-1. In addition, measurements of uranium isotope ratios showed a natural isotopic composition throughout the whole period in the drinking water, as well as in the hair samples. This paper demonstrates the potential use of laser ablation ICP-MS to provide measurements on a single hair strand and its potential to become a very powerful tool in hair analysis for biological monitoring.

  10. Determination of Trace Elements in Ice Core Samples by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    OpenAIRE

    Reinhardt, Heiko; Kriews, Michael; Schrems, Otto; Lüdke, C.; Hoffmann, E; Skole, J.

    2001-01-01

    The snow and iceshields of the polar regions serve as a climate archiveand deliver a useful insight back to about 250.000 years of earth climatehistory1,2. The aim of our investigation reported here was to establisha new method for the determination of trace elements in ice cores frompolar regions with Laserablation Inductively Coupled Plasma MassSpectrometry (LA-ICP-MS)3. Primarily, the construction of a cryogeniclaserablation chamber and the optimization of the analysis system forthe sample...

  11. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, Rick; Jilbert, Tom; Mason, Paul R D; de Lange, Gert J.; Reichart, Gert Jan

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (μm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental co

  12. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, R.; Jilbert, T.; de Lange, G.J.; Reichart, G.J.

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (µm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental co

  13. Trace Elements Analysis of Geological Samples by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper describes recent work applying a taser ablation system (LSX-200) hyphenated with POEMS Ⅲ inductively coupled plasma mass spectrometry (LA-ICP-MS) for the in situ analysis of 22 trace elements of solid geological materials. It demonstrates the potential of LA-ICP-MS for the determination of geochemically important trace and ultra-trace elements following XRF routine sample preparation. Signal drift, difference in transport efficiency and sampling yield are well corrected with NIST SRM 612 as external calibration standard and Ca as internal standard. The obtained results agree to the recommended values with relative error better than 15 % and RSD less than 15 % for most determined trace elemems. LOD ranges from 0.021 × 10-6 to 0. 23 × 10-6 and less than 0.10 × 10-6 for majority trace elements determined. In addition, home-made macro functions including filter and calculator compiled by VBA language under Excel software greatly enhanced off-line data reduction efficiency.``

  14. Trace, ultratrace and isotope analysis of long-lived radionuclides by laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has become established as a very efficient and sensitive technique for the analysis of solids. For the determination of long-lived radionuclides in solid nuclear waste or contaminated environmental samples LA-ICP-MS is the method of choice. The capability of LA-ICP-MS for measurements on long-lived radionuclides in non-conducting concrete matrix, which is a very common matrix in waste packages will be investigated. Of special interest are the limits of detection of long-lived radionuclides, which are compared for two different types of mass spectrometer coupled to a commercial laser ablation system. The limits of detection of long-lived radionuclides investigated in concrete matrix are determined in the low pg g-1 range in quadrupole LA-ICP-MS and in double-focusing sector field LA-ICP-MS. The main problem in the quantification of analytical results is that no suitable standard reference materials are available. Therefore synthetic laboratory standards (concrete matrix doped with long-lived radionuclides, such as 99Tc, 232Th, 233U, 235U, 237Np, 238U) were investigated by LA-ICP-MS. Different calibration procedures - the correction of analytical results with experimentally determined relative sensitivity coefficients (RSCs), the use of calibration curves and solution calibration by coupling LA-ICP-MS with an ultrasonic nebulizer - were applied for the determination of long-lived radionuclides, especially for Th and U in different solid samples. (orig.)

  15. Determination of minor elements in steelmaking flue dusts using laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Coedo, A G; Padilla, I; Dorado, M T

    2005-07-15

    Element determination in solid waste products from the steel industry usually involves the time-consuming step of preparing a solution of the solid. Laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the analysis of Cr, Ni, Cu, As, Cd and Sn, elements of importance from the point of view of their impact on the environment, in electric arc furnace flue dust (EAFD). A simple method of sample preparation as pressed pellets using a mixture of cellulose and paraffin as binder material was applied. Calibration standards were prepared spiking multielement solution standards to a 1:1 ZnO+Fe(2)O(3) synthetic matrix. The wet powder was dried and mechanically homogenised. Quantitative analysis were based on external calibration using a set of matrix matched calibration standards with Rh as a internal standard. Results obtained using only one-point for calibration without matrix matched, needing less time for standardization and data processing, are also presented. Data are calculated for flue dust reference materials: CRM 876-1 (EAFD), AG-6203 (EAFD), AG-6201 (cupola dust) and AG-SX3705 (coke ashes), and for two representative electrical arc furnace flue dusts samples from Spanish steelmaking companies: MS-1 and MS-2. For the reference materials, an acceptable agreement with certificate values was achieved, and the results for the MS samples matched with those obtained from conventional nebulization solutions (CN). The analytical precision was found to be better than 7% R.S.D. both within a single pellet and between several pellets of the same sample for all the elements.

  16. Determination of minor elements in steelmaking flue dusts using laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Coedo, A G; Padilla, I; Dorado, M T

    2005-07-15

    Element determination in solid waste products from the steel industry usually involves the time-consuming step of preparing a solution of the solid. Laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the analysis of Cr, Ni, Cu, As, Cd and Sn, elements of importance from the point of view of their impact on the environment, in electric arc furnace flue dust (EAFD). A simple method of sample preparation as pressed pellets using a mixture of cellulose and paraffin as binder material was applied. Calibration standards were prepared spiking multielement solution standards to a 1:1 ZnO+Fe(2)O(3) synthetic matrix. The wet powder was dried and mechanically homogenised. Quantitative analysis were based on external calibration using a set of matrix matched calibration standards with Rh as a internal standard. Results obtained using only one-point for calibration without matrix matched, needing less time for standardization and data processing, are also presented. Data are calculated for flue dust reference materials: CRM 876-1 (EAFD), AG-6203 (EAFD), AG-6201 (cupola dust) and AG-SX3705 (coke ashes), and for two representative electrical arc furnace flue dusts samples from Spanish steelmaking companies: MS-1 and MS-2. For the reference materials, an acceptable agreement with certificate values was achieved, and the results for the MS samples matched with those obtained from conventional nebulization solutions (CN). The analytical precision was found to be better than 7% R.S.D. both within a single pellet and between several pellets of the same sample for all the elements. PMID:18970147

  17. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    Science.gov (United States)

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  18. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics.

    Science.gov (United States)

    Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne

    2010-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.

  19. Provenance determination of oriental porcelain using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).

    Science.gov (United States)

    Bartle, Emma K; Watling, R John

    2007-03-01

    The sale of fraudulent oriental ceramics constitutes a large proportion of the illegal artifact and antique trade and threatens to undermine the legitimate international market. The sophistication and skill of forgers has reached a level where, using traditional appraisal by eye and hand, even the most experienced specialist is often unable to distinguish between a genuine and fraudulent piece. In addition, current provenancing techniques such as energy-dispersive X-ray fluorescence (EDXRF) spectrometry and thermoluminescence (TL) dating can result in significant damage to the artifact itself. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), a relatively nondestructive analytical technique, has been used for the provenance determination of materials based on geographical origin. The technique requires the production of a laser crater, c. 100 microm in diameter, which is essentially invisible to the naked eye. Debris from this crater is analyzed using ICP-MS, with the results forming the basis of the provenance establishment protocol. Chinese, Japanese, and English porcelain shards have been analyzed using this protocol and generic isotopic distribution patterns have been produced that enable the provenance establishment of porcelain artifacts to their country of production. Minor variations between elemental fingerprints of artifacts produced in the same country also indicate that it may be possible to further provenance oriental ceramics to a specific production region or kiln site.

  20. Provenance determination of oriental porcelain using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).

    Science.gov (United States)

    Bartle, Emma K; Watling, R John

    2007-03-01

    The sale of fraudulent oriental ceramics constitutes a large proportion of the illegal artifact and antique trade and threatens to undermine the legitimate international market. The sophistication and skill of forgers has reached a level where, using traditional appraisal by eye and hand, even the most experienced specialist is often unable to distinguish between a genuine and fraudulent piece. In addition, current provenancing techniques such as energy-dispersive X-ray fluorescence (EDXRF) spectrometry and thermoluminescence (TL) dating can result in significant damage to the artifact itself. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), a relatively nondestructive analytical technique, has been used for the provenance determination of materials based on geographical origin. The technique requires the production of a laser crater, c. 100 microm in diameter, which is essentially invisible to the naked eye. Debris from this crater is analyzed using ICP-MS, with the results forming the basis of the provenance establishment protocol. Chinese, Japanese, and English porcelain shards have been analyzed using this protocol and generic isotopic distribution patterns have been produced that enable the provenance establishment of porcelain artifacts to their country of production. Minor variations between elemental fingerprints of artifacts produced in the same country also indicate that it may be possible to further provenance oriental ceramics to a specific production region or kiln site. PMID:17316230

  1. Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry: An examination of the influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kazuya [Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan)]. E-mail: tanaka@geol.sci.hiroshima-u.ac.jp; Takahashi, Yoshio [Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Shimizu, Hiroshi [Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan)

    2007-02-05

    In this study, we examined the influence of the matrix on rare earth element (REE) analyses of carbonate with laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) using carbonate and NIST glass standards. A UV 213 nm Nd:YAG laser system was coupled to an ICP-MS. Laser-ablation was carried out in both He and Ar atmospheres to investigate the influence of ablation gas on the analytical results. A small amount of N{sub 2} gas was added to the carrier gas to enhance the signal intensities. Synthetic CaCO{sub 3} standards, doped with REEs, as well as NIST glasses (NIST SRM 610 and 612) were used as calibration standards. Carbonatite, which is composed of pure calcite, was analyzed as carbonate samples. The degree of the influence of the matrix on the results was evaluated by comparing the results, which were calibrated by the synthetic CaCO{sub 3} and NIST glass standards. With laser-ablation in a He atmosphere, the differences between the results calibrated by the synthetic CaCO{sub 3} and NIST glass standards were less than 10% across the REE series, except for those of La which were 25%. In contrast, for the measurements made in an Ar atmosphere, the results calibrated by the synthetic CaCO{sub 3} and NIST glass standards differed by 25-40%. It was demonstrated that the LA-ICP-MS system can provide quantitative analysis of REE concentrations in carbonate samples using non matrix-matched standards of NIST glasses.

  2. Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry: an examination of the influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis.

    Science.gov (United States)

    Tanaka, Kazuya; Takahashi, Yoshio; Shimizu, Hiroshi

    2007-02-01

    In this study, we examined the influence of the matrix on rare earth element (REE) analyses of carbonate with laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) using carbonate and NIST glass standards. A UV 213 nm Nd:YAG laser system was coupled to an ICP-MS. Laser-ablation was carried out in both He and Ar atmospheres to investigate the influence of ablation gas on the analytical results. A small amount of N2 gas was added to the carrier gas to enhance the signal intensities. Synthetic CaCO3 standards, doped with REEs, as well as NIST glasses (NIST SRM 610 and 612) were used as calibration standards. Carbonatite, which is composed of pure calcite, was analyzed as carbonate samples. The degree of the influence of the matrix on the results was evaluated by comparing the results, which were calibrated by the synthetic CaCO3 and NIST glass standards. With laser-ablation in a He atmosphere, the differences between the results calibrated by the synthetic CaCO3 and NIST glass standards were less than 10% across the REE series, except for those of La which were 25%. In contrast, for the measurements made in an Ar atmosphere, the results calibrated by the synthetic CaCO3 and NIST glass standards differed by 25-40%. It was demonstrated that the LA-ICP-MS system can provide quantitative analysis of REE concentrations in carbonate samples using non matrix-matched standards of NIST glasses. PMID:17386560

  3. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    OpenAIRE

    Hennekam, R; Jilbert, T.; De Lange, G. J.; G. J. Reichart

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (µm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental compositions. Here, we address this through the analysis of resin-embedded quartz, calcite, and clay (montmorillonite) sediments spiked with Al, V, Mo, and Ba across a range of concentrations. LA-ICP...

  4. Evaluation of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for the Quantitative Determination of Lead in Different Parts of Archeological Human Teeth

    OpenAIRE

    Bellis, David J.; Parsons, Patrick J.; Jones, Joseph; Amarasiriwardena, Dula

    2009-01-01

    The lead content of teeth or tooth-parts has been used as a biomarker of cumulative lead exposure in clinical, epidemiological, environmental, and archaeological studies. Through the application of laser ablation inductively coupled plasma mass spectrometry, a pilot study of the micrometer-scale distribution and quantification of lead was conducted for two human teeth obtained from an archeological burial site in Manhattan, New York, USA. Lead was highly localized within each tooth, with accu...

  5. Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lingott, Jana; Lindner, Uwe; Telgmann, Lena; Esteban-Fernández, Diego; Jakubowski, Norbert; Panne, Ulrich

    2016-02-01

    Gadolinium (Gd) based contrast agents (CA) are used to enhance magnetic resonance imaging. As a consequence of excretion by patients and insufficient elimination in wastewater treatment plants they are detected in high concentrations in surface water. At present, little is known about the uptake of these species by living organisms in aquatic systems. Therefore the uptake of gadolinium containing chelates by plants and animals grown in exposed water or on soil irrigated with exposed water was investigated. For this purpose two types of plants were treated with two different contrast agents. The uptake of the Gd contrast agents was studied by monitoring the elemental distribution with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This technique allows the multi-elemental analysis of solid samples with high resolution and little sample preparation. The analysis of L. minor showed that the uptake of Gd correlated with the concentration of gadodiamide in the water. The higher the concentration in the exposed water, the larger the Gd signal in the LA-ICP-MS acquired image. Exposure time experiments showed saturation within one day. The L. minor had contact with the CAs through roots and fronds, whereas the L. sativum only showed uptake through the roots. These results show that an external absorption of the CA through the leaves of L. sativum was impossible. All the analyzed parts of the plant showed Gd signal from the CA; the highest being at the main vein of the leaf. It is shown that the CAs can be taken up from plants. Furthermore, the uptake and distribution of Gd in Daphnia magna were shown. The exposure via cultivation medium is followed by Gd signals on the skin and in the area of the intestine, while the uptake via exposed nutrition algae causes the significantly highest Gd intensities in the area of the intestine. Because there are hints of negative effects for human organism these findings are important as they show that Gd based

  6. Imaging of Copper, Zinc and other Elements in Thin Section of Human Brain Samples (Hippocampus) by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    OpenAIRE

    Becker, J. S.; Zoriy, M. V.; Pickhardt, C.; Palomero-Gallagher, N.; Zilles, K.

    2005-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used to produce images of element distribution in 20-microm thin sections of human brain tissue. The sample surface was scanned (raster area approximately 80 mm(2)) with a focused laser beam (wavelength 213 nm, diameter of laser crater 50 microm, and laser power density 3 x 10(9) W cm(-2)) in a cooled laser ablation chamber developed for these measurements. The laser ablation system was coupled to a double-focusing sec...

  7. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Perdian, David C. [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  8. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic)], E-mail: kaiser@fme.vutbr.cz; Galiova, M.; Novotny, K.; Cervenka, R. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Reale, L. [Faculty of Sciences, University of L' Aquila, Via Vetoio (Coppito 1), 67010 L' Aquila (Italy); Novotny, J.; Liska, M.; Samek, O. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Kanicky, V.; Hrdlicka, A. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Stejskal, K.; Adam, V.; Kizek, R. [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, 613 00 Brno (Czech Republic)

    2009-01-15

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 {mu}m in a up to cm x cm area of sunflower (Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  9. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  10. Lanthanide Elements as Labels in Multiplexed Analysis of Proteins and MicroRNAs by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    DEFF Research Database (Denmark)

    de Bang, Thomas Christian

    of a wide variety of different analytical techniques, each with a number of advantages and disadvantages. In this PhD study, two bioanalytical assays were developed for the specific detection of nine thylakoid proteins and three microRNAs. Despite the different types of analytes, the basic principles...... antibodies and DNA probes, enabled quantitative and multiplexed analysis of the analytes using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The results obtained by the new methods were compared to different state-of-the-art techniques and the analytical figures of merits were...

  11. Application of femtosecond laser ablation inductively coupled plasma mass spectrometry for quantitative analysis of thin Cu(In,Ga)Se2 solar cell films

    International Nuclear Information System (INIS)

    This work reports that the composition of Cu(In,Ga)Se2 (CIGS) thin solar cell films can be quantitatively predicted with high accuracy and precision by femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS). It is demonstrated that the results are strongly influenced by sampling conditions during fs-laser beam (λ = 1030 nm, τ = 450 fs) scanning on the CIGS surface. The fs-LA-ICP-MS signals measured at optimal sampling conditions generally provide a straight line calibration with respect to the reference concentrations measured by inductively coupled plasma optical emission spectroscopy (ICP-OES). The concentration ratios predicted by fs-LA-ICP-MS showed high accuracy, to 95–97% of the values measured with ICP-OES, for Cu, In, Ga, and Se elements. - Highlights: • Laser ablation inductively coupled plasma mass spectrometry of thin film is reported. • Concentration ratio prediction with a confidence level of 95–97% is achieved. • Quantitative determination of composition is demonstrated

  12. Application of femtosecond laser ablation inductively coupled plasma mass spectrometry for quantitative analysis of thin Cu(In,Ga)Se{sub 2} solar cell films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seokhee [School of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Gonzalez, Jhanis J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Applied Spectra Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Yoo, Jong H. [Applied Spectra Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Chirinos, Jose R. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041A (Venezuela, Bolivarian Republic of); Russo, Richard E. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Applied Spectra Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Jeong, Sungho, E-mail: shjeong@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2015-02-27

    This work reports that the composition of Cu(In,Ga)Se{sub 2} (CIGS) thin solar cell films can be quantitatively predicted with high accuracy and precision by femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS). It is demonstrated that the results are strongly influenced by sampling conditions during fs-laser beam (λ = 1030 nm, τ = 450 fs) scanning on the CIGS surface. The fs-LA-ICP-MS signals measured at optimal sampling conditions generally provide a straight line calibration with respect to the reference concentrations measured by inductively coupled plasma optical emission spectroscopy (ICP-OES). The concentration ratios predicted by fs-LA-ICP-MS showed high accuracy, to 95–97% of the values measured with ICP-OES, for Cu, In, Ga, and Se elements. - Highlights: • Laser ablation inductively coupled plasma mass spectrometry of thin film is reported. • Concentration ratio prediction with a confidence level of 95–97% is achieved. • Quantitative determination of composition is demonstrated.

  13. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Jhanis [Applied Spectra Inc., Fremont, CA (United States)

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elemental composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.

  14. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Galiová, M.; Kaiser, J.; Novotný, K.; Novotný, J.; Vaculovič, T.; Liška, M.; Malina, R.; Stejskal, K.; Adam, V.; Kizek, R.

    2008-12-01

    Single-pulse Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass-Spectrometry (LA-ICP-MS) were applied for mapping the silver and copper distribution in Helianthus Annuus L. samples treated with contaminant in controlled conditions. For Ag and Cu detection the 328.07 nm Ag(I) and 324.75 nm Cu(I) lines were used, respectively. The LIBS experimental conditions (mainly the laser energy and the observation window) were optimized in order to avoid self-absorption effect in the measured spectra. In the LA-ICP-MS analysis the Ag 107 and Cu 63 isotopes were detected. The capability of these two analytical techniques for high-resolution mapping of selected trace chemical elements was demonstrated.

  15. Determination of uranium and thorium in aluminium with flow injection and laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    In order to determine uranium and thorium at the sub-ng g-1 level in aluminium, the limit of detection (LOD) for continuous-flow nebulization inductively coupled plasma mass spectrometry (ICP-MS) is not sufficient, when a sample solution with the usual maximum concentration of 1 mg ml-1 is used. Therefore, two alternative sample introduction techniques have been used, flow injection (FI) and laser ablation (LA). With FI-ICP-MS the achievement of sub-ng g-1 detection limits is hampered by the presence of 'spikes'. Although these spikes are also present with LA, it is possible to obtain a 0.2 ng g-1 LOD for uranium and thorium. This LOD is achieved artificially, by rejecting all measurements containing spikes. (author)

  16. Elemental Quantitative Distribution and Statistical Analysis on Cross Section of Stainless Steel Sheet by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Qian-hua LUO; Hai-zhou WANG

    2015-01-01

    An innovative application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) technique in illustrating elemental distributions on stainless steel sheets was presented. The technique proved to be a systematic and accurate ap-proach in producing visual images or maps of elemental distributions at cross-sectional surface of a stainless steel sheet. Two stain-less steel sheets served as research objects: 3 mm×1 300 mm hot-rolled stainless steel plate and 1 mm×1 260 mm cold-rolled plate. The cross-sectional surfaces of the two samples at 1/4 position along the width direction were scanned (raster area-44 mm2 and 11 mm2) with a focused laser beam (wavelength 213 nm, diameter of laser crater 100 μm, and laser power 1.6 mJ) in a laser abla-tion chamber. The laser ablation system was coupled to a quadrupole ICP-MS, which made the detection of ion intensities of27Al+, 44Ca+,47Ti+,55Mn+ and56Fe+ within an area of interest possible. One-dimensional (1D) content line distribution maps and two-dimensional (2D) contour maps for speciifc positions or areas were plotted to indicate the element distribution of a target area with high accuracy. Statistic method was used to analyze the acquired data by calculating median contents, maximum segregation, sta-tistic segregation and content-frequency distribution.

  17. Study on quantitative analysis of Ti, Al and V in clinical soft tissues after placing the dental implants by laser ablation inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Sajnóg, Adam; Hanć, Anetta; Makuch, Krzysztof; Koczorowski, Ryszard; Barałkiewicz, Danuta

    2016-11-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for in-situ quantitative analysis of oral mucosa of patients before and after implantation with titanium implants and a closing screw based on Ti6Al4V alloy. Two calibration strategies were applied, both were based on matrix matched solid standards with analytes addition. A novel approach was the application of powdered egg white proteins as a matrix material which have a similar composition to the examined tissue. In the another approach, certified reference material Bovine Muscle ERM-BB184 was used. The isotope 34S was found to be the most appropriate as an internal standard since it is homogenously distributed in the examined tissues and resulted in lower relative standard deviation values of signal of analytes of interest. Other isotopes (13C, 26Mg, 43Ca) were also evaluated as potential internal standards. The analytical performance parameters and microwave digestion of solid standards followed by solution nebulization ICP-MS analysis proved that both calibration methods are fit for their intended purpose. The LA-ICP-MS analysis on the surface of tissues after the implantation process revealed an elevated content of elements in comparison to the control group. Analytes are distributed inhomogeneously and display local maximal content of Ti up to ca. 900 μg g- 1, Al up to ca. 760 μg g- 1 and for V up to 160 μg g- 1.

  18. Element bioimaging of liver needle biopsy specimens from patients with Wilson's disease by laser ablation-inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Hachmöller, Oliver; Aichler, Michaela; Schwamborn, Kristina; Lutz, Lisa; Werner, Martin; Sperling, Michael; Walch, Axel; Karst, Uwe

    2016-05-01

    A laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method is developed and applied for the analysis of paraffin-embedded liver needle biopsy specimens of patients with Wilson's disease (WD), a rare autosomal recessive disorder of the copper metabolism causing various hepatic, neurological and psychiatric symptoms due to a copper accumulation in the liver and the central nervous system. The sample set includes two WD liver samples and one negative control sample. The imaging analysis was performed with a spatial resolution of 10 μm. Besides copper, iron was monitored because an elevated iron concentration in the liver is known for WD. In addition to this, both elements were quantified using an external calibration based on matrix-matched gelatine standards. The presented method offers low limits of detection of 1 and 5 μg/g for copper and iron, respectively. The high detection power and good spatial resolution allow the analysis of small needle biopsy specimen using this method. The two analyzed WD samples can be well differentiated from the control sample due to their inhomogeneous copper distribution and high copper concentrations of up to 1200 μg/g. Interestingly, the WD samples show an inverse correlation of regions with elevated copper concentrations and regions with high iron concentrations.

  19. Quantitative imaging analysis and investigation of transmission loss in PbF2 crystals by laser ablation-inductively coupled plasma-mass spectrometry method.

    Science.gov (United States)

    Zhang, Guoxia; Wang, Zheng; Li, Qing; Zhou, Hui; Zhu, Yan; Du, Yiping

    2016-07-01

    We developed a procedure for preparing matrix-matched calibration standards for the quantitative imaging of multiple trace elements in PbF2 crystals by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). In this facile approach, PbO powder was employed as the matrix with the addition of a series of standard solutions, followed by drying and tableting, for determining the concentrations of (24)Mg, (27)Al, (89)Y, (103)Rh, (133)Cs, (175)Lu and (209)Bi in transparent samples (with homogeneous element distribution). (206)Pb was chosen as the internal standard and the correlation coefficients of the calibration curves for all elements ranged from 0.9987 to 0.9999 after internal standard correction. The analysis showed good agreement with the results observed by established ICP-MS methods, following acid dissolution of the samples. Finally, the element distributions and transmission curves of a PbF2 sample with non-transparent and transparent sections were visualized. The distribution images, in conjunction with the transmission curves, suggested that the enrichment of Mg, Al, Rh, Cs, and Bi atoms in the non-transparent section of the sample could explain the loss in transmission observed for that section. PMID:27154704

  20. Laser ablation-inductively coupled plasma-mass spectrometry imaging of white and gray matter iron distribution in Alzheimer's disease frontal cortex.

    Science.gov (United States)

    Hare, Dominic J; Raven, Erika P; Roberts, Blaine R; Bogeski, Mirjana; Portbury, Stuart D; McLean, Catriona A; Masters, Colin L; Connor, James R; Bush, Ashley I; Crouch, Peter J; Doble, Philip A

    2016-08-15

    Iron deposition in the brain is a feature of normal aging, though in several neurodegenerative disorders, including Alzheimer's disease, the rate of iron accumulation is more advanced than in age-matched controls. Using laser ablation-inductively coupled plasma-mass spectrometry imaging we present here a pilot study that quantitatively assessed the iron content of white and gray matter in paraffin-embedded sections from the frontal cortex of Alzheimer's and control subjects. Using the phosphorus image as a confirmed proxy for the white/gray matter boundary, we found that increased intrusion of iron into gray matter occurs in the Alzheimer's brain compared to controls, which may be indicative of either a loss of iron homeostasis in this vulnerable brain region, or provide evidence of increased inflammatory processes as a response to chronic neurodegeneration. We also observed a trend of increasing iron within the white matter of the frontal cortex, potentially indicative of disrupted iron metabolism preceding loss of myelin integrity. Considering the known potential toxicity of excessive iron in the brain, our results provide supporting evidence for the continuous development of novel magnetic resonance imaging approaches for assessing white and gray matter iron accumulation in Alzheimer's disease. PMID:27233149

  1. Evaluation of the Forensic Utility of Scanning Electron Microscopy-Energy Dispersive Spectroscopy and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for Printing Ink Examinations.

    Science.gov (United States)

    Corzo, Ruthmara; Subedi, Kiran; Trejos, Tatiana; Almirall, José R

    2016-05-01

    Improvements in printing technology have exacerbated the problem of document counterfeiting, prompting the need for analytical techniques that better characterize inks for forensic analysis and comparisons. In this study, 319 printing inks (toner, inkjet, offset, and Intaglio) were analyzed directly on the paper substrate using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). As anticipated, the high sensitivity of LA-ICP-MS pairwise comparisons resulted in excellent discrimination (average of ~ 99.6%) between different ink samples from each of the four ink types and almost 100% correct associations between ink samples known to originate from the same source. SEM-EDS analysis also resulted in very good discrimination for different toner and intaglio inks (>97%) and 100% correct association for samples from the same source. SEM-EDS provided complementary information to LA-ICP-MS for certain ink types but showed limited utility for the discrimination of inkjet and offset inks. PMID:27122412

  2. Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis

    Science.gov (United States)

    Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.

    2016-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.

  3. Application of nanosecond-UV laser ablation-inductively coupled plasma mass spectrometry for the isotopic analysis of single submicrometer-size uranium particles.

    Science.gov (United States)

    Pointurier, Fabien; Pottin, Anne-Claire; Hubert, Amélie

    2011-10-15

    For the first time, laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) was used to carry out isotopic measurement on single submicrometer-size uranium particles. The analytical procedure was applied on two particle-containing samples already analyzed in the same laboratory by established techniques for particle analysis: combination of the fission track technique with thermo-ionization mass spectrometry (FT-TIMS) and secondary ion mass spectrometry (SIMS). Particles were extracted from their initial matrix with ethanol and deposited on a polycarbonate disk where they were fixed in a layer of an organic compound (collodion). Prior to the isotopic analysis, particles were precisely located on the disk's surface by scanning electron microscopy (SEM) for one sample and using the fission track technique for the other sample. Most of the particles were smaller than 1 μm, and their (235)U content was in the femtogram range. (235)U/(238)U ratios were successfully analyzed for all located particles using a nanosecond-UV laser (Cetac LSX 213 nm) coupled to a quadrupole-based ICPMS (Thermo "X-Series II"). LA-ICPMS results, although less precise and accurate (typically 10%) than the ones obtained by FT-TIMS and SIMS due to short (20-40 s), transient, and noisy signals, are in good agreement with the certified values or with the results obtained with other techniques. Thanks to good measurement efficiency (~6 × 10(-4)) and high signal/noise ratio during the analysis, LA-ICPMS can be considered a very promising technique for fast particle analysis, provided that uranium-bearing particles are fixed on the sample holder and located prior to isotope measurement. PMID:21875035

  4. Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablation-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Yokoyama, Takaomi D; Suzuki, Toshihiro; Kon, Yoshiaki; Hirata, Takafumi

    2011-12-01

    We have developed a new calibration technique for multielement determination and U-Pb dating of zircon samples using laser ablation-inductively coupled plasma mass spectrometry (ICPMS) coupled with galvanometric optics. With the galvanometric optics, laser ablation of two or more sample materials could be achieved in very short time intervals (~10 ms). The resulting sample aerosols released from different ablation pits or different solid samples were mixed and homogenized within the sample cell and then transported into the ICP ion source. Multiple spot laser ablation enables spiking of analytes or internal standard elements directly into the solid samples, and therefore the standard addition calibration method can be applied for the determination of trace elements in solid samples. In this study, we have measured the rare earth element (REE) abundances of two zircon samples (Nancy 91500 and Prešovice) based on the standard addition technique, using a direct spiking of analytes through a multispot laser ablation of the glass standard material (NIST SRM612). The resulting REE abundance data show good agreement with previously reported values within analytical uncertainties achieved in this study (10% for most elements). Our experiments demonstrated that nonspectroscopic interferences on 14 REEs could be significantly reduced by the standard addition technique employed here. Another advantage of galvanometric devices is the accumulation of sample aerosol released from multiple spots. In this study we have measured the U-Pb age of a zircon sample (LMR) using an accumulation of sample aerosols released from 10 separate ablation pits of low diameters (~8 μm). The resulting (238)U-(206)Pb age data for the LMR zircons was 369 ± 64 Ma, which is in good agreement with previously reported age data (367.6 ± 1.5 Ma). (1) The data obtained here clearly demonstrate that the multiple spot laser ablation-ICPMS technique can become a powerful approach for elemental and isotopic

  5. Application of nanosecond-UV laser ablation-inductively coupled plasma mass spectrometry for the isotopic analysis of single submicrometer-size uranium particles

    International Nuclear Information System (INIS)

    For the first time, laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used to carry out isotopic measurement on single submicrometer-size uranium particles. The analytical procedure was applied on two particle-containing samples already analyzed in the same laboratory by established techniques for particle analysis: combination of the fission track technique with thermo-ionization mass spectrometry (FT-TIMS) and secondary ion mass spectrometry (SIMS). Particles were extracted from their initial matrix with ethanol and deposited on a polycarbonate disk where they were fixed in a layer of an organic compound (collodion). Prior to the isotopic analysis, particles were precisely located on the disk's surface by scanning electron microscopy (SEM) for one sample and using the fission track technique for the other sample. Most of the particles were smaller than 1 μm, and their 235U content was in the femto-gram range. 235U/238U ratios were successfully analyzed for all located particles using a nanosecond-UV laser (Cetac LSX 213 nm) coupled to a quadrupole-based ICPMS (Thermo 'X-Series II'). LA-ICPMS results, although less precise, and accurate (typically 10%) than the ones obtained by FT-TIMS and SIMS due to short (20-40 s), transient, and noisy signals, are in good agreement with the certified values or with the results obtained with other techniques. Thanks to good measurement efficiency (similar to 6 * 10'-'4) and high signal/noise ratio during the analysis, LA-ICPMS can be considered a very promising technique for fast particle analysis, provided that uranium-bearing particles are fixed on the sample holder and located prior to isotope measurement. (authors)

  6. Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Becker, J S; Zoriy, M V; Pickhardt, C; Palomero-Gallagher, N; Zilles, K

    2005-05-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used to produce images of element distribution in 20-microm thin sections of human brain tissue. The sample surface was scanned (raster area approximately 80 mm(2)) with a focused laser beam (wavelength 213 nm, diameter of laser crater 50 microm, and laser power density 3 x 10(9) W cm(-2)) in a cooled laser ablation chamber developed for these measurements. The laser ablation system was coupled to a double-focusing sector field ICPMS. Ion intensities of 31P+, 32S+, 56Fe+, 63Cu+, 64Zn+, 232Th+, and 238U+ were measured within the area of interest of the human brain tissue (hippocampus) by LA-ICPMS. The quantitative determination of copper, zinc, uranium, and thorium distribution in thin slices of the human hippocampus was performed using matrix-matched laboratory standards. In addition, a new arrangement in solution-based calibration using a micronebulizer, which was inserted directly into the laser ablation chamber, was applied for validation of synthetic laboratory standard. The mass spectrometric analysis yielded an inhomogeneous distribution (layered structure) for P, S, Cu, and Zn in thin brain sections of the hippocampus. In contrast, Th and U are more homogeneously distributed at a low-concentration level with detection limits in the low-nanogram per gram range. The unique analytical capability and the limits of LA-ICPMS will be demonstrated for the imaging of element distribution in thin cross sections of brain tissue from the hippocampus. LA-ICPMS provides new information on the spatial element distribution of the layered structure in thin sections of brain tissues from the hippocampus. PMID:15889910

  7. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Syta, Olga; Rozum, Karol; Choińska, Marta [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Zielińska, Dobrochna [Institute of Archaeology, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw (Poland); Żukowska, Grażyna Zofia [Chemical Faculty, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Kijowska, Agnieszka [National Museum in Warsaw, Aleje Jerozolimskie 3, 00-495 Warsaw (Poland); Wagner, Barbara, E-mail: barbog@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2014-11-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th–14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers. - Highlights: • The analytical procedure for examination of unique wall paintings was proposed. • Identification of pigments and supporting layers of wall-paintings was obtained. • Heterogeneous samples were mapped with the use of LA-ICPMS. • Anatase in the sub-surface regions of samples was detected by Raman spectroscopy.

  8. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    International Nuclear Information System (INIS)

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th–14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers. - Highlights: • The analytical procedure for examination of unique wall paintings was proposed. • Identification of pigments and supporting layers of wall-paintings was obtained. • Heterogeneous samples were mapped with the use of LA-ICPMS. • Anatase in the sub-surface regions of samples was detected by Raman spectroscopy

  9. Metallurgical and chemical characterization of copper alloy reference materials within laser ablation inductively coupled plasma mass spectrometry: Method development for minimally-invasive analysis of ancient bronze objects

    Energy Technology Data Exchange (ETDEWEB)

    Walaszek, Damian, E-mail: damian.walaszek@empa.ch [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw (Poland); Senn, Marianne [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Faller, Markus [Laboratory for Jointing Technology and Corrosion, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Philippe, Laetitia [Laboratory for Mechanics of Materials and Nanostructures, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkstrasse 39, CH-3602 Thun (Switzerland); Wagner, Barbara; Bulska, Ewa [University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw (Poland); Ulrich, Andrea [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2013-01-01

    The chemical composition of ancient metal objects provides important information for manufacturing studies and authenticity verification of ancient copper or bronze artifacts. Non- or minimal-destructive analytical methods are preferred to mitigate visible damage. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) enables the determination of major elements as well as impurities down to lower ppm-levels, however, accuracy and precision of analysis strongly depend on the homogeneity of reference materials used for calibration. Moreover, appropriate analytical procedures are required e.g. in terms of ablation strategies (scan mode, spot size, etc.). This study reviews available copper alloy (certified) reference materials — (C)RMs from different sources and contributes new metallurgical data on homogeneity and spatial elemental distribution. Investigations of the standards were performed by optical and scanning electron microscopy with X-ray spectrometry (SEM-EDX) for the following copper alloy and bronze (certified) reference materials: NIST 454, BAM 374, BAM 211, BAM 227, BAM 374, BAM 378, BAS 50.01-2, BAS 50.03-4, and BAS 50.04-4. Additionally, the influence of inhomogeneities on different ablation and calibration strategies is evaluated to define an optimum analytical strategy in terms of line scan versus single spot ablation, variation of spot size, selection of the most appropriate RMs or minimum number of calibration reference materials. - Highlights: ► New metallographic data for copper alloy reference materials are provided. ► Influence of RMs homogeneity on quality of LA-ICPMS analysis was evaluated. ► Ablation and calibration strategies were critically discussed. ► An LA-ICPMS method is proposed for analyzing most typical ancient copper alloys.

  10. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    Science.gov (United States)

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method.

  11. Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Galiova, Michaela; Kaiser, Jozef; Fortes, Francisco J.; Novotny, Karel; Malina, Radomir; Prokes, Lubomir; Hrdlicka, Ales; Vaculovic, Tomas; Nyvltova Fisakova, Miriam; Svoboda, Jiri; Kanicky, Viktor; Laserna, Javier J.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for the fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.

  12. Quantitative determination of trace metals in high-purity silicon carbide powder by laser ablation inductively coupled plasma mass spectrometry without binders

    International Nuclear Information System (INIS)

    We have developed a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method to directly determine the concentrations of trace metals in high-purity powdery silicon carbide (SiC) samples. The sample preparation procedure is simple and rapid. The sample was formed into pellets using no binders and heated at 1000 °C for 2 h. The operation parameters for LA and ICP-MS were optimized to achieve a table signal intensity and high sensitivity. National Institute of Standards and Technology Standard Reference Materials glasses were chosen as calibration standards, with 29Si chosen as the internal standard. The relative sensitivity factor obtained from the glass matrix was used to calculate the concentrations of analytes in the SiC ceramic samples. The regression correlation coefficients of the calibration curves for elements with internal standard correction ranged from 0.9981 to 0.9999, which are better than those obtained with an external standard correction method only. The relative standard deviation of the measured trace element concentrations was less than 5%. The limits of detection were 0.02, 0.08, 0.04, 0.005, 0.01, 0.02, 0.004, 0.07, and 0.006 mg kg−1 for B, Ti, Cr, Mn, Fe, Ni, Co, Cu, and Sr, respectively. The method was applied to analyze SiC samples with two different particle sizes. The analysis showed good agreement with the results of inductively coupled plasma optical emission spectrometry. The reliability of the proposed method was confirmed by determining the contents of B, Ti, Cr, Mn, Fe, Ni, and Cu in BAM-S003. - Highlights: • Powdery SiC was converted into stable targets without any binders. • Stable signals for trace elements were obtained with RSDs less than 5%. • This method was successfully used to analyze silicon carbide samples with μm and nm particle sizes. • The limits of detection were much better than those obtained for INAA, SIS-ET-AAS, ICP-MS-decomposition, and other methods

  13. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet

    Energy Technology Data Exchange (ETDEWEB)

    Noël, Marie, E-mail: marie.noel@stantec.com [Stantec Consulting Ltd. 2042 Mills Road, Unit 11, Sidney BC V8L 4X2 (Canada); Christensen, Jennie R., E-mail: jennie.christensen@stantec.com [Stantec Consulting Ltd. 2042 Mills Road, Unit 11, Sidney BC V8L 4X2 (Canada); Spence, Jody, E-mail: jodys@uvic.ca [School of Earth and Ocean Sciences, Bob Wright Centre A405, University of Victoria, PO BOX 3065 STN CSC, Victoria, BC V8W 3V6 (Canada); Robbins, Charles T., E-mail: ctrobbins@wsu.edu [School of the Environment and School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 (United States)

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size = 30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r{sup 2} = 0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. - Highlights: • LA-ICP-MS provides temporal trace metal exposure information for wild grizzly bears. • Cu and Zn temporal exposures provide

  14. Current developments in laser ablation-inductively coupled plasma-mass spectrometry for use in geology, forensics, and nuclear nonproliferation research

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, Joshua D. [Iowa State Univ., Ames, IA (United States)

    2008-08-26

    This dissertation focused on new applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The diverse fields that were investigated show the versatility of the technique. In Chapter 2, LA-ICP-MS was used to investigate the rare earth element (REE) profiles of garnets from the Broken Hill Deposit in New South Wales, Australia. The normalized REE profiles helped to shed new light on the formation of deposits of sulfide ores. This information may be helpful in identifying the location of sulfide ore deposits in other locations. New sources of metals such as Pg, Zn, and Ag, produced from these ores, are needed to sustain our current technological society. The application of LA-ICP-MS presented in Chapter 3 is the forensics analysis of automotive putty and caulking. The elemental analysis of these materials was combined with the use of Principal Components Analysis (PCA). The PCA comparison was able to differentiate the automotive putty samples by manufacturer and lot number. The analysis of caulk was able to show a differentiation based on manufacturer, but no clear differentiation was shown by lot number. This differentiation may allow matching of evidence in the future. This will require many more analyses and the construction of a database made up of many different samples. The 4th chapter was a study of the capabilities of LA-ICP-MS for fast and precise analysis of particle ensembles for nuclear nonproliferation applications. Laser ablation has the ability to spatially resolve particle ensembles which may contain uranium or other actinides from other particles present in a sample. This is of importance in samples obtained from air on filter media. The particle ensembles of interest may be mixed in amongst dust and other particulates. A problem arises when ablating these particle ensembles directly from the filter media. Dust particles other than ones of interest may be accidentally entrained in the aerosol of the ablated particle

  15. Development of a multi-variate calibration approach for quantitative analysis of oxidation resistant Mo-Si-B coatings using laser ablation inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Cakara, Anja; Bonta, Maximilian; Riedl, Helmut; Mayrhofer, Paul H.; Limbeck, Andreas

    2016-06-01

    Nowadays, for the production of oxidation protection coatings in ultrahigh temperature environments, alloys of Mo-Si-B are employed. The properties of the material, mainly the oxidation resistance, are strongly influenced by the Si to B ratio; thus reliable analytical methods are needed to assure exact determination of the material composition for the respective applications. For analysis of such coatings, laser ablation inductively coupled mass spectrometry (LA-ICP-MS) has been reported as a versatile method with no specific requirements on the nature of the sample. However, matrix effects represent the main limitation of laser-based solid sampling techniques and usually the use of matrix-matched standards for quantitative analysis is required. In this work, LA-ICP-MS analysis of samples with known composition and varying Mo, Si and B content was carried out. Between known analyte concentrations and derived LA-ICP-MS signal intensities no linear correlation could be found. In order to allow quantitative analysis independent of matrix effects, a multiple linear regression model was developed. Besides the three target analytes also the signals of possible argides (40Ar36Ar and 98Mo40Ar) as well as detected impurities of the Mo-Si-B coatings (108Pd) were considered. Applicability of the model to unknown samples was confirmed using external validation. Relative deviations from the values determined using conventional liquid analysis after sample digestion between 5 and 10% for the main components Mo and Si were observed.

  16. Forensic investigation of brick stones using instrumental neutron activation analysis (INAA), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and X-ray fluorescence analysis (XRF)

    International Nuclear Information System (INIS)

    Brick stones collected from different production facilities were studied for their elemental compositions under forensic aspects using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF). The aim of these examinations was to assess the potential of these methods in forensic comparison analyses of brick stones. The accuracy of the analysis methods was evaluated using NIST standard reference materials (679, 98b and 97b). In order to compare the stones to each other, multivariate data analysis was used. The evaluation of the INAA results (based on the concentrations of V, Na, K, Sm, U, Sc, Fe, Co, Rb and Cs) using principal component analysis (PCA) and cluster analysis is presented as an example. The results derived from the different analytical methods are consistent. It was shown that elemental analysis using the described methods is a valuable tool for forensic examinations of brick stones.

  17. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Vašinová Galiová, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Čopjaková, Renata; Škoda, Radek [Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Štěpánková, Kateřina; Vaňková, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kuta, Jan [Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 126/3, 625 00 Brno (Czech Republic); Prokeš, Lubomír [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kynický, Jindřich [Department of Pedology and Geology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno (Czech Republic); and others

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS. - Highlights: • Elements in phosphate and oxalate urolith phases were quantified by LA-ICP-MS. • SRM NIST 1486 Bone Meal was proved suitable for quantification in uroliths. • Different ablation rates in particular phases were included at quantification. • Oxalate and apatite phases show opposite hardness order to natural minerals. • Uroliths were classified according to elemental association to phases.

  18. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    International Nuclear Information System (INIS)

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS. - Highlights: • Elements in phosphate and oxalate urolith phases were quantified by LA-ICP-MS. • SRM NIST 1486 Bone Meal was proved suitable for quantification in uroliths. • Different ablation rates in particular phases were included at quantification. • Oxalate and apatite phases show opposite hardness order to natural minerals. • Uroliths were classified according to elemental association to phases

  19. Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Travis [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

  20. Laser ablation inductively coupled plasma mass spectrometry: A new technique for the determination of trace and ultra-trace elements in silicates

    International Nuclear Information System (INIS)

    This paper describes recent work applying a laser ablation system coupled to an inductively coupled plasma mass spectrometer (LA-ICP-MS) for the direct analysis of solid geological materials. This work demonstrates the potential of LA-ICP-MS for the determination of a wide range of petrogenetically important trace and ultra-trace elements (including for example REE, Hf, Ta, Nb, Th, U) following a routine method of sample preparation. Powdered geological materials have been prepared as both pressed powder disks and fused glasses; both common methods of sample preparation for X-ray fluorescence (XRF) analysis. The solid materials were sampled by ablation using a pulsed Nd:YAG laser operating at 1,064 nm. Analyses can be produced at approximately 10 samples per hour. This instrumental method has limits of detection at or close to those in chondritic meteorites and gives linear calibrations over four orders of magnitude. The accuracy of the technique has been evaluated using reference materials to calibrate the instrument and treating Geological Survey of Japan basalts JB-1a, JB-2, and JB-3 as 'unknowns.' Detection limits are better than routine XRF analysis and compare favorably with Instrumental Neutron Activation Analysis. Laser ablation overcomes the problems of sample dissolution employed in standard wet chemical techniques, whilst the fused glasses provide homogeneous solid samples. The fused glass technique has been applied to a wide range of reference materials from ultra-basic rocks through basalts and andesites to granites, as well as syenite, mica schist, and black shale. For all of the elements commonly used to generate multi-element discrimination diagrams the data obtained define straight line calibrations. This method is therefore capable of analyzing the complete range of silicate compositions normally encountered with a single calibration (i.e., there is no apparent matrix effect). 47 refs., 4 figs., 5 tabs

  1. Measurement of the isotopic composition of uranium micrometer-size particles by femtosecond laser ablation-inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Amélie, E-mail: amelie.hubert@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Claverie, Fanny [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, UMR 5254, Hélioparc Pau-Pyrénées, 2 Avenue du Président Angot, 64053 Pau (France); Novalase SA, ZI de la Briqueterie, 6 Impasse du Bois de la Grange, 33610 Canejan (France); Pécheyran, Christophe [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, UMR 5254, Hélioparc Pau-Pyrénées, 2 Avenue du Président Angot, 64053 Pau (France); Pointurier, Fabien [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-03-01

    In this paper, we will describe and indicate the performance of a new method based on the use of femtosecond laser ablation (fs-LA) coupled to a quadrupole-based inductively coupled plasma mass spectrometer (ICP-QMS) for analyzing the isotopic composition of micrometer-size uranium particles. The fs-LA device was equipped with a high frequency source (till 10 kHz). We applied this method to 1–2 μm diameter-uranium particles of known isotopic composition and we compared this technique with the two techniques currently used for uranium particle analysis: Secondary Ionization Mass Spectrometry (SIMS) and Fission Track Thermal Ionization Mass Spectrometry (FT-TIMS). By optimizing the experimental conditions, we achieved typical accuracy and reproducibility below 4% on {sup 235}U/{sup 238}U for short transient signals of only 15 s related to 10 to 200 pg of uranium. The detection limit (at the 3 sigma level) was ∼ 350 ag for the {sup 235}U isotope, meaning that {sup 235}U/{sup 238}U isotope ratios in natural uranium particles of ∼ 220 nm diameter can be measured. We also showed that the local contamination resulting from the side deposition of ablation debris at ∼ 100 μm from the ablation crater represented only a small percentage of the initial uranium signal of the ablated particle. Despite the use of single collector ICP-MS, we were able to demonstrate that fs-LA-ICP-MS is a promising alternative technique for determining uranium isotopic composition in particle analysis. - Highlights: • An infrared femtosecond laser ablation device coupled to an ICP-MS is used. • The isotopic composition of micrometer-size U particles is measured. • Results are in good agreement with the ones obtained by other relevant techniques. • Detection limit is 350 attograms for the {sup 235}U isotope • {sup 235}U/{sup 238}U ratios can be measured in 220 nm diameter natural uranium particles.

  2. Application of a particle separation device to reduce inductively coupled plasma-enhanced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    The particle size distribution of laser ablation aerosols are a function of the wavelength, the energy density and the pulse duration of the laser, as well as the sample matrix and the gas environment. Further the size of the particles affects the vaporization and ionization efficiency in the inductively coupled plasma (ICP). Some matrices produce large particles, which are not completely vaporized and ionized in the ICP. The previous work has shown that analytical results such as matrix-independent calibration, accuracy and precision can be significantly influenced by the particle sizes of the particles. To minimize the particle size related incomplete conversion of the sample to ions in the ICP a particle separation device was developed, which allows effective particle separation using centrifugal forces in a thin coiled tube. In this device, the particle cut-off size is varied by changing the number of turns in the coil, as well as by changing the gas flow and the tube diameter. The interaction of the laser with the different samples leads to varying particle size distributions. When carrying out quantitative analysis with non-matrix matched calibration reference materials, it was shown that different particle cut-off sizes were required depending on the ICP conditions and the instrument used for analysis. Various sample materials were investigated in this study to demonstrate the applicability of the device. For silicate matrices, the capability of the ICP to produce ions was significantly reduced for particles larger than 0.5 μm, and was dependent on the element monitored. To reduce memory effects caused by the separated particles, a washout procedure was developed, which additionally allowed the analysis of the trapped particles. These results clearly demonstrate the very important particle size dependent ICP-MS signal response and the potential of the described particle size based separator for the reduction of ICP induced elemental fractionation

  3. Application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layers and pulp

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Daniel; Amarasiriwardena, Dulasiri; Goodman, Alan H. [School of Natural Science, Hampshire College, 01002, Amherst, MA (United States)

    2004-03-01

    Human tooth enamel provides a nearly permanent and chronological record of an individual's nutritional status and anthropogenic trace metal exposure during development; it might thus provide an excellent bio archive. We investigated the micro-spatial distribution of trace metals (Cu, Fe, Mg, Sr, Pb, and Zn) in 196 x 339 {mu}m{sup 2} raster pattern areas (6.6 x 10{sup 4} {mu}m{sup 2}) in a deciduous tooth using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Ablated areas include prenatal and postnatal enamel, the neonatal line, the dentine-enamel junction (DEJ), dentine, and the dentine-pulp junction. Topographic variations in the surface elemental distribution of lead, zinc, strontium, and iron intensities in a deciduous tooth revealed heterogeneous distribution within and among regions. {sup 43}Ca normalized elemental intensities showed the following order: Sr>Mg>>Zn>Pb>Fe>Cu. Elevated zinc and lead levels were present in the dental pulp region and at the neonatal line. This study demonstrates the ability of LA-ICP-MS to provide unique elemental distribution information in micro spatial areas of dental hard tissues. Elemental distribution plots could be useful in decoding nutrition and pollution information embedded in their bio apatite structure. (orig.)

  4. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore geochemical taphonomy of vertebrate fossils in the upper cretaceous two medicine and Judith River formations of Montana

    Science.gov (United States)

    Rogers, R.R.; Fricke, H.C.; Addona, V.; Canavan, R.R.; Dwyer, C.N.; Harwood, C.L.; Koenig, A.E.; Murray, R.; Thole, J.T.; Williams, J.

    2010-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine rare earth element (REE) content of 76 fossil bones collected from the Upper Cretaceous (Campanian) Two Medicine (TMF) and Judith River (JRF) Formations of Montana. REE content is distinctive at the formation scale, with TMF samples exhibiting generally higher overall REE content and greater variability in REE enrichment than JRF samples. Moreover, JRF bones exhibit relative enrichment in heavy REE, whereas TMF bones span heavy and light enrichment fields in roughly equal proportions. TMF bones are also characterized by more negative Ce anomalies and greater U enrichment than JRF bones, which is consistent with more oxidizing diagenetic conditions in the TMF. Bonebeds in both formations show general consistency in REE content, with no indication of spatial or temporal mixing within sites. Previous studies, however, suggest that the bonebeds in question are attritional assemblages that accumulated over considerable time spans. The absence of geochemical evidence for mixing is consistent with diagenesis transpiring in settings that remained chemically and hydrologically stable during recrystallization. Lithology-related patterns in REE content were also compared, and TMF bones recovered from fluvial sandstones show relative enrichment in heavy REE when compared with bones recovered from fine-grained floodplain deposits. In contrast, JRF bones, regardless of lithologic context (sandstone versus mudstone), exhibit similar patterns of REE uptake. This result is consistent with previous reconstructions that suggest that channel-hosted microfossil bonebeds of the JRF developed via the reworking of preexisting concentrations embedded in the interfluve. Geochemical data further indicate that reworked elements were potentially delivered to channels in a recrystallized condition, which is consistent with rapid adsorption of REE postmortem. Copyright ?? 2010, SEPM (Society for

  5. Zircon U–Pb dating by 213 nm Nd. YAG laser ablation inductively coupled plasma mass spectrometry. Optimization of the analytical condition to use NIST SRM 610 for Pb/U fractionation correction

    International Nuclear Information System (INIS)

    We carried out an optimization of analytical parameters for U–Pb zircon dating by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using a NIST SRM 610 glass. As a result, we obtained the following optimum analytical parameters: laser energy: 11.7 J/cm2, repetition rate: 10 Hz, pre-ablation time: 8 sec, integration time: 10 sec and crater diameter: 25 μm. The average 206Pb/238U ratio of the NIST SRM 610 glass normalized by a 91500 zircon standard under the conditions mentioned above was 0.2236±0.0044 (1σ, N : 87). The median value of this result matches with that of the literature value within range of the analytical precision. Furthermore, the 206Pb/238U weighted mean ages of the Plešovice, OD-3 and Fish Canyon Tuff zircons, having the proposed 206Pb/238U ages of 335.48±0.95 Ma (95% conf., N : 38, MSWD : 1.1), 33.25±0.38 Ma (95% conf., N : 23, MSWD : 1.5), 28.56±0.49 Ma (95% conf., N : 34, MSWD : 5.1), respectively, were measured, normalized by the NIST SRM 610 glass standard. The results were consistent within 1% error range of the recommended values. These results suggest that the matrix effect can be reduced to less than analytical precision on materials with different physical properties under well-optimized analytical conditions. (author)

  6. Determination of phosphorus and metals in human brain proteins after isolation by gel electrophoresis by laser ablation inductively coupled plasma source mass spectrometry

    OpenAIRE

    Becker, J. S.; M. Zoriy; Becker, J. Su.; Pickhardt, C.; Przybylski, M.

    2004-01-01

    Phosphorus, sulfur, silicon and metal concentrations (Al, Cu and Zn) were determined in human brain, proteins by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) after separation of protein mixtures by two dimensional (2-D) gel electrophoresis. The analysis of phosphorus, silicon and metals in single protein spots in the gel was' performed with an optimized microanalytical method using a double-focusing sector field inductively coupled plasma mass spectrometer coupled t...

  7. 激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)定量分析小麦籽粒锌元素的空间分布%Quantification and spatial distribution of zinc in wheat grains by laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)

    Institute of Scientific and Technical Information of China (English)

    王云霞; 杨连新; W.J.Horst

    2011-01-01

    激光剥蚀电感耦合等离子体质谱(laser ablation inductively coupled plasma mass spectrometry,LA-ICP-MS)是用于测定植物组织中元素分布的最新技术.采用LA-ICP-Ms技术对小麦成熟籽粒中锌的空间分布进行了定量分析.结果表明:成熟小麦籽粒锌浓度的空间分布差异明显.从浓度分布看,种皮、糊粉层和胚中的锌分别为192、432和292 mg·kg-1,而胚乳中的锌只有14 mg·kg-1;从积累量分布看,种皮、糊粉层、胚和胚乳中的锌积累量分别占籽粒总积累量的24%、47%、11%和18%,说明小麦籽粒经加工后锌含量锐减(下降约80%).分别采用LA-ICP-MS和酸消解溶液雾化进样ICP-MS法测定了自制校正标准样和小麦整粒种子的锌浓度,结果两种方法的测定值很接近且重复间变异较小,证实了LA-ICP-MS这一空间分布定量分析方法的可靠性.%Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)is a recently developed technology for examining mineral elements distribution in plant tissue. In this paper, the spatial distribution of zinc in wheat grains was quantified by LA-ICP-MS. Results indicated large spatial variation of zinc concentration in wheat grains. Zinc concentration in seed coat, aleurone layer and ambryo is 192,432 and 292 mg-kg-1, respectively, only 14 mg·kg-1 in endosperm. As for zinc accumulation, zinc amount in seed coat,aleurone layer,ambryo and endosperm account for 24% ,47%, 11% and 18% of total zinc in grain, which implied that zinc content in grains decreased sharply after seed processing (polished). By comparing the measured zinc value of two different methods (i. e. , LA-1CP-MS and ICP-MS after digestion), we also found that the variation of measured zinc concentration between two methods as well as among replications were small, which suggested that LA-ICP-MS is a reliable method for quantifying the spatial distribution of elements in grains.

  8. Element Colocalization in Wheat Seed Revealed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)%用激光剥蚀电感耦合等离子体质谱研究小麦籽粒元素的共分布

    Institute of Scientific and Technical Information of China (English)

    王云霞; 杨连新; WalterJ.HORST

    2012-01-01

    For enhancement of micronutrient concentrations in edible parts of food crops, element uptake and partition in plants, especially in seeds, should be better understanded. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a recently developed technology for examining mineral elements distribution in plant tissues. By using this technique, we quantitatively measured distributions of manganese (Mn), copper (Cu), zinc (Zn), and phosphorus (P) in different parts of wheat seeds. The concentrations of Cu, Zn, and P were the highest in aleurone layer and the lowest in endosperm with the difference of 15, 42, and 33 folds, respectively. The Mn concentration was the highest in embryo, which was 9-fold higher than the lowest concentration in endosperm. The concentration gradients of measured elements were also found in same parts of wheat grain. The concentrations of P, Mn, Cu, and Zn in endosperm close to aleurone layer were higher than those in the middle of wheat seed. Similarly, the element concentrations in scutellum were higher than those in embryo axis. The four elements had similar distribution pattern in wheat seed with a clear synchronization. This phenomenon suggested the colocalization of these elements in wheat seeds. Therefore, the translocations and accumulations of P, Mn, Cu, and Zn in wheat seeds might be closely related to each other, and the finding is useful for wheat biofortification programs in the future.%增加粮食可食用部分微量营养元素的浓度,需要更好地了解其在植株,特别是籽粒内的运输和分布规律.激光剥蚀电感耦合等离子体质谱(laser ablation inductively coupled plasma mass spectrometry,LA-ICP-MS)是一种测定植物组织中元素空间分布的新技术.采用该技术对成熟小麦籽粒中锰(Mn)、铜(Cu)、锌(Zn)和磷(P)的空间分布及其关联程度定量研究.结果表明,所测元素在籽粒不同部位的浓度分布差异很大.Cu、Zn和P浓度均以糊粉

  9. 基于元素对研究激光剥蚀-电感耦合等离子体质谱分析硫化物矿物的基体效应%Characterization of Matrix Effects in Microanalysis of Sulfide Minerals by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Based on An Element Pair Method

    Institute of Scientific and Technical Information of China (English)

    袁继海; 詹秀春; 胡明月; 赵令浩; 孙冬阳

    2015-01-01

    基体效应是影响LA-ICP-MS分析结果准确性的主要因素之一,但目前却没有一种量化基体效应研究的方法。提出了一种以分析元素与内标元素的强度比(Ii/Iis )为纵坐标、浓度比(ci/cis )为横坐标绘制Ii/Iis-ci/cis图,以元素对Ii/Iis-ci/cis图的线性相关系数r量化基体效应的思路。以Fe为内标,考察了13个常用玻璃标准物质与2个硫化物标准及多个硫化物矿物中6个元素对的基体效应,结果显示Cu/Fe和Zn/Fe的线性相关系数r 都小于0.99,而痕量元素对 Mn/Fe,Co/Fe,Ga/Fe,Pb/Fe 的线性相关系数r 都大于0.999;以S为内标,考察了2个硫化物标准与多个硫化物矿物中三个主量元素对Fe/S,Cu/S和Zn/S的基体效应,结果显示其线性相关系数r都小于0.999。无论是以Fe为内标结合玻璃标准为外标,还是以S为内标结合硫化物标准为外标分析硫化物矿物,主量元素大多数分析结果的误差大于10%;而以Fe 为内标时,绝大多数玻璃标准获得的痕量元素分析结果与 MASS-1较为一致,误差小于15%。研究表明,玻璃标准及硫化物矿物标准均与硫化物矿物存在一定的基体效应差异,而采用元素对Ii/Iis-ci/cis图的线性相关系数r量化基体效应具有一定的合理性与实用性。研究也表明了以Fe为内标,采用非基体匹配的玻璃标准可用于定量分析硫化物矿物中的痕量元素,尤其是具有较高痕量元素含量的NIST610。%Matrix effect between reference materials and samples is one of the major factors affecting the accuracy of analytical results by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).However,there is no method or calcula-tion formula to quantify matrix effect between standards and samples up to date.In this paper,the linear correlation coefficient r of the Ii/Iis-ci/cis graphs of element pairs were

  10. 激光剥蚀-等离子体质谱技术及其在地球化学宇宙化学和环境研究中的应用%Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry and Its Application in Geochemistry, Cosmochemistry and Environmental Research

    Institute of Scientific and Technical Information of China (English)

    JOCHUM Klaus Peter; KUZMIN Dmitry; MERTZ-KRAUS Regina; MüLLER Werner E G; REGNERY Julia; SOBOLEV Alexander; 王晓红; 詹秀春; STOLL Brigitte; FRIEDRICH Jon M; AMINI Marghaleray; BECKER Stefan; DüCKING Marc; EBEL Denton S; ENZWEILER Jacinta; HU Ming-yue

    2009-01-01

    激光剥蚀-等离子体质谱(LA-ICPMS)已成为地球化学、宇宙化学和环境研究领域元素和同位素原位分析最重要的技术之一.文章介绍了多种类型的质谱仪及其使用的激光器.用途最广的LA-ICPMS仪器之一是单接收器扇形磁场质谱仪,配有Nd:YAG激光剥蚀系统(激光波长分为193 nm和213 nm两种),MPI Mainz实验室使用的就是这套系统,文章对此作一详细介绍.文中阐述了数据优化技术及其多种校正过程;介绍LA-ICPMS在痕量元素和同位素分析领域的一些应用,包括参考物质的研制,Hawaiian玄武岩、Martian陨石、生物骨针和珊瑚虫中痕量元素分析及熔融包裹体和富钙-铝碳质球粒陨石中的铅和锶同位素测量.%Laser ablation (LA)-inductively coupled plasma-mass spectrometry (ICP-MS) has become one of the most important methods for in situ trace elemental and isotopic analysis in geochemistry, cosmochemistry and environmental research. For these purposes, different kinds of mass spectrometers and lasers are used, which are presented in this paper. One of the most useful LA-ICPMS instruments is the combination of a single-collector sector field mass spectrometer with Nd:YAG laser ablation systems (193 nm and 213 nm wavelengths, respectively). This design used in the MPI Mainz laboratory is described in detail in this paper. Data optimization techniques including diverse correction procedures are also discussed. To demonstrate the power of LA-ICPMS, several applications of trace elemental and isotopic analysis are presented, such as investigations of reference materials, trace element analysis in Hawaiian basalts, Martian meteorites, biological spicules and corals, as well as Pb and Sr isotope measurements of melt inclusions and Ca-Al rich inclusions of carbonaceous chondrites.

  11. Isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    The potential of isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) was evaluated for the determination of trace amounts of uranium and thorium in silicate rocks. Compared with conventional isotope dilution methods using thermal ionization mass spectrometers, the major benefit is a large increase in sample through-put without a significant decrease in precision and accuracy. This results from direct liquid sampling at atmospheric pressure and from the capability of measuring isotope ratios on raw solutions, without chemical separation of the analytes from the matrix elements. Isotope dilution ICP-MS alleviates the need for matrix-matched standards. Further, it is insensitive to possible causes of intensity drift (e.g., clogging of the plasma/mass spectrometer interface and defocusing of the ion beam) and to chemical effects (e.g. oxide formulation). Results obtained on some international rock standards are in good agreement with recommended values. (author). 26 refs.; 1 fig., tabs

  12. Study of laser ablation inductively coupled plasma mass spectrometry in heavy metal analysis of coatings%激光剥蚀电感耦合等离子体质谱在涂料重金属分析中的应用

    Institute of Scientific and Technical Information of China (English)

    张锁慧; 楚民生; 周韵; 林苗

    2013-01-01

    Coupled laser ablation sampling technology with a ICP-MS detector, the LA-ICP-MS technology was applied in heavy metal element analysis of coatings in this paper. The operating parameters of LA and ICP-MS were optimized step by step, and by employing dual gas flow calibration technique as well as taking both 13 C and 103Rh as internal standards, the element signal intensity and stability were greatly improved. Besides, the fractionation and memory effects were also studied. Finally, the method of quantitative analysis for Cr, As, Cd, Sn, Sb, Hg, Pb elements in coatings was established. The results detected by this method agreed with those by ICP-OES with wet digestion sampling. It is shown that this detection method is fast and effective in screening large quantities of coatings, and may contribute to the expansion of its application in solid materials.%将激光剥蚀进样技术(LA)与ICP-MS检测器联用,并将这一新技术应用在涂料重金属元素的检测上,通过优化LA和ICP-MS参数,并采用双气流校正技术,以13C、103Rh为双内标,有效地改善了信号强度和稳定性,同时对Hg的记忆效应进行研究,最终建立了LA-ICP-MS法测定涂料中Cr、As、Cd、Sn、Sb、Hg、Pb元素的定量分析方法,样品测定结果与湿法消解ICP-OES法基本吻合.

  13. Trace analysis of irradiated steel samples from hiroshima by laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    A double focusing (JEOL, PLASMAX2) and quadrupole (ELAN6000, Perkin Elmer) mass spectrometers were used for the quantitative analysis of trace elements in steel samples from Hiroshima. The quantification of the analytical results was carried out using steel 468 as a standard reference material. The relative sensitivity coefficients (RSC's) for most of the elements varied between 0.12 and 2.93. The effect of iron as a matrix and the non-spectroscopic interferences are studied. Comparison of the results obtained on two steel samples from Hiroshima with that obtained on steel 468 standard reference materials demonstrated that there is no significant difference between them. Therefore, it is possible to say that the irradiated steel samples from Hiroshima have nearly the same specifications of trace element content as those of the normal steel samples

  14. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, M.E., E-mail: mshaheen73@science.tanta.edu.eg [Department of Physics, Faculty of Sciences, Tanta University, Tanta (Egypt); Gagnon, J.E.; Fryer, B.J. [Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, Ontario N9B 3P4 (Canada); Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2015-05-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using {sup 66}Zn/{sup 63}Cu, {sup 208}Pb/{sup 238}U, {sup 232}Th/{sup 238}U, {sup 66}Zn/{sup 232}Th and {sup 66}Zn/{sup 208}Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%). - Highlights: • Fractionation and ICP-MS signal response were investigated for two different pulse widths using NIST 610 and Naval Brass. • Dependence of fractionation indices on repetition rate and pulse width. • Higher ablation rate was observed in picosecond compared to femtosecond laser ablation of NIST 610 and Brass. • Formation of a secondary peak was observed during fs-LA-ICP-MS and was related to self-focusing and changes in ablation behaviour inside the crater. • SEM pictures indicated that femtosecond laser pulses produce smaller particles than picosecond laser pulses.

  15. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Duodu, Godfred Odame; Goonetilleke, Ashantha; Allen, Charlotte; Ayoko, Godwin A

    2015-10-22

    Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (-52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments. PMID:26526906

  16. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using 66Zn/63Cu, 208Pb/238U, 232Th/238U, 66Zn/232Th and 66Zn/208Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%). - Highlights: • Fractionation and ICP-MS signal response were investigated for two different pulse widths using NIST 610 and Naval Brass. • Dependence of fractionation indices on repetition rate and pulse width. • Higher ablation rate was observed in picosecond compared to femtosecond laser ablation of NIST 610 and Brass. • Formation of a secondary peak was observed during fs-LA-ICP-MS and was related to self-focusing and changes in ablation behaviour inside the crater. • SEM pictures indicated that femtosecond laser pulses produce smaller particles than picosecond laser pulses

  17. Laser ablation inductively coupled plasma dynamic reaction cell mass spectrometry for the multi-element analysis of polymers

    Science.gov (United States)

    Resano, M.; García-Ruiz, E.; Vanhaecke, F.

    2005-11-01

    In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the μg g - 1 level in this kind of materials, due to the interference of ArC + ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g - 1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g - 1 level to tens of thousands of μg g - 1 . However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 μg g - 1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g - 1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due

  18. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos S. [Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, SP (Brazil); Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Schenk, Emily R. [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Professor Arthur Riedel 275, Diadema, SP (Brazil); Krug, Francisco José [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Almirall, José R., E-mail: almirall@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States)

    2014-04-01

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg{sup −1} for Zn to as high as 94 mg kg{sup −1} for K but were generally below 6 mg kg{sup −1} for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ∼ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ∼ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis. - Highlights: • An evaluation of LA-ICP-OES for the direct analysis of pelleted plant material is reported. • Orange citrus, soy and sugarcane plants were pressed into pellets and sampled directly. • The element menu consisted of Ca, Mg, P, K, Fe, Mn, Zn and B. • LODs for the method ranged from 0.1 mg kg{sup −1} for Zn to 94 mg kg{sup −1} for K. • The precision ranged from 4% RSD for Mn to 17% RSD for Zn (∼ 6.5% RSD average)

  19. Application of laser ablation inductively coupled plasma multicollector mass spectometry in determination of lead isotope ratios in common glass for forensic purposes

    Energy Technology Data Exchange (ETDEWEB)

    Sjåstad, Knut-Endre, E-mail: knutesj@geo.uio.no [National Criminal Investigation Service (KRIPOS) (Norway); Department of Geosciences, University of Oslo (Norway); Andersen, Tom; Simonsen, Siri Lene [Department of Geosciences, University of Oslo (Norway)

    2013-11-01

    Samples of glass used as trace evidence in criminal cases are commonly small, with particle sizes below a millimeter. To perform chemical analysis suitable for forensic purposes, methods capable of analyzing such small samples are required. In this paper, analyses of lead isotope ratios by means of laser ablation inductively coupled multicollector mass spectrometry (LA-MC-ICP-MS) are presented. Sampling by use of laser ablation allows fragments down to 0.1 mg to be analyzed with sufficient precision to discriminate between glasses of different origin. In fact, the use of lead isotopes determined by LA-MC-ICP-MS approaches the discrimination attainable by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) analysis of dissolved samples of 5 mg or more. Further, we have obtained a probability distribution by two dimensional kernel density estimates for the collected data set as an alternative presentation method to the well-established bivariate plot. The underlying information available from kernel density estimates is of importance for forensic scientists involved in probabilistic interpretation of physical evidence. - Highlights: • Lead isotope ratios prove suitable to discriminate glass for forensic purposes. • 96% of glass samples from different sources were separated by lead isotopic ratios. • Laser ablation allows fragments of glass with extension of 0.5 mm to be analyzed. • Isotopic ratios of lead are well suited for statistical analysis of evidence.

  20. Application of laser ablation inductively coupled plasma multicollector mass spectometry in determination of lead isotope ratios in common glass for forensic purposes

    International Nuclear Information System (INIS)

    Samples of glass used as trace evidence in criminal cases are commonly small, with particle sizes below a millimeter. To perform chemical analysis suitable for forensic purposes, methods capable of analyzing such small samples are required. In this paper, analyses of lead isotope ratios by means of laser ablation inductively coupled multicollector mass spectrometry (LA-MC-ICP-MS) are presented. Sampling by use of laser ablation allows fragments down to 0.1 mg to be analyzed with sufficient precision to discriminate between glasses of different origin. In fact, the use of lead isotopes determined by LA-MC-ICP-MS approaches the discrimination attainable by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) analysis of dissolved samples of 5 mg or more. Further, we have obtained a probability distribution by two dimensional kernel density estimates for the collected data set as an alternative presentation method to the well-established bivariate plot. The underlying information available from kernel density estimates is of importance for forensic scientists involved in probabilistic interpretation of physical evidence. - Highlights: • Lead isotope ratios prove suitable to discriminate glass for forensic purposes. • 96% of glass samples from different sources were separated by lead isotopic ratios. • Laser ablation allows fragments of glass with extension of 0.5 mm to be analyzed. • Isotopic ratios of lead are well suited for statistical analysis of evidence

  1. Quantitative analysis of trace elements in environmental powders with laser ablation inductively coupled mass spectrometry using non-sample-corresponding reference materials for signal evaluation

    Science.gov (United States)

    Bauer, Gerald; Limbeck, Andreas

    2015-11-01

    Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an attractive alternative to traditional procedures for the analysis of environmental samples (i.e., conventional liquid measurement after sample digestion). However, for accurate quantification, certified reference materials (CRM) are necessary which match the composition of the sample and include all elements of interest at the required concentration levels. The limited availability of appropriate CRMs hampers therefore substantial application. In this work, an LA-ICP-MS procedure allowing for accurate determination of trace element contents in powdered environmental samples is presented. For LA-ICP-MS analysis, the samples are mixed with an internal standard (silver oxide) and a binder (sodium tetra borate) and subsequently pressed to pellets. Quantification is accomplished using a calibration function determined using CRMs with varying matrix composition and analyte content, pre-treated and measured in the same way as the samples. With this approach, matrix-induced ablation differences resulting from varying physical/chemical properties of the individual CRMs could be compensated. Furthermore, ICP-related matrix-effects could be minimized using collision/reaction cell technology. Applicability of the procedure has been demonstrated by assessment of Cd, Cu, Ni, and Zn in four different environmental CRMs (NIST SRM1648a (urban particulate matter), NIST SRM2709 (San Joaquin Soil), BCR144 (sewage sludge), and BCR723 (road dust)). Signal evaluation was performed by alternative use of three CRMs for calculation of the calibration function whereas the remaining fourth CRM acted as unknown sample, resulting in a good agreement between measured and certified values for all elements and reference materials.

  2. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry

    International Nuclear Information System (INIS)

    The tissue level uptake and spatial distribution of gold nanoparticles (AuNPs) in rice (Oryza sativa L.) roots and shoots under hydroponic conditions was investigated using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Rice plants were hydroponically exposed to positively, neutrally, and negatively charged AuNPs [AuNP1(+), AuNP2(0), AuNP3(−)] with a core diameter of 2 nm. Plants were exposed to AuNPs having 1.6 mg Au/L for 5 days or 0.14 mg Au/L for 3 months to elucidate how the surface charges of the nanoparticles affects their uptake into living plant tissues. The results demonstrate that terminal functional groups greatly affected the AuNP uptake into plant tissues. Au concentration determined by LA-ICP-MS in 5 day treated rice roots followed this order: AuNP1(+) > AuNP2(0) > AuNP3(−) but this order was reversed for rice shoots, indicating preferential translocation of AuNP3(−). Bioimages revealed distributions of mesophyll and vascular AuNP dependent on organ or AuNP concentration. Highlights: ► LA-ICP-MS technique was effectively used to quantify engineered AuNP in rice plant. ► Uptake and translocation of AuNPs are evident in rice roots and shoots. ► Organ level distribution of AuNPs is affected by their surface charges. ► Bioimaging of AuNP distribution in rice tissues by LA-ICP-MS was demonstrated. -- The tissue level uptake and spatial distribution of engineered gold nanoparticles (AuNP) by rice plants was demonstrated by LA-ICP-MS bioimaging

  3. Zinc isotope discrimination effect in inductively coupled plasma mass spectrometer

    International Nuclear Information System (INIS)

    Inductively coupled plasma mass spectrometry (ICPMS) has recently been used for isotope ratio analysis. The isotope discrimination effect in the mass spectrometer is a primary factor contributing to loss of precision and accuracy in isotope ratio analysis. The discrimination effect of zinc isotopes was investigated by comparing the results obtained using a quadrupole type ICPMS with those obtained using a thermal ionization mass spectrometer

  4. Direct solid soil analysis by laser ablation inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Determination of heavy metals in soils by inductively coupled plasma atomic emission spectrometry (ICP-AES) usually involves the time-consuming step of preparing a solution of the solid that is then nebulized into the plasma. According to regulations, digestion by aqua regia(hydrochloric acid + nitric acid, 3 + 1) should be carried out although it is known that this method is incomplete for silicate soils. The problem can be eliminated by introducing the solid directly into the plasma using the laser ablation technique for sampling. Results are described for a study of laser ablation using a Q-switched Nd: YAG laser coupled with a new échelle spectrometer which has a multichannel solid-state detector. The laser pulses were focused onto the solid surface of pressed soil samples to generate an aerosol which is entrained in a flowing Ar stream, transported through a tube and then introduced directly into the inductively coupled plasma. Some characteristics of the preparation technique, the selection of an internal standard and homogeneity tests of the elemental distribution are reported along with a comparison and evaluation of three methods of calibration. The criteria used to measure the performance of laser ablation ICP-AES are the relative standard deviations obtained of 4.9–12.7% and the accuracy, 0.3–12.4% for Fe, Mn, Cu, Pb, Cr, Zn and Ni

  5. Application of laser ablation inductively coupled plasma mass spectrometry for soil analysis: a novel procedure for sample preparation

    International Nuclear Information System (INIS)

    A rapid, sensitive and reliable LA–ICP–MS method for simultaneous determination of micro and macro elements in soils and sediments was developed and optimized. Certified reference materials available in powder form (IAEA–SOIL–5, IAEA–SOIL–7, IAEA–SL–1, IAEA–SL–3 and STSD–3) were used for the optimization and validation of the sample preparation step and LA–ICP–MS analysis. Three types of soil pellets were prepared from each CRM: (i) original soil; (ii) soil, mixed with boric acid in ratio 1:5; and (iii) pellets, prepared by mixing the soil successively in hexane and dichloromethane and subjected to LA–ICP–MS measurement. The signal of the matrix elements was reduced by introducing the rejection parameter (RPa) to enable the high–mass cut off. Best accuracy and precision were obtained with the pellets, prepared in organic solvents. This approach can be recommended for sample preparation of soils and sediments for LA–ICP–MS analysis. Key words: LA–ICP–MS, pellet preparation, calibration, soil analysis

  6. Quantitation of trace metals in liquid samples by dried-droplet laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Yang, Lu; Sturgeon, Ralph E; Mester, Zoltán

    2005-05-01

    A new, discrete sample introduction approach based on laser ablation (LA) is described for the quantitation of several trace metals in aqueous samples by ICPMS. Dried microdroplets of sample, previously mixed with a sodium acetate matrix, were quantitatively ablated from a polystyrene substrate. Calibration via the method of standard additions or isotope dilution provided accurate results for Ni, Cd, and Pb in drinking water and Se in a yeast extract. Compared to conventional solution nebulization, LA sample introduction provided a 2-7-fold enhancement in absolute sensitivity and transport efficiency of 2-14% for the elements examined. Estimated detection limits are 1-7-fold poorer for the dried-droplet LA technique, primarily a result of degraded precision arising from counting statistics limitations for discrete sample introduction. On the basis of the several-second half-width of the resulting transient signals, sample throughput can be in the range of 250 samples per hour. Additionally, integration of the transient signal should eliminate contributions to elemental fractionation from the LA step. Dried-droplet LA-ICPMS offers several advantages over its counterpart, ETV-ICPMS, with respect to background intensity, throughput, and ease of desorption. PMID:15859618

  7. Forensic analysis of printing inks using tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    International Nuclear Information System (INIS)

    Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample. - Highlights: • The optimization of the parameters for LA-ICP-MS and LIBS in a tandem experiment are presented. • The analytical figures of merit for the tandem experiment for data collected simultaneously, are presented. • A qualitative and semi-quantitative method for the analysis of toner, inkjet, offset and Intaglio inks is presented. • The LIBS and LA-ICP-MS data are shown to be complementary and can augment discrimination over a single technique. • Major, minor and trace elements present in ink samples can serve as good discriminators for a variety of printing inks. • LIBS was successful to overcome spectral interferences of ICP-MS for some discriminating elements like K, Ca, Si and Fe. • Fusion of LIBS and LA-ICP-MS has proven to provide complementary information and enhanced discrimination for printing inks

  8. Forensic analysis of printing inks using tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Subedi, Kiran; Trejos, Tatiana; Almirall, José

    2015-01-01

    Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample.

  9. Forensic analysis of printing inks using tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Kiran, E-mail: ksube001@fiu.edu; Trejos, Tatiana, E-mail: trejost@fiu.edu; Almirall, José, E-mail: almirall@fiu.edu

    2015-01-01

    Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample. - Highlights: • The optimization of the parameters for LA-ICP-MS and LIBS in a tandem experiment are presented. • The analytical figures of merit for the tandem experiment for data collected simultaneously, are presented. • A qualitative and semi-quantitative method for the analysis of toner, inkjet, offset and Intaglio inks is presented. • The LIBS and LA-ICP-MS data are shown to be complementary and can augment discrimination over a single technique. • Major, minor and trace elements present in ink samples can serve as good discriminators for a variety of printing inks. • LIBS was successful to overcome spectral interferences of ICP-MS for some discriminating elements like K, Ca, Si and Fe. • Fusion of LIBS and LA-ICP-MS has proven to provide complementary information and enhanced discrimination for printing inks.

  10. Documenting utility of paddlefish otoliths for quantification of metals using inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Long, James M.; Schaffler, James J.

    2013-01-01

    RATIONALE The otoliths of the inner ear of fishes record the environment of their surrounding water throughout their life. For paddlefish (Polyodon spathula), otoliths have not been routinely used by scientists since their detriments were outlined in the early 1940s. We sought to determine if paddlefish otoliths were useful for resolving elemental information contained within. METHODS Adult paddlefish were collected from two wild, self-sustaining populations in Oklahoma reservoirs in the Arkansas River basin. Juveniles were obtained from a hatchery in the Red River basin of Oklahoma. Otoliths were removed and laser ablation, inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify eight elements (Li, Mg, Mn, Rb, Sr, Y, Ba, and Pb) along the core and edge portions, which were analyzed for differences between otolith regions and among paddlefish sources. RESULTS Differences were found among samples for six of the eight elements examined. Otoliths from Red River basin paddlefish born in a hatchery had significantly lower amounts of Mg and Mn, but higher levels of Rb than otoliths from wild paddlefish in the Arkansas River basin. Concentrations of Y, Sr, and Ba were reduced on the edges of adult paddlefish from both reservoirs compared with the cores. CONCLUSIONS This research shows the utility of using an ICP-MS analysis of paddlefish otoliths. Future research that seeks to determine sources of paddlefish production, such as which reservoir tributaries are most important for reproduction or what proportion of the population is composed of wild versus hatchery-produced individuals, appears promising. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  11. Inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    The period of investigation for the previous general remarks on the progress of ICP-MS was from January, 1991 to September, 1993. In the investigation of this time, for the object of the Chemical Abstracts from January, 1994 to September, 1996, retrieval was carried out by using the STN International. As the key words, ICP-MS, Inductively Coupled Plasma Mass Spectrometry or Inductively Coupled Plasma Mass Spectrometer was used. The number of hit was 373 in 1994, 462 in 1995, and 356 as of September, 1996, 1191 in total. The cumulative number of the papers from 1980 to 1996 is shown. It is known how rapidly the ICP-MS has pervaded as the means of analysis. In order to cope with the enormous number of papers, this time, it was decided to do the review by limiting to the papers which were published in the main journals deeply related to analytical chemistry. As to the tendency in the last three years, it is summarized as how to overcome the spectrum interference and matrix effect in the ICP-MS and the trend of using the ICP-MS as the high sensitivity detector for separation techniques. The technical basic research of the ICP-MS on spectrum interference, sample introduction method and others and the analysis of living body samples are reported. (K.I.)

  12. Quantitative aspects of inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Bulska, Ewa; Wagner, Barbara

    2016-10-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.

  13. A Review on Inductively Coupled Plasma Mass Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ramyalakshmi G

    2012-12-01

    Full Text Available Inductively coupled plasma mass spectroscopy is routinely used in many diverse research fields such as earth, environmental, life and forensic sciences and in food, material, chemical, semiconductor and nuclear industries. The high ion density and the high temperature in a plasma provide an ideal atomizer and element ionizer for all types of samples and materials introduced by a specialised devices .outstanding properties such as high sensitivity, relative salt tolerance, compound-independent element response and highest quantitation accuracy lead to the unchallenged performance of ICPMS in efficiently detecting, identifying and reliably quantifying trace element. The increasing availability of relevant reference compounds and high separation selectively extend the molecular identification capability of ICPMS hyphenated to species – specific separation techniques

  14. Controlled Dissolution of Surface Layers for Elemental Analysis by Inductively Coupled Plasma-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lorge, Susan Elizabeth [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Determining the composition of thin layers is increasingly important for a variety of industrial materials such as adhesives, coatings and microelectronics. Secondary ion mass spectrometry (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES), glow discharge mass spectrometry (GDMS), and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are some of the techniques that are currently employed for the direct analysis of the sample surface. Although these techniques do not suffer from the contamination problems that often plague sample dissolution studies, they do require matrix matched standards for quantification. Often, these standards are not readily available. Despite the costs of clean hoods, Teflon pipette tips and bottles, and pure acids, partial sample dissolution is the primary method used in the semiconductor industry to quantify surface impurities. Specifically, vapor phase decomposition (VPD) coupled to ICP-MS or total reflection x-ray fluorescence (TXRF) provides elemental information from the top most surface layers at detection sensitivities in the 107-1010atoms/cm2 range. The ability to quantify with standard solutions is a main advantage of these techniques. Li and Houk applied a VPD-like technique to steel. The signal ratio of trace element to matrix element was used for quantification. Although controlled dissolution concentrations determined for some of the dissolved elements agreed with the certified values, concentrations determined for refractory elements (Ti, Nb and Ta) were too low. LA-ICP-MS and scanning electron microscopy (SEM) measurements indicated that carbide grains distributed throughout the matrix were high in these refractory elements. These elements dissolved at a slower rate than the matrix element, Fe. If the analyte element is not removed at a rate similar to the matrix element a true

  15. Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Michalke, Bernhard

    2016-01-01

    During the recent years, capillary electrophoresis (CE) has been fully established as a powerful tool in separation sciences as well as in element speciation. This road of success is based on the rapid analysis time, low sample requirements, high separation efficiency, and low operating costs of CE. Inductively coupled plasma mass spectrometry (ICP-MS) is known for superior detection and multielement capability. Consequently, the combination of both instruments is approved for analysis of complex sample types at low element concentrations which require high detection power. Also the diversity of potential applications brings CE-ICP-MS coupling into central focus of element speciation. The key to successful combination of ICP-MS as an (multi-)element selective detector for CE is the availability of a suitable and effective interface.Therefore, this chapter summarizes the most important and basic principles about coupling of capillary electrophoresis to ICP-MS. Specifically, the major requirements for interfacing are described and technical solutions are given. Such solutions include the closing of the electrical circuit from CE at the nebulization, the adoption of flow rates for efficient nebulization, the reduction of a suction flow through the capillary, caused by the nebulizer, and maintaining the high separation resolution from CE across the interface for ICP-MS detection. Additionally, detailed information is presented to determine and quantify the siphoning suction through the CE capillary by the nebulizer. Finally, two applications, namely, the manganese and selenium speciation in cerebrospinal fluid are shown as examples, providing the relevant operational parameter. PMID:27645737

  16. Chemical characterization of materials by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    An Inductively Coupled Plasma Mass Spectrometer was procured for trace elemental determination in diverse samples. Since its installation a number of analytical measurements have been carried out on different sample matrices. These include chemical quality control measurements of nuclear fuel and other materials such as uranium metal. Uranium peroxide, ADU, ThO2, UO2; isotopic composition of B, Li; chemical characterization of simulated ThO2 + 2%UO2 fuel; sodium zirconium phosphate and trace metallic elements in zirconium; Antarctica rock samples and wet phosphoric acid. Necessary separation methodologies required for effective removal of matrix were indigenously developed. In addition, a rigorous analytical protocol, which includes various calibration methodologies such as mass calibration, response calibration, detector cross calibration and linearity check over the entire dynamic range of 109 required for quantitative determination of elements at trace and ultra trace level,, has been standardized. This report summarizes efforts of RACD that have been put in this direction for the application of ICP-MS for analytical measurements. (author)

  17. Uranium quantification in semen by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Todorov, Todor I; Ejnik, John W; Guandalini, Gustavo; Xu, Hanna; Hoover, Dennis; Anderson, Larry; Squibb, Katherine; McDiarmid, Melissa A; Centeno, Jose A

    2013-01-01

    In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4-7% RSD and spike recoveries were 97-100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n=10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans' semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments.

  18. Advanced Burnup Method using Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hilton, Bruce A. [Idaho Natonal Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Glagolenko, Irina; Giglio, Jeffrey J.; Cummings, Daniel G

    2009-06-15

    Nuclear fuel burnup is a key parameter used to assess irradiated fuel performance, to characterize the dependence of property changes due to irradiation, and to perform nuclear materials accountability. For advanced transmutation fuels and high burnup LWR fuels that have multiple fission sources, the existing Nd-148 ASTM burnup determination practice requires input of calculated fission fractions (identifying the specific fission source isotope and neutron energy that yielded fission, e.g., U-235 from thermal neutron, U-238 from fast neutron) from computational neutronics analysis in addition to the measured concentration of a single fission product isotope. We report a novel methodology of nuclear fuel burnup determination, which is completely independent of model predictions and reactor types. The proposed method leverages the capability of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify multiple fission products and actinides and uses these data to develop a system of burnup equations whose solution is the fission fractions. The fission fractions are substituted back in the equations to determine burnup. This technique requires high fidelity fission yield data, which is not uniformly available for all fission products. We discuss different means that can potentially assist in indirect determination, verification and improvement (refinement) of the ambiguously known fission yields. A variety of irradiated fuel samples are characterized by ICP-MS and the results used to test the advanced burnup method. The samples include metallic alloy fuel irradiated in fast spectrum reactor (EBRII) and metallic alloy in a tailored spectrum and dispersion fuel in the thermal spectrum of the Advanced Test Reactor (ATR). The derived fission fractions and measured burnups are compared with calculated values predicted by neutronics models. (authors)

  19. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  20. Application of inductively coupled plasma mass spectrometry (ICP-MS) to radioecology

    International Nuclear Information System (INIS)

    The advantages of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) over conventional radioanalytical measurements are presented and the applications of the ICP-MS technique to environmental samples are given

  1. Determination of traces of thorium in uranium by inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    An analytical methodology for the determination of traces of thorium in uranium oxide by Inductively Coupled Plasma Mass Spectrometry has been developed. Recovery studies were carried out by standard addition and also by tracer technique to validate the methodology. (author)

  2. Development of a 2D laser ablation inductively coupled plasma mass spectrometry mapping procedure for mercury in maize (Zea mays L.) root cross-sections

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •LA-ICP-MS mapping to study the distribution of Hg in plant root cross-sections. •Sorption of LA-generated Hg vapour leads to serious memory effects. •Spot analysis with a delay time of 10 s in between spots alleviates memory effects. •Ablation straight through the sample simplifies calibration. •Hg2+ does not cross the endodermal root barrier of maize plants. -- Abstract: A LA-ICP-MS method based on a 213 nm Nd:YAG laser and a quadrupole ICP-MS has been developed for mapping of mercury in root cross-sections of maize (Zea mays L.) to investigate the mechanism of mercury uptake from soil and its potential translocation to the edible parts. Conventional rastering was found to be unusable due to sorption of mercury onto the internal parts of the LA device, giving rising to memory effects resulting in serious loss of resolution and inaccurate quantification. Spot analysis on a virtual grid on the surface of the root sections using washout times of 10 s in between spots greatly alleviated problems related to these memory effects. By ablating straight through the root sections on a poly(methyl methacrylate) support the calibration process was simplified as internal standardization and matrix-matching could be circumvented. Mercury-spiked freeze-drying embedding medium, sectioned similarly to the root sections, was used for the preparation of the standards. Standards and root sections were subjected to spot analysis using the following operational parameters: beam diameter, 15 μm; laser fluence, 2.5 J cm−2; repetition rate, 20 Hz; dwell time, 1 s; acquisition time, 0.1 s. The mercury peaks for standards and roots sections could be consistently integrated for quantification and construction of the 2D mercury maps for the root sections. This approach was successfully used to investigate the mercury distribution in root sections of maize grown in soil spiked to a level of 50 mg kg−1 DW HgCl2. It was found that at given Hg concentrations in the substrate Hg ions practically do not cross root plasma membranes of the endodermal barrier, but are entirely retained in the root apoplastic space. This suggests that maize plants grown in Hg-contaminated areas translocate Hg to the upper edible parts of the plant only to a small extent

  3. A novel quantification strategy of transferrin and albumin in human serum by species-unspecific isotope dilution laser ablation inductively coupled plasma mass spectrometry (ICP-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Liuxing, E-mail: fenglx@nim.ac.cn; Zhang, Dan; Wang, Jun; Shen, Dairui; Li, Hongmei

    2015-07-16

    Highlights: • Species-unspecific ID-PAGE-LA-ICP-MS was used to quantify Alb and Tf in human serum. • Addition methods of species-unspecific {sup 34}S spike were evaluated. • Isotope change conditions were investigated to reach satisfactory “isotope equilibration”. • Human serum CRM (ERM-DA470k/IFCC) was used to validate the new arrangements. • The developed method offers potential for accurate quantification of protein by ID-PAGE-LA-ICP-MS. - Abstract: Species-specific (SS) isotope dilution analysis with gel electrophoresis (GE)-laser ablation (LA)-ICP-MS is a promising technique for the quantification of particular metal-binding proteins in biological samples. However, unavailable isotopically enriched spike and metal losses in GE separation are main limitations for SS-isotope dilution PAGE-LA-ICP-MS. In this study, we report for the first time the absolute quantification of transferrin (Tf) and albumin (Alb) in human serum by non-denaturing (native) GE combined with species-unspecific isotope dilution mass spectrometry (IDMS). In order to achieve a homogeneous distribution of both protein and isotope-enriched spike (simulated isotope equilibration), immersing the protein strips with {sup 34}S spike solution after gel electrophoresis was demonstrated to be an effective way of spike addition. Furthermore, effects of immersion time and {sup 34}S spike concentration were investigated to obtain optimal conditions of the post-electrophoresis isotope dilution method. The relative mass of spike and ablated sample (m{sub sp}/m{sub sam}) in IDMS equation was calculated by standard Tf and Alb proteins, which could be applied to the quantification of Tf and Alb in ERM-DA470k/IFCC for method confirmation. The results were in agreement with the certified value with good precision and small uncertainty (1.5–3%). In this method, species-specific spike protein is not necessary and the integrity of the heteroatom-protein could be maintained in sample preparation process. Moreover, the application of species-unspecific isotope dilution GE-LA-ICP-MS has the potential to offer reliable, direct and simultaneous quantification of proteins after conventional 1D and 2D gel electrophoretic separations.

  4. Development of a 2D laser ablation inductively coupled plasma mass spectrometry mapping procedure for mercury in maize (Zea mays L.) root cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Debeljak, Marta [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia); Elteren, Johannes T. van, E-mail: elteren@ki.si [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia)

    2013-07-17

    Graphical abstract: -- Highlights: •LA-ICP-MS mapping to study the distribution of Hg in plant root cross-sections. •Sorption of LA-generated Hg vapour leads to serious memory effects. •Spot analysis with a delay time of 10 s in between spots alleviates memory effects. •Ablation straight through the sample simplifies calibration. •Hg{sup 2+} does not cross the endodermal root barrier of maize plants. -- Abstract: A LA-ICP-MS method based on a 213 nm Nd:YAG laser and a quadrupole ICP-MS has been developed for mapping of mercury in root cross-sections of maize (Zea mays L.) to investigate the mechanism of mercury uptake from soil and its potential translocation to the edible parts. Conventional rastering was found to be unusable due to sorption of mercury onto the internal parts of the LA device, giving rising to memory effects resulting in serious loss of resolution and inaccurate quantification. Spot analysis on a virtual grid on the surface of the root sections using washout times of 10 s in between spots greatly alleviated problems related to these memory effects. By ablating straight through the root sections on a poly(methyl methacrylate) support the calibration process was simplified as internal standardization and matrix-matching could be circumvented. Mercury-spiked freeze-drying embedding medium, sectioned similarly to the root sections, was used for the preparation of the standards. Standards and root sections were subjected to spot analysis using the following operational parameters: beam diameter, 15 μm; laser fluence, 2.5 J cm{sup −2}; repetition rate, 20 Hz; dwell time, 1 s; acquisition time, 0.1 s. The mercury peaks for standards and roots sections could be consistently integrated for quantification and construction of the 2D mercury maps for the root sections. This approach was successfully used to investigate the mercury distribution in root sections of maize grown in soil spiked to a level of 50 mg kg{sup −1} DW HgCl{sub 2}. It was found that at given Hg concentrations in the substrate Hg ions practically do not cross root plasma membranes of the endodermal barrier, but are entirely retained in the root apoplastic space. This suggests that maize plants grown in Hg-contaminated areas translocate Hg to the upper edible parts of the plant only to a small extent.

  5. Novel Bioimaging Techniques of Metals by Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Diagnosis Of Fibrotic and Cirrhotic Liver Disorders

    OpenAIRE

    Weiskirchen, Ralf; Gassler, Nikolaus; Bosserhoff, Anja K; Becker, J. Sabine; Pornwilard, M. M.

    2013-01-01

    Background and Aims Hereditary disorders associated with metal overload or unwanted toxic accumulation of heavy metals can lead to morbidity and mortality. Patients with hereditary hemochromatosis or Wilson disease for example may develop severe hepatic pathology including fibrosis, cirrhosis or hepatocellular carcinoma. While relevant disease genes are identified and genetic testing is applicable, liver biopsy in combination with metal detecting techniques such as energy-dispersive X-ray spe...

  6. Determination of Arsenic in Sinus Wash and Tap Water by Inductively Coupled Plasma-Mass Spectrometry

    Science.gov (United States)

    Donnell, Anna M.; Nahan, Keaton; Holloway, Dawone; Vonderheide, Anne P.

    2016-01-01

    Arsenic is a toxic element to which humans are primarily exposed through food and water; it occurs as a result of human activities and naturally from the earth's crust. An experiment was developed for a senior level analytical laboratory utilizing an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) for the analysis of arsenic in household…

  7. Thorium determination in thorotrast patient organs using inductively coupled plasma mass spectrometry and imaging plate autoradiography

    International Nuclear Information System (INIS)

    In this study inductively coupled plasma mass spectrometry (ICP-MS) have been used for the determination of Th in liver and spleen collected from autopsy subjects in Thorotrast patients to obtain useful information for dosimetry. The applicability of an imaging plate autoradiography technique for the determination of thorium distributions in organs to obtain information related to microdosimetry has also been evaluated

  8. Simultaneous multielement analysis of rock samples by inductively coupled plasma mass spectrometry using discrete microsampling technique

    International Nuclear Information System (INIS)

    Simultaneous multielement analysis of geological standard rock samples (JG-1 and JB-2) has been successfully performed by inductively coupled plasma mass spectrometry using a discrete microsampling technique. In this technique only 100 μl sample solution was used for simultaneous determination of 5-10 elements in solution. (author)

  9. Matrix effects in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoshan

    1995-07-07

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the {open_quotes}Fassel{close_quotes} TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.

  10. Atomic Mineral Characteristics of Indonesian Osteoporosis by High-Resolution Inductively Coupled Plasma Mass Spectrometry

    OpenAIRE

    Zairin Noor; Sutiman Bambang Sumitro; Mohammad Hidayat; Agus Hadian Rahim; Akhmad Sabarudin; Tomonari Umemura

    2012-01-01

    Clinical research indicates that negative calcium balance is associated with low bone mass, rapid bone loss, and high fracture rates. However, some studies revealed that not only calcium is involved in bone strengthening as risk factor of fracture osteoporosis. Thus, in this report, the difference of metallic and nonmetallic elements in osteoporosis and normal bones was studied by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The influence of these elements on bone...

  11. Plutonium age dating (production date measurement) by inductively coupled plasma mass spectrometry

    OpenAIRE

    Varga, Zsolt; Nicholl, Adrian; Wallenius, Maria; Mayer, Klaus

    2015-01-01

    This paper describes rapid methods for the determination of the production date (age dating) of plutonium (Pu) materials by inductively coupled plasma mass spectrometry (ICP-MS) for nuclear forensic and safeguards purposes. One of the presented methods is a rapid, direct measurement without chemical separation using 235U/239Pu and 236U/240Pu chronometers. The other method comprises a straightforward extraction chromatographic separation, followed by ICP-MS measurement for the 234U/238Pu, 235U...

  12. 87Sr/86Sr measurements on marine sediments by inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    The application of inductively coupled plasma-mass spectrometry (ICP-MS) is documented for the study of the strontium isotopic composition (87Sr/86Sr) in geological samples, i.e. in the marine lithic fraction of core sediments. Methods for the determination of the isotopic composition, its accuracy and precision are reported. The results obtained simultaneously on 11 samples by both ICP-MS and thermal ionization mass spectrometry (TIMS) reveal a very good correlation (r2 = 0.955). (orig.)

  13. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry

    OpenAIRE

    Ornatsky, Olga I.; Kinach, Robert; Bandura, Dmitry R.; Lou, Xudong; Tanner, Scott D; Baranov, Vladimir I.; Nitz, Mark; Mitchell A. Winnik

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for...

  14. Iron-Isotopic Fractionation Studies Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.

    1999-01-01

    The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.

  15. Determination of uranium and thorium isotope ratios by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Measurements conditions were selected and a procedure was proposed for determining the 234U/238U and 230Th/232Th isotope ratios using an ELEMENT single-channel double-focusing inductively coupled plasma mass spectrometer. The procedure was tested in analyzing bottom sediments from Lake Baikal with the extraction preconcentration of uranium and thorium. The accuracy of the procedure was verified using certified reference materials and a model solution by comparing the results obtained with the data of α spectrometry

  16. New Applications of Inductively Coupled Plasma-Mass Spectrometry in the Nuclear Industry

    Energy Technology Data Exchange (ETDEWEB)

    Rob Henry; Dagmar Koller; Phil Marriott

    1998-12-31

    Inductively coupled plasma mass spectrometry (ICP-MS) complements the traditional methods of quantitation of radioactive isotopes. Because of the favorable ionization potential of most actinides and their daughter products, the argon plasma provides a rich, stable source of ions, which are introduced through a plasma-mass spectrometer interface into the mass spectrometer for isotopic separation. Samples are normally introduced in solution, although direct solids analysis has also been achieved using laser ablation of the sample into the argon plasma. Since 1983, improvements in ICP-MS sensitivity have resulted in correspondingly lower mass detection capability. This development has in turn expanded the number of isotopes accessible to measurement at the levels required in the nuclear industry.

  17. Use of laser ablation-inductively coupled plasma-time of flight-mass spectrometry to identify the elemental composition of vanilla and determine the geographic origin by discriminant function analysis.

    Science.gov (United States)

    Hondrogiannis, Ellen M; Ehrlinger, Erin; Poplaski, Alyssa; Lisle, Meredith

    2013-11-27

    A total of 11 elements found in 25 vanilla samples from Uganda, Madagascar, Indonesia, and Papua New Guinea were measured by laser ablation-inductively coupled plasma-time-of-flight-mass spectrometry (LA-ICP-TOF-MS) for the purpose of collecting data that could be used to discriminate among the origins. Pellets were prepared of the samples, and elemental concentrations were obtained on the basis of external calibration curves created using five National Institute of Standards and Technology (NIST) standards and one Chinese standard with (13)C internal standardization. These curves were validated using NIST 1573a (tomato leaves) as a check standard. Discriminant analysis was used to successfully classify the vanilla samples by their origin. Our method illustrates the feasibility of using LA-ICP-TOF-MS with an external calibration curve for high-throughput screening of spice screening analysis.

  18. New approach to the calculation of relative sensitivity factors in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    The relative sensitivity factors (RSFs) of 68 elements including alkali, alkaline earth, rare earth, and transition elements, Cd, B, In, Te, I in the analysis by inductively coupled plasma mass spectrometry were determined. The ionization process in an inductively coupled plasma was found to be only approximately described by the Saha-Eggert equation. A relationship between the RSFs and the absolute electronegativities of atoms of the elements was found. This factor has the strongest effect on the accuracy of calculations of RSFs for chemically active elements. The average relative systematic error of calculations of RSFs with consideration for absolute electronegativity was reduced to 0.30

  19. Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: A review

    OpenAIRE

    Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan

    2012-01-01

    This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be pre...

  20. Study on the uptake and distribution of gadolinium based contrast agents in biological samples using laser ablation with inductively coupled plasma mass spectroscopy

    International Nuclear Information System (INIS)

    Gadolinium based contrast agents are used for magnetic resonance imaging. After their excretion by medicated patients they reach surface water passing waste water treatment plants where they are not removed sufficiently. The behavior of the contrast agents in the environment and the interaction with organisms was investigated in this work due to the toxicity of the free Gd3+ ion and the associated risks, such as accumulation in the human food chain. In this work, the two elemental analytical imaging methods laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and synchrotron radiation X-ray fluorescence analysis (SRXRF) have been used to investigate the uptake, distribution, and excretion of Gd-based contrast agents by various biological systems. Both methods were analytically characterized and compared for this application. The detection limits of gadolinium were determined under optimized conditions by LA-ICP-MS and SRXRF. With calibration by remains of dried elemental standard droplets detection limits of 0.78 pg absolute amount of gadolinium (LA-ICP-MS), respectively 89 pg (SRXRF) were reached. Based on filamentous algae as water plants the uptake and the excretion of Gd-based contrast agents were revealed. The dependence on concentration of the contrast agent in the exposition solution and the independence of temporal uptake within one to seven days were studied for duckweed. By LA-ICP-MS gadolinium was quantified in a leaf of cress plant. The verification of the results was performed by SRXRF and ICP-MS after digestion. Furthermore, the uptake and distribution of Gd-based contrast agents in higher organisms (water flea) were observed. The exact location of gadolinium was resolved by three-dimensional μ-computed tomography by the comparison of an exposed with a Gd-free water flea. In all studies, gadolinium was detected in the investigated exposed model organisms. It can be concluded that the contrast agents were taken from the environment.

  1. Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint

    International Nuclear Information System (INIS)

    This work explores the performance of laser ablation-inductively coupled plasma mass spectrometry using different types of single-collector devices (sector field and time-of-flight instrumentation) for lead isotopic analysis of bronze coins, minted in the ancient city of Bilbilis. The aim of the study was achieving sufficient discrimination power to reveal similarities and differences for coins originating from different historical periods, and to obtain information on the possible source of the lead ores used in their production, while restricting the damage inflicted to the samples such that it is not visible to the naked eye. It was found that satisfactory results (RSD in the 0.15-0.30% range for 207Pb/206Pb and 208Pb/206Pb ratios) could be finally obtained, despite the noisy nature of signals generated upon ablation of the highly inhomogeneous coins, by means of a methodology based on: (a) selection of the line profiling ablation mode; (b) use of a dual pass spray chamber that permits the simultaneous introduction of a solution (containing thallium of known isotopic composition), thus resulting in a wet plasma that showed an increased robustness towards matrix effects and (c) detection using a TOF-ICPMS unit, which proved to be much better suited to deal with the transient signals obtained, while being also sufficiently sensitive to obtain good counting statistics, owing to the high lead level (average around 5%) present in the samples. Moreover, under these conditions, the simultaneous aspiration of the thallium spike permitted accurate correction for mass discrimination, such that it was not necessary to use external matrix-matched standards for calibration.

  2. Concentrations of Th and U in human tissues determined by inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    In about 20 specimens of untreated human soft tissues, Th and U, were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS). The concentration values obtained, particularly in the case of U, tended to be lower than reported ones. In order to investigate the source of the discrepancy, human tissue samples (treated for preservation), which had been analyzed for U in the previous study by fission tracks, were analyzed again by ICP-MS. This demonstrated the difference may be a reflection of the variance between treated and untreated samples. The problems involved in the analysis and the sample treatment are discussed. (author)

  3. Determination of thorium and uranium in total diet samples by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    The Th and U contents in total diet samples were determined by inductively coupled plasma mass spectrometry (ICP-MS). The internal standardization method was adopted to compensate for non-spectral interferences arising from matrix elements in the sample solutions. Concentration levels of the order of pg ml-1 of Th and U in the total diet sample were determined easily and rapidly by using Bi as an internal standard. The mean concentrations and standard deviations of Th and U in the total diet samples were found to be 25 ± 12 and 44 ± 20 ng g-1 of ash, respectively (for n = 62). (author)

  4. Serum/plasma methylmercury determination by isotope dilution gas chromatography-inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Highlights: · We determine methylmercury in serum and plasma using isotope dilution calibration. · Separation by gas chromatography and detection by inductively coupled plasma mass spectrometry. · Data for 50 specimens provides first reference range for methylmercury in serum. · Serum samples shown to be stable for 11 months in refrigerator. - Abstract: A method for the determination of methylmercury in plasma and serum samples was developed. The method uses isotope dilution with 198Hg-labeled methylmercury, extraction into dichloromethane, back-extraction into water, aqueous-phase ethylation, purge and trap collection, thermal desorption, separation by gas chromatography, and mercury isotope specific detection by inductively coupled plasma mass spectrometry. By spiking 2 mL sample with 1.2 ng tracer, measurements in a concentration interval of (0.007-2.9) μg L-1 could be performed with uncertainty amplification factors -1 was estimated at 10 times the standard deviation of concentrations measured in preparation blanks. Within- and between-run relative standard deviations were -1, 0.35 μg L-1 and 2.8 μg L-1, with recoveries in the range 82-110%. Application of the method to 50 plasma/serum samples yielded a median (mean; range) concentration of methylmercury of 0.081 (0.091; -1. This is the first time methylmercury has been directly measured in this kind of specimen, and is therefore the first estimate of a reference range.

  5. Considerations about the detection efficiency in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Experimental investigations of analyte atomization, ionization and diffusion processes in the inductively coupled plasma applying single droplet introduction and optical emission spectroscopy provide hints how to improve the detection efficiency of inductively coupled plasma mass spectrometry. It is discussed how the flow, amount and type of injector gas, the size of droplets injected, the analyte mass, and the sampler interface of the mass spectrometer determine the position of analyte atomization and ionization as well as the magnitude of radial analyte ion diffusion at the interface of the mass spectrometer applied. - Highlights: ► Parameters determining analyte atomization and ionization in ICP's are discussed. ► Dependence of analyte diffusion on experimental conditions is described. ► Actions for improving the detection efficiency of ICP-MS are highlighted.

  6. Determination of long-lived actinides in soil leachates by inductively coupled plasma: Mass spectrometry

    International Nuclear Information System (INIS)

    Inductively coupled plasma -- mass spectrometry (ICP-MS) was used to concurrently determine multiple long-lived (t1/2 > 104 y) actinide isotopes in soil samples. Ultrasonic nebulization was found to maximize instrument sensitivity. Instrument detection limits for actinides in solution ranged from 50 mBq L-1 (239Pu) to 2 μBq L-1 (235U) Hydride adducts of 232Th and 238U interfered with the determinations of 233U and 239 Pu; thus, extraction chromatography was, used to eliminate the sample matrix, concentrate the analytes, and separate uranium from the other actinides. Alpha spectrometric determinations of 230Th, 239Pu, and the 234U/238U activity ratio in soil leachates compared well with ICP-MS determinations; however, there were some small systematic differences (ca. 10%) between ICP-MS and a-spectrometric determinations of 234U and 238U activities

  7. Determination of trace element affinities in coal by laser ablation microprobe - inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Querol, X.; Chenery, S. [CSIC, Barcelona (Spain). Institute of Earth Science `Jaume Almera`

    1995-08-01

    The occurrence, association and distribution of potentially toxic trace elements (PTTEs) in coal are basic criteria for predicting the forms and amounts of trace elements that are transferred to the environment during coal combustion processes. Previously, the determineration of the affinities of PTTEs in coal was carried out by laborious density separation and subsequent analysis of the density fractions. This study has evaluated a new means of directly determining PTTE affinities in coal by laser ablation microprobe-inductively coupled plasma mass spectrometry (LAMP-ICP-MS). The affinities were determined by a rapid semiquantitative methodology. Additionally, some preliminary quantitative concentrations were obtained using a novel calibration strategy. The spatial resolution of the LAMP-ICP-MS technique allows the analysis of single grains of macerals and minerals in polished blocks, leading to a wide range of applications in coal geochemistry. 27 refs., 4 figs., 4 tabs.

  8. Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Bua, Daniel Giuseppe; Annuario, Giovanni; Albergamo, Ambrogina; Cicero, Nicola; Dugo, Giacomo

    2016-09-01

    Objective of this study was to determine the content of Cd, Hg, As and Pb in common spices traded in the Italian market, using inductively coupled plasma-mass spectrometry (ICP-MS). The results were compared with the maximum limits established by the national Legislative Decree (LD) no. 107 implementing the Council Directive 88/388/EEC and by international organisations, such as Food and Agriculture Organization (FAO) and World Health Organization (WHO). Food safety for spices was assessed considering the tolerable weekly intake (TWI) and the provisional tolerable weekly intake (PTWI), respectively, for Cd and Hg and the 95% lower confidence limit of the benchmark dose of 1% extra risk (BMDL01) for As and Pb. Investigated elements in all samples were within the maximum limits as set by the national and international normative institutions. Nevertheless, the heavy metal content of some spices exceeded the PTWI, TWI and BMDL01, which needs attention when considering consumer's health.

  9. Stable isotope dilution analysis of hydrologic samples by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Garbarino, J.R.; Taylor, H.E.

    1987-01-01

    Inductively coupled plasma mass spectrometry is employed in the determination of Ni, Cu, Sr, Cd, Ba, Ti, and Pb in nonsaline, natural water samples by stable isotope dilution analysis. Hydrologic samples were directly analyzed without any unusual pretreatment. Interference effects related to overlapping isobars, formation of metal oxide and multiply charged ions, and matrix composition were identified and suitable methods of correction evaluated. A comparability study snowed that single-element isotope dilution analysis was only marginally better than sequential multielement isotope dilution analysis. Accuracy and precision of the single-element method were determined on the basis of results obtained for standard reference materials. The instrumental technique was shown to be ideally suited for programs associated with certification of standard reference materials.

  10. Plutonium age dating (production date measurement) by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    This paper describes rapid methods for the determination of the production date (age dating) of plutonium (Pu) materials by inductively coupled plasma mass spectrometry (ICP-MS) for nuclear forensic and safeguards purposes. One of the presented methods is a rapid, direct measurement without chemical separation using 235U/239Pu and 236U/240Pu chronometers. The other method comprises a straightforward extraction chromatographic separation, followed by ICP-MS measurement for the 234U/238Pu, 235U/239Pu, 236U/240Pu and 238U/242Pu chronometers. Age dating results of two plutonium certified reference materials (SRM 946 and 947, currently distributed as NBL CRM 136 and 137) are in good agreement with the archive purification dates. (author)

  11. Determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Björn, Erik; Nygren, Yvonne; Nguyen, Tam T. T. N.;

    2007-01-01

    A fast and robust method for the determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry was developed, characterized, and validated. Samples of isolated DNA and exosome fractions from human ovarian (2008) and melanoma (T289) cancer cell lines...... were used. To keep the sample consumption to approximately 10 microl and obtain a high robustness of the system, a flow injection sample introduction system with a 4.6-microl sample loop was used in combination with a conventional pneumatic nebulizer and a spray chamber. The system was optimized...... with respect to signal/noise ratio using a multivariate experimental design. The system proved to be well suited for routine analysis of large sample series, and several hundreds of samples could be analyzed without maintenance or downtime. The detection limit of the method was 0.12 pg (26 pg/g) platinum...

  12. Multielement Analysis of Deep-Sea Sediments by Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    XIA Ning; WU Zhaohui; GUO Dongfa; YAO De

    2008-01-01

    Marine sediments were dissolved by HNO3-HF-HCIO4 in a sealed container at low pressure; I-IF was evaporated in an open container and salts were dissolved in HCl by heating, then transferred to 2% HNO3 solution. A total of 45 elements, including Li, Be, So, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, TI, Pb, Bi, Th and U, were measured by inductively coupled plasma mass spectrometry (ICP-MS). Condi-tions and sample experiments showed that this procedure defines a good experimental method which has the advantages of clear interference, easy operation and reliable results. The concentrations of the 45 elements could be used for resource exploration, envi-ronmental assessment and academic research.

  13. Analysis of iodine in food samples by inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Todorov, Todor I; Gray, Patrick J

    2016-01-01

    This work shows a method for the determination of iodine in a variety of food samples and reference materials using inductively coupled plasma-mass spectrometry (ICP-MS) following alkaline extraction. Optimisation of the addition of organic carbon showed that a minimum of 3% 2-propanol was necessary for a constant ratio of iodine to internal standard. The limit of quantification (LOQ), calculated as 30σ for the method, was 36 ng g(-1) in solid food samples. For method validation, seven standard reference materials (SRM) and 21 fortified food samples were used. The precision (%RSD) of the measurements was in the 2-7% range. Accuracies for the SRMs were 85-105%, while the fortified food samples showed 81-119% recoveries, including a number of samples fortified at 50% of the LOQ.

  14. Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Bua, Daniel Giuseppe; Annuario, Giovanni; Albergamo, Ambrogina; Cicero, Nicola; Dugo, Giacomo

    2016-09-01

    Objective of this study was to determine the content of Cd, Hg, As and Pb in common spices traded in the Italian market, using inductively coupled plasma-mass spectrometry (ICP-MS). The results were compared with the maximum limits established by the national Legislative Decree (LD) no. 107 implementing the Council Directive 88/388/EEC and by international organisations, such as Food and Agriculture Organization (FAO) and World Health Organization (WHO). Food safety for spices was assessed considering the tolerable weekly intake (TWI) and the provisional tolerable weekly intake (PTWI), respectively, for Cd and Hg and the 95% lower confidence limit of the benchmark dose of 1% extra risk (BMDL01) for As and Pb. Investigated elements in all samples were within the maximum limits as set by the national and international normative institutions. Nevertheless, the heavy metal content of some spices exceeded the PTWI, TWI and BMDL01, which needs attention when considering consumer's health. PMID:27074712

  15. Standard practice for alternate actinide calibration for inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This practice provides guidance for an alternate linear calibration for the determination of selected actinide isotopes in appropriately prepared aqueous solutions by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). This alternate calibration is mass bias adjusted using thorium-232 (232Th) and uranium-238 (238U) standards. One of the benefits of this standard practice is the ability to calibrate for the analysis of highly radioactive actinides using calibration standards at much lower specific activities. Environmental laboratories may find this standard practice useful if facilities are not available to handle the highly radioactive standards of the individual actinides of interest. 1.2 The instrument response for a series of determinations of known concentration of 232Th and 238U defines the mass versus response relationship. For each standard concentration, the slope of the line defined by 232Th and 238U is used to derive linear calibration curves for each mass of interest using interference equ...

  16. Pulsed radio-frequency discharge inductively coupled plasma mass spectrometry for oxide analysis

    Science.gov (United States)

    Li, Weifeng; Yin, Zhibin; Hang, Wei; Li, Bin; Huang, Benli

    2016-08-01

    A direct solid sampling technique has been developed based on a pulsed radio-frequency discharge (RFD) in mixture of N2 and Ar environment at atmospheric pressure. With an averaged input power of 65 W, a crater with the diameter of 80 μm and depth of 50 μm can be formed on sample surface after discharge for 1 min, suggesting the feasibility of the pulsed RFD for sampling nonconductive solids. Combined with inductively coupled plasma mass spectrometry (ICPMS), this technique allows to measure elemental composition of solids directly with relative standard deviation (RSD) of ~ 20%. Capability of quantitative analysis was demonstrated by the use of soil standards and artificial standards. Good calibration linearity and limits of detection (LODs) in range of 10- 8-10- 9 g/g were achieved for most elements.

  17. A study of isotope ratio measurement by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    The measurement of isotopic ratios by inductively coupled plasma mass spectrometry (ICP-MS) has the benefits of ionising all metallic elements, simplifying sample preparation and reducing analysis time, when compared with thermal ionisation mass spectrometry (TIMS). However, the use of ICP-MS in isotopic ratio studies has been somewhat restricted by its failure to offer the precision and accuracy required by a variety of applications. The precision achievable by ICP-MS, typically 0.2 to 0.3% RSD, for isotopic ratios, has generally been regarded as being primarily limited by instrumental instability. An investigation of the sources of instrumental noise in ICP-MS has been undertaken, utilising noise spectral analysis as a diagnostic aid. Study of parametric variation upon noise production has identified the methods by which modulation of the ion signal occurs. Noise spectral analysis has allowed an understanding of the limitations imposed upon measurement precision by the various contributing noise sources to be established. (author)

  18. Ion kinetic energies in inductively coupled plasma/mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Ion kinetic energies in an inductively coupled plasma/mass spectrometer (ICP-MS) system have been measured with the use of a retarding potential on the analyzing quadrupole. The energies differ markedly from those previously reported in the literature. This is attributed to the elimination of any arcing of the ICP to the sampling orifice or skimmer of the ICP-MS system. In the absence of secondary discharge effects, the ion energies increase with the mass of the ion and are consistent with those expected from molecular beam sampling from a plasma with a temperature of --5000 K and a potential of --2 V. Ion energies are found to be virtually independent of aerosol gas flow, plasma power, and sample matrix composition, allowing independent optimization of plasma parameters and ion optics

  19. Serum/plasma methylmercury determination by isotope dilution gas chromatography-inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Douglas C., E-mail: douglas.baxter@alsglobal.com [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Faarinen, Mikko [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Osterlund, Helene; Rodushkin, Ilia [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Division of Geosciences, Lulea University of Technology, 977 87 Lulea (Sweden); Christensen, Morten [ALS Scandinavia AB, Maskinvaegen 2, 183 53 Taeby (Sweden)

    2011-09-09

    Highlights: {center_dot} We determine methylmercury in serum and plasma using isotope dilution calibration. {center_dot} Separation by gas chromatography and detection by inductively coupled plasma mass spectrometry. {center_dot} Data for 50 specimens provides first reference range for methylmercury in serum. {center_dot} Serum samples shown to be stable for 11 months in refrigerator. - Abstract: A method for the determination of methylmercury in plasma and serum samples was developed. The method uses isotope dilution with {sup 198}Hg-labeled methylmercury, extraction into dichloromethane, back-extraction into water, aqueous-phase ethylation, purge and trap collection, thermal desorption, separation by gas chromatography, and mercury isotope specific detection by inductively coupled plasma mass spectrometry. By spiking 2 mL sample with 1.2 ng tracer, measurements in a concentration interval of (0.007-2.9) {mu}g L{sup -1} could be performed with uncertainty amplification factors <2. A limit of quantification of 0.03 {mu}g L{sup -1} was estimated at 10 times the standard deviation of concentrations measured in preparation blanks. Within- and between-run relative standard deviations were <10% at added concentration levels of 0.14 {mu}g L{sup -1}, 0.35 {mu}g L{sup -1} and 2.8 {mu}g L{sup -1}, with recoveries in the range 82-110%. Application of the method to 50 plasma/serum samples yielded a median (mean; range) concentration of methylmercury of 0.081 (0.091; <0.03-0.19) {mu}g L{sup -1}. This is the first time methylmercury has been directly measured in this kind of specimen, and is therefore the first estimate of a reference range.

  20. Sulfur analysis by inductively coupled plasma-mass spectrometry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J.M.; García Alonso, J.I., E-mail: jiga@uniovi.es

    2015-06-01

    In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC–ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review. - Highlights: • Emphasis placed on the sulfur-specific detection by chromatographic techniques coupled on-line to ICP-MS. • Different instrumental approaches available for sulfur measurements by ICP-MS. • Quantification of proteins and the analysis of metalloproteins via sulfur by LC-ICP-MS. • Labelling procedures for metabolic applications are also included. • The measurement of natural variations in S isotope composition with multicollector ICP-MS.

  1. Sulfur analysis by inductively coupled plasma-mass spectrometry: A review

    International Nuclear Information System (INIS)

    In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC–ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review. - Highlights: • Emphasis placed on the sulfur-specific detection by chromatographic techniques coupled on-line to ICP-MS. • Different instrumental approaches available for sulfur measurements by ICP-MS. • Quantification of proteins and the analysis of metalloproteins via sulfur by LC-ICP-MS. • Labelling procedures for metabolic applications are also included. • The measurement of natural variations in S isotope composition with multicollector ICP-MS

  2. Ablation behavior and constraints on the U–Pb and Th–Pb geochronometers in titanite analyzed by quadrupole inductively coupled plasma mass spectrometry coupled to a 193 nm excimer laser

    International Nuclear Information System (INIS)

    U–Th–Pb geochronology of titanite by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a promising technique to constrain the history of igneous and metamorphic rocks. However, the quality of the resulting ages depends strongly on protocol adopted for the analyses and data reduction. There is no general agreement on the laser ablation settings and methodology that should be applied for titanite LA-ICP-MS geochronology. In particular it is essential to define an analytical procedure that could minimize the elemental fractionation for titanite U–Th–Pb geochronology, and to evaluate if non matrix-matched standards and samples (e.g. zircon and titanite) are suitable to obtain precise and accurate ages. In this study, ablation experiments were carried out in spot mode using an ArF 193 nm excimer laser coupled to a quadrupole ICP-MS, with varying fluence, spot size and repetition rate conditions. The ablation behavior of the Khan titanite reference material was described in details and compared to the Plešovice zircon standard. The ratio-of-the-mean intensity method was used for data reduction. Three sources of fractionation and systematic errors between zircon and titanite are considered together: mass bias coefficients, shape of the time-dependent fractionation, and differences of ablated volumes. Even if the laser-induced elemental fractionation and matrix effects can be minimized between the Plešovice zircon standard and the Khan titanite, a matrix-matched standardization with a titanite standard is required for precise U–Th–Pb titanite ages, as well as at low frequency and fluence conditions. - Highlights: • This study presents ablation experiments on Khan titanite compared Plešovice zircon. • Matrix effects related to laser induced elemental fractionation are monitored. • Low frequency and fluence conditions are required for precise U–Th–Pb titanite data. • The Khan titanite can hardly be substituted by a zircon

  3. Determination of platinum surface contamination in veterinary and human oncology centres using inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Janssens, T.; Brouwers, E. E M; de Vos, J. P.; de Vries, N.; Schellens, J. H M; Beijnen, J. H.

    2015-01-01

    The objective of this study was to determine the surface contamination with platinum-containing antineoplastic drugs in veterinary and human oncology centres. Inductively coupled plasma mass spectrometry was used to measure platinum levels in surface samples. In veterinary and human oncology centres

  4. Quantitative determination of trace element affinities in coal and combustoin wastes by laster ablation microprobe - inductively coupled plasma - mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chenery, S. [British Geological Survey, Nottingham (United Kingdom); Querol, X.; Fernandez-Turiel, J.L. [Institute of Earth Science, Barcelona (Spain)

    1995-12-31

    In the past the determination of trace element affinities in coal and combustion wastes has been carried out by laborious density separation and subsequent analysis of these density fractions. The present study proposes a new means of directly determining and quantifying trace element affinities in coal and combustion wastes by Laser Ablation Micro-Probe Inductively Coupled Plasma Mass Spectrometry (LAMP-ICP-MS).

  5. Sector field inductively coupled plasma mass spectrometry in the elemental and isotopic analysis of lanthanides and actinides

    International Nuclear Information System (INIS)

    Plutonium is one element which is indispensable in identifying the source and for estimating the hazardous effects of rad. The isotopic ratios of plutonium (240Pu/239Pu) and its total concentration in environmental samples were also precisely estimated by high resolution inductively coupled plasma mass spectrometry

  6. Sulfur analysis by inductively coupled plasma-mass spectrometry: A review

    Science.gov (United States)

    Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J. M.; García Alonso, J. I.

    2015-06-01

    In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC-ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review.

  7. Inductively coupled plasma-mass spectrometry: an initial assessment of the VG isotopes Plasmaquad

    International Nuclear Information System (INIS)

    The Chemical Analysis Group has been approached by a British Scientific instrument maker regarding the possibility of the group participating in a Department of Trade and Industry sponsored scheme whereby we would have a 12 month period to assess the advantages and disadvantages of a new analytical technique, Inductively Coupled Plasma-Mass Spectrometry. This report details our initial assessment of the instrument, carried out in order to decide whether to participate in the scheme. We have attempted to discover whether the instrument meets the claims made of it in advertising literature, and have attempted to compare the technique with another, proven technique, Inductively Coupled Plasma - Optical Emission Spectroscopy. The Plasmaquad offers excellent sensitivity for almost all of the elements of the periodic table, giving a distinct improvement over the Chemical Analysis Group's present capabilities for many elements. The isotope ratio measuring ability is important, as the Group has no such capability at the moment and a demand for this type of measurement is foreseen. Our conclusions, while inevitably somewhat subjective, form the basis for recommending Harwell to participate in the scheme. (author)

  8. Rapid determination of uranium isotopes in urine by inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Shi, Y; Dai, X; Collins, R; Kramer-Tremblay, S

    2011-08-01

    Following a radiological or nuclear emergency involving uranium exposure, rapid analytical methods are needed to analyze the concentration of uranium isotopes in human urine samples for early dose assessment. The inductively coupled plasma mass spectrometry (ICP-MS) technique, with its high sample throughput and high sensitivity, has advantages over alpha spectrometry for uranium urinalysis after minimum sample preparation. In this work, a rapid sample preparation method using an anion exchange chromatographic column was developed to separate uranium from the urine matrix. A high-resolution sector field ICP-MS instrument, coupled with a high sensitivity desolvation sample introduction inlet, was used to determine uranium isotopes in the samples. The method can analyze up to 24 urine samples in two hours with the limits of detection of 0.0014, 0.10, and 2.0 pg mL(-1) for (234)U, (235)U, and (238)U, respectively, which meet the requirement for isotopic analysis of uranium in a radiation emergency. PMID:21709502

  9. Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Lichte, F.E.; Meier, A.L.; Crock, J.G.

    1987-01-01

    A method of analysis of geological materials for the determination of the rare-earth elements using the Inductively coupled plasma mass spectrometric technique (ICP-MS) has been developed. Instrumental parameters and factors affecting analytical results have been first studied and then optimized. Samples are analyzed directly following an acid digestion, without the need for separation or preconcentration with limits of detection of 2-11 ng/g, precision of ?? 2.5% relative standard deviation, and accuracy comparable to inductively coupled plasma emission spectrometry and instrumental neutron activation analysis. A commercially available ICP-MS instrument is used with modifications to the sample introduction system, torch, and sampler orifice to reduce the effects of high salt content of sample solutions prepared from geologic materials. Corrections for isobaric interferences from oxide ions and other diatomic and triatomic ions are made mathematically. Special internal standard procedures are used to compensate for drift in metahmetal oxide ratios and sensitivity. Reference standard values are used to verify the accuracy and utility of the method.

  10. Applications of inductively coupled plasma-mass spectrometry to radionuclide determinations

    International Nuclear Information System (INIS)

    The symposium, Applications of Inductively Coupled-Mass Spectrometry to Radionuclide Determinations, was held in Gatlinburg, Tennessee on 13--14 October 1994. Despite the fact that the United States Department of Energy (DOE) is changing the mission of many facilities from defense-related nuclear materials production to site remediation and monitoring, the need to fully characterize wastes and environmental samples, combined with the need to monitor worker radiation exposure by means of internal dosimetry, continues to increase the demand for radioisotope determinations. Active nuclear facilities in the United States and elsewhere are strongly emphasizing these determinations, and they are concurrently demanding better and faster analysis techniques to assure the quality of the materials that they supply for nuclear energy production and other nuclear technologies. Many alternatives to radiometry are being studied, however, one of the most promising techniques for radionuclide determinations appears to be inductively coupled plasma - mass spectrometry (ICP-MS). The symposium was a continuation of work started by the Plasma Spectroscopy task group of ASTM Subcommittee C26.05 on Nuclear Fuel Cycle Test Methods, but the DOE Office of Transportation, Emergency Management, and Analytical Services (EM-76) was involved in the genesis of the symposium. Papers covered applications in nuclear material production, high-level waste characterization, environmental monitoring and waste management, and internal dosimetry and health protection. Eleven papers have been processed separately for inclusion on the data base

  11. Trace metal analysis of road dust by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Dust from roads in an air impingement zone close to anthropogenic sources of air pollutants can be a concern for people living in the immediate vicinity. The Ministry of the Environment (MOE) has conducted a case study to monitor the concentration of uranium, strontium, thorium and arsenic in road dust from one such area. A method for the analysis of road dust by inductively coupled plasma mass spectrometry (ICP-MS) has been developed with detection limits in the ng/1 range. A digestion technique has been developed by conducting experiments using single and combinations of acids in open-vessel wet digestions. Accuracy has been determined by the use of matrix representative certified reference materials (CRMs). Digestion precision was determined by elemental concentration measurements of the most representative CRM through replicates. Spike recovery data were from 95% to 110% for all elements, and inter-method comparison studies between hydride generation atomic absorption spectrometry (AAS) inductively coupled plasma atomic emission spectrometry (ICP-AES) and ICP-MS for arsenic and strontium show good agreement. (author)

  12. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    Energy Technology Data Exchange (ETDEWEB)

    Luong, E.

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 {+-} 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 {+-} 0.4 ng/g, while the certified value is 11.5 {+-} 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 {+-} 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and {beta}-cyclodextrin are chosen for the study, initial observation of spectral interference of {sup 13}C{sup +} with {sup 12}C{sup 1}H{sup +} comes from the incomplete dissociation of myoglobin and/or {beta}-cyclodextrin.

  13. Determination of zinc stable isotopes in biological materials using isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    A method is described for using isotope dilution to determine both the amount of natural zinc and enriched isotopes of zinc in biological samples. Isotope dilution inductively coupled plasma mass spectrometry offers a way to quantify not only the natural zinc found in a sample but also the enriched isotope tracers of zinc. Accurate values for the enriched isotopes and natural zinc are obtained by adjusting the mass count rate data for measurable instrumental biases. Analytical interferences from the matrix are avoided by extracting the zinc from the sample matrix using diethylammonium diethyldithiocarbamate. The extraction technique separates the zinc from elements which form interfering molecular ions at the same nominal masses as the zinc isotopes. Accuracy of the method is verified using standard reference materials. The detection limit is 0.06 μg Zn per sample. Precision of the abundance ratios range from 0.3-0.8%. R.S.D. for natural zinc concentrations is about 200-600 μg g-1. The accuracy and precision of the measurements make it possible to follow enriched isotopic tracers of zinc in biological samples in metabolic tracer studies. (author). 19 refs.; 1 fig., 4 tabs

  14. Arsenic speciation in soil using high performance liquid chromatography/inductively coupled plasma/mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bass, D.A.; Yaeger, J.S.; Parish, K.J.; Crain, J.S.; Kiely, J.T.; Gowdy, M.J. [Argonne National Lab., IL (United States); Mohrman, G.B.; Besmer, M.G. [Rocky Mountain Arsenal, Commerce City, CO (United States)

    1996-08-01

    A method has been developed to identify and quantify As(III), As(V), and organoarsenic compounds in soil samples from the Rocky Mountain Arsenal (RMA) by high performance liquid chromatography/inductively coupled plasma/mass spectrometry (HPLC/ICP/MS). The soils were extracted using tetrabutylammonium hydroxide (TBAH) and sonication. The percentages of As(III), As(V), and organoarsenic species extracted from soil samples were 30, 50, and 100 respectively. The arsenic species were not altered during the extraction process. They were separated by reversed-phase, ion-pairing, HPLC using a microbore Inertsil-ODS{trademark} column. The HPLC column effluent was introduced into an ICP/MS system using a direct injection nebulizer (DIN). Detection limits of less than 1 pg were readily obtained for each arsenic species. Internal standards are recommended to increase accuracy and precision. Soil samples spiked with arsenic oxide, sodium arsenate, dimethylarsinic acid (DMAA), and chlorovinyl arsenious acid (CVAA) were extracted, identified and quantified with the HPLC/ICP/MS system. The soil samples were analyzed in support of the analytical needs of a thermal desorption treatability study being conducted at the RMA.

  15. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  16. Studies of selenium and xenon in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bricker, T.

    1994-07-27

    Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon`s role in the reduction of polyatomic ions. 155 refs.

  17. Studies of selenium and xenon in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon's role in the reduction of polyatomic ions. 155 refs

  18. Determination of metals content from wines by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Full text: Wine is a widely consumed beverage with thousands of years of tradition. Wine composition strongly determines its quality besides having a great relevance on wine characterization, tipyfication and frauds detection. Wine composition is influenced by many and diverse factors corresponding to the specific production area, such as grape variety, soil and climate, culture, yeast, winemaking practices, transport and storage. Daily consumption of wine in moderate quantities contributes significantly to the requirements of the human organism for essential elements such as Cr, Cu, Zn, Fe, Mn, Co, Ni and Sr. On the other hand, several metals, such as Pb and Cd , are known to be potentially toxic. The objective of this work was to develop a method to determine the metals content in wine samples from Romania. Three samples of difference white wines available in the supermarket was analyzed for identify the presence of: Cr, Cu, Zn, Fe, Mn, Pb, Cd, Co, Ni and Sr by inductively coupled plasma mass spectrometry (ICP-MS). (authors)

  19. [Analysis of Trace Inorganic Elements in Castor Oil by Inductively Coupled Plasma Mass Spectrometry].

    Science.gov (United States)

    Li, Tan-ping; Xie, Hua-lin; Nie, Xi-du

    2015-10-01

    A method for the determination of Na, Mg, Si, P, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Hg and Pb in castor oil after direct dilution with ethanol by inductively coupled plasma mass spectrometry (ICP-MS) was established. The sample was diluted by ethanol before ICP-MS determination. The condensation and deposition of high concentrations of carbon in mass cone interface and ion lens, which will decrease the sensitivity of element analysis, were avoided effectively by introducing O2 to plasma. The mass spectral interferences were eliminated by octopole reaction system (ORS). The matrix effects were calibrated to using Sc, Ge, Rh and Ir as internal standard elements. Au standard solution, which could form amalgam alloy with Hg, was dropped to eliminate the memory effect of Hg. The results show that the correlation coefficient for analyte is no less than 0.999 5, the detection limits is in the range of 0.06 - 20.1 ng x L(-1), the recovery is in the range of 990.4% - 110.2%, and the RSD is less than 4.8%. This method was very fast, simple and accurate to simultaneously analyze multi-elements in castor oil.

  20. Accurate determination of silver nanoparticles in animal tissues by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Veverková, Lenka [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Hradilová, Šárka [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Milde, David, E-mail: david.mlde@upol.cz [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Panáček, Aleš [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Skopalová, Jana [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Kvítek, Libor [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Petrželová, Kamila [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); National Reference Laboratory for Chemical Elements, Department of Residues in Kroměříž, State Veterinary Institute Olomouc, Hulínská 2286, CZ 767 60 Kroměříž (Czech Republic); and others

    2014-12-01

    This study examined recoveries of silver determination in animal tissues after wet digestion by inductively coupled plasma mass spectrometry. The composition of the mineralization mixture for microwave assisted digestion was optimized and the best recoveries were obtained for mineralization with HNO{sub 3} and addition of HCl promptly after digestion. The optimization was performed on model samples of chicken meat spiked with silver nanoparticles and a solution of ionic silver. Basic calculations of theoretical distribution of Ag among various silver-containing species were implemented and the results showed that most of the silver is in the form of soluble complexes AgCl{sub 2}{sup −} and AgCl{sub 3}{sup 2−} for the optimized composition of the mineralization mixture. Three animal tissue certified reference materials were then analyzed to verify the trueness and precision of the results. - Highlights: • We performed detailed optimization of microwave assisted digestion procedure of animal tissue used prior to Ag determination by ICP-MS. • We provide basic equilibrium calculations to give theoretical explanation of results from optimization of tested mineralization mixtures. • Results from method validation that was done by analysis of several matrix CRMs are presented.

  1. Determination of copper, molybdenum and selenium in biological reference materials by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    In a contribution to the elemental characterization of 10 new reference materials, Bovine Muscle Powder (136), Corn Starch (162), Hard Red Spring Wheat Flour (165), Soft Winter Wheat Flour (166), Whole Milk Powder (183), Wheat Gluten (184), Corn Bran (186). Durum Wheat Flour (187), Whole Egg Powder (188) and Microcrystalline Cellulose (189), the total concentrations of Cu, Mo and Se were determined by the application of an analytical method based on isotope dilution inductively coupled plasma mass spectrometry. Cu and Mo contents were quantified by measurement of 65Cu/63Cu and 97Mo/100Mo isotopic ratios following spiking with 65Cu and 97Mo and digestion with nitric acid. Selenium was separated as hydrogen selenide from the matrix using sodium borohydride after spiking with 82Se and acid digestion-dry ashing and quantified by measurement of the 82Se/78Se isotopic ratio. Comparison of these results with those from a variety of other methods and assessment of the procedures using certified reference materials indicated that the determinations of Cu, Mo and Se were performed without analytical bias. (orig.)

  2. [Determination of Heavy Metal Elements in Diatomite Filter Aid by Inductively Coupled Plasma Mass Spectrometry].

    Science.gov (United States)

    Nie, Xi-du; Fu, Liang

    2015-11-01

    This study established a method for determining Be, Cr, Ni, As, Cd, Sb, Sn, Tl, Hg and Pb, total 10 heavy metals in diatomite filter aid. The diatomite filter aid was digested by using the mixture acid of HNO₃ + HF+ H₃PO₄ in microwave system, 10 heavy metals elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). The interferences of mass spectrometry caused by the high silicon substrate were optimized, first the equipment parameters and isotopes of test metals were selected to eliminate these interferences, the methane was selected as reactant gas, and the mass spectral interferences were eliminated by dynamic reaction cell (DRC). Li, Sc, Y, In and Bi were selected as the internal standard elements to correct the interferences caused by matrix and the drift of sensitivity. The results show that the detection limits for analyte is in the range of 3.29-15.68 ng · L⁻¹, relative standard deviations (RSD) is less than 4.62%, and the recovery is in the range of 90.71%-107.22%. The current method has some advantages such as, high sensitivity, accurate, and precision, which can be used in diatomite filter aid quality control and safety estimations. PMID:26978934

  3. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles. PMID:21111176

  4. Depleted uranium analysis in blood by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Todorov, T.I.; Xu, H.; Ejnik, J.W.; Mullick, F.G.; Squibb, K.; McDiarmid, M.A.; Centeno, J.A.

    2009-01-01

    In this study we report depleted uranium (DU) analysis in whole blood samples. Internal exposure to DU causes increased uranium levels as well as change in the uranium isotopic composition in blood specimen. For identification of DU exposure we used the 235U/238U ratio in blood samples, which ranges from 0.00725 for natural uranium to 0.002 for depleted uranium. Uranium quantification and isotopic composition analysis were performed by inductively coupled plasma mass spectrometry. For method validation we used eight spiked blood samples with known uranium concentrations and isotopic composition. The detection limit for quantification was determined to be 4 ng L-1 uranium in whole blood. The data reproduced within 1-5% RSD and an accuracy of 1-4%. In order to achieve a 235U/238U ratio range of 0.00698-0.00752% with 99.7% confidence limit a minimum whole blood uranium concentration of 60 ng L??1 was required. An additional 10 samples from a cohort of veterans exposed to DU in Gulf War I were analyzed with no knowledge of their medical history. The measured 235U/ 238U ratios in the blood samples were used to identify the presence or absence of DU exposure within this patient group. ?? 2009 The Royal Society of Chemistry.

  5. Serum/plasma methylmercury determination by isotope dilution gas chromatography-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Baxter, Douglas C; Faarinen, Mikko; Österlund, Heléne; Rodushkin, Ilia; Christensen, Morten

    2011-09-01

    A method for the determination of methylmercury in plasma and serum samples was developed. The method uses isotope dilution with (198)Hg-labeled methylmercury, extraction into dichloromethane, back-extraction into water, aqueous-phase ethylation, purge and trap collection, thermal desorption, separation by gas chromatography, and mercury isotope specific detection by inductively coupled plasma mass spectrometry. By spiking 2 mL sample with 1.2 ng tracer, measurements in a concentration interval of (0.007-2.9) μg L(-1) could be performed with uncertainty amplification factors levels of 0.14 μg L(-1), 0.35 μg L(-1) and 2.8 μg L(-1), with recoveries in the range 82-110%. Application of the method to 50 plasma/serum samples yielded a median (mean; range) concentration of methylmercury of 0.081 (0.091; methylmercury has been directly measured in this kind of specimen, and is therefore the first estimate of a reference range.

  6. Inductively-coupled plasma mass spectrometry in proteomics, metabolomics and metallomics studies.

    Science.gov (United States)

    Mounicou, Sandra; Szpunar, Joanna; Lobinski, Ryszard

    2010-01-01

    The potential of inductively-coupled plasma mass spectrometry (ICP-MS) and its complementarity to soft- ionization MS techniques are discussed in the context of the analysis for biomolecules. ICP-MS offers detection limits in the attomolar range, regardless of the molecular environment of the target element. The sensitivity is hardly affected by the sample matrix, chromatographic mobile phase, or co-eluted compounds. The abundance sensitivity over six decades and the linear dynamic range over nine decades make simultaneous multi-isotopic analysis routinely possible. The manuscript discusses the state-of-the-art of ICP-MS for the detection of proteins in gel electrophoresis and of peptides in 2D high-performance liquid chromatography. The possibilities of quantification to the degree of some post-translational modifications are highlighted. Attention is also paid to the role of ICP-MS in protein quantification via metal-coded labeling and to the use of differentially-labeled antibodies for the multiplexed biomarker analysis. The key role of ICP-MS in the emerging area of metallomics is briefly discussed.

  7. Unique applications of solvent removal in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, M.

    1997-01-10

    Inductively coupled plasma mass spectrometry (ICP-MS) is the technique of choice for rapid, high precision, semiquantitative elemental and isotopic analysis for over 70 elements. Less than 20 years after the first mass spectrum was obtained by ICP-MS, this technique has applications in clinical chemistry, geochemistry, the semiconductor industry, the nuclear industry, environmental chemistry, and forensic chemistry. The determination of many elements, though, by ICP-MS is complicated by spectral interferences from background species, interelement spectral overlaps, and polyatomic ions of matrix elements. The emphasis of this thesis is the unique applications of solvent removal using cryogenic and membrane desolvation. Chapter 1 is a general introduction providing background information concerning the need for these methods and some information about the methods themselves. Chapter 5 discusses general conclusions and general observations pertaining to this work. Chapters 2, 3, and 4 have been processed separately for inclusion on the database. Chapter 2 describes a method to screen urine samples for vanadium using cryogenic desolvation. Chapter 3 compares solvent removal by cryogenic and membrane desolvation. Chapter 4 describes the use of cool plasma conditions for the determination of potassium in the presence of excess sodium by ICP-MS.

  8. [Analysis of Trace Inorganic Elements in Castor Oil by Inductively Coupled Plasma Mass Spectrometry].

    Science.gov (United States)

    Li, Tan-ping; Xie, Hua-lin; Nie, Xi-du

    2015-10-01

    A method for the determination of Na, Mg, Si, P, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Hg and Pb in castor oil after direct dilution with ethanol by inductively coupled plasma mass spectrometry (ICP-MS) was established. The sample was diluted by ethanol before ICP-MS determination. The condensation and deposition of high concentrations of carbon in mass cone interface and ion lens, which will decrease the sensitivity of element analysis, were avoided effectively by introducing O2 to plasma. The mass spectral interferences were eliminated by octopole reaction system (ORS). The matrix effects were calibrated to using Sc, Ge, Rh and Ir as internal standard elements. Au standard solution, which could form amalgam alloy with Hg, was dropped to eliminate the memory effect of Hg. The results show that the correlation coefficient for analyte is no less than 0.999 5, the detection limits is in the range of 0.06 - 20.1 ng x L(-1), the recovery is in the range of 990.4% - 110.2%, and the RSD is less than 4.8%. This method was very fast, simple and accurate to simultaneously analyze multi-elements in castor oil. PMID:26904837

  9. Accurate determination of silver nanoparticles in animal tissues by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    This study examined recoveries of silver determination in animal tissues after wet digestion by inductively coupled plasma mass spectrometry. The composition of the mineralization mixture for microwave assisted digestion was optimized and the best recoveries were obtained for mineralization with HNO3 and addition of HCl promptly after digestion. The optimization was performed on model samples of chicken meat spiked with silver nanoparticles and a solution of ionic silver. Basic calculations of theoretical distribution of Ag among various silver-containing species were implemented and the results showed that most of the silver is in the form of soluble complexes AgCl2− and AgCl32− for the optimized composition of the mineralization mixture. Three animal tissue certified reference materials were then analyzed to verify the trueness and precision of the results. - Highlights: • We performed detailed optimization of microwave assisted digestion procedure of animal tissue used prior to Ag determination by ICP-MS. • We provide basic equilibrium calculations to give theoretical explanation of results from optimization of tested mineralization mixtures. • Results from method validation that was done by analysis of several matrix CRMs are presented

  10. Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Christopher Hysjulien [Ames Lab., Ames, IA (United States)

    2012-01-01

    This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows that MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.

  11. Using inductively coupled plasma-mass spectrometry for calibration transfer between environmental CRMs.

    Science.gov (United States)

    Turk, G C; Yu, L L; Salit, M L; Guthrie, W F

    2001-06-01

    Multielement analyses of environmental reference materials have been performed using existing certified reference materials (CRMs) as calibration standards for inductively coupled plasma-mass spectrometry. The analyses have been performed using a high-performance methodology that results in comparison measurement uncertainties that are significantly less than the uncertainties of the certified values of the calibration CRM. Consequently, the determined values have uncertainties that are very nearly equivalent to the uncertainties of the calibration CRM. Several uses of this calibration transfer are proposed, including, re-certification measurements of replacement CRMs, establishing traceability of one CRM to another, and demonstrating the equivalence of two CRMs. RM 8704, a river sediment, was analyzed using SRM 2704, Buffalo River Sediment, as the calibration standard. SRM 1632c, Trace Elements in Bituminous Coal, which is a replacement for SRM 1632b, was analyzed using SRM 1632b as the standard. SRM 1635, Trace Elements in Subbituminous Coal, was also analyzed using SRM 1632b as the standard. PMID:11451248

  12. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles.

  13. Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drugs

    Science.gov (United States)

    Ossipov, K.; Seregina, I. F.; Bolshov, M. A.

    2016-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in the analysis of biological samples (whole blood, serum, blood plasma, urine, tissues, etc.) and pharmaceutical drugs. The shortcomings of this method related to spectral and non-spectral interferences are manifested in full measure in determination of the target analytes in these complex samples strongly differing in composition. The spectral interferences are caused by similarity of masses of the target component and sample matrix components. Non-spectral interferences are related to the influence of sample matrix components on the physicochemical processes taking place during formation and transportation of liquid sample aerosols into the plasma, on the value and spatial distribution of plasma temperature and on the transmission of the ion beam from the interface to mass spectrometer detector. The review is devoted to analysis of different mechanisms of appearance of non-spectral interferences and to ways for their minimization or elimination. Special attention is paid to the techniques of biological sample preparation, which largely determine the mechanisms of the influence of sample composition on the results of element determination. The ways of lowering non-spectral interferences by instrumental parameter tuning and application of internal standards are considered. The bibliography includes 189 references.

  14. Isotope ratio analysis of lead in biological materials by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Inductively coupled plasma mass spectrometry (ICP-MS) allowed 0.2-0.3% imprecision (1 sigma) in 204Pb/206Pb 207Pb/'206Pb, and 208Pb/206Pb measurements at the 20-100 ppb level, which was precise enough to detect some of the isotopic variations observed in nature. Mass discrimination could be corrected within ±0.5% of the true value by periodical analysis of standard reference material of known lead isotopic composition. As a separation method for lead in human bone, which contains enormous amounts of calcium and phosphorus, anion exchange of the Pb-Br complex was found to be effective. Lead isotope ratios in bone, measured by ICP-MS after separation, were consistent with those measured by thermal ionization mass spectrometry. Hair matrix did not have any influence on the accuracy and precision of the analysis; a digested sample could be directly analyzed and this offered rapid sample throughput. Preliminary data on lead isotope ratios in bone and hair from prehistoric and contemporary Japanese are presented. (author)

  15. Hydride interference on the determination of minor actinide isotopes by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Hydrogen adducts of the major naturally occurring actinide isotopes 232Th and 238U were studied using an inductively coupled plasma mass spectrometer. The hydride:atomic ion ratios for both elements varied as a function of the parameters that were studied, i.e., nebulizer flow rate, solution uptake rate and desolvation conditions. When the instrument sensitivity for U and Th was optimized, 232ThH+:232Th+ was found to be (3.9±0.2) x 10-5 with pneumatic nebulization and (2.10±0.07) x 10-5 with ultrasonic nebulization. Under the same conditions, 238UH+:238U+ was found to be (3.2±0.2) x 10-5 and (1.8±0.1) x 10-5 using pneumatic and ultrasonic nebulization, respectively. Conditions that reduced hydrogen number density and/or increased plasma temperature decreased the hydride:atomic ion ratio. Such conditions are best if 233U and 239Pu are to be determined in the presence of 232Th and 238U. (Author)

  16. Determination of long-lived radioisotopes using electrothermal vaporization-inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    A general method for the determination of long-lived radioisotopes by integrating electrothermal vaporization and inductively coupled plasma-mass spectrometry (ETV-ICP-MS) to vaporize environmental samples with complex inorganic matrices is described. The method required no sample pre-treatment and minimized sample size. The rationale was to use chemical modifiers such as CHF3 to form metal fluorides with much lower boiling-points than other metal compounds (such as oxides and carbides). Given sufficiently high temperatures and long reaction times, samples in other chemical forms are converted into elemental halides and vaporized. The characterization and application of ETV-ICP-MS for the determination of radioisotopes is described. The detection limits for 99Tc, 238U, 236U, 232Th, 230Th and 226Ra were similar to those obtained with ultrasonic nebulization (USN-ICP-MS). Absolute detection limits ranged from 0.6 fg for 226Ra to 5 fg for 238U. Analytical calibration plots were linear over a range of 2-3 orders of magnitude. Matrix effects caused by Group IA and IIA elements were minimized by changing the nature of the sample and by using temporal-thermal programming without affecting analytical performance. Comparison studies between ETV-ICP-MS and classical radiometric techniques were performed for various environmental samples. (author)

  17. Application of inductively coupled plasma mass spectrometry to the study of environmental radioactivity

    International Nuclear Information System (INIS)

    Applications of inductively coupled plasma mass spectrometry (ICP-MS) to the determination of long-lived radionuclides in environmental samples were summarized. In order to predict the long-term behavior of the radionuclides, related stable elements were also determined. Compared with radioactivity measurements, the ICP-MS method has advantages in terms of its simple analytical procedures, prompt measurement time, and capability of determining the isotope ratio such as 240Pu/239Pu, which can not be separated by radiation. Concentration of U and Th in Japanese surface soils were determined in order to determine the background level of the natural radionuclides. The 235U/238U ratio was successfully used to detect the release of enriched U from reconversion facilities to the environment and to understand the source term. The 240Pu/239Pu ratios in environmental samples varied widely depending on the Pu sources. Applications of ICP-MS to the measurement of I and Tc isotopes were also described. The ratio between radiocesium and stable Cs is useful for judging the equilibrium of deposited radiocesium in a forest ecosystem. (author)

  18. Investigation on elemental and isotopic fractionation during 196 nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry

    OpenAIRE

    Horn, I.; Friedhelm von Blanckenburg;  

    2007-01-01

    Despite the large number of successful applications of laser ablation, elemental and isotopic fractionation coupled to inductively coupled plasma mass spectrometry (ICP-MS) remain as the main limitations for many applications of this technique in the fields of analytical chemistry and Earth Sciences. A substantial effort has been made to control such fractionations, which are well-established features of nanosecond laser ablation systems. Technological advancements made over the past decade n...

  19. Photochemical vapor generation of lead for inductively coupled plasma mass spectrometric detection

    Science.gov (United States)

    Duan, Hualing; Zhang, Ningning; Gong, Zhenbin; Li, Weifeng; Hang, Wei

    2016-06-01

    Photochemical vapor generation (PCVG) of lead was successfully achieved with a simplified and convenient system, in which only low molecular weight organic acid and a high-efficiency photochemical reactor were needed. The reactor was used to generate lead volatile species when a solution of lead containing a small amount of low molecular weight organic acid was pumped through. Several factors, including the concentration of acetic acid, the concentration of hydrochloride acid, and the irradiation time of UV light were optimized. Under the optimal conditions, including the addition of 0.90% (v/v) acetic acid and 0.03% (v/v) hydrochloride acid, and irradiation time of 28 s, intense and repeatable signal of lead volatile species was successfully obtained and identified with inductively coupled plasma mass spectrometry (ICPMS). In addition, the effects from inorganic anions and transition metal ions, including Cl-, NO3-, SO42 -, Cu2 +, Fe3 +, Co2 + and Ni2 +, were investigated, which suggests that their suppression to the PCVG of lead was in the order of Cl- < SO42 - < NO3- for anions and Ni2 +, Co2 + < Fe3 + < Cu2 + for transition metal ions. Under optimized conditions, relative standard derivation (RSD) of 4.4% was achieved from replicate measurements (n = 5) of a standard solution of 0.1 μg L- 1 lead. And, the limit of quantitation (LOQ, 10σ) of 0.012 μg L- 1 lead was obtained using this method and the method blank could be easily controlled down to 0.023 μg L- 1. To validate applicability of this method, it was also employed for the determination of lead in tap water, rain water and lake water.

  20. Characteristics of flow injection inductively coupled plasma mass spectrometry for boron analysis in steels

    International Nuclear Information System (INIS)

    A method for the determination of Boron in steels by FI-ICP-MS is described. It is shown that flow injection (FI) can alleviate problems arising from high amounts of dissolved solids in Inductively Coupled Plasma Mass Spectrometry (ICP-MS) due to the capability to operate with microliter amounts of sample with a rapid sample rate. Sample dissolution was carried out in a microwave oven using diluted aqua regia (HCl+HNO3, 3+1) and high pressure digestion vessels, which gave notable advantages over conventional dissolution techniques, such as lower costs, greater volatile retention, reduced contamination and faster dissolution rates. The operating parameters in flow injection ICP-MS, such as carrier flow rate, nebulizer flow rate, and injection volume were established. The detection limit obtained when direct sample nebulization was used, with a 0.05% m/v Fe concentration, was 1.2 μg·g-1 B, compared to a detection limit of 0.2 μg·g-1 when the FI system was used with samples containing a higher concentration of dissolved solids (0.5% m/v Fe). The influence of the internal standard on precision and accuracy was studied and Beryllium was selected as the internal standard. The RSDs obtained for four peak area determinations of 200 μl injection volumes of a solution of 100 ng·ml-1 B in the presence of 0.5% m/v Fe were below 1.5%. The accuracy of the method proposed was verified by analyzing Reference Materials (EURONORM-CRM 097-1; BCS 456, 457 and 460; NBS 361, 363 and 365), using an external calibration system with calibration samples, prepared from a standard Boron solution, in the same acid medium as the test sample solutions. (author)

  1. Simultaneous electrothermal vaporization and nebulizer sample introduction system for inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    The novel analytical application of the combination of an inline electrothermal vaporization (ETV) and nebulization source for inductively coupled plasma mass spectrometry (ICP-MS) has been studied. Wet plasma conditions are sustained during ETV introduction by 200 mL/min gas flow through the nebulizer, which is merged with the ETV transport line at the torch. The use of a wet plasma with ETV introduction avoided the need to change power settings and torch positions that normally accompany a change from wet to dry plasma operating conditions. This inline-ETV source is shown to have good detection limits for a variety of elements in both HNO3 and HCl matrices. Using the inline-ETV source, improved limits of detection (LOD) were obtained for elements typically suppressed by polyatomic interferences using a nebulizer. Specifically, improved LODs for 51V and 53Cr suffering from Cl interferences (51ClO+ and 53ClO+ respectively) in a 1% HCl matrix were obtained using the inline-ETV source. LODs were improved by factors of 65 and 22 for 51V and 53Cr, respectively, using the inline-ETV source compared to a conventional concentric glass nebulizer. For elements without polyatomic interferences, LODs from the inline-ETV were comparable to conventional dry plasma ETV-ICP time-of-flight mass spectrometry results. Lastly, the inline-ETV source offers a simple means of changing from nebulizer introduction to inline-ETV introduction without extinguishing the plasma. This permits, for example, the use of the time-resolved ETV-ICP-MS signals to distinguish between an analyte ion and polyatomic isobar.

  2. Quantitative determination of trace element affinities in coal and combustion wastes by laser ablation microprobe - inductively coupled plasma - mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chenery, S.; Querol, X.; Fernandez-Turiel, J.L. [British Geological Survey, Nottingham (United Kingdom). Analytical Geochemistry

    1995-12-31

    Proposes a new means of directly determining and quantifying trace element affinities in coal and combustion wastes (fly ash) by laser ablation micro-probe inductively coupled plasma mass spectrometry. Determination of trace element affinities between different organic and inorganic phases was achieved, in particular the determination of trace element contents of different diagenetic phases of iron sulphides. For fly ash higher concentrations of certain trace elements at the surfaces of particles was shown. 3 refs., 4 figs.

  3. Analysis of Mineral and Heavy Metal Content of Some Commercial Fruit Juices by Inductively Coupled Plasma Mass Spectrometry

    OpenAIRE

    Adriana Dehelean; Dana Alina Magdas

    2013-01-01

    The presence of potentially toxic elements and compounds in foodstuffs is of intense public interest and thus requires rapid and accurate methods to determine the levels of these contaminants. Inductively coupled plasma mass spectrometry is a powerful tool for the determination of metals and nonmetals in fruit juices. In this study, 21 commercial fruit juices (apple, peach, apricot, orange, kiwi, pear, pineapple, and multifruit) present on Romanian market were investigated from the heavy meta...

  4. Determination of Arsenic and Other Trace Elements in Bottled Waters by High Resolution Inductively Coupled Plasma Mass Spectrometry

    OpenAIRE

    Fiket, Željka; ROJE, Vibor; Mikac, Nevenka; Kniewald, Goran

    2007-01-01

    Concentrations of arsenic and other trace elements in 18 different brands of bottled, mineral and spring, water in Croatia were investigated. For comparison, samples of tap water from Rijeka, Lourdes and Zagreb were also analyzed. The high resolution inductively coupled plasma mass spectrometry (HR ICP-MS) was used for the analysis. Results obtained were compared to Croatian maximum allowable levels for trace elements in drinking, mineral and tap water, as well as WHO and EPA drinking water s...

  5. Determination of trace and ultra-trace elements in Dergaon meteorite by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    In this paper, a detailed methodology for high precision measurement of several trace and ultra-trace elements including REE and PGE have been presented using effective sample preparation techniques and inductively coupled plasma mass spectrometry. Discussion is focussed on aspects, such as total dissolution and recovery of all elements, minimization of oxide and doubly-charged and other polyatomic ion interferences, calibration by matrix matching standards, accuracy and precision

  6. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    Science.gov (United States)

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  7. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    Science.gov (United States)

    Arnquist, Isaac J.; Holcombe, James A.

    2012-10-01

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (Kapp) and intrinsic (Kint) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu2 + for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu2 + and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu2 + can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu2 + ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data Kapp and Kint were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log Kapp values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log Kint values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log Kint at pH 9.53 was in good agreement with literature values obtained from alternative methods, Kint at pH 7.93 was about 2.5 × larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the "intrinsic" binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at pH 7.93 in order to determine the effect of a denaturant on metal binding. Results for both log

  8. Developments in and applications of capillary electrophoresis inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    This project has set out to design and optimise a robust and efficient interface for capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) and to investigate the application of the technique in elemental speciation studies. An interface was constructed using a commercial microconcentric nebuliser (MCN) and a cyclonic spray chamber. The cyclonic spray chamber was designed specifically to provide rapid sample response and washout and to minimise sample dispersion. Isoforms of the heavy metal binding protein, metallothionein, were separated and the bound metals detected to characterise the interface. Suction from the self-aspirating nebuliser was identified as the principal factor controlling electrophoretic resolution. To maintain resolution, two methods for counterbalancing the nebuliser suction were investigated. In the first method an optimised make-up flow was employed, and in the second a negative pressure was applied to the buffer vial during the separation. The negative pressure method was preferred because it did not significantly compromise sensitivity. The MCN was found to be prone to regular blocking which compromised the analytical precision of the system. A second interface was constructed using a glass MicroMist nebuliser. The MicroMist nebuliser was found to be less prone to blocking than the MCN and significantly improved the precision of the system to less than 4.3% RSD. The MicroMist nebuliser did, however, provide a lower sensitivity. The advantage of employing an electroosmotic flow marker to correct for migration time drifts was demonstrated. A CE-ICP-MS method was developed for the speciation of selenium in selenium enriched yeasts and nutritional supplements. Selenoamino acids and inorganic selenium species were separated, as anions, under strong electroosmotic flow conditions. Methods to enhance the selenium sensitivity were investigated. A proteolytic enzyme extraction method was employed and the effect of the

  9. {sup 99}Tc bioassay by inductively coupled plasma mass spectrometry (ICP-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, L.A.

    1998-05-01

    A means of analyzing {sup 99}Tc in urine by inductively coupled plasma mass spectrometry (ICP-MS) has been developed. Historically, {sup 99}Tc analysis was based on the radiometric detection of the 293 keV E{sub Max} beta decay product by liquid scintillation or gas flow proportional counting. In a urine matrix, the analysis of{sup 99}Tc is plagued with many difficulties using conventional radiometric methods. Difficulties originate during chemical separation due to the volatile nature of Tc{sub 2}O{sub 7} or during radiation detection due to color or chemical quenching. A separation scheme for {sup 99}Tc detection by ICP-MS is given and is proven to be a sensitive and robust analytical alternative. A comparison of methods using radiometric and mass quantitation of {sup 99}Tc has been conducted in water, artificial urine, and real urine matrices at activity levels between 700 and 2,200 dpm/L. Liquid scintillation results based on an external standard quench correction and a quench curve correction method are compared to results obtained by ICP-MS. Each method produced accurate results, however the precision of the ICP-MS results is superior to that of liquid scintillation results. Limits of detection (LOD) for ICP-MS and liquid scintillation detection are 14.67 and 203.4 dpm/L, respectively, in a real urine matrix. In order to determine the basis for the increased precision of the ICP-MS results, the detection sensitivity for each method is derived and measured. The detection sensitivity for the {sup 99}Tc isotope by ICP-MS is 2.175 x 10{sup {minus}7} {+-} 8.990 x 10{sup {minus}9} and by liquid scintillation is 7.434 x 10{sup {minus}14} {+-} 7.461 x 10{sup {minus}15}. A difference by seven orders of magnitude between the two detection systems allows ICP-MS samples to be analyzed for a period of 15 s compared to 3,600 s by liquid scintillation counting with a lower LOD.

  10. Direct Determination of Total Arsenic and Arsenic Species by Ion Chromatography Coupled with Inductively Coupled Plasma Mass Spectrometry

    International Nuclear Information System (INIS)

    The simultaneous determination of As(III), As(V), and DMA has been performed by ion chromatography (IC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). The separation of the three arsenic species was achieved by an anionic separator column (AS 7) with an isocratic elution system. The separated species were directly detected by ICP-MS as an element-selective detection method. The IC-ICP-MS technique was applied for the determination of arsenic species in a NIST SRM 1643d water sample. An As(III) only was detected in the sample. The detection limits of As(III), As(V) and DMA were 0.31, 0.45, and 2.09 ng/mL, respectively. It was also applied for the determination of arsenic species in a human urine obtained by a volunteer, and three arsenic species were identified. The determination of total As in human urines that were obtained from 25 volunteers at the different age was also carried out by ICP-MS

  11. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Arnquist, Isaac J.; Holcombe, James A., E-mail: holcombe@mail.utexas.edu

    2012-10-15

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (K{sub app}) and intrinsic (K{sub int}) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu{sup 2+} for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu{sup 2+} and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu{sup 2+} can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu{sup 2+} ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data K{sub app} and K{sub int} were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log K{sub app} values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log K{sub int} values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log K{sub int} at pH 9.53 was in good agreement with literature values obtained from alternative methods, K{sub int} at pH 7.93 was about 2.5 Multiplication-Sign larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the 'intrinsic' binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at p

  12. Sample Preparation Problem Solving for Inductively Coupled Plasma-Mass Spectrometry with Liquid Introduction Systems I. Solubility, Chelation, and Memory Effects

    OpenAIRE

    Pappas, R. Steven

    2012-01-01

    This tutorial was adapted from the first half of a course presented at the 7th International Conference on Sector Field Inductively Coupled Plasma Mass Spectrometry in 2008 and the 2012 Winter Conference on Plasma Spectrochemistry on sample preparation for liquid introduction systems. Liquid introduction in general and flow injection specifically are the most widely used sample introduction methods for inductively coupled plasma-mass spectrometry. Nevertheless, problems persist in determinati...

  13. Determination of technetium-99 in soil samples by high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    A new powerful analytical technique viz. high performance liquid chromatography(HPLC) coupled to inductively coupled plasma mass spectrometry(HPLC/ICP-MS) has been applied to the determination of technetium-99(99Tc) in soils as a typical environmental sample. Technetium was enriched in a solution from incinerated soil samples by leaching in HNO3 and passed through 'TEVA resin' column. The solution was injected into HPLC/ICP-MS system to eliminate the interfering elements (i.e. Ru and Mo) and to determine the 99Tc concentration at the same time. The concentrations of 99Tc in the incinerated soils were found to be 0.49Bq/kg(0.77ng/kg)-1.4Bq/kg(2.2ng/kg) with the determination limit of 0.02Bq/kg(0.03ng/kg(0.03ppt)). The results indicate the following findings; 1) the determination of 99Tc by ICP-MS after strict elimination of the interfering elements by HPLC brings about the improvement in their reliability; 2) the detection limits identified are much lower compared with those by conventional ICP-MS methods because of the concentration of 99Tc to smaller volume, which is due to only 100μl of samples could be measured by HPLC/ICP-MS system; 3) sample preparation could be simplified because of strict elimination of the interfering elements by HPLC. This research showed that HPLC/ICP-MS system is very effective to determine 99Tc in environmental samples. (author)

  14. Determination of selenoprotein P in human plasma by solid phase extraction and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Bendahl, L.; Sidenius, U.; Gammelgaard, Bente

    2000-01-01

    measured by inductively coupled plasma mass spectrometry (ICP-MS) monitoring the Se-82 isotope. Linear response was observed in the concentration range 0.3-70.8 mu g/l selenium as selenoprotein P with a correlation coefficient of 0.9994. The precision expressed as relative standard deviation was better...... than 2% in this range. The estimated limit of detection was 2 mu g/l and the experimentally verified quantification limit was 5 mu g/l, giving a relative standard deviation less than 2%. (C) 2000 Elsevier Science B.V. All rights reserved...

  15. Determination of technetium in sea-water using ion exchange and inductively coupled plasma mass spectrometry with ultrasonic nebulisation†

    OpenAIRE

    Eroğlu, Ahmet E.; McLeod, Cameron W.; Leonard, Kinson S.; McCubbin, David

    1998-01-01

    An enrichment–separation scheme employing a strong-base type anion-exchange resin was developed for the determination of99Tc in sea-water by inductively coupled plasma mass spectrometry utilising ultrasonic nebulisation with membrane desolvation. Samples were processed through an anion-exchange column to enrich Tc and to eliminate sea-water matrix ions. The limit of detection for 99Tc in sea-water based on processing a 14 ml sample was 0.03 ng l–1. Accuracy was verified with spike recovery ex...

  16. Application of inductively coupled plasma mass spectrometry to the measurement of long-lived radionuclides in environmental samples

    International Nuclear Information System (INIS)

    This review describes applications of inductively coupled plasma mass spectrometry (ICP-MS) to the determination of long-lived radionuclides in environmental samples. Simultaneous determination of 232Th and 238U in biological samples is described in detail; in this procedure an internal standard, Tl or Bi, is adopted for correction of the matrix effect. Determination of 237Np in soil samples by ICP-MS is also described. It is chemically separated to ensure no interference from matrix elements. The detection limits are several mBq (several pg) for the case of radionuclides having a half life of thirty or forty thousand years. (author)

  17. Determination of 20 trace elements and arsenic species for a realgar-containing traditional Chinese medicine Niuhuang Jiedu tablets by direct inductively coupled plasma-mass spectrometry and high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Jin, Pengfei; Liang, Xiaoli; Xia, Lufeng; Jahouh, Farid; Wang, Rong; Kuang, Yongmei; Hu, Xin

    2016-01-01

    Niuhuang Jiedu tablet (NHJDT) is a realgar-containing traditional Chinese medicine. A direct inductively coupled plasma-mass spectrometry (ICP-MS) method for the simultaneous determination of 20 trace elements (Mg, K, Ca, Na, Fe, As, Zn, Sr, Ba, Cu, Mn, Ni, Pb, V, Cr, Se, Co, Mo, Cd, Hg) in NHJDT, as well as in water, gastric fluid and intestinal fluid was established. Meanwhile, a high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) method was developed for the determination of arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and for the identification of arsenobetaine (AsB) and arsenocholine (AsC) in these extracts. Both methods were fully validated in the respect of linearity, sensitivity, precision, stability and accuracy. The reliability of the ICP-MS method was further evaluated using a certified standard reference material prepared from dried tomato leaves (NIST, SRM 1572a). The analysis showed that some manufacturers formulated lower amount of realgar than required in the Chinese Pharmacopoeia (ChP) in their preparations. In addition, almost same extraction profiles for total As and inorganic As were found in water and in gastrointestinal fluids, while higher extraction rates for other 19 elements were observed in gastrointestinal fluids. Our findings show that the toxicities of Hg, Cu, Cd and Pb in NHJDP are low, while the real As toxicity in NHJDT should be deeply investigated.

  18. Gas and liquid chromatography with inductively coupled plasma mass spectrometry detection for environmental speciation analysis — advances and limitations

    Science.gov (United States)

    Szpunar, Joanna; McSheehy, Shona; Połeć, Kasia; Vacchina, Véronique; Mounicou, Sandra; Rodriguez, Isaac; Łobiński, Ryszard

    2000-07-01

    Recent advances in the coupling of gas chromatography (GC) and high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP MS) and their role in trace element speciation analysis of environmental materials are presented. The discussion is illustrated with three research examples concerning the following topics: (i) development and coupling of multicapillary microcolumn GC with ICP MS for speciation of organotin in sediment and biological tissue samples; (ii) speciation of arsenic in marine algae by size-exclusion-anion-exchange HPLC-ICP MS; and (iii) speciation of cadmium in plant cell cultures by size-exclusion HPLC-ICP MS. Particular attention is paid to the problem of signal identification in ICP MS chromatograms; the potential of electrospray MS/MS for this purpose is highlighted.

  19. Developments and trends in inductively coupled plasma mass spectrometry and its influence on the recent advances in trace element analysis

    International Nuclear Information System (INIS)

    A brief introduction to the various instrumental methods such as atomic absorption spectrometry, x-ray fluorescence spectrometry, neutron activation analysis, inductively coupled plasma atomic emission spectrometry, thermal ionization mass spectrometry, etc. are presented highlighting their relative merits and demerits. The history and developments of inductively coupled plasma mass spectrometry (ICP-MS) and its advantages and limitations over other multi-element instrumental techniques are reviewed. Extended capabilities by hyphenating ICP-MS to various other well-known sample introduction techniques such as flow-injection, electrothermal vaporization, chromatographic methods and laser ablation are discussed in brief. The recent development of high resolution multi-collector double-focusing magnetic mass spectrometer with inductively coupled plasma at atmospheric pressure as source is also discussed. Some of the areas where more developments can be expected in future are suggested. (author). 77 refs., 4 tabs., 3 figs

  20. Investigations into the origins of polyatomic ions in inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Sally M. [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    An inductively coupled plasma-mass spectrometer (ICP-MS) is an elemental analytical instrument capable of determining nearly all elements in the periodic table at limits of detection in the parts per quadrillion and with a linear analytical range over 8-10 orders of magnitude. Three concentric quartz tubes make up the plasma torch. Argon gas is spiraled through the outer tube and generates the plasma powered by a looped load coil operating at 27.1 or 40.6 MHz. The argon flow of the middle channel is used to keep the plasma above the innermost tube through which solid or aqueous sample is carried in a third argon stream. A sample is progressively desolvated, atomized and ionized. The torch is operated at atmospheric pressure. To reach the reduced pressures of mass spectrometers, ions are extracted through a series of two, approximately one millimeter wide, circular apertures set in water cooled metal cones. The space between the cones is evacuated to approximately one torr. The space behind the second cone is pumped down to, or near to, the pressure needed for the mass spectrometer (MS). The first cone, called the sampler, is placed directly in the plasma plume and its position is adjusted to the point where atomic ions are most abundant. The hot plasma gas expands through the sampler orifice and in this expansion is placed the second cone, called the skimmer. After the skimmer traditional MS designs are employed, i.e. quadrupoles, magnetic sectors, time-of-flight. ICP-MS is the leading trace element analysis technique. One of its weaknesses are polyatomic ions. This dissertation has added to the fundamental understanding of some of these polyatomic ions, their origins and behavior. Although mainly continuing the work of others, certain novel approaches have been introduced here. Chapter 2 includes the first reported efforts to include high temperature corrections to the partition functions of the polyatomic ions in ICP-MS. This and other objections to preceeding

  1. Cobalamin speciation using reversed-phase micro-high-performance liquid chromatography interfaced to inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Micro-high-performance liquid chromatography interfaced to inductively coupled plasma mass spectrometry was optimized for the determination and separation of a mixture of cobalt containing species. Four cobalamin species (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5'-deoxyadenosylcobalamin) representing the various forms of vitamin B12 as well as the harmful corrinoid analogue cobinamide dicyanide were separated using reversed-phase microcapillary chromatography with columns containing C18 packing material with a 2-μm particle size. Selection of organic solvents for the separation took into consideration compatibility with the inductively coupled plasma mass spectrometer being used for element specific detection. Optimized method conditions included use of a methanol gradient and make-up solution for the nebulizer. Some issues associated with dead volume were overcome by the extension of the gradient program. The total analysis time was 52 min. The column-to-column variability was evaluated and was found to be very reasonable (9% RSD on average), confirming that this method is rugged and that the technology should be easily transferred to other laboratories

  2. Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: A review

    International Nuclear Information System (INIS)

    Highlights: ► Survey of bio-analytical approaches utilizing biomolecule labelling. ► Detailed discussion of methodology and chemistry of elemental labelling. ► Biomedical and bio-analytical applications of elemental labelling. ► FI-ICP-MS and LC–ICP-MS for quantification of elemental labelled biomolecules. ► Review of selected applications. - Abstract: This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given.

  3. Bayesian Integration and Characterization of Composition C-4 Plastic Explosives Based on Time-of-Flight Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Christine M.; Kelly, Ryan T.; Alexander, M. L.; Newburn, Matthew K.; Bader, Sydney P.; Ewing, Robert G.; Fahey, Albert J.; Atkinson, David A.; Beagley, Nathaniel

    2016-02-25

    Key elements regarding the use of non-radioactive ionization sources will be presented as related to explosives detection by mass spectrometry and ion mobility spectrometry. Various non-radioactive ionization sources will be discussed along with associated ionization mechanisms pertaining to specific sample types.

  4. Matrix separation by chelation to prepare biological materials for isotopic zinc analysis by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Following an evaluation of three chelating resins [Chelex-100, poly(dithiocarbamate) (PDTC) and carboxymethylated poly(ethyleneimine)-poly(methylenepolyphenylene) isocyanate (CPPI)], a procedure was established with the last of these for the separation of Zn from biological matrix elements prior to 70Zn:68Zn isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). The method was verified by establishing Zn recoveries and by determining its effectiveness in removing Cl and Na from buffered test solutions. Calcium, Na, and Zn concentration data were determined by inductively coupled plasma atomic emission spectrometry. Chlorine was measured by electrothermal vaporization ICP-MS. The efficacy of the technique was demonstrated by the determination of zinc isotope ratios in bovine milk and human urine. (Author)

  5. Rapid identification and analysis of airborne plutonium using a combination of alpha spectroscopy and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Farmer, Dennis E; Steed, Amber C; Sobus, Jon; Stetzenbach, Klaus; Lindley, Kaz; Hodge, Vernon F

    2003-10-01

    Recent wildland fires near two U.S. nuclear facilities point to a need to rapidly identify the presence of airborne plutonium during incidents involving the potential release of radioactive materials. Laboratory turn-around times also need to be shortened for critical samples collected in the earliest stages of radiological emergencies. This note discusses preliminary investigations designed to address both these problems. The methods under review are same day high-resolution alpha spectroscopy to screen air filter samples for the presence of plutonium and inductively coupled plasma mass spectrometry to perform sensitive plutonium analyses. Thus far, using modified alpha spectroscopy techniques, it has been possible to reliably identify the approximately 5.2 MeV emission of 239Pu on surrogate samples (air filters artificially spiked with plutonium after collection) even though the primary alpha-particle emissions of plutonium are, as expected, superimposed against a natural alpha radiation background dominated by short-lived radon and thoron progeny (approximately 6-9 MeV). Several processing methods were tested to prepare samples for analysis and shorten laboratory turn-around time. The most promising technique was acid-leaching of air filter samples using a commercial open-vessel microwave digestion system. Samples prepared in this way were analyzed by both alpha spectroscopy (as a thin-layer iron hydroxide co-precipitate) and inductively coupled plasma mass spectrometry. The detection levels achieved for 239Pu--approximately 1 mBq m(-3) for alpha spectroscopy screening, and, < 0.1 mBq m(-3) for inductively coupled plasma mass spectrometry analysis--are consistent with derived emergency response levels based on EPA's Protective Action Guides, and samples can be evaluated in 36 to 72 h. Further, if samples can be returned to a fixed-laboratory and processed immediately, results from mass spectrometry could be available in as little as 24 h. When fully implemented

  6. Hyphenation of ultra performance liquid chromatography (UPLC) with inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of bromine containing preservatives

    DEFF Research Database (Denmark)

    Bendahl, Lars; Hansen, Steen Honoré; Gammelgaard, Bente;

    2006-01-01

    Ultra performance liquid chromatography (UPLC) was coupled to inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of three bromine-containing preservatives, monitoring the 79Br and 81Br isotopes simultaneously. Due to the efficiency of the 1.7 microm column packing material...... analysis of bromine-containing preservatives in commercially available cosmetic products....

  7. Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Sturup, Stefan

    1994-01-01

    Addition of carbon as methanol or ammonium carbonate to the aqueous analyte solutions in combination with increased plasma power input enhanced the inductively coupled plasma mass spectrometry (ICP-MS) signal intensities of arsenic and selenium. In the presence of the optimum 3% v/v methanol...... concentration the signal intensities achieved were about 4500-5000 counts s-1 per ng ml-1 of arsenic and about 700-1100 counts s-1 per ng ml-1 of selenium (Se-82), corresponding to enhancement factors of 3.5-4.5 compared with aqueous solution for the two elements. Differences in sensitivity (calculated...... on the basis of analyte atom) were observed between the individual arsenic species and between the selenium species in aqueous as well as in carbon-added solutions. The presence of 3% v/v methanol in the analyte solutions doubled the level of the background signal for arsenic and selenium, but its fluctuation...

  8. Aluminium content of some processed foods, raw materials and food additives in China by inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Deng, Gui-Fang; Li, Ke; Ma, Jing; Liu, Fen; Dai, Jing-Jing; Li, Hua-Bin

    2011-01-01

    The level of aluminium in 178 processed food samples from Shenzhen city in China was evaluated using inductively coupled plasma-mass spectrometry. Some processed foods contained a concentration of up to 1226 mg/kg, which is about 12 times the Chinese food standard. To establish the main source in these foods, Al levels in the raw materials were determined. However, aluminium concentrations in raw materials were low (0.10-451.5 mg/kg). Therefore, aluminium levels in food additives used in these foods was determined and it was found that some food additives contained a high concentration of aluminium (0.005-57.4 g/kg). The results suggested that, in the interest of public health, food additives containing high concentrations of aluminium should be replaced by those containing less. This study has provided new information on aluminium levels in Chinese processed foods, raw materials and a selection of food additives.

  9. Application of inductively coupled plasma mass spectrometry to detection of trace elements, heavy metals and radioisotopes in scalp hair

    International Nuclear Information System (INIS)

    Trace element analysis of human hair has the potential to reveal retrospective information about an individual's nutritional status and exposure. As trace elements are incorporated into the hair during the growth process, longitudinal segments of the hair may reflect the body burden during the growth period. It was evaluated that the potential of human hair to indicate exposure or nutritional status over time by analysing trace element profiles in single strands of human hair. By using inductively coupled plasma mass spectrometry it has been achieved that profiles of 43 elements in single strands of human hair. It was shown that trace element analysis along single strands of human hair can yield information about essential and toxic elements and for some elements, can be correlated with seasonal changes in diet and exposure. The information obtained from the trace element profiles of human hair in this study substantiates the potential of hair as a bio marker

  10. Determination of trace mercury species by high performance liquid chromatography-inductively coupled plasma mass spectrometry after cloud point extraction.

    Science.gov (United States)

    Chen, Haiting; Chen, Jianguo; Jin, Xianzhong; Wei, Danyi

    2009-12-30

    A sensitive method for speciation analysis of inorganic mercury (Hg(2+)) and methyl mercury (MeHg(+)) has been developed by using high performance liquid chromatography (HPLC) combined with inductively coupled plasma mass spectrometry (ICP-MS) after cloud point extraction. The analytes were complexed with sodium diethyldithiocarbamate (DDTC) and preconcentrated by a non-ionic surfactant Triton X-114. Mercury species were effectively separated by HPLC in less than 6 min. The enhancement factors for 25 mL sample solution were 42 and 21, and the limits of detection were 4 and 10 ng L(-1) for Hg(2+) and MeHg(+), respectively. The developed method was successfully applied to the determination of trace amount of mercury species in environmental and biological samples.

  11. Interference free determination of lanthanides by inductively coupled plasma mass spectrometry using ultrasonic Nebuliser-Membrane dryer

    International Nuclear Information System (INIS)

    It is well documented that the oxides and hydroxides of lighter lanthanides and Ba cause serious isobaric interferences over middle and heavier lanthanides in their determination by inductively coupled plasma mass spectrometry (ICP-MS). As oxygen from water is the major source for oxide/hydroxide formation in the plasma, the water load from the lanthanide solution was reduced by incorporating ultrasonic nebuliser and Nafion membrane dryer. This combination reduced the water load to a large extent (about 80%) and the oxide/hydroxide yield was reduced considerably. The effectiveness of the desolvation method was verified by analysing synthetic geological sample solutions for lanthanides. The results show almost interference free determination of all lanthanides using above desolvation combination compared to that using commonly used pneumatic nebuliser

  12. Measurement of the 135Cs half-life with accelerator mass spectrometry and inductively coupled plasma mass spectrometry

    Science.gov (United States)

    MacDonald, C. M.; Cornett, R. J.; Charles, C. R. J.; Zhao, X. L.; Kieser, W. E.

    2016-01-01

    The isotope 135Cs is quoted as having a half-life of 2.3 Myr. However, there are three published values ranging from 1.8 to 3 Myr. This research reviews previous measurements and reports a new measurement of the half-life using newly developed accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS) techniques along with β and γ radiometric analysis. The half-life was determined to be (1.6 ±0.6 ) ×106 yr by AMS and (1.3 ±0.2 ) ×106 yr by ICPMS with 95% confidence. The two values agree with each other but differ from the accepted value by ˜40 % .

  13. Determination of thorium and uranium in biological samples by inductively coupled plasma mass spectrometry using internal standardisation

    International Nuclear Information System (INIS)

    The Th and U contents of six typical biological samples (for example US NIST SRMs and Japan NIES CRMs) were determined by inductively coupled plasma mass spectrometry (ICP-MS). The internal standardisation method was adopted to compensate for non-spectroscopic interferences arising from matrix elements in the sample solution. Bismuth and Tl were chosen as the internal standards, and the effect of the matrix on the behaviour of their signals was monitored by adding several elements to the NIST human lung sample. It would appear that elements of similar mass give similar signal responses, thus In is unsuitable as the internal standard in this instance. After correction by either Bi or Tl internal standardisation, the results for the Th and U concentrations agreed well with literature values, showing that both are applicable for the determination of Th and U in biological samples. (author)

  14. Application of high resolution inductively coupled plasma mass spectrometry to the measurement of long-lived radionuclides

    International Nuclear Information System (INIS)

    The radioactivity determination of long-lived radionuclides in environmental samples is difficult due to their low concentration and low specific activity. Limits of detection (DL) for long-lived radionuclides (99Tc, 226Ra, 232Th, 237Np, 238U, 243Am) in standard solutions using Inductively Coupled Plasma Mass Spectrometry with a double focusing mass analyzer (HR-ICP-MS) with ultrasonic nebulizer were calculated. DL of most nuclides were under the fg g-1 level. It seems that the analysis by using HR-ICP-MS has the advantage of detection for low level radio nuclides whole half life is more than 1000 y. This method was applied to 226Ra analysis in hot spring waters and 230Th in lake sediments analysis after a simple chemical separation. (author)

  15. Ultra-sensitive quantification of lysozyme based on element chelate labeling and capillary electrophoresis–inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yang, MingWei [Key Laboratory of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, Fujian (China); Department of Chemistry, Florida International University, Miami, FL 33199 (United States); Wu, WeiHua; Ruan, YaJuan; Huang, LiMei [Key Laboratory of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, Fujian (China); Wu, Zujian [Department of Plant Protection, Fujian Agriculture and Forest University, Fuzhou 350002, Fujian (China); Cai, Yong [Department of Chemistry, Florida International University, Miami, FL 33199 (United States); Fu, FengFu, E-mail: fengfu@fzu.edu.cn [Key Laboratory of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, Fujian (China); Department of Plant Protection, Fujian Agriculture and Forest University, Fuzhou 350002, Fujian (China)

    2014-02-17

    Graphical abstract: An ultra-sensitive method for the determination of lysozyme was developed based on the Gd{sup 3+} chelate labeling and CE–ICP–MS. The proposed method has an extremely low detection limit of 3.89 attomole and has been successfully used to detect lysozyme in saliva sample, showing excellent reliability. The success of the present method provides a new possibility for biological assays and clinical diagnoses. -- Highlights: •An ultra-sensitive method for detecting lysozyme based on CE–ICP–MS was described. •The proposed method has an extremely low detection limit of 3.89 attomole. •It can be used to detect trace lysozyme in saliva sample with a satisfied recovery. •The method provides a new potential for sensitive detection of low-abundant proteins. -- Abstract: In this study, an ultra-sensitive method for the quantification of lysozyme based on the Gd{sup 3+} diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid labeling and capillary electrophoresis–inductively coupled plasma mass spectrometry (CE–ICP–MS) was described. The Gd{sup 3+}-tagged lysozyme was effectively separated by capillary electrophoresis (CE) and sensitively determined by inductively coupled plasma mass spectrometry (ICP–MS). Based on the gadolinium-tagging and CE–ICP–MS, the lysozyme was determined within 12 min with an extremely low detection limit of 3.89 attomole (3.89 × 10{sup −11} mol L{sup −1} for 100 nL of sample injection) and a RSD < 6% (n = 5). The proposed method has been successfully used to detect lysozyme in saliva samples with a recovery of 91–106%, suggesting that our method is sensitive and reliable. The success of the present method provides a new potential for the biological assays and sensitive detection of low-abundant proteins.

  16. Ultra-sensitive quantification of lysozyme based on element chelate labeling and capillary electrophoresis–inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Graphical abstract: An ultra-sensitive method for the determination of lysozyme was developed based on the Gd3+ chelate labeling and CE–ICP–MS. The proposed method has an extremely low detection limit of 3.89 attomole and has been successfully used to detect lysozyme in saliva sample, showing excellent reliability. The success of the present method provides a new possibility for biological assays and clinical diagnoses. -- Highlights: •An ultra-sensitive method for detecting lysozyme based on CE–ICP–MS was described. •The proposed method has an extremely low detection limit of 3.89 attomole. •It can be used to detect trace lysozyme in saliva sample with a satisfied recovery. •The method provides a new potential for sensitive detection of low-abundant proteins. -- Abstract: In this study, an ultra-sensitive method for the quantification of lysozyme based on the Gd3+ diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid labeling and capillary electrophoresis–inductively coupled plasma mass spectrometry (CE–ICP–MS) was described. The Gd3+-tagged lysozyme was effectively separated by capillary electrophoresis (CE) and sensitively determined by inductively coupled plasma mass spectrometry (ICP–MS). Based on the gadolinium-tagging and CE–ICP–MS, the lysozyme was determined within 12 min with an extremely low detection limit of 3.89 attomole (3.89 × 10−11 mol L−1 for 100 nL of sample injection) and a RSD < 6% (n = 5). The proposed method has been successfully used to detect lysozyme in saliva samples with a recovery of 91–106%, suggesting that our method is sensitive and reliable. The success of the present method provides a new potential for the biological assays and sensitive detection of low-abundant proteins

  17. Quantitative Characterization of Gold Nanoparticles by Field-Flow Fractionation Coupled Online with Light Scattering Detection and Inductively Coupled Plasma Mass Spectrometry

    DEFF Research Database (Denmark)

    Schmidt, Bjørn; Löschner, Katrin; Hadrup, Niels;

    2011-01-01

    An analytical platform coupling asymmetric flow field-flow fractionation (AF4) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass...... was found to be a major cause for incomplete recoveries. The lower limit of detection (LOD) ranged between 0.02 ng Au and 0.4 ng Au, with increasing LOD by increasing nanoparticle diameter. The analytical platform was applied to characterization of Au NPs in livers of rats, which were dosed with 10 nm, 60...

  18. Inductively coupled plasma - mass spectrometry (ICP-MS) and inductively coupled plasma – optical emission spectrometry (IP-OES) analysis of elements in Macedonian wines

    OpenAIRE

    Ivanova, Violeta; Wiltsche, Helmar; Stafilov, Trajče; Motter, Herber; Stefova, Marina; Lankmayr, Ernst

    2013-01-01

    In this study the major, minor and trace elements in 25 Macedonian white, rose and red wines from different wine regions were determined. Analysis was performed with inductively coupled plasma - mass spectrometry (ICP-MS) and inductively coupled plasma – optical emission spectrometry (ICP-OES) for accurate determination of the concentration of 42 elements (Ag, Al, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Ho, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pr, S, Sm, Tb, Ti, T...

  19. Novel applications of high performance ion chromatography - inductively coupled plasma mass spectrometry (HPIC-ICP-MS)

    International Nuclear Information System (INIS)

    This work demonstrates the development of highly sensitive and selective analytical methods, which make use of the hyphenation of high performance ion chromatography (HPIC) to inductively coupled plasma sector field mass spectrometry (ICP-SFMS). On-line coupling a chromatographic separation method with an elemental detection method provides two advantages: (1) The components of a possibly interfering matrix can be separated allowing accurate and precise ultra trace analysis of the element of interest and (2) elemental species of an element can be separated and quantified. In this work, matrix separation methods for interference free determination of 232Th, 234U, 235U and 238U in geological matrices were developed and employed. Furthermore HPIC-ICP-SFMS was applied for ultra trace analysis of Pd in environmental and geological matrices. The usefulness of HPIC-ICP-SFMS for speciation studies was demonstrated by investigating the interaction of an anti-cancer drug (cisplatin) with guanosine monophosphates. (author)

  20. Reduction of plyatomic ion interferences in indictively coupled plasma mass spectrometry with cryogenic desolvation

    Energy Technology Data Exchange (ETDEWEB)

    Alves, L.C.

    1993-09-01

    A desolvation scheme for introducing aqueous and organic samples into an argon inductively coupled plasma is described; the aerosol generated by nebulizer is heated (+140 C) and cooled ({minus}80 C) repeatedly, and the dried aerosol is then injected into the mass spectrometer. Polyatomic ions are greatly suppressed. This scheme was validated with analysis of seawater and urine reference samples. Finally, the removal of organic solvents by cryogenic desolvation was studied.

  1. Applications of inductively coupled plasma mass spectrometry to the production control of aerospace and nuclear materials

    International Nuclear Information System (INIS)

    Inductively coupled plasma source mass spectrometry (ICP-MS) has proved to be a useful practical tool in a high-volume quality control laboratory. The application of this technique to materials produced for the aerospace and nuclear industries is discussed. Techniques employed for uranium isotope ratio determination and elemental determination of gadolinium, samarium and thorium in hafnium and zirconium alloys are described. Strategies employed for a semi-quantitative survey analysis for a wide range of elements are also presented. (author)

  2. Comparison of an ultrasonic nebulizer with a cross-flow nebulizer for selenium speciation by ion-chromatography and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jons, O.

    2000-01-01

    The purpose of this work was to compare an ultrasonic nebulizer (USN) with a cross-flow nebulizer (CFN) for selenium speciation with inductively coupled plasma mass spectrometry (ICP-MS) detection. The influence of instrumental parameters as well as composition of the solvent on the selenium spec...

  3. Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites

    DEFF Research Database (Denmark)

    Schmidt, Bjørn; Petersen, Jens Højslev; Koch, C. Bender;

    2009-01-01

    of clay nanoparticulates, an analytical system combining asymmetrical flow field-flow fractionation (AF4) with multi-angle light-scattering detection (MALS) and inductively coupled plasma mass spectrometry (ICP-MS) is presented. In a migration study, we tested a biopolymer nanocomposite consisting...

  4. A method for studies on interactions between a gold-based drug and plasma proteins based on capillary electrophoresis with inductively coupled plasma mass spectrometry detection

    DEFF Research Database (Denmark)

    Nguyen, Tam T T N; Østergaard, Jesper; Gammelgaard, Bente

    2015-01-01

    An analytical method based on capillary electrophoresis (CE) and inductively coupled plasma mass spectrometry (ICP-MS) detection was developed for studies on the interaction of gold-containing drugs and plasma proteins using auranofin as example. A detection limit of 18 ng/mL of auranofin...

  5. Determination of arsenic species in Solanum Lyratum Thunb using capillary electrophoresis with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Shuai, Pei-Yu; Yang, Xiao-Jun; Qiu, Zong-Qing; Wu, Xiao-Hui; Zhu, Xi; Pokhrel, Ganga Raj; Fu, Yu-Ying; Ye, Hui-Min; Lin, Wen-Xiong; Yang, Gui-Di

    2016-08-01

    A simple and highly efficient interface to couple capillary electrophoresis with inductively coupled plasma mass spectrometry by a microflow polyfluoroalkoxy nebulizer and a quadruple ion deflector was developed in this study. By using this interface, six arsenic species, including arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, and arsenocholine, were baseline-separated and determined in a single run within 11 min under the optimized separation conditions. The instrumental detection limit was in the range of 0.02-0.06 ng/mL for the six arsenic compounds. Repeatability expressed as the relative standard deviation (n = 5) of both migration time and peak area were better than 2.5 and 4.3% for six arsenic compounds. The proposed method, combined with a closed-vessel microwave-assisted extraction procedure, was successfully applied for the determination of arsenic species in the Solanum Lyratum Thunb samples from Anhui province in China with the relative standard deviations (n = 5) ≤4%, method detection limits of 0.2-0.6 ng As/g and a recovery of 98-104%. The experimental results showed that arsenobetaine was the main speciation of arsenic in the Solanum Lyratum Thunb samples from different provinces in China, with a concentration of 0.42-1.30 μg/g. PMID:27378629

  6. Multi-elemental determination of trace elements in deep seawater by inductively coupled plasma mass spectrometry with resin preconcentration

    International Nuclear Information System (INIS)

    A miniaturized column (ca. 3 mm i.d., 40 mm length), packed with a chelating resin (0.2 g) with iminodiacetic acid groups (Muromac A-1), was tested for the preconcentration of trace elements in seawater. After preconcentration, the column was washed with ammonium acetate buffer (pH 5.5) and water to remove the major elements, such as Ca and Mg, and was then eluted with 4 ml of 2 mol l-1 nitric acid. Twenty-six trace elements were determined by inductively coupled plasma mass spectrometry and inductively coupled plasma emission spectrometry. The necessary volume of the seawater sample was only 200 ml. The recoveries for most of the elements tested were over 90%, although those for Al, V and Th were around 70%. The trueness and precision were evaluated by analyzing a standard reference material of seawater (NASS-4, NRC Canada). The observed values obtained with the present method showed good agreement with the certified values. The present method was also applied to deep seawater samples collected at Muroto, Japan. A difference in the rare earth element pattern, especially the Ce anomaly, between the deep seawater sample and the surface seawater sample was observed, as well as the differences of the concentrations of many trace elements. (author)

  7. Methyl mercury in nail clippings in relation to fish consumption analysis with gas chromatography coupled to inductively coupled plasma mass spectrometry: a first orientation.

    Science.gov (United States)

    Krystek, Petra; Favaro, Paulo; Bode, Peter; Ritsema, Rob

    2012-08-15

    For the identification of human exposure to one of the most toxic compounds, which is methyl mercury (MeHg(+)), fingernail clippings were selected as the matrix of interest. Within this pilot study, six samples from different origins and from people with different food consumption patterns were chosen. Species-analysis of MeHg(+) was performed according to the following procedure: dissolution of the sample material in tetramethylammonium hydroxide (TMAH), derivatisation of MeHg(+) with sodium tetraethylborate (NaBEt(4)), extraction into iso-octane and measurement with gas chromatography hyphenated to inductively coupled plasma mass spectrometry (GC-ICPMS) for the quantification MeHg(+).

  8. Production date determination of uranium-oxide materials by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    The paper describes analytical methods developed for the production date determination of uranium-based nuclear materials by the measurement of 230Th/234U isotope ratio. An improved sample preparation method for the destructive analysis involving extraction chromatographic separation with TEVATM resin was applied prior to the measurement by isotope dilution inductively coupled plasma sector field mass spectrometry (ICP-SFMS). The results obtained were compared with the direct, quasi-non-destructive measurement using laser ablation ICP-SFMS technique for age determination. The advantages and limitations of both methods are discussed

  9. Effect of Skimmer Cone Material on the Spectra of Inductively Coupled Plasma Mass Spectrometry

    International Nuclear Information System (INIS)

    The inductively coupled plasma ion source for mass spectrometry is very sensitive for multielement analysis with detection limits down to sub part per trillion (ppt). Polyatomic ions which could be formed in the mass spectra may interfere in the analysis of some element. Experimental conditions have great influences on the formation of polyatomic ions. The present work demonstrates that the skimmer materials (Au, Ag, Ni, and Cu) are participating in the formation of polyatomic ions, meanwhile the sampler materials have no real effect. The mechanism of formation of polyatomic ions is explained. Heats of formation of polyatomic species formed from the skimmer materials such as: Au X, Ag X, Ni X and Cu X; where X= Ar, O, N, C and H are calculated by Gaussian program (G 94 W)

  10. Evaluation of correction method for mass discrimination effect in multiple collector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    This paper describes advances in isotopic measurements that have been made with an inductively coupled plasma source magnetic sector multiple collector mass spectrometer (MC-ICP-MS) and presents results of new experiments aimed at further evaluating the instrumental capability as well as the correction technique for the mass discrimination effects. The ability to correct for the mass discrimination effect using a second element of similar mass and very high sensitivity for elements that are otherwise difficult to ionize gives this instrument major advantages over other conventional techniques for isotopic measurements. The isotopic data obtained by MC-ICP-MS clearly demonstrate potential as a new technique to produce precise and reproducible isotopic data for the elements that are difficult to measure by thermal ionization mass spectrometry (TIMS). (author)

  11. Metal determination in samples of plants by high resolution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    In the last years, the use of environmental monitoring to determine anthropogenic metal insertions in the environment has been widely discussed as an alternative method to the direct measurement of these emissions to the ecosystem. This paper describes the determination of several chemical elements present in pine needles samples, including thorium, uranium using the High Resolution inductively Coupled Plasma and rare earths, Mass Spectrometer (HR-ICP-MS). The method of internal standardization was used to compense the non-spectral interferences of the different elements present in sample solution matrix. The chemical element bismuth (Bi) was chosen to act as an internal standard. In order to determine the accuracy of the proposed method, certified samples of pine needles (Nation Bureau of Standards Standard Reference Material 1575) were analyzed. (author)

  12. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jill Wisnewski Ferguson

    2006-08-09

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactions either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO{sup +}), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.

  13. Interfacing capillary electrophoresis with inductively coupled plasma mass spectrometry by direct injection nebulization for selenium speciation

    DEFF Research Database (Denmark)

    Bendahl, Lars; Gammelgaard, Bente; Jons, O.;

    2001-01-01

    limits of 20 and 1 ng L-1 were obtained for Se-82 and Rh-103, respectively, at sample uptake rates of 10-30 muL min(-1), based on three times the standard deviation of blank solution (3 sigma (b), n = 10). The nebulizer was used as part of the interface for coupling of CE with ICP-MS and applied...... limits were in the sub mug Se L-1 range, corresponding to absolute detection limits in the range 25-125 fg selenium. Repeatability (n = 6) expressed as relative standard deviations with respect to migration times, peak heights and peak areas were better than 1.6, 6.7 and 6.0%, respectively...... for speciation of aqueous selenium standards. The interface was operated in the self-aspirating mode with a sheath liquid uptake of 10 muL min(-1). The CE-ICP-MS system resulted in baseline separation of selenate, selenite, selenocystine and selenomethionine within a total analysis time of 5.4 min. Detection...

  14. Standard test method for determination of impurities in nuclear grade uranium compounds by inductively coupled plasma mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of 67 elements in uranium dioxide samples and nuclear grade uranium compounds and solutions without matrix separation by inductively coupled plasma mass spectrometry (ICP-MS). The elements are listed in Table 1. These elements can also be determined in uranyl nitrate hexahydrate (UNH), uranium hexafluoride (UF6), triuranium octoxide (U3O8) and uranium trioxide (UO3) if these compounds are treated and converted to the same uranium concentration solution. 1.2 The elements boron, sodium, silicon, phosphorus, potassium, calcium and iron can be determined using different techniques. The analyst's instrumentation will determine which procedure is chosen for the analysis. 1.3 The test method for technetium-99 is given in Annex A1. 1.4 The values stated in SI units are to be regarded as standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish ...

  15. Analysis of Mineral and Heavy Metal Content of Some Commercial Fruit Juices by Inductively Coupled Plasma Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Adriana Dehelean

    2013-01-01

    Full Text Available The presence of potentially toxic elements and compounds in foodstuffs is of intense public interest and thus requires rapid and accurate methods to determine the levels of these contaminants. Inductively coupled plasma mass spectrometry is a powerful tool for the determination of metals and nonmetals in fruit juices. In this study, 21 commercial fruit juices (apple, peach, apricot, orange, kiwi, pear, pineapple, and multifruit present on Romanian market were investigated from the heavy metals and mineral content point of view by ICP-MS. Our obtained results were compared with those reported in literature and also with the maximum admissible limit in drinking water by USEPA and WHO. For Mn the obtained values exceeded the limits imposed by these international organizations. Co, Cu, Zn, As, and Cd concentrations were below the acceptable limit for drinking water for all samples while the concentrations of Ni and Pb exceeded the limits imposed by USEPA and WHO for some fruit juices. The results obtained in this study are comparable to those found in the literature.

  16. A rugged and transferable method for determining blood cadmium, mercury, and lead with inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    McShane, William J.; Pappas, R. Steven; Wilson-McElprang, Veronica; Paschal, Dan

    2008-06-01

    A simple, high-throughput method for determining total cadmium, mercury, and lead in blood in cases of suspected exposure, using inductively coupled plasma-mass spectrometry (ICP-MS), has been developed and validated. One part matrix-matched standards, blanks, or aliquots of blood specimens were diluted with 49 parts of a solution containing 0.25% (w/w) tetramethylammonium hydroxide; 0.05% v/v Triton X-100 (blood cell membranes and protein solubilization); 0.01% (w/v) ammonium pyrolidinedithiocarbamate (mercury memory effect prevention and oxidation state stabilization, solubilization by complexation of all three metals); 1% v/v isopropanol (signal enhancement); and 10 μg/L iridium (internal standard). Thus the final dilution factor is 1 + 49. The method provides the basis for the determination of total cadmium, mercury, and lead for assessment of environmental, occupational, accidental ingestion or elevated exposures from other means. Approximately 80 specimens, including blanks, calibration standards, and quality control materials can be processed in an 8-h day. The method has been evaluated by examining reference materials from the National Institute of Standards and Technology, as well as by participation in six rounds of proficiency testing intercomparisons led by the Wadsworth Center of the New York State Department of Health. This method was developed for the purpose of increasing U.S. emergency response laboratory capacity. To this end, 33 U.S. state, and 1 district health department laboratories have validated this method in their own laboratories.

  17. Inductively coupled plasma mass-spectrometric determination of platinum in excretion products of client-owned pet dogs.

    Science.gov (United States)

    Janssens, T; Brouwers, E E M; de Vos, J P; de Vries, N; Schellens, J H M; Beijnen, J H

    2015-06-01

    Residues of antineoplastic drugs in canine excretion products may represent exposure risks to veterinary personnel, owners of pet dogs and other animal care-takers. The aim of this study was to measure the extent and duration of platinum (Pt) excretion in pet dogs treated with carboplatin. Samples were collected before and up to 21 days after administration of carboplatin. We used validated, ultra-sensitive, inductively coupled plasma-mass spectrometry assays to measure Pt in canine urine, faeces, saliva, sebum and cerumen. Results showed that urine is the major route of elimination of Pt in dogs. In addition, excretion occurs via faeces and saliva, with the highest amounts eliminated during the first 5 days. The amount of excreted Pt decreased over time but was still quantifiable at 21 days after administration of carboplatin. In conclusion, increased Pt levels were found in all measured excretion products up to 21 days after administration of carboplatin to pet dogs, with urine as the main route of excretion. These findings may be used to further adapt current veterinary guidelines on safe handling of antineoplastic drugs and treated animals. PMID:23714139

  18. Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Poda, A R; Bednar, A J; Kennedy, A J; Harmon, A; Hull, M; Mitrano, D M; Ranville, J F; Steevens, J

    2011-07-01

    The ability to detect and identify the physiochemical form of contaminants in the environment is important for degradation, fate and transport, and toxicity studies. This is particularly true of nanomaterials that exist as discrete particles rather than dissolved or sorbed contaminant molecules in the environment. Nanoparticles will tend to agglomerate or dissolve, based on solution chemistry, which will drastically affect their environmental properties. The current study investigates the use of field flow fractionation (FFF) interfaced to inductively coupled plasma-mass spectrometry (ICP-MS) as a sensitive and selective method for detection and characterization of silver nanoparticles. Transmission electron microscopy (TEM) is used to verify the morphology and primary particle size and size distribution of precisely engineered silver nanoparticles. Subsequently, the hydrodynamic size measurements by FFF are compared to dynamic light scattering (DLS) to verify the accuracy of the size determination. Additionally, the sensitivity of the ICP-MS detector is demonstrated by fractionation of μg/L concentrations of mixed silver nanoparticle standards. The technique has been applied to nanoparticle suspensions prior to use in toxicity studies, and post-exposure biological tissue analysis. Silver nanoparticles extracted from tissues of the sediment-dwelling, freshwater oligochaete Lumbriculus variegatus increased in size from approximately 31-46nm, indicating a significant change in the nanoparticle characteristics during exposure.

  19. Determination of noble metals in biological samples by electrothermal vaporization inductively coupled plasma mass spectrometry, following cloud point extraction

    Science.gov (United States)

    Andreia Mesquita da Silva, Márcia; Lúcia Azzolin Frescura, Vera; José Curtius, Adilson

    2001-10-01

    A simple separation procedure for noble metals based on cloud point extraction is proposed. The analyte ions in aqueous acidic solution, obtained by the acid digestion of the samples, were complexed with O, O-diethyl-dithiophosphate and Triton X-114 was added as a non-ionic surfactant. By increasing the temperature up to the cloud point, a phase separation occurs, resulting in an aqueous phase and a surfactant-rich phase containing most of the analytes that were complexed. The metals in the surfactant-rich phase were determined by electrothermal vaporization inductively coupled plasma mass spectrometry. The extraction conditions as well as the instrumental parameters were optimized. Enrichment factors ranging from 7 (Rh) to 60 (Pt) and limits of detection from 0.6 (Pt) to 3.0 ng l -1 (Rh) were obtained in the digested samples. The extraction was not efficient for Ir. Among the reference materials analyzed in this work, only one (SRM 2670, urine) presented recommended values for Au and Pt. Due to the non-availability of adequate CRMs, accuracy was assessed by spiking known analyte amounts to the acid digests. Recoveries close to 100% were observed for all the studied elements but Ru. Poor agreement between found and recommended values was observed for non-digested urine sample, probably due to the carrier effect of co-extracted residual matrix components. However, good agreement was reached after urine acid mineralization.

  20. Sequential cloud point extraction of trace elements from biological samples and determination by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gine, Maria Fernanda; Patreze, Aparecida F.; Silva, Edson L. [Centro de Energia Nuclear na Agricultura (CENA-USP), Piracicaba, SP (Brazil)]. E-mail: mfgine@cena.usp.br; Sarkis, Jorge E.S.; Kakazu, Mauricio H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2008-07-01

    A two-step sequential cloud point extraction (CPE) of trace elements from small sample volumes of human serum, animal blood, and food diet is proposed to gain analytical information in the analysis by inductively coupled plasma mass spectrometry. The first CPE was attained by adding O,O-diethyldithiophosphate, the non ionic surfactant Triton{sup R} X-114 followed by heating at 40 deg C, centrifugation and cooling at 0 deg C. The resulting surfactant-rich phase was separated to determine Cd, Pb and Cu by isotope dilution. Isotope ratio measurements presented RSD < 0.7%. The residual surfactant-poor phase solution had the pH adjusted in the range 4 to 5 before the chelating reagent, 4-(2-pyridylazo) resorcinol plus surfactant Triton{sup R} X-114 were added followed by the sequence to attain the CPE. Co and Ni were quantified in the second extracted surfactant-rich phases by standard additions method with RSD < 2%. Recoveries from 85 to 96% were obtained for all elements. Analyzing reference materials with certified and recommended values assessed accuracy. (author)

  1. Determination of hexavalent chromium in sludge incinerator emissions using ion chromatography and inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Arar, E.J.; Long, S.E. (Technology Applications, Inc., Cincinnati, OH (United States)); Martin, T.D.; Gold, S. (Environmental Monitoring Systems Lab., Cincinnati, OH (United States))

    1992-10-01

    A unique approach is described using ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS) for the determination of hexavalent chromium [Cr(VI)] in wastewater sludge incinerator emissions. Quartz fiber filters, spiked with an isotopically enriched ([sup 50]Cr or [sup 53]Cr) chromate salt, were used to collect emission particulates. The enriched Cr(VI) isotope was used to monitor the reduction of Cr(IV) during sample collection using a pseudo-first-order reaction model and to calculate the rate of deposition of native Cr(VI) on the filters. At the end of the sampling period, the Cr(VI) was extracted from the filters with 0.1 N sodium hydroxide and determined by IC using postcolumn derivatization with 1,5-diphenylcarbohydrazide. To determine the ratio of enriched Cr(VI) to the native Cr(VI) emitted from the incinerator, an additional aliquot of the sample extract was preconcentrated by IC and the isotopic composition of the Cr(VI) fraction determined by ICP-MS. 21 refs., 4 figs., 3 figs.

  2. Analysis of slurries by inductively coupled plasma mass spectrometry using desolvation to improve transport efficiency and atomization efficiency

    Science.gov (United States)

    Hartley, James H. D.; Hill, Steve J.; Ebdon, Les

    1993-09-01

    A slurry sample introduction system incorporating a heated spray chamber and a condenser, cooled using Peltier coolers, has been designed to desolvate the slurry before entry into the plasma. Drying the slurry increased the transport efficiency (2.2-4.9%) and the atomization efficiency. This enhanced both sensitivities and recoveries. The increase in the recovery enabled larger particles to be fully atomized (≈8μm c.f.3˜μm) principally because of the desolvation that decreases the droplet size of the particles that enter the plasma. Fractionation of the samples before analysis by inductively coupled plasma mass spectrometry, using a cascade impactor, enabled information about the transport efficiency and recoveries to be obtained and also effects of inhomogeneity in the sample to be observed. The desolvation of the slurry also caused a decrease in the ionization temperature (from ≈6400°C to ≈5500°C). Local thermal equilibrium is supposed to be obtained and the ionization temperature here is obtained from the Saha equation. The reason for the increase in the recoveries is therefore considered to be due to the removal of the jacket of aqueous solvent around the particle. The ionization temperature of the plasma can be increased by increasing the forward power or by the addition of molecular gases to the nebulizer gas, particularly hydrogen. The addition of 1.5% v/v hydrogen can raise the ionization temperature from about 5500 to 8400°C.

  3. Direct determination of mercury in cosmetic samples by isotope dilution inductively coupled plasma mass spectrometry after dissolution with formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ying; Shi, Zeming; Zong, Qinxia; Wu, Peng; Su, Jing [Sichuan Provincial Key Laboratory of Nuclear Technology in Geology, College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China); Liu, Rui, E-mail: liur.ray@gmail.com [Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China)

    2014-02-17

    Graphical abstract: -- Highlights: •Simple, sensitive, and accurate method is established for mercury determination in cosmetics. •The sample preparation procedure is highly simplified. •Isotope dilution efficiently eliminates matrix effect. •First report of using formic acid based method in combination with PVG-ID-ICP MS for mercury quantitation in cosmetics. -- Abstract: A new method was proposed for the accurate determination of mercury in cosmetic samples based on isotopic dilution (ID)-photochemical vapor generation (PVG)-inductively coupled plasma mass spectrometry (ICP MS) measurement. Cosmetic samples were directly dissolved in formic acid solution and subsequently subjected to PVG for the reduction of mercury into vapor species following by ICP MS detection. Therefore, the risks of analyte contamination and loss were avoided. Highly enriched {sup 201}Hg isotopic spike is added to cosmetics and the isotope ratios of {sup 201}Hg/{sup 202}Hg were measured for the quantitation of mercury. With ID calibration, the influences originating from sample matrixes for the determination of mercury in cosmetic samples have been efficiently eliminated. The effects of several experimental parameters, such as the concentration of the formic acid, and the flow rates of carrier gas and sample were investigated. The method provided good reproducibility and the detection limits were found to be 0.6 pg mL{sup −1}. Finally, the developed method was successfully applied for the determination of mercury in six cosmetic samples and a spike test was performed to verify the accuracy of the method.

  4. Depth profiling of nanometer thin layers by pulsed micro-discharge with inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiaoling; Li, Weifeng [Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Hang, Wei, E-mail: weihang@xmu.edu.cn [Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Huang, Benli [Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2015-09-01

    A depth profile technique has been developed for ultrathin layer analysis by combining a pulsed micro-discharge device with inductively coupled plasma mass spectrometry (ICPMS). With a tungsten needle as the anode and the sample as the cathode, a local micro-plasma was formed in the 50 μm discharge gap, which contributed to the ablation of the sample. We analyzed a series of Ni coating samples with thicknesses of 5, 10, 15, and 20 nm in this study. Although the micro-discharge was shown to be an arc, pulsed mode operation provided an extra control over the power output and the discharge time that enabled precision ablation of submillimeter in lateral scale and 0.6 nm in depth per pulse. A further attempt was made to demonstrate the ability in thickness determination using the calibration curve for layers of different thicknesses. Our results show that the pulsed micro-discharge could directly ablate a solid sample under ambient conditions and that it is an effective low-cost method for depth profiling of nanometer thin layers. - Highlights: • Depth profile technique has been developed for ultrathin layer analysis. • Pulsed micro-discharge was used for solid surface sampling. • Discharge can be controlled by voltage, pulse width, and frequency. • Ablation rate can be controlled, 0.6 nm in depth per pulse was achieved. • Thickness determination using the calibration curve was demonstrated.

  5. Cathodoluminescence, laser ablasion inductively coupled plasma mass spectrometry, electron probe microanalysis and electron paramagnetic resonance analyses of natural sphalerite

    Science.gov (United States)

    Karakus, M.; Hagni, R.D.; Koenig, A.; Ciftc, E.

    2008-01-01

    Natural sphalerite associated with copper, silver, lead-zinc, tin and tungsten deposits from various world-famous mineral deposits have been studied by cathodoluminescence (CL), laser ablasion inductively coupled plasma mass spectrometry (LA-ICP-MS), electron probe microanalysis (EPMA) and electron paramagnetic resonance (EPR) to determine the relationship between trace element type and content and the CL properties of sphalerite. In general, sphalerite produces a spectrum of CL colour under electron bombardment that includes deep blue, turquoise, lime green, yellow-orange, orange-red and dull dark red depending on the type and concentration of trace quantities of activator ions. Sphalerite from most deposits shows a bright yellow-orange CL colour with ??max centred at 585 nm due to Mn2+ ion, and the intensity of CL is strongly dependent primarily on Fe2+ concentration. The blue emission band with ??max centred at 470-490 nm correlates with Ga and Ag at the Tsumeb, Horn Silver, Balmat and Kankoy mines. Colloform sphalerite from older well-known European lead-zinc deposits and late Cretaceous Kuroko-type VMS deposits of Turkey shows intense yellowish CL colour and their CL spectra are characterised by extremely broad emission bands ranging from 450 to 750 nm. These samples are characterised by low Mn (behaviour of sphalerite serves to characterise ore types and help detect technologically important trace elements.

  6. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Morgan, J.L.L.; Gordon, G.W.; Arrua, R.C.; Skulan, J.L.; Anbar, A.D.; Bullen, T.D.

    2011-01-01

    We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios (44Ca/42Ca and 44Ca/43Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10000; Ca/Ti > 10000000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ44/42Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).

  7. RAPID DETERMINATION OF 237 NP AND PU ISOTOPES IN WATER BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S.; Jones, V.; Culligan, B.; Nichols, S.; Noyes, G.

    2010-06-23

    A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of {sup 237}Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry; a hybrid approach. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4 to 6 hours, and can also be used for emergency response. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu, {sup 238}Pu, and {sup 239}Pu were measured by alpha spectrometry.

  8. DETERMINATION OF 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S.

    2010-07-26

    A new method for the determination of {sup 237}Np and Pu isotopes in large soil samples has been developed that provides enhanced uranium removal to facilitate assay by inductively coupled plasma mass spectrometry (ICP-MS). This method allows rapid preconcentration and separation of plutonium and neptunium in large soil samples for the measurement of {sup 237}Np and Pu isotopes by ICP-MS. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via {sup 238}U peak tailing. The method provides enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then transferring Pu to DGA resin for additional purification. The decontamination factor for removal of uranium from plutonium for this method is greater than 1 x 10{sup 6}. Alpha spectrometry can also be applied so that the shorter-lived {sup 238}Pu isotope can be measured successfully. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu and {sup 238}Pu were measured by alpha spectrometry.

  9. Quantification of trace amounts of impurities in high purity cobalt by high resolution inductively coupled plasma mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    XIE Hualin; HUANG Kelong; NIE Xidu; TANG Yougen

    2007-01-01

    An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of 24 elements (Be, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn,Sb, Ba, Pt, Au, and Pb) in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCl. The matrix effects because of the presence of excess HCl and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits were 0.016-1.50 μg.g-1, the recovery ratios were 92.2%-111.2%, and the RSD was less than 3.6%. The method was accurate, quick, and convenient. It was applied to the determination of trace impurities in high purity cobalt with satisfactory results.

  10. Quantification of Trace Amounts of Impurities in High Purity Cobalt by High Resolution Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Hua Lin XIE; Xi Du NIE; You Gen TANG

    2006-01-01

    An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of Be, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn, Sb, Ba, Pt, Au and Pb in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCl. The matrix effects due to thc presence of excess HCl and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination was tested and discussed. Correction for matrix effects, Sc, Rh and Bi were used as internal standards. The detection limits is 0.003-0.57 μg/g, the recovery ratio is 92.2%- 111.2%, and the RSD is less than 3.6%. The method is accurate, quick and convenient. It has been applied to the determination of trace impurities in high purity cobalt with satisfactory results.

  11. High performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry for V and Ni quantification as tetrapyrroles

    Science.gov (United States)

    Duyck, Christiane Béatrice; Saint'Pierre, Tatiana Dillenburg; Miekeley, Norbert; da Fonseca, Teresa Cristina Oliveira; Szatmari, Peter

    2011-05-01

    A method was developed for the determination of V and Ni as tetrapyrroles by High Performance Liquid Chromatography hyphenated to Inductively Coupled Plasma Mass Spectrometry (HPLC-ICP-MS) using reversed phase and elution gradient. Chlorinated solvents and tetrahydrofuran were investigated as regard to separation time and ICP-MS detection efficiencies. The final elution gradient program started from pure methanol to a mixture of 20:80 (v/v) chloroform:methanol. External quantification of V and Ni with inorganic standards by flow injection ICP-MS, used online with HPLC, resulted in 95% of recoveries. The Limits of Detection for V during methanol elution and for Ni during the 20% chloroform gradient elution were evaluated by their minimum detectable concentrations, which were, respectively, 5 μg L - 1 and 8 μg L - 1 . The methodology was applied to polar and resin fractions separated from a Brazilian crude oil and a sediment extract from an oil-polluted area in the Guanabara Bay, Rio de Janeiro, Brazil. Vanadium as tetrapyrroles represented the totality of V content in the polar fraction, whereas Ni was in different polar forms in the resin and sediment extract.

  12. Direct determination of mercury in cosmetic samples by isotope dilution inductively coupled plasma mass spectrometry after dissolution with formic acid

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •Simple, sensitive, and accurate method is established for mercury determination in cosmetics. •The sample preparation procedure is highly simplified. •Isotope dilution efficiently eliminates matrix effect. •First report of using formic acid based method in combination with PVG-ID-ICP MS for mercury quantitation in cosmetics. -- Abstract: A new method was proposed for the accurate determination of mercury in cosmetic samples based on isotopic dilution (ID)-photochemical vapor generation (PVG)-inductively coupled plasma mass spectrometry (ICP MS) measurement. Cosmetic samples were directly dissolved in formic acid solution and subsequently subjected to PVG for the reduction of mercury into vapor species following by ICP MS detection. Therefore, the risks of analyte contamination and loss were avoided. Highly enriched 201Hg isotopic spike is added to cosmetics and the isotope ratios of 201Hg/202Hg were measured for the quantitation of mercury. With ID calibration, the influences originating from sample matrixes for the determination of mercury in cosmetic samples have been efficiently eliminated. The effects of several experimental parameters, such as the concentration of the formic acid, and the flow rates of carrier gas and sample were investigated. The method provided good reproducibility and the detection limits were found to be 0.6 pg mL−1. Finally, the developed method was successfully applied for the determination of mercury in six cosmetic samples and a spike test was performed to verify the accuracy of the method

  13. Speciation of vanadium in oilsand coke and bacterial culture by high performance liquid chromatography inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Li, X Sherry; Glasauer, Susan; Le, X Chris

    2007-10-17

    A simple and sensitive method for the speciation of vanadium(III), (IV), and (V) was developed by using high performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICPMS). The EDTA-complexed vanadium species were separated on a strong anion exchange column with an eluent containing 2 mM EDTA, 3% acetonitrile, and 80 mM ammonium bicarbonate at pH 6. Each analysis was complete in 5 min. The detection limits were 0.6, 0.7 and 1.0 microg L(-1) for V(III), V(IV), and V(V), respectively. The method was applied to coke pore water samples from an oilsand processing/upgrading site in Fort McMurray, Alberta, Canada and to Shewanella putrefaciens CN32 bacterial cultures incubated with V(V). In the coke pore water samples, V(IV) and V(V) were found to be the major species. For the first time, V(III) was detected in the bacterial cultures incubated with V(V). PMID:17936102

  14. Speciation of vanadium in oilsand coke and bacterial culture by high performance liquid chromatography inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. Sherry [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Le, X. Chris [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada)], E-mail: xc.le@ualberta.ca

    2007-10-17

    A simple and sensitive method for the speciation of vanadium(III), (IV), and (V) was developed by using high performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICPMS). The EDTA-complexed vanadium species were separated on a strong anion exchange column with an eluent containing 2 mM EDTA, 3% acetonitrile, and 80 mM ammonium bicarbonate at pH 6. Each analysis was complete in 5 min. The detection limits were 0.6, 0.7 and 1.0 {mu}g L{sup -1} for V(III), V(IV), and V(V), respectively. The method was applied to coke pore water samples from an oilsand processing/upgrading site in Fort McMurray, Alberta, Canada and to Shewanella putrefaciens CN32 bacterial cultures incubated with V(V). In the coke pore water samples, V(IV) and V(V) were found to be the major species. For the first time, V(III) was detected in the bacterial cultures incubated with V(V)

  15. Speciation of vanadium in oilsand coke and bacterial culture by high performance liquid chromatography inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    A simple and sensitive method for the speciation of vanadium(III), (IV), and (V) was developed by using high performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICPMS). The EDTA-complexed vanadium species were separated on a strong anion exchange column with an eluent containing 2 mM EDTA, 3% acetonitrile, and 80 mM ammonium bicarbonate at pH 6. Each analysis was complete in 5 min. The detection limits were 0.6, 0.7 and 1.0 μg L-1 for V(III), V(IV), and V(V), respectively. The method was applied to coke pore water samples from an oilsand processing/upgrading site in Fort McMurray, Alberta, Canada and to Shewanella putrefaciens CN32 bacterial cultures incubated with V(V). In the coke pore water samples, V(IV) and V(V) were found to be the major species. For the first time, V(III) was detected in the bacterial cultures incubated with V(V)

  16. Rapid determination of (237)Np and plutonium isotopes in urine by inductively-coupled plasma mass spectrometry and alpha spectrometry.

    Science.gov (United States)

    Maxwell, Sherrod L; Culligan, Brian K; Jones, Vernon D; Nichols, Sheldon T; Noyes, Gary W; Bernard, Maureen A

    2011-08-01

    A new rapid separation method was developed for the measurement of plutonium and neptunium in urine samples by inductively-coupled plasma mass spectrometry (ICP-MS) and/or alpha spectrometry with enhanced uranium removal. This method allows separation and preconcentration of plutonium and neptunium in urine samples using stacked extraction chromatography cartridges and vacuum box flow rates to facilitate rapid separations. There is an increasing need to develop faster analytical methods for emergency response samples. There is also enormous benefit to having rapid bioassay methods in the event that a nuclear worker has an uptake (puncture wound, etc.) to assess the magnitude of the uptake and guide efforts to mitigate dose (e.g., tissue excision and chelation therapy). This new method focuses only on the rapid separation of plutonium and neptunium with enhanced removal of uranium. For ICP-MS, purified solutions must have low salt content and low concentration of uranium due to spectral interference of (238)U(1)H(+) on m/z 239. Uranium removal using this method is enhanced by loading plutonium and neptunium initially onto TEVA resin, then moving plutonium to DGA resin where additional purification from uranium is performed with a decontamination factor of almost 1×10(5). If UTEVA resin is added to the separation scheme, a decontamination factor of ~3 × 10(6) can be achieved.

  17. Determination of boron in steel by isotope-dilution inductively coupled plasma mass spectrometry after matrix separation

    International Nuclear Information System (INIS)

    The concentration of B in steels is important due to its influence on mechanical properties of steel such as hardenability, hot workability ,and creep resistance. An analytical method has been developed to determine B in steel samples by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). National Institute of Standard Reference Material (NIST SRM) 348a was analyzed to validate the analytical method. The steel sample was digested in a centrifuge bottle with addition of aqua regia and 10B spike isotope. Sample pH was then adjusted to higher than 10 to precipitate most matrix elements such as Fe, Cr and Ni. After centrifugation, the supernatant solution was passed through a cation exchange column to enhance the matrix separation efficiency. B recovery efficiency was about 37%, while matrix removal efficiency was higher than 99.9% for major matrix elements. The isotope dilution method was used for quantification and the determined B concentration was in good agreement with the certified value

  18. Determination of total and isotopic uranium and total thorium in soils by inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Inductively coupled plasma-mass spectrometry (ICP-MS), using standard sample introduction by peristaltic pumping, is presented as a method to determine total and isotopic uranium (234U, 235U, 236U, and 238U) and thorium (232Th) in soil samples. Initial sample preparation consists of oven drying to determine moisture content, and grinding and mixing the soil to make it homogeneous. This is followed by a nitric/hydrofluoric acid digestion to bring the uranium into solution. Bismuth (209Bi) is added prior to digestion to monitor for losses due to sample preparation and analysis. An addition digestion, using nitric/perchloric acid is performed if the total thorium concentration is required on the sample. The uranium and thorium content of this solution and the 235U/238U ratio are measured on an initial pass through the ICP-MS. The total uranium measurement is based on the 238U isotope measurement with correction for the presence of the U isotopes. To determine the concentration of the less abundant 234U and 236U isotopes, the digestate is further concentrated by using a solid phase extraction column (TRU.Spec by EiChrom Industries, Inc.) before a second pass through the ICP-MS

  19. Determination of copper in uniformly-doped silicon thin film by isotope-dilution inductively coupled plasma mass spectrometry

    CERN Document Server

    Park, C J; Lee, D S

    2001-01-01

    Uniformly-doped silicon thin films were fabricated by ion beam sputter deposition. The thin films had four levels of copper dopant concentration ranging between 1 x 10 sup 1 sup 9 and 1 x 10 sup 2 sup 1 atoms/cm sup 3. Concentrations of Copper dopants were determined by the isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) to provide certified reference data for the quantitative surface analysis by secondary ion mass spectrometry (SIMS). The copper-doped thin films were dissolved in a mixture of 1 M HF and 3 M HNO sub 3 spiked with appropriate amounts of sup 6 sup 5 Cu. For an accurate isotope ratio determination, both the detector dead time and the mass discrimination were appropriately corrected and isobaric interference from SiAr molecular ions was avoided by a careful sample pretreatment. An analyte recovery efficiency was obtained for the Cu spiked samples to evaluate accuracy of the method. Uncertainty of the determined copper concentrations, estimated following the EURACHEM Guide, ...

  20. Determination of copper in uniformly-doped silicon thin film by isotope-dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Uniformly-doped silicon thin films were fabricated by ion beam sputter deposition. The thin films had four levels of copper dopant concentration ranging between 1 x 1019 and 1 x 1021 atoms/cm3. Concentrations of Copper dopants were determined by the isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) to provide certified reference data for the quantitative surface analysis by secondary ion mass spectrometry (SIMS). The copper-doped thin films were dissolved in a mixture of 1 M HF and 3 M HNO3 spiked with appropriate amounts of 65Cu. For an accurate isotope ratio determination, both the detector dead time and the mass discrimination were appropriately corrected and isobaric interference from SiAr molecular ions was avoided by a careful sample pretreatment. An analyte recovery efficiency was obtained for the Cu spiked samples to evaluate accuracy of the method. Uncertainty of the determined copper concentrations, estimated following the EURACHEM Guide, was less than 4%, and detection limit of this method was 5.58 x 1016 atoms/cm3

  1. Determination of rare earth elements, uranium and thorium in apatite minerals by inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Determination and distribution of 18 elements such as rare earth elements (REE), uranium and thorium in apatite minerals were examined using inductively coupled plasma-mass spectrometry. The sample solution (1 mg/ml) which were prepared with hot concentrated nitric acid were directly injected into the plasma. REE, uranium and thorium contents in the apatite were determined by a calibration curve method. However, the intensity of thorium decreased by calcium phosphate in macro-component. Therefore, thorium was separated from these calcium phosphate by solvent extraction with 0.1 mol/dm3 3-Phenyl-4-benzoyl-5-isoxazolone-DIBK system. DIBK phase was evaporated by heating, dried and ashed with concentrated nitric and perchloric acids. After allowing cooling, 0.1 mol/dm3 nitric acids was added to dissolve any precipitate. The REE, uranium and thorium content in apatite minerals from USA, China and Jordan were found to be (0.24-172), (9.69-111), (0.7-7.95) ppm, respectively. It was found that lanthanoid in apatite minerals following the Oddo and Harkins law. (author)

  2. A provenance study of iron archaeological artefacts by Inductively Coupled Plasma-Mass Spectrometry multi-elemental analysis

    International Nuclear Information System (INIS)

    Raw materials and wastes (i.e. ore, slag and laitier) from ironmaking archaeological sites have been analyzed in order to understand the behavior of the trace elements in the ancient ironmaking processes and to find the significant-most elements to characterize an iron making region. The ICP-MS (Inductively Coupled Plasma Mass Spectrometry) appears to be an excellent technique for this type of studies. The comparison between the ICP-MS results obtained with the Standard Addition method and the INAA (Instrumental Neutron Activation Analyses) results proved that Sc, Co, (Ni), Rb, Cs, Ba, La, Ce, Sm, Eu, Yb, Hf, Th, U contents in the ores, slag and laitiers, and Co and Ni contents in the cast iron can be successfully determined by ICP-MS after wet acid digestion (low detection limits, good sensitivity and precision). By using significant trace element pairs (Yb/Ce, Ce/Th, La/Sc, U/Th, Nb/Y) present in the ores, laitiers and slag, it is possible to discriminate different French ironmaking regions as the Pays de Bray, Lorraine and Pays d'Ouche. These results open the way to further studies on the provenance of iron objects. The comparison between the ICP-MS results obtained with the Standard Calibration Curves method and the INAA results shows that matrices rich in iron, affect the ICP-MS analyses by suppressing the analytes signal. Further studies are necessary to improve understanding matrix effects

  3. Investigation of a measure of robustness in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    In industrial/commercial settings where operators often have minimal expertise in inductively coupled plasma (ICP) mass spectrometry (MS), there is a prevalent need for a response factor indicating robust plasma conditions, which is analogous to the Mg II/Mg I ratio in ICP optical emission spectrometry (OES), whereby a Mg II/Mg I ratio of 10 constitutes robust conditions. While minimizing the oxide ratio usually corresponds to robust conditions, there is no specific target value that is widely accepted as indicating robust conditions. Furthermore, tuning for low oxide ratios does not necessarily guarantee minimal matrix effects, as they really address polyatomic interferences. From experiments, conducted in parallel for both MS and OES, there were some element pairs of similar mass and very different ionization potential that were exploited for such a purpose, the rationale being that, if these elements were ionized to the same extent, then that could be indicative of a robust plasma. The Be II/Li I intensity ratio was directly related to the Mg II/Mg I ratio in OES. Moreover, the 9Be+/7Li+ ratio was inversely related to the CeO+/Ce+ and LaO+/La+ oxide ratios in MS. The effects of different matrices (i.e. 0.01–0.1 M Na) were also investigated and compared to a conventional argon plasma optimized for maximum sensitivity. The suppression effect of these matrices was significantly reduced, if not eliminated in the case of 0.01 M Na, when the 9Be+/7Li+ ratio was around 0.30 on the Varian 820 MS instrument. Moreover, a very similar ratio (0.28) increased robustness to the same extent on a completely different ICP-MS instrument (PerkinElmer NEXION). Much greater robustness was achieved using a mixed-gas plasma with nitrogen in the outer gas and either nitrogen or hydrogen as a sheathing gas, as the 9Be+/7Li+ ratio was then around 1.70. To the best of our knowledge, this is the first report on using a simple analyte intensity ratio, 9Be+/7Li+, to gauge plasma robustness

  4. Speciation of gadolinium in surface water samples and plants by hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lindner, Uwe; Lingott, Jana; Richter, Silke; Jakubowski, Norbert; Panne, Ulrich

    2013-02-01

    Hydrophilic interaction chromatography (HILIC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was optimized for speciation analysis of gadolinium-based contrast agents in environmental samples, in particular surface river waters and plants. Surface water samples from the Teltow channel, near Berlin, were investigated over a distance of 5 km downstream from the influx of a wastewater treatment plant. The total concentration of gadolinium increased significantly from 50 to 990 ng L(-1) due to the influx of the contrast agents. After complete mixing with the river water, the concentration remained constant over a distance of at least 4 km. Two main substances [Dotarem(®) (Gd-DOTA) and Gadovist(®) (Gd-BT-DO3A)] have been identified in the river water using standards. A gadolinium-based contrast agent, possibly Gd-DOTA (Dotarem(®)), was also detected in water plant samples taken from the Teltow channel. Therefore, uptake of contrast agents [Gadovist(®) (Gd-BTDO3A), Magnevist(®) (Gd-DTPA), Omniscan(®) (Gd-DTPA-BMA), Dotarem(®) (Gd-DOTA), and Multihance(®) (Gd-BOPTA)] by plants was investigated in a model experiment using Lepidium sativum (cress plants). HILIC-ICP-MS was used for identification of different contrast agents, and a first approach for quantification using aqueous standard solutions was tested. For speciation analysis, all investigated contrast agents could be extracted from the plant tissues with a recovery of about 54 % for Multihance(®) (Gd-BOPTA) up to 106 % for Gadovist(®) (Gd-BT-DO3A). These experiments demonstrate that all contrast agents investigated are transported from the roots to the leaves where the highest content was measured.

  5. Precise determination of dissolved silica in seawater by ion-exclusion chromatography isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Highlights: • One mg kg−1 level of dissolved silica in seawater was determined precisely (0.5 %). • Silicon background problem was minimized to yield a BEC value of 3 ng g−1. • Good precision of isotope ratio measurement was achieved in m/Δm = 4000 of ICP–MS. • Developed method has been applied to production of three levels of seawater CRMs. - Abstract: Ion exclusion chromatograph (IEC) isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP–MS) (IEC–ID–ICP–MS) was developed for measurement of dissolved silica in seawater, which was applied to production of certified reference materials (CRMs) of three concentration levels of nutrients (high, medium and low levels). IEC–ICP–MS has been employed to separate dissolved silica from seawater matrix. In the present study, in order to solve substantial problems due to spectral interference in ICP–MS and to improve the accuracy of IEC–ICP–MS beyond standard addition or conventional calibration methods, ID method was coupled with ICP-sector field mass spectrometry (operated under medium resolution,i.e., m/Δm = 4000). In addition, effects of various operating parameters in ICP–MS on a silicon background level were also investigated to obtain lower background equivalent concentration (BEC). As a result, 3 ng g−1 of the BEC and 0.5 % of relative standard uncertainties were achieved in the analyses of dissolved silica in seawater samples at concentration levels from 4.0 mg kg -1 to 0.8 mg kg−1 as silicon. The developed method was successfully validated by analyses of an artificial seawater containing a known amount of silicate and the seawater certified reference material MOOS-2 produced by the National Research Council Canada

  6. Considerations of particle vaporization and analyte diffusion in single-particle inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    The intensity of individual gold nanoparticles with nominal diameters of 80, 100, 150, and 200 nm was measured using single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Since the particles are not perfectly monodisperse, a distribution of ICP-MS intensity was obtained for each nominal diameter. The distribution of particle mass was determined from the transmission electron microscopy (TEM) image of the particles. The distribution of ICP-MS intensity and the distribution of particle mass for each nominal diameter were correlated to give a calibration curve. The calibration curves are linear, but the slope decreases as the nominal diameter increases. The reduced slope is probably due to a smaller degree of vaporization of the large particles. In addition to the degree of particle vaporization, the rate of analyte diffusion in the ICP is an important factor that determines the measured ICP-MS intensity. Simulated ICP-MS intensity versus particle size was calculated using a simple computer program that accounts for the vaporization rate of the gold nanoparticles and the diffusion rate and degree of ionization of the gold atoms. The curvature of the simulated calibration curves changes with sampling depth because the effects of particle vaporization and analyte diffusion on the ICP-MS intensity are dependent on the residence time of the particle in the ICP. Calibration curves of four hypothetical particles representing the four combinations of high and low boiling points (2000 and 4000 K) and high and low analyte diffusion rates (atomic masses of 10 and 200 Da) were calculated to further illustrate the relative effects of particle vaporization and analyte diffusion. The simulated calibration curves show that the sensitivity of single-particle ICP-MS is smaller than that of the ICP-MS measurement of continuous flow of standard solutions by a factor of 2 or more. Calibration using continuous flow of standard solution is semi-quantitative at best. An

  7. Inductively coupled plasma mass spectrometry with a twin quadrupole instrument using laser ablation sample introduction and monodisperse dried microparticulate injection

    Energy Technology Data Exchange (ETDEWEB)

    Allen, L.A.

    1997-02-01

    The focus of this dissertation is the use of a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for the simultaneous detection of two m/z values. The twin quadrupole ICP-MS is used with laser ablation sample introduction in both the steady state (10 Hz) and single pulse modes. Steady state signals are highly correlated and the majority of flicker noise cancels when the ratio is calculated. Using a copper sample, the isotope ratio {sup 63}Cu{sup +}/{sup 65}Cu{sup +} is measured with a relative standard deviation (RSD) of 0.26%. Transient signals for single laser pulses are also obtained. Copper isotope ratio measurements for several laser pulses are measured with an RSD of 0.85%. Laser ablation (LA) is used with steel samples to assess the ability of the twin quadrupole ICP-MS to eliminate flicker noise of minor components of steel samples. Isotopic and internal standard ratios are measured in the first part of this work. The isotope ratio {sup 52}Cr{sup +}/{sup 53}Cr{sup +} (Cr present at 1.31 %) can be measured with an RSD of 0.06 % to 0.1 %. For internal standard elements, RSDs improve from 1.9 % in the Cr{sup +} signal to 0.12% for the ratio of {sup 51}V{sup +} to {sup 52}Cr{sup +}. In the second part of this work, one mass spectrometer is scanned while the second channel measures an individual m/z value. When the ratio of these two signals is calculated, the peak shapes in the mass spectrum are improved significantly. Pulses of analyte and matrix ions from individual drops are measured simultaneously using the twin quadrupole ICP-MS with monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li{sup +} signal becomes apparent. Space charge effects are consistent with the disturbances seen.

  8. Electrospray-Differential Mobility Hyphenated with Single Particle Inductively Coupled Plasma Mass Spectrometry for Characterization of Nanoparticles and Their Aggregates.

    Science.gov (United States)

    Tan, Jiaojie; Liu, Jingyu; Li, Mingdong; El Hadri, Hind; Hackley, Vincent A; Zachariah, Michael R

    2016-09-01

    The novel hyphenation of electrospray-differential mobility analysis with single particle inductively coupled plasma mass spectrometry (ES-DMA-spICPMS) was demonstrated with the capacity for real-time size, mass, and concentration measurement of nanoparticles (NPs) on a particle-to-particle basis. In this proof-of-concept study, the feasibility of this technique was validated through both concentration and mass calibration using NIST gold NP reference materials. A detection limit of 10(5) NPs mL(-1) was determined under current experimental conditions, which is about 4 orders of magnitude lower in comparison to that of a traditional ES-DMA setup using a condensation particle counter as detector. Furthermore, independent and simultaneous quantification of both size and mass of NPs provides information regarding NP aggregation states. Two demonstrative applications include gold NP mixtures with a broad size range (30-100 nm), and aggregated gold NPs with a primary size of 40 nm. Finally, this technique was shown to be potentially useful for real-world samples with high ionic background due to its ability to remove dissolved ions yielding a cleaner background. Overall, we demonstrate the capacity of this new hyphenated technique for (1) clearly resolving NP populations from a mixture containing a broad size range; (2) accurately measuring a linear relationship, which should inherently exist between mobility size and one-third power of ICPMS mass for spherical NPs; (3) quantifying the early stage propagation of NP aggregation with well-characterized oligomers; and (4) differentiating aggregated NPs and nonaggregated states based on the "apparent density" derived from both DMA size and spICPMS mass. PMID:27479448

  9. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Gray, Evan P; Coleman, Jessica G; Bednar, Anthony J; Kennedy, Alan J; Ranville, James F; Higgins, Christopher P

    2013-12-17

    Expanded use of engineered nanoparticles (ENPs) in consumer products increases the potential for environmental release and unintended biological exposures. As a result, measurement techniques are needed to accurately quantify ENP size, mass, and particle number distributions in biological matrices. This work combines single particle inductively coupled plasma mass spectrometry (spICPMS) with tissue extraction to quantify and characterize metallic ENPs in environmentally relevant biological tissues for the first time. ENPs were extracted from tissues via alkaline digestion using tetramethylammonium hydroxide (TMAH). Method development was performed using ground beef and was verified in Daphnia magna and Lumbriculus variegatus . ENPs investigated include 100 and 60 nm Au and Ag stabilized by polyvynylpyrrolidone (PVP). Mass- and number-based recovery of spiked Au and Ag ENPs was high (83-121%) from all tissues tested. Additional experiments suggested ENP mixtures (60 and 100 nm Ag ENPs) could be extracted and quantitatively analyzed. Biological exposures were also conducted to verify the applicability of the method for aquatic organisms. Size distributions and particle number concentrations were determined for ENPs extracted from D. magna exposed to 98 μg/L 100 nm Au and 4.8 μg/L 100 nm Ag ENPs. The D. magna nanoparticulate body burden for Au ENP uptake was 613 ± 230 μg/kgww, while the measured nanoparticulate body burden for D. magna exposed to Ag ENPs was 59 ± 52 μg/kgww. Notably, the particle size distributions determined from D. magna tissues suggested minimal shifts in the size distributions of ENPs accumulated, as compared to the exposure media. PMID:24218983

  10. Determination of picomolar beryllium levels in seawater with inductively coupled plasma mass spectrometry following silica-gel preconcentration

    Energy Technology Data Exchange (ETDEWEB)

    Tazoe, Hirofumi, E-mail: tazoe@cc.hirosaki-u.ac.jp [Department of Radiation Chemistry, Institute of Radiation Emergency Mediation, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan); College of Humanities and Sciences, Nihon University, 3-25-40, Sakurajosui, Setagaya-ku, Tokyo 156-8550 (Japan); Yamagata, Takeyasu [College of Humanities and Sciences, Nihon University, 3-25-40, Sakurajosui, Setagaya-ku, Tokyo 156-8550 (Japan); Obata, Hajime [Atmosphere and Ocean Research Institute, The Tokyo University, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8564 (Japan); Nagai, Hisao [College of Humanities and Sciences, Nihon University, 3-25-40, Sakurajosui, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-12-10

    Highlights: • We developesd the simplest and robust SPE method for ultra low picomolar level beryllium in seawater. • Just silica gel column can quantitatively adsorb beryllium in neutral pH condition containing natural seawater. • EDTA solution can eliminate seawater matrixes retaining Be in the column, which optimize to ICP-MS detemination. • Accurate and precise Be data have been obtained for natural seawater from North Pacific Ocean. - Abstract: A robust and rapid method for the determination of natural levels of beryllium (Be) in seawater was developed to facilitate mapping Be concentrations in the ocean. A solid-phase extraction method using a silica gel column was applied for preconcentration and purification of Be in seawater prior to determination of Be concentrations with inductively coupled plasma mass spectrometry (ICP-MS). Be was quantitatively adsorbed onto silica gel from solutions with pH values ranging from 6.3 to 9, including natural seawater. The chelating agent ethylenediamine tetraacetic acid was used to remove other ions in the seawater matrix (Na, Mg, and Ca) that interfere with the ICP-MS analysis. The reproducibility of the method was 3% based on triplicate analyses of natural seawater samples, and the detection limit was 0.4 pmol kg{sup −1} for 250 mL of seawater, which is sufficient for the analysis of seawater in the open ocean. The method was then used to determine the vertical profile of Be in the eastern North Pacific Ocean, which was found to be a recycled-type profile in which the Be concentration increased with depth from the surface (7.2 pmol kg{sup −1} at <200 m) to deep water (29.2 pmol kg{sup −1} from 3500 m to the bottom)

  11. Determination of trace elements in water samples by ultrasonic nebulization inductively coupled plasma mass spectrometry after cloud point extraction

    Science.gov (United States)

    Mesquita da Silva, Márcia Andreia; Azzolin Frescura, Vera Lúcia; Curtius, Adilson José

    2000-07-01

    A preconcentration method for low concentrations of Ag, As, Au, Cd, Cu, Pb and Se in water, using cloud point extraction is proposed. The analytes in the initial aqueous solution, acidified with hydrochloric acid, are complexed with ammonium O, O-diethyl-dithiophosphate, and 0.05% m/v Triton X-114 is added as surfactant. The complexation allows the separation of the analytes from alkali, alkaline earth and other elements, which are not complexed. After phase separation, by increasing the temperature above 20°C, depending on the cloud point of the mixture, and dilution of the surfactant-rich phase with a mixture of 60% v/v methanol and 40% v/v of 1% v/v aqueous nitric acid solution, the enriched analytes are determined by inductively coupled plasma mass spectrometry, using ultrasonic nebulization, injecting 100 μl of the enriched phase with a flow injection (FI) system. Since the initial volume is 40 ml and the final volume is 1 ml, good enrichment factors are obtained. After optimization of the complexation (pH and DDTP concentration), of extraction conditions, sample introduction (FI and ultrasonic nebulizer parameters) and spectrometer conditions, the method was applied to the analysis of riverine water, sea water and enriched water reference materials, and good agreement with the certified values was obtained. By introducing the organic extract with the FI system and using ultrasonic nebulization, no carbon deposits on the interface cones and lens were observed, allowing extensive use of the spectrometer without cleaning and re-optimization.

  12. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (Te) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (ne) is in the range 108--1010-cm at the skimmer tip and drops abruptly to 106--108 cm-3 near the skimmer tip and drops abruptly to 106--108 cm-3 downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 104--105 downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z2 intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z2 fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument

  13. Ultratrace determination of Pb, Se and As in wine samples by electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    The determination of Pb, Se and As in wine has a great interest due to health risks and legal requirements. To perform the analysis of wine, two considerations must be taken into account: (i) the low concentration level of the analytes; and (ii) the risk of interferences due to wine matrix components. The goal of this work is to evaluate electrothermal vaporization (ETV) sample introduction for ultratrace determination of Pb, Se and As in wine samples by inductively coupled plasma mass spectrometry (ICP-MS). The results obtained with ETV-ICP-MS were compared to those obtained with conventional liquid sample introduction in ICP-MS and electrothermal atomic absorption spectrometry (ETAAS). Analytical figures of merit of ETV sample introduction strongly depend on the amount of wine sample, on the modifier nature (i.e. Pd, ascorbic acid or citric acid) and concentration and on the temperature program. Wine matrix components exert a great influence on analyte transport efficiency. Due to this fact, the analysis of wine cannot be performed by means of external calibration but the standard addition methodology should be used. The determination of Pb and Se in wine by ETV-ICP-MS provides similar results as conventional liquid sample introduction ICP-MS. For As, the concentration values obtained with ETV sample introduction were between two and four times lower than with the conventional system. These differences are related to the lower intensity of polyatomic interferences (i.e. 40Ar35Cl+ vs. 75As+) obtained for ETV sample introduction when compared to the conventional system. Finally, no differences for Pb determination were observed between ETV sample introduction and ETAAS. Unfortunately, the limits of detection for As and Se in ETAAS were not low enough to quantify these elements in the wine samples tested.

  14. Electrospray-Differential Mobility Hyphenated with Single Particle Inductively Coupled Plasma Mass Spectrometry for Characterization of Nanoparticles and Their Aggregates.

    Science.gov (United States)

    Tan, Jiaojie; Liu, Jingyu; Li, Mingdong; El Hadri, Hind; Hackley, Vincent A; Zachariah, Michael R

    2016-09-01

    The novel hyphenation of electrospray-differential mobility analysis with single particle inductively coupled plasma mass spectrometry (ES-DMA-spICPMS) was demonstrated with the capacity for real-time size, mass, and concentration measurement of nanoparticles (NPs) on a particle-to-particle basis. In this proof-of-concept study, the feasibility of this technique was validated through both concentration and mass calibration using NIST gold NP reference materials. A detection limit of 10(5) NPs mL(-1) was determined under current experimental conditions, which is about 4 orders of magnitude lower in comparison to that of a traditional ES-DMA setup using a condensation particle counter as detector. Furthermore, independent and simultaneous quantification of both size and mass of NPs provides information regarding NP aggregation states. Two demonstrative applications include gold NP mixtures with a broad size range (30-100 nm), and aggregated gold NPs with a primary size of 40 nm. Finally, this technique was shown to be potentially useful for real-world samples with high ionic background due to its ability to remove dissolved ions yielding a cleaner background. Overall, we demonstrate the capacity of this new hyphenated technique for (1) clearly resolving NP populations from a mixture containing a broad size range; (2) accurately measuring a linear relationship, which should inherently exist between mobility size and one-third power of ICPMS mass for spherical NPs; (3) quantifying the early stage propagation of NP aggregation with well-characterized oligomers; and (4) differentiating aggregated NPs and nonaggregated states based on the "apparent density" derived from both DMA size and spICPMS mass.

  15. A rapid method for simultaneous determination of arsenic, cadmium and lead in drinking water by inductively coupled plasma mass spectrometry

    Directory of Open Access Journals (Sweden)

    Joshua Rey P. Torres

    Full Text Available The raw water source of drinking water in most areas in the Philippines is typically river water and in some cases groundwater. These sources are prone to elevated levels of metals and metalloids that may cause exposure of the general population when the treatment of the water is inadequate. This work presents a simple method based on EPA Method 200.8 for the determination of total concentrations of arsenic (As, cadmium (Cd and lead (Pb in drinking water using inductively coupled plasma-mass spectrometry (ICP-MS as the element-selective detector. This was applied in the determination of these elements in the water supply in Metro Manila, Philippines. The method detection limits were 0.095 μg L-1, 0.043 μg L-1, and 0.114 μg L-1 for total As, Cd and Pb, respectively.The method was validated using National Institute of Standards and Technology (NIST 1643e certified reference material for trace elements in water and determined values were 60.4 ± 0.5 μg L-1, 6.7 ± 0.1 μg L-1, and 19.6 ± 0.5 μg L-1 for As, Cd and Pb, respectively. These determined values were in good agreement with the certified values in the reference material. Analysis of actual drinking water samples showed that most samples did not exceed the limit of the Philippine drinking water standard for the elements.

  16. A high-efficiency cross-flow micronebulizer interface for capillary electrophoresis and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Li, J; Umemura, T; Odake, T; Tsunoda, K

    2001-12-15

    A pneumatic nebulizer interface for capillary electrophoresis (CE) and inductively coupled plasma mass spectrometry (ICPMS) is reported. The interface is constructed using a high-efficiency cross-flow micronebulizer (HECFMN) and has the following features. (1) Makeup solutions can be fed to the interface by nebulizer self-aspiration and liquid gravity pressurization. (2) The liquid dead volume of the interface is approximately 65 nL, much smaller than those (200-2500 nL) reported for other interfaces. (3) The interface can be stably operated at a liquid flow rate down to 5 microL/min with a high analyte transport efficiency up to 95% to the plasma and (4) does not induce noticeable laminar flow in the CE capillary at typical nebulizer gas flow rates of 0.8-1.2 L/min. Because of these features, baseline resolution of 10 lanthanides with a CE-ICPMS system using the HECFMN interface is achieved, and detection limits and peak asymmetry are 0.05-1 microg/L and 0.93-1.23, respectively, improved significantly over those reported previously for a CE-ICPMS system using a high-efficiency nebulizer interface. Peak precision for the 10 lanthanides is in the range of 6.2-12.3% RSD (N = 5). Peak widths are from 9.1 s for 139La to 17.9 s for 175Lu. The effects of nebulizer gas flow rate, makeup solution flow rate, and spray chamber volume on CE-ICPMS signal intensity and separation are also evaluated for the HECFMN interface by the separation of Cr3+ and Cr2O7(2-).

  17. Speciation analysis of mercury in cereals by liquid chromatography chemical vapor generation inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Lin, Liang-Yen; Chang, Lan-Fang; Jiang, Shiuh-Jen

    2008-08-27

    A simple and rapid procedure for the separation and determination of inorganic, methyl, and ethyl mercury compounds was described using liquid chromatography (LC) followed by vapor generation inductively coupled plasma-mass spectrometry (VG-ICP-MS). Well resolved chromatograms were obtained within 5 min by reversed-phase liquid chromatography with a C8 column as the stationary phase and a pH 4.7 solution containing 0.5% v/v 2-mercaptoethanol and 5% v/v methanol as the mobile phase. The separated mercury compounds were converted to mercury vapors by an in situ nebulizer/vapor generation system for their introduction into ICP. The concentrations of NaBH4 and HNO3 required for vapor generation were also optimized. The method was applied for the speciation of mercury in reference materials NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and also rice flour and wheat flour samples purchased locally. The accuracy of the procedure was verified by analyzing the certified reference material NRCC DOLT-3 Dogfish Liver for methyl mercury. Precision between sample replicates was better than 13% for all the determinations. The detection limits of the mercury compounds studied were in the range 0.003-0.006 ng Hg mL(-1) in the injected solutions, which correspond to 0.02-0.06 ng g(-1) in original flour samples. A microwave-assisted extraction procedure was adopted for the extraction of mercury compounds from rice flour, wheat flour, and fish samples using a mobile phase solution.

  18. Matrix effects of calcium on high-precision sulfur isotope measurement by multiple-collector inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Liu, Chenhui; Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong

    2016-05-01

    Multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been successfully applied in the rapid and high-precision measurement for sulfur isotope ratios in recent years. During the measurement, the presence of matrix elements would affect the instrumental mass bias for sulfur and these matrix-induced effects have aroused a lot of researchers' interest. However, these studies have placed more weight on highlighting the necessity for their proposed correction protocols (e.g., chemical purification and matrix-matching) while less attention on the key property of the matrix element gives rise to the matrix effects. In this study, four groups of sulfate solutions, which have different concentrations of sulfur (0.05-0.60mM) but a constant sequence of atomic calcium/sulfur ratios (0.1-50), are investigated under wet (solution) and dry (desolvation) plasma conditions to make a detailed evaluation on the matrix effects from calcium on sulfur isotope measurement. Based on a series of comparative analyses, we indicated that, the matrix effects of calcium on both measured sulfur isotope ratios and detected (32)S signal intensities are dependent mainly on the absolute calcium concentration rather than its relative concentration ratio to sulfur (i.e., atomic calcium/sulfur ratio). Also, for the same group of samples, the matrix effects of calcium under dry plasma condition are much more significant than that of wet plasma. This research affords the opportunity to realize direct and relatively precise sulfur isotope measurement for evaporite gypsum, and further provides some suggestions with regard to sulfur isotope analytical protocols for sedimentary pore water.

  19. Ultratrace determination of Pb, Se and As in wine samples by electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grindlay, Guillermo, E-mail: guillermo.grindlay@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, PO Box 99, 03080 - Alicante (Spain); Mora, Juan; Gras, Luis [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, PO Box 99, 03080 - Alicante (Spain); de Loos-Vollebregt, M.T.C. [Delft University of Technology, Fac. Applied Sciences, Julianalaan 67, 2628 BC - Delft (Netherlands)

    2009-10-12

    The determination of Pb, Se and As in wine has a great interest due to health risks and legal requirements. To perform the analysis of wine, two considerations must be taken into account: (i) the low concentration level of the analytes; and (ii) the risk of interferences due to wine matrix components. The goal of this work is to evaluate electrothermal vaporization (ETV) sample introduction for ultratrace determination of Pb, Se and As in wine samples by inductively coupled plasma mass spectrometry (ICP-MS). The results obtained with ETV-ICP-MS were compared to those obtained with conventional liquid sample introduction in ICP-MS and electrothermal atomic absorption spectrometry (ETAAS). Analytical figures of merit of ETV sample introduction strongly depend on the amount of wine sample, on the modifier nature (i.e. Pd, ascorbic acid or citric acid) and concentration and on the temperature program. Wine matrix components exert a great influence on analyte transport efficiency. Due to this fact, the analysis of wine cannot be performed by means of external calibration but the standard addition methodology should be used. The determination of Pb and Se in wine by ETV-ICP-MS provides similar results as conventional liquid sample introduction ICP-MS. For As, the concentration values obtained with ETV sample introduction were between two and four times lower than with the conventional system. These differences are related to the lower intensity of polyatomic interferences (i.e. {sup 40}Ar{sup 35}Cl{sup +} vs. {sup 75}As{sup +}) obtained for ETV sample introduction when compared to the conventional system. Finally, no differences for Pb determination were observed between ETV sample introduction and ETAAS. Unfortunately, the limits of detection for As and Se in ETAAS were not low enough to quantify these elements in the wine samples tested.

  20. Comparing Theory and Experiment for Analyte Transport in the First Vacuum Stage of the Inductively Coupled Plasma Mass Spectrometer

    Science.gov (United States)

    Zachreson, Matthew R.

    The inductively coupled plasma mass spectrometer (ICP-MS) has been used in laboratories for many years. The majority of the improvements to the instrument have been done empirically through trial and error. A few fluid models have been made, which have given a general description of the flow through the mass spectrometer interface. However, due to long mean free path effects and other factors, it is very difficult to simulate the flow details well enough to predict how changing the interface design will change the formation of the ion beam. Towards this end, Spencer et al. developed FENIX, a direct simulation Monte Carlo algorithm capable of modeling this transitional flow through the mass spectrometer interface, the transitional flow from disorganized plasma to focused ion beam. Their previous work describes how FENIX simulates the neutral ion flow. While understanding the argon flow is essential to understanding the ICP-MS, the true goal is to improve its analyte detection capabilities. In this work, we develop a model for adding analyte to FENIX and compare it to previously collected experimental data. We also calculate how much ambipolar fields, plasma sheaths, and electron-ion recombination affect the ion beam formation. We find that behind the sampling interface there is no evidence of turbulent mixing. The behavior of the analyte seems to be described simply by convection and diffusion. Also, ambipolar field effects are small and do not significantly affect ion beam formation between the sampler and skimmer cones. We also find that the plasma sheath that forms around the sampling cone does not significantly affect the analyte flow downstream from the skimmer. However, it does thermally insulate the electrons from the sampling cone, which reduces ion-electron recombination. We also develop a model for electron-ion recombination. By comparing it to experimental data, we find that significant amounts of electron-ion recombination occurs just downstream from the

  1. Evaluation of number concentration quantification by single-particle inductively coupled plasma mass spectrometry: microsecond vs. millisecond dwell times.

    Science.gov (United States)

    Abad-Álvaro, Isabel; Peña-Vázquez, Elena; Bolea, Eduardo; Bermejo-Barrera, Pilar; Castillo, Juan R; Laborda, Francisco

    2016-07-01

    The quality of the quantitative information in single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) depends directly on the number concentration of the nanoparticles in the sample analyzed, which is proportional to the flux of nanoparticles through the plasma. Particle number concentrations must be selected in accordance with the data acquisition frequency, to control the precision from counting statistics and the bias, which is produced by the occurrence of multiple-particle events recorded as single-particle events. With quadrupole mass spectrometers, the frequency of data acquisition is directly controlled by the dwell time. The effect of dwell times from milli- to microseconds (10 ms, 5 ms, 100 μs, and 50 μs) on the quality of the quantitative data has been studied. Working with dwell times in the millisecond range, precision figures about 5 % were achieved, whereas using microsecond dwell times, the suitable fluxes of nanoparticles are higher and precision was reduced down to 1 %; this was independent of the dwell time selected. Moreover, due to the lower occurrence of multiple-nanoparticle events, linear ranges are wider when dwell times equal to or shorter than 100 μs are used. A calculation tool is provided to determine the optimal concentration for any instrument or experimental conditions selected. On the other hand, the use of dwell times in the microsecond range reduces significantly the contribution of the background and/or the presence of dissolved species, in comparison with the use of millisecond dwell times. Although the use of dwell times equal to or shorter than 100 μs offers improved performance working in single-particle mode, the use of conventional dwell times (3-10 ms) should not be discarded, once their limitations are known. PMID:27086011

  2. Determination of Mercury Content in a Shallow Firn Core from Summit, Greenland by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Mann, Jacqueline L.; Long, Stephen E.; Shuman, Christopher A.; Kelly, W. Robert

    2003-01-01

    The total mercury Hg content was determined in 6 cm sections of a near-surface 7 m firn core and in surrounding surface snow from Summit, Greenland (elevation: 3238 m, 72.58 N, 38.53 W) in May 2001 by isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICP-MS). The focus of this research was to evaluate the capability of the ID-CV-ICPMS technique for measuring trace levels of Hg typical of polar snow and firn. Highly enriched Hg-201 isotopic spike is added to approximately 10 ml melted core and thoroughly mixed. The Hg(+2) in the sample is reduced on line with tin (II) chloride (SnCl2) and the elemental Hg (Hg(0)) vapor pre-concentrated on to gold gauze using a commercial amalgam system. The Hg is then thermally desorbed and introduced into a quadrupole ICP-MS. The blank corrected Hg concentrations determined for all samples ranged from 0.25 ng/L to 1.74 ng/L (ppt) (average 0.59 ng/L plus or minus 0.28 ng/L) and fall within the range of those previously determined by Boutron et al., 1998 (less than or equal to 0.05 ng/L to 2.0 ng/L) for the Summit site. The average blank value was 0.19 ng/L plus or minus 0.045 ng/L (n=6). The Hg values specifically for the firn core range from 0.25 ng/L to 0.87 ng/L (average 0.51 ng/L plus or minus 0.13 ng/L) and show both values declining with time and larger variability in concentration in the top 1.8 m.

  3. Precise isotope ratio measurements for uranium, thorium and plutonium by quadrupole-based inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Precise long-term measurements of uranium and thorium isotope ratios was carried out in 1 μg/L solutions using a quadrupole inductively coupled plasma mass spectrometer (ICP-QMS). The isotopic ratios of uranium (235U/ 238U = 1, 0.02 and 0.00725) were determined using a cross-flow nebulizer (CFN, at solution uptake rate of 1 mL/min) and a low-flow microconcentric nebulizer (MCN, at solution uptake rate of 0.2 mL/min) over 20 h. For 1 μg/L uranium solution (235U/238U = 1) relative external standard deviations (RESDs) of 0.05% and 0.044% using CFN and MCN, respectively, can be achieved. Additional short term isotope ratio measurements using a direct injection high-efficiency nebulizer (DIHEN) of 1 μg/L uranium solution (235U/238U = 1) at a solution uptake rate of 0.1 mL/min yielded an RSD of 0.06-0.08%. The sensitivity of solution introduction by DIHEN for uranium, thorium and plutonium (145 MHz/ppm, 150 MHz/ppm and 177 MHz/ppm, respectively) increased significantly compared to CFN and MCN and the solution uptake rate can be reduced to 1 μL/ min in DIHEN-ICP-MS. Isotope ratio measurements at an ultralow concentration level (e.g. determination of 240Pu/ 239Pu isotope ratio in a 10 ng/L Pu waste solution) were carried out for the characterization of radioactive waste and environmental samples. (orig.)

  4. Speciation of arsenic in different types of nuts by ion chromatography-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Kannamkumarath, Sasi S; Wróbel, Kazimierz; Wróbel, Katarzyna; Caruso, Joseph A

    2004-03-24

    In this work the quantitative determination and analytical speciation of arsenic were undertaken in different types of nuts, randomly purchased from local markets. The hardness of the whole nuts and high lipid content made the preparation of this material difficult for analysis. The lack of sample homogeneity caused irreproducible results. To improve the precision of analysis, arsenic was determined separately in nut oil and in the defatted sample. The lipids were extracted from the ground sample with the two portions of a mixture of chloroform and methanol (2:1). The defatted material was dried and ground again, yielding a fine powder. The nut oil was obtained by combining the two organic extracts and by evaporating the solvents. The two nut fractions were microwave digested, and total arsenic was determined by inductively coupled plasma mass spectrometry (ICP-MS). The results obtained for oils from different types of nuts showed element concentration in the range 2.9-16.9 ng g(-)(1). Lower levels of arsenic were found in defatted material (pine nuts, peanuts, pistachio nuts, and sunflower seeds. The recovery for the speciation procedure was in the range 72.7-90.6%. The primary species found in the oil extracts were As(III) and As(V). The arsenic concentration levels in these two species were 0.7-12.7 and 0.5-4.3 ng g(-)(1), respectively. The contribution of As in DMAs(V) ranged from 0.1 +/- 0.1 ng g(-)(1) in walnuts to 1.3 +/- 0.3 ng g(-)(1) in pine nuts. MMAs(V) was not detected in almonds, peanuts, pine nuts, sunflower seeds, or walnuts, and the highest concentration was found in pistachio nuts (0.5 +/- 0.2 ng g(-)(1)).

  5. Improvement of the detection limit for determination of 129I in sediments by quadrupole inductively coupled plasma mass spectrometer with collision cell

    OpenAIRE

    Izmer, A. V.; Boulyga, S. F.; Zoriy, M. V.; Becker, J. S.

    2004-01-01

    The previously developed sample introduction device for the hot extraction of iodine from environmental samples (soils or sediments) and on-line introduction of analyte via the gas phase in quadrupole inductively coupled plasma mass spectrometry with hexapole collision cell (ICP-CC-QMS) was equipped with a cooling finger, which allowed intermediate iodine enrichment and improved the detection limits for I-129 down to 0.4 pg g(-1) without any additional sample preparation. A mixture of oxygen ...

  6. Separation of selenium, zinc, and copper compounds in bovine whey using size exclusion chromatography linked to inductively coupled plasma mass spectrometry.

    OpenAIRE

    Hoac, Tien; Lundh, Thomas; Purup, Stig; Onning, Gunilla; Sejrsen, Kristen; Akesson, Bjorn

    2007-01-01

    To study the role of trace elements for the quality and nutritional value of bovine milk, the distribution of selenium, zinc, and copper in whey was investigated using a method linking size exclusion chromatography to inductively coupled plasma mass spectrometry (SEC-ICP-MS). Three major peaks were detected for selenium, two peaks for zinc, and five peaks for copper. More than 65% of the selenium was found in protein fractions, mainly in fractions coinciding with the major whey proteins beta-...

  7. Measuring production-dissolution rates of marine biogenic silica by 30Si-isotope dilution using a high-resolution sector field inductively coupled plasma mass spectrometer

    OpenAIRE

    Fripiat, F.; Corvaisier, Rudolph; Navez, Jacques; Elskens, M.; Schoemann, Véronique; Leblanc, Karine; Andre, Luc; D. Cardinal

    2009-01-01

    Regional and seasonal variability of the Si dissolution:production ratios in the surface ocean have not been well assessed. Here, we propose a new method for determining these rates, using the 30Si-isotopic dilution technique with a high-resolution sector field inductively coupled plasma mass spectrometer (HR-SF-ICP-MS). Relative analytical precision of the isotopic measurement is better than 1%, similar to that obtained by thermal ionization-quadrupole mass spectrometry (TIMS). Accuracy and ...

  8. Arsenic Species in Edible Seaweeds Using In Vitro Biomimetic Digestion Determined by High-Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry

    OpenAIRE

    Yan-Fang Zhao; Ji-Fa Wu; De-Rong Shang; Jin-Song Ning; Hai-Yan Ding; Yu-Xiu Zhai

    2014-01-01

    Arsenite [As (III)], arsenate [As (V)], methylarsonate (MMA), and dimethylarsinate (DMA) in five edible seaweeds (the brown algae Laminaria japonica, red algae Porphyra yezoensis, brown algae Undaria pinnatifida, brown algae Hizikia fusiformis, and green algae Enteromorpha prolifera) were analyzed using in vitro digestion method determined by high-performance liquid chromatography inductively coupled plasma mass spectrometry. The results showed that DMA was found in the water extracts of all ...

  9. Using high resolution and dynamic reaction cell for the improvement of the sensitivity of direct silicon determination in uranium materials by inductively coupled plasma mass spectrometry

    OpenAIRE

    Golik, V. M.; Kuz'mina, N. V.; Saprygin, A. V.; Trepachev, S. A.

    2013-01-01

    The paper describes solving the problem of direct silicon determination at low levels in uranium materials, caused by the spectral interferences of polyatomic ions and the high value of blank levels, using inductively coupled plasma mass spectrometry (ICP MS). To overcome the interference problem, two primary techniques have been applied: double focusing high-resolution ICP MS and dynamic reaction cell (DRC) filled with highly reactive ammonia gas. All measurements were performed at high reso...

  10. Automation of a flow injection system for the determination of dissolved silver at picomolar concentrations in seawater with inductively coupled plasma mass spectrometry

    OpenAIRE

    Achterberg, Eric P.; Truscott, Jason B.; Barriada, Jose L.

    2003-01-01

    An automated flow injection system for the determination of dissolved silver at ultratrace concentrations in seawater, and controlled under LabVIEW™, is described. The flow injection system allows online processing of seawater samples before their analysis using a magnetic sector inductively coupled plasma mass spectrometry (MS-ICP-MS) instrument. Samples were analysed with a minimum amount of manipulation, thereby reducing the risk of contamination. In addition, the flow injection approach w...

  11. Use of Functionalized Resin for Matrix Separation and Trace Elements Determination in Petroleum Produced Formation Water by Inductively Coupled Plasma Mass Spectrometry

    OpenAIRE

    Ricardo Erthal Santelli; Aline Soares Freire; Eliane Padua Oliveira; Valfredo Azevedo Lemos; Cléber Galvão Novaes; Marcos Almeida Bezerra

    2012-01-01

    This work approaches the development of a procedure for separation and determination of five trace metals (Co, Cd, Pb, Ni, and Cu) from petroleum produced formation water. This procedure uses a styrene divinyl-benzene polymeric resin modified with 4-(5′-bromo-2′-tiazolilazo) orcinol, and the determination was performed by inductively coupled plasma mass spectrometry. A response surface methodology using a Doehlert matrix was used to optimize the solid-phase extraction of the studied elements....

  12. Evaluation of uncertainty for determination of trace thorium in U3O8 by isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Taking determination of trace thorium in U3O8 by isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) as example, the uncertainty in measurement was evaluated. All parameters needed for the calculation process were collected and calculated, and a mathematical model was set up. The sources of the uncertainty in measurement were determined, and components of the uncertainty in measurement were synthesized with EXCEL software. (authors)

  13. Use of a parallel path nebulizer for capillary-based microseparation techniques coupled with an inductively coupled plasma mass spectrometer for speciation measurements

    International Nuclear Information System (INIS)

    A low flow, parallel path Mira Mist CE nebulizer designed for capillary electrophoresis (CE) was evaluated as a function of make-up solution flow rate, composition, and concentration, as well as the nebulizer gas flow rate. This research was conducted in support of a project related to the separation and quantification of cobalamin (vitamin B-12) species using microseparation techniques combined with inductively coupled plasma mass spectrometry (ICP-MS) detection. As such, Co signals were monitored during the nebulizer characterization process. Transient effects in the ICP were studied to evaluate the suitability of using gradients for microseparations and the benefit of using methanol for the make-up solution was demonstrated. Co signal response changed significantly as a function of changing methanol concentrations of the make-up solution and maximum signal enhancement was seen at 20% methanol with a 15 μl/min flow rate. Evaluation of the effect of changing the nebulizer gas flow rates showed that argon flows from 0.8 to 1.2 l/min were equally effective. The Mira Mist CE parallel path nebulizer was then evaluated for interfacing capillary microseparation techniques including capillary electrophoresis (CE) and micro high performance liquid chromatography (μHPLC) to inductively coupled plasma mass spectrometry (ICP-MS). A mixture of four cobalamin species standards (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5' deoxyadenosylcobalamin) and the corrinoid analogue cobinamide dicyanide were successfully separated using both CE-ICP-MS and μHPLC-ICP-MS using the parallel path nebulizer with a make-up solution containing 20% methanol with a flow rate of 15 μl/min

  14. An argon–nitrogen–hydrogen mixed-gas plasma as a robust ionization source for inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Makonnen, Yoseif; Beauchemin, Diane, E-mail: diane.beauchemin@chem.queensu.ca

    2014-09-01

    Multivariate optimization of an argon–nitrogen–hydrogen mixed-gas plasma for minimum matrix effects, while maintaining analyte sensitivity as much as possible, was carried out in inductively coupled plasma mass spectrometry. In the presence of 0.1 M Na, the 33.9 ± 3.9% (n = 13 elements) analyte signal suppression on average observed in an all-argon plasma was alleviated with the optimized mixed-gas plasma, the average being − 4.0 ± 8.8%, with enhancement in several cases. An addition of 2.3% v/v N{sub 2} in the outer plasma gas, and 0.50% v/v H{sub 2} to the central channel, as a sheath around the nebulizer gas flow, was sufficient for this drastic increase in robustness. It also reduced the background from ArO{sup +} and Ar{sub 2}{sup +} as well as oxide levels by over an order of magnitude. On the other hand, the background from NO{sup +} and ArN{sup +} increased by up to an order of magnitude while the levels of doubly-charged ions increased to 7% (versus 2.7% in an argon plasma optimized for sensitivity). Furthermore, detection limits were generally degraded by 5 to 15 fold when using the mixed-gas plasma versus the argon plasma for matrix-free solution (although they were better for several elements in 0.1 M Na). Nonetheless, the drastically increased robustness allowed the direct quantitative multielement analysis of certified ore reference materials, as well as the determination of Mo and Cd in seawater, without using any matrix-matching or internal standardization. - Highlights: • Addition of N{sub 2} to the plasma gas and H{sub 2} as a sheath gas results in a very robust ICP. • ArO{sup +} and Ar{sub 2}{sup +} background and oxide levels are reduced by over an order of magnitude. • Multielement analysis of rock digests is possible with a simple external calibration. • No internal standardization or matrix-matching is required for accurate analysis. • Cd and Mo were accurately determined in undiluted seawater.

  15. Certification measurement of the cadmium, copper and lead contents in rice using isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    This paper describes the certification of the Cd, Cu and Pb amount contents in a rice material, that were used as reference values for round 19 of the international measurement evaluation programme (IMEP). The protocol developed in this study was based on isotope dilution associated to inductively coupled plasma mass spectrometry (ID-ICP-MS). A multiple spiking approach was applied to reduce significantly the number of analytical steps. For the decomposition of the sample, three different microwave assisted digestion procedures were tested and compared. The use of hydrofluoric acid was found necessary to ensure full solubilisation and complete isotopic equilibration. Estimation of the combined uncertainty attached to the measurement results was performed according to the ISO guidelines. Contributions from the correction for moisture content, sample homogeneity, procedural blank, spike impurities, spectral interferences, instrumental background and dead-time effects were evaluated. SI-traceable values with less than 2% combined uncertainty (k = 2) were obtained for Cd, Cu and Pb, respectively, (14.39 ± 0.21) x 10-6 mol kg-1, (44.31 ± 0.42) x 10-6 mol kg-1 and (2.034 ± 0.034) x 10-6 mol kg-1. The rice powder was observed to be highly hygroscopic and a second series of isotope dilution mass spectrometry measurements was carried out on samples in equilibrium with the ambient moisture conditions ('saturated' samples). The Comite Consultatif pour la Quantite de Matiere (CCQM) requested this approach for the participation to the key comparison 24 on the same rice test material. The excellent agreement for Cd between the IMEP-19 reference value, the value submitted by the institute for reference materials and measurements (IRMM) to CCQM-K24 and the corresponding reference value obtained as the arithmetic mean from the results of the 11 participating National Measurement Institutes (less than 0.27% difference) further validated this work. Eventually, this series of

  16. An argon–nitrogen–hydrogen mixed-gas plasma as a robust ionization source for inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Multivariate optimization of an argon–nitrogen–hydrogen mixed-gas plasma for minimum matrix effects, while maintaining analyte sensitivity as much as possible, was carried out in inductively coupled plasma mass spectrometry. In the presence of 0.1 M Na, the 33.9 ± 3.9% (n = 13 elements) analyte signal suppression on average observed in an all-argon plasma was alleviated with the optimized mixed-gas plasma, the average being − 4.0 ± 8.8%, with enhancement in several cases. An addition of 2.3% v/v N2 in the outer plasma gas, and 0.50% v/v H2 to the central channel, as a sheath around the nebulizer gas flow, was sufficient for this drastic increase in robustness. It also reduced the background from ArO+ and Ar2+ as well as oxide levels by over an order of magnitude. On the other hand, the background from NO+ and ArN+ increased by up to an order of magnitude while the levels of doubly-charged ions increased to 7% (versus 2.7% in an argon plasma optimized for sensitivity). Furthermore, detection limits were generally degraded by 5 to 15 fold when using the mixed-gas plasma versus the argon plasma for matrix-free solution (although they were better for several elements in 0.1 M Na). Nonetheless, the drastically increased robustness allowed the direct quantitative multielement analysis of certified ore reference materials, as well as the determination of Mo and Cd in seawater, without using any matrix-matching or internal standardization. - Highlights: • Addition of N2 to the plasma gas and H2 as a sheath gas results in a very robust ICP. • ArO+ and Ar2+ background and oxide levels are reduced by over an order of magnitude. • Multielement analysis of rock digests is possible with a simple external calibration. • No internal standardization or matrix-matching is required for accurate analysis. • Cd and Mo were accurately determined in undiluted seawater

  17. RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S.; Jones, V.

    2009-05-27

    A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are split between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead

  18. Determination of actinides in environmental and biological samples using high-performance chelation ion chromatography coupled to sector-field inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Truscott, J B; Jones, P; Fairman, B E; Evans, E H

    2001-08-31

    High-performance chelation ion chromatography, using a neutral polystyrene substrate dynamically loaded with 0.1 mM dipicolinic acid, coupled with sector-field inductively coupled plasma mass spectrometry has been successfully used for the separation of the actinides thorium, uranium, americium, neptunium and plutonium. Using this column it was possible to separate the various actinides from each other and from a complex sample matrix. In particular, it was possible to separate plutonium and uranium to facilitate the detection of the former free of spectral interference. The column also exhibited some selectivity for different oxidation states of Np, Pu and U. Two oxidation states each for plutonium and neptunium were found, tentatively identified as Np(V) and Pu(III) eluting at the solvent front, and Np(IV) and Pu(IV) eluting much later. Detection limits were 12, 8, and 4 fg for 237Np, 239Pu, and 241Am, respectively, for a 0.5 ml injection. The system was successfully used for the determination of 239Pu in NIST 4251 Human Lung and 4353 Rocky Flats Soil, with results of 570+/-29 and 2939+/-226 fg g(-1), respectively, compared with a certified range of 227-951 fg g(-1) for the former and a value of 3307+/-248 fg g(-1) for the latter. PMID:11589474

  19. Study on the uptake and distribution of gadolinium based contrast agents in biological samples using laser ablation with inductively coupled plasma mass spectroscopy; Untersuchungen zur Aufnahme und Verteilung von gadoliniumbasierten Kontrastmitteln in biologischen Proben mittels Laserablation mit induktiv gekoppelter Plasma-Massenspektrometrie

    Energy Technology Data Exchange (ETDEWEB)

    Lingott, Jana

    2016-01-05

    Gadolinium based contrast agents are used for magnetic resonance imaging. After their excretion by medicated patients they reach surface water passing waste water treatment plants where they are not removed sufficiently. The behavior of the contrast agents in the environment and the interaction with organisms was investigated in this work due to the toxicity of the free Gd{sup 3+} ion and the associated risks, such as accumulation in the human food chain. In this work, the two elemental analytical imaging methods laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and synchrotron radiation X-ray fluorescence analysis (SRXRF) have been used to investigate the uptake, distribution, and excretion of Gd-based contrast agents by various biological systems. Both methods were analytically characterized and compared for this application. The detection limits of gadolinium were determined under optimized conditions by LA-ICP-MS and SRXRF. With calibration by remains of dried elemental standard droplets detection limits of 0.78 pg absolute amount of gadolinium (LA-ICP-MS), respectively 89 pg (SRXRF) were reached. Based on filamentous algae as water plants the uptake and the excretion of Gd-based contrast agents were revealed. The dependence on concentration of the contrast agent in the exposition solution and the independence of temporal uptake within one to seven days were studied for duckweed. By LA-ICP-MS gadolinium was quantified in a leaf of cress plant. The verification of the results was performed by SRXRF and ICP-MS after digestion. Furthermore, the uptake and distribution of Gd-based contrast agents in higher organisms (water flea) were observed. The exact location of gadolinium was resolved by three-dimensional μ-computed tomography by the comparison of an exposed with a Gd-free water flea. In all studies, gadolinium was detected in the investigated exposed model organisms. It can be concluded that the contrast agents were taken from the

  20. Characterization of the supersonic expansion in the vacuum interface of an inductively coupled plasma mass spectrometer by high-resolution diode laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Radicic, W. Neil [Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602 (United States); Olsen, Jordan B. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602 (United States); Nielson, Rebecca V. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602 (United States); Macedone, Jeffrey H. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602 (United States); Farnsworth, Paul B. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602 (United States)]. E-mail: paul_farnsworth@byu.edu

    2006-06-15

    The supersonic expansion in the first vacuum stage of an inductively coupled plasma mass spectrometer has been characterized by laser-induced fluorescence of metastable argon atoms in the expansion. Atom velocities and temperatures were determined from Doppler shifts and linewidths, respectively, in the excitation spectra of the argon atoms. Shock structures characteristic of a supersonic expansion, the barrel shock and the Mach disk, were manifest as bimodal velocity distributions. The terminal velocities reached by the atoms were characteristic of conditions in the plasma source upstream from the entrance to the vacuum interface.

  1. Speciation of eight arsenic compounds in human urine by high performance liquid chromatography with inductively coupled plasma mass spectrometric detection using antimonate for internal chromatographic standardization

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Pritzl, G.; Hansen, S. H.

    1993-01-01

    Four anionic and four cationic arsenic compounds in urine were separated by anion- and cation-exchange high-performance liquid chromatography and detected by inductively coupled plasma mass spectrometry (ICP-MS) at m/z 75. The species were the anions arsenite, arsenate, monomethylarsonate...... to arsenate in urine but was stable after at least 4-fold dilution of the urine with water. Arsenite was unstable in both urine samples and standard mixtures when diluted with the basic (pH 10.3) mobile phase used for anion chromatography. This could not be prevented by adding ascorbic acid as antioxidant...

  2. Survey of inorganic arsenic in marine animals and marine certified reference materials by anion exchange high-performance liquid chromatography-inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Sloth, Jens Jørgen; Larsen, Erik Huusfeldt; Julshamn, Kåre

    2005-01-01

    A method for the determination of inorganic arsenic in seafood samples using high-performance liquid chromatography-inductively coupled plasma mass spectrometry is described. The principle of the method relied on microwave-assisted alkaline dissolution of the sample, which at the same time oxidized...... arsenite [As(Ill)] to arsenate [As(V)], whereby inorganic arsenic could be determined as the single species As(V). Anion exchange chromatography using isocratic elution with aqueous ammonium carbonate as the mobile phase was used for the separation of As(V) from other coextracted organoarsenic compounds...

  3. Speciation of four selenium compounds using high performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry or flame atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Pedersen, Gitte Alsing; Larsen, Erik Huusfeldt

    1997-01-01

    An analytical method for the speciation of selenomethionine, selenocystine, selenite and selenate by high performance liquid chromatography (HPLC) with atomic spectrometric detection is presented. An organic polymeric strong anion exchange column was used as the stationary phase in combination...... with an aqueous solution of 6 mmol L-1 of salicylate ion at pH 8.5 as the mobile phase which allowed the isocratic separation of the four selenium analytes within 8 minutes. The separated selenium species were detected on-line by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass...

  4. Rapid determination of 237Np in soil samples by multi-collector inductively-coupled plasma mass spectrometry and gamma spectrometry

    OpenAIRE

    Yi, Xiaowei; Shi, Yanmei; Xu, Jiang; He, Xiaobing; ZHANG, HAITAO; Lin, Jianfeng

    2013-01-01

    A radiochemical procedure is developed for the determination of 237Np in soil with multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) and gamma-spectrometry. 239Np (milked from 243Am) was used as an isotopic tracer for chemical yield determination. The neptunium in the soil is separated by thenoyl-trifluoracetone extraction from 1 M HNO3 solution after reducing Np to Np(IV) with ferrous sulfamate, and then purified with Dowex 1 × 2 anion exchange resin. 239Np in the resu...

  5. Comparative oxidation state specific analysis of arsenic species by high-performance liquid chromatography- inductively coupled plasma-mass spectrometry and hydride generation-cryotrapping-atomic absorption spectrometry

    OpenAIRE

    Currier, J. M.; Saunders, R J; Ding, L.; Bodnar, W.; Cable, P.; Matoušek, T. (Tomáš); Creed, J. T.; Stýblo, M.

    2013-01-01

    The formation of methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII) in the course of inorganic arsenic (iAs) metabolism plays an important role in the adverse effects of chronic exposure to iAs. High-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) and hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS) have been frequently used for the analysis of MAsIII and DMAsIII in biological samples. While HG-CT-AAS has con...

  6. Determination of ultra-trace amounts of uranium and thorium in high-purity aluminium by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    A sensitive method is described for the simultaneous determination of ultra-trace amounts of uranium and thorium in high-purity aluminium by inductively coupled plasma mass spectrometry (ICP-MS). Uranium and thorium were separated from a sample solution of 10 mol dm-3 hydrochloric acid by extraction with a 10% v/v solution of tributyl phosphate in cyclohexane. The internal standard method was used for quantification by ICP-MS. For a sample mass of 10 g, the detection limits for uranium and thorium are 7 and 8 pg g--1, respectively. (Author)

  7. Lead isotopic analyses of NIST standard reference materials using multiple collector inductively coupled plasma mass spectrometry coupled with a modified external correction method for mass discrimination effect

    International Nuclear Information System (INIS)

    A correction method for the mass discrimination effect was developed for isotopic analyses using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For Pb isotopic analysis using MC-ICP-MS, the correction factor for the mass discrimination effect on Pb is based on the addition of Tl to the sample solution and measurement of Tl isotopic ratios; the correction factor obtained using Tl is directly applied to the Pb isotopes (conventional external correction). However, the series of measurements of discrimination factors for several elements, including Rb, Sr, Ru, Nd, Hf, Re, Os, Tl and Pb (mass range 80-210 u), clearly reveal that the mass discrimination factors observed using MC-ICP-MS were a linear function of mass, suggesting that the correction factors observed using Tl isotopes were not exactly identical with those for Pb isotopes. Therefore, the correction factors obtained with Tl isotopes should be corrected for mass, and then applied to the Pb isotopes. The resultant Pb isotopic ratios for NIST Standard Reference Materials show excellent agreement (within 0.3% for 206Pb/204Pb and 20 ppm for 207Pb/206Pb) with the data obtained by the thermal ionization mass spectrometry. The correction method presented clearly demonstrates the wide versatility of the external correction technique for the precise isotopic analysis using MC-ICP-MS. The possible cause of the 'exceptionally large' mass discrimination effect observed for Ru and Os is discussed. (author)

  8. Development of the detection of trace elements and radionuclides in some environmental samples by high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS)

    International Nuclear Information System (INIS)

    Determination of long-lived radionuclides at femto gram concentration level is a challenging task in analytical techniques. Inductively coupled plasma mass spectrometry (ICP-MS)with its ability to provide the sensitive and fast multielemental analysis is one of the most suitable method for the measurements of long lived radionuclides in the trace and ultra trace concentration range in the present study the reduction of the fundamental polyatomic ions in inductively coupled plasma mass spectrometry by inserting a metal sheath between the outer surface of the torch and the work coil (shielded torch), effectively eliminate the capacitive coupling of the high surface potential of the work coil with the plasma. This resulted in a low plasma potential with respect to the sampling cone. This leads to an effective reduction of 38ArH, Co2, and 40ArO as a result of using the shielded torch system. The sensitivity and detection limit of some selected long-lived radionuclides are studied by the double focusing ICP-MS under the condition of using the shielded torch.

  9. Analytical Method for Pu-239, Pu-240, Np-237 and Tc-99 using Inductively Coupled Plasma Mass Spectrometry

    International Nuclear Information System (INIS)

    An efficient analytical method for Pu isotopes (Pu-239 and Pu-240), Np-237 and Tc-99 in environmental samples has been developed using sector field inductively coupled plasma mass spectrometry (SF-ICPMS) detection. The chemical separation of Pu in terrestrial samples, soil, and sediment was carried out on two extraction resins, Sr-Spec and TEVA, which were sequentially combined in PrepLab, an integrated liquid handing device. By reducing the final eluent volume to 2.4 mL, directly injecting it to SF-ICPMS, and employing MCN-6000, a membrane desolvating sample introduction system, the analysis of Pu isotopes was found to be feasible in 1 g of soil. The detection limits of Pu-239, Pu-240, and Pu-242 were approximately 4 fg mL-1 (9.2 Bq mL-1), 3 fg mL-1 (25 Bq mL-1), and 6 fg mL-1 (0.87 Bq mL-1), which represent total amounts of 9.6, 7.2, and 14 fg, respectively, in the final eluent. Chemical separation and measurement were fully automated by a sequential injection (SI) program in an on-line system, and the analysis could thereby be completed within roughly 5 hours. The reliability of this method was confirmed by a validity test with several certified standard reference materials (NIST-4350b, IAEA-6, IAEA-300, IAEA-367, IAEA-368, IAEA-375). The analytical method for Pu in environmental seawater is different from that of terrestrial samples owing to the strong interference effect of U as well as ultra-low level Pu. Although the principle of chemical separation is nearly the same as in soil, seawater was co-precipitated with Fe(OH)2 in the pre-treatment step and a micro TEVA column (50 L) was used in the on-line system to improve precision and the lower detection limit. With this method, it was possible to analyze ultra-trace level Pu isotopes in only 5 L of surface seawater within 1 day, and the precision for Pu-239 and Pu-240 was less than 3.4% (n=7) and 5% (n=7), respectively. The accuracy of this method was verified by analysis of reference seawater (IAEA-381) as

  10. Analytical Method for Pu-239, Pu-240, Np-237 and Tc-99 using Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Su

    2007-02-15

    An efficient analytical method for Pu isotopes (Pu-239 and Pu-240), Np-237 and Tc-99 in environmental samples has been developed using sector field inductively coupled plasma mass spectrometry (SF-ICPMS) detection. The chemical separation of Pu in terrestrial samples, soil, and sediment was carried out on two extraction resins, Sr-Spec and TEVA, which were sequentially combined in PrepLab, an integrated liquid handing device. By reducing the final eluent volume to 2.4 mL, directly injecting it to SF-ICPMS, and employing MCN-6000, a membrane desolvating sample introduction system, the analysis of Pu isotopes was found to be feasible in 1 g of soil. The detection limits of Pu-239, Pu-240, and Pu-242 were approximately 4 fg mL-1 (9.2 Bq mL-1), 3 fg mL-1 (25 Bq mL-1), and 6 fg mL-1 (0.87 Bq mL-1), which represent total amounts of 9.6, 7.2, and 14 fg, respectively, in the final eluent. Chemical separation and measurement were fully automated by a sequential injection (SI) program in an on-line system, and the analysis could thereby be completed within roughly 5 hours. The reliability of this method was confirmed by a validity test with several certified standard reference materials (NIST-4350b, IAEA-6, IAEA-300, IAEA-367, IAEA-368, IAEA-375). The analytical method for Pu in environmental seawater is different from that of terrestrial samples owing to the strong interference effect of U as well as ultra-low level Pu. Although the principle of chemical separation is nearly the same as in soil, seawater was co-precipitated with Fe(OH)2 in the pre-treatment step and a micro TEVA column (50 L) was used in the on-line system to improve precision and the lower detection limit. With this method, it was possible to analyze ultra-trace level Pu isotopes in only 5 L of surface seawater within 1 day, and the precision for Pu-239 and Pu-240 was less than 3.4% (n=7) and 5% (n=7), respectively. The accuracy of this method was verified by analysis of reference seawater (IAEA-381) as

  11. Ultra-trace determination of gold nanoparticles in environmental water by surfactant assisted dispersive liquid liquid microextraction coupled with electrothermal vaporization-inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Liu, Ying; He, Man; Chen, Beibei; Hu, Bin

    2016-08-01

    A new method by coupling surfactant assisted dispersive liquid liquid microextraction (SA-DLLME) with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was proposed for the analysis of gold nanoparticles (AuNPs) in environmental water samples. Effective separation of AuNPs from ionic gold species was achieved by using sodium thiosulphate as a complexing agent. Various experimental parameters affecting SA-DLLME of AuNPs, such as the organic solvent, organic solvent volume, pH of the sample, the kind of surfactant, surfactant concentration, vortex time, speed of centrifugation, centrifugation time, and different coating as well as sizes of AuNPs were investigated carefully. Furthermore, the interference of coexisting ions, dissolved organic matter (DOM) and other metal nanoparticles (NPs) were studied. Under the optimal conditions, a detection limit of 2.2 ng L- 1 and an enrichment factor of 152-fold was achieved for AuNPs, and the original morphology of the AuNPs could be maintained during the extraction process. The developed method was successfully applied for the analysis of AuNPs in environmental water samples, including tap water, the East Lake water, and the Yangtze River water, with recoveries in the range of 89.6-102%. Compared with the established methods for metal NPs analysis, the proposed method has the merits of simple and fast operation, low detection limit, high selectivity, good tolerance to the sample matrix and no digestion or dilution required. It provides an efficient quantification methodology for monitoring AuNPs' pollution in the environmental water and evaluating its toxicity.

  12. Towards silicon speciation in light petroleum products using gas chromatography coupled to inductively coupled plasma mass spectrometry equipped with a dynamic reaction cell

    Science.gov (United States)

    Chainet, Fabien; Lienemann, Charles-Philippe; Ponthus, Jeremie; Pécheyran, Christophe; Castro, Joaudimir; Tessier, Emmanuel; Donard, Olivier François Xavier

    2014-07-01

    Silicon speciation has recently gained interest in the oil and gas industry due to the significant poisoning problems caused by silicon on hydrotreatment catalysts. The poisoning effect clearly depends on the structure of the silicon species which must be determined and quantified. The hyphenation of gas chromatography (GC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) allows a specific detection to determine the retention times of all silicon species. The aim of this work is to determine the retention indices of unknown silicon species to allow their characterization by a multi-technical approach in order to access to their chemical structure. The optimization of the dynamic reaction cell (DRC) of the ICP-MS using hydrogen as reactant gas successfully demonstrated the resolution of the interferences (14N14N+ and 12C16O+) initially present on 28Si. The linearity was excellent for silicon compounds and instrumental detection limits ranged from 20 to 140 μg of Si/kg depending on the response of the silicon compounds. A continuous release of silicon in the torch was observed most likely due to the use of a torch and an injector which was made of quartz. A non-universal response for silicon was observed and it was clearly necessary to use response coefficients to quantify silicon compounds. Known silicon compounds such as cyclic siloxanes (D3-D16) coming from PDMS degradation were confirmed. Furthermore, more than 10 new silicon species never characterized before in petroleum products were highlighted in polydimethylsiloxane (PDMS) degradation samples produced under thermal cracking of hydrocarbons. These silicon species mainly consisted of linear and cyclic structures containing reactive functions such as ethoxy, peroxide and hydroxy groups which can be able to react with the alumina surface and hence, poison the catalyst. This characterization will further allow the development of innovative solutions such as trapping silicon compounds or

  13. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    Science.gov (United States)

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-01

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air.

  14. Direct determination of trace rare earth elements in ancient porcelain samples with slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    A method for the direct determination of trace rare earth elements in ancient porcelain samples by slurry sampling fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry was developed with the use of polytetrafluoroethylene as fluorinating reagent. It was found that Si, as a main matrix element in ancient porcelain sample, could be mostly removed at the ashing temperature of 1200 deg. C without considerable losses of the analytes. However, the chemical composition of ancient porcelain sample is very complicated, which makes the influences resulting from other matrix elements not be ignored. Therefore, the matrix effect of ancient porcelain sample was also investigated, and it was found that the matrix effect is obvious when the matrix concentration was larger than 0.8 g l-1. The study results of particle size effect indicated that when the sample particle size was less than 0.057 mm, the particle size effect is negligible. Under the optimized operation conditions, the detection limits for rare earth elements by fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry were 0.7 ng g-1 (Eu)-33.3 ng g-1(Nd) with the precisions of 4.1% (Yb)-10% (La) (c = 1 μg l-1, n = 9). The proposed method was used to directly determine the trace rare earth elements in ancient porcelain samples produced in different dynasty (Sui, Ming and Qing), and the analytical results are satisfactory

  15. Portable x-ray fluorescence for assessing trace elements in rice and rice products: Comparison with inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Portable x-ray fluorescence (XRF) was investigated as a means of assessing trace elements in rice and rice products. Using five measurement trials of 180 s real time, portable XRF was first used to detect arsenic (As), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), and zinc (Zn) in a variety of rice samples. The same samples were then microwave-digested and used to determine elemental concentrations using inductively coupled plasma-mass spectrometry (ICP-MS). The concentrations of As, Mn, Fe, Cu, and Zn determined by ICP-MS were found to be consistent with other recent studies involving various types of rice and rice products. When assessing for As, Mn, Fe, Cu, and Zn, comparison of results between XRF amplitude and ICP-MS concentration (wet weight) demonstrated a linear relationship with a significant correlation. A significant correlation between XRF amplitude and ICP-MS concentration was not found when assessing for Ni. - Highlights: • Portable x-ray fluorescence (XRF) used to assess trace elements in rice and rice products. • Same samples tested for concentrations using inductively coupled plasma-mass spectrometry (ICP-MS). • Linear relationship with significant correlation found between XRF amplitude and ICP-MS concentration

  16. Determination of As, Cd, Cr, and Hg in SRM 2584 (Trace Elements in Indoor Dust) by high-resolution inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.L.; Vocke, R.D.; Murphy, K.E.; Beck, C.M. II [Analytical Chemistry Div., National Institute of Standards and Technology, Gaithersburg, MD (United States)

    2001-08-01

    Standard reference material (SRM) 2584 (Trace Elements in Indoor Dust) was developed as a reference standard for evaluating field methods and for validating laboratory and reference methods for the assessment of lead contamination and exposure. In addition to lead, the toxic trace elements As, Cd, Cr, and Hg, at approximately 17, 10, 140, and 5 {mu}g g{sup -1}, respectively, have been certified in the SRM. These four analytes were successfully determined by use of high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). Isobaric interferences at masses of As and Cr were resolved by using the high resolution mode (nominal 8000) and the medium resolution mode (nominal 3000), respectively, of the instrument.The effects of a significant drift in analyte sensitivity in the course of measurement were rectified by use of internal standardization, single spike standard addition, and an optimized analysis sequence. The results were compared with those obtained by instrumental neutron activation analysis (INAA) and isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). The results for the quality control, SRM 2704 (Buffalo River Sediment), were in good agreement with the certified values, indicated by the uncertainty intervals of the measured values overlapping the certified intervals at 95% confidence level. (orig.)

  17. Direct determination of trace rare earth elements in ancient porcelain samples with slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Xiang Guoqiang [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Jiang Zucheng [Department of Chemistry, Wuhan University, Wuhan 430072 (China); He Man [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan 430072 (China)]. E-mail: binhu@whu.edu.cn

    2005-10-01

    A method for the direct determination of trace rare earth elements in ancient porcelain samples by slurry sampling fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry was developed with the use of polytetrafluoroethylene as fluorinating reagent. It was found that Si, as a main matrix element in ancient porcelain sample, could be mostly removed at the ashing temperature of 1200 deg. C without considerable losses of the analytes. However, the chemical composition of ancient porcelain sample is very complicated, which makes the influences resulting from other matrix elements not be ignored. Therefore, the matrix effect of ancient porcelain sample was also investigated, and it was found that the matrix effect is obvious when the matrix concentration was larger than 0.8 g l{sup -1}. The study results of particle size effect indicated that when the sample particle size was less than 0.057 mm, the particle size effect is negligible. Under the optimized operation conditions, the detection limits for rare earth elements by fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry were 0.7 ng g{sup -1} (Eu)-33.3 ng g{sup -1}(Nd) with the precisions of 4.1% (Yb)-10% (La) (c = 1 {mu}g l{sup -1}, n = 9). The proposed method was used to directly determine the trace rare earth elements in ancient porcelain samples produced in different dynasty (Sui, Ming and Qing), and the analytical results are satisfactory.

  18. Direct determination of trace rare earth elements in ancient porcelain samples with slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Xiang, Guoqiang; Jiang, Zucheng; He, Man; Hu, Bin

    2005-10-01

    A method for the direct determination of trace rare earth elements in ancient porcelain samples by slurry sampling fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry was developed with the use of polytetrafluoroethylene as fluorinating reagent. It was found that Si, as a main matrix element in ancient porcelain sample, could be mostly removed at the ashing temperature of 1200 °C without considerable losses of the analytes. However, the chemical composition of ancient porcelain sample is very complicated, which makes the influences resulting from other matrix elements not be ignored. Therefore, the matrix effect of ancient porcelain sample was also investigated, and it was found that the matrix effect is obvious when the matrix concentration was larger than 0.8 g l - 1 . The study results of particle size effect indicated that when the sample particle size was less than 0.057 mm, the particle size effect is negligible. Under the optimized operation conditions, the detection limits for rare earth elements by fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry were 0.7 ng g - 1 (Eu)-33.3 ng g - 1 (Nd) with the precisions of 4.1% (Yb)-10% (La) ( c = 1 μg l - 1 , n = 9). The proposed method was used to directly determine the trace rare earth elements in ancient porcelain samples produced in different dynasty (Sui, Ming and Qing), and the analytical results are satisfactory.

  19. Inductively coupled plasma mass spectrometry as a simple, rapid, and inexpensive method for determination of uranium in urine and fresh water: Comparison with LIF

    International Nuclear Information System (INIS)

    A simple method, based on inductively coupled plasma mass spectrometry, for determination of uranium in urine at levels that indicate occupational exposure, is presented. Sample preparation involves a fifty-fold dilution of the urine by nitric acid (2% HNO3) and no other chemical treatment or separation. The analysis itself is completed in under 3 min. The analytical procedure is fully autominated so that a technician may perform over 100 analyses per day. With proper control of the blank contribution, a lower limit of detection of 3 ng L-1 in the original urine sample was achieved. Uranium concentrations in the range 6-30 ng L-1 were found in urine samples of people that are not occupationally exposed. The validity of the results was demonstrated through measurement of standards, controlled uranium addition experiments and, at higher concentrations, by comparison with results obtained by an independent method based on laser induced fluorescence. The laser induced fluorescence technique was found to be sufficient for detection of occupational exposure at an action level of 1.5 μg L-1. Use of internal standards, indium, and thallium, improved quantification by about 10%, but was not deemed necessary for routine analysis. The inductively coupled plasma mass spectrometry is also ideally suited for monitoring uranium in fresh water and drinking water, as no sample dilution is required and the lower limit of detection is below 0.15 ng L-1. 41 refs., 4 figs., 5 tabs

  20. Quantification of water and plasma diagnosis for electrothermal vaporization-inductively coupled plasma-mass spectrometry: the use of argon and argide polyatomics as probing species

    International Nuclear Information System (INIS)

    The water content of the carrier flow originating from an electrothermal vaporization unit (ETV) attached to an inductively coupled plasma mass spectrometer was monitored by following the argon hydride ion (ArH+) at m/z=37. The goal was to measure the water expelled by the ETV at sample vaporization and evaluate the influence of this parameter on the ion-generation efficiency. Linear responses from the argon hydride were obtained when the water loading in the plasma injector flow was increased from 0 to 3.3 mg/min. Other argides and water-derived species (Ar+, Ar+2 and O+2) were also monitored simultaneously and the effects from operating parameters have been calculated for each species. The magnitude of these effects can eventually be used as diagnosis tools. It was also found that signals for zinc, copper, lead, antimony and arsenic were greatly influenced by slight variations in water loading at low water levels. These signal fluctuations are greatly attenuated and transients' shapes restored by convoluting each element transient with the ArH+ or Ar+2 curves that were recorded simultaneously. Envisioned applications that would benefit from a water-enhanced signal include spray electrothermal vaporization, direct sample insertion and laser ablation for inductively coupled plasma-mass spectrometry. The argon dimer Ar+2 seems more appropriate for making the correction since it provides a direct insight on the plasma temperature and provides a robust signal. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Development of cadmium/silver/palladium separation by ion chromatography with quadrupole inductively coupled plasma mass spectrometry detection for off-line cadmium isotopic measurements

    International Nuclear Information System (INIS)

    A separation method was investigated to perform off-line cadmium isotopic measurements on a 109Ag transmutation target. Ion chromatography (IC) with Q ICPMS detection (quadrupole inductively coupled plasma mass spectrometry detection) was chosen to separate cadmium from the isobarically interfering elements, silver and palladium, present in the sample. The optimization of chromatographic conditions was particularly studied. Several anion and cation columns (Dionex AG11 (R), CS10 (R) and CS12 (R)) were compared with different mobile phases (HNO3, HCl). The separation procedure was achieved with a carboxylate-functionalized cation exchange CS12 column using 0.5 M HNO3 as eluent. The developed technique yielded satisfactory results in terms of separation factors (greater than 5) and provides an efficient solution to obtain rapidly purified cadmium fractions (decontamination factors higher 100,000 for silver and palladium) which can directly be analyzed by multi collection inductively coupled plasma mass spectrometry (MC ICPMS). By applying the proposed procedure, accurate and precise cadmium isotope ratios were determined for the irradiated 109Ag transmutation target. (authors)

  2. Magnetic immunoassay coupled with inductively coupled plasma mass spectrometry for simultaneous quantification of alpha-fetoprotein and carcinoembryonic antigen in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xing; Chen, Beibei; He, Man; Zhang, Yiwen; Xiao, Guangyang; Hu, Bin, E-mail: binhu@whu.edu.cn

    2015-04-01

    The absolute quantification of glycoproteins in complex biological samples is a challenge and of great significance. Herein, 4-mercaptophenylboronic acid functionalized magnetic beads were prepared to selectively capture glycoproteins, while antibody conjugated gold and silver nanoparticles were synthesized as element tags to label two different glycoproteins. Based on that, a new approach of magnetic immunoassay-inductively coupled plasma mass spectrometry (ICP-MS) was established for simultaneous quantitative analysis of glycoproteins. Taking biomarkers of alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA) as two model glycoproteins, experimental parameters involved in the immunoassay procedure were carefully optimized and analytical performance of the proposed method was evaluated. The limits of detection (LODs) for AFP and CEA were 0.086 μg L{sup −1} and 0.054 μg L{sup −1} with the relative standard deviations (RSDs, n = 7, c = 5 μg L{sup −1}) of 6.5% and 6.2% for AFP and CEA, respectively. Linear range for both AFP and CEA was 0.2–50 μg L{sup −1}. To validate the applicability of the proposed method, human serum samples were analyzed, and the obtained results were in good agreement with that obtained by the clinical chemiluminescence immunoassay. The developed method exhibited good selectivity and sensitivity for the simultaneous determination of AFP and CEA, and extended the applicability of metal nanoparticle tags based on ICP-MS methodology in multiple glycoprotein quantifications. - Highlights: • 4-Mercaptophenylboronic acid functionalized magnetic beads were prepared and characterized. • ICP-MS based magnetic immunoassay approach was developed for quantification of glycoproteins. • AFP and CEA were quantified simultaneously with Au and Ag NPs as element tags. • The developed method exhibited good selectivity and sensitivity for target glycoproteins.

  3. Magnetic immunoassay coupled with inductively coupled plasma mass spectrometry for simultaneous quantification of alpha-fetoprotein and carcinoembryonic antigen in human serum

    International Nuclear Information System (INIS)

    The absolute quantification of glycoproteins in complex biological samples is a challenge and of great significance. Herein, 4-mercaptophenylboronic acid functionalized magnetic beads were prepared to selectively capture glycoproteins, while antibody conjugated gold and silver nanoparticles were synthesized as element tags to label two different glycoproteins. Based on that, a new approach of magnetic immunoassay-inductively coupled plasma mass spectrometry (ICP-MS) was established for simultaneous quantitative analysis of glycoproteins. Taking biomarkers of alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA) as two model glycoproteins, experimental parameters involved in the immunoassay procedure were carefully optimized and analytical performance of the proposed method was evaluated. The limits of detection (LODs) for AFP and CEA were 0.086 μg L−1 and 0.054 μg L−1 with the relative standard deviations (RSDs, n = 7, c = 5 μg L−1) of 6.5% and 6.2% for AFP and CEA, respectively. Linear range for both AFP and CEA was 0.2–50 μg L−1. To validate the applicability of the proposed method, human serum samples were analyzed, and the obtained results were in good agreement with that obtained by the clinical chemiluminescence immunoassay. The developed method exhibited good selectivity and sensitivity for the simultaneous determination of AFP and CEA, and extended the applicability of metal nanoparticle tags based on ICP-MS methodology in multiple glycoprotein quantifications. - Highlights: • 4-Mercaptophenylboronic acid functionalized magnetic beads were prepared and characterized. • ICP-MS based magnetic immunoassay approach was developed for quantification of glycoproteins. • AFP and CEA were quantified simultaneously with Au and Ag NPs as element tags. • The developed method exhibited good selectivity and sensitivity for target glycoproteins

  4. Polymer monolithic capillary microextraction on-line coupled with inductively coupled plasma-mass spectrometry for the determination of trace Au and Pd in biological samples

    International Nuclear Information System (INIS)

    A novel method based on on-line polymer monolithic capillary microextraction (CME)-inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of trace Au and Pd in biological samples. For this purpose, poly(glycidyl methacrylate-ethylene dimethacrylate) monolith was prepared and functionalized with mercapto groups. The prepared monolith exhibited good selectivity to Au and Pd, and good resistance to strong acid with a long life span. Factors affecting the extraction efficiency of CME, such as sample acidity, sample flow rate, eluent conditions and coexisting ion interference were investigated in detail. Under the optimal conditions, the limits of detection (LODs, 3σ) were 5.9 ng L−1 for Au and 8.3 ng L−1 for Pd, and the relative standard deviations (RSDs, c = 50 ng L−1, n = 7) were 6.5% for Au and 1.1% for Pd, respectively. The developed method was successfully applied to the determination of Au and Pd in human urine and serum samples with the recovery in the range of 84–118% for spiked samples. The developed on-line polymer monolithic CME-ICP-MS method has the advantages of rapidity, simplicity, low sample/reagent consumption, high sensitivity and is suitable for the determination of trace Au and Pd in biological samples with limited amount available and complex matrix. - Highlights: • An on-line CME-ICP-MS method was developed for Au and Pd analysis in human fluids. • Poly(GMA-EDMA-SH) monolith exhibited good selectivity for Au/Pd and acid-resistance. • The method is rapid, simple, and sensitive with low sample/reagents consumption

  5. Bead Injection Extraction Chromatography using High-capacity Lab-on-Valve as a Front End to Inductively Coupled Plasma Mass Spectrometry for Rapid Urine Radiobioassay

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per;

    2013-01-01

    A novel bead injection (BI) extraction chromatographic microflow system exploiting high-capacity lab-on-valve (LOV) platform coupled with inductively coupled plasma mass spectrometric detection is developed for rapid and automated determination of plutonium in human urine. A microconduit (1 m......L) incorporated within the LOV processing unit is loaded on-line with a metered amount of disposable extraction chromatographic resin (up to 330 mg of TEVA) through programmable beads transport. Selective capture and purification of plutonium onto the resin beads is then performed by pressure driven flow after.......319 ± 0.004 g, n=5). The chemical yields of plutonium were averagely better than 90% under the optimal experimental conditions and the entire analytical procedure could be accomplished within a short timeframe (

  6. Towards silicon speciation in light petroleum products using gas chromatography coupled to inductively coupled plasma mass spectrometry equipped with a dynamic reaction cell

    International Nuclear Information System (INIS)

    Silicon speciation has recently gained interest in the oil and gas industry due to the significant poisoning problems caused by silicon on hydrotreatment catalysts. The poisoning effect clearly depends on the structure of the silicon species which must be determined and quantified. The hyphenation of gas chromatography (GC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) allows a specific detection to determine the retention times of all silicon species. The aim of this work is to determine the retention indices of unknown silicon species to allow their characterization by a multi-technical approach in order to access to their chemical structure. The optimization of the dynamic reaction cell (DRC) of the ICP-MS using hydrogen as reactant gas successfully demonstrated the resolution of the interferences (14N14N+ and 12C16O+) initially present on 28Si. The linearity was excellent for silicon compounds and instrumental detection limits ranged from 20 to 140 μg of Si/kg depending on the response of the silicon compounds. A continuous release of silicon in the torch was observed most likely due to the use of a torch and an injector which was made of quartz. A non-universal response for silicon was observed and it was clearly necessary to use response coefficients to quantify silicon compounds. Known silicon compounds such as cyclic siloxanes (D3–D16) coming from PDMS degradation were confirmed. Furthermore, more than 10 new silicon species never characterized before in petroleum products were highlighted in polydimethylsiloxane (PDMS) degradation samples produced under thermal cracking of hydrocarbons. These silicon species mainly consisted of linear and cyclic structures containing reactive functions such as ethoxy, peroxide and hydroxy groups which can be able to react with the alumina surface and hence, poison the catalyst. This characterization will further allow the development of innovative solutions such as trapping silicon compounds or

  7. Application of high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for determination of chromium compounds in the air at the workplace.

    Science.gov (United States)

    Stanislawska, Magdalena; Janasik, Beata; Wasowicz, Wojciech

    2013-12-15

    The toxicity and bioavailability of chromium species are highly dependable on the form or species, therefore determination of total chromium is insufficient for a complete toxicological evaluation and risk assessment. An analytical method for determination of soluble and insoluble Cr (III) and Cr (VI) compounds in welding fume at workplace air has been developed. The total chromium (Cr) was determined by using quadruple inductively coupled plasma mass spectrometry (ICP-MS) equipped with a dynamic reaction cell (DRC(®)). Soluble trivalent and hexavalent chromium compounds were determined by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). A high-speed, reversed-phase CR C8 column (PerkinElmer, Inc., Shelton, CT, USA) was used for the speciation of soluble Cr (III) and soluble Cr (VI). The separation was accomplished by interaction of the chromium species with the different components of the mobile phase. Cr (III) formed a complex with EDTA, i.e. retained on the column, while Cr (VI) existed in the solutions as dichromate. Alkaline extraction (2% KOH and 3% Na2CO3) and anion exchange column (PRP-X100, PEEK, Hamilton) were used for the separation of the total Cr (VI). The results of the determination of Cr (VI) were confirmed by the analysis of the certified reference material BCR CRM 545 (Cr (VI) in welding dust). The results obtained for the certified material (40.2±0.6 g kg(-1)) and the values recorded in the examined samples (40.7±0.6 g kg(-1)) were highly consistent. This analytical method was applied for the determination of chromium in the samples in the workplace air collected onto glass (Whatman, Ø 37 mm) and membrane filters (Sartorius, 0.8 μm, Ø 37 mm). High performance liquid chromatography with inductively coupled plasma mass spectrometry is a remarkably powerful and versatile technique for determination of chromium species in welding fume at workplace air. PMID:24209303

  8. Determination of cadmium and zinc isotope ratios in sheep's blood and organ tissue by electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    A method is described for the determination of Cd and Zn isotope ratios in sheep's blood and organ tissue. Samples were digested with nitric acid using a microwave oven. Cadmium and Zn were separated from matrix components using adsorption chromatography prior to isotope ratio measurement by electrothermal vaporization inductively coupled plasma mass spectrometry. A concentration factor of 35 was achieved. Limits of detection for the determination of Cd and Zn in blood were 0.34 and 0.40 pg g-1, respectively. Cadmium isotope ratios (111Cd: 106Cd; 111Cd: 110Cd) were determined with a precision of 2-3% for both peak height and area count measurements. Zinc isotope ratios (68Zn: 67Zn; 68Zn: 66Zn) were determined with a precision of 2% for peak height measurements and 1% for peak area count measurements. (Author)

  9. Sample preparation for inductively coupled plasma mass spectrometric determination of the zinc-70 to zinc-68 isotope ratio in biological samples

    International Nuclear Information System (INIS)

    Sample preparation was optimized for the 70Zn:68Zn isotope ratio determinations performed with inductively coupled plasma mass spectrometry in blood, faeces and urine from human pre-term babies after oral or intravenous administration of enriched 70Zn. The preparation techniques achieved complete decomposition, matrix separation, maximum preconcentration and minimum contamination. After sample decomposition, Zn was extracted into CCl4 with ammonium pyrrolidin-1-yldithioformate and back extracted into 1.2 mol dm-3 HNO3 for analysis. Residual chloride resulting from dissolved CCl4 in the acid led to interference by 35Cl2+, and the procedure was modified to evaporate the CCl4. Extraction was unnecessary for faecal samples. Under optimized conditions the 70Zn:68Zn isotope ratio can be measured with acceptable precision (200 ng cm-3 in the analytical solution). (Author)

  10. A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    This study describes a novel sample preparation and assay method developed in support of the MAJORANA DEMONSTRATOR experiment for the determination of thorium and uranium levels in copper and lead shielding components. Meticulously clean sample preparation methods combined with novel anion exchange separations for analyte pre-concentration and matrix removal were developed. Quantification was performed by inductively coupled plasma mass spectrometry. Detection limits of 0.0084 pg 232Th/g and 0.0106 pg 238U/g were determined for copper, while detection limits of 0.23 pg 232Th/g and 0.46 pg 238U/g were achieved for lead. These methods allow the Majorana Collaboration to accurately assay detector components and ensure that the experiment's stringent radiopurity requirements are met.

  11. A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    LaFerriere, Brian D.; Maiti, Tapas C.; Arnquist, Isaac J.; Hoppe, Eric W.

    2015-03-01

    This study describes a novel sample preparation and assay method developed in support of the MAJORANA DEMONSTRATOR experiment for the determination of thorium and uranium levels in copper and lead shielding components. Meticulously clean sample preparation methods combined with novel anion exchange separations for analyte pre-concentration and matrix removal were developed. Quantification was performed by inductively coupled plasma mass spectrometry. Detection limits of 0.0084 pg 232Th/g and 0.0106 pg 238U/g were determined for copper, while detection limits of 0.23 pg 232Th/g and 0.46 pg 238U/g were achieved for lead. These methods allow the Majorana Collaboration to accurately assay detector components and ensure that the experiment’s stringent radiopurity requirements are met.

  12. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples

    International Nuclear Information System (INIS)

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. (orig.)

  13. Determination of Trace Iron in Red Wine by Isotope Dilution Mass Spectrometry Using Multiple-Collector Inductively Coupled Plasma Mass Spectrometry

    International Nuclear Information System (INIS)

    This paper introduces determination of trace iron in red wine certified reference material by isotope dilution mass spectrometry (IDMS) method using a multiplecollector inductively coupled plasma mass spectrometry, equipped with a hexapole collision cell. The measurement procedure of iron isotopic abundance ratios was deeply researched. Reduced polyatomic ion interferences to iron isotopes ion by collision reaction using Ar and H2 gas, high precise isotopic abundance ratios were achieved. Two relative measurement methods (ICP-MS and ICP-OES) were used to analyze trace iron in red wine. The results are compared with IDMS results, which indicate that they are accordant. The uncertainty analyses include each uncertainty factor in whole experiment and the uncertainty of used certified reference material and it shows that the procedure blank is not neglectable to detect limit and precision of the method. The establishment of IDMS method for analysis of trace iron in red wine supports the certification of certified reference materials. (authors)

  14. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples.

    Science.gov (United States)

    Schütz, C L; Brochhausen, C; Hampel, G; Iffland, D; Kuczewski, B; Otto, G; Schmitz, T; Stieghorst, C; Kratz, J V

    2012-10-01

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. PMID:22918535

  15. Temporal changes of fractionation index caused by changes in the large size of ablated particles in laser ablation–inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    To elucidate mechanisms of elemental fractionation that are observed in laser ablation–inductively coupled plasma mass spectrometry, the relative intensities of 34 elements, each normalized by a Ca internal standard, were measured every minute during a 10-min laser ablation of an NIST 610 glass standard. Temporal changes in the fractionation index (FI) were obtained by dividing the relative intensity of every minute by that of the first minute. The particles generated by laser ablation were collected on a filter every minute, and they were observed using scanning electron microscopy to investigate changes in the large size of particles. Large variations among the large size of particles were observed using single-site mode and under 1.0 mm defocus conditions. The 34 measured elements were classified into two groups, depending on their observed FI variation. The FI variation was rationalized by elemental behavior due to changes in the large size of ablated particles introduced into the ICP. (author)

  16. A dry ashing assay method for the trace determination of Th and U in polymers using inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    This paper discusses the methods developed for determining the radiopurity of high density polyethylene and polyetherketone ketone materials to be considered for use in ultralow background physics experiments. This work focuses on the processes used to render the polymeric samples acid soluble for subsequent ultratrace analysis using inductively coupled plasma mass spectrometry. High density polyethylene was determined to contain 2.19 ± 0.42 pg Th/g and 2.81 ± 0.52 pg U/g. The method provided very low absolute detection limits of 17.2 and 38.1 fg for Th and U, respectively. However, the polyetherketone ketone sample etched or devitrified the quartz, causing determined values to be a factor of 2-4 higher for Th and 5-9 higher for U from dissolution assay results. (author)

  17. Standard test method for analysis of total and isotopic uranium and total thorium in soils by inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the measurement of total uranium (U) and thorium (Th) concentrations in soils, as well as the determination of the isotopic weight percentages of 234U, 235U, 236U, and 238U, thereby allowing for the calculation of individual isotopic uranium activity or total uranium activity. This inductively coupled plasma-mass spectroscopy (ICP-MS) method is intended as an alternative analysis to methods such as alpha spectroscopy or thermal ionization mass spectroscopy (TIMS). Also, while this test method covers only those isotopes listed above, the instrumental technique may be expanded to cover other long-lived radioisotopes since the preparation technique includes the preconcentration of the actinide series of elements. The resultant sample volume can be further reduced for introduction into the ICP-MS via an electrothermal vaporization (ETV) unit or other sample introduction device, even though the standard peristaltic pump introduction is applied for this test method. The sample preparatio...

  18. Application of inductively coupled plasma mass spectrometry (ICP/MS) to detection of trace elements, heavy metals and radioisotopes in scalp hair

    International Nuclear Information System (INIS)

    Trace element analysis of human hair has the potential to reveal retrospective information about an individual's nutritional status and exposure. As trace elements are incorporated into the hair during the growth process, longitudinal segments of the hair may reflect the body burden during the growth period. it was evaluated the potential of human hair to indicate exposure or nutritional status over time by analysing trace element profiles in single strands of human hair. By using inductively coupled plasma mass spectrometry (ICP-MS), it was achieved profiles of 43 elements in single strands of human hair. It was shown that trace element analysis along single strands of human hair can yield information about essential and toxic elements and for some elements, can be correlated with seasonal changes in diet and exposure. The information obtained from the trace element profiles of human hair in this study substantiates the potential of hair as a biomarker

  19. Improved immobilization of 8-hydroxyquinoline on polyacrylonitrile fiber and application of the material to the determination of trace metals in seawater by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wen Bei; Shan Xiaoquan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, BJ (China)

    2002-11-01

    A modified synthetic method has been developed for immobilization of 8-hydroxyquinoline on polyacrylonitrile fiber. The synthetic conditions, e.g. reagent concentration, reaction temperature and time, were optimized. The features of the newly-modified fiber are higher exchange capacity compared with most other materials containing immobilized 8-hydroxyquinoline, better mechanic characteristics, high stability at both high and low pH, and ease of synthesis. This modified fiber can concentrate and separate trace metals from matrices with higher concentrations of alkali and alkaline earth elements. To validate the characteristics of the modified fiber, trace metals Ag, Be, Cd, Co, Cu, Mn, Ni, Pb, and Zn in the certified reference materials river water (SLRS-4) and seawater (CASS-4, NASS-5, SLEW-3) were preconcentrated before determination by inductively coupled plasma mass spectrometry. Good agreement was obtained between the data obtained by this method and the certified values. (orig.)

  20. Study on the determination of 14 individual rare earth elements and yttrium in rare earth oxides by inductively coupled plasma mass spectroscopy (ICP-MS)

    International Nuclear Information System (INIS)

    The simultaneous determination of 14 rate earth elements and (Y) in rare earth oxide by inductively coupled plasma mass spectroscopy (ICP-MS) was studied. The rare earth oxide sample was dissolved in nitric acid and the aqueous solution containing 14 rare earth elements and Y was measured on the ICP-MS under the optimum conditions such as: concentration of nitric acid, coolant argon flow rate, sample uptake rate, sampling depth, sample uptake time and other characteristic parameters of instrument. The analytical procedure was set-up and that was applied for the determination of these above-mentioned elements in the rare earth oxide samples by ICP-MS with acceptable precision and accuracy. (author)

  1. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, C.L. [University of Mainz, Institute for Nuclear Chemistry, Mainz (Germany); Johannes Gutenberg-University of Mainz, Institute for Nuclear Chemistry, Mainz (Germany); Brochhausen, C. [University of Mainz, Institute of Pathology, Mainz (Germany); Hampel, G.; Iffland, D.; Schmitz, T.; Stieghorst, C.; Kratz, J.V. [University of Mainz, Institute for Nuclear Chemistry, Mainz (Germany); Kuczewski, B. [Regional Council Darmstadt, Darmstadt (Germany); Otto, G. [University of Mainz, Department of Hepatobiliary, Pancreatic and Transplantation Surgery, Mainz (Germany)

    2012-10-15

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. (orig.)

  2. Standard test method for the determination of impurities in plutonium metal: acid digestion and inductively coupled plasma-mass spectroscopy (ICP-MS) analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This Test Method covers the determination of 58 trace elements in plutonium (Pu) metal. The Pu sample is dissolved in acid, and the concentration of the trace impurities are determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS). 1.2 This Test Method is specific for the determination of trace impurities in Pu metal. It may be applied to other types of Pu materials, such as Pu oxides, if the samples are dissolved and oxidized to the Pu(IV) state. However, it is the responsibility of the user to evaluate the performance of other matrices. 1.3 This standard does not purport to address all of the safety concerns associated with its use. It is the responsibility of the user of this method to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use of this standard.

  3. Quantification of modifiers in advanced materials based on zinc oxide by total reflection X-ray fluorescence and inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Filatova, Daria G.; Alov, Nikolai V.; Vorobyeva, Natalia A.; Rumyantseva, Marina N.; Sharanov, Pavel Yu.; Seregina, Irina F.; Gaskov, Alexander M.

    2016-04-01

    A novel approach to quantification of Ga and Zn modifiers in advanced materials based on zinc oxide is presented. The approach includes a combination of total reflection X-ray fluorescence (TXRF) and inductively coupled plasma mass spectrometry (ICP-MS) for determination and validation of the results. It is suggested to use aqueous standards for the direct determination of elements in powder samples by TXRF with a relative standard deviation no more than sr = 0.11. The accuracy of these results was proved by ICP-MS after the sample decomposition, sr(In) = 0.05, sr(Ga) = 0.06 and sr(Zn) = 0.06. It was established that there is a possibility to determine indium above 300 ppb on the background of K-M3 line of argon.

  4. Rapid determination of 237Np in soil samples by multi-collector inductively-coupled plasma mass spectrometry and gamma spectrometry

    International Nuclear Information System (INIS)

    A radiochemical procedure is developed for the determination of 237Np in soil with multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) and gamma-spectrometry. 239Np (milked from 243Am) was used as an isotopic tracer for chemical yield determination. The neptunium in the soil is separated by thenoyl-trifluoracetone extraction from 1 M HNO3 solution after reducing Np to Np(IV) with ferrous sulfamate, and then purified with Dowex 1 x 2 anion exchange resin. 239Np in the resulting solution is measured with gamma-spectrometry for chemical yield determination while the 237Np is measured with MC-ICP-MS. Measurement results for soil samples are presented together with those for two reference samples. By comparing the determined value with the reference value of the 237Np activity concentration, the feasibility of the procedure was validated. (author)

  5. Determination of rare earth elements, thorium and uranium in seaweed samples on the coast in Niigata Prefecture by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    The determination of rare earth elements (REEs), Th and U in seaweeds of various species and in ambient surface seawater were performed by inductively coupled plasma mass spectrometry. The seaweeds and the seawater samples were collected at 10 different coastal areas of Niigata Prefecture in Japan twice a year (spring and autumn) in 2004 and 2005. Results showed that concentration of REEs in seaweed species from Niigata Prefecture were about 103 times higher than those in seawater, and the enrichment factors of REEs were larger in heavy REE than light REE. A significant concentration difference of REEs, Th and U was found among species even in the same phylum. Undaria pinnatifida had the highest concentration of U. Considering that U. pinnatifida has low concentrations of REEs among typical brown algae, different REEs and U uptake mechanisms are suggested. The concentration of REEs, Th and U did not vary remarkably between sampling points and/or seasons

  6. Speciation of the bio-available iodine and bromine forms in edible seaweed by high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Highlights: ► Bioavailable iodine and bromine speciation in edible seaweed were developed. ► In vitro dialyzability was used to assess the bioavailable fractions. ► AEC hyphenated with inductively coupled plasma-mass spectrometry was used. ► Iodide, MIT, DIT, bromide and bromate were found in dialyzates from edible seaweed. ► Positive correlation between bioavailability and protein contents was found. - Abstract: A bioavailability study based on an in vitro dialyzability approach has been applied to assess the bio-available fractions of iodine and bromine species from edible seaweed. Iodide, iodate, 3-iodo-tyrosine (MIT), 3,5-diiodo-tyrosine (DIT), bromide and bromate were separated by anion exchange chromatography under a gradient elution mode (175 mM ammonium nitrate plus 15% (v/v) methanol, pH 3.8, as a mobile phase, and flow rates within the 0.5–1.5 mL min−1 range). Inductively coupled plasma-mass spectrometry (ICP-MS) was used as a selective detector for iodine (127I) and bromine (79Br). Low dialyzability ratios (within the 2.0–18% range) were found for iodine species; whereas, moderate dialyzability percentages (from 9.0 to 40%) were obtained for bromine species. Iodide and bromide were the major species found in the dialyzates from seaweed, although MIT and bromate were also found in the dialyzates from most of the seaweed samples analysed. However, DIT was only found in dialyzates from Wakame, Kombu, and NIES 09 (Sargasso) certified reference material; whereas, iodate was not found in any dialyzate. Iodine dialyzability was found to be dependent on the protein content (negative correlation), and on the carbohydrate and dietary fibre levels (positive correlation). However, bromine dialyzability was only dependent on the protein amount in seaweed (negative correlation).

  7. HIGH RESOLUTION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ALLOWS RAPID ASSESSMENT OF IRON ABSORPTION IN INFANTS AND CHILDREN

    Science.gov (United States)

    Stable isotope absorption studies of iron have been limited by the high cost and limited availability of isotope ratio analysis using thermal ionization MS (TIMS). The development of high-resolution double focusing inductively coupled plasma MS (ICP-MS) may permit more cost-efficient sample analysis...

  8. Novel applications of high performance ion chromatography-inductively coupled plasma mass spectrometry (HPIC-ICP-MS)

    CERN Document Server

    Hann, S

    2001-01-01

    This work demonstrates the development of highly sensitive and selective analytical methods, which make use of the hyphenation of high performance ion chromatography (HPIC) to inductively coupled plasma sector field mass spectrometry (ICP-SFMS). On-line coupling a chromatographic separation method with an elemental detection method provides two advantages: (1) the components of a possibly interfering matrix can be separated allowing accurate and precise ultra trace analysis of the element of interest and (2) elemental species of an element can be separated and quantified. In this work, matrix separation methods for interference free determination of 232Th, 234U, 235U and 238U in geological matrices were developed and employed. Furthermore HPIC-ICP-SFMS was applied for ultra trace analysis of Pd in environmental and geological matrices. The usefulness of HPIC-ICP-SFMS for speciation studies was demonstrated by investigating the interaction of an anti-cancer drug (cisplatin) with guanosine monophosphates.

  9. Novel applications of high performance ion chromatography-inductively coupled plasma mass spectrometry (HPIC-ICP-MS)

    International Nuclear Information System (INIS)

    This work demonstrates the development of highly sensitive and selective analytical methods, which make use of the hyphenation of high performance ion chromatography (HPIC) to inductively coupled plasma sector field mass spectrometry (ICP-SFMS). On-line coupling a chromatographic separation method with an elemental detection method provides two advantages: (1) the components of a possibly interfering matrix can be separated allowing accurate and precise ultra trace analysis of the element of interest and (2) elemental species of an element can be separated and quantified. In this work, matrix separation methods for interference free determination of 232Th, 234U, 235U and 238U in geological matrices were developed and employed. Furthermore HPIC-ICP-SFMS was applied for ultra trace analysis of Pd in environmental and geological matrices. The usefulness of HPIC-ICP-SFMS for speciation studies was demonstrated by investigating the interaction of an anti-cancer drug (cisplatin) with guanosine monophosphates. (author)

  10. SPECIATION OF SELENIUM AND ARSENIC COMPOUNDS BY CAPILLARY ELECTROPHORESIS WITH HYDRODYNAMICALLY MODIFIED ELECTROOSMOTIC FLOW AND ON-LINE REDUCTION OF SELENIUM(VI) TO SELENIUM(IV) WITH HYDRIDE GENERATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    Science.gov (United States)

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV') by mixing the CE effluent with concentrated HCl. A microporo...

  11. Analysis of Isotopic Abundance of Plutonium by Multicollector-Inductively Coupled Plasma Mass Spectrometry%多接收电感耦合等离子体质谱法测量痕量钚同位素

    Institute of Scientific and Technical Information of China (English)

    张继龙; 王同兴; 李力力; 常志远; 赵永刚; 刘俊岭

    2005-01-01

    The isotopic analysis of 232Pu plutonium in 5×10-12 g/g samples using a multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) is described. IRMM-290b and uranium (UTB750) were used to correct the metrical data, and the analytical precision is about 0.5%.

  12. Displacement solid-phase extraction on mercapto-functionalized magnetite microspheres for inductively coupled plasma mass spectrometric determination of trace noble metals

    International Nuclear Information System (INIS)

    A flow injection online displacement solid-phase extraction (DSPE) via magnetic immobilization of mercapto-functionalized magnetite microspheres onto the inner walls of a knotted reactor (KR) coupled with inductively coupled plasma mass spectrometry was developed for selective preconcentration and determination of trace noble metals (Ru, Rh, Pd, Pt, Ir and Au) in complex matrices. Online DSPE of 2.7 mL aqueous solution gave the enhancement factors of 32-46 for the six noble metals in comparison with direct nebulization of aqueous sample solution, and the detection limits (3 s) of 2.1 ng L-1 for Ru, 1.9 ng L-1 for Rh, 2.5 ng L-1 for Pd, 1.8 ng L-1 for Ir, 1.9 ng L-1 for Pt and 1.7 ng L-1 for Au. The sample throughput of the developed method was about 20 samples h-1, and the relative standard deviation for eleven replicate determinations of the noble metals at the 30 ng L-1 level ranged from 1.2% to 2.1%. The recoveries of Ru, Rh, Pd, Pt, Ir and Au still maintained 90% even after successive 140 cycles of DSPE. The developed method was successfully applied to selective determination of trace Ru, Rh, Pd, Pt, Ir and Au in complex matrices.

  13. Fast Determination of Toxic Arsenic Species in Food Samples Using Narrow-bore High-Performance Liquid-Chromatography Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Terol, Amanda; Marcinkowska, Monika; Ardini, Francisco; Grotti, Marco

    2016-01-01

    A new method for the speciation analysis of arsenic in food using narrow-bore high-performance liquid-chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) has been developed. Fast separation of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid was carried out in 7 min using an anion-exchange narrow-bore Nucleosil 100 SB column and 12 mM ammonium dihydrogen phosphate of pH 5.2 as the mobile phase, at a flow rate of 0.3 mL min(-1). A PFA-ST micronebulizer jointed to a cyclonic spray chamber was used for HPLC-ICP-MS coupling. Compared with standard-bore HPLC-ICP-MS, the new method has provided higher sensitivity, reduced mobile-phase consumption, a lower matrix plasma load and a shorter analysis time. The achieved instrumental limits of detection were in the 0.3 - 0.4 ng As mL(-1) range, and the precision was better than 3%. The arsenic compounds were efficiently (>80%) extracted from various food samples using a 1:5 methanol/water solution, with additional ultrasonic treatment for rice products. The applicability of this method was demonstrated by the analysis of several samples, such as seafood (fish, mussels, shrimps, edible algae) and rice-based products (Jasmine and Arborio rice, spaghetti, flour, crackers), including three certified reference materials. PMID:27506720

  14. Arsenic speciation in rice by capillary electrophoresis/inductively coupled plasma mass spectrometry: enzyme-assisted water-phase microwave digestion.

    Science.gov (United States)

    Qu, Haiou; Mudalige, Thilak K; Linder, Sean W

    2015-04-01

    We report an analytical methodology for the quantification of common arsenic species in rice and rice cereal using capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICPMS). An enzyme (i.e., α-amylase)-assisted water-phase microwave extraction procedure was used to extract four common arsenic species, including dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), arsenite [As(III)], and arsenate [As(V)] from the rice matrices. The addition of the enzyme α-amylase during the extraction process was necessary to reduce the sample viscosity, which subsequently increased the injection volume and enhanced the signal response. o-Arsanilic acid (o-ASA) was added to the sample solution as a mobility marker and internal standard. The obtained repeatability [i.e., relative standard deviation (RSD %)] of the four arsenic analytes of interest was less than 1.23% for elution time and 2.91% for peak area. The detection limits were determined to be 0.15-0.27 ng g(-1). Rice standard reference materials SRM 1568b and CRM 7503-a were used to validate this method. The quantitative concentrations of each organic arsenic and summed inorganic arsenic were found within 5% difference of the certified values of the two reference materials.

  15. Determination of the total and extractable mass fractions of cadmium and lead in mineral feed by using isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Highlights: → The protocol for the total and extractable mass fractions of Pb and Cd in mineral feed sample based on isotope dilution inductively coupled plasma mass spectrometry is developed. → The ID ICP-MS method for the total and extractable mass fractions of Cd and Pb in feed sample is used for the validation of external calibration method for both elements in feed matrix. → Two methods for the determination of Cd were developed: matrix separation of Cd followed by standard ICP-MS measurement in CRI mode without preliminary matrix separation. - Abstract: This paper describes the determination of the total and extractable mass fractions of Cd and Pb in mineral feed test sample distributed by the Community Reference Laboratory for Heavy Metals in Feed and Food (CRL-HM), in the frame of the fifth interlaboratory comparison for the European Union National Reference Laboratories (NRL). The developed in this study protocol for the total and extractable mass fractions of Pb and Cd in mineral feed sample is based on isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS). The applied dual spiking approach reduced by 50% the number of analytical steps. The addition of hydrofluoric acid in the digestion step was found necessary to ensure a full decomposition and complete isotope equilibration. Quadrupole inductively coupled plasma mass spectrometer equipped with collision reaction interface (CRI) was employed for the measurements of Cd and Pb. Two methods for the determination of Cd were applied and compared. In the first one the high molybdenum content was reduced by introduction of matrix separation step followed by standard ICP-MS mode measurement, whereas in the second one CRI mode was used for the determination of Cd without preliminary matrix separation. The estimation of the combined uncertainty was performed according to the ISO guidelines. Uncertainty propagation was used as a tool for validation of proposed analytical procedure

  16. Total zinc quantification by inductively coupled plasma-mass spectrometry and its speciation by size exclusion chromatography-inductively coupled plasma-mass spectrometry in human milk and commercial formulas: Importance in infant nutrition.

    Science.gov (United States)

    Fernández-Menéndez, Sonia; Fernández-Sánchez, María L; Fernández-Colomer, Belén; de la Flor St Remy, Rafael R; Cotallo, Gil Daniel Coto; Freire, Aline Soares; Braz, Bernardo Ferreira; Santelli, Ricardo Erthal; Sanz-Medel, Alfredo

    2016-01-01

    This paper summarises results of zinc content and its speciation in human milk from mothers of preterm and full-term infants at different stages of lactation and from synthetic formula milks. Human milk samples (colostrum, 7th, 14th, and 28th day after delivery) from Spanish and Brazilian mothers of preterm and full-term infants (and also formula milks) were collected. After adequate treatment of the sample, total Zn was determined, while speciation analysis of the Zn was accomplished by size exclusion chromatography coupled online with the ICP-MS. It is observed that total zinc content in human milk decreases continuously during the first month of lactation, both for preterm and full term gestations. All infant formulas analysed for total Zn were within the currently legislated levels. For Zn speciation analysis, there were no differences between preterm and full term human milk samples. Moreover Zn species elute mainly associated with immunoglobulins and citrate in human milk whey. Interestingly the speciation in formula milk whey turned out to be completely different as the observed Zn(2+) was bound almost exclusively to low molecular weight ligands (citrate) and only comparatively very low amounts of the metal appeared to be associated with higher mass biomolecules (e.g. proteins).

  17. Reference measurements for total mercury and methyl mercury content in marine biota samples using direct or species-specific isotope dilution inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Krata, Agnieszka; Vassileva, Emilia; Bulska, Ewa

    2016-11-01

    The analytical procedures for reference measurements of the total Hg and methyl mercury (MeHg) mass fractions at various concentration levels in marine biota samples, candidates for certified reference materials (oyster and clam Gafrarium tumidum), were evaluated. Two modes of application of isotope dilution inductively coupled plasma mass spectrometry method (ID ICP-MS), namely direct isotope dilution and species-specific isotope dilution analysis with the use of two different quantification mass spectrometry techniques were compared. The entire ID ICP-MS measurement procedure was described by mathematical modelling and the combined uncertainty of measurement results was estimated. All factors influencing the final results as well as isotopic equilibrium were systematically investigated. This included the procedural blank, the moisture content in the biota samples and all factors affecting the blend ratio measurements (instrumental background, spectral interferences, dead time and mass discrimination effects as well as the repeatability of measured isotopic ratios). Modelling of the entire measurement procedures and the use of appropriate certified reference materials enable to assure the traceability of obtained values to the International System of Units (SI): the mole or the kilogram. The total mass fraction of mercury in oyster and clam biota samples, after correction for moisture contents, was found to be: 21.1 (1.1) 10(-9) kg kg(-1) (U =5.1% relative, k=2) and 390.0 (9.4) 10(-9) kg kg(-1) (U=2.4% relative, k=2), respectively. For the determination of mercury being present as methyl mercury, the non-chromatographic separation on anion-exchange resin AG1-X8 of the blended samples was applied. The content of MeHg (as Hg) in oyster sample was found: 4.81 (24) 10(-9)kgkg(-1) (U=5.0%, k=2) and 4.84 (21) 10(-9)kgkg(-1) (U=4.3%, k=2) with the use of quadrupole (ICP QMS) or sector field (ICP SFMS) inductively coupled plasma mass spectrometers, respectively. In the

  18. Flow-injection technique for determination of uranium and thorium isotopes in urine by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Benkhedda, Karima; Epov, Vladimir N; Evans, R Douglas

    2005-04-01

    A sensitive and efficient flow-injection (FI) preconcentration and matrix-separation technique coupled to sector field ICP-mass spectrometry (SF-ICP-MS) has been developed and validated for simultaneous determination of ultra-low levels of uranium (U) and thorium (Th) in human urine. The method is based on selective retention of U and Th from a urine matrix, after microwave digestion, on an extraction chromatographic TRU resin, as an alternative to U/TEVA resin, and their subsequent elution with ammonium oxalate. Using a 10 mL sample, the limits of detection achieved for 238U and 232Th were 0.02 and 0.03 ng L(-1), respectively. The accuracy of the method was checked by spike-recovery measurements. Levels of U and Th in human urine were found to be in the ranges 1.86-5.50 and 0.176-2.35 ng L(-1), respectively, well in agreement with levels considered normal for non-occupationally exposed persons. The precision obtained for five replicate measurements of a urine sample was 2 and 3% for U and Th, respectively. The method also enables on-line measurements of the 235U/238U isotope ratios in urine. Precision of 0.82-1.04% (RSD) was obtained for 235U/238U at low ng L(-1) levels, using the FI transient signal approach. PMID:15827719

  19. Flow-injection technique for determination of uranium and thorium isotopes in urine by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    A sensitive and efficient flow-injection (FI) preconcentration and matrix-separation technique coupled to sector field ICP-mass spectrometry (SF-ICP-MS) has been developed and validated for simultaneous determination of ultra-low levels of uranium (U) and thorium (Th) in human urine. The method is based on selective retention of U and Th from a urine matrix, after microwave digestion, on an extraction chromatographic TRU resin, as an alternative to U/TEVA resin, and their subsequent elution with ammonium oxalate. Using a 10 mL sample, the limits of detection achieved for 238U and 232Th were 0.02 and 0.03 ng L-1, respectively. The accuracy of the method was checked by spike-recovery measurements. Levels of U and Th in human urine were found to be in the ranges 1.86-5.50 and 0.176-2.35 ng L-1, respectively, well in agreement with levels considered normal for non-occupationally exposed persons. The precision obtained for five replicate measurements of a urine sample was 2 and 3% for U and Th, respectively. The method also enables on-line measurements of the 235U/238U isotope ratios in urine. Precision of 0.82-1.04% (RSD) was obtained for 235U/238U at low ng L-1 levels, using the FI transient signal approach. (orig.)

  20. Analysis of radium-226 in high salinity wastewater from unconventional gas extraction by inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Zhang, Tieyuan; Bain, Daniel; Hammack, Richard; Vidic, Radisav D

    2015-03-01

    Elevated concentration of naturally occurring radioactive material (NORM) in wastewater generated from Marcellus Shale gas extraction is of great concern due to potential environmental and public health impacts. Development of a rapid and robust method for analysis of Ra-226, which is the major NORM component in this water, is critical for the selection of appropriate management approaches to properly address regulatory and public concerns. Traditional methods for Ra-226 determination require long sample holding time or long detection time. A novel method combining Inductively Coupled Mass Spectrometry (ICP-MS) with solid-phase extraction (SPE) to separate and purify radium isotopes from the matrix elements in high salinity solutions is developed in this study. This method reduces analysis time while maintaining requisite precision and detection limit. Radium separation is accomplished using a combination of a strong-acid cation exchange resin to separate barium and radium from other ions in the solution and a strontium-specific resin to isolate radium from barium and obtain a sample suitable for analysis by ICP-MS. Method optimization achieved high radium recovery (101 ± 6% for standard mode and 97 ± 7% for collision mode) for synthetic Marcellus Shale wastewater (MSW) samples with total dissolved solids as high as 171,000 mg/L. Ra-226 concentration in actual MSW samples with TDS as high as 415,000 mg/L measured using ICP-MS matched very well with the results from gamma spectrometry. The Ra-226 analysis method developed in this study requires several hours for sample preparation and several minutes for analysis with the detection limit of 100 pCi/L with RSD of 45% (standard mode) and 67% (collision mode). The RSD decreased to below 15% when Ra-226 concentration increased over 500 pCi/L.

  1. Analysis of radium-226 in high salinity wastewater from unconventional gas extraction by inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Zhang, Tieyuan; Bain, Daniel; Hammack, Richard; Vidic, Radisav D

    2015-03-01

    Elevated concentration of naturally occurring radioactive material (NORM) in wastewater generated from Marcellus Shale gas extraction is of great concern due to potential environmental and public health impacts. Development of a rapid and robust method for analysis of Ra-226, which is the major NORM component in this water, is critical for the selection of appropriate management approaches to properly address regulatory and public concerns. Traditional methods for Ra-226 determination require long sample holding time or long detection time. A novel method combining Inductively Coupled Mass Spectrometry (ICP-MS) with solid-phase extraction (SPE) to separate and purify radium isotopes from the matrix elements in high salinity solutions is developed in this study. This method reduces analysis time while maintaining requisite precision and detection limit. Radium separation is accomplished using a combination of a strong-acid cation exchange resin to separate barium and radium from other ions in the solution and a strontium-specific resin to isolate radium from barium and obtain a sample suitable for analysis by ICP-MS. Method optimization achieved high radium recovery (101 ± 6% for standard mode and 97 ± 7% for collision mode) for synthetic Marcellus Shale wastewater (MSW) samples with total dissolved solids as high as 171,000 mg/L. Ra-226 concentration in actual MSW samples with TDS as high as 415,000 mg/L measured using ICP-MS matched very well with the results from gamma spectrometry. The Ra-226 analysis method developed in this study requires several hours for sample preparation and several minutes for analysis with the detection limit of 100 pCi/L with RSD of 45% (standard mode) and 67% (collision mode). The RSD decreased to below 15% when Ra-226 concentration increased over 500 pCi/L. PMID:25642997

  2. A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    LaFerriere, B.D.; Maiti, T.C.; Arnquist, I.J.; Hoppe, E.W., E-mail: eric.hoppe@pnnl.gov

    2015-03-01

    This study describes a novel sample preparation and assay method developed, primarily in support of the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment, for the determination of extremely low levels of Th and U in copper and lead shielding components. Meticulously clean sample preparation methods combined with anion exchange separations for analyte pre-concentration and matrix removal were developed. Quantification was performed by isotope dilution inductively coupled plasma mass spectrometry. Detection limits of 0.0084 pg {sup 232}Th/g (0.034 µBq {sup 232}Th/kg) and 0.0106 pg {sup 238}U/g (0.131 µBq {sup 238}U/kg) were determined for copper, while detection limits of 0.23 pg {sup 232}Th/g (0.94 µBq {sup 232}Th/kg) and 0.46 pg {sup 238}U/g (5.7 µBq {sup 238}U/kg) were achieved for lead. These methods allow the Majorana Collaboration to accurately assay detector components and ensure that the experiment's stringent radiopurity requirements are met.

  3. Re-evaluation of interferences of doubly charged ions of heavy rare earth elements on Sr isotopic analysis using multi-collector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    We re-evaluate the interference of doubly charged heavy rare earth elements during Sr isotopic analysis using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). A series of mixed solutions of standard reference material SRM 987, rare earth elements, and Sr separated from rock reference materials are measured to assess the influence of isobaric interferences on the MC-ICP-MS analysis of Sr isotopes. After sample dissolution, conventional cation-exchange chromatography is employed for Sr purification of rock reference materials prior to MC-ICP-MS measurement. It has been demonstrated that if the natural abundances of Er and Yb are used to correct for doubly charged ion interferences on Sr, an overcorrection results. In contrast, the use of measured doubly charged ion ratios results in an accurate and precise correction of isobaric interference. This finding is confirmed by analytical results for several certified reference materials from mafic (basaltic) to felsic (granitic) silicate rocks. It is noteworthy that, because Er is more prone to doubly charged ion formation, it dominates over Yb doubly charged ions as an interference source. - Highlights: • We re-investigated interference of doubly charged HREE ion on Sr isotope. • Natural abundance of Er and Yb to correct the interference leads to an overcorrection. • Er is more prone to doubly charged ion formation than Yb

  4. Method for the quantification of vanadyl porphyrins in fractions of crude oils by High Performance Liquid Chromatography-Flow Injection-Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Wandekoken, Flávia G.; Duyck, Christiane B.; Fonseca, Teresa C. O.; Saint'Pierre, Tatiana D.

    2016-05-01

    High performance liquid chromatography hyphenated by flow injection to inductively coupled plasma mass spectrometry (HPLC-FI-ICP-MS) was used to investigate V linked to porphyrins present in fractions of crude oil. First, the crude oil sample was submitted to fractionation by preparative liquid chromatography with UV detection, at the porphyrin Soret band wavelength (400 nm). The obtained porphyrin fractions were then separated in a 250 mm single column, in the HPLC, and eluted with different mobile phases (methanol or methanol:toluene (80:20; v:v)). The quantification of V-porphyrins in the fractions eluted from HPLC was carried out by online measuring the 51V isotope in the ICP-MS, against vanadyl octaethylporphine standard solutions (VO-OEP), prepared in the same solvent as the mobile phase, and injected post-column directly into the plasma. A 20 μg L- 1 Ge in methanol was used as internal standard for minimizing non-spectral interference, such as short-term variations due to injection. The mathematical treatment of the signal based on Fast Fourier Transform smoothing algorithm was employed to improve the precision. The concentrations of V as V-porphyrins were between 2.7 and 11 mg kg- 1 in the fractions, which were close to the total concentration of V in the porphyrin fractions of the studied crude oil.

  5. Optimization of a single-drop microextraction method for multielemental determination by electrothermal vaporization inductively coupled plasma mass spectrometry following in situ vapor generation

    International Nuclear Information System (INIS)

    A headspace single-drop microextraction (HS-SDME) method has been developed in combination with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the simultaneous determination of As, Sb, Bi, Pb, Sn and Hg in aqueous solutions. Vapor generation is carried out in a 40 mL volume closed-vial containing a solution with the target analytes in hydrochloric acid and potassium ferricyanide medium. Hydrides (As, Sb, Bi, Pb, Sn) and Hg vapor are trapped onto an aqueous single drop (3 μL volume) containing Pd(II), followed by the subsequent injection in the ETV. Experimental variables such as medium composition, sodium tetrahydroborate (III) volume and concentration, stirring rate, extraction time, sample volume, ascorbic acid concentration and palladium amount in the drop were fully optimized. The limits of detection (LOD) (3σ criterion) of the proposed method for As, Sb, Bi, Pb, Sn and Hg were 0.2, 0.04, 0.01, 0.07, 0.09 and 0.8 μg/L, respectively. Enrichment factors of 9, 85, 138, 130, 37 and 72 for As, Sb, Bi, Pb, Sn and Hg, respectively, were achieved in 210 s. The relative standard deviations (N = 5) ranged from 4 to 8%. The proposed HS-SDME-ETV-ICP-MS method has been applied for the determination of As, Sb, Bi, Pb, Sn and Hg in NWRI TM-28.3 certified reference material.

  6. Analysis of Cu, Co, V and Zn in coastal waters of the East China Sea by inductively coupled plasma mass spectrometry (ICP-MS)

    Science.gov (United States)

    Yang, Rujun; Ning, Yutong; Zhang, Aibin; Li, Yan; Su, Han

    2016-10-01

    In this study, a simple method for the simultaneous determination of trace metals (Cu, V, Co, Zn) in coastal seawater using the Mg(OH)2 coprecipitation inductively coupled plasma mass spectrometry (ICP-MS) was developed. This multi-element method enables the simultaneous extraction of four metals, particularly Co and V. The recoveries of Cu, Co, V and Zn after Mg(OH)2 coprecipitation were 73%, 96%, 94% and 92%, which means that our procedure was well-suited to the determination of these four trace metals. The detection limits were 3.81, 0.18, 6.09 and 1.91 nmol L-1, respectively. Then, applying this method to the simultaneous determination of these four metals in coastal water samples from the East China Sea revealed that the concentrations of Cu, Zn, Co and V were higher in bottom waters compared to water at other depths, and higher concentrations were generally observed at the Yangtze River estuary. Additionally, example vertical profiles of dissolved trace metal concentrations for the East China Sea in spring and autumn are compared. These findings indicate that Zn had the greatest seasonal variation followed by Cu, V and Co. For Zn and Co, the concentrations were higher during spring than during autumn. For Cu and V, the seasonal variation in the concentrations was opposite.

  7. Evaluation of microwave and ultrasound extraction procedures for arsenic speciation in bivalve mollusks by liquid chromatography–inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Liquid chromatography–inductively coupled plasma-mass spectrometry (LC–ICP-MS) was used for arsenic speciation analysis in tissues of bivalve mollusks (Anomalocardia brasiliana sp. and Macoma constricta sp.). Microwave and ultrasound radiation, combined with different extraction conditions (solvent, sample amount, time, and temperature), were evaluated for As-species extraction from the mollusks' tissues. Accuracy, extraction efficiency, and the stability of As species were evaluated by analyzing certified reference materials (DORM-2, dogfish muscle; BCR-627, tuna fish tissue; and SRM 1566b, oyster tissue) and analyte recovery tests. The best conditions were found to be microwave-assisted extraction using 200 mg of samples and water at 80 °C for 6 min. The agreement of As-species concentration in samples ranged from 97% to 102%. Arsenobetaine (AsB) was the main species present in bivalve mollusk tissues, while monomethylarsonic acid (MMA) and arsenate (As(V)) were below the limit of quantification (0.001 and 0.003 μg g−1, respectively). Two unidentified As species also were detected and quantified. The sum of the As-species concentration was in agreement (90 to 104%), with the total As content determined by ICP-MS after sample digestion. - Highlights: • Method development for As speciation analysis by LC–ICP-MS • Evaluation of microwave and ultrasonic radiation for sample preparation • Investigation on As species content in mollusks

  8. Evaluation of microwave and ultrasound extraction procedures for arsenic speciation in bivalve mollusks by liquid chromatography-inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Santos, Clarissa M. M.; Nunes, Matheus A. G.; Barbosa, Isa S.; Santos, Gabriel L.; Peso-Aguiar, Marlene C.; Korn, Maria G. A.; Flores, Erico M. M.; Dressler, Valderi L.

    2013-08-01

    Liquid chromatography-inductively coupled plasma-mass spectrometry (LC-ICP-MS) was used for arsenic speciation analysis in tissues of bivalve mollusks (Anomalocardia brasiliana sp. and Macoma constricta sp.). Microwave and ultrasound radiation, combined with different extraction conditions (solvent, sample amount, time, and temperature), were evaluated for As-species extraction from the mollusks' tissues. Accuracy, extraction efficiency, and the stability of As species were evaluated by analyzing certified reference materials (DORM-2, dogfish muscle; BCR-627, tuna fish tissue; and SRM 1566b, oyster tissue) and analyte recovery tests. The best conditions were found to be microwave-assisted extraction using 200 mg of samples and water at 80 °C for 6 min. The agreement of As-species concentration in samples ranged from 97% to 102%. Arsenobetaine (AsB) was the main species present in bivalve mollusk tissues, while monomethylarsonic acid (MMA) and arsenate (As(V)) were below the limit of quantification (0.001 and 0.003 μg g- 1, respectively). Two unidentified As species also were detected and quantified. The sum of the As-species concentration was in agreement (90 to 104%), with the total As content determined by ICP-MS after sample digestion.

  9. Improving Precision and Accuracy of Isotope Ratios from Short Transient Laser Ablation-Multicollector-Inductively Coupled Plasma Mass Spectrometry Signals: Application to Micrometer-Size Uranium Particles.

    Science.gov (United States)

    Claverie, Fanny; Hubert, Amélie; Berail, Sylvain; Donard, Ariane; Pointurier, Fabien; Pécheyran, Christophe

    2016-04-19

    The isotope drift encountered on short transient signals measured by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) is related to differences in detector time responses. Faraday to Faraday and Faraday to ion counter time lags were determined and corrected using VBA data processing based on the synchronization of the isotope signals. The coefficient of determination of the linear fit between the two isotopes was selected as the best criterion to obtain accurate detector time lag. The procedure was applied to the analysis by laser ablation-MC-ICPMS of micrometer sized uranium particles (1-3.5 μm). Linear regression slope (LRS) (one isotope plotted over the other), point-by-point, and integration methods were tested to calculate the (235)U/(238)U and (234)U/(238)U ratios. Relative internal precisions of 0.86 to 1.7% and 1.2 to 2.4% were obtained for (235)U/(238)U and (234)U/(238)U, respectively, using LRS calculation, time lag, and mass bias corrections. A relative external precision of 2.1% was obtained for (235)U/(238)U ratios with good accuracy (relative difference with respect to the reference value below 1%). PMID:27031645

  10. Application of Microwave-Induced Combustion and Isotope Dilution Strategies for Quantification of Sulfur in Coals via Sector-Field Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Christopher, Steven J; Vetter, Thomas W

    2016-05-01

    In recent years, microwave-induced combustion (MIC) has proved to be a robust sample preparation technique for difficult-to-digest samples containing high carbon content, especially for determination of halogens and sulfur. National Institute of Standards and Technology (NIST) has applied the MIC methodology in combination with isotope dilution analysis for sulfur determinations, representing the first-reported combination of this robust sample preparation methodology and high-accuracy quantification approach. Medium-resolution mode sector-field inductively coupled plasma mass spectrometry was invoked to avoid spectral interferences on the sulfur isotopes. The sample preparation and instrumental analysis scheme was used for the value assignment of total sulfur in Standard Reference Material (SRM) 2682c Subbituminous Coal (nominal mass fraction 0.5% sulfur). A description of the analytical procedures required is provided, along with metrological results, including an estimation of the overall method uncertainty (<1.5% relative expanded uncertainty) calculated using the IDMS measurement function and a Kragten spreadsheet approach. PMID:27032706

  11. Evaluated the Twenty-Six Elements in the Pectoral Muscle of As-Treated Chicken by Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Sun, Bonan; Xing, Mingwei

    2016-02-01

    This study assessed the impacts of dietary arsenic trioxide on the contents of 26 elements in the pectoral muscle of chicken. A total of 100 Hy-line laying cocks were randomly divided into two groups (n = 50), including an As-treated group (basic diet supplemented with arsenic trioxide at 30 mg/kg) and a control group (basal diet). The feeding experiment lasted for 90 days and the experimental animals were given free access to feed and drinking water. The elements lithium (Li), boron (B), natrum (Na), magnesium (Mg), aluminium (AI), silicium (Si), kalium (K), calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), ferrum (Fe), cobalt (Co.), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), stannum (Sn), stibium (Sb), barium (Ba), hydrargyrum (Hg), thallium (Tl) and plumbum (Pb) in the pectoral muscles were determined using inductively coupled plasma mass spectrometry (ICP-MS). The resulted data indicated that Li, Na, AI, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Tl and Pb were significantly increased (P Si, K, As and Cd decreased significantly (P Cu, Zn, Sn, Ba, Tl, Pb, Mg, Si, K, As and Cd) in the pectoral muscles of chicken. Thus, it is needful to monitor the concentration of toxic metal (As) in chicken for human health. PMID:26123164

  12. Disequilibrium effects in metal speciation by capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS); theory, simulations and experiments.

    Science.gov (United States)

    Sonke, Jeroen E; Salters, Vincent J M

    2004-08-01

    A theoretical-experimental approach to evaluate disequilibrium effects in capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS) is presented. Electrophoresis requires metal ligand (ML) complexes to be stable on the time scale of separation and detection. By expressing ML complex stability in terms of half-life during a CE separation, an evaluation of separation artifacts can be made. Kinetically slow metals like Cr, Al or Fe form complexes that are stable on the time scale of electrophoretic separations. Kinetically fast metals, like Pb, Hg, Cu, Cd and REE, however tend to form labile complexes which unless complexed by strong chelators will dissociate during CE separations. A reactive transport simulation model of CE separations involving ML complexes allows a more detailed prediction of disequilibrium bias and identifies kinetically limited from mobility-limited types of dissociation. Complementary experimental results are given for kinetic and equilibrium binding experiments of Sm with humic acid. The equilibrium logK for Sm-Leonardite humic acid (HA) binding at pH 7 and 0.01 mol L(-1) ionic strength was determined to be 13.04. Kinetic rates of formation and dissociation for SmHA were 5.9 10(8) and 5.3 10(-5) mol s(-1). PMID:15284917

  13. Comparison of sample digestion techniques for the determination of trace and residual catalyst metal content in single-wall carbon nanotubes by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    A single-wall carbon nanotube material produced by laser ablation of renewable biochar in the presence of Ni and Co catalyst was characterized for residual catalyst (Co and Ni) as well as trace metal impurity content (Fe, Mo, Cr, Pb and Hg) by isotope dilution ICP-MS following sample digestion. Several matrix destruction procedures were evaluated, including a multi-step microwave-assisted acid digestion, dry ashing at 450 °C and microwave-induced combustion with oxygen. Results were benchmarked against those derived from neutron activation analysis and also supported by solid sampling continuum source GF-AAS for several of the elements. Although laborious to execute, the multi-step microwave-assisted acid digestion proved to be most reliable for recovery of the majority of the analytes, although content of Cr remained biased low for each approach, likely due to its presence as refractory carbide. - Highlights: • Determination of trace and residual catalyst metal content in Single-Wall Carbon Nanotubes by Inductively Coupled Plasma Mass Spectrometry. • Comparative study of digestion methodology combined with high precision isotope dilution ICP-MS for quantitation of elements of toxicologic relevance. • Results were benchmarked against those derived from neutron activation analysis and also supported by solid sampling continuum source GF-AAS for several of the elements

  14. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Devulder, Veerle; Gerdes, Axel; Vanhaecke, Frank; Degryse, Patrick

    2015-03-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ11B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement.

  15. Intercomparison study of inductively coupled plasma mass spectrometry, thermal ionization mass spectrometry and fission track analysis of μBq quantities of 239Pu in synthetic urine

    International Nuclear Information System (INIS)

    Even today, some Marshall Islanders are looking forward to permanently resettling their islands after five decades. The U.S. Department of Energy and the resettled residents require reasonable but cost-prudent assurance that the doses to resident from residual 239Pu will not exceed recognized international standards or recommendations, as estimated from the excretion of 239Pu in urine. The goal of this study was to evaluate the bias, uncertainty and sensitivity of analytical techniques that measure 3-56 μBq 239Pu in synthetic urine. The analytical techniques studied in this work included inductively coupled plasma mass spectrometry, thermal ionization mass spectrometry and fission track analysis. The results of the intercomparison demonstrated that all three techniques were capable of marking the measurements, although not with equal degree of bias and uncertainty. The estimated minimum detectable activity was 1 μBq of 239Pu per synthetic urine sample. This exercise is also the first effort to certify test materials of plutonium in the nBqxg-1 range. (author)

  16. Direct determination of cadmium in foods by solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry using a tungsten coil trap

    Science.gov (United States)

    Zhang, Ying; Mao, Xuefei; Liu, Jixin; Wang, Min; Qian, Yongzhong; Gao, Chengling; Qi, Yuehan

    2016-04-01

    In this work, a solid sampling device consisting of a tungsten coil trap, porous carbon vaporizer and on-line ashing furnace of a Ni-Cr coil was interfaced with inductively coupled plasma mass spectrometry (ICP-MS). A modified double gas circuit system was employed that was composed of carrier and supplemental gas lines controlled by separate gas mass flow controllers. For Cd determination in food samples using the assembled solid sampling ICP-MS, the optimal ashing and vaporization conditions, flow rate of the argon-hydrogen (Ar/H2) (v:v = 24:1) carrier gas and supplemental gas, and minimum sampling mass were investigated. Under the optimized conditions, the limit of quantification was 0.5 pg and the relative standard deviation was within a 10.0% error range (n = 10). Furthermore, the mean spiked recoveries for various food samples were 99.4%-105.9% (n = 6). The Cd concentrations measured by the proposed method were all within the certified values of the reference materials or were not significantly different (P > 0.05) from those of the microwave digestion ICP-MS method, demonstrating the good accuracy and precision of the solid sampling ICP-MS method for Cd determination in food samples.

  17. Arsenic Species in Edible Seaweeds Using In Vitro Biomimetic Digestion Determined by High-Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Yan-Fang Zhao

    2014-01-01

    Full Text Available Arsenite [As (III], arsenate [As (V], methylarsonate (MMA, and dimethylarsinate (DMA in five edible seaweeds (the brown algae Laminaria japonica, red algae Porphyra yezoensis, brown algae Undaria pinnatifida, brown algae Hizikia fusiformis, and green algae Enteromorpha prolifera were analyzed using in vitro digestion method determined by high-performance liquid chromatography inductively coupled plasma mass spectrometry. The results showed that DMA was found in the water extracts of all samples; As (III were detected in L. japonica and U. pinnatifida and about 23.0 and 0.15 mg/kg of As (V were found in H. fusiformis and E. prolifera respectively. However, after the gastrointestinal digestion, As (V was not detected in any of the five seaweeds. About 0.19 and 1.47 mg/kg of As (III was detected in the gastric extracts of L. japonica and H. fusiformis, respectively, and about 0.31 and 0.10 mg/kg of As (III were extracted from the intestinal extracts of Porphyra yezoensis and U. pinnatifida, respectively. The present results successfully reveal the differences of As species and levels in the water and biomimetic extracts of five edible seaweeds. The risk assessment of the inorganic arsenic in the five edible seaweeds based on present data showed almost no hazards to human health.

  18. An incident study about acute and chronic human exposure to uranium by high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS).

    Science.gov (United States)

    Krystek, Petra; Ritsema, Rob

    2009-01-01

    From the year 2003 to 2005 around 1700 Dutch soldiers made a part of the international stabilisation force in Iraq. An incident happened as a group of four Dutch soldiers found a 30mm bullet identified as containing depleted uranium (DU). The main pathway of the acute exposure is via inhalation of small uranium containing particles, e.g. from a bullet during its explosion. To develop a method for acute exposure investigations were carried out about finding an efficient and suitable way to sample nasal mucus as medium of inhalation. Generally, in human exposure studies with regard to natural uranium (NU) or DU, urine is the matrix for analysis. Uranium concentrations in urine are based on daily ingestion depending on the composition of drinking water and food. A second possibility is the acute exposure to uranium after an incident, either through inhalation or impact. Nevertheless, the results deliver only interpretations in respect to chronic/long-term exposure. For the acute exposure procedures like sniffling out into cleansing tissues and rinsing the nose were tested with real-life samples from four soldiers involved in an incident with possibly acute exposure to uranium. For the quantification of uranium high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) was applied. PMID:18187363

  19. Determination of traces of uranium and thorium in titanium and copper used for the construction of the Russian Emission Detector 100 by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Poteshin, Sergey S; Sysoev, Alexey A; Lagunov, Sergey S; Sereda, Andrei; Sosnovtsev, Valery V; Bolozdynya, Alexander I; Efremenko, Yuriy B

    2015-01-01

    The Russian Emission Detector 100 (RED-100) under construction at the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) is designed to detect the presently undiscovered effect of coherent neutrino scattering. One of the factors limiting the sensitivity of the detector is the spontaneous decay of uranium and thorium in the detector materials. Radioactive impurities in detector materials at levels of parts per billion can significantly affect the sensitivity. Five random samples of titanium and one of copper from materials used in the construction of the detector were selected for assay. The concentration of (232)Th and (238)U were measured by inductively coupled plasma mass spectrometry (ICP- MS) in solid titanium using both: solutions in acids and direct sampling by laser ablation (LA-ICP-MS). The LA- ICP-MS method allowed us to determine (238)U and (232)Th at subnanogram per gram levels. This method is much faster than ICP-MS with liquid injection. The titanium samples studied have impurities in the range between 1 ng g(-1) and 21 ng g(-1) for (238)U and 3 ng g(-1) and 31 ng g(-1) for (232)Th. In copper we set upper limits of 0.4 ng g(-1) for (238)U and 1 ng g(-1)for (232)Th. The total activity of the cryostat constructed from materials studied was estimated to be 43 Bq. PMID:26307714

  20. Determination of isotopic composition of dissolved copper in seawater by multi-collector inductively coupled plasma mass spectrometry after pre-concentration using an ethylenediaminetriacetic acid chelating resin.

    Science.gov (United States)

    Takano, Shotaro; Tanimizu, Masaharu; Hirata, Takafumi; Sohrin, Yoshiki

    2013-06-19

    Copper is an essential trace metal that shows a vertical recycled-scavenged profile in the ocean. To help elucidate the biogeochemical cycling of Cu in the present and past oceans, it is important to determine the distribution of Cu isotopes in seawater. However, precise isotopic analysis of Cu has been impaired by the low concentrations of Cu as well as co-existing elements that interfere with measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The objective of this study is to develop a simple Cu pre-concentration method using Nobias-chelate PA1 resin (Hitachi High Technologies). This extraction followed by anion exchange, allows precise analysis of the Cu isotopic composition in seawater. Using this method, Cu was quantitatively concentrated from seawater and >99.9999% of the alkali and alkaline earth metals were removed. The technique has a low procedural blank of 0.70 ng for Cu for a 2L sample and the precision of the Cu isotopic analysis was ±0.07‰ (±2SD, n=6). We applied this method to seawater reference materials (i.e., CASS-5 and NASS-6) and seawater samples obtained from the northwestern Pacific Ocean. The range of dissolved δ(65)Cu was 0.40-0.68‰.

  1. Evaluation of microwave and ultrasound extraction procedures for arsenic speciation in bivalve mollusks by liquid chromatography–inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Clarissa M.M.; Nunes, Matheus A.G. [Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Barbosa, Isa S.; Santos, Gabriel L. [Instituto de Química, Universidade Federal da Bahia, Salvador, BA (Brazil); Peso-Aguiar, Marlene C. [Instituto de Biologia, Universidade Federal da Bahia, Salvador, BA (Brazil); Korn, Maria G.A. [Instituto de Química, Universidade Federal da Bahia, Salvador, BA (Brazil); Flores, Erico M.M. [Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Dressler, Valderi L., E-mail: vdressler@gmail.com [Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2013-08-01

    Liquid chromatography–inductively coupled plasma-mass spectrometry (LC–ICP-MS) was used for arsenic speciation analysis in tissues of bivalve mollusks (Anomalocardia brasiliana sp. and Macoma constricta sp.). Microwave and ultrasound radiation, combined with different extraction conditions (solvent, sample amount, time, and temperature), were evaluated for As-species extraction from the mollusks' tissues. Accuracy, extraction efficiency, and the stability of As species were evaluated by analyzing certified reference materials (DORM-2, dogfish muscle; BCR-627, tuna fish tissue; and SRM 1566b, oyster tissue) and analyte recovery tests. The best conditions were found to be microwave-assisted extraction using 200 mg of samples and water at 80 °C for 6 min. The agreement of As-species concentration in samples ranged from 97% to 102%. Arsenobetaine (AsB) was the main species present in bivalve mollusk tissues, while monomethylarsonic acid (MMA) and arsenate (As(V)) were below the limit of quantification (0.001 and 0.003 μg g{sup −1}, respectively). Two unidentified As species also were detected and quantified. The sum of the As-species concentration was in agreement (90 to 104%), with the total As content determined by ICP-MS after sample digestion. - Highlights: • Method development for As speciation analysis by LC–ICP-MS • Evaluation of microwave and ultrasonic radiation for sample preparation • Investigation on As species content in mollusks.

  2. Quantitative analysis of some important metals and metalloids in tobacco products by inductively coupled plasma-mass spectrometry (ICP-MS

    Directory of Open Access Journals (Sweden)

    Musharraf Syed

    2012-06-01

    Full Text Available Abstract Background Large scale usage of tobacco causes a lot of health troubles in human. Various formulations of tobacco are extensively used by the people particularly in developing world. Besides several toxic tobacco constituents some metals and metalloids are also believed to pose health risks. This paper describes inductively coupled plasma-mass spectrometric (ICP-MS quantification of some important metals and metalloids in various brands of smoked, sniffed, dipped and chewed tobacco products. Results A microwave-assisted digestion method was used for sample preparation. The method was validated by analyzing a certified reference material. Percentage relative standard deviation (% R.S.D. between recovered and certified values was  r > 0.999. Improved limits of detection (LODs were in range of ng/L for all elements. Fe, Al and Mn were found to be in the highest concentration in all types of tobacco products, while Zn, Cu, Ni and Cr were below the average concentration of 40 μg/g, and Pb, Co, As, Se and Cd were below 5 μg/g. All elements, apart from Pb, were high in concentration in dipping tobacco in comparison to other tobacco products. Generally, the order of all elemental concentration can be expressed in different tobacco products as chewing  Conclusions The present study highlights the quantification of some important metals and metalloids in a wide spectrum of tobacco formulations. The outcome of this study would be beneficial for health authorities and individuals.

  3. Determination of minor and trace elements in aromatic spices by micro-wave assisted digestion and inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Khan, Naeem; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Habte, Girum; Hong, Joon Ho; Hwang, In Min; Kim, Kyong Su

    2014-09-01

    This study aimed at analyzing the concentrations of 23 minor and trace elements in aromatic spices by inductively coupled plasma-mass spectrometry (ICP-MS), after wet digestion by microwave system. The analytical method was validated by linearity, detection limits, precision, accuracy and recovery experiments, obtaining satisfactory values in all cases. Results indicated the presence of variable amounts of both minor and trace elements in the selected aromatic spices. Manganese was high in cinnamon (879.8 μg/g) followed by cardamom (758.1 μg/g) and clove (649.9 μg/g), strontium and zinc were high in ajwain (489.9 μg/g and 84.95 μg/g, respectively), while copper was high in mango powder (77.68 μg/g). On the whole some of the minor and essential trace elements were found to have good nutritional contribution in accordance to RDA. The levels of toxic trace elements, including As, Cd, and Pb were very low and did not found to pose any threat to consumers. PMID:24731332

  4. Determination of minor and trace elements in aromatic spices by micro-wave assisted digestion and inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Khan, Naeem; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Habte, Girum; Hong, Joon Ho; Hwang, In Min; Kim, Kyong Su

    2014-09-01

    This study aimed at analyzing the concentrations of 23 minor and trace elements in aromatic spices by inductively coupled plasma-mass spectrometry (ICP-MS), after wet digestion by microwave system. The analytical method was validated by linearity, detection limits, precision, accuracy and recovery experiments, obtaining satisfactory values in all cases. Results indicated the presence of variable amounts of both minor and trace elements in the selected aromatic spices. Manganese was high in cinnamon (879.8 μg/g) followed by cardamom (758.1 μg/g) and clove (649.9 μg/g), strontium and zinc were high in ajwain (489.9 μg/g and 84.95 μg/g, respectively), while copper was high in mango powder (77.68 μg/g). On the whole some of the minor and essential trace elements were found to have good nutritional contribution in accordance to RDA. The levels of toxic trace elements, including As, Cd, and Pb were very low and did not found to pose any threat to consumers.

  5. Determination of vanadium species in sediment, mussel and fish muscle tissue samples by liquid chromatography-inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Colina, Marinela [Universidad del Zulia, Facultad de Ciencias, Departamento de Quimica, Laboratorio de Quimica Ambiental, Maracaibo 4011, Zulia (Venezuela)]. E-mail: M.Colina@shu.ac.uk; Gardiner, P.H.E. [Sheffield Hallam University, Howard Street, Sheffield S1 1WB, Sheffield (United Kingdom); Rivas, Zulay [Instituto para la Conservacion del Lago de Maracaibo (ICLAM), Maracaibo, Plaza de las Banderas (Venezuela); Troncone, Federico [Instituto para la Conservacion del Lago de Maracaibo (ICLAM), Maracaibo, Plaza de las Banderas (Venezuela)

    2005-05-04

    Vanadium is introduced into the environment during the extraction of petrochemical products and in the production of steels and insecticides. In this study, a liquid chromatographic method for the separation of V(IV) and V(V) as ethylenediaminetetra acetic acid (EDTA) complexes was developed using reversed-phase ion-pair liquid chromatography with inductively coupled plasma-mass spectrometry detection. A C-8 reversed-phase column, 15 cm long, was used to separate the species. A solution containing ammonium acetate 0.06 M, tetrabutylammonium hydroxide 10 mM, ammonium di-phosphate 10 mM and EDTA 2.5 mM at pH 6 was used as the mobile phase in order to avoid the use of organic solvents that reduce the sensitivity of the determination. To prevent changes in distribution of the vanadium species, samples should be prepared freshly. The method developed was applied to the study the vanadium speciation in sediment, mussel and fish muscle samples collected from Lake Maracaibo, Venezuela. The concentration ranges of V(IV) and V(V) in sediment samples were 0.7-61 and 1.4-2.3 {mu}g g{sup -1}, respectively. The method is simple and has adequate sensitivity for these practical applications.

  6. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis.

    Science.gov (United States)

    Dan, Yongbo; Zhang, Weilan; Xue, Runmiao; Ma, Xingmao; Stephan, Chady; Shi, Honglan

    2015-03-01

    Plant uptake and accumulation of nanoparticles (NPs) represent an important pathway for potential human expose to NPs. Consequently, it is imperative to understand the uptake of accumulation of NPs in plant tissues and their unique physical and chemical properties within plant tissues. Current technologies are limited in revealing the unique characteristics of NPs after they enter plant tissues. An enzymatic digestion method, followed by single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) analysis, was developed for simultaneous determination of gold NP (AuNP) size, size distribution, particle concentration, and dissolved Au concentration in tomato plant tissues. The experimental results showed that Macerozyme R-10 enzyme was capable of extracting AuNPs from tomato plants without causing dissolution or aggregation of AuNPs. The detection limit for quantification of AuNP size was 20 nm, and the AuNP particle concentration detection limit was 1000 NPs/mL. The particle concentration recoveries of spiked AuNPs were high (79-96%) in quality control samples. The developed SP-ICP-MS method was able to accurately measure AuNP size, size distribution, and particle concentration in the plant matrix. The dosing study indicated that tomato can uptake AuNPs as intact particles without alternating the AuNP properties.

  7. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos de Gois, Jefferson; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); Welz, Bernhard [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil); Borges, Daniel L.G., E-mail: daniel.borges@ufsc.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil)

    2015-03-01

    This work describes a methodology developed to carry out Cl determination in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. The solid samples were directly weighed into graphite ‘cups’ and inserted into the graphite furnace. The RF power and the carrier gas flow rate were optimized at 1300 W and 0.7 L min{sup −1}, respectively. Calibration could be carried out using aqueous standard solutions with pre-dried modifiers (Pd + Nd or Pd + Ca) or using solid certified reference materials with the same pre-dried modifiers or without the use of modifiers. The limit of quantification was determined as 5 μg g{sup −1} under optimized conditions and the Cl concentration was determined in five certified reference materials with certified concentrations for Cl, in addition to three certified reference materials, for which certified values for Cl were unavailable; in the latter case, the results were compared with those obtained using high-resolution continuum source molecular absorption spectrometry. Good agreement at a 95% statistical confidence level was achieved between determined and certified or reference values. - Highlights: • Direct determination of chlorine in solid biological materials is described for the first time using ICP-MS. • Calibration against aqueous standards is feasible. • The method is accurate and sensitive, regardless of the composition of the solid sample.

  8. Determination of chromium, iron and selenium in foodstuffs of animal origin by collision cell technology, inductively coupled plasma mass spectrometry (ICP-MS), after closed vessel microwave digestion

    International Nuclear Information System (INIS)

    The determination of chromium (52Cr), iron (56Fe) and selenium (80Se) isotopes in foodstuffs of animal origin has been performed by collision cell technology (CCT) mode using an inductively coupled plasma mass spectrometry (ICP-MS) as detector after closed vessel microwave digestion. To significantly decrease the argon-based interferences at mass to charge ratios (m/z): 52 (40Ar12C), 56 (40Ar16O) and 80 (40Ar40Ar), the gas-flow rates of a helium and hydrogen mixture used in the hexapole collision cell were optimised to 1.5 ml min-1 H2 and 0.5 ml min-1 He and the quadrupole bias was adjusted daily between -2 and -15 mV. Limits of quantification (LOQ) of 0.025, 0.086 and 0.041 mg kg-1 for Cr, Fe and Se, respectively, in 6% HNO3 were estimated under optimized CCT conditions. These LOQ were improved by a factor of approximately 10 for each element compared to standard mode. Precision under repeatability, intermediate precision reproducibility and trueness have been tested on nine different certified reference materials in foodstuffs of animal origin and on an external proficiency testing scheme. The results obtained for chromium, iron and selenium were in all cases in good agreement with the certified values and trueness was improved, compared to those obtained in standard mode

  9. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    This work describes a methodology developed to carry out Cl determination in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. The solid samples were directly weighed into graphite ‘cups’ and inserted into the graphite furnace. The RF power and the carrier gas flow rate were optimized at 1300 W and 0.7 L min−1, respectively. Calibration could be carried out using aqueous standard solutions with pre-dried modifiers (Pd + Nd or Pd + Ca) or using solid certified reference materials with the same pre-dried modifiers or without the use of modifiers. The limit of quantification was determined as 5 μg g−1 under optimized conditions and the Cl concentration was determined in five certified reference materials with certified concentrations for Cl, in addition to three certified reference materials, for which certified values for Cl were unavailable; in the latter case, the results were compared with those obtained using high-resolution continuum source molecular absorption spectrometry. Good agreement at a 95% statistical confidence level was achieved between determined and certified or reference values. - Highlights: • Direct determination of chlorine in solid biological materials is described for the first time using ICP-MS. • Calibration against aqueous standards is feasible. • The method is accurate and sensitive, regardless of the composition of the solid sample

  10. A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    This study describes a novel sample preparation and assay method developed, primarily in support of the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment, for the determination of extremely low levels of Th and U in copper and lead shielding components. Meticulously clean sample preparation methods combined with anion exchange separations for analyte pre-concentration and matrix removal were developed. Quantification was performed by isotope dilution inductively coupled plasma mass spectrometry. Detection limits of 0.0084 pg 232Th/g (0.034 µBq 232Th/kg) and 0.0106 pg 238U/g (0.131 µBq 238U/kg) were determined for copper, while detection limits of 0.23 pg 232Th/g (0.94 µBq 232Th/kg) and 0.46 pg 238U/g (5.7 µBq 238U/kg) were achieved for lead. These methods allow the Majorana Collaboration to accurately assay detector components and ensure that the experiment's stringent radiopurity requirements are met

  11. Determination of traces of uranium and thorium in titanium and copper used for the construction of the Russian Emission Detector 100 by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Poteshin, Sergey S; Sysoev, Alexey A; Lagunov, Sergey S; Sereda, Andrei; Sosnovtsev, Valery V; Bolozdynya, Alexander I; Efremenko, Yuriy B

    2015-01-01

    The Russian Emission Detector 100 (RED-100) under construction at the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) is designed to detect the presently undiscovered effect of coherent neutrino scattering. One of the factors limiting the sensitivity of the detector is the spontaneous decay of uranium and thorium in the detector materials. Radioactive impurities in detector materials at levels of parts per billion can significantly affect the sensitivity. Five random samples of titanium and one of copper from materials used in the construction of the detector were selected for assay. The concentration of (232)Th and (238)U were measured by inductively coupled plasma mass spectrometry (ICP- MS) in solid titanium using both: solutions in acids and direct sampling by laser ablation (LA-ICP-MS). The LA- ICP-MS method allowed us to determine (238)U and (232)Th at subnanogram per gram levels. This method is much faster than ICP-MS with liquid injection. The titanium samples studied have impurities in the range between 1 ng g(-1) and 21 ng g(-1) for (238)U and 3 ng g(-1) and 31 ng g(-1) for (232)Th. In copper we set upper limits of 0.4 ng g(-1) for (238)U and 1 ng g(-1)for (232)Th. The total activity of the cryostat constructed from materials studied was estimated to be 43 Bq.

  12. A novel aeration-assisted homogenous liquid-liquid microextration for determination of thorium and uranium in water and hair samples by inductively coupled plasma-mass spectroscopy.

    Science.gov (United States)

    Veyseh, Somayeh; Niazi, Ali

    2016-01-15

    A novel method based on aeration-assisted homogeneous liquid-liquid microextraction using high density solvent is presented, which is combined with inductively coupled plasma-mass spectroscopy in which simultaneous preconcentration and determination of thorium and uranium with arsenazo III as the chelating reagent is carried out. To achieve optimum conditions, several parameters such as pH, concentration of arsenazo III, extraction and homogenous solvent types and their volumes, salt concentration and extraction time were investigated. Under which, the calibration graphs were linear in the range of 0.5-600.0ng L(-1) for thorium and 0.3-550.0ng L(-1) for uranium. Good linearities were obtained for both analytes with R(2) values larger than 0.9990. The limits of detection (LOD, 3Sb/m, n=5) of this method were 0.12 and 0.09ng L(-1), and the enrichment factors were estimated to be 370 and 410 for thorium and uranium, respectively. The proposed method was applied to determine the thorium and uranium in human hair and different environmental water samples. Acceptable recoveries ranged from 99.4% to 100.7% with standard deviation of 0.05 to 0.17.

  13. Simultaneous determination of arsenic and mercury species in rice by ion-pairing reversed phase chromatography with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Fang, Yong; Pan, Yushi; Li, Peng; Xue, Mei; Pei, Fei; Yang, Wenjian; Ma, Ning; Hu, Qiuhui

    2016-12-15

    An analytical method using reversed phase chromatography-inductively coupled plasma mass spectrometry for arsenic and mercury speciation analysis was described. The effect of ion-pairing reagent on simultaneous separation of four arsenic (arsenite, arsenate, monomethlyarsonate and dimethylarsinate) and three mercury species (inorganic mercury (Hg(II)), methylmecury and ethylmercury) was investigated. Parameters including concentrations and pH of the mobile phase were optimized. The separation and re-equilibration time was attained within 20min. Meanwhile, a sequential extraction method for arsenic and mercury in rice was tested. Subsequently, 1% HNO3 microwave-assisted extraction was chosen. Calibration curves based on peak area measurements were linear with correlation coefficient greater than 0.9958 for each species in the range studied. The detection limits of the species were in the range of 0.84-2.41μg/L for arsenic and 0.01-0.04μg/L for mercury, respectively. The proposed method was then successfully applied for the simultaneous determination of arsenic and mercury species in rice flour standard material and two kinds of rice from local markets. PMID:27451225

  14. Metallomics for drug development: serum protein binding and analysis of an anticancer tris(8-quinolinolato)gallium(III) drug using inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Ossipov, Konstantin; Foteeva, Lidia S; Seregina, Irina F; Perevalov, Sergei A; Timerbaev, Andrei R; Bolshov, Mikhail A

    2013-06-27

    The application of an inductively coupled plasma mass spectrometry (ICP-MS) assay for quantifying in vitro binding of a gallium-based anticancer drug, tris(8-quinolinolato)gallium(III), to serum albumin and transferrin and in human serum is described. The distribution of the drug between the protein-rich and protein-free fractions was assessed via ICP-MS measurement of total gallium in ultrafiltrates. Comparative kinetic studies revealed that the drug exhibits a different reactivity toward individual proteins. While the maximum possible binding to albumin (~10%) occurs practically immediately, interaction with transferrin has a step-like character and the equilibrium state (with more than 50% binding) is reached for about 48 h. Drug transformation into the bound form in serum, also very fast, results in almost quantitative binding (~95%). The relative affinity of protein-drug binding was characterized in terms of the association constants ranging from 10(3) to 10(4)M(-1). In order to further promote clinical testing of the gallium drug, the ICP-MS method was applied for direct quantification of gallium in human serum spiked with the drug. The detection limit for gallium was found to be as low as 20 ng L(-1). The repeatability was better than 8% (as RSD) and the achieved recoveries were in the range 99-103%.

  15. Determination of mercury compounds in fish by microwave-assisted extraction and liquid chromatography-vapor generation-inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Chiou, Chwei-Sheng; Jiang, Shiuh-Jen; Kumar Danadurai, K. Suresh

    2001-07-01

    A method employing a vapor generation system and LC combined with inductively coupled plasma mass spectrometry (LC-ICP-MS) is presented for the determination of mercury in biological tissues. An open vessel microwave digestion system was used to extract the mercury compounds from the sample matrix. The efficiency of the mobile phase, a mixture of L-cysteine and 2-mercaptoethanol, was evaluated for LC separation of inorganic mercury [Hg(II)], methylmercury (methyl-Hg) and ethylmercury (ethyl-Hg). The sensitivity, detection limits and repeatability of the liquid chromatography (LC) ICP-MS system with a vapor generator were comparable to, or better than, that of an LC-ICP-MS system with conventional pneumatic nebulization, or other sample introduction techniques. The experimental detection limits for various mercury species were in the range of 0.05-0.09 ng ml -1 Hg, based on peak height. The proposed method was successfully applied to the determination of mercury compounds in a swordfish sample purchased from the local market. The accuracy of the method was evaluated by analyzing a marine biological certified reference material (DORM-2, NRCC).

  16. Capillary gas chromatography inductively coupled plasma mass spectrometry (CGC-ICPMS) for the enantiomeric analysis of D,L-selenomethionine in food supplements and urine.

    Science.gov (United States)

    Devos, Christophe; Sandra, Koen; Sandra, Pat

    2002-01-15

    Capillary gas chromatography inductively coupled plasma mass spectrometry (CGC-ICPMS) was applied to the determination of D- and L-selenomethionine in food supplements and in urine. Derivatization was performed with ethylchloroformate (ECF) offering the advantage that the reaction can be carried out in aqueous medium i.e. urine. The derivatives were separated on the chiral stationary phase (CSP) Chiralsil-L-Val. The method was validated with D- and L-seleno-ethionine as internal standard (IS) and the linearity for a seven point calibration from 12.5 pg to 2.5 ng per enantiomer was excellent (R(2) 0.9997). Repeatability of injection (n=3) was market contain L-selenomethionine for at least 90%. Repeatability of the whole procedure (n=6) was tested on one L-selenomethionine formulation and was 3.8 (R.S.D.%). Data for urine samples after a daily intake of L-selenomethionine or the racemate D,L-selenomethionine corresponding to 100 microg selenium indicate that the D-enantiomer is not metabolized. PMID:11755752

  17. Standard test method for analysis of isotopic composition of uranium in nuclear-grade fuel material by quadrupole inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method is applicable to the determination of the isotopic composition of uranium (U) in nuclear-grade fuel material. The following isotopic weight percentages are determined using a quadrupole inductively coupled plasma-mass spectrometer (Q-ICP-MS): 233U, 234U, 235U, 236U, and 238U. The analysis can be performed on various material matrices after acid dissolution and sample dilution into water or dilute nitric (HNO3) acid. These materials include: fuel product, uranium oxide, uranium oxide alloys, uranyl nitrate (UNH) crystals, and solutions. The sample preparation discussed in this test method focuses on fuel product material but may be used for uranium oxide or a uranium oxide alloy. Other preparation techniques may be used and some references are given. Purification of the uranium by anion-exchange extraction is not required for this test method, as it is required by other test methods such as radiochemistry and thermal ionization mass spectroscopy (TIMS). This test method is also described i...

  18. Comparison of sample digestion techniques for the determination of trace and residual catalyst metal content in single-wall carbon nanotubes by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grinberg, Patricia, E-mail: patricia.grinberg@nrc.ca [Measurement Science and Standards, National Research Council Canada, Ottawa (Canada); Sturgeon, Ralph E. [Measurement Science and Standards, National Research Council Canada, Ottawa (Canada); Diehl, Liange de O.; Bizzi, Cezar A. [Measurement Science and Standards, National Research Council Canada, Ottawa (Canada); Chemistry Department, Universidade Federal de Santa Maria, Santa Maria (Brazil); Flores, Erico M.M. [Chemistry Department, Universidade Federal de Santa Maria, Santa Maria (Brazil)

    2015-03-01

    A single-wall carbon nanotube material produced by laser ablation of renewable biochar in the presence of Ni and Co catalyst was characterized for residual catalyst (Co and Ni) as well as trace metal impurity content (Fe, Mo, Cr, Pb and Hg) by isotope dilution ICP-MS following sample digestion. Several matrix destruction procedures were evaluated, including a multi-step microwave-assisted acid digestion, dry ashing at 450 °C and microwave-induced combustion with oxygen. Results were benchmarked against those derived from neutron activation analysis and also supported by solid sampling continuum source GF-AAS for several of the elements. Although laborious to execute, the multi-step microwave-assisted acid digestion proved to be most reliable for recovery of the majority of the analytes, although content of Cr remained biased low for each approach, likely due to its presence as refractory carbide. - Highlights: • Determination of trace and residual catalyst metal content in Single-Wall Carbon Nanotubes by Inductively Coupled Plasma Mass Spectrometry. • Comparative study of digestion methodology combined with high precision isotope dilution ICP-MS for quantitation of elements of toxicologic relevance. • Results were benchmarked against those derived from neutron activation analysis and also supported by solid sampling continuum source GF-AAS for several of the elements.

  19. A novel aeration-assisted homogenous liquid-liquid microextration for determination of thorium and uranium in water and hair samples by inductively coupled plasma-mass spectroscopy.

    Science.gov (United States)

    Veyseh, Somayeh; Niazi, Ali

    2016-01-15

    A novel method based on aeration-assisted homogeneous liquid-liquid microextraction using high density solvent is presented, which is combined with inductively coupled plasma-mass spectroscopy in which simultaneous preconcentration and determination of thorium and uranium with arsenazo III as the chelating reagent is carried out. To achieve optimum conditions, several parameters such as pH, concentration of arsenazo III, extraction and homogenous solvent types and their volumes, salt concentration and extraction time were investigated. Under which, the calibration graphs were linear in the range of 0.5-600.0ng L(-1) for thorium and 0.3-550.0ng L(-1) for uranium. Good linearities were obtained for both analytes with R(2) values larger than 0.9990. The limits of detection (LOD, 3Sb/m, n=5) of this method were 0.12 and 0.09ng L(-1), and the enrichment factors were estimated to be 370 and 410 for thorium and uranium, respectively. The proposed method was applied to determine the thorium and uranium in human hair and different environmental water samples. Acceptable recoveries ranged from 99.4% to 100.7% with standard deviation of 0.05 to 0.17. PMID:26592585

  20. Thallium Analysis in Environmental Samples by Inductively Coupled Plasma Mass Spectrometry; Analisis de Talio en Muestras Ambientales por Espectrometria de Masas con Fuente de Plasma de Acoplamiento Inductivo

    Energy Technology Data Exchange (ETDEWEB)

    Higueras, I.; Fernandez, M.; Conde, E.; Gajate, A.

    2008-08-06

    Due to its high toxicity, thallium has been considered by the US Environmental Protection Agency as one of the priority pollutants to be controlled. While being a highly toxic element, thallium has been studied to a much lesser degree than other toxic elements, mainly because thallium is often undetected by classical analytical methods. Thallium is a rare and dispersed element that occurs mainly in sulfur-containing ores. Thus, it is a potential pollutant to surrounding environment, if Tl-rich mineral and/or their industrial wastes are not properly disposed. In this work an Inductively Coupled Plasma Mass Spectrometry analytical procedure has been developed in order to determine thallium in environmental solid samples and its application to the study of this element as a potential pollutant associated with natural and anthropogenic activities. The analytical procedure has been validated by the use of appropriate reference materials, and through the isotope dilution technique as a primary method of measurement. Finally, the developed procedure has been applied to several samples from a mining area, as one of the scenarios where thallium it is likely to occur. (Author) 87 refs.

  1. Standard test method for analysis of urine for uranium-235 and uranium-238 isotopes by inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of the concentration of uranium-235 and uranium-238 in urine using Inductively Coupled Plasma-Mass Spectrometry. This test method can be used to support uranium facility bioassay programs. 1.2 This method detection limits for 235U and 238U are 6 ng/L. To meet the requirements of ANSI N13.30, the minimum detectable activity (MDA) of each radionuclide measured must be at least 0.1 pCi/L (0.0037 Bq/L). The MDA translates to 47 ng/L for 235U and 300 ng/L for 238U. Uranium– 234 cannot be determined at the MDA with this test method because of its low mass concentration level equivalent to 0.1 pCi/L. 1.3 The digestion and anion separation of urine may not be necessary when uranium concentrations of more than 100 ng/L are present. 1.4 Units—The values stated in picoCurie per liter units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1....

  2. Microwave-assisted Extraction of Rare Earth Elements from Petroleum Refining Catalysts and Ambient Fine Aerosols Prior to Inductively Coupled Plasma - Mass Spectrometry

    Science.gov (United States)

    Mittlefehldt, David W.; Kulkarni, Pranav; Chellam, Shankar

    2006-01-01

    In the absence of a certified reference material, a robust microwave-assisted acid digestion procedure followed by inductively coupled plasma - mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 C), high pressure (200 psig), acid digestion (HNO3, HF, and H3BO3) with 20 minute dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst, and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb, and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy, and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu, and Dy in ambient PM2.5 in an industrial area of Houston, TX.

  3. Elemental characterization of PM2.5 urban aerosol samples collected in Budapest (Hungary) by sector-field inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Complete text of publication follows. Nowadays, the investigation of PM10 urban aerosols in the EU member countries has become a daily routine task. The real challenge represents the characterization of aerosol particles with lower aerodynamic diameter than 10 micrometers as they do not deposit in the upper respiratory system and can even cause neoplasms. Considering the possible health effects, present investigation focuses on the PM2.5 fractions. This finer fraction is more characteristic for the anthropogenic pollutants originating from high temperature combustion processes. Therefore, PM2.5 urban aerosols were collected monthly for 96 consecutive hours on Whatmam QM-A quartz filters in a 3-month-long sampling campaign from three different representative points of Budapest (Szena Square, Gilice Square, nearby the urban waste incinerator of Kaposztasmegyer) with a Greenlab DHA-80 high-volume sampler at 500 m3/min. Twenty-three elements (Ag, Bi, Cd, Co, Cr, Cu, Fe, Ga, Li, Mn, Ni, Pt, Pb, Rb, Sb, Sn, Sr, Te, Tl, U, Mo, V, Zn) were determined after microwave-assisted aqua regia digestion by an Element2 sector-field inductively coupled plasma mass spectrometer (SF-ICP-MS). Since the bioavailability of elements is an important factor by studying their health effects, the water soluble part of the elements was also determined by SF-ICP-MS after sonication in a water bath. In addition, the TOC and TIC content of these urban aerosol fractions were determined with an TOC/N Analytik Jena equipment.

  4. Inductively Coupled Plasma Mass Spectrometry For The Determination Of 237Np In Spent Nuclear Fuel Samples By Isotope Dilution Method Using 239Np As A Spike

    International Nuclear Information System (INIS)

    A determination method for 237Np in spent nuclear fuel samples was developed using an isotope dilution method with 239Np as a spike. In this method, inductively coupled plasma mass spectrometry (ICP-MS) was taken for the 237Np instead of the previously used alpha spectrometry. 237Np and 239Np were measured by ICP-MS and gamma spectrometry, respectively. The recovery yield of 237Np in synthetic samples was 95.9±9.7% (1S, n=4). The 237Np contents in the spent fuel samples were 0.15, 0.25, and 1.06 μg/mgU and these values were compared with those from ORIGEN-2 code. A fairly good agreement between the measurements (m) and calculations (c) was obtained, giving ratios (m/c) of 0.93, 1.12 and 1.25 for the three PWR spent fuel samples with burnups of 16.7, 19.0, and 55.9 GWd/MtU, respectively

  5. Determination of natural isotopic variation in antimony using inductively coupled plasma mass spectrometry for an uncertainty estimation of the standard atomic weight of antimony

    International Nuclear Information System (INIS)

    The isotopic variation of industrially produced antimony was estimated using multiple-collector inductively coupled plasma mass spectrometry. A reproducible 123Sb/121Sb ratio of ±0.004% (2 standard deviations) was routinely obtained using a Sn doping mass discrimination correction technique. Only a small isotopic variation of about 0.05% was observed among industrially important Sb materials (five commercially available reagents and two ore minerals). The degree of Sb isotopic variation to determine the uncertainty in Sb atomic weight can be reduced by this new analytical technique to 0.00025 compared to the currently accepted IUPAC isotopic variation determined by conventional mass spectrometry of ±0.001. Heavy isotope enrichment of Sb in a drainage water sample from a stibnite mining area was found. This heavy isotope enrichment tendency in an aqueous environment may be useful in detecting anthropogenic Sb input from industrial emission by the smelting process via air because Sb of anthropogenic origin will have lighter isotope enrichment features. (author)

  6. Applications of inductively coupled plasma-mass spectrometry to the determination of actinides and fission products in high level radioactive wastes at the Savannah River Site

    International Nuclear Information System (INIS)

    Four years of experience in applying inductively coupled plasma-mass spectrometry (ICP-MS) to the analysis of actinides and fission products in high level waste (HLW) samples at the Savannah River Site has led to the development of a number of techniques to aid in the interpretation of the mass spectral data. The goal has been to develop rapid and reliable analytical procedures that provide the necessary chemical and isotopic information to answer the process needs of the customers. Techniques that have been developed include the writing of computer software to strip the experimental data from the instrumental data files into spreadsheets or into a spectral data processing package so that the raw mass spectra can be overlain for comparison or plotted with higher output resolution. These procedures have been applied to problems ranging from the analysis of the high level waste tanks to reactor moderator water as well as environmental samples. Criticality safety analyses in some HLW waste treatment processes depend upon actinide concentration and isotopic information generated by ICP-MS, particularly in tanks with high concentrations of 137Cs and 90Sr. Experimental results for a number of these applications will be presented. These procedures represent a considerable saving in time and expense as compared to conventional chemical separation followed by radiochemical analyses, as well as decreased radiation exposure for the analysts

  7. Red thermoluminescence (RTL) dating of some porcelain pieces using regeneration method with thin disc samples and ICP-MS (Inductively coupled plasma-mass spectrometry) analysis

    International Nuclear Information System (INIS)

    Thin disc samples (9.4 mm diameter and 1 mm thickness) for dating were prepared from five old porcelain pieces, manufactured in the late Edo era and distributed over the worldwide from Imari-port, Saga prefecture. All these discs showed a heterogeneous red thermoluminescence (RTL) property on the observation of thermoluminescence color images. The spectral information of these RTLs was quantitatively examined by means of a highly sensitive on-line spectroscopy. On the basis of these results, the RTL-dating was carried out using so-called regeneration method with an identical disc sample for the establishment of TL-growth responses against additive doses, resulting in the estimation of naturally accumulated dose. On the other hand, the annual doses were initially evaluated using the determination of radioactive nuclides using an ICP-MS (inductively coupled plasma-mass spectrometry) apparatus, which is applicable for the simultaneous determination of Th and U as well as K, even in extremely small amount of samples; the solution dissolved the porcelain disc pieces, less than 100 mg, was satisfactorily utilized for the purpose of evaluation of annual doses. Applying the highly sensitive RTL-measuring system together with the ICP-MS instrument, age evaluation of porcelain pieces was verified to be attainable even for young samples (ranging over a few hundred years) if small discs are available. (author)

  8. Solid phase extraction and preconcentration of uranium(VI) and thorium(IV) on Duolite XAD761 prior to their inductively coupled plasma mass spectrometric determination.

    Science.gov (United States)

    Aydin, Funda Armagan; Soylak, Mustafa

    2007-04-15

    A simple and effective method is presented for the separation and preconcentration of thorium(IV) and uranium(VI) by solid phase extraction on Duolite XAD761 adsorption resin. Thorium(IV) and uranium(VI) 9-phenyl-3-fluorone chelates are formed and adsorbed onto the Duolite XAD761. Thorium(IV) and uranium(VI) are quantitatively eluted with 2molL(-1) HCl and determined by inductively coupled plasma-mass spectrometry (ICP-MS). The influences of analytical parameters including pH, amount of reagents, amount of Duolite XAD761 and sample volume, etc. were investigated on the recovery of analyte ions. The interference of a large number of anions and cations has been studied and the optimized conditions developed have been utilized for the trace determination of uranium and thorium. A preconcentration factor of 30 for uranium and thorium was achieved. The relative standard deviation (N=10) was 2.3% for uranium and 4.5% for thorium ions for 10 replicate determinations in the solution containing 0.5mug of uranium and thorium. The three sigma detection limits (N=15) for thorium(IV) and uranium(VI) ions were found to be 4.5 and 6.3ngL(-1), respectively. The developed solid phase extraction method was successively utilized for the determination of traces thorium(IV) and uranium(VI) in environmental samples by ICP-MS. PMID:19071600

  9. Microwave dissolution of plant tissue and the subsequent determination of trace lanthanide and actinide elements by inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Recently there has been much concern about the ability of plants to uptake heavy metals from their surroundings. With the development of instrumental techniques with low detection limits, such as inductively coupled plasma-mass spectrometry (ICP-MS), attention is shifting toward achieving faster and more elegant ways of oxidizing the organic material inherent in environmental samples. Closed-vessel microwave dissolution was compared with conventional methods for the determination of concentrations of cerium, samarium, europium, terbium, uranium, and thorium in a series of samples from the National Institute of Standards and Technology and from fields in Idaho. The ICP-MS technique exhibited detection limits in parts-per-trillion and linear calibration plots over three orders of magnitude for the elements under study. The results obtained by using nitric acid and hydrogen peroxide in a microwave digestion system for the analysis of reference materials showed close agreement with the accepted values. These values were compared with results obtained from dry- and wet-ashing procedures. The findings from an experiment comparing radiometric techniques for the determination of actinide elements to ICP-MS are reported

  10. Precise determination of rare earth elements, thorium and uranium in chondritic meteorites by inductively coupled plasma mass spectrometry. A comparative study with radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    An inductively coupled plasma mass spectrometry (ICP-MS) procedure for determining trace amounts of rare earth elements (REEs), Th and U in chondritic meteorites (chondrites) is presented. As chondrites have low contents of these elements (10-2 to 10-4xcrustal rock averages), the procedure was designed to be performed in as small a scale as possible in order to reduce the procedural blank. Serious matrix effects (ion suppression) may be caused by high Fe contents (20-35 wt.), which could be eliminated by applying appropriate internal standards (Rh for Y, In and Tl for lanthanides, and Bi for Th and U) and dilution factors (104 for Y and 103 for the rest of elements). Radiochemical neutron activation analysis (RNAA) was also applied for determining 10 REEs (La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb and Lu) in chondrites. It is found that both ICP-MS and RNAA have comparable detection limits for REEs. ICP-MS, however, has the great advantage that all REEs (including Y), Th and U can be determined with similar precision. Three Antarctic chondrites for which some anomalous REE abundances had been reported by RNAA, were also analyzed by ICP-MS but no anomalies were found, which implies the limitation of RNAA data in discussing the REE abundances in detail

  11. Determination of technetium-99, thorium-230 and uranium-234 in soils by inductively coupled plasma mass spectrometry using flow injection preconcentration

    International Nuclear Information System (INIS)

    A new method is described for the determination of 99Tc, 230Th, and 234U at ultra-trace levels in soils. The method used flow injection (FI) for on-line preconcentration of 99Tc, 230Th and 234U prior to detection using inductively coupled plasma mass spectrometry (ICP-MS). The FI-ICP-MS method results in greater sensitivity and freedom from interferences compared with direct aspiration into an ICP mass spectrometer. Detection limits are improved by approximately a factor of 10. The FI-ICP-MS method is also faster, less labour intensive and generates less laboratory waste than traditional radiochemical methods. The accuracy of the method was tested for 99Tc by comparison to liquid scintillation counting and for 230Th and 234U by analysis of a US Department of Energy reference soil. Detection limits in the soil for 99Tc, 230Th and 234U were 11 mBq g-1 (0.02 ng g-1), 3.7 mBq g-1 (0.005 ng g-1) and 0.74 mBq g-1 (0.003 ng g-1), respectively. Sample preparation, analysis protocol, and method validation are described. (Author)

  12. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides

    Science.gov (United States)

    Becker, J. Sabine

    2005-04-01

    For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.

  13. Non-spectral interferences due to the presence of sulfuric acid in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    García-Poyo, M. Carmen; Grindlay, Guillermo; Gras, Luis [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, P.O. Box 99, 03080 – Alicante (Spain); Loos-Vollebregt, Margaretha T.C. de, E-mail: margaretha.deloos@ugent.be [Delft University of Technology, Faculty of Applied Sciences, Analytical Biotechnology, Julianalaan 67, 2628 BC Delft (Netherlands); Ghent University, Department of Analytical Chemistry, Krijgslaan 281 - S12, 9000 Ghent (Belgium); Mora, Juan, E-mail: juan.mora@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, P.O. Box 99, 03080 – Alicante (Spain)

    2015-03-01

    Results of a systematic study concerning non-spectral interferences from sulfuric acid containing matrices on a large number of elements in inductively coupled plasma–mass spectrometry (ICP-MS) are presented in this work. The signals obtained with sulfuric acid solutions of different concentrations (up to 5% w w{sup −1}) have been compared with the corresponding signals for a 1% w w{sup −1−} nitric acid solution at different experimental conditions (i.e., sample uptake rates, nebulizer gas flows and r.f. powers). The signals observed for {sup 128}Te{sup +}, {sup 78}Se{sup +} and {sup 75}As{sup +} were significantly higher when using sulfuric acid matrices (up to 2.2-fold for {sup 128}Te{sup +} and {sup 78}Se{sup +} and 1.8-fold for {sup 75}As{sup +} in the presence of 5 w w{sup -1} sulfuric acid) for the whole range of experimental conditions tested. This is in agreement with previously reported observations. The signal for {sup 31}P{sup +} is also higher (1.1-fold) in the presence of sulfuric acid. The signal enhancements for {sup 128}Te{sup +}, {sup 78}Se{sup +}, {sup 75}As{sup +} and {sup 31}P{sup +} are explained in relation to an increase in the analyte ion population as a result of charge transfer reactions involving S{sup +} species in the plasma. Theoretical data suggest that Os, Sb, Pt, Ir, Zn and Hg could also be involved in sulfur-based charge transfer reactions, but no experimental evidence has been found. The presence of sulfuric acid gives rise to lower ion signals (about 10–20% lower) for the other nuclides tested, thus indicating the negative matrix effect caused by changes in the amount of analyte loading of the plasma. The elemental composition of a certified low-density polyethylene sample (ERM-EC681K) was determined by ICP-MS after two different sample digestion procedures, one of them including sulfuric acid. Element concentrations were in agreement with the certified values, irrespective of the acids used for the digestion. These

  14. 87Sr/86Sr isotope ratio measurements by laser ablation multicollector inductively coupled plasma mass spectrometry: Reconsidering matrix interferences in bioapatites and biogenic carbonates

    Science.gov (United States)

    Irrgeher, Johanna; Galler, Patrick; Prohaska, Thomas

    2016-11-01

    This study is dedicated to the systematic investigation of the effect of interferences on Sr isotopic analyses in biological apatite and carbonate matrices using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC ICP-MS). Trends towards higher 87Sr/86Sr ratios for LA-MC ICP-MS compared to solution-nebulization based MC ICP-MS when analysing bioapatite matrices (e.g. human teeth) and lower ratios in case of calcium carbonates (e.g. fish ear stones) were observed. This effect can be related to the presence of significant matrix-related interferences such as molecular ions (e.g. (40Ca-31P-16O)+, (40Ar-31P-16O)+, (42Ca-44Ca)+, (46Ca40Ar)+) as well as in many cases concomitant atomic ions (e.g. 87Rb+, 174Hf2 +). Direct 87Sr/86Sr ratio measurements in Ca-rich samples are conducted without the possibility of prior sample separation, which can be accomplished routinely for solution-based analysis. The presence of Ca-Ar and Ca-Ca molecular ion interferences in the mass range of Sr isotopes is shown using the mass resolving capabilities of a single collector inductively coupled plasma sector field mass spectrometer operated in medium mass resolution when analysing bioapatites and calcium carbonate samples. The major focus was set on analysing human tooth samples, fish hard parts and geological carbonates. Potential sources of interferences were identified and corrected for. The combined corrections of interferences and adequate instrumental isotopic fractionation correction procedures lead to accurate data even though increased uncertainties have to be taken into account. The results are discussed along with approaches presented in literature for data correction in laser ablation analysis.

  15. Simultaneous pressurized enzymatic hydrolysis extraction and clean up for arsenic speciation in seafood samples before high performance liquid chromatography-inductively coupled plasma-mass spectrometry determination.

    Science.gov (United States)

    Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; Moreda-Piñeiro, Antonio; Moscoso-Pérez, Carmen; Muniategui-Lorenzo, Soledad; López-Mahía, Purificación; Prada-Rodríguez, Darío; Bermejo-Barrera, Pilar

    2010-10-29

    The feasibility of pressurized conditions to assist enzymatic hydrolysis of seafood tissues for arsenic speciation was novelty studied. A simultaneous in situ (in cell) clean-up procedure was also optimized, which speeds up the whole sample treatment. Arsenic species (As(III), MMA, DMA, As(V), AsB and AsC) were released from dried seafood tissues using pepsin as a protease, and the arsenic species were separated/quantified by anion exchange high performance liquid chromatography (HPLC) coupled to inductively coupled plasma-mass spectrometry (ICP-MS). Variables inherent to the enzymatic activity (pH, temperature and ionic strength), the amount of enzyme (pepsin), and factors affecting pressurization (pressure, static time, number of cycles and amount of dispersing agent, C-18) were fully evaluated. Pressurized assisted enzymatic hydrolysis (PAEH) with pepsin can be finished after few minutes (two cycles of 2 min each one plus 3 min to reach the hydrolysis temperature of 50 °C). A total sample solubilisation is not achieved after the procedure, however it is efficient enough for breaking down certain bonds of bio-molecules and for releasing arsenic species. The developed method has been found to be precise (RSDs lower than 6% for As(III), DMA and As(V); and 3% for AsB) and sensitive (LOQs of 18.1, 36.2, 35.7, 28.6, 20.6 and 22.5 ng/g for As(III), MMA, DMA, As(V), AsB and AsC, respectively). The optimized methodology was successfully applied to different certified reference materials (DORM-2 and BCR 627) which offer certified AsB and DMA contents, and also to different seafood products (mollusks, white fishes and cold water fishes).

  16. Matrix effects on the multi-collector inductively coupled plasma mass spectrometric analysis of high-precision cadmium and zinc isotope ratios

    International Nuclear Information System (INIS)

    Resin-derived contaminants added to samples during column chemistry are shown to cause matrix effects that lead to inaccuracy in multi-collector inductively coupled plasma mass spectrometry measurement of small natural variations in Cd and Zn isotopic compositions. These matrix effects were evaluated by comparing pure Cd and Zn standards and standards doped with bulk column blank from the anion exchange chromatography procedure. Doped standards exhibit signal enhancements (Cd, Ag, Zn and Cu), instrumental mass bias changes and inaccurate isotopic compositions relative to undoped standards, all of which are attributed to the combined presence of resin-derived organics and inorganics. The matrix effect associated with the inorganic component of the column blanks was evaluated separately by doping standards with metals at the trace levels detected in the column blanks. Mass bias effects introduced by the inorganic column blank matrix are smaller than for the bulk column blank matrix but can still lead to significant changes in ion signal intensity, instrumental mass bias and isotopic ratios. Chemical treatment with refluxed HNO3 or HClO4/HNO3 removes resin-derived organic components resulting in matrix effects similar in magnitude to those associated with the inorganic component of the column blank. Mass bias correction using combined external normalization-SSB does not correct for these matrix effects because the instrumental mass biases experienced by Cd and Zn are decoupled from those of Ag and Cu, respectively. Our results demonstrate that ion exchange chromatography and associated resin-derived contaminants can be a source of error in MC-ICP-MS measurement of heavy stable element isotopic compositions

  17. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Helsper, Johannes P F G; Peters, Ruud J B; van Bemmel, Margaretha E M; Rivera, Zahira E Herrera; Wagner, Stephan; von der Kammer, Frank; Tromp, Peter C; Hofmann, Thilo; Weigel, Stefan

    2016-09-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based "diameters of gyration" (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed.

  18. Speciation analysis of arsenic in prenatal and children's dietary supplements using microwave-enhanced extraction and ion chromatography-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Wolle, Mesay M; Rahman, G M Mizanur; Kingston, H M Skip; Pamuku, Matt

    2014-03-25

    A study was conducted to develop a microwave-enhanced extraction method for the determination of arsenic species in prenatal and children's dietary supplements prepared from plant materials. The method was optimized by evaluating the efficiency of various solutions previously used to extract arsenic from the types of plant materials used in the dietary supplement formulations. A multivitamin standard reference material (NIST SRM 3280) and a prenatal supplement sample were analyzed in the method optimization. The identified optimum conditions were 0.25 g of sample, 5 mL of 0.3 mol L(-1) orthophosphoric acid (H3PO4) and microwave heating at 90 °C for 30 min. The extracted arsenic was speciated by cation exchange ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS). The method detection limit (MDL) for the arsenic species was in the range 2-8 ng g(-1). Ten widely consumed prenatal and children's dietary supplements were analyzed using the optimized protocol. The supplements were found to have total arsenic in the concentration range 59-531 ng g(-1). The extraction procedure recovered 61-92% of the arsenic from the supplements. All the supplementary products were found to contain arsenite (As(3+)) and dimethylarsinic acid (DMA). Arsenate (As(5+)) was found in two of the supplements, and an unknown specie of arsenic was detected in one product. The results of the analysis were validated using mass balance by comparing the sum of the extracted and non-extracted arsenic with the total concentration of the element in the corresponding samples.

  19. Method development for the redox speciation analysis of iron by ion chromatography-inductively coupled plasma mass spectrometry and carryover assessment using isotopically labeled analyte analogues.

    Science.gov (United States)

    Wolle, Mesay Mulugeta; Fahrenholz, Timothy; Rahman, G M Mizanur; Pamuku, Matt; Kingston, H M 'Skip'; Browne, Damien

    2014-06-20

    An ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) method was developed for the redox speciation analysis of iron (Fe) based on in-column complexation of Fe(2+) and Fe(3+) by dipicolinic acid (DPA). The effects of column type, mobile phase composition and molecular ion interference were studied in the method optimization. The carryover of the target species in the IC-ICP-MS method was uniquely and effectively evaluated using isotopically enriched analogues of the analytes ((54)Fe(2+) and (57)Fe(3+)). Standard solutions of the enriched standards were injected into the system following analysis of a sample, and the ratios of the isotopes of iron in the enriched standards were calculated based on the chromatographic peak areas. The concentrations of the analytes carried over from the sample to the enriched standards were determined using the quantitative relationship in isotope dilution mass spectrometry (IDMS). In contrast to the routine way of evaluating carryover effect by injecting a blank solution after sample analysis, the use of isotopically enriched standards identified significant analyte carryover in the present method. Extensive experiments were carried out to systematically identify the source of the carryover and to eliminate the problem; the separation column was found to be the exclusive source. More than 95% of the analyte carryover was eliminated by reducing the length of the column. The detection limit of the IC-ICP-MS method (MDL) for the iron species was 2ngg(-1). The method was used to determine Fe(2+) and Fe(3+) in synthetic aqueous standard solutions and a beverage sample.

  20. Speciation of Selenium in Selenium-Enriched Sunflower Oil by High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry/Electrospray-Orbitrap Tandem Mass Spectrometry.

    Science.gov (United States)

    Bierla, Katarzyna; Flis-Borsuk, Anna; Suchocki, Piotr; Szpunar, Joanna; Lobinski, Ryszard

    2016-06-22

    The reaction of sunflower oil with selenite produces a complex mixture of selenitriglycerides with antioxidant and anticancer properties. To obtain insight into the identity and characteristics of the species formed, an analytical approach based on the combination of high-performance liquid chromatography (HPLC) with (78)Se-specific selenium detection by inductively coupled plasma mass spectrometry (ICP MS) and high-resolution (100 000), high mass accuracy (sunflower oil dissolved in isopropanol and methanol extract of the oil containing 65% selenium. HPLC-ICP MS showed 14 peaks, 11 of which could also be detected in the methanol extract. Isotopic patterns corresponding to molecules with one or two selenium atoms could be attributed by Orbitrap MS at the retention times corresponding to the HPLC-ICP MS peak apexes. Structural data for these species were acquired by MS(2) and MS(3) fragmentation of protonated or sodiated ions using high-energy collisional dissociation (HCD). A total of 11 selenium-containing triglycerol derivatives resulting from the oxidation of one or two double bonds of linoleic acid and analogous derivatives of glycerol-mixed linoleate(s)/oleinate(s) have been identified for the first time. The presence of these species was confirmed by the targeted analysis in the total oil isopropanol solution. Their identification corroborated the predicted elution order in reversed-phase chromatography: LLL (glycerol trilinoleate), LLO (glycerol dilinoleate-oleinate), LOO (glycerol linoleate-dioleinate), OOO (glycerol trioleinate), of which the extrapolation allowed for the prediction of the identity [glycerol dioleinate-stearate (OOS) and glycerol oleinate-distearate (OSS)] of the nonpolar species detected by ICP MS in the oil but not detected by electrospray MS.

  1. Removal of high-salinity matrices through polymer-complexation-ultrafiltration for the detection of trace levels of REEs using inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Duan, Hualing; Lin, Jijun; Gong, Zhenbin; Huang, Jiahua; Yang, Shifeng

    2015-10-01

    The polymer-complexation-ultrafiltration (PCUF) technique was applied to separate trace levels of rare earth elements (REEs), including scandium, yttrium and the lanthanides, from high-salinity matrices prior to their determination by inductively coupled plasma mass spectrometry (ICP-MS). The REEs were converted into REE-polymer complexes using the water-soluble polymer polyacrylic acid (PAA) at a specified pH, retained on the ultrafiltration membrane of centrifugal filter units, and finally eluted using diluted nitric acid to achieve separation from matrices with relatively high levels of various inorganic ions, such as sodium, potassium, calcium, magnesium, and chlorine ions. Numerous factors affecting the PCUF efficiency were optimized. The optimal conditions included the addition of 30 mg L(-1) of PAA, a pH of 7.5, a reaction time of 40 min at room temperature, and 5.0 mL of 3% nitric acid (v/v) eluent. Under these conditions, the analytes were quantitatively separated and recovered, with a resulting relative standard deviation (RSD) of less than 4.0% (0.05 µg L(-1), n=5) and standard addition recoveries between 89.2% (La) and 95.8% (Sm) for matrices of various salinities. The blank samples for the method ranged from 0.0003 µg L(-1) (Dy) to 0.0031 µg L(-1) (Sc), and the limits of quantification (LOQs, 10σ) were between 0.0006 µg L(-1) (Dy) and 0.0026 µg L(-1) (Sc). Furthermore, the salinity of the sample exhibited no effect on the REE-polymer complex formation process. Finally, the method was successfully applied for the determination of trace levels of dissolved Sc, Y, and lanthanides in coastal and estuarine seawater samples. PMID:26078161

  2. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Devulder, Veerle [Department of Analytical Chemistry, Ghent University, Krijgslaan 281-S12, 9000 Ghent (Belgium); Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200 E-box 2408, 3001 Leuven (Belgium); Gerdes, Axel [Institute of Geoscience, Goethe Universität, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Vanhaecke, Frank, E-mail: Frank.Vanhaecke@UGent.be [Department of Analytical Chemistry, Ghent University, Krijgslaan 281-S12, 9000 Ghent (Belgium); Degryse, Patrick [Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200 E-box 2408, 3001 Leuven (Belgium)

    2015-03-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ{sup 11}B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement. - Highlights: • First use of LA-MC-ICP-MS for B isotopic analysis of ancient glass • Careful validation of LA-MC-ICP-MS approach • Similar precision & accuracy via solution MC-ICP-MS after isolation of B • Enhancement of sample throughput & reduction of sample consumption • Improved conditions for archeometric research on (pre-)Roman glass.

  3. Qualitative and quantitative spectro-chemical analysis of dates using UV-pulsed laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Mehder, A O; Habibullah, Y B; Gondal, M A; Baig, Umair

    2016-08-01

    Laser Induced Breakdown Spectroscopy (LIBS) is demonstrated for the spectral analysis of nutritional and toxic elements present in several varieties of date fruit samples available in the Saudi Arabia market. The method analyzes the optical emission of a test sample when subjected to pulsed laser ablation. In this demonstration, our primary focus is on calcium (Ca) and magnesium (Mg), as nutritional elements, and on chromium (Cr), as a toxic element. The local thermodynamic equilibrium (LTE) condition was confirmed prior to the elemental characterization of date samples to ensure accuracy of the LIBS analysis. This was achieved by measuring parameters associated with the plasma, such as the electron temperature and the electron number density. These plasma parameters aid interpretation of processes such as ionization, dissociation, and excitation occurring in the plasma plume formed by ablating the date palm sample. The minimum detection limit was established from calibration curves that involved plotting the LIBS signal intensity as a function of standard date samples with known concentrations. The concentration of Ca and Mg detected in different varieties of date samples was between 187 and 515 and 35-196mgL(-1) respectively, while Cr concentration measured between 1.72 and 7.76mgL(-1). In order to optimize our LIBS system, we have studied how the LIBS signal intensity depends on the incident laser energy and the delay time. In order to validate our LIBS analysis results, standard techniques such as inductively coupled plasma mass spectrometry (ICP-MS) were also applied on an identical (duplicate) date samples as those used for the LIBS analysis. The LIBS results exhibit remarkable agreement with those obtained from the ICP-MS analysis. In addition, the finger print wavelengths of other elements present in date samples were also identified and are reported here, which has not been previously reported, to the best of our knowledge. PMID:27216665

  4. Evaluation of the multi-element capabilities of collision/reaction cell inductively coupled plasma-mass spectrometry in wine analysis.

    Science.gov (United States)

    Grindlay, Guillermo; Mora, Juan; de Loos-Vollebregt, Margaretha T C; Vanhaecke, Frank

    2014-10-01

    This work explores the multi-element capabilities of inductively coupled plasma-mass spectrometry with collision/reaction cell technology (CCT-ICP-MS) for the simultaneous determination of both spectrally interfered and non-interfered nuclides in wine samples using a single set of experimental conditions. The influence of the cell gas type (i.e. He, He+H2 and He+NH3), cell gas flow rate and sample pre-treatment (i.e. water dilution or acid digestion) on the background-equivalent concentration (BEC) of several nuclides covering the mass range from 7 to 238u has been studied. Results obtained in this work show that, operating the collision/reaction cell with a compromise cell gas flow rate (i.e. 4 mL min(-1)) improves BEC values for interfered nuclides without a significant effect on the BECs for non-interfered nuclides, with the exception of the light elements Li and Be. Among the different cell gas mixtures tested, the use of He or He+H2 is preferred over He+NH3 because NH3 generates new spectral interferences. No significant influence of the sample pre-treatment methodology (i.e. dilution or digestion) on the multi-element capabilities of CCT-ICP-MS in the context of simultaneous analysis of interfered and non-interfered nuclides was observed. Nonetheless, sample dilution should be kept at minimum to ensure that light nuclides could be quantified in wine. Finally, a direct 5-fold aqueous dilution is recommended for the simultaneous trace and ultra-trace determination of spectrally interfered and non-interfered elements in wine by means of CCT-ICP-MS. The use of the CCT is mandatory for interference-free ultra-trace determination of Ti and Cr. Only Be could not be determined when using the CCT due to a deteriorated limit of detection when compared to conventional ICP-MS. PMID:25059175

  5. Determination of isotopic composition of dissolved copper in seawater by multi-collector inductively coupled plasma mass spectrometry after pre-concentration using an ethylenediaminetriacetic acid chelating resin

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Shotaro, E-mail: shotaro@inter3.kuicr.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Tanimizu, Masaharu [Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, 200 Monobe Otsu, Nankoku 783-8502 (Japan); Hirata, Takafumi [Laboratory for Planetary Sciences, Division of Earth and Planetary Sciences, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan); Sohrin, Yoshiki [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2013-06-19

    Graphical abstract: -- Highlights: •A simple analytical method for determining the Cu isotopic composition in seawater using an ethylenediaminetriacetic acid chelating resin was developed. •The accuracy was evaluated via addition of NIST SRM976 or {sup 65}Cu-enriched standard to seawater. •δ{sup 65}Cu of seawater reference materials (i.e., CASS-5 and NASS-6) and seawater samples from the northwestern Pacific Ocean were firstly determined. -- Abstract: Copper is an essential trace metal that shows a vertical recycled-scavenged profile in the ocean. To help elucidate the biogeochemical cycling of Cu in the present and past oceans, it is important to determine the distribution of Cu isotopes in seawater. However, precise isotopic analysis of Cu has been impaired by the low concentrations of Cu as well as co-existing elements that interfere with measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The objective of this study is to develop a simple Cu pre-concentration method using Nobias-chelate PA1 resin (Hitachi High Technologies). This extraction followed by anion exchange, allows precise analysis of the Cu isotopic composition in seawater. Using this method, Cu was quantitatively concentrated from seawater and >99.9999% of the alkali and alkaline earth metals were removed. The technique has a low procedural blank of 0.70 ng for Cu for a 2 L sample and the precision of the Cu isotopic analysis was ±0.07‰ (±2SD, n = 6). We applied this method to seawater reference materials (i.e., CASS-5 and NASS-6) and seawater samples obtained from the northwestern Pacific Ocean. The range of dissolved δ{sup 65}Cu was 0.40–0.68‰.

  6. Modern sampling and analytical methods for the determination of trace elements in marine particulate material using magnetic sector inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Bowie, Andrew R; Townsend, Ashley T; Lannuzel, Delphine; Remenyi, Tomas A; van der Merwe, Pier

    2010-08-31

    Trace elements often limit phytoplankton growth in the ocean, and the quantification of particulate forms is essential to fully understand their biogeochemical cycling. There is presently a lack of reliable measurements on the trace elemental content of marine particles, in part due to the inadequacies of the sampling and analytical methods employed. Here we report on the development of a series of state-of-the-art trace metal clean methods to collect and process oceanic particulate material in open-ocean and sea ice environments, including sampling, size-fractionated filtration, particle digestions and analysis by magnetic sector inductively coupled plasma-mass spectrometry (ICP-MS). Particular attention was paid to the analysis of certified reference materials (CRMs) and field blanks, which are typically the limiting factor for the accurate analysis of low concentrations of trace metals in marine particulate samples. Theoretical detection limits (3 s of the blank) were low for all 17 elements considered, and varied according to filter material and porosity (sub-microg L(-1) for polycarbonate filters and 1-2 microg L(-1) for quartz and polyester filters). Analytical accuracy was verified using fresh water CRMs, with excellent recoveries noted (93-103%). Digestion efficiencies for various acid combinations were assessed using sediment and plankton CRMs. Using nitric acid only, good recoveries (79-90%) were achieved for Mo, Cd, Ba, Pb, Mn, Fe, Co, Ni, Cu, Zn and Ga. The addition of HF was necessary for the quantitative recovery of the more refractory trace elements such as U, Al, V and Cr. Bioactive elements such as P can also be analysed and used as a biomass normaliser. Our developed sampling and analytical methods proved reliable when applied during two major field programs in both the open Southern Ocean and Antarctic sea ice environments during the International Polar Year in 2007. Trace elemental data are presented for particulate samples collected in both

  7. Determination of precise ¹³⁵Cs/¹³⁷Cs ratio in environmental samples using sector field inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Russell, Ben C; Croudace, Ian W; Warwick, Phil E; Milton, J Andy

    2014-09-01

    Recent advances in sector field inductively coupled plasma mass spectrometry (ICP-SFMS) have led to significant sensitivity enhancements that expand the range of radionuclides measurable by ICP-MS. The increasing capability and performance of modern ICP-MS now allows analysis of medium-lived radionuclides previously undertaken using radiometric methods. A new generation ICP-SFMS was configured to achieve sensitivities up to 80,000 counts per second for a 1 ng/L (133)Cs solution, providing a detection limit of 1 pg/L. To extend this approach to environmental samples it has been necessary to develop an effective chemical separation scheme using ultrapure reagents. A procedure incorporating digestion, chemical separation and quantification by ICP-SFMS is presented for detection of the significant fission product radionuclides of cesium ((135)Cs and (137)Cs) at concentrations found in environmental and low level nuclear waste samples. This in turn enables measurement of the (135)Cs/(137)Cs ratio, which varies with the source of nuclear contamination, and can therefore provide a powerful dating and forensic tool compared to radiometric detection of (137)Cs alone. A detection limit in sediment samples of 0.05 ng/kg has been achieved for (135)Cs and (137)Cs, corresponding to 2.0 × 10(-3) and 160 mBq/kg, respectively. The critical issue is ensuring removal of barium to eliminate isobaric interferences arising from (135)Ba and (137)Ba. The ability to reliably measure (135)Cs/(137)Cs using a high specification laboratory ICP-SFMS now enables characterization of waste materials destined for nuclear waste repositories as well as extending options in environmental geochemical and nuclear forensics studies. PMID:25109496

  8. A dipole-assisted solid-phase extraction microchip combined with inductively coupled plasma-mass spectrometry for online determination of trace heavy metals in natural water.

    Science.gov (United States)

    Shih, Tsung-Ting; Hsu, I-Hsiang; Chen, Shun-Niang; Chen, Ping-Hung; Deng, Ming-Jay; Chen, Yu; Lin, Yang-Wei; Sun, Yuh-Chang

    2015-01-21

    We employed a polymeric material, poly(methyl methacrylate) (PMMA), for fabricating a microdevice and then implanted the chlorine (Cl)-containing solid-phase extraction (SPE) functionality into the PMMA chip to develop an innovative on-chip dipole-assisted SPE technique. Instead of the ion-ion interactions utilized in on-chip SPE techniques, the dipole-ion interactions between the highly electronegative C-Cl moieties in the channel interior and the positively charged metal ions were employed to facilitate the on-chip SPE procedures. Furthermore, to avoid labor-intensive manual manipulation, a programmable valve manifold was designed as an interface combining the dipole-assisted SPE microchip and inductively coupled plasma-mass spectrometry (ICP-MS) to achieve the fully automated operation. Under the optimized operation conditions for the established system, the detection limits for each analyte ion were obtained based on three times the standard deviation of seven measurements of the blank eluent solution. The limits ranged from 3.48 to 20.68 ng L(-1), suggesting that this technique appears uniquely suited for determining the levels of heavy metal ions in natural water. Indeed, a series of validation procedures demonstrated that the developed method could be satisfactorily applied to the determination of trace heavy metals in natural water. Remarkably, the developed device was durable enough to be reused more than 160 times without any loss in its analytical performance. To the best of our knowledge, this is the first study reporting on the combination of a dipole-assisted SPE microchip and elemental analysis instrument for the online determination of trace heavy metal ions.

  9. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ11B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement. - Highlights: • First use of LA-MC-ICP-MS for B isotopic analysis of ancient glass • Careful validation of LA-MC-ICP-MS approach • Similar precision & accuracy via solution MC-ICP-MS after isolation of B • Enhancement of sample throughput & reduction of sample consumption • Improved conditions for archeometric research on (pre-)Roman glass

  10. Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ni [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Jiang, Shiuh-Jen, E-mail: sjjiang@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chen, Yen-Ling [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Sahayam, A.C. [National Centre for Compositional Characterisation of Materials (CCCM), Hyderabad (India)

    2015-02-20

    Highlights: • Determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions in a single run. • Accurate analysis using isotope dilution and standard addition methods. • Vapor generation ICP-MS yielded superior detection limits compared to ETV-ICP-MS. • No sample dissolution increased sample through put. • Analysis of GBW09305 Cosmetic (Cream) reference material for accuracy. - Abstract: A slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions using flow injection (FI) vapor generation (VG) as the sample introduction system. A slurry containing 2% m/v lotion, 2% m/v thiourea, 0.05% m/v L-cysteine, 0.5 μg mL{sup −1} Co(II), 0.1% m/v Triton X-100 and 1.2% v/v HCl was injected into a VG-ICP-MS system for the determination of Ge, As, Cd, Sb, Hg and Bi without dissolution and mineralization. Because the sensitivities of the analytes in the slurry and that of aqueous solution were quite different, an isotope dilution method and a standard addition method were used for the determination. This method has been validated by the determination of Ge, As, Cd, Sb, Hg and Bi in GBW09305 Cosmetic (Cream) reference material. The method was also applied for the determination of Ge, As, Cd, Sb, Hg and Bi in three cosmetic lotion samples obtained locally. The analysis results of the reference material agreed with the certified value and/or ETV-ICP-MS results. The detection limit estimated from the standard addition curve was 0.025, 0.1, 0.2, 0.1, 0.15, and 0.03 ng g{sup −1} for Ge, As, Cd, Sb, Hg and Bi, respectively, in original cosmetic lotion sample.

  11. Speciation of Selenium in Selenium-Enriched Sunflower Oil by High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry/Electrospray-Orbitrap Tandem Mass Spectrometry.

    Science.gov (United States)

    Bierla, Katarzyna; Flis-Borsuk, Anna; Suchocki, Piotr; Szpunar, Joanna; Lobinski, Ryszard

    2016-06-22

    The reaction of sunflower oil with selenite produces a complex mixture of selenitriglycerides with antioxidant and anticancer properties. To obtain insight into the identity and characteristics of the species formed, an analytical approach based on the combination of high-performance liquid chromatography (HPLC) with (78)Se-specific selenium detection by inductively coupled plasma mass spectrometry (ICP MS) and high-resolution (100 000), high mass accuracy (oil dissolved in isopropanol and methanol extract of the oil containing 65% selenium. HPLC-ICP MS showed 14 peaks, 11 of which could also be detected in the methanol extract. Isotopic patterns corresponding to molecules with one or two selenium atoms could be attributed by Orbitrap MS at the retention times corresponding to the HPLC-ICP MS peak apexes. Structural data for these species were acquired by MS(2) and MS(3) fragmentation of protonated or sodiated ions using high-energy collisional dissociation (HCD). A total of 11 selenium-containing triglycerol derivatives resulting from the oxidation of one or two double bonds of linoleic acid and analogous derivatives of glycerol-mixed linoleate(s)/oleinate(s) have been identified for the first time. The presence of these species was confirmed by the targeted analysis in the total oil isopropanol solution. Their identification corroborated the predicted elution order in reversed-phase chromatography: LLL (glycerol trilinoleate), LLO (glycerol dilinoleate-oleinate), LOO (glycerol linoleate-dioleinate), OOO (glycerol trioleinate), of which the extrapolation allowed for the prediction of the identity [glycerol dioleinate-stearate (OOS) and glycerol oleinate-distearate (OSS)] of the nonpolar species detected by ICP MS in the oil but not detected by electrospray MS. PMID:27214173

  12. Exploiting dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) for sequential determination of trace elements in blood using a dilute-and-shoot procedure.

    Science.gov (United States)

    Batista, Bruno Lemos; Rodrigues, Jairo Lisboa; Nunes, Juliana Andrade; Souza, Vanessa Cristina de Oliveira; Barbosa, Fernando

    2009-04-20

    Inductively coupled plasma mass spectrometry with quadrupole (q-ICP-MS) and dynamic reaction cell (DRC-ICP-MS) were evaluated for sequential determination of As, Cd, Co, Cr, Cu, Mn, Pb, Se, Tl, V and Zn in blood. The method requires as little as 100 microL of blood. Prior to analysis, samples (100 microL) were diluted 1:50 in a solution containing 0.01% (v/v) Triton X-100 and 0.5% (v/v) nitric acid. The use of the DRC was only mandatory for Cr, Cu, V and Zn. For the other elements the equipment may be operated in a standard mode (q-ICP-MS). Ammonia was used as reaction gas. Selection of best flow rate of ammonium gas and optimization of the quadrupole dynamic band-pass tuning parameter (RPq) were carried out, using a ovine base blood for Cr and V and a synthetic matrix solution (SMS) for Zn and Cu diluted 1:50 and spiked to contain 1 microg L(-1) of each element. Method detection limits (3 s) for (75)As, (114)Cd, (59)Co, (51)Cr, (63)Cu (55)Mn, (208)Pb, (82)Se, (205)Tl, (51)V, and (64)Zn were 14.0, 3.0, 11.0, 7.0, 280, 9.0, 3.0, 264, 0.7, 6.0 and 800 ng L(-1), respectively. Method validation was accomplished by the analysis of blood Reference Materials produced by the L'Institut National de Santé Publique du Quebec (Canada).

  13. Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions

    International Nuclear Information System (INIS)

    Highlights: • Determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions in a single run. • Accurate analysis using isotope dilution and standard addition methods. • Vapor generation ICP-MS yielded superior detection limits compared to ETV-ICP-MS. • No sample dissolution increased sample through put. • Analysis of GBW09305 Cosmetic (Cream) reference material for accuracy. - Abstract: A slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions using flow injection (FI) vapor generation (VG) as the sample introduction system. A slurry containing 2% m/v lotion, 2% m/v thiourea, 0.05% m/v L-cysteine, 0.5 μg mL−1 Co(II), 0.1% m/v Triton X-100 and 1.2% v/v HCl was injected into a VG-ICP-MS system for the determination of Ge, As, Cd, Sb, Hg and Bi without dissolution and mineralization. Because the sensitivities of the analytes in the slurry and that of aqueous solution were quite different, an isotope dilution method and a standard addition method were used for the determination. This method has been validated by the determination of Ge, As, Cd, Sb, Hg and Bi in GBW09305 Cosmetic (Cream) reference material. The method was also applied for the determination of Ge, As, Cd, Sb, Hg and Bi in three cosmetic lotion samples obtained locally. The analysis results of the reference material agreed with the certified value and/or ETV-ICP-MS results. The detection limit estimated from the standard addition curve was 0.025, 0.1, 0.2, 0.1, 0.15, and 0.03 ng g−1 for Ge, As, Cd, Sb, Hg and Bi, respectively, in original cosmetic lotion sample

  14. Determination of Cd, Cr, Hg and Pb in plastics from waste electrical and electronic equipment by inductively coupled plasma mass spectrometry with collision-reaction interface technology.

    Science.gov (United States)

    Santos, Mirian C; Nóbrega, Joaquim A; Cadore, Solange

    2011-06-15

    A procedure based on the use of a quadrupole inductively coupled plasma-mass spectrometer equipped with a collision-reaction interface (CRI) for control of spectral overlap interferences was developed for simultaneous determination of Cd, Cr, Hg, and Pb in plastics from waste electrical and electronic equipment (WEEE). The injection of H(2) and He (80 and 60 mL min(-1), respectively) into the sampled plasma, colliding and reacting with potentially interfering polyatomic ions, allows interference-free determination of chromium via its isotopes (52)Cr and (53)Cr that are freed from overlap due to the occurrence of (40)Ar(12)C(+), (40)Ar(12)C(1)H(+), (36)S(16)O(+) or (1)H(36)S(16)O(+). Cadmium, Hg and Pb were directly determined via their isotopes (110)Cd, (111)Cd, (112)Cd, (199)Hg, (200)Hg, (201)Hg, (202)Hg, (206)Pb, (207)Pb, and (208)Pb, without using CRI. The CRI can be quickly activated or deactivated before each analyte measurement. Limits of detection for (52)Cr were 0.04 or 0.14 μg L(-1) with He or H(2) injected in CRI. Cadmium and Pb have LODs between 0.02 and 0.08 μg L(-1) and Hg had 0.93-0.98 μg L(-1), without using CRI. Analyte concentrations for samples varied from 16 to 43, 1 to 11, 4 to 12, and 5 to 13 mg kg(-1) for Cr, Cd, Hg and Pb, respectively.

  15. Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Fe, Cu, Zn and Se in cereals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shih-Yi [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Jiang, Shiuh-Jen, E-mail: sjjiang@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Sahayam, A.C. [National Centre for Compositional Characterisation of Materials (CCCM), Hyderabad (India)

    2014-11-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to determine Cr, Fe, Cu, Zn and Se in several cereal samples. Thioacetamide was used as the modifier to enhance the ion signals. The background ions at the masses of interest were reduced in intensity significantly by using 1.0 mL min{sup −1} methane (CH{sub 4}) as reaction cell gas in the dynamic reaction cell (DRC). Since the sensitivities of Cr, Fe, Cu, Zn and Se in different matrices were quite different, standard addition and isotope dilution methods were used for the determination of Cr, Fe, Cu, Zn and Se in these cereal samples. The method detection limits estimated from standard addition curves were about 1, 10, 4, 12 and 2 ng g{sup −1} for Cr, Fe, Cu, Zn and Se, respectively, in original cereal samples. This procedure has been applied to the determination of Cr, Fe, Cu, Zn and Se whose concentrations are in μg g{sup −1} (except Cr and Se) in standard reference materials (SRM) of National institute of standards and technology (NIST), NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and two cereal samples purchased from a local market. The analysis results of reference materials agreed with certified values at 95% confidence level according to Student's T-test. The results for the real world cereal samples were also found to be in good agreement with the pneumatic nebulization DRC ICP-MS results of the sample solutions. - Highlights: • Determination of Cr, Fe, Cu, Zn and Se in cereal samples • Ultrasonic slurry sampling in combination with DRC-ICP-MS • Better sensitivity with thioacetamide modifier in ETV • Decreased sample preparation time with solid sampling • Validation with NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour.

  16. Anthropogenic 236U at Rocky Flats, Ashtabula river harbor, and Mersey estuary: three case studies by sector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    236U (t1/2=2.3x107 y) is formed as a result of thermal neutron capture by 235U. In naturally occurring U ores, where a high neutron flux is present from spontaneous fission of 238U, 236U/238U atom ratios are ∼10-4 ppm. In the natural Earth's crust, unaffected by nuclear fallout, these ratios are expected to be on the order of 10-8 ppm. Reactor-irradiated U, however, exhibits high 236U/238U atom ratios approaching 104 ppm. As a result, the presence of very small quantities of reactor-irradiated U will significantly enhance the 'background' 236U/238U atom ratio. When sufficiently elevated 236U/238U ratios are present, the determination of 236U/238U by rapid inductively coupled plasma mass spectrometric (ICPMS) methods is attractive. We have used sector ICPMS at medium resolving power (R=3440) to measure 236U/238U atom ratios with a determination limit of 0.2 ppm. The limiting factors in the measurement are the 235U1H+ isobar and background signal at m/z 236 arising from the 238U+ peak tail. Based upon the analysis of replicates and considerations of possible systematic errors, uncertainties of ±5% are found for 236U/238U atom ratios of 1-100 ppm. This procedure has been demonstrated in studies of anthropogenic 236U in the environment at three locations: (a) offsite soils from the vicinity of the Rocky Flats Environmental Technology site (Golden, Colorado, USA); (b) sediments from the Ashtabula River (Ohio, USA); and (c) sediments from the Mersey estuary (Liverpool, UK). In each of these three locations, definite plumes of elevated 236U/238U are identified and characterized. Maximum 236U/238U atom ratios observed in RFETS-vicinity soils, the Ashtabula River, and the Mersey Estuary are 2.8, 140, and 4.4 ppm, respectively

  17. A dipole-assisted solid-phase extraction microchip combined with inductively coupled plasma-mass spectrometry for online determination of trace heavy metals in natural water.

    Science.gov (United States)

    Shih, Tsung-Ting; Hsu, I-Hsiang; Chen, Shun-Niang; Chen, Ping-Hung; Deng, Ming-Jay; Chen, Yu; Lin, Yang-Wei; Sun, Yuh-Chang

    2015-01-21

    We employed a polymeric material, poly(methyl methacrylate) (PMMA), for fabricating a microdevice and then implanted the chlorine (Cl)-containing solid-phase extraction (SPE) functionality into the PMMA chip to develop an innovative on-chip dipole-assisted SPE technique. Instead of the ion-ion interactions utilized in on-chip SPE techniques, the dipole-ion interactions between the highly electronegative C-Cl moieties in the channel interior and the positively charged metal ions were employed to facilitate the on-chip SPE procedures. Furthermore, to avoid labor-intensive manual manipulation, a programmable valve manifold was designed as an interface combining the dipole-assisted SPE microchip and inductively coupled plasma-mass spectrometry (ICP-MS) to achieve the fully automated operation. Under the optimized operation conditions for the established system, the detection limits for each analyte ion were obtained based on three times the standard deviation of seven measurements of the blank eluent solution. The limits ranged from 3.48 to 20.68 ng L(-1), suggesting that this technique appears uniquely suited for determining the levels of heavy metal ions in natural water. Indeed, a series of validation procedures demonstrated that the developed method could be satisfactorily applied to the determination of trace heavy metals in natural water. Remarkably, the developed device was durable enough to be reused more than 160 times without any loss in its analytical performance. To the best of our knowledge, this is the first study reporting on the combination of a dipole-assisted SPE microchip and elemental analysis instrument for the online determination of trace heavy metal ions. PMID:25426495

  18. Application of operationally defined speciation techniques to the inductively coupled plasma mass spectrometric analysis of trace and ultra-trace elements in soils

    International Nuclear Information System (INIS)

    The extractants examined in this study were an acid oxalate solution (Tamm's Reagent), a dithionite-citrate (DC) solution, and a pyrophosphate solution used for the extraction of trace and ultra-trace elements associated with amorphous Fe (Mn) oxide, crystalline Fe(Mn) oxide, and organic matter, respectively. Water and 1 M NH4NO3 were also examined for water soluble and exchangeable form, respectively. Water extracts were directly aspirated into an inductively coupled plasma mass spectrometer (ICP-MS) after a thorough removal of particulate materials. The NH4NO3 extracts were treated with aqua regia (HNO3 - HCl) to remove NH4NO3 before the ICP-MS analysis. The acid oxalate and pyrophosphate extracts were treated with HNO3 - HClO4 - HF to decompose the organic matter and also to remove Si. For dithionite-citrate extracts, however, HNO3 - H2SO4 decomposition process was applied rather than an HNO3 - HClO4 - HF treatment. This is because the extracts still contain a large amount of un-reacted dithionite, which prevents the successful application of the latter procedure. The residues obtained by the above procedures were all dissolved with HNO3. The solution thus prepared was finally passed through a column filled with an ion exchange resin that has chelating ability (Muromac A-1) with the addition of malonic acid. The whole procedure was optimized for separating the analytes from the major constituents (Na, Al, Fe, SO4, and PO4) by adjusting the pH of the solution, the amount of resin, the concentration of malonic acid, and the flow rate. Under optimum conditions, it was possible to separate around 20 trace and ultra-trace elements with acceptable recoveries. (author)

  19. Determination of total lead in lipstick: development and validation of a microwave-assisted digestion, inductively coupled plasma-mass spectrometric method.

    Science.gov (United States)

    Hepp, Nancy M; Mindak, William R; Cheng, John

    2009-01-01

    Recent reports describing the presence of lead (Pb) in lipsticks have suggested that, under ordinary use, the potential amount of Pb exposure is harmful. To permit independent assessment of the Pb contamination, a method for determining total Pb in lipstick using microwave-assisted digestion and analysis employing inductively coupled plasma-mass spectrometry (ICP-MS) was developed and validated. Since lipsticks may contain fats, oils, pigments, dyes, and minerals, several reference materials (RM) were analyzed, including coal, wear metals in oil, organic Pb in oil, milk powder, and estuarine sediment. With the exception of the RM with mineral content (estuarine sediment), complete recovery of Pb from the RMs was obtained by simple nitric acid (HNO(3)) digestion. Complete recovery of Pb from estuarine sediment was achieved only when hydrofluoric acid (HF) was added to the digestion mix, followed by treatment with excess boric acid (H(3)BO(3)) to neutralize the HF and to dissolve insoluble fluorides. Commercial lipsticks were tested for total Pb by the validated method. The detection limit was estimated to be 0.04 microg Pb/g. The average value obtained for the lipsticks was 1.07 microg/g. Undigested material was present in some lipstick digests when only HNO(3) was used, and generally lower Pb values were obtained. All of the Pb levels found by the U.S. Food and Drug Administration (FDA) were within the range the agency would expect to find in lipsticks formulated with permitted color additives and other ingredients prepared under good manufacturing practice (GMP) conditions. This method will be useful for the FDA and industry in helping to ensure the safety of cosmetic products. PMID:19691936

  20. Determination of total lead in 400 lipsticks on the U.S. market using a validated microwave-assisted digestion, inductively coupled plasma-mass spectrometric method.

    Science.gov (United States)

    Hepp, Nancy M

    2012-01-01

    In 2009, the U.S. Food and Drug Administration (FDA) published lead (Pb) content results from a small survey of 20 tube lipsticks with red shades using a validated inductively coupled plasma-mass spectrometric (ICP-MS) method developed by FDA chemists. The study was prompted by a media report suggesting that potential exposure to lead from lipsticks under conditions of ordinary use might be harmful. The FDA has since investigated the lead content of tube lipsticks by conducting an expanded survey that included a variety of shades and manufacturers, at varying prices. The purposes of the expanded survey were to ascertain the levels of lead in lipsticks sold on the U.S. market, to identify any categories of lipstick with elevated levels of lead, and to compare the results to those from the initial small survey. Four hundred lipsticks available on the U.S. market in the spring of 2010 were tested for total lead content using the FDA's validated method. The analyses were performed by a private laboratory contracted by the FDA. The maximum lead level found was 7.19 mg Pb/kg. Thirteen of the 400 lipsticks were found to contain levels greater than 3.06 mg Pb/kg, the highest amount found in the initial survey. The average lead concentration found in the expanded survey was 1.11 mg Pb/kg, which was very close to the average of 1.07 mg Pb/kg found in the initial survey. Some statistically significant associations between lead level and parent company were found. The contract requirements, testing procedures, and findings from the expanded survey are described here. PMID:23193690

  1. Determination of Marine Lubricant by Inductively Coupled Plasma Mass Spectrometry%基于ICP-MS的船用润滑油检测分析

    Institute of Scientific and Technical Information of China (English)

    笪靖; 黄晶

    2016-01-01

    Trace elements molybdenum,nickel,vanadium,titanium,barium,cadmium,copper,lead and man⁃ganese in marine lubricant were determined by inductively coupled plasma mass spectrometry(ICP-MS). The oil samples were heated to evaporate afer ashing treatment at high-temperature buring. The residue was digested in the mixture of nitric acid and hydrogen peroxide,above sample treatment completely eliminated the interference of organic matter on mass spec⁃trometry measurement. Optimization of instrument conditions ,internal calibration and interference equation,the correla⁃tion coefficient of standard curve was reached to 0.9999,the recovery of the measuring elements were 93~106% and RSD<1%.%采用电感耦合等离子体质谱法(ICP-MS)测定船用润滑油中元素钼、镍、钒、钛、钡、镉、铜、铅和锰。油液样品经加热蒸发和高温灼烧灰化处理,再加硝酸和过氧化氢湿法消解,消除了有机质对质谱测定的影响。经过优化仪器工作条件,内标校正和干扰方程处理后,所测定元素的标准曲线相关系数达0.9999以上,加标回收率为93~106%,RSD<1%。

  2. Cerium oxide-deposited mesoporous silica nanoparticles for the determination of carcinoembryonic antigen in serum using inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.W. [Department of Chemistry, NSBI, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of); Lee, K.H.; Hur, N.H. [Department of Chemistry, Sogang University, Shinsu-dong, Mapo-gu, Seoul (Korea, Republic of); Lim, H.B., E-mail: plasma@dankook.ac.kr [Department of Chemistry, NSBI, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of)

    2014-10-17

    Highlights: • Sandwich-type immunoassay using ICP-MS and nanoparticles to determine biomarkers. • CeO{sub 2}-deposited mesoporous silica nanoparticles were synthesized as a probe. • Ratiometric measurement significantly improved the calibration linearity. • Excellent detection limit was achieved by signal amplification. - Abstract: CeO{sub 2}-deposited mesoporous silica nanoparticles were synthesized as a probe to determine carcinoembryonic antigen (CEA) in serum by inductively coupled plasma-mass spectrometry (ICP-MS). The prepared mesoporous nanoparticles were modified and tagged to the target for sandwich-type immunoassay. Fe{sub 3}O{sub 4} magnetic nanoparticles (MNPs) were also synthesized and immobilized with antibody to extract the target biomarker. The calibration curve of the synthesized CeO{sub 2}-deposited silica nanoparticles, which was plotted by the signal ratio of {sup 140}Ce/{sup 57}Fe measured by ICP-MS vs. the concentration of CEA, showed excellent linearity and sensitivity owing to the signal amplification and low spectral interference. Under optimal conditions, the sandwich-type analytical method was applied to determine CEA in serum spiked in the range of 0.001–5 ng mL{sup −1} and showed a limit of detection of 0.36 ng mL{sup −1}. Since the deposited CeO{sub 2} in the mesoporous silica layer can be substituted by other metal compounds, various kinds of metal-deposited nanoparticles can be prepared as probe materials for multiplex detection in bioanalysis.

  3. Towards the reduction of matrix effects in inductively coupled plasma mass spectrometry without compromising detection limits: The use of argon-nitrogen mixed-gas plasma

    International Nuclear Information System (INIS)

    The multivariate optimization of a mixed-gas plasma was conducted in an attempt to find conditions minimizing matrix effects without sacrificing the detection limits that are observed with an all argon plasma optimized for maximum sensitivity in inductively coupled plasma mass spectrometry. Compared to the latter, where 49.1 ± 7.1% (n = 17) analyte signal suppression resulted in the presence of 0.1 M Na, 3.8 ± 3.2% suppression (and 2.8 ± 2.1% enhancement in some cases) was observed in the optimized mixed-gas plasma with 0.13% v/v N2 in the plasma gas and 0.11% in the central channel as a sheath gas around the nebulizer gas flow. Furthermore, improved detection limits were observed for Al, Co, Pd, and V with the optimized mixed-gas plasma compared to an argon plasma at maximum sensitivity. The robustness of this mixed-gas plasma was further demonstrated through the accurate determination of U and Mo in NASS-5 seawater certified reference material using a simple external calibration, without matrix-matching or internal standardization. Indeed, the result obtained for Mo (9.1 ± 1.9 μg/L) was within the 95% confidence interval of the certified value of 9.6 ± 1.0 μg/L, while that obtained for U (3.0 ± 0.2 μg/L) was close to the information value of 2.6 μg/L. Spatial profiling results suggest better energy transfer between the toroidal zone and the central channel in the mixed-gas plasma.

  4. Combining single-particle inductively coupled plasma mass spectrometry and X-ray absorption spectroscopy to evaluate the release of colloidal arsenic from environmental samples.

    Science.gov (United States)

    Gomez-Gonzalez, Miguel Angel; Bolea, Eduardo; O'Day, Peggy A; Garcia-Guinea, Javier; Garrido, Fernando; Laborda, Francisco

    2016-07-01

    Detection and sizing of natural colloids involved in the release and transport of toxic metals and metalloids is essential to understand and model their environmental effects. Single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) was applied for the detection of arsenic-bearing particles released from mine wastes. Arsenic-bearing particles were detected in leachates from mine wastes, with a mass-per-particle detection limit of 0.64 ng of arsenic. Conversion of the mass-per-particle information provided by SP-ICP-MS into size information requires knowledge of the nature of the particles; therefore, synchrotron-based X-ray absorption spectroscopy (XAS) was used to identify scorodite (FeAsO4·2H2O) as the main species in the colloidal particles isolated by ultrafiltration. The size of the scorodite particles detected in the leachates was below 300-350 nm, in good agreement with the values obtained by TEM. The size of the particles detected by SP-ICP-MS was determined as the average edge of scorodite crystals, which show a rhombic dipyramidal form, achieving a size detection limit of 117 nm. The combined use of SP-ICP-MS and XAS allowed detection, identification, and size determination of scorodite particles released from mine wastes, suggesting their potential to transport arsenic. Graphical abstract Analytical approach for the detection and size characterization of As-bearing particles by SP-ICP-MS and XAS in environmental samples. PMID:26847190

  5. Determination of traces of uranium and thorium in (Ba, Sr) TiO3 ferroelectrics by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Traces of uranium and thorium in barium(II), strontium(II) titanate ((Ba, Sr)TiO3) ferroelectric materials were determined by inductively coupled plasma mass spectrometry (ICP-MS). Samples were completely dissolved by a mixture of 1.4% H2O2 and 1.0 mol.l-1 HNO3. For a complete separation of the analytes from the matrix elements, a two step separation technique involving leaching and anion-exchange was applied. By the leaching step with HNO3 more than 90% of the matrix can be removed whereas the analytes completely remained in the solution. The anion-exchange step was carried out on a BIO.RAD AG1-X8 column with a mixture of 1.0 mol.l-1 HF and 0.5 mol.l-1 HNO3 as eluent. The content of uranium and thorium was subsequently measured by ICP-MS. The detection limits (D.L.) obtained were 0.043 ng g-1 and 0.035 ng g-1 for U and Th, respectively. The reproducibility was satisfactory with a relative standard deviation of less than 3% (at the 1 ng g-1 level, n=5). The matrix concentrations in the final solution were reduced to the sub-μg ml-1 level which is in the range of the detection limits of USN-ICP-AES (ultrasonic nebulization-ICP-atomic emission spectroscopy). The method was successfully applied to the determination of uranium and thorium in three synthetic (Ba, Sr)TiO3 samples spiked with the analytes at levels of 1, 5 and 10 ng g-1 and three (Ba, Sr)TiO3 ferroelectric samples containing sub-ng g-1 levels of the analytes. (orig.)

  6. Rapid determination of plutonium isotopes in environmental samples using sequential injection extraction chromatography and detection by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per; Miró, Manuel

    2009-10-01

    This article presents an automated method for the rapid determination of 239Pu and 240Pu in various environmental samples. The analytical method involves the in-line separation of Pu isotopes using extraction chromatography (TEVA) implemented in a sequential injection (SI) network followed by detection of isolated analytes with inductively coupled plasma mass spectrometry (ICP-MS). The method has been devised for the determination of Pu isotopes at environmentally relevant concentrations, whereby it has been successfully applied to the analyses of large volumes/amounts of samples, for example, 100-200 g of soil and sediment, 20 g of seaweed, and 200 L of seawater following analyte preconcentration. The investigation of the separation capability of the assembled SI system revealed that up to 200 g of soil or sediment can be treated using a column containing about 0.70 g of TEVA resin. The analytical results of Pu isotopes in the reference materials showed good agreement with the certified or reference values at the 0.05 significance level. Chemical yields of Pu ranged from 80 to 105%, and the decontamination factors for uranium, thorium, mercury and lead were all above 10(4). The duration of the in-line extraction chromatographic run was <1.5 h, and the proposed setup was able to handle up to 20 samples (14 mL each) in a fully automated mode using a single chromatographic column. The SI manifold is thus suitable for rapid and automated determination of Pu isotopes in environmental risk assessment and emergency preparedness scenarios. PMID:19722516

  7. Multielemental fractionation in pine nuts (Pinus pinea) from different geographic origins by size-exclusion chromatography with UV and inductively coupled plasma mass spectrometry detection.

    Science.gov (United States)

    Gómez-Ariza, J L; Arias-Borrego, A; García-Barrera, T

    2006-07-21

    Pine nuts (Pinus pinea) from different geographical origin in Spain and Portugal have been investigated concerning total element content and metal-biomolecules size distribution patterns Mn, Zn, Ni and Cu. All the studied metals were at the highest concentration in pine nuts from Faro and at the lowest from Cataluña. The most abundant element in samples was Mn at concentrations in the range of 26 microg g(-1) (Cataluña) to 559 microg g(-1) (Faro). Zn was also present at high concentration in samples, from 25 microg g(-1) (Cataluña) to 113 microg g(-1) (Faro). To a deeper insight to obtain classification rules for samples, pine nuts were analyzed by size-exclusion chromatography (SEC) with UV detection and inductively coupled plasma mass spectrometry (ICP-MS). Two columns were used covering the molecular weigh range from pine nuts from Huelva. This column allows good discrimination in the range of 2126-1352 Da in which a lot of peaks can be used to differentiate samples. The UV profiles obtained with the high molecular weight (HMW) column allows a poorer differentiation of samples, but pine nuts from Huelva, Castilla and Madrid are clearly distinguished to the others. In relation to fractionation patterns of metals, Mn allows a good discrimination between samples (LMW column), Cu was the only one associated to fractions at MW > 70 kDa in sample from Cádiz, and profiles of Ni and Zn are clearly different in terms of abundance of peaks. All these chromatographic profiles for elements give valuable information about the geographical origin of the studied samples and the differences found are discussed in this work.

  8. Report on three aliphatic dimethylarsinoyl compounds as common minor constituents in marine samples. An investigation using high-performance liquid chromatography inductively coupled plasma mass spectrometry and electrospray ionisation tandem mass spectrometry

    DEFF Research Database (Denmark)

    Sloth, Jens Jørgen; Larsen, Erik Huusfeldt; Julshamn, K.

    2005-01-01

    Three water-soluble aliphatic arsenicals, dimethylarsinoyl acetate (DMAA), dimethylarsinoyl ethanol (DMAE), and dimethylarsinoyl propionate (DMAP), were identified in marine biological samples. Sample extracts in methanol/water (1 + 1) were analysed by cation-exchange high-performance liquid...... chromatography/inductively coupled plasma mass spectrometry (HPLC/ICPMS). Eluate fractions from the HPLC/ICPMS analyses containing the compounds in question were collected and subjected to analysis by electrospray ionisation tandem mass spectrometry (ESI-MS/MS), which provided supportive evidence...

  9. Characterization of Arsenic Biotransformation Products from an Open Anaerobic Degradation of Fucus distichus by Hydride Generation Gas Chromatography Atomic Absorption Spectrometry and High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry

    OpenAIRE

    Abiodun A. Ojo; Onasanya, Amos

    2013-01-01

    This work reports on the isolation and determination of biotransformation products obtained from the organoarsenic compounds that are present in Fucus distichus when it was subjected to an open anaerobic decomposition by using the Hydride Generation Gas Chromatography Atomic Absorption Spectrometry (HG-GC-AAS) and High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry (HPLC-ICP-MS). The seaweed and filtrate residues obtained from the open anaerobic degradation pro...

  10. [Simultaneous determination of multi-organotin compounds in seawater by liquid-liquid extraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry].

    Science.gov (United States)

    Yu, Zhen-Hua; Jing, Miao; Wang, Xiao-Ru; Chen, Deng-Yun; Huang, Yan-Liang

    2009-10-01

    The hyphenated technique of high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) was applied to the simultaneous determination of five organotin compounds (trimethyltin, dibutyltin, tributyltin, diphenyltin and triphenyltin) in seawater samples. Agilent TC-C18 column was used for the separation, the mobile phase of HPLC was CH3CN : H2O : CH3COOH = 65 : 23 : 12 (phi3), 0.05% TEA, and pH value was adjusted to 3.0 by diluent ammonia. The flow rate was 0.6 mL x min(-1). Five mixed organotin compounds in a mix standard solution from 100 to 0.5 microg x L(-1) were applied for the method assessment. The experimental results indicate that the correlation coefficient of calibration curves (R2) for each organotin compound was over 0.998 and the detection limits of the five organotin compounds were lower than 3 ng x L(-1). Different mixed organic solvents including dichloromethane or toluene were used for extraction of organotin and the extraction condition of organotin from seawater was optimized. The 100 mL seawater acidized by hydrochloric acid was extracted by 10 mL carbon dichloride (CH2 Cl2) with 2% tropolone for 10 min twice. Extracted organic solvents were mixed and blown to one drop by nitrogen with the rate of 1.7 mL x min(-1), then 1 mL acetonitrile was added to the drop for redissolving the organotin compounds. Finally, the mixed redissolution was filtered by 0.22 microm organic filter membrane before analysis. It was found that the only organotin compound in seawater was triphenyltin (TPHT) and the content was 53.2 ng x L(-1). The recoveries test from the standard addition for diphenyltin (DPHT), dibutyltin (DBT), tributyltin (TBT) and triphenyltin (TPHT) were over 80%. However, the recovery for trimethyltin (TMT) was relatively low and the value was 50%. The reason might be attributed to the decomposition or adsorption of those compounds during the extraction procedure. Further study on this subject is in

  11. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Directory of Open Access Journals (Sweden)

    Mallana Gowdra Mallikarjuna

    Full Text Available Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1; zinc: 5.41 to 30.85 mg kg(-1; manganese: 3.30 to 17.73 mg kg(-1; copper: 0.53 to 5.48 mg kg(-1 and grain yield (826.6 to 5413 kg ha(-1. Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05 and across locations (r = 0.44, p < 0.01. Variance components of the additive main effects and multiplicative interactions (AMMI model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%, manganese (41.34% and copper (41.12%, and environment main effects for both kernel zinc (40.5% and grain yield (37.0%. Genotype main effect plus genotype-by-environment interaction (GGE biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV as the better representative of the AMMI stability parameters. Dynamic stability

  12. Evaluation of a tunable bandpass reaction cell inductively coupled plasma mass spectrometer for the determination of selenium in serum and urine

    Science.gov (United States)

    Nixon, David E.; Neubauer, Kenneth R.; Eckdahl, Steven J.; Butz, John A.; Burritt, Mary F.

    2003-01-01

    A Dynamic Reaction Cell™ inductively coupled plasma mass spectrometer (DRC-ICP-MS) was evaluated for the determination of selenium in serum and urine. Reaction cell conditions were evaluated for the suppression of Ar 2+ dimer at m/ z 78 and 80 using methane as the reaction gas. A diluent containing 10% ethanol, 1% nitric acid, 0.5% Triton X-100 with gallium and yttrium internal standards was used to dilute urine and serum samples. Instrument response calibration was achieved by using aqueous acidic standards spiked into a urine matrix. Slopes for aqueous inorganic selenium, seleno- DL-cystine, seleno- DL-methionine and trimethylselenonium iodide spiked into urine and serum matrices were nearly identical. In general, reagent blank readings and detection limits were significantly lower in the DRC mode (reaction cell pressurized) than the standard mode (cell vented). Average results for the analysis of National Institute of Standards and Technology Standard Reference Material (NIST SRM) 1598 bovine serum (attained over 13 days) are: 43.8±3.6 μg Se/l. Reference concentration is 43.6±3.6 μg Se/l. For NIST SRM 2670 Normal Urine the DRC-ICP-MS results are 30.7±4.6 μg Se/l with a certified concentration of 30±8 μg Se/l. For NIST SRM 2670 Elevated Urine the DRC-ICP-MS results are 463±35 μg Se/l with a certified concentration of 460±30 μg Se/l. The DRC-ICP-MS results for selenium determinations in urine and serum survey samples from the Institut National de Sante Publique du Quebec were compared with the reference concentrations and results produced by conventional ICP-MS. While conventional ICP-MS gave acceptable results for survey samples, DRC-ICP-MS gave excellent results for both urine and sera. Closer correlation was observed for DRC-ICP-MS results with target concentrations than with conventional ICP-MS.

  13. Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Praphairaksit, N.

    2000-09-12

    An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at {approximately}70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W with an outer gas flow rate of {approximately}4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. The matrix-induced suppression

  14. Cadmium (II) imprinted 3-mercaptopropyltrimethoxysilane coated stir bar for selective extraction of trace cadmium from environmental water samples followed by inductively coupled plasma mass spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Nan [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin, E-mail: binhu@whu.edu.cn [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2012-04-20

    Graphical abstract: Ion imprinted 3-mercaptopropyltrimethoxysilane (MPTS) coated stir bar for selective extraction of trace Cd(II). Highlights: Black-Right-Pointing-Pointer Ion imprinted polymers were proposed as the coating for SBSE for the first time. Black-Right-Pointing-Pointer Cd(II) imprinted MPTS-silica coating was prepared by a double-imprinting concept. Black-Right-Pointing-Pointer A novel method of SBSE-ICP-MS was developed for the determination of Cd in waters. Black-Right-Pointing-Pointer This method is rapid, selective, sensitive and applicable for determining trace Cd(II) in waters. - Abstract: Cd(II) imprinted 3-mercaptopropyltrimethoxysilane (MPTS)-silica coated stir bar was prepared by sol-gel technique combining with a double-imprinting concept for the first time and was employed for stir bar sorptive extraction (SBSE) of trace Cd(II) from water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. A tetramethoxysilane (TMOS) coating was first in situ created on the glass bar surface. Afterward, a sol solution containing MPTS as the functional precursor, ethanol as the solvent and both Cd(II) and surfactant micelles (cetyltrimethylammonium bromide, CTAB) as the template was again coated on the TMOS bar. The structures of the stir bar coating were characterized by FT-IR spectroscopy. Round-bottom vial was used for the extraction of Cd(II) by SBSE to avoid abrasion of stir bar coatings. The factors affecting the extraction of Cd(II) by SBSE such as pH, stirring rate and time, sample/elution volume and interfering ions have been investigated in detail, and the optimized experimental parameters were obtained. Under the optimized conditions, the adsorption capacities of non-imprinted and imprinted coating stir bars were found to be 0.5 {mu}g and 0.8 {mu}g bar{sup -1}. The detection limit (3{sigma}) based on three times standard deviations of the method blanks by 7 replicates was 4.40 ng L{sup -1} and the relative standard

  15. Interlaboratory evaluation of a standardized inductively coupled plasma mass spectrometry method for the determination of trace beryllium in air filter samples.

    Science.gov (United States)

    Ashley, Kevin; Brisson, Michael J; Howe, Alan M; Bartley, David L

    2009-12-01

    A collaborative interlaboratory evaluation of a newly standardized inductively coupled plasma mass spectrometry (ICP-MS) method for determining trace beryllium in workplace air samples was carried out toward fulfillment of method validation requirements for ASTM International voluntary consensus standard test methods. The interlaboratory study (ILS) was performed in accordance with an applicable ASTM International standard practice, ASTM E691, which describes statistical procedures for investigating interlaboratory precision. Uncertainty was also estimated in accordance with ASTM D7440, which applies the International Organization for Standardization Guide to the Expression of Uncertainty in Measurement to air quality measurements. Performance evaluation materials (PEMs) used consisted of 37 mm diameter mixed cellulose ester filters that were spiked with beryllium at levels of 0.025 (low loading), 0.5 (medium loading), and 10 (high loading) microg Be/filter; these spiked filters were prepared by a contract laboratory. Participating laboratories were recruited from a pool of over 50 invitees; ultimately, 20 laboratories from Europe, North America, and Asia submitted ILS results. Triplicates of each PEM (blanks plus the three different loading levels) were conveyed to each volunteer laboratory, along with a copy of the draft standard test method that each participant was asked to follow; spiking levels were unknown to the participants. The laboratories were requested to prepare the PEMs by one of three sample preparation procedures (hotplate or microwave digestion or hotblock extraction) that were described in the draft standard. Participants were then asked to analyze aliquots of the prepared samples by ICP-MS and to report their data in units of mu g Be/filter sample. Interlaboratory precision estimates from participating laboratories, computed in accordance with ASTM E691, were 0.165, 0.108, and 0.151 (relative standard deviation) for the PEMs spiked at 0.025, 0

  16. Analytical problems in the determination of platinum-group metals in urine by quadrupole and magnetic sector field inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Krachler, Michael; Alimonti, Alessandro; Petrucci, Francesco; Caroli, Sergio [Istituto Superiore di Sanita, Rome (Italy); Irgolic, Kurt J. [Karl-Franzens Universitaet Graz, Institut fuer Analytische Chemie, Graz (Austria); Forastiere, Francesco [Osservatorio Epidemiologico Regione Lazio, Rome (Italy)

    1998-05-11

    At present, there is some concern as regards the release of Pt from catalytic converters for automotive exhaust control. These catalysts, in fact, can release particulate Pt and other metals, such as Pd and Rh, into the environment through combined mechanical and thermal effects. The increasing emission of Pt-group metals has led to a growing need for suitable analytical procedures for their determination at very low levels in biological and environmental matrices. In this context, a method is described which is based on the use of a magnetic sector field inductively coupled plasma-mass spectrometry (ICP-MS) for the determination of Pd, Pt and Rh at ngl{sup -1} levels in urine preliminarily digested by UV irradiation. Several sample pretreatment approaches were tested. The adverse effect of potentially interfering species on the mass-spectrometric determination of these metals was also taken into account. In particular, the role of other concomitants, such as Cd, Cu, Mo, Pb, Rb, Sr and Zn, was investigated in detail. The influence of such elements on the isotopes of interest, i.e. {sup 106}Pd, {sup 195}Pt and {sup 103}Rh, was quantified as apparent mean concentrations produced by the interfering elements at the expected levels in urine. These turned out to be in the 0.003-3.5ngl{sup -1} range. The data obtained demonstrated that the effects of {sup 106}Cd and {sup 40}Ar{sup 66}Zn on {sup 106}Pd as well as of {sup 206}Pb{sup 2+}, {sup 87}Sr{sup 16}O and {sup 40}Ar{sup 63}Cu on {sup 103}Rh cannot be disregarded. Detection limits in UV-digested and 1:20 diluted urine were found to be 0.25, 0.03 and 0.03ngl{sup -1} for {sup 106}Pd, {sup 194}Pt and {sup 103}Rh, respectively, in the low resolution mode in conjunction with ultrasonic nebulization. Repeatability of measurements was always better than 3%, while recovery data were in good agreement with the expected values. The method was tentatively applied to urine samples of 30 youngsters from the urban and suburban area

  17. Determination of As and Se in crude oil diluted in xylene by inductively coupled plasma mass spectrometry using a dynamic reaction cell for interference correction on 80Se

    Science.gov (United States)

    de Albuquerque, Fernanda Inda; Duyck, Christiane B.; Fonseca, Teresa Cristina O.; Saint'Pierre, Tatiana D.

    2012-05-01

    Arsenic and selenium can be found in crude oils and represent an important source of pollution when released to the environment during any stage of extraction or refinery. These elements present low sensitivity in the direct determination by inductively coupled plasma mass spectrometry (ICP-MS), due to their high ionization potential, and are also prone to spectral interferences. Hydride generation (HG) can be alternatively employed for the separation of these analytes from the sample matrix and introduction into the instrument. However, the required sample preparation usually increases the analysis time. In this work, a method was developed for the determination of As and Se in crude oil by ICP-MS, after sample dilution in xylene. The use of a dynamic reaction cell (DRC) allowed for the overcoming of Ar2+ interference on 80Se, but was not necessary for As, since interference on m/z 75 was not observed. The optimized operational conditions for 75As and 80Se were: 1350 W of RF power, 0.4 L min- 1 of Ar nebulizer and 0.7 L min- 1 of Ar auxiliary flow rates. The DRC conditions for 80Se were 0.5 L min- 1 of methane and rejection parameter q (Rpq) of 0.2. The analyses were carried out by analyte addition and the limits of detection (LOD) were 0.04 μg kg- 1 for As and 0.1 μg kg- 1 for Se. The accuracy was verified by the analysis of residual fuel oil certified material, with agreement at a 95% confidence level. Nine Brazilian crude oil samples were analyzed and the results compared to those obtained by hydride generation ICP-MS. In this case, samples were decomposed with nitric acid in a digester block, the analytes pre-reduced with HCl 6 mol L- 1 and the determination carried out by external calibration. Although better instrumental LODs were obtained by HG (0.002 μg kg- 1 of As and 0.04 μg kg- 1 of Se), the direct determination of As and Se in crude oil diluted in xylene by DRC-ICP-MS showed to be an adequate and a faster method.

  18. Common analyte internal standardization as a tool for correction for mass discrimination in multi-collector inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    It is well known that to achieve accurate isotope ratio data using multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS), mass discrimination needs to be adequately corrected for. In this work, the capabilities and limitations of common analyte internal standardization (CAIS) as a method for correction for mass discrimination were assessed for two target elements, one in the low mass region (boron) and another in the medium mass region (antimony). CAIS has already been used in the context of element determination and, more recently, also in isotope ratio measurements with quadrupole-based ICP-MS, but it has, to the best of the authors' knowledge, never been applied to isotope ratio determination via MC-ICP-MS so far. Results obtained relying on CAIS were compared with those obtained via more established correction models, i.e. external correction in a standard-sample bracketing approach (SSB) and internal correction based on both the Russell's law (original and empirical) and the revised Russell's law. To the best of the authors' knowledge, such comparison has not been done before, especially not for low mass elements. Also the robustness of these approaches with respect to concomitant matrix elements was assessed using synthetic solutions, containing various concentrations of the matrix elements Be, Cs, Be + Cs or Fe. Whereas for B, the isotope ratio result did not seem to be significantly affected by the matrix, thus suggesting that complete separation of B from a matrix might not be necessary, at least in the cases studied, the mass discrimination observed for Sb was influenced by the presence of Cs. The experiments carried out demonstrate that the CAIS technique can be successfully applied for mass bias correction in MC-ICP-MS, providing data of the same quality as the revised Russell's law, while being more transparent and accessible. While for B, all mass bias correction approaches tested provided similar data quality (external correction

  19. Laser ablation inductively coupled plasma mass spectrometric determination of lead isotopes composition in geology glasses%激光剥蚀电感耦合等离子体质谱法测定地质玻璃中铅同位素组成

    Institute of Scientific and Technical Information of China (English)

    刘智敏; 史玉芳; 刘勇胜; 胡兆初

    2010-01-01

    将193 nm准分子纳秒激光与四级杆电感耦合等离子体质谱联用,测量了国际参照物玻璃中Pb同位素丰度比.通过剥蚀NIST612,USGS和MPI-DING 玻璃,探讨了利用激光剥蚀电感耦合等离子体质谱直接测定固体样品铅同位素比值的精密度及其适用范围.通过扣除Ar载气中~(204)Hg 对~(204)Pb的同量异位素干扰,采用内标法和外标法校正LA-ICP-MS仪器的质量歧视效应,获得的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb、~(208)Pb/204Pb同位素比值测量的相对误差小于±1.2%,~(207)Pb/~(206)Pb、~(208)Pb/~(206)Pb同位素比值测定的相对误差小于±0.8%.对比结果表明,采用内标法校正的结果更接近真实值.测定的Pb同位素比值的精密度与样品中Pb含量密切相关,对Pb含量大于40 μg/g的样品,同位素比值~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb、~(208)Pb/~(204)Pb的RSD在1.0%以内,~(207)Pb/~(206)Pb、~(208)Pb/~(206)Pb的RSD在0.5%以内.大气颗粒物样品中Pb含量很高,采用LA-ICP-MS测定Pb同位素比值,能够鉴别污染来源,满足示踪的要求.

  20. Coupling of a gas chromatograph to a simultaneous-detection inductively coupled plasma mass spectrograph for speciation of organohalide and organometallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, James H.; Schilling, G; Sperline, Roger; Denton, M Bonner B.; Young, Erick T.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2004-06-01

    A gas chromatograph (GC) has been coupled to an inductively coupled plasma Mattauch-Herzog geometry mass spectrograph (ICP-MHMS) equipped with a novel detector array. In its current state of development the detector array, termed the focal plan camera (FPC), permits the simultaneous monitoring of up to 15 m/z values. A heated line was used to transfer the capillary-column effluent from the GC to the ICP torch, though due to instrument operating conditions, the transfer line was terminated 50 mm ahead of the ICP torch. Minimal tailing was observed, with the most severe effect seen for high-boiling analytes. With the coupling, absolute limits of detection are in the tens to hundreds of femtogram regime for organometallic species and in the single pictogram regime for halogenated hydrocarbons.

  1. Analytical evaluation of nebulizers for the introduction of acetic acid extracts aiming at the determination of trace elements by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gois, Jefferson S. de; Maranhao, Tatiane de A. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-970, Florianopolis, SC (Brazil); Oliveira, Fernando J.S. [Petroleo Brasileiro S.A., Gerencia de Meio Ambiente, Rio de Janeiro, RJ (Brazil); Frescura, Vera L.A.; Curtius, Adilson J. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-970, Florianopolis, SC (Brazil); Borges, Daniel L.G., E-mail: daniel.borges@ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-970, Florianopolis, SC (Brazil)

    2012-11-15

    Most of the official procedures aiming at classification of solid waste toxicity take into account metal solubility and bioavailability by means of extraction experiments using acetic acid solutions. Hence, the aim of this work was to investigate and optimize conditions to suppress the effect of acetic acid on the determination of trace elements using inductively coupled plasma mass spectrometry. The performance of four nebulizers (cross-flow (CFN), ultrasonic (USN), Meinhard (MN) and MicroMist (MMN)) were compared as to their efficiency in minimizing spectral and non-spectral effects on the determination of Ag, As, Ba, Cd, Cr, Hg, Pb and Se, with the ultimate goal to analyze acetic acid extracts obtained from solid waste residues. Operating conditions (desolvation temperatures for USN, RF power and nebulizer gas flow rates) were optimized individually for each nebulizer and for all analytes maintained in 0.14 mol L{sup -1} HNO{sub 3} solutions and in solutions prepared with acetic acid and acetic acid + NaOH, adjusted to pH 2.88 and 4.93, respectively. Pronounced non-spectral interferences for {sup 75}As and {sup 82}Se were observed in the presence of acetic acid for CF and MN, although to a less extent also for MMN and USN. Signal increase for blank solutions measured at m/z 208 ({sup 208}Pb) for CFN and MN, 107 ({sup 107}Ag) for USN and MN coupled to a cyclonic chamber and, m/z 82 ({sup 82}Se) for USN was observed, indicating an increased risk of spectral interference upon an increase in the concentration of acetic acid. Signal increase at specific m/z ratios, however, was not significant when the MMN was used, with the exception of m/z 52 ({sup 52}Cr) in acetic acid solutions, arising from the formation of {sup 40}Ar{sup 12}C{sup +}. This same effect was noticed for all nebulizers, although at noticeably different intensities. A signal stability study was performed, demonstrating that variations in the analytical signal were within a 20% range for all analytes

  2. FI/SI on-line solvent extraction/back extraction preconcentration coupled to direct injection nebulization inductively coupled plasma mass spectrometry for determination of copper and lead

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2002-01-01

    An automated sequential injection on-line preconcentration procedure for determination of trace levels of copper and lead via solvent extraction/back extraction coupled to ICP-MS is described. In citrate buffer of pH 3, neutral complexes between the analytes and the chelating reagent, ammonium...... pyrrolidinedithiocarbamate (APDC), are extracted into isobutyl methyl ketone (IBMK). The organic phase is separated from the aqueous one by means of a dual-conical gravitational phase separator, and stored in a PTFE holding coil. Afterwards, the organic phase is propelled and mixed with an aqueous back extractant of nitric...

  3. Elemental ratios for characterization of quantum-dots populations in complex mixtures by asymmetrical flow field-flow fractionation on-line coupled to fluorescence and inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menendez-Miranda, Mario; Fernandez-Arguelles, Maria T.; Costa-Fernandez, Jose M., E-mail: jcostafe@uniovi.es; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo, E-mail: asm@uniovi.es

    2014-08-11

    Highlights: • The hyphenated system allows unequivocal identification of nanoparticle populations. • AF4 separation permitted detection of unexpected nanosized species in a sample. • ICP-QQQ provides elemental ratios with adequate accuracy in every nanoparticle. • Purity and chemical composition of different quantum dot samples were assessed. - Abstract: Separation and identification of nanoparticles of different composition, with similar particle diameter, coexisting in heterogeneous suspensions of polymer-coated CdSe/ZnS quantum dots (QDs) have been thoroughly assessed by asymmetric flow field-flow fractionation (AF4) coupled on-line to fluorescence and inductively coupled plasma mass spectrometry (ICPMS) detectors. Chemical characterization of any previously on-line separated nanosized species was achieved by the measurement of the elemental molar ratios of every element involved in the synthesis of the QDs, using inorganic standards and external calibration by flow injection analysis (FIA). Such elemental molar ratios, strongly limited so far to pure single nanoparticles suspensions, have been achieved with adequate accuracy by coupling for the first time an ICP-QQQ instrument to an AF4 system. This hyphenation turned out to be instrumental to assess the chemical composition of the different populations of nanoparticles coexisting in the relatively complex mixtures, due to its capabilities to detect the hardly detectable elements involved in the synthesis. Interestingly such information, complementary to that obtained by fluorescence, was very valuable to detect and identify unexpected nanosized species, present at significant level, produced during QDs synthesis and hardly detectable by standard approaches.

  4. Analysis of Trace Inorganic Elements in Castor Oil by Inductively Coupled Plasma Mass Spectrometry%蓖麻油中无机元素的质谱分析

    Institute of Scientific and Technical Information of China (English)

    李坦平; 谢华林; 聂西度

    2015-01-01

    A method for the determination of Na ,Mg ,Si ,P ,K ,Ca ,Cr ,Mn ,Fe ,Co ,Ni ,Cu ,Zn ,As ,Se ,Sr ,Mo ,Cd ,Hg and Pb in castor oil after direct dilution with ethanol by inductively coupled plasma mass spectrometry (ICP‐MS) was estab‐lished .The sample was diluted by ethanol before ICP‐MS determination .The condensation and deposition of high concentrations of carbon in mass cone interface and ion lens ,which will decrease the sensitivity of element analysis ,were avoided effectively by introducing O2 to plasma .The mass spectral interferences were eliminated by octopole reaction system (ORS) .The matrix effects were calibrated to using Sc ,Ge ,Rh and Ir as internal standard elements .Au standard solution ,which could form amal‐gam alloy with Hg ,was dropped to eliminate the memory effect of Hg .The results show that the correlation coefficient for ana‐lyte is no less than 0.999 5 ,the detection limits is in the range of 0.06~20.1 ng・L -1 ,the recovery is in the range of 990.4%~110.2% ,and the RSD is less than 4.8% .This method was very fast ,simple and accurate to simultaneously analyze multi‐ele‐ments in castor oil .%建立了乙醇稀释‐电感耦合等离子体质谱(IC P‐M S )法测定蓖麻油中多个无机微量元素的分析方法。蓖麻油样品用乙醇稀释,使用IC P‐M S法直接测定。在等离子体氩气流中加入少量氧气,使高浓度有机溶液进入等离子体中完全燃烧,防止了高碳在质谱锥口和离子透镜上的冷凝沉积,采用八极杆碰撞/反应池(ORS)消除了质谱干扰,多元素(Sc ,Ge ,Rh ,Ir)内标溶液的使用消除了基体效应,维持了各元素分析信号的稳定,通过向待测溶液中加入A u标准溶液,使元素 H g形成金汞齐消除了记忆效应。20个待测元素的线性相关系数≥0.9995,检出限在0.06~20.1 ng・ L -1之间,回收率为90.4%~110.2%,相对标准偏差(RSD )≤4.8%。通过对不同

  5. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lazarov, Marina, E-mail: m.lazarov@mineralogie.uni-hannover.de; Horn, Ingo

    2015-09-01

    Copper isotope compositions in Cu-bearing metals and minerals have been measured by deep (194 nm) ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (UV-fsLA-MC-ICP-MS). Pure Cu-metal, brass, and several Cu-rich minerals (chalcopyrite, enargite, covellite, malachite and cuprite) have been investigated. A long-term reproducibility of better than 0.08‰ at the 95% confidence limit on the NIST SRM 976 (National Institute of Standards and Technology) Cu-metal standard has been achieved with this technique. The δ{sup 65}Cu values for all samples have been calculated by standard-sample-standard bracketing with NIST SRM 976. All analyses have been carried out using Ni as a mass discrimination monitor added by nebulization prior to entering the plasma torch. For further verification samples have been analysed by conventional solution nebulization MC-ICP-MS and the results obtained have been compared with those from UV-fsLA-MC-ICP-MS. Several potential matrix-induced molecular interferences on the mineral copper isotope ratio, such as ({sup 32}S{sup 33}S){sup +} and ({sup 32}S-{sup 16}O{sup 17}O){sup +} do not affect the Cu isotope measurements on sulfides, while hydrides, such as Zn–H or doubly-charged Sn{sup 2+} that interfere Ni isotopes can be either neglected or stripped by calculation. Matrix independent Cu-isotope measurements are sensitive to the energy density (fluence) applied onto the sample and can produce artificial shifts in the obtained δ{sup 65}Cu values which are on the order of 3‰ for Cu-metal, 0.5‰ for brass and 0.3‰ for malachite when using energy density of up to 2 J/cm{sup 2} for ablation. A positive correlation between applied energy density and the magnitude of the isotope ratio shift has been found in the energy density range from 0.2 to 1.3 J/cm{sup 2} which is below the ablation threshold for ns-laser ablation. The results demonstrate that by using appropriate low fluence it is possible

  6. A micro-fluidic sub-microliter sample introduction system for direct analysis of Chinese rice wine by inductively coupled plasma mass spectrometry using external aqueous calibration

    International Nuclear Information System (INIS)

    A microfluidic sub-microliter sample introducing system was developed for direct analysis of Chinese rice wine by inductively coupled plasma mass spectrometry (ICP-MS). It consisted of a microfluidic chip integrating variable-volume sampling channels (0.1–0.8 μL), an eight-way multi-functional valve used in flow injection analysis (FIA), a syringe pump and a peristaltic pump of the Ar ICP-MS instrument. Three solutions, i.e., 15, 40 and 100 g L−1 glucose in 20% ethanol were used to simulate Chinese rice wine of the dry type, the semidry type and the semisweet type, each. The effects of their volume introduced into ICP-MS on the plasma stability and ICP-MS intensities were studied. The experimental results showed that neither alteration of plasma stability nor carbon deposition was observed when the sampling volume of 20% ethanol containing 100 g L−1 glucose was downscaled to 0.8 μL. Further reducing the sampling volume to 0.4 μL, no significant difference between the intensities of multi-element standard prepared in three simulated Chinese rice wine matrices and those in aqueous solution was observed. It indicated no negative effect of Chinese rice wine matrix on the ICP-MS intensities. A sampling volume of 0.4 μL was considered to be a good compromise between sensitivity and matrix effect. The flow rate of the carrier was chosen as 20 μL min−1 for obtaining peaks with the highest peak height within the shortest time. Based on these observations, a microflow injection (μFI) method for the direct determination of cadmium and lead in Chinese rice wine by ICP-MS using an external aqueous calibration was developed. The sample throughput was 45 h−1 with the detection limit of 19.8 and 10.4 ng L−1 for Cd and Pb, respectively. The contents of Cd and Pb in 10 Chinese rice wine samples were measured. The results agreed well with those determined by ICP-MS with the conventional sampling system after microwave assisted digestion. The recoveries of three

  7. Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: dependence on the effective ionospheric Pedersen conductivity and iogenic plasma mass outflow rate

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    , flowing consistently from the ionosphere to the current sheet for the sense of the jovian magnetic field. Current closure must then occur at higher latitudes, on field lines outside the region described by the model. The amplitudes of the currents in the two models are found to scale with the system parameters in similar ways, though the scaling is with a somewhat higher power of the conductivity for the current sheet model than for the dipole, and with a somewhat lower power of the plasma mass outflow rate. The absolute values of the currents are also higher for the current sheet model than for the dipole for given parameters, by factors of approx 4 for the field-perpendicular current intensities, ≈ 10 for the total current flowing in the circuit, and ≈ 25 for the field-aligned current densities, factors which do not vary greatly with the system parameters. These results thus confirm that the conclusions drawn previously from a small number of numerical integrations using spot values of the system parameters are generally valid over wide ranges of the parameter values.

    Key words. Magnetospheric physics (current systems, magnetosphere-ionosphere interactions, planetary magnetospheres

  8. A micro-fluidic sub-microliter sample introduction system for direct analysis of Chinese rice wine by inductively coupled plasma mass spectrometry using external aqueous calibration

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Heyong [Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310027 (China); College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036 (China); Liu, Jinhua [College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036 (China); Xu, Zigang [Institute of Analytical and Applied Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310027 (China); Yin, Xuefeng, E-mail: yinxf@zju.edu.cn [Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310027 (China); College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036 (China)

    2012-07-15

    A microfluidic sub-microliter sample introducing system was developed for direct analysis of Chinese rice wine by inductively coupled plasma mass spectrometry (ICP-MS). It consisted of a microfluidic chip integrating variable-volume sampling channels (0.1-0.8 {mu}L), an eight-way multi-functional valve used in flow injection analysis (FIA), a syringe pump and a peristaltic pump of the Ar ICP-MS instrument. Three solutions, i.e., 15, 40 and 100 g L{sup -1} glucose in 20% ethanol were used to simulate Chinese rice wine of the dry type, the semidry type and the semisweet type, each. The effects of their volume introduced into ICP-MS on the plasma stability and ICP-MS intensities were studied. The experimental results showed that neither alteration of plasma stability nor carbon deposition was observed when the sampling volume of 20% ethanol containing 100 g L{sup -1} glucose was downscaled to 0.8 {mu}L. Further reducing the sampling volume to 0.4 {mu}L, no significant difference between the intensities of multi-element standard prepared in three simulated Chinese rice wine matrices and those in aqueous solution was observed. It indicated no negative effect of Chinese rice wine matrix on the ICP-MS intensities. A sampling volume of 0.4 {mu}L was considered to be a good compromise between sensitivity and matrix effect. The flow rate of the carrier was chosen as 20 {mu}L min{sup -1} for obtaining peaks with the highest peak height within the shortest time. Based on these observations, a microflow injection ({mu}FI) method for the direct determination of cadmium and lead in Chinese rice wine by ICP-MS using an external aqueous calibration was developed. The sample throughput was 45 h{sup -1} with the detection limit of 19.8 and 10.4 ng L{sup -1} for Cd and Pb, respectively. The contents of Cd and Pb in 10 Chinese rice wine samples were measured. The results agreed well with those determined by ICP-MS with the conventional sampling system after microwave assisted digestion

  9. High-precision measurements of uranium and thorium isotopic ratios by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS)

    Science.gov (United States)

    Wang, Lisheng; Ma, Zhibang; Duan, Wuhui

    2015-04-01

    Isotopic compositions of U-Th and 230Th dating have been widely used in earth sciences, such as chronology, geochemistry, oceanography and hydrology. In this study, five ages of different carbonate samples were measured using 230Th dating technique with U-Th high-precision isotopic measurements by multi-collector inductively coupled plasma mass spectrometry, in Uranium-series Chronology Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences.In this study, the precision and accuracy of uranium isotopic composition were estimated by measuring the uranium ratios of NBS-CRM 112A, NBS-CRM U500 and HU-1. The mean measured ratios, 234U/238U = 52.86 (±0.04) × 10-6 and δ234U = -38.36 (±0.77) × 10-3 for NBS-CRM 112A, 234U/238U = 10.4184 (±0.0001) × 10-3, 236U/238U = 15.43 (±0.01) × 10-4 and 238U/235U = 1.00021 (±0.00002) for NBS-CRM U500, 234U/238U = 54.911 (±0.007) and δ234U = -1.04 (±0.13) × 10-3 for HU-1 (95% confidence levels). The U isotope data for standard reference materials are in excellent agreement with previous studies, further highlighting the reliability and analytical capabilities of our technique. We measured the thorium isotopic ratios of three different thorium standards by MC-ICPMS. The three standards (Th-1, Th-2 and Th-3) were mixed by HU-1 and NBS 232Th standard, with the 230Th/232Th ratios from 10-4 to 10-6. The mean measured atomic ratios, 230Th/232Th = 2.1227 (±0.0024) × 10-6, 2.7246 (±0.0026) × 10-5, and 2.8358 (±0.0007) × 10-4 for Th-1, Th-2 and Th-3 (95% confidence levels), respectively. Using this technique, the following standard samples were dated by MC-ICPMS. Sample RKM-4, collected from Babardos Kendal Hill terrace, was used during the first stage of the Uranium-Series Intercomparison Project (USIP-I). Samples 76001, RKM-5 and RKM-6 were studied during the second stage of the USIP program (USIP-II). Sample 76001 is a laminated flowstone, collected from Sumidero Terejapa, Chiapas, Mexico, and samples

  10. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg)

    Science.gov (United States)

    Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.

    2016-08-01

    The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.