WorldWideScience

Sample records for ablation-induced au condensates

  1. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates

    Directory of Open Access Journals (Sweden)

    M. Vinod

    2014-12-01

    Full Text Available Chemically pure colloidal suspensions of gold and silver nanoparticles were synthesized using pulsed laser ablation. The dependence of laser fluence on the surface plasmon characteristics of the nanoparticles was investigated. Au:Ag colloidal suspensions were prepared by mixing highly monodisperse Au and Ag nanocolloids. The plasmon band of these mixtures was found to be highly sensitive to Au:Ag concentration ratio and wavelength of the laser beam used in the ablation process. The Au:Ag mixture consists of almost spherical shaped nanostructures with a tendency to join with adjacent ones. The surface enhanced Raman scattering activity of the Au, Ag and Au:Ag colloidal suspensions was tested using crystal violet as probe molecules. Enhancement in Raman signal obtained with Au:Ag substrates was found to be promising and strongly depends on its plasmon characteristics.

  2. Parametric study on femtosecond laser pulse ablation of Au films

    International Nuclear Information System (INIS)

    Ni Xiaochang; Wang Chingyue; Yang Li; Li Jianping; Chai Lu; Jia Wei; Zhang Ruobing; Zhang Zhigang

    2006-01-01

    Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N x φ th (N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research

  3. Electrophoretic deposition on graphene of Au nanoparticles generated by laser ablation of a bulk Au target in water

    International Nuclear Information System (INIS)

    Semaltianos, N G; Hendry, E; Chang, H; Wears, M L

    2015-01-01

    The characteristic property of nanoparticles generated by laser ablation of metallic targets in liquids to be surface electrically charged can be exploited for the deposition of the nanoparticles onto electrically conducting substrates directly from the synthesized colloidal solution by using the method of electrophoretic deposition (EPD). The method benefits from the high quality of the interface between the deposited nanoparticles and the substrate due to the ligand-free nanoparticle surfaces and thus providing hybrid materials with advanced and novel properties. In this letter, an Au bulk target was laser ablated in deionized (DI) water for the generation of an Au nanoparticle colloidal solution. Under the present conditions of ablation, nanoparticles with diameters from 4 and up to 67 nm are formed in the solution with 80% of the nanoparticles having diameters below ∼20 nm. Their size distribution follows a log-normal function with a median diameter of 8.6 nm. The nanoparticles were deposited onto graphene on a quartz surface by anodic EPD performed at 30 V for 20 min and a longer time of 1 h. A quite uniform surface distribution of the nanoparticles was achieved with surface densities ranging from ∼15 to ∼40 nanoparticles per μm 2 . The hybrid materials exhibit clearly the plasmon resonance absorption of the Au nanoparticles. Deposition for short times preserves the integrity of graphene while longer time deposition leads to the conversion of graphene to graphene oxide, which is attributed to the electrochemical oxidation of graphene. (letter)

  4. SERS-active Ag, Au and Ag–Au alloy nanoparticles obtained by laser ablation in liquids for sensing methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Olea-Mejía, Oscar, E-mail: oleaoscar@yahoo.com.mx [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Universidad Autónoma del Estado de México, km 14.5 Carretera Toluca-Atlacomulco, San Cayetano 50200, México (Mexico); Fernández-Mondragón, Mariana; Rodríguez-de la Concha, Gabriela [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Universidad Autónoma del Estado de México, km 14.5 Carretera Toluca-Atlacomulco, San Cayetano 50200, México (Mexico); Camacho-López, Marco [Laboratorio de Investigación y Desarrollo de Materiales Avanzados, Universidad Autónoma del Estado de México, Km 14.5 Carretera Toluca-Atlacomulco, San Cayetano 50925, México (Mexico)

    2015-09-01

    Highlights: • We synthesized Ag/Au nanoparticles by laser ablation in liquids. • We characterized such particles by UV–vis, TEM and EDS/STEM. • The SERS effect was studied for the obtained nanoparticles. • Pure silver nanoparticles showed the highest SERS signals. • We can sense methylene blue at a concentration of 10{sup −10} mole/L. - Abstract: We have synthesized Ag–Au nanoparticles by laser ablation in liquids using five different targets: 100% Ag, 80%Ag/20%Au, 50%Ag/50%Au, 20%Ag/80%Au and 100% Au (weight percentages). We used ethanol and methylene blue solutions in ethanol as the liquid media. The nanoparticles were mostly spherical with diameters 15, 19, 18, 23 and 11 nm, respectively. When alloyed targets were used, the resulting nanoparticles were completely alloyed forming solid solutions as evidenced by UV–vis Spectroscopy and Scanning Transmission Electron Microscopy. The obtained nanoparticles were employed to study the SERS effect of the methylene blue molecule. All the samples showed good SERS activity, however the ones composed of pure silver showed the greatest Raman signal enhancement. Finally, pure Ag nanoparticles were used for sensing methylene blue at different concentrations. While almost no signal can be discerned from the Raman spectrum when no particles are used at a concentration of methylene blue of 1 × 10{sup −2} M (∼3000 ppm), when Ag nanoparticles are used one can observe the characteristic peak of the molecule at concentrations as low as 1 × 10{sup −10} M (∼3 × 10{sup −5} ppm)

  5. Biocompatible Au@Carbynoid/Pluronic-F127 nanocomposites synthesized by pulsed laser ablation assisted CO2 recycling

    Science.gov (United States)

    Del Rosso, T.; Louro, S. R. W.; Deepak, F. L.; Romani, E. C.; Zaman, Q.; Tahir; Pandoli, O.; Cremona, M.; Freire Junior, F. L.; De Beule, P. A. A.; De St. Pierre, T.; Aucelio, R. Q.; Mariotto, G.; Gemini-Piperni, S.; Ribeiro, A. R.; Landi, S. M.; Magalhães, A.

    2018-05-01

    Ligand-free carbynoid-encapsulated gold nanocomposites (Au@Carbynoid NCs) with blue-shifted localized surface plasmon resonance (LSPR) have been synthesized by CO2 recycling induced by pulsed laser ablation (PLA) of a solid gold target in aqueous solution with NaOH at pH 7.0. High Resolution Transmission Electron Microscopy (HRTEM) images at not destructive acceleration voltage of 80 kV revealed carbynoid nanocrystals around the gold core, associated to the intense bond length alternation (BLA) Raman mode of the carbon atomic wires (CAWs), centered at 2124 cm-1, observed in the Surface Enhanced Raman Scattering (SERS) spectra. It was verified that interlinking process with sp to sp2 conversion of the CAWs is induced both by high acceleration voltage in HRTEM and high irradiance of the excitation beam used in SERS measurements. Post synthesis mixing of Pluronic-F127 copolymer with pre-synthesized Au@Carbynoid NCs allows the formation of a fully biocompatible colloidal solution of Au@Carbynoid/Copolymer NCs. SERS investigation highlights that the Raman band of the BLA mode can be used as efficient Raman tag to monitor the functionalization of the NCs with the copolymer. The biocompatibility of the NCs was demonstrated performing a study of cytotoxicity using human skin fibroblasts. As proof of principle, it was demonstrated that the photodynamic activity of the bifunctional Au@Carbynoid/PF127 NCs in the presence of chlorin e6 (Ce6) drug can be enhanced inducing the aggregation state of the colloidal suspension. The stability of the colloidal dispersions of Au@Carbynoid NCs functionalized with Pluronic-F127 is verified after centrifugation in PBS (0.15 mol L-1 NaCl) solutions, confirming the possibility to use the green carbynoid based NCs as drug-carrier in biological applications.

  6. Laser ablation of Au-CuO core-shell nanocomposite in water for optoelectronic devices

    Science.gov (United States)

    Ismail, Raid A.; Abdul-Hamed, Ryam S.

    2017-12-01

    Core-shell gold-copper oxide Au-CuO nanocomposites were synthesized using laser ablation of CuO target in colloidal solution of Au nanoparticles (NPs). The effect of laser fluence on the structural, morphological, electrical, and optical properties of Au-CuO nanocomposites was investigated using x-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL), Fourier transformed infrared spectroscopy (FTIR), Hall measurement, and UV-vis spectroscopy. X-ray diffraction results confirm the formation of polycrystalline Au-CuO NPs with monoclinic structure. The optical energy gap for CuO was 4 eV and for the Au-CuO core-shell nanocomposites was found to be in the range of 3.4-3.7 eV. SEM and TEM investigations revealed that the structure and morphology of Au-CuO core-shell nanocomposites were strongly depending on the laser fluence. A formation of Au-CuO nanospheres and platelets structures was observed. The photoluminescence data showed an emission of broad visible peaks between 407 and 420 nm. The effect of laser fluence on the dark and illuminated I-V characteristics of Au-CuO/n-Si heterojunction photodetectors was investigated and analyzed. The experimental data demonstrated that the photodetector prepared at optimum laser fluence exhibited photosensitivity of 0.6 AW-1 at 800 nm.

  7. Subtotal Ablation of Parietal Epithelial Cells Induces Crescent Formation

    Science.gov (United States)

    Sicking, Eva-Maria; Fuss, Astrid; Uhlig, Sandra; Jirak, Peggy; Dijkman, Henry; Wetzels, Jack; Engel, Daniel R.; Urzynicok, Torsten; Heidenreich, Stefan; Kriz, Wilhelm; Kurts, Christian; Ostendorf, Tammo; Floege, Jürgen; Smeets, Bart

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established an inducible transgenic mouse to allow subtotal ablation of PECs. Proteinuria developed during doxycycline-induced cellular ablation but fully reversed 26 days after termination of doxycycline administration. The ablation of PECs was focal, with only 30% of glomeruli exhibiting histologic changes; however, the number of PECs was reduced up to 90% within affected glomeruli. Ultrastructural analysis revealed disruption of PEC plasma membranes with cytoplasm shedding into Bowman’s space. Podocytes showed focal foot process effacement, which was the most likely cause for transient proteinuria. After >9 days of cellular ablation, the remaining PECs formed cellular extensions to cover the denuded Bowman’s capsule and expressed the activation marker CD44 de novo. The induced proliferation of PECs persisted throughout the observation period, resulting in the formation of typical cellular crescents with periglomerular infiltrate, albeit without accompanying proteinuria. In summary, subtotal ablation of PECs leads the remaining PECs to react with cellular activation and proliferation, which ultimately forms cellular crescents. PMID:22282596

  8. Osteoid Osteoma: Experience with Laser- and Radiofrequency-Induced Ablation

    International Nuclear Information System (INIS)

    Gebauer, Bernhard; Tunn, Per-Ulf; Gaffke, Gunnar; Melcher, Ingo; Felix, Roland; Stroszczynski, Christian

    2006-01-01

    The purpose of this study was to analyze the clinical outcome of osteoid osteoma treated by thermal ablation after drill opening. A total of 17 patients and 20 procedures were included. All patients had typical clinical features (age, pain) and a typical radiograph showing a nidus. In 5 cases, additional histological specimens were acquired. After drill opening of the osteoid osteoma nidus, 12 thermal ablations were induced by laser interstitial thermal therapy (LITT) (9F Power-Laser-Set; Somatex, Germany) and 8 ablations by radiofrequency ablation (RFA) (RITA; StarBurst, USA). Initial clinical success with pain relief has been achieved in all patients after the first ablation. Three patients had an osteoid osteoma recurrence after 3, 9, and 10 months and were successfully re-treated by thermal ablation. No major complication and one minor complication (sensible defect) were recorded. Thermal ablation is a safe and minimally invasive therapy option for osteoid osteoma. Although the groups are too small for a comparative analysis, we determined no difference between laser- and radiofrequency-induced ablation in clinical outcome after ablation

  9. Laser ablative nanostructuring of Au in liquid ambience in continuous wave illumination regime

    Science.gov (United States)

    Kucherik, A. O.; Kutrovskaya, S. V.; Arakelyan, S. M.; Ryabchikov, Y. V.; Al-Kattan, A.; Kabashin, A. V.; Itina, T. E.

    2016-03-01

    Gold nanoparticles (Au NPs) attract particular attention because of their unique size-dependent chemical, physicochemical and optical properties and, hence, their potential applications in catalysis, nanoelectronics, photovoltaics and medicine. In particular, laser-produced colloidal nanoparticles are not only biocompatible, but also reveal unique chemical properties. Different laser systems can be used for synthesis of these colloids, varying from continuous wave (CW) to ultra-short femtosecond lasers. The choice of an optimum laser system is still a challenge in application development. To bring more light at this issue, we investigate an influence of laser parameters on nanoparticle formation from a gold target immersed in deionized water. First, an optical diagnostics of laser-induced hydrodynamic processes taking place near the gold surface is performed. Then, gold nanoparticle colloids with average particle sizes smaller than 10 nm and a very narrow dispersion are shown to be formed by CW laser ablation. The obtained results are compared with the ones obtained by using the second harmonics and with previous results obtained by using femtosecond laser systems.

  10. Diagnosis of condensation-induced waterhammer: Case studies

    International Nuclear Information System (INIS)

    Izenson, M.G.; Rothe, P.H.; Wallis, G.B.

    1988-10-01

    This guidebook provides reference material and diagnostic procedures concerning condensation-induced waterhammer in nuclear power plants. Condensation-induced waterhammer is the most damaging form of waterhammer, and its diagnosis is complicated by the complex nature of the underlying phenomena. In Volume 1, the guidebook groups condensation-induced waterhammers into five event classes which have similar phenomena and levels of damage. Diagnostic guidelines focus on locating the event center where condensation and slug acceleration take place. Diagnosis is described in three stages: an initial assessment, detailed evaluation and final confirmation. Graphical scoping analyses are provided to evaluate whether an event from one of the event classes could have occurred at the event center. Examples are provided for each type of waterhammer. Special instructions are provided for walking down damaged piping and evaluating damage due to waterhammer. To illustrate the diagnostic methods and document past experience, six case studies have been compiled in Volume 2. These case studies, based on actual condensation-induced waterhammer events at nuclear plants, present detailed data and work through the event diagnosis using the tools introduced in the first volume. 20 refs., 21 figs., 6 tabs

  11. P2 asymmetry of Au's M-band flux and its smoothing effect due to high-Z ablator dopants

    Directory of Open Access Journals (Sweden)

    Yongsheng Li

    2017-03-01

    Full Text Available X-ray drive asymmetry is one of the main seeds of low-mode implosion asymmetry that blocks further improvement of the nuclear performance of “high-foot” experiments on the National Ignition Facility [Miller et al., Nucl. Fusion 44, S228 (2004]. More particularly, the P2 asymmetry of Au's M-band flux can also severely influence the implosion performance of ignition capsules [Li et al., Phys. Plasmas 23, 072705 (2016]. Here we study the smoothing effect of mid- and/or high-Z dopants in ablator on Au's M-band flux asymmetries, by modeling and comparing the implosion processes of a Ge-doped ignition capsule and a Si-doped one driven by X-ray sources with P2 M-band flux asymmetry. As the results, (1 mid- or high-Z dopants absorb hard X-rays (M-band flux and re-emit isotropically, which helps to smooth the asymmetric M-band flux arriving at the ablation front, therefore reducing the P2 asymmetries of the imploding shell and hot spot; (2 the smoothing effect of Ge-dopant is more remarkable than Si-dopant because its opacity in Au's M-band is higher than the latter's; and (3 placing the doped layer at a larger radius in ablator is more efficient. Applying this effect may not be a main measure to reduce the low-mode implosion asymmetry, but might be of significance in some critical situations such as inertial confinement fusion (ICF experiments very near the performance cliffs of asymmetric X-ray drives.

  12. Histopathology of cryoballoon ablation-induced phrenic nerve injury.

    Science.gov (United States)

    Andrade, Jason G; Dubuc, Marc; Ferreira, Jose; Guerra, Peter G; Landry, Evelyn; Coulombe, Nicolas; Rivard, Lena; Macle, Laurent; Thibault, Bernard; Talajic, Mario; Roy, Denis; Khairy, Paul

    2014-02-01

    Hemi-diaphragmatic paralysis is the most common complication associated with cryoballoon ablation for atrial fibrillation, yet the histopathology of phrenic nerve injury has not been well described. A preclinical randomized study was conducted to characterize the histopathology of phrenic nerve injury induced by cryoballoon ablation and assess the potential for electromyographic (EMG) monitoring to limit phrenic nerve damage. Thirty-two dogs underwent cryoballoon ablation of the right superior pulmonary vein with the objective of inducing phrenic nerve injury. Animals were randomized 1:1 to standard monitoring (i.e., interruption of ablation upon reduction in diaphragmatic motion) versus EMG guidance (i.e., cessation of ablation upon a 30% reduction in the diaphragmatic compound motor action potential [CMAP] amplitude). The acute procedural endpoint was achieved in all dogs. Phrenic nerve injury was characterized by Wallerian degeneration, with subperineural injury to large myelinated axons and evidence of axonal regeneration. The degree of phrenic nerve injury paralleled the reduction in CMAP amplitude (P = 0.007). Animals randomized to EMG guidance had a lower incidence of acute hemi-diaphragmatic paralysis (50% vs 100%; P = 0.001), persistent paralysis at 30 days (21% vs 75%; multivariate odds ratio 0.12, 95% confidence interval [0.02, 0.69], P = 0.017), and a lesser severity of histologic injury (P = 0.001). Mature pulmonary vein ablation lesion characteristics, including circumferentiality and transmurality, were similar in both groups. Phrenic nerve injury induced by cryoballoon ablation is axonal in nature and characterized by Wallerian degeneration, with potential for recovery. An EMG-guided approach is superior to standard monitoring in limiting phrenic nerve damage. © 2013 Wiley Periodicals, Inc.

  13. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. This phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The ensuing structural damage, inspection and repairs are described. Finally, a list of design, maintenance and operational cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  14. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. THis phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The insuing structural damage, inspection and repairs are described. Finally, a list of design cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  15. Diagnosis of condensation-induced waterhammer: Methods and background

    International Nuclear Information System (INIS)

    Izenson, M.G.; Rothe, P.H.; Wallis, G.B.

    1988-10-01

    This guidebook provides reference material and diagnostic procedures concerning condensation-induced waterhammer in nuclear power plants. Condensation-induced waterhammer is the most damaging form of waterhammer and its diagnosis is complicated by the complex nature of the underlying phenomena. In Volume 1, the guidebook groups condensation-induced waterhammers into five event classes which have similar phenomena and levels of damage. Diagnostic guidelines focus on locating the event center where condensation and slug acceleration take place. Diagnosis is described in three stages: an initial assessment, detailed evaluation and final confirmation. Graphical scoping analyses are provided to evaluate whether an event from one of the event classes could have occurred at the event center. Examples are provided for each type of waterhammer. Special instructions are provided for walking down damaged piping and evaluating damage due to waterhammer. To illustrate the diagnostic methods and document past experience, six case studies have been compiled in Volume 2. These case studies, based on actual condensation-induced waterhammer events at nuclear plants, present detailed data and work through the event diagnosis using the tools introduced in the first volume. 65 figs., 8 tabs

  16. P2 Asymmetry of Au's M-band Flux and its smoothing effect due to high-Z ablator dopants

    Science.gov (United States)

    Li, Yongsheng; Zhai, Chuanlei; Ren, Guoli; Gu, Jianfa; Huo, Wenyi; Meng, Xujun; Ye, Wenhua; Lan, Ke; Zhang, Weiyan

    2017-10-01

    X-ray drive asymmetry is one of the main seeds of low-mode implosion asymmetry that blocks further improvement of the nuclear performance of ``high-foot'' experiments on the National Ignition Facility. More particularly, the P2 asymmetry of Au's M-band flux can also severely influence the implosion performance. Here we study the smoothing effect of mid- and/or high-Z dopants in ablator on M-band flux asymmetries, by modeling and comparing the implosion processes of a Ge-doped and a Si-doped ignition capsule driven by x-ray sources with asymmetric M-band flux. As the results, (1) mid- or high-Z dopants absorb M-band flux and re-emit isotropically, helping to smooth M-band flux arriving at the ablation front, therefore reducing the P2 asymmetries of the imploding shell and hot spot; (2) the smoothing effect of Ge-dopant is more remarkable than Si-dopant due to its higher opacity than the latter in Au's M-band; and (3) placing the doped layer at a larger radius in ablator is more efficient. Applying this effect may not be a main measure to reduce the low-mode implosion asymmetry, but might be of significance in some critical situations such as Inertial Confinement Fusion (ICF) experiments very near the performance cliffs of asymmetric x-ray drives.

  17. On condensation-induced waves

    NARCIS (Netherlands)

    Cheng, W.; Luo, X.; Dongen, van M.E.H.

    2010-01-01

    Complex wave patterns caused by unsteady heat release due to cloud formation in confined compressible flows are discussed. Two detailed numerical studies of condensation-induced waves are carried out. First, the response of a flow of nitrogen in a slender Laval nozzle to a sudden addition of water

  18. Subtotal ablation of parietal epithelial cells induces crescent formation.

    NARCIS (Netherlands)

    Sicking, E.M.; Fuss, A.; Uhlig, S.; Jirak, P.; Dijkman, H.; Wetzels, J.; Engel, D.R.; Urzynicok, T.; Heidenreich, S.; Kriz, W.; Kurts, C.; Ostendorf, T.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established

  19. Laser-induced shockwave propagation from ablation in a cavity

    International Nuclear Information System (INIS)

    Zeng Xianzhong; Mao Xianglei; Mao, Samuel S.; Wen, S.-B.; Greif, Ralph; Russo, Richard E.

    2006-01-01

    The propagation of laser-induced shockwaves from ablation inside of cavities was determined from time-resolved shadowgraph images. The temperature and electron number density of the laser-induced plasma was determined from spectroscopic measurements. These properties were compared to those for laser ablation on the flat surface under the same energy and background gas condition. A theoretical model was proposed to determine the amount of energy and vaporized mass stored in the vapor plume based on these measurements

  20. Production of Au clusters by plasma gas condensation and their incorporation in oxide matrixes by sputtering

    Science.gov (United States)

    Figueiredo, N. M.; Serra, R.; Manninen, N. K.; Cavaleiro, A.

    2018-05-01

    Gold clusters were produced by plasma gas condensation method and studied in great detail for the first time. The influence of argon flow, discharge power applied to the Au target and aggregation chamber length on the size distribution and deposition rate of Au clusters was evaluated. Au clusters with sizes between 5 and 65 nm were deposited with varying deposition rates and size dispersion curves. Nanocomposite Au-TiO2 and Au-Al2O3 coatings were then deposited by alternating sputtering. These coatings were hydrophobic and showed strong colorations due to the surface plasmon resonance effect. By simulating the optical properties of the nanocomposites it was possible to identify each individual contribution to the overall surface plasmon resonance signal. These coatings show great potential to be used as high performance localized surface plasmon resonance sensors or as robust self-cleaning decorative protective layers. The hybrid method used for depositing the nanocomposites offers several advantages over co-sputtering or thermal evaporation processes, since a broader range of particle sizes can be obtained (up to tens of nanometers) without the application of any thermal annealing treatments and the properties of clusters and matrix can be controlled separately.

  1. 1D models for condensation induced water hammer in pipelines

    International Nuclear Information System (INIS)

    Bloemeling, Frank; Neuhas, Thorsten; Schaffrath, Andreas

    2013-01-01

    Condensation induced water hammer (CIWH) are caused by contact of steam and subcooled water. Thus, modeling the direct contact condensation is a crucial step towards the simulation of condensation induced water hammer with 1D pressure surge codes. Therefore, also the TUeV NORD SysTec GmbH and Co. KG inhouse pressure surge code DYVRO has been equipped with a new contact condensation model. The validation of DYVRO against an experiment dealing with CIWH is presented in this contribution. (orig.)

  2. 1D models for condensation induced water hammer in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Bloemeling, Frank; Neuhas, Thorsten; Schaffrath, Andreas [TUEV NORD SysTec GmbH und Co. KG, Hamburg (Germany)

    2013-03-15

    Condensation induced water hammer (CIWH) are caused by contact of steam and subcooled water. Thus, modeling the direct contact condensation is a crucial step towards the simulation of condensation induced water hammer with 1D pressure surge codes. Therefore, also the TUeV NORD SysTec GmbH and Co. KG inhouse pressure surge code DYVRO has been equipped with a new contact condensation model. The validation of DYVRO against an experiment dealing with CIWH is presented in this contribution. (orig.)

  3. Novel condensation of Au-centered trigonal prisms in rare-earth-metal-rich tellurides: Er7Au2Te2 and Lu7Au2Te2.

    Science.gov (United States)

    Gupta, Shalabh; Corbett, John D

    2010-07-14

    A new monoclinic structure occurs for Er(7)Au(2)Te(2) according to X-ray diffraction analysis of single crystals grown at 1200 degrees C: C2/m, Z = 4, a = 17.8310(9) A, b = 3.9819(5) A, c = 16.9089(9) A, beta = 104.361(4) degrees. The isostructural Lu(7)Au(2)Te(2) also exists according to X-ray powder pattern means, a = 17.536(4) A, b = 3.9719(4) A, c = 16.695(2) A, beta = 104.33(1) degrees. The structure contains zigzag chains of condensed, Au-centered tricapped trigonal prisms (TCTP) of Er along c that also share basal faces along b to generate puckered sheets. Further bi-face-capping Er atoms between these generate the three dimensional network along a, with tellurium in cavities outlined by augmented trigonal prismatic Er polyhedra. Bonding analysis via LMTO-DFT methods reveal very significant Er-Au bonding interactions, as quantified by their energy-weighted Hamilton overlap populations (-ICOHP), approximately 49% of the total for all interactions. These and similar Er-Te contributions sharply contrast with the small Er-Er population, only approximately 14% of the total in spite of the high proportion of Er-Er contacts. The strong polar bonding of Er to the electronegative Au and Te leaves Er relatively oxidized, with many of its 5d states falling above the Fermi level and empty. The contradiction with customary representations of structures that highlight rare-earth metal clusters is manifest. The large Er-Au Hamilton overlap population is in accord with the strong bonding between early and late transition metals first noted by Brewer in 1973. The relationship of this structure to the more distorted orthorhombic (Imm2) structure type of neighboring Dy(7)Ir(2)Te(2) is considered.

  4. Synthesis by picosecond laser ablation of ligand-free Ag and Au nanoparticles for SERS applications

    Science.gov (United States)

    Fazio, Enza; Spadaro, Salvatore; Santoro, Marco; Trusso, Sebastiano; Lucotti, Andrea.; Tommasini, Matteo.; Neri, Fortunato; Maria Ossi, Paolo

    2018-01-01

    The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS) measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  5. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation

    International Nuclear Information System (INIS)

    Rohwetter, Ph.; Stelmaszczyk, K.; Woeste, L.; Ackermann, R.; Mejean, G.; Salmon, E.; Kasparian, J.; Yu, J.; Wolf, J.-P.

    2005-01-01

    We demonstrate laser induced ablation and plasma line emission from a metallic target at distances up to 180 m from the laser, using filaments (self-guided propagation structures ∼ 100 μm in diameter and ∼ 5 x 10 13 W/cm 2 in intensity) appearing as femtosecond and terawatt laser pulses propagating in air. The remarkable property of filaments to propagate over a long distance independently of the diffraction limit opens the frontier to long range operation of the laser-induced breakdown spectroscopy technique. We call this special configuration of remote laser-induced breakdown spectroscopy 'remote filament-induced breakdown spectroscopy'. Our results show main features of filament-induced ablation on the surface of a metallic sample and associated plasma emission. Our experimental data allow us to estimate requirements for the detection system needed for kilometer-range remote filament-induced breakdown spectroscopy experiment

  6. Optical feedback-induced light modulation for fiber-based laser ablation.

    Science.gov (United States)

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  7. Noninvasive characterization of fractional photothermolysis induced by ablative and non-ablative lasers with optical coherence tomography

    International Nuclear Information System (INIS)

    Tsai, M T; Chang, F Y; Lee, J D; Fan, C H; Yang, C H; Shen, S C; Yi, J Y

    2013-01-01

    In this study, an optical coherence tomography (OCT) system is implemented for the noninvasive characterization of photothermolysis in human skin induced by ablative fractional lasers (AFLs) and non-ablative fractional lasers (NAFLs). With OCT imaging, microthermal zones (MTZs) induced by fractional lasers can be noninvasively visualized, and the size of induced MTZs can be quantitatively evaluated. According to the OCT results, the center region of the induced MTZ corresponds to weaker backscattered intensity after the AFL exposure as a result of tissue volatilization by photon energy. In contrast, after the NAFL exposure, the skin tissue is damaged and coagulated but not volatilized, which causes the backscattered intensity of the induced MTZ enhanced in the OCT image. To further identify the photothermolysis induced by AFLs or NAFLs, the backscattered intensities of MTZs are compared with those of the untreated tissue from the OCT results. The statistical result shows a clear difference in scattering properties of photothermolysis induced by AFLs and NAFLs. Finally, the induced photodamage at various depths can also be quantitatively evaluated, enabling an investigation of the relationship between the photodamage and the depth. (paper)

  8. On the influence of the condensed particles on the absorption properties of plasma created by ablation controlled arc in a capillary

    Science.gov (United States)

    Pashchina, A. S.; Valyano, G. E.

    2017-11-01

    The results of experimental studies of the absorption properties of plasma created by ablation controlled arc in a capillary are presented. It is shown that the dominant influence on the plasma absorption properties is exerted by condensed particles formed in relatively low-temperature zones in the vicinity of the capillary wall and on the periphery of the plasma jet, whereas the plasma bremsstrahlung is optically thin. The nonmonotonic behavior of the plasma optical thickness in the spectral range Δλ=400-700 nm, as well as amplification of the probing radiation in a relatively narrow wavelength interval Δλ=628±5 nm, caused, probably, by resonant excitation of condensed particles by electromagnetic radiation, are detected. The estimations of the condensed particles parameters (the average size dD≈2-4 nm, the concentration ND=(1-5)·1013 cm-3, the volume fraction fV≈(0.1-3)·10-6), which quantitatively consistent with the results of studies of the microstructure of the condensed phase on scanning electron microscope, have been obtained.

  9. Blockage-induced condensation controlled by a local reaction

    Science.gov (United States)

    Cirillo, Emilio N. M.; Colangeli, Matteo; Muntean, Adrian

    2016-10-01

    We consider the setup of stationary zero range models and discuss the onset of condensation induced by a local blockage on the lattice. We show that the introduction of a local feedback on the hopping rates allows us to control the particle fraction in the condensed phase. This phenomenon results in a current versus blockage parameter curve characterized by two nonanalyticity points.

  10. Ablative fractional laser enhances MAL-induced PpIX accumulation

    DEFF Research Database (Denmark)

    Haak, C S; Christiansen, K; Erlendsson, Andrés M

    2016-01-01

    BACKGROUND AND OBJECTIVES: Pretreatment of skin with ablative fractional laser enhances accumulation of topical provided photosensitizer, but essential information is lacking on the interaction between laser channel densities and pharmacokinetics. Hence our objectives were to investigate how...... (range 46-133min) induced fluorescence levels similar to curettage and 180min incubation. Furthermore, MAL 80 and 160mg/g induced similar fluorescence intensities in skin exposed to laser densities of 1, 2 and 5% (p>0.0537, 30-180min). CONCLUSION: MAL-induced protoporphyrin accumulation is augmented...... protoporphyrin accumulation was affected by laser densities, incubation time and drug concentration. METHODS: We conducted the study on the back of healthy male volunteers (n=11). Test areas were pretreated with 2940nm ablative fractional Er:YAG laser, 11.2mJ per laser channel using densities of 1, 2, 5, 10...

  11. Defect-induced Au precipitation in Fe–Au and Fe–Au–B–N alloys studied by in situ small-angle neutron scattering

    International Nuclear Information System (INIS)

    Zhang, S.; Kohlbrecher, J.; Tichelaar, F.D.; Langelaan, G.; Brück, E.; Zwaag, S. van der; Dijk, N.H. van

    2013-01-01

    Nanoscale Au precipitation in high-purity Fe–Au and Fe–Au–B–N alloys has been studied by in situ small-angle neutron scattering during isothermal aging at 550 °C and complementary ex situ transmission electron microscopy. The high temperature precipitation behavior in samples having received different degrees of cold deformation has been studied to explore the potential self-healing of deformation-induced defects by Au precipitation. It is found that dislocations induced by prior plastic deformation strongly facilitate the formation of Au precipitates, as no significant precipitation is observed for undeformed samples. Defect-induced Au precipitates are formed both at dislocations and along grain boundaries where the defect density is high. The fact that the Au atoms only precipitate on deformation-induced defects demonstrates that solute gold atoms act as efficient self-healing agents in the ferrous matrix. The addition of B and N is found to retard the Au precipitation

  12. Disorder-Induced Order in Two-Component Bose-Einstein Condensates

    International Nuclear Information System (INIS)

    Niederberger, A.; Schulte, T.; Wehr, J.; Lewenstein, M.; Sanchez-Palencia, L.; Sacha, K.

    2008-01-01

    We propose and analyze a general mechanism of disorder-induced order in two-component Bose-Einstein condensates, analogous to corresponding effects established for XY spin models. We show that a random Raman coupling induces a relative phase of π/2 between the two BECs and that the effect is robust. We demonstrate it in one, two, and three dimensions at T=0 and present evidence that it persists at small T>0. Applications to phase control in ultracold spinor condensates are discussed

  13. Desorption/ablation of lithium fluoride induced by extreme ultraviolet laser radiation

    Directory of Open Access Journals (Sweden)

    Blejchař Tomáš

    2016-06-01

    Full Text Available The availability of reliable modeling tools and input data required for the prediction of surface removal rate from the lithium fluoride targets irradiated by the intense photon beams is essential for many practical aspects. This study is motivated by the practical implementation of soft X-ray (SXR or extreme ultraviolet (XUV lasers for the pulsed ablation and thin film deposition. Specifically, it is focused on quantitative description of XUV laser-induced desorption/ablation from lithium fluoride, which is a reference large band-gap dielectric material with ionic crystalline structure. Computational framework was proposed and employed here for the reconstruction of plume expansion dynamics induced by the irradiation of lithium fluoride targets. The morphology of experimentally observed desorption/ablation craters were reproduced using idealized representation (two-zone approximation of the laser fluence profile. The calculation of desorption/ablation rate was performed using one-dimensional thermomechanic model (XUV-ABLATOR code taking into account laser heating and surface evaporation of the lithium fluoride target occurring on a nanosecond timescale. This step was followed by the application of two-dimensional hydrodynamic solver for description of laser-produced plasma plume expansion dynamics. The calculated plume lengths determined by numerical simulations were compared with a simple adiabatic expansion (blast-wave model.

  14. Electron diffraction on amorphous and crystalline AuAl2 , AuGa2 and AuIn2 thin films

    International Nuclear Information System (INIS)

    Bohorquez, A.

    1991-01-01

    Experimental (in situ) measurements of electron diffraction and resistivity of amorphous and crystalline AuAl 2 , AuGa 2 and AuIn 2 thin films were performed. Thin films were produced by quench condensation. Interference and atomic distribution functions were analyzed assuming the same short range order for the three systems in the amorphous phase. The experimental results do not agree with this assumption, giving evidence that the short range order is not the same for the three amorphous systems. Further discussion of interference and atomic distribution functions shows a more evident tendency in amorphous AuIn 2 where short order of AuIn 2 and In can be inferred. (Author)

  15. Efficiency Of The Photodynamic Therapy Using Gold Nanoparticles (np-Au) And PpIX Induced And Not Induced

    International Nuclear Information System (INIS)

    Maldonado-Alvarado, Elizabeth; Ramon-Gallegos, Eva; Arenas-Huertero, Francisco jesus; Reyes-Arellano, Alicia; Tanori-Cordova, Judith; Sanchez-Espindola, Maria Esther; Jimenez-Perez, Jose Luis; Cruz-Orea, Alfredo

    2008-01-01

    The use of gold nanoparticles (np-Au) to eliminate cancer has proved to be very effective due to the fact that cancerous cells accumulate it 600% more than healthy cells. In addition they have a high capacity of absorption and dispersion of light. Therefore, the effectiveness of photodynamic therapy (PDT) could be improved by the simultaneous use of np-Au and photosensitizes (Ps), emphasizing the high efficiency of the PDT to diagnose and to treat pre-malignant and malignant processes. The aim of this work was to determine the efficiency of PDT using np-Au and protoporphyrin IX (PpIX) induced and not induced by the δ-aminolevulinic acid (ALA). It were found the conditions of synthesis of hydrosoluble np-Au, and were characterized by transmission electronic microscopy (TEM) and UV-VIS spectroscopy. It was realized a kinetic by TEM to determine the cellular incorporation time of np-Au, the maximum incorporation of np-Au was of 16 h. PDT was applied using different doses of np-Au and photosensitizers. It was observed that the use of PDT simultaneously with np-Au did not increase the mortality of HeLa cells. In the case of C33, when PpIX not induced is used as photosensitizer simultaneously with np-Au, the mortality increased 20%

  16. Condensate induced water hammer in a steam distribution system results in fatality

    International Nuclear Information System (INIS)

    Debban, H.L.; Eyre, L.E.

    1996-02-01

    Water hammer event s in steam distribution piping interrupt service and have the potential to cause serious injury and property damage. Conditions of condensation induced water hammer are discussed and recommendations aimed to improve safety of steam systems are presented. Condensate induced water hammer events at Hanford, a DOE facility, are examined

  17. Chromosome condensation and radiation-induced G2 arrest studied by the induction of premature chromosome condensation following cell fusion

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Bedford, J.S.

    1978-01-01

    When mitotic and interphase cells are fused together, the chromosomes of the interphase cell sometimes condense prematurely. The phenomenon of premature chromosome condensation (PCC) was utilized in investigating the problem of whether the chromosomes of cells suffering a radiation-induced G 2 delay are capable of condensation. Colcemide-arrested mitotic cells were fused with synchronized G 2 cells, and with irradiated cells suffering a G 2 delay. The frequency of PCC in mitotic X G 2 binucleate cells was determined. This was compared to the PCC frequency in an unirradiated synchronized population rich in G 2 cells after fusion with mitotic cells. Flash-labelling with 3 HTdR and autoradiography allowed S-phase cells to be eliminated. The frequency of G 2 PCCs was not significantly different for the irradiated G 2 -delayed or unirradiated cells. From these results it was concluded that the chromosomes of cells suffering a G 2 arrest are capable of condensation, although the involvement of the condensation process in radiation-induced G 2 delay could not be ruled out. (author)

  18. Reversible DNA condensation induced by a tetranuclear nickel(II) complex.

    Science.gov (United States)

    Dong, Xindian; Wang, Xiaoyong; He, Yafeng; Yu, Zhen; Lin, Miaoxin; Zhang, Changli; Wang, Jing; Song, Yajie; Zhang, Yangmiao; Liu, Zhipeng; Li, Yizhi; Guo, Zijian

    2010-12-17

    DNA condensing agents play a critical role in gene therapy. A tetranuclear nickel(II) complex, [Ni(II)(4)(L-2H)(H(2)O)(6)(CH(3)CH(2)OH)(2)]·6NO(3) (L=3,3',5,5'-tetrakis{[(2-hydroxyethyl)(pyridin-2-ylmethyl)amino]methyl}biphenyl-4,4'-diol), has been synthesized as a nonviral vector to induce DNA condensation. X-ray crystallographic data indicate that the complex crystallizes in the monoclinic system with space group P2(1)/n, a=10.291(9), b=24.15(2), c=13.896(11) Å, and β=98.175(13)°. The DNA condensation induced by the complex has been investigated by means of UV/Vis spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy, dynamic light scattering, atomic force microscopy, gel electrophoresis assay, and zeta potential analysis. The complex interacts strongly with DNA through electrostatic attraction and induces its condensation into globular nanoparticles at low concentration. The release of DNA from its compact state has been achieved using the chelator ethylenediaminetetraacetic acid (EDTA) for the first time. Other essential properties, such as DNA cleavage inactivity and biocompatibility, have also been examined in vitro. In general, the complex satisfies the requirements of a gene vector in all of these respects.

  19. Alternating voltage-induced electrochemical synthesis of colloidal Au nanoicosahedra

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Kevin; Cloud, Jacqueline E.; Yang, Yongan, E-mail: yonyang@mines.edu [Colorado School of Mines, Department of Chemistry and Geochemistry (United States)

    2013-11-15

    A simple method of alternating voltage-induced electrochemical synthesis has been developed to synthesize highly dispersed colloidal Au nanoicosahedra of 14 ± 3 nm in size. This simple and effective method uses a common transformer to apply a zero-offset alternating voltage to a pair of identical Au electrodes that are immersed in an electrolyte solution containing ligands. The obtained Au nanoicosahedra in this work are among the smallest Au icosahedra synthesized in aqueous solutions. A series of experimental conditions have been studied, such as voltage, the electrolyte identity and concentration, stabilizer identity and concentration, and reaction temperature. The mechanistic study indicates that Au nanoicosahedra are produced on electrode surfaces through an intermediate state of AuO{sub x}. The kinetic rate constant of these Au icosahedra in catalyzing the reduction of 4-nitrophenol with sodium borohydride is found much larger than the literature values of similar Au nanocrystals. In addition, the synthesis of Au–Pd-alloyed NCs has also been attempted.Graphical Abstract.

  20. Condensate-induced transitions and critical spin chains

    NARCIS (Netherlands)

    Månsson, T.; Lahtinen, V.; Suorsa, J.; Ardonne, E.

    2013-01-01

    We show that condensate-induced transitions between two-dimensional topological phases provide a general framework to relate one-dimensional spin models at their critical points. We demonstrate this using two examples. First, we show that two well-known spin chains, namely, the XY chain and the

  1. Reactive laser-induced ablation as approach to titanium oxycarbide films

    International Nuclear Information System (INIS)

    Jandova, V.; Fajgar, R.; Dytrych, P.; Kostejn, M.; Drinek, V.; Kupcik, J.

    2015-01-01

    The IR laser-induced reactive ablation of frozen titanium ethoxide target was studied. The method involves the laser ablation of titanium ethoxide at − 140 °C in gaseous methane (4–50 Pa) atmosphere. This process leads to reactions of the ablative species with hydrocarbon in the gaseous phase. During the ablation of the frozen target excited species interact with methane molecules. The reactive ablation process leads to the formation of a smooth thin film. The thickness of prepared films depends on the number of IR pulses and their composition depends on the pressure of gaseous methane. This reactive IR ablation proceeds as a carbidation process providing nanostructured films with good adhesion to various substrates (glass, metals, KBr) depending on the carbon content in prepared films. Particles are also stabilized by layer preventing their surface oxidation in the atmosphere. The described results are important in the general context for the synthesis of reactive particles in the gas phase. The final products are characterized by spectroscopic, microscopic and diffraction techniques: SEM/EDX, HRTEM, electron diffraction, Raman spectroscopy and XPS. - Highlights: • IR laser ablation of frozen target of titanium ethoxide leads to a reduction in the gaseous methane (4-50 Pa). • Films deposited in methane have Ti/O/C stoichiometry and are oxidized in the atmosphere. • Layers deposited in methane are reduced and have less O in the topmost layers

  2. Reactive laser-induced ablation as approach to titanium oxycarbide films

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, V., E-mail: jandova@icpf.cas.cz; Fajgar, R.; Dytrych, P.; Kostejn, M.; Drinek, V.; Kupcik, J.

    2015-09-01

    The IR laser-induced reactive ablation of frozen titanium ethoxide target was studied. The method involves the laser ablation of titanium ethoxide at − 140 °C in gaseous methane (4–50 Pa) atmosphere. This process leads to reactions of the ablative species with hydrocarbon in the gaseous phase. During the ablation of the frozen target excited species interact with methane molecules. The reactive ablation process leads to the formation of a smooth thin film. The thickness of prepared films depends on the number of IR pulses and their composition depends on the pressure of gaseous methane. This reactive IR ablation proceeds as a carbidation process providing nanostructured films with good adhesion to various substrates (glass, metals, KBr) depending on the carbon content in prepared films. Particles are also stabilized by layer preventing their surface oxidation in the atmosphere. The described results are important in the general context for the synthesis of reactive particles in the gas phase. The final products are characterized by spectroscopic, microscopic and diffraction techniques: SEM/EDX, HRTEM, electron diffraction, Raman spectroscopy and XPS. - Highlights: • IR laser ablation of frozen target of titanium ethoxide leads to a reduction in the gaseous methane (4-50 Pa). • Films deposited in methane have Ti/O/C stoichiometry and are oxidized in the atmosphere. • Layers deposited in methane are reduced and have less O in the topmost layers.

  3. Condensation induced water hammer safety

    International Nuclear Information System (INIS)

    Gintner, M.A.

    1997-01-01

    Condensation induced water hammer events in piping systems can cause catastrophic steam system failures which can result in equipment damage, personal injury, and even death. As an industry, we have learned to become accustomed to the ''banging'' that we often hear in our steam piping systems, and complacent in our actions to prevent it. It is unfortunate that lives are lost needlessly, as this type of water hammer event is preventable if one only applies some basic principles when operating and maintaining their steam systems. At the U. S. Department of Energy's Hanford Site where I work, there was one such accident that occurred in 1993 which took the life of a former co-worker and friend of mine. Hanford was established as part of the Manhattan Project during World War II. it is a 560 square mile complex located along the banks of the Columbia River in Southeastern Washington State. For almost 45 years, hanford's mission was to produce weapons grade plutonium for our nations defense programs. Today, Hanford no longer produces plutonium, but is focused on site clean-up and economic diversification. Hanford still uses steam for heating and processing activities, utilizing over 20 miles of piping distribution systems similar to those found in industry. Although these aging systems are still sound, they cannot stand up to the extreme pressure pulses developed by a condensation induced water hammer

  4. Preferential Au precipitation at deformation-induced defects in Fe–Au and Fe–Au–B–N alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S., E-mail: S.Zhang-1@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Langelaan, G. [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Brouwer, J.C.; Sloof, W.G. [Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Brück, E. [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Zwaag, S. van der [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands); Dijk, N.H. van [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-01-25

    Highlights: • Fe–Au–B–N forms a good model alloy system for self healing of deformation damage. • Solute Au atoms exclusively precipitate at grain boundaries, cracks and cavities. • XPS indicates a strong tendency for Au segregation on free surfaces at 550 °C. • Interstitial B and N form hexagonal BN on free surfaces at 550 °C. • Selective Au precipitation at open volume defects can cause autonomous repair. -- Abstract: The influence of deformation-induced defects on the isothermal precipitation of Au was studied in high-purity Fe–Au and Fe–Au–B–N alloys. Preferential Au precipitation upon annealing at 550 °C is observed at local plastic indentations. In fractured Fe–Au–B–N, solute Au atoms were found to heterogeneously precipitate at grain boundaries and local micro-cracks. This is supported by in-situ creep tests that showed a strong tendency for Au precipitation at cracks and cavities also formed during creep loading at 550 °C. Complementary X-ray photoelectron spectroscopy experiments indicate a strong tendency of Au, B and N segregation onto free surface during aging. The observed site-specific precipitation of Au holds interesting opportunities for defect healing in steels subjected to creep deformation.

  5. Field enhancement induced laser ablation

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob

    Sub-diffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures....... The accompanying field enhancement substantially lowers the ablation threshold of the polymer film and thus creates local ablation spots and corresponding topographic modifications of the polymer film. Such modifications are quantified straightforwardly via scanning electron and atomic force microscopy. Thickness...

  6. Condensation induced water hammer safety

    Energy Technology Data Exchange (ETDEWEB)

    Gintner, M.A.

    1997-03-10

    Condensation induced water hammer events in piping systems can cause catastrophic steam system failures which can result in equipment damage, personal injury, and even death. As an industry, we have learned to become accustomed to the ''banging'' that we often hear in our steam piping systems, and complacent in our actions to prevent it. It is unfortunate that lives are lost needlessly, as this type of water hammer event is preventable if one only applies some basic principles when operating and maintaining their steam systems. At the U. S. Department of Energy's Hanford Site where I work, there was one such accident that occurred in 1993 which took the life of a former co-worker and friend of mine. Hanford was established as part of the Manhattan Project during World War II. it is a 560 square mile complex located along the banks of the Columbia River in Southeastern Washington State. For almost 45 years, hanford's mission was to produce weapons grade plutonium for our nations defense programs. Today, Hanford no longer produces plutonium, but is focused on site clean-up and economic diversification. Hanford still uses steam for heating and processing activities, utilizing over 20 miles of piping distribution systems similar to those found in industry. Although these aging systems are still sound, they cannot stand up to the extreme pressure pulses developed by a condensation induced water hammer.

  7. Excessive counterion condensation on immobilized ssDNA in solutions of high ionic strength.

    Science.gov (United States)

    Rant, Ulrich; Arinaga, Kenji; Fujiwara, Tsuyoshi; Fujita, Shozo; Tornow, Marc; Yokoyama, Naoki; Abstreiter, Gerhard

    2003-12-01

    We present experiments on the bias-induced release of immobilized, single-stranded (ss) 24-mer oligonucleotides from Au-surfaces into electrolyte solutions of varying ionic strength. Desorption is evidenced by fluorescence measurements of dye-labeled ssDNA. Electrostatic interactions between adsorbed ssDNA and the Au-surface are investigated with respect to 1), a variation of the bias potential applied to the Au-electrode; and 2), the screening effect of the electrolyte solution. For the latter, the concentration of monovalent salt in solution is varied from 3 to 1600 mM. We find that the strength of electric interaction is predominantly determined by the effective charge of the ssDNA itself and that the release of DNA mainly occurs before the electrochemical double layer has been established at the electrolyte/Au interface. In agreement with Manning's condensation theory, the measured desorption efficiency (etarel) stays constant over a wide range of salt concentrations; however, as the Debye length is reduced below a value comparable to the axial charge spacing of the DNA, etarel decreases substantially. We assign this effect to excessive counterion condensation on the DNA in solutions of high ionic strength. In addition, the relative translational diffusion coefficient of ssDNA in solution is evaluated for different salt concentrations.

  8. Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy for the noninvasive analysis of transparent samples and gemstones.

    Science.gov (United States)

    Koral, C; Dell'Aglio, M; Gaudiuso, R; Alrifai, R; Torelli, M; De Giacomo, A

    2018-05-15

    In this paper, Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy is applied to transparent samples and gemstones with the aim to overcome the laser induced damage on the sample. We propose to deposit a layer of AuNPs on the sample surface by drying a colloidal solution before ablating the sample with a 532 nm pulsed laser beam. This procedure ensures that the most significant fraction of the beam, being in resonance with the AuNP surface plasmon, is mainly absorbed by the NP layer, which in turn results the breakdown to be induced on NPs rather than on the sample itself. The fast explosion of the NPs and the plasma induction allow the ablation and the transfer in the plasma phase of the portion of sample surface where the NPs were placed. The employed AuNPs are prepared in milliQ water without the use of any chemical stabilizers by Pulsed Laser Ablation in Liquids (PLAL), in order to obtain a strict control of composition and impurities, and to limit possible spectral interferences (except from Au emission lines). Therefore with this technique it is possible to obtain, together with the emission signal of Au (coming from atomized NPs), the emission spectrum of the sample, by limiting or avoiding the direct interaction of the laser pulse with the sample itself. This approach is extremely useful for the elemental analysis by laser ablation of high refractive index samples, where the laser pulse on an untreated surface can otherwise penetrate inside the sample, generate breakdown events below the superficial layer, and consequently cause cracks and other damage. The results obtained with NELIBS on high refractive index samples like glasses, tourmaline, aquamarine and ruby are very promising, and demonstrate the potentiality of this approach for precious gemstones analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Laser-filamentation-induced condensation and snow formation in a cloud chamber.

    Science.gov (United States)

    Ju, Jingjing; Liu, Jiansheng; Wang, Cheng; Sun, Haiyi; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2012-04-01

    Using 1 kHz, 9 mJ femtosecond laser pulses, we demonstrate laser-filamentation-induced spectacular snow formation in a cloud chamber. An intense updraft of warm moist air is generated owing to the continuous heating by the high-repetition filamentation. As it encounters the cold air above, water condensation and large-sized particles spread unevenly across the whole cloud chamber via convection and cyclone like action on a macroscopic scale. This indicates that high-repetition filamentation plays a significant role in macroscopic laser-induced water condensation and snow formation.

  10. Numerical analyses of a water pool under loadings caused by a condensation induced water hammer

    Energy Technology Data Exchange (ETDEWEB)

    Timperi, A.; Paettikangas, T.; Calonius, K.; Tuunanen, J.; Poikolainen, J.; Saarenheimo, A. [VTT Industrial Systems (Finland)

    2004-03-01

    Three-dimensional simulations of a rapidly condensing steam bubble in a water pool have been performed by using the commercial computational fluid dynamics (CFD) code Star-CD. The condensing bubble was modelled by using a mass sink in a single-phase calculation. The pressure load on the wall of the pool was determined and transferred to the structural analyses code ABAQUS. The analyses were done for a test pool at Lappeenranta University of Technology. The structural integrity of the pool during steam experiments was investigated by assuming as a test load the rapid condensation of a steam bubble with a diameter of 20 cm. The mass sink for modelling the collapse of the bubble was deter-mined from the potential theory of incompressible fluid. The rapid condensation of the bubble within 25 ms initiated a strong condensation water hammer. The maximum amplitude of the pressure load on the pool wall was approximately 300 kPa. The loads caused by the high compression waves lasted only about 0.4 ms. The loadings caused by larger bubbles or more rapid collapse could not be calculated with the present method. (au)

  11. Steam condensation induced water hammer in a vertical up-fill configuration within an integral test facility. Experiments and computational simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dirndorfer, Stefan

    2017-01-17

    Condensation induced water hammer is a source of danger and unpredictable loads in pipe systems. Studies concerning condensation induced water hammer were predominantly made for horizontal pipes, studies concerning vertical pipe geometries are quite rare. This work presents a new integral test facility and an analysis of condensation induced water hammer in a vertical up-fill configuration. Thanks to the state of the art technology, the phenomenology of vertical condensation induced water hammer can be analysed by means of sufficient high-sampled experimental data. The system code ATHLET is used to simulate UniBw condensation induced water hammer experiments. A newly developed and implemented direct contact condensation model enables ATHLET to calculate condensation induced water hammer. Selected experiments are validated by the modified ATHLET system code. A sensitivity analysis in ATHLET, together with the experimental data, allows to assess the performance of ATHLET to compute condensation induced water hammer in a vertical up-fill configuration.

  12. Steam condensation induced water hammer in a vertical up-fill configuration within an integral test facility. Experiments and computational simulations

    International Nuclear Information System (INIS)

    Dirndorfer, Stefan

    2017-01-01

    Condensation induced water hammer is a source of danger and unpredictable loads in pipe systems. Studies concerning condensation induced water hammer were predominantly made for horizontal pipes, studies concerning vertical pipe geometries are quite rare. This work presents a new integral test facility and an analysis of condensation induced water hammer in a vertical up-fill configuration. Thanks to the state of the art technology, the phenomenology of vertical condensation induced water hammer can be analysed by means of sufficient high-sampled experimental data. The system code ATHLET is used to simulate UniBw condensation induced water hammer experiments. A newly developed and implemented direct contact condensation model enables ATHLET to calculate condensation induced water hammer. Selected experiments are validated by the modified ATHLET system code. A sensitivity analysis in ATHLET, together with the experimental data, allows to assess the performance of ATHLET to compute condensation induced water hammer in a vertical up-fill configuration.

  13. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    Science.gov (United States)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  14. Ablation of synovial pannus using microbubble-mediated ultrasonic cavitation in antigen-induced arthritis in rabbits.

    Science.gov (United States)

    Qiu, Li; Jiang, Yong; Zhang, Lingyan; Wang, Lei; Luo, Yan

    2012-12-01

    To investigate the ablative effectiveness of microbubble-mediated ultrasonic cavitation for treating synovial pannus and to determine a potential mechanism using the antigen-induced arthritis model (AIA). Ultrasonic ablation was performed on the knee joints of AIA rabbits using optimal ultrasonic ablative parameters. Rabbits with antigen-induced arthritis were randomly assigned to 4 groups: (1) the ultrasound (US) + microbubble group; (2) the US only group; (3) the microbubble only group, and (4) the control group. At 1 h and 14 days after the first ablation, contrast-enhanced ultrasonography (CEUS) monitoring and pathology synovitis score were used to evaluate the therapeutic effects. Synovial necrosis and microvascular changes were also measured. After the ablation treatment, the thickness of synovium and parameters of time intensity curve including derived peak intensity and area under curve were measured using CEUS, and the pathology synovitis score in the ultrasound + microbubble group was significantly lower than that found in the remaining groups. No damage was observed in the surrounding normal tissues. The mechanism underlying the ultrasonic ablation was related to microthrombosis and microvascular rupture that resulted in synovial necrosis. The results suggest that microbubble-mediated ultrasonic cavitation should be applied as a non-invasive strategy for the treatment of synovial pannus in arthritis under optimal conditions.

  15. Energetic particle induced desorption of water vapor cryo-condensate

    International Nuclear Information System (INIS)

    Menon, M.M.; Owen, L.W.; Simpkins, J.E.; Uckan, T.; Mioduszewski, P.K.

    1990-01-01

    An in-vessel cryo-condensation pump is being designed for the Advanced Divertor configuration of the DIII-D tokamak. To assess the importance of possible desorption of water vapor from the cryogenic surfaces of the pump due to impingement of energetic particles from the plasma, a 77 K surface on which a thin layer of water vapor was condensed was exposed to a tenuous plasma (density = 2 x 10 10 cm -3 , electron temperature = 3 eV). Significant desorption of the condensate occurred, suggesting that impingement of energeticparticles (10 eV) at flux levels of ∼10 16 cm 2 s -1 on cryogenic surfaces could potentially induce impurity problems in the tokamak plasma. A pumping configuration is presented in which this problem is minimized without sacrificing the pumping speed

  16. Selectivity switch for nitrogen functionalization of styrene on Au(1 1 1)

    Science.gov (United States)

    Deng, Xingyi; Friend, Cynthia M.

    2008-03-01

    Functionalization of styrene to form N-containing hydrocarbons, e.g. 2-phenylaziridine, benzonitrile, and benzyl nitrile, is achieved by reaction with adsorbed NH a and N a on Au(1 1 1). Electron-induced decomposition of condensed NH 3 was used to produce NH a, N a and H a on Au(1 1 1) at 110 K. The selectivity of the reactions is strongly dependent on the relative concentrations of the surface species. The addition of NH to styrene results in the production of 2-phenylaziridine, whereas adsorbed N and H atoms lead to the formation of nitriles benzonitrile and benzyl nitrile and, respectively, ethylbenzene. This work clearly establishes the utility of Au for promoting functionalization of olefins with nitrogen.

  17. Test for Jet Flow Induced by Steam Jet Condensation Using the GIRLS Facility

    International Nuclear Information System (INIS)

    Kim, Yeon Sik; Yoon, Y. J.; Song, C. H.

    2007-03-01

    To investigate the characteristics of the turbulent jet induced by steam jet condensation in a water tank through a single-hole sparger an experimental investigation was performed using the GIRLS facility. The experiments were conducted with respect to two cases, e.g. horizontal and vertical upward injections. For the measurements, pitot tube and thermocouples were used for turbulent flow velocity and temperatures, respectively. Overall flow shapes of the turbulent jet by the steam jet condensation are similar to those of axially symmetric turbulent jet flows. The angular coefficients of turbulent rays are quantitatively comparable between the traditional turbulent jet flows and the turbulent jet flows induced by the steam jet condensation in this work. Although the turbulent flows were induced by the horizontally injected steam jet condensation, general theory of turbulent jets was found to be applicable to the turbulent flows of this work. But for the vertically upward injection case, experimental data were quite deviated from the theoretical ones, which is considered due to the buoyancy effect

  18. Direct contact condensation induced transition from stratified to slug flow

    International Nuclear Information System (INIS)

    Strubelj, Luka; Ezsoel, Gyoergy; Tiselj, Iztok

    2010-01-01

    Selected condensation-induced water hammer experiments performed on PMK-2 device were numerically modelled with three-dimensional two-fluid models of computer codes NEPTUNE C FD and CFX. Experimental setup consists of the horizontal pipe filled with the hot steam that is being slowly flooded with cold water. In most of the experimental cases, slow flooding of the pipe was abruptly interrupted by a strong slugging and water hammer, while in the selected experimental runs performed at higher initial pressures and temperatures that are analysed in the present work, the transition from the stratified into the slug flow was not accompanied by the water hammer pressure peak. That makes these cases more suitable tests for evaluation of the various condensation models in the horizontally stratified flows and puts them in the range of the available CFD (Computational Fluid Dynamics) codes. The key models for successful simulation appear to be the condensation model of the hot vapour on the cold liquid and the interfacial momentum transfer model. The surface renewal types of condensation correlations, developed for condensation in the stratified flows, were used in the simulations and were applied also in the regions of the slug flow. The 'large interface' model for inter-phase momentum transfer model was compared to the bubble drag model. The CFD simulations quantitatively captured the main phenomena of the experiments, while the stochastic nature of the particular condensation-induced water hammer experiments did not allow detailed prediction of the time and position of the slug formation in the pipe. We have clearly shown that even the selected experiments without water hammer present a tough test for the applied CFD codes, while modelling of the water hammer pressure peaks in two-phase flow, being a strongly compressible flow phenomena, is beyond the capability of the current CFD codes.

  19. Nanostructured films of metal particles obtained by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Muniz-Miranda, M., E-mail: muniz@unifi.it [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Gellini, C. [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Giorgetti, E.; Margheri, G.; Marsili, P. [Istituto Sistemi Complessi (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Lascialfari, L.; Becucci, L. [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Trigari, S. [Istituto Sistemi Complessi (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Giammanco, F. [Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)

    2013-09-30

    Colloidal dispersions of silver and gold nanoparticles were obtained in pure water by ablation with nanosecond pulsed laser. Then, by filtration of the metal particles on alumina, we fabricated nanostructured films, whose surface morphology was examined by atomic force microscopy (AFM) and related to surface-enhanced Raman scattering (SERS) after adsorption of adenine. - Highlights: • Ag and Au colloidal nanoparticles were obtained by laser ablation. • Nanostructured Ag and Au films were fabricated by filtration of metal nanoparticles. • Surface morphology of metal films was investigated by atomic force microscopy. • Surface-enhanced Raman spectra (SERS) of adenine on metal films were obtained. • SERS enhancements were related to the surface roughness of the metal films.

  20. Multi-shell model of ion-induced nucleic acid condensation

    Energy Technology Data Exchange (ETDEWEB)

    Tolokh, Igor S. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Drozdetski, Aleksander V. [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853-3501 (United States); Baker, Nathan A. [Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States); Onufriev, Alexey V. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-04-21

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(III) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the “external” shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the “internal” shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent

  1. Mapping the Diffusion Potential of a Reconstructed Au(111) Surface at Nanometer Scale with 2D Molecular Gas

    International Nuclear Information System (INIS)

    Yan Shi-Chao; Xie Nan; Gong Hui-Qi; Guo Yang; Shan Xin-Yan; Lu Xing-Hua; Sun Qian

    2012-01-01

    The adsorption and diffusion behaviors of benzene molecules on an Au(111) surface are investigated by low-temperature scanning tunneling microscopy. A herringbone surface reconstruction of the Au(111) surface is imaged with atomic resolution, and significantly different behaviors are observed for benzene molecules adsorbed on step edges and terraces. The electric field induced modification in the molecular diffusion potential is revealed with a 2D molecular gas model, and a new method is developed to map the diffusion potential over the reconstructed Au(111) surface at the nanometer scale. (condensed matter: structure, mechanical and thermal properties)

  2. Transition from condensation-induced counter-current flow to dispersed flow

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2004-01-01

    Model of transition from the horizontally stratified condensation-induced counter-current flow to slug flow has been analyzed with computer code WAHA and compared to the experimental data obtained in the steamline of the PMK2 test facility of Hungarian Atomic Energy Institute. The experiment was performed in the steamline initially filled with hot vapor that was gradually flooded with cold liquid. Successful simulation of the condensation-induced water hammer that follows the transition, requires accurate description of the horizontally stratified and slug flow regimes and criteria for transition between both flow regimes. Current version of the WAHA code, not verified for the condensation induced type of the water hammer, predicts the water-hammer pressure peak that exceeds 600 bar, while the measured pressure is p m = 170 ± 50 bar. Sensitivity analysis of the inter-phase exchange terms and transition conditions, pointed to the most important closure relations for heat, mass and momentum transfer. The main conclusion of the analysis is large uncertainty of the simulations: minor modification of the crucial correlations can lead to a severe water-hammer in one case, or to the 'calm' transient without pressure peaks in the other case. Large uncertainty is observed in experiments. The same simulation was performed also with RELAP5 code. However, no water hammer was predicted. (author)

  3. Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kalupka, C., E-mail: christian.kalupka@llt.rwth-aachen.de; Finger, J. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Reininghaus, M. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Fraunhofer Institute for Laser Technology ILT, Steinbachstraße 15, Aachen 52074 (Germany)

    2016-04-21

    We report on the in-situ analysis of the ablation dynamics of the, so-called, laser induced non-thermal ablation process of graphite. A highly oriented pyrolytic graphite is excited by femtosecond laser pulses with fluences below the classic thermal ablation threshold. The ablation dynamics are investigated by axial pump-probe reflection measurements, transversal pump-probe shadowgraphy, and time-resolved transversal emission photography. The combination of the applied analysis methods allows for a continuous and detailed time-resolved observation of the non-thermal ablation dynamics from several picoseconds up to 180 ns. Formation of large, μm-sized particles takes place within the first 3.5 ns after irradiation. The following propagation of ablation products and the shock wave front are tracked by transversal shadowgraphy up to 16 ns. The comparison of ablation dynamics of different fluences by emission photography reveals thermal ablation products even for non-thermal fluences.

  4. Focal ablation for atrial tachycardia from the double-exit of the Marshall bundle inducing atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Jung Yeon Chin, MD

    2017-08-01

    Full Text Available Atrial fibrillation (AF from the ligament/vein of Marshall (LOM/VOM has previously been described. We report the case of a 23-year-old woman with an antiarrhythmic drug-resistant AF induced by two distinct atrial tachycardias (ATs. Focal ablation of these ATs from the double-exit of the Marshall bundle using a three-dimensional map eliminated AF triggering, even though pulmonary vein electrical isolation is the cornerstone for paroxysmal AF. Such mechanisms are important as triggering factors to plan ablation for paroxysmal AF. Focal ablation for triggering and inducing AF, originating from the double-exit of the Marshall bundle may be effective in eliminating AF in young patients.

  5. Time-resolved photoluminescence for evaluating laser-induced damage during dielectric stack ablation in silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Parola, Stéphanie [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, INSA Lyon, Villeurbanne, F-69621 (France); Blanc-Pélissier, Danièle, E-mail: daniele.blanc@insa-lyon.fr [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, INSA Lyon, Villeurbanne, F-69621 (France); Barbos, Corina; Le Coz, Marine [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, INSA Lyon, Villeurbanne, F-69621 (France); Poulain, Gilles [TOTAL MS—New Energies, R& D Division, La Défense (France); Lemiti, Mustapha [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, INSA Lyon, Villeurbanne, F-69621 (France)

    2016-06-30

    Highlights: • Ablation of Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}/SiN{sub x} on Si substrates was performed with a nanosecond UV laser. • Ablation thresholds were found in good agreement with COMSOL simulation, around 0.85 and 0.95 J cm{sup −2} for Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}/SiN{sub X}, respectively. • Laser-induced damage was evaluated at room temperature by time-resolved photoluminescence decay with a single photon counting detector. • Minority carrier lifetime in silicon as a function of the ablation fluence was derived from the photoluminescence decay and related to the thickness of the heat affected zone. • Quantitative measurements of laser-induced damage can be used to evaluate laser ablation of dielectrics in photovoltaics. - Abstract: Selective laser ablation of dielectric layers on crystalline silicon wafers was investigated for solar cell fabrication. Laser processing was performed on Al{sub 2}O{sub 3}, and bi-layers Al{sub 2}O{sub 3}/SiN{sub X}:H with a nanosecond UV laser at various energy densities ranging from 0.4 to 2 J cm{sup −2}. Ablation threshold was correlated to the simulated temperature at the interface between the dielectric coatings and the silicon substrate. Laser-induced damage to the silicon substrate was evaluated by time-resolved photoluminescence. The minority carrier lifetime deduced from time-resolved photoluminescence was related to the depth of the heat affected zone in the substrate.

  6. Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice

    Energy Technology Data Exchange (ETDEWEB)

    Mirrione, M.M.; Mirrione, M.M.; Konomosa, D.K.; Ioradanis, G.; Dewey, S.L.; Agzzid, A.; Heppnerd, F.L.; Tsirka, St.E.

    2010-04-01

    Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine-induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 h prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activation in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 h prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation.

  7. Laser ablation of microparticles for nanostructure generation

    International Nuclear Information System (INIS)

    Waraich, Palneet Singh; Tan, Bo; Venkatakrishnan, Krishnan

    2011-01-01

    The process of laser ablation of microparticles has been shown to generate nanoparticles from microparticles; but the generation of nanoparticle networks from microparticles has never been reported before. We report a unique approach for the generation of nanoparticle networks through ablation of microparticles. Using this approach, two samples containing microparticles of lead oxide (Pb 3 O 4 ) and nickel oxide (NiO), respectively, were ablated under ambient conditions using a femtosecond laser operating in the MHz repetition rate regime. Nanoparticle networks with particle diameter ranging from 60 to 90 nm were obtained by ablation of microparticles without use of any specialized equipment, catalysts or external stimulants. The formation of finer nanoparticle networks has been explained by considering the low pressure region created by the shockwave, causing rapid condensation of microparticles into finer nanoparticles. A comparison between the nanostructures generated by ablating microparticle and those by ablating bulk substrate was carried out; and a considerable reduction in size and narrowed size distribution was observed. Our nanostructure fabrication technique will be a unique process for nanoparticle network generation from a vast array of materials.

  8. Synthesis and optical properties of Au decorated colloidal tungsten oxide nanoparticles

    International Nuclear Information System (INIS)

    Tahmasebi, Nemat; Mahdavi, Seyed Mohammad

    2015-01-01

    Highlights: • Tungsten oxide nanoparticles were prepared by pulsed laser ablation (PLA). • A very fine metallic Au particles or coating are decorated on the surface of tungsten oxide nanoparticles. • UV–Vis spectroscopy shows an absorption peak at ∼530 nm which is due to SPR effect of gold. • After exposing to hydrogen gas, Au/WO_3 colloidal nanoparticles show excellent gasochromic coloring. - Abstract: In this study, colloidal tungsten oxide nanoparticles were fabricated by pulsed laser ablation of tungsten target using the first harmonic of a Nd:YAG laser (1064 nm) in deionized water. After ablation, a 0.33 g/lit HAuCl_4 aqueous solution was added into as-prepared colloidal nanoparticles. In this process, Au"3"+ ions were reduced to decorate gold metallic state (Au"0) onto colloidal tungsten oxide nanoparticles surface. The morphology and chemical composition of the synthesized nanoparticles were studied by AFM, XRD, TEM and XPS techniques. UV–Vis analysis reveals a distinct absorption peak at ∼530 nm. This peak can be attributed to the surface plasmon resonance (SPR) of Au and confirms formation of gold state. Moreover, X-ray photoelectron spectroscopy reveals that Au ions’ reduction happens after adding HAuCl_4 solution into as-prepared colloidal tungsten oxide nanoparticles. Transmission electron microscope shows that an Au shell has been decorated onto colloidal WO_3 nanoparticles. Noble metal decorated tungsten oxide nanostructure could be an excellent candidate for photocatalysis, gas sensing and gasochromic applications. Finally, the gasochromic behavior of the synthesized samples was investigated by H_2 and O_2 gases bubbling into the produced colloidal Au/WO_3 nanoparticles. Synthesized colloidal nanoparticles show excellent coloration contrast (∼80%) through NIR spectra.

  9. Spin Polarization and Quantum Spins in Au Nanoparticles

    Directory of Open Access Journals (Sweden)

    Wen-Hsien Li

    2013-08-01

    Full Text Available The present study focuses on investigating the magnetic properties and the critical particle size for developing sizable spontaneous magnetic moment of bare Au nanoparticles. Seven sets of bare Au nanoparticle assemblies, with diameters from 3.5 to 17.5 nm, were fabricated with the gas condensation method. Line profiles of the X-ray diffraction peaks were used to determine the mean particle diameters and size distributions of the nanoparticle assemblies. The magnetization curves M(Ha reveal Langevin field profiles. Magnetic hysteresis was clearly revealed in the low field regime even at 300 K. Contributions to the magnetization from different size particles in the nanoparticle assemblies were considered when analyzing the M(Ha curves. The results show that the maximum particle moment will appear in 2.4 nm Au particles. A similar result of the maximum saturation magnetization appearing in 2.3 nm Au particles is also concluded through analysis of the dependency of the saturation magnetization MP on particle size. The MP(d curve departs significantly from the 1/d dependence, but can be described by a log-normal function. Magnetization can be barely detected for Au particles larger than 27 nm. Magnetic field induced Zeeman magnetization from the quantum confined Kubo gap opening appears in Au nanoparticles smaller than 9.5 nm in diameter.

  10. Fast nonclinical ventricular tachycardia inducible after ablation in patients with structural heart disease: Definition and clinical implications.

    Science.gov (United States)

    Watanabe, Masaya; de Riva, Marta; Piers, Sebastiaan R D; Dekkers, Olaf M; Ebert, Micaela; Venlet, Jeroen; Trines, Serge A; Schalij, Martin J; Pijnappels, Daniël A; Zeppenfeld, Katja

    2018-01-08

    Noninducibility of ventricular tachycardia (VT) with an equal or longer cycle length (CL) than that of the clinical VT is considered the minimum ablation endpoint in patients with structural heart disease. Because their clinical relevance remains unclear, fast nonclinical VTs are often not targeted. However, an accepted definition for fast VT is lacking. The shortest possible CL of a monomorphic reentrant VT is determined by the ventricular refractory period (VRP). The purpose of this study was to propose a patient-specific definition for fast VT based on the individual VRP (fVT VRP ) and assess the prognostic significance of persistent inducibility after ablation of fVT VRP for VT recurrence. Of 191 patients with previous myocardial infarction or with nonischemic cardiomyopathy undergoing VT ablation, 70 (age 63 ± 13 years; 64% ischemic) remained inducible for a nonclinical VT and composed the study population. FVT VRP was defined as any VT with CL ≤VRP 400 + 30 ms. Patients were followed for VT recurrence. After ablation, 30 patients (43%) remained inducible exclusively for fVT VRP and 40 (57%) for any slower VT. Patients with only fVT VRP had 3-year VT-free survival of 64% (95% confidence interval [CI] 46%-82%) compared to 27% (95% CI 14%-48%) for patients with any slower remaining VT (P = .013). Inducibility of only fVT VRP was independently associated with lower VT recurrence (hazard ratio 0.38; 95% CI 0.19-0.86; P = .019). Among 36 patients inducible for any fVT VRP , only 1 had recurrence with fVT VRP . In patients with structural heart disease, inducibility of exclusively fVT VRP after ablation is associated with low VT recurrence. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  11. CK1α ablation in keratinocytes induces p53-dependent, sunburn-protective skin hyperpigmentation.

    Science.gov (United States)

    Chang, Chung-Hsing; Kuo, Che-Jung; Ito, Takamichi; Su, Yu-Ya; Jiang, Si-Tse; Chiu, Min-Hsi; Lin, Yi-Hsiung; Nist, Andrea; Mernberger, Marco; Stiewe, Thorsten; Ito, Shosuke; Wakamatsu, Kazumasa; Hsueh, Yi-An; Shieh, Sheau-Yann; Snir-Alkalay, Irit; Ben-Neriah, Yinon

    2017-09-19

    Casein kinase 1α (CK1α), a component of the β-catenin destruction complex, is a critical regulator of Wnt signaling; its ablation induces both Wnt and p53 activation. To characterize the role of CK1α (encoded by Csnk1a1 ) in skin physiology, we crossed mice harboring floxed Csnk1a1 with mice expressing K14-Cre-ER T2 to generate mice in which tamoxifen induces the deletion of Csnk1a1 exclusively in keratinocytes [single-knockout (SKO) mice]. As expected, CK1α loss was accompanied by β-catenin and p53 stabilization, with the preferential induction of p53 target genes, but phenotypically most striking was hyperpigmentation of the skin, importantly without tumorigenesis, for at least 9 mo after Csnk1a1 ablation. The number of epidermal melanocytes and eumelanin levels were dramatically increased in SKO mice. To clarify the putative role of p53 in epidermal hyperpigmentation, we established K14-Cre-ER T2 CK1α/p53 double-knockout (DKO) mice and found that coablation failed to induce epidermal hyperpigmentation, demonstrating that it was p53-dependent. Transcriptome analysis of the epidermis revealed p53-dependent up-regulation of Kit ligand (KitL). SKO mice treated with ACK2 (a Kit-neutralizing antibody) or imatinib (a Kit inhibitor) abrogated the CK1α ablation-induced hyperpigmentation, demonstrating that it requires the KitL/Kit pathway. Pro-opiomelanocortin (POMC), a precursor of α-melanocyte-stimulating hormone (α-MSH), was not activated in the CK1α ablation-induced hyperpigmentation, which is in contrast to the mechanism of p53-dependent UV tanning. Nevertheless, acute sunburn effects were successfully prevented in the hyperpigmented skin of SKO mice. CK1α inhibition induces skin-protective eumelanin but no carcinogenic pheomelanin and may therefore constitute an effective strategy for safely increasing eumelanin via UV-independent pathways, protecting against acute sunburn.

  12. Oxygen-induced restructuring with release of gold atoms from Au(111)

    International Nuclear Information System (INIS)

    Min, B.K.; Deng, X.; Schalek, R.; Pinnaduwage, D.; Friend, C.M.

    2005-01-01

    Adsorption of oxygen atoms, achieved via electron-induced dissociation of nitrogen dioxide, induces restructuring of the 'herringbone' to a striped, soliton-wall structure accompanied by release of gold from the 'elbows' in the herringbone structure. The number density of 'elbows' (dislocations corresponding to a change in direction of the reconstruction) decreases as a function of increasing atomic oxygen coverage while the long range order observed in low energy electron diffraction (LEED) changes from (√(3)x22)-rec. to (1x22) in the limit of saturation coverage. Small islands and serrated step edges were formed due to the release of gold atoms from elbow sites of Au(111). The overall structural change of the Au(111) surface may result from the reduction of anisotropy related to the tensile stress relief of the Au(111) surface by oxygen atoms

  13. Dynamics of defect-induced dark solitons in an exciton-polariton condensate

    Science.gov (United States)

    Opala, Andrzej; Pieczarka, Maciej; Bobrovska, Nataliya; Matuszewski, Michał

    2018-04-01

    We study theoretically the emission of dark solitons induced by a moving defect in a nonresonantly pumped exciton-polariton condensate. The number of created dark solitons per unit of time is found to be strongly dependent on the pump power. We relate the observed dynamics of this process to the oscillations of the drag force experienced by the condensate. We investigate the stability of the polariton quantum fluid and present various types of dynamics depending on the condensate and moving obstacle parameters. Furthermore, we provide analytical expressions for dark soliton dynamics using the variational method adapted to the nonequilibrium polariton system. The determined dynamical equations are found to be in excellent agreement with the results of numerical simulations.

  14. Plasmonic angular tunability of gold nanoparticles generated by fs laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pace, M.L.; Guarnaccio, A.; Ranù, F. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Trucchi, D. [CNR, ISM UOS Montelibretti, Via Salaria km 29.300, Monterotondo Scalo, (RM) 00015 (Italy); Orlando, S., E-mail: stefano.orlando@ism.cnr.it [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Mollica, D.; Parisi, G.P. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Medici, L.; Lettino, A. [CNR, IMAA, Area della Ricerca di Potenza -Zona Industriale, Tito Scalo, (PZ) 85050 (Italy); De Bonis, A.; Teghil, R. [Dipart. di Scienze,Università della Basilicata, Viale dell’Ateneo Lucano 10, Potenza, 85100 (Italy); Santagata, A. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy)

    2016-06-30

    Highlights: • fs pulsed laser ablation as a technique to produce nanoparticles. • Nanoparticle distribution as an evidence for plasmonic tunable resonances. • Correlation between angular distribution of deposited nanoparticles and specific plasmonic resonances. - Abstract: With the aim to study the influence of deposition parameters on the plasmonic properties of gold (Au) nanoparticles (NPs) deposited by ultra-short ablation, we have focused our attention in evaluating how their size distribution can be varied. In this work, the role played by the NPs’ angular distribution, agglomeration and growth is related to the resulting optical properties. UV–vis-NIR absorption spectra together with Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray microdiffraction observations are presented in order to show how the angular distribution of fs laser ablation and deposition of Au NPs provides different plasmonic properties which can be beneficial for several aims, from optoelectronic to biosensor applications.

  15. Depth-resolved sample composition analysis using laser-induced ablation-quadrupole mass spectrometry and laser-induced breakdown spectroscopy

    Science.gov (United States)

    Oelmann, J.; Gierse, N.; Li, C.; Brezinsek, S.; Zlobinski, M.; Turan, B.; Haas, S.; Linsmeier, Ch.

    2018-06-01

    Monitoring a sample's material composition became more and more important over the last years for both - industrial process control as well as for post mortem analysis in research and industrial development. Although material composition identification as well as a comparison with standard samples works fine, there is a lack of diagnostics which can provide quantitative information with depth resolution without any standard samples. We present a novel method utilizing a residual gas analysis with quadrupole mass spectrometry after picosecond laser-induced ablation and release of volatile species. In the present experiment, well characterized multilayer thin film solar cells (μc-Si:H and a-Si:D as p-i-n-junctions on ZnO:Al electrodes) are used as a set of well characterized material samples to demonstrate the capabilities of the new method. The linearity of the spectrometer signal to gas pressure simplifies its calibration and reduces its uncertainties in comparison with other analysis techniques, although high vacuum conditions (10-6 hPa to 10-7 hPa) are required to reach high sensitivity better than the percent-range. Moreover, the laser-ablation based sample analysis requires no preparation of the sample and is flexible regarding ablation rates. The application of a picosecond laser pulse ensures that the thermal penetration depth of the laser is in the same order of magnitude as the ablation rate, which enables to achieve depth resolutions in the order of 100 nm and avoids matrix mixing effects at the edge of the laser-induced crater in the sample.

  16. Experiments of condensation-induced water hammers at the UniBw Munich

    International Nuclear Information System (INIS)

    Dirndorfer, Stefan; Kulisch, Helmut; Malcherek, Andreas

    2013-01-01

    Condensation-induced water hammers belong to the most serious and complex pressure surges. Experimental data from literature are scanty, incomplete, not public or simply missing. A new test facility at the UniBw (University of the German Armed Forces) was constructed to perform own experiments within a research alliance. This new test facility uses a complete new approach. In contrast to other test stations, the UniBw water hammer test facility is a closed system. This leads on the one hand to a more complex handling with respect of conducting experiments but on the other hand also to a more realistic characterization of thermo-hydraulic phenomena which can occur in a power plant. The first results of a measured condensation-induced water hammer are presented. (orig.)

  17. Experiments of condensation-induced water hammers at the UniBw Munich

    Energy Technology Data Exchange (ETDEWEB)

    Dirndorfer, Stefan; Kulisch, Helmut; Malcherek, Andreas [Universitaet der Bundeswehr Muenchen, Neubiberg (Germany). Hydromechanik und Wasserbau

    2013-03-15

    Condensation-induced water hammers belong to the most serious and complex pressure surges. Experimental data from literature are scanty, incomplete, not public or simply missing. A new test facility at the UniBw (University of the German Armed Forces) was constructed to perform own experiments within a research alliance. This new test facility uses a complete new approach. In contrast to other test stations, the UniBw water hammer test facility is a closed system. This leads on the one hand to a more complex handling with respect of conducting experiments but on the other hand also to a more realistic characterization of thermo-hydraulic phenomena which can occur in a power plant. The first results of a measured condensation-induced water hammer are presented. (orig.)

  18. Colour marking of transparent materials by laser-induced plasma-assisted ablation (LIPAA)

    International Nuclear Information System (INIS)

    Hanada, Yasutaka; Sugioka, Koji; Miyamoto, Iwao; Midorikawa, Katsumi

    2007-01-01

    We demonstrate colour marking of a transparent material using laser-induced plasma-assisted ablation (LIPAA) system. After the LIPAA process, metal thin film is deposited on the surface of the ablated groove. This feature is applied to RGB (red, green and blue) colour marking by using specific metal targets. The metal targets, for instance, are Pb 3 O 4 for red, Cr 2 O 3 for green and [Cu(C 32 H 15 ClN 8 )] for blue colour marking. Additionally, adhesion of the metal thin film deposited on the processed groove by various experimental conditions is investigated

  19. Study on the ablation threshold induced by pulsed lasers at different wavelengths

    International Nuclear Information System (INIS)

    Torrisi, L.; Borrielli, A.; Margarone, D.

    2007-01-01

    A study of the effects induced by pulsed laser ablation on different materials as a function of the laser wavelength is presented. In particular the ablation at low laser fluence, of the order of 10 8 -10 10 W/cm 2 with ns pulse width, is investigated experimentally on different metals, semiconductors and polymers. Two theoretical models, explain the experimental results about the fluence threshold value measurements, as depending on the laser wavelength are discussed. The photothermal process is valid for the estimation of the threshold fluence for IR and visible radiation, both inducing thermal heating in metals and semiconductors through the photon-free electron energy transfer. This model is not valid for polymers. The photochemical process is valid for the estimation of the threshold fluence for UV radiation, which photon energy is higher with respect to the chemical binding energy. This radiation induces chemical bond breaking in insulators and scission and cross linking effects can be produced. This last model is not valid for metals and semiconductors

  20. Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications

    Directory of Open Access Journals (Sweden)

    Correard F

    2014-11-01

    Full Text Available Florian Correard,1,2 Ksenia Maximova,3 Marie-Anne Estève,1,2 Claude Villard,1 Myriam Roy,4 Ahmed Al-Kattan,3 Marc Sentis,3 Marc Gingras,4 Andrei V Kabashin,3 Diane Braguer1,2 1Aix Marseille Université, INSERM, CR02 UMR_S911, Marseille, France; 2APHM, Hôpital Timone, Marseille, France; 3Aix Marseille Université, CNRS, LP3 UMR 7341, Marseille, France; 4Aix Marseille Université, CNRS, CINAM, UMR 7325 Marseille, France Abstract: Due to excellent biocompatibility, chemical stability, and promising optical properties, gold nanoparticles (Au-NPs are the focus of research and applications in nanomedicine. Au-NPs prepared by laser ablation in aqueous biocompatible solutions present an essentially novel object that is unique in avoiding any residual toxic contaminant. This paper is conceived as the next step in development of laser-ablated Au-NPs for future in vivo applications. The aim of the study was to assess the safety, uptake, and biological behavior of laser-synthesized Au-NPs prepared in water or polymer solutions in human cell lines. Our results showed that laser ablation allows the obtaining of stable and monodisperse Au-NPs in water, polyethylene glycol, and dextran solutions. The three types of Au-NPs were internalized in human cell lines, as shown by transmission electron microscopy. Biocompatibility and safety of Au-NPs were demonstrated by analyzing cell survival and cell morphology. Furthermore, incubation of the three Au-NPs in serum-containing culture medium modified their physicochemical characteristics, such as the size and the charge. The composition of the protein corona adsorbed on Au-NPs was investigated by mass spectrometry. Regarding composition of complement C3 proteins and apolipoproteins, Au-NPs prepared in dextran solution appeared as a promising drug carrier. Altogether, our results revealed the safety of laser-ablated Au-NPs in human cell lines and support their use for theranostic applications. Keywords: protein

  1. Quark condensation, induced symmetry breaking and color superconductivity at high density

    International Nuclear Information System (INIS)

    Langfeld, Kurt; Rho, Mannque

    1999-01-01

    The phase structure of hadronic matter at high density relevant to the physics of compact stars and relativistic heavy-ion collisions is studied in a low-energy effective quark theory. The relevant phases that figure are (1) chiral condensation, (2) diquark color condensation (color superconductivity) and (3) induced Lorentz-symmetry breaking (''ISB''). For a reasonable strength for the effective four-Fermi current-current interaction implied by the low-energy effective quark theory for systems with a Fermi surface we find that the ''ISB'' phase sets in together with chiral symmetry restoration (with the vanishing quark condensate) at a moderate density while color superconductivity associated with scalar diquark condensation is pushed up to an asymptotic density. Consequently, color superconductivity seems rather unlikely in heavy-ion collisions although it may play a role in compact stars. Lack of confinement in the model makes the result of this analysis only qualitative but the hierarchy of the transitions we find seems to be quite robust

  2. The properties of W-boson condensation induced by fermion density at finite temperatures

    International Nuclear Information System (INIS)

    Perez Rojas, H.; Kalashnikov, O.K.

    1987-01-01

    Bose-Einstein condensation of W bosons induced by fermion density is discussed within models of unified interactions at T ≠ 0. We study in detail the Weinberg-Salam model in wich chemical potentials related to lepton number, electric charge and weak neutral charge are introduced. The one-loop thermodynamic potential is calculated and a set of equations representing the necessary condition for condensation is solved thogether with the corresponding chemical equilibrium conditions. The boundary of the condensate phase is established and estimations for the critical lepton density are given. It is found that for small lepton density W-boson condensation exists only in the finite temperature region, evaporating when T goes to zero. (orig.)

  3. Condensation induced non-condensable accumulation in a non-vented horizontal pipe connected with an elbow and a vertical pipe

    International Nuclear Information System (INIS)

    Stevanovic, V.D.; Stosic, Z.V.; Stoll, U.

    2005-01-01

    In this paper the radiolytic gases (hydrogen and oxygen) accumulation is investigated numerically for the pipe geometry consisting of a horizontal pipe closed at one end, and connected via a downward directed elbow with a vertical pipe open at its bottom end. This configuration is a typical part of many pipeline systems or measuring lines. The steam inside the pipes is condensed due to heat losses to the surrounding atmosphere, the condensate is drained and the concentration of the remaining noncondensable radiolytic gases is increased. Three dimensional numerical simulations are performed with the thermal-hydraulic and physico-chemical code HELIO, especially developed for the simulation and analyses of radiolytic gases accumulation in pipelines. The HELIO code model is based on the mass, momentum and energy conservation equations for the gas mixture and wall condensate film flow, as well as on the transport equations for non-condensable diffusion and convection. At the liquid film surface, the phases are coupled through the no-slip velocity condition and the mass transfer due to steam condensation and non-condensable absorption and degassing. Obtained numerical results show the gas mixture and condensate liquid film flow fields. In case of here analyzed geometry, the gas mixture circulates in the elbow and the horizontal pipe due to buoyancy forces induced by concentration and related density differences. The circulation flow prevents the formation of the radiolytic gases concentration front. The non-condensable radiolytic gases are transported from the pipe through the open end by the mechanisms of diffusion and convection. The analyzed geometry is the same as in case of venting pipe mounted on the steam pipeline. The results are of practical importance since they show that radiolytic gases accumulation does not occur in the geometry of the venting pipes. (authors)

  4. Laser-induced thermo ablation of hepatic tumors: an update review

    International Nuclear Information System (INIS)

    D'Ippolito, Giuseppe; Ribeiro, Marcelo

    2004-01-01

    Laser-induced thermo ablation has been used as a reliable method for producing coagulation necrosis in hepatic tumors in patients who are not suitable for surgical treatment. The procedure can be performed percutaneously, using image-guiding methods, by open laparotomy or laparoscopy. We review the current literature and discuss the principles, indications, complications and clinical results as well as the potential limitations and contraindications of this novel technique. (author)

  5. Zinc oxide nanocolloids prepared by picosecond pulsed laser ablation in water at different temperatures

    Science.gov (United States)

    D'Urso, Luisa; Spadaro, Salvatore; Bonsignore, Martina; Santangelo, Saveria; Compagnini, Giuseppe; Neri, Fortunato; Fazio, Enza

    2018-01-01

    Zinc oxide with wide direct band gap and high exciton binding energy is one of the most promising materials for ultraviolet (UV) light-emitting devices. It further exhibits good performance in the degradation of non-biodegradable pollutants under UV irradiation. In this work, zinc oxide (ZnO) and zinc oxide/gold (ZnO/Au) nanocolloids are prepared by picosecond pulsed laser ablation (ps-PLA), using a Zn and Au metallic targets in water media at room temperature (RT) and 80°C. ZnO and Au nanoparticles (NPs) with size in the 10-50 nm range are obtained at RT, while ZnO nanorods (NRs) are formed when water is maintained at 80°C during the ps-PLA process. Au NPs, added to ZnO colloids after the ablation process, decorate ZnO NRs. The crystalline phase of all ZnO nanocolloids is wurtzite. Methylene blue dye is used to investigate the photo-catalytic activity of all the synthesised nanocolloids, under UV light irradiation.

  6. Laser-induced corneal cross-linking upon photorefractive ablation with riboflavin

    Directory of Open Access Journals (Sweden)

    Kornilovskiy IM

    2016-04-01

    Full Text Available Igor M Kornilovskiy,1 Elmar M Kasimov,2 Ayten I Sultanova,2 Alexander A Burtsev1 1Department of Eye Diseases, Federal State Budgetary Institution “National Pirogov Medical Surgical Centre”, Ministry of Health, Moscow, Russia; 2Department of Eye Diseases, Zarifa Aliyeva National Ophthalmology Center, Ministry of Health, Baku, Azerbaijan Aim: To estimate the biomechanical effect of the laser-induced cross-linking resulting from photorefractive ablation of the cornea with riboflavin.Methods: Excimer laser ablation studies were performed ex vivo (32 eyes of 16 rabbits by phototherapeutic keratectomy (PTK and in vivo (24 eyes of 12 rabbits by transepithelial photorefractive keratectomy (TransPRK, with and without riboflavin saturation of the stroma. Then, we performed corneal optical coherence tomography on 36 eyes of 18 patients with varying degrees of myopia at different times after the TransPRK was performed with riboflavin saturation of the stroma.Results: Biomechanical testing of corneal samples saturated with riboflavin revealed cross-linking effect accompanied by the increase in tensile strength and maximum strength. PTK showed increase in tensile strength from 5.1±1.4 to 7.2±1.6 MPa (P=0.001, while TransPRK showed increase in tensile strength from 8.8±0.9 to 12.8±1.3 MPa (P=0.0004. Maximum strength increased from 8.7±2.5 to 12.0±2.8 N (P=0.005 in PTK and from 12.8±1.6 to 18.3±1.2 N (P=0.0004 in TransPRK. Clinical optical coherence tomography studies of the biomicroscopic transparent cornea at different times after TransPRK showed increased density in the surface layers of the stroma and membrane-like structure beneath the epithelium.Conclusion: Photorefractive ablation of the preliminary corneal stroma saturation with riboflavin causes the effect of laser-induced cross-linking, which is attended with an increase in corneal tensile strength, maximum strength, increased density in the surface layers of the stroma, and formation of

  7. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    Science.gov (United States)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-01

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  8. Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases.

    Science.gov (United States)

    Liu, Yonghong; Sun, Haiyi; Liu, Jiansheng; Liang, Hong; Ju, Jingjing; Wang, Tiejun; Tian, Ye; Wang, Cheng; Liu, Yi; Chin, See Leang; Li, Ruxin

    2016-04-04

    We investigated femtosecond laser-filamentation-induced airflow, water condensation and snow formation in a cloud chamber filled respectively with air, argon and helium. The mass of snow induced by laser filaments was found being the maximum when the chamber was filled with argon, followed by air and being the minimum with helium. We also discussed the mechanisms of water condensation in different gases. The results show that filaments with higher laser absorption efficiency, which result in higher plasma density, are beneficial for triggering intense airflow and thus more water condensation and precipitation.

  9. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Viegas-Pequignot, E.M.

    1981-01-01

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs [fr

  10. Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study

    International Nuclear Information System (INIS)

    Samek, Ota; Kurowski, Andre; Kittel, Silke; Kukhlevsky, Sergei; Hergenroeder, Roland

    2005-01-01

    This work reports on a feasibility study of proximity ablation using femtosecond pulses. Ultra-short pulses were launched to a bare tapered optical fiber and delivered to the sample. The tip-sample distance was controlled by means of shear-force feedback. Consequently, ablation craters with submicrometer dimensions were obtained. Potential analytical applications for Laser Induced Breakdown Spectroscopy (LIBS) technique, such as e.g. inclusions in steel or bio cells, are suggested

  11. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Register, Janna; Scaffidi, Jonathan; Angel, S Michael

    2012-08-01

    Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.

  12. Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation.

    Science.gov (United States)

    Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2016-01-28

    During the last few years, laser-induced breakdown spectroscopy (LIBS) has evolved significantly in the molecular sensing area through the optical monitoring of emissions from organic plasmas. Large efforts have been made to study the formation pathways of diatomic radicals as well as their connections with the bonding framework of molecular solids. Together with the structural and chemical-physical properties of molecules, laser ablation parameters seem to be closely tied to the observed spectral signatures. This research focuses on evaluating the impact of laser pulse duration on the production of diatomic species that populate plasmas of organic materials. Differences in relative intensities of spectral signatures from the plasmas of several organic molecules induced in femtosecond (fs) and nanosecond (ns) ablation regimes have been studied. Beyond the abundance and origin of diatomic radicals that seed the plasma, findings reveal the crucial role of the ablation regime in the breakage pattern of the molecule. The laser pulse duration dictates the fragments and atoms resulting from the vaporized molecules, promoting some formation routes at the expense of other paths. The larger amount of fragments formed by fs pulses advocates a direct release of native bonds and a subsequent seeding of the plasma with diatomic species. In contrast, in the ns ablation regime, the atomic recombinations and single displacement processes dominate the contribution to diatomic radicals, as long as atomization of molecules prevails over their progressive decomposition. Consequently, fs-LIBS better reflects correlations between strengths of emissions from diatomic species and molecular structure as compared to ns-LIBS. These new results entail a further step towards the specificity in the analysis of molecular solids by fs-LIBS.

  13. The rational design of a Au(I) precursor for focused electron beam induced deposition

    NARCIS (Netherlands)

    Marashdeh, Ali; Tiesma, Thiadrik; van Velzen, Niels J. C.; Harder, Sjoerd; Havenith, Remco W. A.; De Hosson, Jeff T. M.; van Dorp, Willem F.

    2017-01-01

    Au(I) complexes are studied as precursors for focused electron beam induced processing (FEBIP). FEBIP is an advanced direct-write technique for nanometer-scale chemical synthesis. The stability and volatility of the complexes are characterized to design an improved precursor for pure Au deposition.

  14. Pulmonary ablation: a primer.

    Science.gov (United States)

    Roberton, Benjamin J; Liu, David; Power, Mark; Wan, John M C; Stuart, Sam; Klass, Darren; Yee, John

    2014-05-01

    Percutaneous image-guided thermal ablation is safe and efficacious in achieving local control and improving outcome in the treatment of both early stage non-small-cell lung cancer and pulmonary metastatic disease, in which surgical treatment is precluded by comorbidity, poor cardiorespiratory reserve, or unfavorable disease distribution. Radiofrequency ablation is the most established technology, but new thermal ablation technologies such as microwave ablation and cryoablation may offer some advantages. The use of advanced techniques, such as induced pneumothorax and the popsicle stick technique, or combining thermal ablation with radiotherapy, widens the treatment options available to the multidisciplinary team. The intent of this article is to provide the reader with a practical knowledge base of pulmonary ablation by concentrating on indications, techniques, and follow-up. Copyright © 2014 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  15. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

    International Nuclear Information System (INIS)

    Babushok, V.I.; DeLucia, F.C.; Gottfried, J.L.; Munson, C.A.; Miziolek, A.W.

    2006-01-01

    A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations have been suggested for the realization of the double pulse laser induced breakdown spectroscopy technique: collinear, orthogonal pre-spark, orthogonal pre-heating and dual pulse crossed beam modes. In addition, combinations of laser pulses with different wavelengths, different energies and durations were studied, thus providing flexibility in the choice of wavelength, pulse width, energy and pulse sequence. The double pulse laser induced breakdown spectroscopy approach provides a significant enhancement in the intensity of laser induced breakdown spectroscopy emission lines up to two orders of magnitude greater than a conventional single pulse laser induced breakdown spectroscopy. The double pulse technique leads to a better coupling of the laser beam with the plasma plume and target material, thus providing a more temporally effective energy delivery to the plasma and target. The experimental results demonstrate that the maximum effect is obtained at some optimum separation delay time between pulses. The optimum value of the interpulse delay depends on several factors, such as the target material, the energy level of excited states responsible for the emission, and the type of enhancement process considered. Depending on the specified parameter, the enhancement effects were observed on different time scales ranging from the picosecond time level (e.g., ion yield, ablation mass) up to the hundred microsecond level (e.g., increased emission intensity for laser induced breakdown spectroscopy of submerged metal target in water). Several suggestions have been proposed to explain

  16. RF Ablation of Giant Hemangiomas Inducing Acute Renal Failure: A Report of Two Cases

    Energy Technology Data Exchange (ETDEWEB)

    Tilborg, Aukje A. J. M. van, E-mail: a.vantilborg@vumc.nl [VU University Medical Center, Departments of Radiology and Nuclear Medicine (Netherlands); Dresselaars, Helena F. [VU University Medical Center, Department of Nefrology (Netherlands); Scheffer, Hester J. [VU University Medical Center, Departments of Radiology and Nuclear Medicine (Netherlands); Nielsen, Karin [VU University Medical Center (Netherlands); Sietses, Colin [Gelderse Vallei Hospital, Department of Surgical Oncology (Netherlands); Tol, Petrousjka M. van den [VU University Medical Center (Netherlands); Meijerink, Martijn R. [VU University Medical Center, Departments of Radiology and Nuclear Medicine (Netherlands)

    2016-11-15

    ObjectiveIn patients that require treatment for hepatic giant cavernous hemangiomas (GCH), radiofrequency ablation (RFA) has been suggested to represent a safe and effective alternative to invasive surgery. In a recent report of bipolar RFA, using two expandable needle electrodes, was uneventfully performed in patients with large GCH (>10 cm). The objective of this report is to present two cases in which bipolar RFA of symptomatic GCH was complicated by acute kidney injury.Materials and methodsIn 2015 we treated two patients for very large symptomatic GCH (15.7 and 25.0 cm) with bipolar RFA during open laparotomy.ResultsIn both patients the urine showed a red–brown discoloration directly after the ablation. They became anuric and presented with progressive dyspnea, tachypnea, and tachycardia, requiring hemodialysis for a period of 1 month in one case. Lab results revealed hemepigment-induced acute kidney. Both patients fully recovered and both showed a complete relief of symptoms at 3 months following the procedure.ConclusionRFA for large GCHs can cause hemepigment-induced acute kidney injury due to massive intravascular hemolysis. The presented cases suggest that caution is warranted and advocate an upper limit regarding the volume of GCHs that can be safely ablated.

  17. Laser induced fluorescence and phosphorescence of matrix isolated glyoxal: Evidence for exciplex formation in the  1Au and  3Au states

    NARCIS (Netherlands)

    IJzendoorn, van L.J.; Allamandola, L.J.; Baas, F.; Koernig, S.; Greenberg, J.M.

    1986-01-01

    Laser-induced fluorescence (¿1Au¿¿1Ag) and phosphorescence (¿3Au¿¿1Ag) as well as absorption and excitation spectra of glyoxal in Ar, N2, and CO matrices have been measured at 12 K. Supplementary infrared absorption spectra have also been taken. Although the dominant band in the absorption and

  18. Picosecond laser fabricated Ag, Au and Ag-Au nanoparticles for detecting ammonium perchlorate using a portable Raman spectrometer

    Science.gov (United States)

    Byram, Chandu; Moram, Sree Sathya Bharathi; Soma, Venugopal Rao

    2018-04-01

    In this paper, we present the results from fabrication studies of Ag, Au, and Ag-Au alloy nanoparticles (NPs) using picosecond laser ablation technique in the presence of liquid media. The alloy formation in the NPs was confirmed from UV-Visible measurements. The shape and crystallinity of NPs were investigated by using high resolution transmission electron microscopy (HRTEM), selected area diffraction pattern (SAED) and energy dispersive spectroscopy (EDS). The SERS effect of fabricated NPs was tested with methylene blue and an explosive molecule (ammonium perchlorate) using a portable Raman spectrometer and achieved EFs of ˜106.

  19. Colloids and composite materials Au/Pvp and Ag/Pvp generated by laser ablation in polymeric liquid environment

    Energy Technology Data Exchange (ETDEWEB)

    Larez, J.; Rojas, C. [Universidad Central de Venezuela, Faculty of Science, Center of Experimental Solid State Physics, Paseo Los Ilustres, Los Chaguaramos, Apdo. Postal 20513, Caracas 1020-A (Venezuela, Bolivarian Republic of); Castell, R., E-mail: jlarez@fisica.ciens.ucv.ve [Universidad Simon Bolivar, Department of Physics, Plasma and Laser Spectroscopy Laboratory, Valle de Sartenejas, Baruta, Apdo. Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of)

    2016-11-01

    Pulsed laser ablation of silver and gold targets, immersed in a polymeric solution of Polyvinylpyrrolidone (Pvp), is used to generate colloids and composite metal-polymer. Solutions of Pvp in deionized water at different concentrations are employed. Two Pvp number average molecular weights were considered, 10000 g/mol and 55000 g/mol. The high purity targets are irradiated between 20 min and 40 min with the third harmonic (Thg) (λ = 335 nm) of a Nd:YAG laser operating at a rate of 10 Hz with pulses of 8 ns. Optical spectroscopy in UV and vis regions, scanning electron microscopy, high resolution scanning electron microscopy and X-ray are used to identify and determine the shape and size of the produced particles. Very stable sub-micrometric spherical particles for Au/Pvp and Ag/Pvp samples are obtained with diameters of 0.72 μm and 0.40 μm, respectively. The preparation of colloids is performed in one step and no surfactant or dispersing agent is used in this process. (Author)

  20. Heat Stress-Induced PI3K/mTORC2-Dependent AKT Signaling Is a Central Mediator of Hepatocellular Carcinoma Survival to Thermal Ablation Induced Heat Stress.

    Directory of Open Access Journals (Sweden)

    Scott M Thompson

    Full Text Available Thermal ablative therapies are important treatment options in the multidisciplinary care of patients with hepatocellular carcinoma (HCC, but lesions larger than 2-3 cm are plagued with high local recurrence rates and overall survival of these patients remains poor. Currently no adjuvant therapies exist to prevent local HCC recurrence in patients undergoing thermal ablation. The molecular mechanisms mediating HCC resistance to thermal ablation induced heat stress and local recurrence remain unclear. Here we demonstrate that the HCC cells with a poor prognostic hepatic stem cell subtype (Subtype HS are more resistant to heat stress than HCC cells with a better prognostic hepatocyte subtype (Subtype HC. Moreover, sublethal heat stress rapidly induces phosphoinositide 3-kinase (PI3K/mammalian target of rapamycin (mTOR dependent-protein kinase B (AKT survival signaling in HCC cells in vitro and at the tumor ablation margin in vivo. Conversely, inhibition of PI3K/mTOR complex 2 (mTORC2-dependent AKT phosphorylation or direct inhibition of AKT function both enhance HCC cell killing and decrease HCC cell survival to sublethal heat stress in both poor and better prognostic HCC subtypes while mTOR complex 1 (mTORC1-inhibition has no impact. Finally, we showed that AKT isoforms 1, 2 and 3 are differentially upregulated in primary human HCCs and that overexpression of AKT correlates with worse tumor biology and pathologic features (AKT3 and prognosis (AKT1. Together these findings define a novel molecular mechanism whereby heat stress induces PI3K/mTORC2-dependent AKT survival signaling in HCC cells and provide a mechanistic rationale for adjuvant AKT inhibition in combination with thermal ablation as a strategy to enhance HCC cell killing and prevent local recurrence, particularly at the ablation margin.

  1. Percutaneous thermal ablation of renal neoplasms

    International Nuclear Information System (INIS)

    Tacke, J.; Mahnken, A.H.; Guenther, R.W.

    2005-01-01

    Due to modern examination techniques such as multidetector computed tomography and high-field magnetic resonance imaging, the detection rate of renal neoplasms is continually increasing. Even though tumors exceeding 4 cm in diameter rarely metastasize, all renal lesions that are possible neoplasms should be treated. Traditional treatment techniques include radical nephrectomy or nephron-sparing resection, which are increasingly performed laparoscopically. Modern thermal ablation techniques such as hyperthermal techniques like radiofrequency ablation RFA, laser induced thermal ablation LITT, focused ultrasound FUS and microwave therapy MW, as well as hypothermal techniques (cryotherapy) may be a useful treatment option for patients who are unfit for or refuse surgical resection. Cryotherapy is the oldest and best known thermal ablation technique and can be performed laparoscopically or percutaneously. Since subzero temperatures have no antistyptic effect, additional maneuvers must be performed to control bleeding. Percutaneous cryotherapy of renal tumors is a new and interesting method, but experience with it is still limited. Radiofrequency ablation is the most frequently used method. Modern probe design allows volumes between 2 and 5 cm in diameter to be ablated. Due to hyperthermal tract ablation, the procedure is deemed to be safe and has a low complication rate. Although there are no randomized comparative studies to open resection, the preliminary results for renal RFA are promising and show RFA to be superior to other thermal ablation techniques. Clinical success rates are over 90% for both, cryo- and radiofrequency ablation. Whereas laser induced thermal therapy is established in hepatic ablation, experience is minimal with respect to renal application. For lesions of more than 2 cm in diameter, additional cooling catheters are required. MR thermometry offers temperature control during ablation. Microwave ablation is characterized by small ablation volumes

  2. Development of Au-Ag nanowire mesh fabrication by UV-induced approach

    Energy Technology Data Exchange (ETDEWEB)

    Saggar, Siddhartha [Laboratory for Molecular Photonics and Electronics, Department of Physics, National Institute of Technology, Calicut, Kerala, India and School of Nanoscience and Technology, National Institute of Technology, Calicut, Kerala (India); Predeep, Padmanabhan, E-mail: predeep@nitc.ac.in

    2014-10-15

    In an attempt to overcome the limitations of the presently prevailing transparent conducting electrode (TCE) - indium tin oxide (ITO) - many materials have been considered for replacing ITO. Recently, a novel method has been reported for the synthesis of Au-Ag nanowire (NW) mesh, and tested successfully for organic-light-emitting-diodes (OLEDs). It employs UV-induced reduction of gold- and silver- precursors to form Au-Ag NW mesh. In this report, Au-Ag NW mesh thin films are synthesized on glass substrates with an objective for use as facing-electrode for Organic Photovoltaics. Various issues and factors affecting the fabrication-process have been improved, and are also discussed here. The electrode showed good transmitivity, of around 95% (excluding that of glass substrate). The advantage of the technique is its simple processing method and cost-effectiveness.

  3. Cooperative effect of ultraviolet and near-infrared beams in laser-induced condensation

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M.; Henin, S.; Pomel, F.; Kasparian, J.; Wolf, J.-P. [Université de Genève, GAP-Biophotonics, Chemin de Pinchat 22, 1211 Geneva 4 (Switzerland); Théberge, F.; Daigle, J.-F. [Defence R and D Canada Valcartier, 2459 de la Bravoure Blvd., Quebec (Qc) G3J 1X5 (Canada); Lassonde, P.; Kieffer, J.-C. [INRS-EMT, 1650 Lionel Boulet Blvd., Varennes, Quebec (Qc) J3X1S2 (Canada)

    2013-12-23

    We demonstrate the cooperative effect of near infrared (NIR) and ultraviolet (UV) beams on laser-induced condensation. Launching a UV laser after a NIR pulse yields up to a 5-fold increase in the production of nanoparticles (25–300 nm) as compared to a single NIR beam. This cooperative effect exceeds the sum of those from the individual beams and occurs for delays up to 1 μs. We attribute it to the UV photolysis of ozone created by the NIR pulses. The resulting OH radicals oxidize NO{sub 2} and volatile organic compounds, producing condensable species.

  4. Effect of ablation photon energy on the distribution of molecular species in laser-induced plasma from polymer in air

    Energy Technology Data Exchange (ETDEWEB)

    Lei, W.Q. [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai (China); Universite de Lyon, F-69622, Lyon, France, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Ma, Q.L.; Motto-Ros, V.; Bai, X.S. [Universite de Lyon, F-69622, Lyon, France, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Zheng, L.J. [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai (China); Zeng, H.P., E-mail: hpzeng@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai (China); Yu, J., E-mail: Jin.Yu@lasim.univ-lyon1.fr [Universite de Lyon, F-69622, Lyon, France, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France)

    2012-07-15

    Distribution of molecular species, C{sub 2} and CN, in laser-induced plasma from a polymer target (polyvinyl chloride: PVC) was observed for ablation with 266 nm and 355 nm pulses. The influence of ablation photon energy on the distribution of molecular species in the plasma has been thus studied. Time- and space-resolved emission spectroscopy was used for the observation which led to the determination of emission intensity profiles of C{sub 2} molecule and CN radical for different delays after the impact of the laser pulse on the target. The profiles of related elements, C, N, and excitation temperature in the plasma were further determined to correlate with those of molecular emission intensity. Different behaviors were clearly observed between plasmas induced by pulses with the two different wavelengths chosen to be close each other in the near ultraviolet (UV). A closer analysis shows the photon energy corresponding to 266 nm pulse of 4.66 eV is larger than bond energies of all the chemical bonds in the studied polymer, while that of 355 nm radiation of 3.49 eV is smaller than or in the same range of the involved bond energies. Observed different behaviors suggest therefore different ablation mechanisms of polymer by laser radiation, and consequently different channels of molecule formation in the plasma. Observation of the morphology of the craters on the target surface left by laser ablation confirmed further different ablation mechanisms with the two used wavelengths. - Highlights: Black-Right-Pointing-Pointer The profiles of C{sub 2} and CN in a plasma induced from a PVC target were determined. Black-Right-Pointing-Pointer Different behaviors were observed for ablation with 266 nm and 355 nm pulses. Black-Right-Pointing-Pointer Different molecule formation channels were used to interpret such behaviors. Black-Right-Pointing-Pointer The morphology of the craters confirmed further the different ablation mechanisms.

  5. Chiral magnetic effect search in p+Au, d+Au and Au+Au collisions at RHIC

    Science.gov (United States)

    Zhao, Jie

    2018-01-01

    Metastable domains of fluctuating topological charges can change the chirality of quarks and induce local parity violation in quantum chromodynamics. This can lead to observable charge separation along the direction of the strong magnetic field produced by spectator protons in relativistic heavy-ion collisions, a phenomenon called the chiral magnetic effect (CME). A major background source for CME measurements using the charge-dependent azimuthal correlator (Δϒ) is the intrinsic particle correlations (such as resonance decays) coupled with the azimuthal elliptical anisotropy (v2). In heavy-ion collisions, the magnetic field direction and event plane angle are correlated, thus the CME and the v2-induced background are entangled. In this report, we present two studies from STAR to shed further lights on the background issue. (1) The Δϒ should be all background in small system p+Au and d+Au collisions, because the event plane angles are dominated by geometry fluctuations uncorrelated to the magnetic field direction. However, significant Δϒ is observed, comparable to the peripheral Au+Au data, suggesting a background dominance in the latter, and likely also in the mid-central Au+Au collisions where the multiplicity and v2 scaled correlator is similar. (2) A new approach is devised to study Δϒ as a function of the particle pair invariant mass (minv) to identify the resonance backgrounds and hence to extract the possible CME signal. Signal is consistent with zero within uncertainties at high minv. Signal at low minv, extracted from a two-component model assuming smooth mass dependence, is consistent with zero within uncertainties.

  6. Influence of chromatin condensation on the number of direct DSB damages induced by ions studied using a Monte Carlo code

    International Nuclear Information System (INIS)

    Dos Santos, M.; Clairand, I.; Gruel, G.; Barquinero, J.F.; Villagrasa, C.; Incerti, S.

    2014-01-01

    The purpose of this work is to evaluate the influence of the chromatin condensation on the number of direct double-strand break (DSB) damages induced by ions. Two geometries of chromosome territories containing either condensed or de-condensed chromatin were implemented as biological targets in the Geant4 Monte Carlo simulation code and proton and alpha irradiation was simulated using the Geant4-DNA processes. A DBSCAN algorithm was used in order to detect energy deposition clusters that could give rise to single-strand breaks or DSBs on the DNA molecule. The results of this study show an increase in the number and complexity of DNA DSBs in condensed chromatin when compared with de-condensed chromatin. This work aims to evaluate the influence of the chromatin condensation in the number and complexity of direct DSB damages induced by proton and alpha irradiation. With the simulations of this study, the increase in the number and complexity of DSB-like clusters induced by ions in the heterochromatin when compared with euchromatin regions of the cell nucleus has been observed and quantified. These results suggest that condensed chromatin can be the location of more severe radiation-induced lesions, more difficult to repair, than de-condensed chromatin. On the other hand, it was also observed that, whatever the chromatin condensation, more possible damages are found after proton irradiation compared with alpha particles of the same LET. Nevertheless, as already remarked, this study concerns only the direct effect of ionising radiation that can be calculated from the results of the physical stage simulated with Geant4-DNA. To include indirect effects induced by radicals around the DNA molecule, the elements needed for simulating the chemical stage are being developed in the frame of the Geant4-DNA project(15, 16) and they are planned to be included in future work. With a complete calculation (direct + indirect damages) it would then be possible to estimate an energy

  7. SERS study of surface plasmon resonance induced carrier movement in Au@Cu2O core-shell nanoparticles

    Science.gov (United States)

    Chen, Lei; Zhang, Fan; Deng, Xin-Yu; Xue, Xiangxin; Wang, Li; Sun, Yantao; Feng, Jing-Dong; Zhang, Yongjun; Wang, Yaxin; Jung, Young Mee

    2018-01-01

    A plasmon induced carrier movement enhanced mechanism of surface-enhanced Raman scattering (SERS) was investigated using a charge-transfer (CT) enhancement mechanism. Here, we designed a strategy to study SERS in Au@Cu2O nanoshell nanoparticles with different shell thicknesses. Among the plasmonically coupled nanostructures, Au spheres with Cu2O shells have been of special interest due to their ultrastrong electromagnetic fields and controllable carrier transfer properties, which are useful for SERS. Au@Cu2O nanoshell nanoparticles (NPs) with shell thicknesses of 48-56 nm are synthesized that exhibit high SERS activity. This high activity originates from plasmonic-induced carrier transfer from Au@Cu2O to 4-mercaptobenzoic acid (MBA). The CT transition from the valence band (VB) of Cu2O to the second excited π-π* transition of MBA, and is of b2 electronic symmetry, which was enhanced significantly. The Herzberg-Teller selection rules were employed to predict the observed enhanced b2 symmetry modes. The system constructed in this study combines the long-range electromagnetic effect of Au NPs, localized surface plasmon resonance (LSPR) of the Au@Cu2O nanoshell, and the CT contribution to assist in understanding the SERS mechanism based on LSPR-induced carrier movement in metal/semiconductor nanocomposites.

  8. Modeling of plasma distortions by laser-induced ablation spectroscopy (LIAS) and implications for the interpretation of LIAS measurements

    Science.gov (United States)

    Tokar, M. Z.; Gierse, N.; Philipps, V.; Samm, U.

    2015-09-01

    For the interpretation of the line radiation observed from laser induced ablation spectroscopy (LIAS) such parameters as the density and temperature of electrons within very compact clouds of atoms and singly charged ions of ablated material have to be known. Compared to the local plasma conditions prior to the laser pulse, these can be strongly changed during LIAS since new electrons are generated by the ionisation of particles ejected from the irradiated target. Because of their transience and spatial inhomogeneity it is technically difficult to measure disturbances induced in the plasma by LIAS. To overcome this uncertainty a numerical model has been elaborated, providing a self-consistent description for the spreading of ablated particles and accompanying modifications in the plasma. The results of calculations for LIAS performed on carbon-containing targets in Ohmic and additionally heated discharges in the tokamak TEXTOR are presented. Due to the increase in the electron density the ‘ionisation per photon’ ratio, S/XB factor, is significantly enhanced compared to unperturbed plasma conditions. The impact of the amount of material ablated and of the plasma conditions before LIAS on the level of the S/XB-enhancement is investigated.

  9. Condensation induced water hammer (CIWH). Relevance in the nuclear industry and state of science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Swidersky, Harald [TUeV Sued Industrie Service GmbH, Muenchen (Germany)

    2013-03-15

    Condensation-induced water hammers (CIWH) are consequences of rapid condensation of steam in partially filled pipes. They present a particular hazard potential, as they seem to occur spontaneously and out of stagnation. The entire process still eludes a secured analytical or numerical predictability and determination of the fluid dynamic loads. The simulation of these processes is one of the most difficult tasks of thermal hydraulic transient analyses. Condensation induced water hammers in plants - mostly power plants - can lead to significant costs if they result in long downtimes, detailed analyses and upgrades. In this contribution, the phenomenon CIWH is explained and the relevance for nuclear engineering will be discussed. An outlook on the actual requirements of regulatory guidelines and the state of science and technology will be given. (orig.)

  10. Condensation induced water hammer (CIWH). Relevance in the nuclear industry and state of science and technology

    International Nuclear Information System (INIS)

    Swidersky, Harald

    2013-01-01

    Condensation-induced water hammers (CIWH) are consequences of rapid condensation of steam in partially filled pipes. They present a particular hazard potential, as they seem to occur spontaneously and out of stagnation. The entire process still eludes a secured analytical or numerical predictability and determination of the fluid dynamic loads. The simulation of these processes is one of the most difficult tasks of thermal hydraulic transient analyses. Condensation induced water hammers in plants - mostly power plants - can lead to significant costs if they result in long downtimes, detailed analyses and upgrades. In this contribution, the phenomenon CIWH is explained and the relevance for nuclear engineering will be discussed. An outlook on the actual requirements of regulatory guidelines and the state of science and technology will be given. (orig.)

  11. Condensation induced water hammer in steam generators

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.; Saha, P.; Wu, B.J.C.; Ginsberg, T.

    1979-06-01

    The case of condensation induced water hammer in nuclear steam generators is summarized, including both feed ring-type and economizer-type geometries. A slug impact model is described and used to demonstrate the parametric dependence of the impact pressures on heat transfer rates, initial pressures, and relative initial slug and void lengths. The results of the parametric study are related also to the economizer geometry and a suggested alternative model is presented. The importance of concerns regarding attenuation of shocks in two-phase media is delineated, and a simple experiment is described which was used to determine negligible attenuation within the accuracy of the experiment for void fractions up to over 30% in bubbly and slug flows

  12. Disorder-induced trapping versus Anderson localization in Bose-Einstein condensates expanding in disordered potentials

    International Nuclear Information System (INIS)

    Sanchez-Palencia, L; Clement, D; Lugan, P; Bouyer, P; Aspect, A

    2008-01-01

    We theoretically investigate the localization of an expanding Bose-Einstein condensate (BEC) with repulsive atom-atom interactions in a disordered potential. We focus on the regime where the initial inter-atomic interactions dominate over the kinetic energy and the disorder. At equilibrium in a trapping potential and for the considered small disorder, the condensate shows a Thomas-Fermi shape modified by the disorder. When the condensate is released from the trap, a strong suppression of the expansion is obtained in contrast to the situation in a periodic potential with similar characteristics. This effect crucially depends on both the momentum distribution of the expanding BEC and the strength of the disorder. For strong disorder as in the experiments reported by Clement et al 2005 Phys. Rev. Lett. 95 170409 and Fort et al 2005 Phys. Rev. Lett. 95 170410, the suppression of the expansion results from the fragmentation of the core of the condensate and from classical reflections from large modulations of the disordered potential in the tails of the condensate. We identify the corresponding disorder-induced trapping scenario for which large atom-atom interactions and strong reflections from single modulations of the disordered potential play central roles. For weak disorder, the suppression of the expansion signals the onset of Anderson localization, which is due to multiple scattering from the modulations of the disordered potential. We compute analytically the localized density profile of the condensate and show that the localization crucially depends on the correlation function of the disorder. In particular, for speckle potentials the long-range correlations induce an effective mobility edge in 1D finite systems. Numerical calculations performed in the mean-field approximation support our analysis for both strong and weak disorder

  13. Condensation pool experiments with steam using DN200 blowdown pipe

    International Nuclear Information System (INIS)

    Laine, J.; Puustinen, M.

    2005-08-01

    This report summarizes the results of the condensation pool experiments with steam using a DN200 blowdown pipe. Altogether five experiment series, each consisting of several steam blows, were carried out in December 2004 with a scaled-down test facility designed and constructed at Lappeenranta University of Technology. The main purpose of the experiments was to increase the understanding of different phenomena in the condensation pool during steam discharge. (au)

  14. Nonlinear optical effects from Au nanoparticles prepared by laser plasmas in water

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, E., E-mail: enfazio@unime.it [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universitá di Messina, V.le F. Stagno d’Alcontres 31, I-98166, Messina (Italy); Neri, F. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universitá di Messina, V.le F. Stagno d’Alcontres 31, I-98166, Messina (Italy)

    2013-05-01

    The optical limiting properties of Au nanoparticles prepared by laser generated plasmas in water were investigated. The ablation processes were carried out irradiating an Au target with the second harmonic (532 nm) output of a Nd:YAG laser, changing the water level above the target, the lens position and the laser pulse energy. Different surface morphologies, from isolated nearly spherical nanoparticles to elongated structures, were observed by TEM imaging. A significant nonlinear optical response was probed by the Z-scan technique. The efficiency and the nature of the nonlinear response are found to be strongly dependent on the morphological properties of the nanostructures. The third order optical susceptibility χ{sup (3)} assumes the values of 1.83 × 10{sup −6} esu and 6.34 × 10{sup −6} esu for the smaller nanoparticles size obtained at the lower ablation energies (10–20 mJ), 8.25 × 10{sup −6} esu and 2.13 × 10{sup −5} esu for the particles agglomerations obtained at the higher ablation energies (50–100 mJ). The high value of χ{sup (3)} and the possibility to tailor the nonlinear optical response by changing the morphological properties of the Au nanostructures make them interesting materials for potential applications in the nonlinear optics field.

  15. A parametric study of condensation-induced water hammer in nuclear power plants

    International Nuclear Information System (INIS)

    Shon, Young Uk; Chun, Moon Hyun

    1990-01-01

    Condensation-induced water hammer (CIWH), which may occur in systems involving steam and water simultaneously, has a series of processes such as formation of water slug, trapping a steam cavity, depressurization due to steam condensation, accelerating slug caused pressure difference over it and final slug impact. These processes are dependent on water flow rate in a pipe, water temperature, water subcooling, steam pressure, size of slug and cavity, and heat transfer coefficient at interface between steam and water. In the present work, the prediction of conditions to initiate water hammer has been made with full scale by applying the open channel flow theory. These conditions are expressed in terms of water flow rate according to changes of steam pressure, water subcooling, and pipe diameter. Under these conditions that induce CIWH, the effect of parameters which influence on slug impact pressure and cavity collapse rate have been studied with full scale. Also, the impact loads that may be applied to piping design were evaluated under various system conditions

  16. Clinical effects of non-ablative and ablative fractional lasers on various hair disorders: a case series of 17 patients.

    Science.gov (United States)

    Cho, Suhyun; Choi, Min Ju; Zheng, Zhenlong; Goo, Boncheol; Kim, Do-Young; Cho, Sung Bin

    2013-04-01

    Both ablative and non-ablative fractional lasers have been applied to various uncommon hair disorders. The purpose of this study was to demonstrate the clinical effects of fractional laser therapy on the course of primary follicular and perifollicular pathologies and subsequent hair regrowth. A retrospective review of 17 patients with uncommon hair disorders - including ophiasis, autosomal recessive woolly hair/hypotrichosis, various secondary cicatricial alopecias, pubic hypotrichosis, frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens - was conducted. All patients had been treated with non-ablative and/or ablative fractional laser therapies. The mean clinical improvement score in these 17 patients was 2.2, while the mean patient satisfaction score was 2.5. Of the 17 subjects, 12 (70.6%) demonstrated a clinical response to non-ablative and/or ablative fractional laser treatments, including individuals with ophiasis, autosomal recessive woolly hair/hypotrichosis, secondary cicatricial alopecia (scleroderma and pressure-induced alopecia), frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens. Conversely, patients with long-standing ophiasis, surgical scar-induced secondary cicatricial alopecia, and pubic hypotrichosis did not respond to fractional laser therapy. Our findings demonstrate that the use of non-ablative and/or ablative fractional lasers promoted hair growth in certain cases of uncommon hair disorders without any remarkable side effects.

  17. Disordered-quantum-walk-induced localization of a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Chandrashekar, C. M.

    2011-01-01

    We present an approach to induce localization of a Bose-Einstein condensate in a one-dimensional lattice under the influence of unitary quantum-walk evolution using disordered quantum coin operation. We introduce a discrete-time quantum-walk model in which the interference effect is modified to diffuse or strongly localize the probability distribution of the particle by assigning a different set of coin parameters picked randomly for each step of the walk, respectively. Spatial localization of the particle or state is explained by comparing the variance of the probability distribution of the quantum walk in position space using disordered coin operation to that of the walk using an identical coin operation for each step. Due to the high degree of control over quantum coin operation and most of the system parameters, ultracold atoms in an optical lattice offer opportunities to implement a disordered quantum walk that is unitary and induces localization. Here we present a scheme to use a Bose-Einstein condensate that can be evolved to the superposition of its internal states in an optical lattice and control the dynamics of atoms to observe localization. This approach can be adopted to any other physical system in which controlled disordered quantum walk can be implemented.

  18. Induced thermal ablation with a radiofrequency field in breast cancer cells using gold nanoparticles conjugated to the peptide cycle[RGDfK(C)

    International Nuclear Information System (INIS)

    Sanchez H, L.

    2014-01-01

    The conjugation of peptides to gold nanoparticles (AuNP) produces biocompatible and stable multimeric systems with target-specific molecular recognition. Peptides based on the cyclic Arg-Gly-Asp (RGD) sequence have been reported as high-affinity agents for the α(v)β(3) and α(v)β(v) integrin s over expressed in breast cancer cells. AuNP have also been proposed as localized heat sources for cancer treatment using laser irradiation or radiofrequency (RF). The objective of this research was to evaluate the thermo ablative effect of the AuNP-c [RGDfK(C)] system on MCF7 breast cancer cell viability after exposure to a radiofrequency field and to compare it with that produced by the laser irradiation. The effect of the 13.56 MHz RF (using a power from 0 to 200 W at intervals of 50 W) over the temperature increase in AuNP-colloidal system of 5 and 20 nm at two different concentrations was evaluated. The absorption cross sections (C abs ) of the AuNP-c [RGDfK(C)] nano system when it interacts with low frequency electromagnetic waves (13.56 MHz, λ = 22 m) and optical frequency waves (laser at λ = 532 nm) was analyzed based on the Mi e theory. The effect on the MCF7 cell viability was assessed using two thermal conversion sources (Laser and RF) on AuNP-c [RGDfK(C)] located inside the cytoplasm of the cells. MCF7 cells were treated with AuNP-c [RGDfK(C)] or water after exposure to the RF field (200 W, 100 V/cm) or laser irradiation (Irradiance 0.65 W/cm 2 ). In both cases (RF and laser) the presence of nanoparticles internalized inside the cells caused a significant increase in the temperature of the medium (RF: ΔT = 29.9 ± 1.7 grades C for AuNP compared toΔT = 13.0 ± 1.4 grades C for water; laser: ΔT = 13.5 ± 0.7 grades C for AuNP compared to 3.3 ± 0.5 grades C for water). Although RF induced a higher increase in the temperature of the medium with nanoparticles, the largest effect on the cell viability was produced by laser when nanoparticles were located inside

  19. Wide range scaling laws for radiation driven shock speed, wall albedo and ablation parameters for high-Z materials

    Science.gov (United States)

    Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.

    2018-06-01

    Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.

  20. Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas

    International Nuclear Information System (INIS)

    Ma Qianli; Motto-Ros, Vincent; Laye, Fabrice; Yu Jin; Lei Wenqi; Bai Xueshi; Zheng Lijuan; Zeng Heping

    2012-01-01

    Laser-induced plasma from an aluminum target in one-atmosphere argon background has been investigated with ablation using nanosecond ultraviolet (UV: 355 nm) or infrared (IR: 1064 nm) laser pulses. Time- and space-resolved emission spectroscopy was used as a diagnostics tool to have access to the plasma parameters during its propagation into the background, such as optical emission intensity, electron density, and temperature. The specific feature of nanosecond laser ablation is that the pulse duration is significantly longer than the initiation time of the plasma. Laser-supported absorption wave due to post-ablation absorption of the laser radiation by the vapor plume and the shocked background gas plays a dominant role in the propagation and subsequently the behavior of the plasma. We demonstrate that the difference in absorption rate between UV and IR radiations leads to different propagation behaviors of the plasma produced with these radiations. The consequence is that higher electron density and temperature are observed for UV ablation. While for IR ablation, the plasma is found with lower electron density and temperature in a larger and more homogenous axial profile. The difference is also that for UV ablation, the background gas is principally evacuated by the expansion of the vapor plume as predicted by the standard piston model. While for IR ablation, the background gas is effectively mixed to the ejected vapor at least hundreds of nanoseconds after the initiation of the plasma. Our observations suggest a description by laser-supported combustion wave for the propagation of the plasma produced by UV laser, while that by laser-supported detonation wave for the propagation of the plasma produced by IR laser. Finally, practical consequences of specific expansion behavior for UV or IR ablation are discussed in terms of analytical performance promised by corresponding plasmas for application with laser-induced breakdown spectroscopy.

  1. Effects on Implosion Characteristics of High-Z Dopant Profiles in ICF Ignition Capsule Ablators

    Science.gov (United States)

    Li, Yongsheng; Wang, Min; Gu, Jianfa; Zou, Shiyang; Kang, Dongguo; Ye, Wenhua; Zhang, Weiyan

    2012-10-01

    For ignition target design (ITD) of indirect drive ICF [J. Lindl, PoP 2, 3933(1995)], high-Z dopants in capsule ablators were used to prevent preheat of DTadjacentablators by Au M-band flux in laser-driven gold Hohlraums, therefore to restrain the growth of high-mode hydro-instabilities and to improve the targetrobustness.Based on NIC's Rev. 5 ITD[S. W. Haan et al., PoP 18, 051001(2011)], we investigated the effect of thickness and dopant concentration of doped layers on implosion characteristics, including the Atwood number (AWN) of fuel-ablator interface, the density gradient scale length (DGSL) of ablation front and the implosion velocity (VIM); all three variables decrease with increment of dopant dosage, and increase with dopant concentration while keeping dosage constant. Since a smaller AWN, a larger DGSL, and a faster VIM always characterize a more robust ITD, one should make tradeoff among them by adjusting the dopant profiles in ablators.A Gaussian spectrum (GS) was used to imitate the Au M-band flux [Y. S. Li et al., PoP 18, 022701(2011)], and the impact of GScenter on implosion characteristics of Rev. 5 ITD was studied while moving the GScenter towards higher energy, the ablatorpreheat got severe, AWN got larger, DGSL got larger, and VIM got faster.

  2. Following the evolution of morphology, composition and crystallography of alumina based catalysts after laser ablation: Implications for analysis by LA-ICP-AES

    Energy Technology Data Exchange (ETDEWEB)

    Alloncle, G. [Universite de Lyon, Lyon1, Laboratoire des Sciences Analytiques, CNRS UMR 5180, bat CPE, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Direction Physique et Analyses, Institut Francais du Petrole (IFP)-Lyon, BP3, F-69360 Solaize (France); Gilon, N., E-mail: gilon@univ-lyon1.fr [Universite de Lyon, Lyon1, Laboratoire des Sciences Analytiques, CNRS UMR 5180, bat CPE, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Legens, C.; Lienemann, C.-P.; Rebours, B.; Sorbier, L. [Direction Physique et Analyses, Institut Francais du Petrole (IFP)-Lyon, BP3, F-69360 Solaize (France); Morin, S.; Revel, R. [Direction Catalyse et Separation, Institut Francais du Petrole (IFP)-Lyon, BP3, F-69360 Solaize (France)

    2009-08-30

    Fundamental understanding of aerosol formation during laser ablation is important for the development of LA-ICP analysis of complex samples. Using a Lina Spark Atomizer{sup TM}, the application of this technique to the field of heterogeneous catalysis gave an accuracy of 5-15% while extreme values of +100% could be obtained in some cases. To improve understanding of laser ablation processes, particles generated during ablation of alumina based catalysts were collected and analysed using different microscopy and surface analysis techniques. Morphological study by scanning electron microscopy showed that most of the particles leaving the ablation cell were nanoparticle aggregates generated from vapor condensation. An XRD study of these aerosols revealed that the condensation converge on the formation of a spinel structure with large coherence domains. Elemental composition of the aerosol was also followed and exhibited differences between a catalyst containing large Mo concentration or low Pt concentration.

  3. Shadowgraphy investigation of laser-induced forward transfer: Front side and back side ablation of the triazene polymer sacrificial layer

    International Nuclear Information System (INIS)

    Fardel, Romain; Nagel, Matthias; Nueesch, Frank; Lippert, Thomas; Wokaun, Alexander

    2009-01-01

    Thin films of a photodecomposible triazene polymer are used as sacrificial layer for the micro-deposition of sensitive materials by laser-induced forward transfer. To understand the ablation process of this sacrificial layer, the ultraviolet laser ablation of triazene films was investigated by time-resolved shadowgraphy. Irradiation from the film side shows a complete decomposition into gaseous fragments, while ablation through the substrate causes ejection of a solid flyer of polymer. The occurence of the flyer depends on the film thickness as well as on the applied fluence, and a compact flyer is obtaind when these two parameters are optimized

  4. Elucidation of polymer induced DNA condensation. Visualisation at the single molecular level

    International Nuclear Information System (INIS)

    Martin, Alison Laura

    2002-01-01

    DNA condensation is a phenomenon that has stimulated interest from biologists, physicists, and polymer chemists for decades. At the cellular level, this process is key to the packing of DNA within the nuclear envelope, and the exposure of the appropriate nucleic acid sequences in order for transcription to occur, and proteins to be produced. The advent of gene therapy has led to an invigoration of this subject area. In order to successfully deliver to, and transfect target cells, many delivery vectors condense the therapeutic DNA into small compact particles. The nature of these particles have a considerable influence on the ultimate expression of the administered nucleic acid material. In addition, at its most fundamental, DNA itself is a classical polyelectrolyte polymer, the behaviour of which has applicability to other charged polymeric systems. There are two core interwound themes to this investigation; the visualisation of DNA condensate morphology at ultra-resolution, and the elucidation of the mechanisms of formation of these structures. The technique of atomic force microscopy is central to these investigations. Methodologies have been devised allowing the visualisation of the tertiary structure and conformational behaviour of individual DNA condensates in near in situ conditions. Condensation of the nucleic acid material has been induced by two classes of cation; small molecular cations, like those found within eukaryotic cells, and a range of cationic polymers. The cationic polymers investigated all have considerable potential as gene delivery vectors. The resultant DNA condensates have been assessed and contrasted in terms of their tertiary morphology, lateral dimensions, and structural volume. Assessments have also been made regarding the influence of the molecular architecture of the cationic moiety and the nature of the input nucleic acid material on the resultant DNA condensates. With regard to the elucidation of the mechanisms of DNA condensate

  5. Efficient H2 production over Au/graphene/TiO2 induced by surface plasmon resonance of Au and band-gap excitation of TiO2

    International Nuclear Information System (INIS)

    Liu, Yang; Yu, Hongtao; Wang, Hua; Chen, Shuo; Quan, Xie

    2014-01-01

    Highlights: • Both surface plasmon resonance and band-gap excitation were used for H 2 production. • Au/Gr/TiO 2 composite photocatalyst was synthesized. • Au/Gr/TiO 2 exhibited enhancement of light absorption and charge separation. • H 2 production rate of Au/Gr/TiO 2 was about 2 times as high as that of Au/TiO 2 . - Abstract: H 2 production over Au/Gr/TiO 2 composite photocatalyst induced by surface plasmon resonance of Au and band-gap excitation of TiO 2 using graphene (Gr) as an electron acceptor has been investigated. Electron paramagnetic resonance study indicated that, in this composite, Gr collected electrons not only from Au with surface plasmon resonance but also from TiO 2 with band-gap excitation. Surface photovoltage and UV–vis absorption measurements revealed that compared with Au/TiO 2 , Au/Gr/TiO 2 displayed more effective photogenerated charge separation and higher optical absorption. Benefiting from these advantages, the H 2 production rate of Au/Gr/TiO 2 composite with Gr content of 1.0 wt% and Au content of 2.0 wt% was about 2 times as high as that of Au/TiO 2 . This work represents an important step toward the efficient application of both surface plasmon resonance and band-gap excitation on the way to converting solar light into chemical energy

  6. “Beating speckles” via electrically-induced vibrations of Au nanorods embedded in sol-gel

    Science.gov (United States)

    Ritenberg, Margarita; Beilis, Edith; Ilovitsh, Asaf; Barkai, Zehava; Shahmoon, Asaf; Richter, Shachar; Zalevsky, Zeev; Jelinek, Raz

    2014-01-01

    Generation of macroscopic phenomena through manipulating nano-scale properties of materials is among the most fundamental goals of nanotechnology research. We demonstrate cooperative “speckle beats” induced through electric-field modulation of gold (Au) nanorods embedded in a transparent sol-gel host. Specifically, we show that placing the Au nanorod/sol-gel matrix in an alternating current (AC) field gives rise to dramatic modulation of incident light scattered from the material. The speckle light patterns take form of “beats”, for which the amplitude and frequency are directly correlated with the voltage and frequency, respectively, of the applied AC field. The data indicate that the speckle beats arise from localized vibrations of the gel-embedded Au nanorods, induced through the interactions between the AC field and the electrostatically-charged nanorods. This phenomenon opens the way for new means of investigating nanoparticles in constrained environments. Applications in electro-optical devices, such as optical modulators, movable lenses, and others are also envisaged. PMID:24413086

  7. High-p$_{T}$ Tomography of d+Au and Au+Au at SPS, RHIC, and LHC

    CERN Document Server

    Vitev, I; Vitev, Ivan; Gyulassy, Miklos

    2002-01-01

    The interplay of nuclear effects on the p_T > 2 GeV inclusive hadron spectra in d+Au and Au+Au reactions at root(s) = 17, 200, 5500 GeV is compared to leading order perturbative QCD calculations for elementary p+p (p-bar+p) collisions. The competition between nuclear shadowing, Cronin effect, and jet energy loss due to medium-induced gluon radiation is predicted to lead to a striking energy dependence of the nuclear suppression/enhancement pattern in A+A reactions. We show that future d+Au data can used to disentangle the initial and final state effects.

  8. Condensation of ablated first-wall materials in the cascade inertial confinement fusion reactor

    International Nuclear Information System (INIS)

    Ladd, A.J.C.

    1985-01-01

    This report concerns problems involved in recondensing first-wall materials vaporized by x rays and pellet debris in the Cascade inertial confinement fusion reactor. It examines three proposed first-wall materials, beryllium oxide (BeO), silicon carbide (SiO), and pyrolytic graphite (C), paying particular attention to the chemical equilibrium and kinetics of the vaporized gases. The major results of this study are as follows. Ceramic materials composed of diatomic molecules, such as BeO and SiC, exist as highly dissociated species after vaporization. The low gas density precludes significant recombination during times of interest (i.e., less than 0.1 s). The dissociated species (Be, O, Si, and C) are, except for carbon, quite volatile and are thermodynamically stable as a vapor under the high temperature and low density found in Cascade. These materials are thus unsuitable as first-wall materials. This difficulty is avoided with pyrolytic graphite. Since the condensation coefficient of monatomic carbon vapor (approx. 0.5) is greater than that of the polyatomic vapor (<0.1), recondensation is assisted by the expected high degree of dissociation. The proposed 10-layer granular carbon bed is sufficient to condense all the carbon vapor before it penetrates to the BeO layer below. The effective condensation coefficient of the porous bed is about 50% greater than that of a smooth wall. An estimate of the mass flux leaving the chamber results in a condensation time for a carbon first wall of about 30 to 50 ms. An experiment to investigate condensation in a Cascade-like chamber is proposed

  9. Diffusion-induced grain boundary migration during ion beam mixing of Au/Cu bilayers

    International Nuclear Information System (INIS)

    Alexander, D.E.; Baldo, P.M.; Rehn, L.E.

    1992-09-01

    Experiments were performed to evaluate the effect of 1.5 MeV Kr irradiation on diffusion-induced grain boundary migration (DIGM) in Au/Cu bilayers in the temperature range of 300≤T≤050K. The experimental results were consistent with DIGM occurring in bilayers both during irradiation and during annealing treatments. Rutherford backscattering spectrometry showed a nearly uniform distribution of Cu present through the entire thickness of appropriately prepared polycrystalline Au films irradiated or annealed at temperatures ≥400K. No parallel effect was seen in similarly treated single-crystal films. In each polycrystalline sample studied, irradiation resulted in greater amounts of Cu present uniformly in the Au compared to annealing-only. The magnitudes of measured Cu compositions were substantially greater than that expected solely from grain boundary diffusion. A simple analysis of the process indicated that ion irradiation affects DIGM by increasing the composition of Cu present in alloyed zones and/or by increasing the grain boundary velocity in the Au

  10. Computational models to determine fluiddynamical transients due to condensation induced water hammer (CIWH)

    International Nuclear Information System (INIS)

    Swidersky, Harald; Schaffrath, Andreas; Dudlik, Andreas

    2012-01-01

    Condensation induced water hammer ('condensation hammer', CIWH) represent a dangerous phenomenon in pipings, which can endanger the pipe integrity. If they cannot be excluded, they have to be taken into account for the integrity proof of components and pipe structures. Up to now, there exists no substantiated model, which sufficiently determines loads due to CIWH. Within the framework of the research alliance CIWA, a tool for estimating the potential and the amount of pressure loads will be developed based on theoretical work and supported by experimental results. This first study discusses used computational models, results of experimental observations and gives an outlook onto future techniques. (orig.)

  11. Laser ablation synthesis of new gold phosphides using red phosphorus and nanogold as precursors. Laser desorption ionisation time-of-flight mass spectrometry.

    Science.gov (United States)

    Panyala, Nagender Reddy; Peña-Méndez, Eladia María; Havel, Josef

    2012-05-15

    Gold phosphides show unique optical or semiconductor properties and there are extensive high technology applications, e.g. in laser diodes, etc. In spite of the various AuP structures known, the search for new materials is wide. Laser ablation synthesis is a promising screening and synthetic method. Generation of gold phosphides via laser ablation of red phosphorus and nanogold mixtures was studied using laser desorption ionisation time-of-flight mass spectrometry (LDI TOFMS). Gold clusters Au(m)(+) (m = 1 to ~35) were observed with a difference of one gold atom and their intensities were in decreasing order with respect to m. For P(n)(+) (n = 2 to ~111) clusters, the intensities of odd-numbered phosphorus clusters are much higher than those for even-numbered phosphorus clusters. During ablation of P-nanogold mixtures, clusters Au(m)(+) (m = 1-12), P(n)(+) (n = 2-7, 9, 11, 13-33, 35-95 (odd numbers)), AuP(n)(+) (n = 1, 2-88 (even numbers)), Au(2)P(n)(+) (n = 1-7, 14-16, 21-51 (odd numbers)), Au(3)P(n)(+) (n = 1-6, 8, 9, 14), Au(4)P(n)(+) (n = 1-9, 14-16), Au(5)P(n)(+) (n = 1-6, 14, 16), Au(6)P(n)(+) (n = 1-6), Au(7)P(n)(+) (n = 1-7), Au(8)P(n)(+) (n = 1-6, 8), Au(9)P(n)(+) (n = 1-10), Au(10)P(n)(+) (n = 1-8, 15), Au(11)P(n)(+) (n = 1-6), and Au(12)P(n)(+) (n = 1, 2, 4) were detected in positive ion mode. In negative ion mode, Au(m)(-) (m = 1-5), P(n)(-) (n = 2, 3, 5-11, 13-19, 21-35, 39, 41, 47, 49, 55 (odd numbers)), AuP(n)(-) (n = 4-6, 8-26, 30-36 (even numbers), 48), Au(2)P(n)(-) (n = 2-5, 8, 11, 13, 15, 17), A(3) P(n)(-) (n = 6-11, 32), Au(4)P(n)(-) (n = 1, 2, 4, 6, 10), Au(6)P(5)(-), and Au(7)P(8)(-) clusters were observed. In both modes, phosphorus-rich Au(m)P(n) clusters prevailed. The first experimental evidence for formation of AuP(60) and gold-covered phosphorus Au(12)P(n) (n = 1, 2, 4) clusters is given. The new gold phosphides generated might inspire synthesis of

  12. Modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chang, Won Pyo

    1996-07-01

    Condensation occurs when vapor is cooled sufficiently below the saturation temperature to induce the nucleation of droplets. Such nucleation may occur homogeneously within the vapor or heterogeneously on entrained particular matter. Heterogeneous nucleation may occur on the walls of the system, where the temperature is below the saturation temperature. There are two forms of heterogeneous condensation, drop-wise and film-wise. Another form of condensation occurs when vapor directly contacts to subcooled liquid. In nuclear power plant systems, all forms of condensation may occur during normal operation or accident conditions. In this work the modelling of condensation is surveyed, including the Nusselts' laminar film condensation theory in 1916, Rohsenow's turbulent film condensation model in 1950s, and Chen's models in 1987. Major attention is paid on the film condensation models among various research results because of its importance in engineering applications. It is found that theory, experiment, and empirical correlations for film condensation are well established, but research for drop-wise and direct-contact condensation are not sufficient yet. Condensation models in the best-estimate system codes such as RELAP5/MOD3 and CATHARE2 are also investigated. 3 tabs., 11 figs., 36 refs. (Author)

  13. Computed Tomography Assessment of Ablation Zone Enhancement in Patients With Early-Stage Lung Cancer After Stereotactic Ablative Radiotherapy.

    Science.gov (United States)

    Moore, William; Chaya, Yair; Chaudhry, Ammar; Depasquale, Britney; Glass, Samantha; Lee, Susan; Shin, James; Mikhail, George; Bhattacharji, Priya; Kim, Bong; Bilfinger, Thomas

    2015-01-01

    Stereotactic ablative radiotherapy (SABR) offers a curative treatment for lung cancer in patients who are marginal surgical candidates. However, unlike traditional surgery the lung cancer remains in place after treatment. Thus, imaging follow-up for evaluation of recurrence is of paramount importance. In this retrospective designed Institutional Review Board-approved study, follow-up contrast-enhanced computed tomography (CT) exams were performed on sixty one patients to evaluate enhancement pattern in the ablation zone at 1, 3, 6, and 12 months after SABR. Eleven patients had recurrence within the ablation zone after SABR. The postcontrast enhancement in the recurrence group showed a washin and washout phenomenon, whereas the radiation-induced lung injury group showed continuous enhancement suggesting an inflammatory process. The textural feature of the ablation zone of enhancement and perfusion as demonstrated in computed tomography nodule enhancement may allow early differentiation of recurrence from radiation-induced lung injury in patients' status after SABR or primary lung cancer.

  14. Au nanostructure fabrication by pulsed laser deposition in open air: Influence of the deposition geometry

    Directory of Open Access Journals (Sweden)

    Rumen G. Nikov

    2017-11-01

    Full Text Available We present a fast and flexible method for the fabrication of Au nanocolumns. Au nanostructures were produced by pulsed laser deposition in air at atmospheric pressure. No impurities or Au compounds were detected in the resulting samples. The nanoparticles and nanoaggregates produced in the ablated plasma at atmospheric pressure led to the formation of chain-like nanostructures on the substrate. The dependence of the surface morphology of the samples on the deposition geometry used in the experimental set up was studied. Nanocolumns of different size and density were produced by varying the angle between the plasma plume and the substrate. The electrical, optical, and hydrophobic properties of the samples were studied and discussed in relation to their morphology. All of the nanostructures were conductive, with conductivity increasing with the accumulation of ablated material on the substrate. The modification of the electrical properties of the nanostructures was demonstrated by irradiation by infrared light. The Au nanostructures fabricated by the proposed technology are difficult to prepare by other methods, which makes the simple implementation and realization in ambient conditions presented in this work more ideal for industrial applications.

  15. Au nanostructure fabrication by pulsed laser deposition in open air: Influence of the deposition geometry.

    Science.gov (United States)

    Nikov, Rumen G; Dikovska, Anna Og; Nedyalkov, Nikolay N; Avdeev, Georgi V; Atanasov, Petar A

    2017-01-01

    We present a fast and flexible method for the fabrication of Au nanocolumns. Au nanostructures were produced by pulsed laser deposition in air at atmospheric pressure. No impurities or Au compounds were detected in the resulting samples. The nanoparticles and nanoaggregates produced in the ablated plasma at atmospheric pressure led to the formation of chain-like nanostructures on the substrate. The dependence of the surface morphology of the samples on the deposition geometry used in the experimental set up was studied. Nanocolumns of different size and density were produced by varying the angle between the plasma plume and the substrate. The electrical, optical, and hydrophobic properties of the samples were studied and discussed in relation to their morphology. All of the nanostructures were conductive, with conductivity increasing with the accumulation of ablated material on the substrate. The modification of the electrical properties of the nanostructures was demonstrated by irradiation by infrared light. The Au nanostructures fabricated by the proposed technology are difficult to prepare by other methods, which makes the simple implementation and realization in ambient conditions presented in this work more ideal for industrial applications.

  16. Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2011-06-01

    Full Text Available The fabrication of precise 2D Au nanoparticle arrays over a large area is presented. The technique was based on pre-patterning of the substrate before the deposition of a thin Au film, and the creation of periodic particle arrays by subsequent dewetting induced by annealing. Two types of pre-patterned substrates were used: The first comprised an array of pyramidal pits and the second an array of circular holes. For the dewetting of Au films on the pyramidal pit substrate, the structural curvature-driven diffusion cooperates with capillarity-driven diffusion, resulting in the formation of precise 2D particle arrays for films within a structure dependent thickness-window. For the dewetting of Au films on the circular hole substrate, the periodic discontinuities in the films, induced by the deposition, can limit the diffusion paths and lead to the formation of one particle per individual separated region (holes or mesas between holes, and thus, result in the evolution of precise 2D particle arrays. The influence of the pre-patterned structures and the film thickness is analyzed and discussed. For both types of pre-patterned substrate, the Au film thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays.

  17. Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

    Science.gov (United States)

    Ji, Ran

    2011-01-01

    Summary The fabrication of precise 2D Au nanoparticle arrays over a large area is presented. The technique was based on pre-patterning of the substrate before the deposition of a thin Au film, and the creation of periodic particle arrays by subsequent dewetting induced by annealing. Two types of pre-patterned substrates were used: The first comprised an array of pyramidal pits and the second an array of circular holes. For the dewetting of Au films on the pyramidal pit substrate, the structural curvature-driven diffusion cooperates with capillarity-driven diffusion, resulting in the formation of precise 2D particle arrays for films within a structure dependent thickness-window. For the dewetting of Au films on the circular hole substrate, the periodic discontinuities in the films, induced by the deposition, can limit the diffusion paths and lead to the formation of one particle per individual separated region (holes or mesas between holes), and thus, result in the evolution of precise 2D particle arrays. The influence of the pre-patterned structures and the film thickness is analyzed and discussed. For both types of pre-patterned substrate, the Au film thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays. PMID:21977445

  18. Reduced program of inspection by induced currents for condenser of Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Obrutsky, L.; Mendonca, H.

    1986-01-01

    In this work it's presented a reduced inspection in service program by the technique of induced currents to the turbine condenser of Embalse's Power Plant (Cordoba). The authors based its elaboration on the results obtained in the exam of a small number of tubes and on experience obtained through four inspections in the condensers of Atucha I Power Plant, through mathematical models of oxygen and ammoniac distribution in both Power Plants, and its experimental verification in the case of Atucha I. This program improves the quality of inspection thereby reducing time, equipment and personnel employed. (C.M.) [pt

  19. Formation of Ag2, Au2 and AgAu particles on MgO(1 0 0): DFT study on the role of support-induced charge transfer in metal-metal interactions

    International Nuclear Information System (INIS)

    Fuente, Silvia A.; Belelli, Patricia G.; Branda, Maria M.; Ferullo, Ricardo M.; Castellani, Norberto J.

    2009-01-01

    The formation of Ag 2 , Au 2 and AgAu particles oriented perpendicularly to the MgO(1 0 0) surface was studied using the density functional theory. While the support induces a slight enhancement of the Ag-Ag bond (by 0.3-0.4 eV), the Au-Au bond is strongly enhanced (by 0.8-1.1 eV). Concerning the bimetallic particle, the Ag-Au bond stabilization depends on the relative position of each atom. Thus, in general terms, the strength of the metal-metal bond is determined by the nature of the terminal atom; the bond is stronger in Au-terminal particles. The partial electronic charge transfer to the terminal Au atom and its ability to polarize this charge are responsible for this energetic stabilization.

  20. Condensed Fraction of an Atomic Bose Gas Induced by Critical Correlations

    International Nuclear Information System (INIS)

    Smith, Robert P.; Tammuz, Naaman; Campbell, Robert L. D.; Hadzibabic, Zoran; Holzmann, Markus

    2011-01-01

    We study the condensed fraction of a harmonically trapped atomic Bose gas at the critical point predicted by mean-field theory. The nonzero condensed fraction f 0 is induced by critical correlations which increase the transition temperature T c above T c MF . Unlike the T c shift in a trapped gas, f 0 is sensitive only to the critical behavior in the quasiuniform part of the cloud near the trap center. To leading order in the interaction parameter a/λ 0 , where a is the s-wave scattering length and λ 0 the thermal wavelength, we expect a universal scaling f 0 ∝(a/λ 0 ) 4 . We experimentally verify this scaling using a Feshbach resonance to tune a/λ 0 . Further, using the local density approximation, we compare our measurements with the universal result obtained from Monte Carlo simulations for a uniform system, and find excellent quantitative agreement.

  1. Generating entangled state of Bose-Einstein condensate using electromagnetically induced transparency

    Science.gov (United States)

    Li, Song-Song

    2018-01-01

    We put forward a scheme on how to generate entangled state of Bose-Einstein condensate (BEC) using electromagnetically induced transparency (EIT). It is shown that we can rapidly generate the entangled state in the dynamical process and the entangled state maintained a long time interval. It is also shown that the better entangled state can be generated by decreasing coupling strengths of two classical laser fields, increasing two-photon detuning and total number of atoms.

  2. Trapped Bose-Einstein condensates with Planck-scale induced deformation of the energy-momentum dispersion relation

    International Nuclear Information System (INIS)

    Briscese, F.

    2012-01-01

    We show that harmonically trapped Bose-Einstein condensates can be used to constrain Planck-scale physics. In particular we prove that a Planck-scale induced deformation of the Minkowski energy-momentum dispersion relation δE≃ξ 1 mcp/2M p produces a shift in the condensation temperature T c of about ΔT c /T c 0 ≃10 -6 ξ 1 for typical laboratory conditions. Such a shift allows to bound the deformation parameter up to |ξ 1 |≤10 4 . Moreover we show that it is possible to enlarge ΔT c /T c 0 and improve the bound on ξ 1 lowering the frequency of the harmonic trap. Finally we compare the Planck-scale induced shift in T c with similar effects due to interboson interactions and finite size effects.

  3. Soliton resonance in bose-einstein condensate

    Science.gov (United States)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  4. Inducible forebrain-specific ablation of the transcription factor Creb during adulthood induces anxiety but no spatial/contextual learning deficits

    Directory of Open Access Journals (Sweden)

    Miriam Annika Vogt

    2014-11-01

    Full Text Available The cyclic AMP (cAMP-response element binding protein (CREB is an activity-dependent transcription factor playing a role in synaptic plasticity, learning and memory, and emotional behavior. However, the impact of Creb ablation on rodent behavior is vague as e.g. memory performance of different Creb mutant mice depends on the specific type of mutation per se but additionally on the background and learning protocol differences. Here we present the first targeted ablation of CREB induced during adulthood selectively in principal forebrain neurons in a pure background strain of C57BL/6 mice. All hippocampal principal neurons exhibited lack of CREB expression. Mutant mice showed a severe anxiety phenotype in the openfield and novel object exploration test as well as in the Dark-Light Box Test, but unaltered hippocampus-dependent long-term memory in the Morris water maze and in context dependent fear conditioning. On the molecular level, CREB ablation led to CREM up regulation in the hippocampus and frontal cortex which may at least in part compensate for the loss of CREB. BDNF, a postulated CREB target gene, was down regulated in the frontal lobe but not in the hippocampus; neurogenesis remained unaltered. Our data indicate that in the adult mouse forebrain the late onset of CREB ablation can, in case of memory functionality, be compensated for and is not essential for memory consolidation and retrieval during adulthood. In contrast, the presence of CREB protein during adulthood seems to be pivotal for the regulation of emotional behavior.

  5. Radiation-induced segregation in Cu-Au alloys

    International Nuclear Information System (INIS)

    Hashimoto, T.; Rehn, L.E.; Okamoto, P.R.

    1987-01-01

    Radiation-induced segregation in a Cu-lat.% Au alloy was investigated using in-situ Rutherford backscattering spectrometry. Irradiation with 1.8-MeV helium produced nonequilibrium gold atom depletion in the near surface region. The amount of segregation was measured as a function of dose, dose rate, and temperature. Segregation was observed in the temperature range between about 300 and 500 0 C. For a calculated dose rate of 3.9 x 10/sup -5/ dpa/s, the radiation-induced segregation rate peaked near 400 0 C. Theoretical analysis based on the Johnson-Lam model predicted that the amount of segregation would be directly proportional to dose at the early stage of irradiation, would deviate from linearity with a continuously decreasing slope of intermediate doses, and finally approach a constant value after high doses. The analysis also predicted that the segregation rate would vary as the - 1/4th power of the dose rate at constant dose in the low temperature region. These predictions were all verified experimentally. A procedure for extracting relative defect production efficiencies from similar measurements is discussed

  6. Long-term outcome of posterior urethral valves ablation using the ...

    African Journals Online (AJOL)

    Les problemes remarqués au cours d'examens de contrôles a long terme sont: infections urinaire périodique en 35% des cas, insuffisance rénale aigue et chronique en 5% et 15% respectivement, rachitisme, anémie, sousalimentation et rétrécissement urétral. Conclusion: Les enfants qui ont subi une ablation des valves ...

  7. pH-Induced transformation of ligated Au25 to brighter Au23 nanoclusters.

    Science.gov (United States)

    Waszkielewicz, Magdalena; Olesiak-Banska, Joanna; Comby-Zerbino, Clothilde; Bertorelle, Franck; Dagany, Xavier; Bansal, Ashu K; Sajjad, Muhammad T; Samuel, Ifor D W; Sanader, Zeljka; Rozycka, Miroslawa; Wojtas, Magdalena; Matczyszyn, Katarzyna; Bonacic-Koutecky, Vlasta; Antoine, Rodolphe; Ozyhar, Andrzej; Samoc, Marek

    2018-05-01

    Thiolate-protected gold nanoclusters have recently attracted considerable attention due to their size-dependent luminescence characterized by a long lifetime and large Stokes shift. However, the optimization of nanocluster properties such as the luminescence quantum yield is still a challenge. We report here the transformation of Au25Capt18 (Capt labels captopril) nanoclusters occurring at low pH and yielding a product with a much increased luminescence quantum yield which we have identified as Au23Capt17. We applied a simple method of treatment with HCl to accomplish this transformation and we characterized the absorption and emission of the newly created ligated nanoclusters as well as their morphology. Based on DFT calculations we show which Au nanocluster size transformations can lead to highly luminescent species such as Au23Capt17.

  8. On the anisotropy of stress-distribution induced in glasses and crystals by non-ablative femtosecond laser exposure

    NARCIS (Netherlands)

    McMillen, B.W.; Bellouard, Y.

    2015-01-01

    Femtosecond laser exposure in the non-ablative regime induces a variety of bulk structural modifications, in which anisotropy may depend on the polarization of the writing beam. In this work, we investigate the correlation between polarization state and stress anisotropy. In particular, we introduce

  9. The disorder-induced Raman scattering in Au/MoS{sub 2} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gołasa, K., E-mail: Katarzyna.Golasa@fuw.edu.pl; Grzeszczyk, M.; Binder, J.; Bożek, R.; Wysmołek, A.; Babiński, A. [Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warszawa (Poland)

    2015-07-15

    The Raman scattering has been studied in heterostructures composed of a thin MoS{sub 2} flake and a 1-1.5 nm layer of thermally evaporated gold (Au). There have been Au nanoislands detected in the heterostructure. It has been found that their surface density and the average size depend on the MoS{sub 2} thickness. The Raman scattering spectrum in the heterostructure with a few monolayer MoS{sub 2} only weakly depends on the excitation (resonant vs. non-resonant) mode. The overall Raman spectrum corresponds to the total density of phonon states, which is characteristic for disordered systems. The disorder in the MoS{sub 2} layer is related to the mechanical strain induced in the MoS{sub 2} layer by the Au nanoislands. The strain results in the localization of phonon modes, which leads to the relaxation of the momentum conservation rule in the scattering process. The relaxation allows phonons from the whole MoS{sub 2} Brillouin zone to interact with electronic excitations. Our results show that the Au nanoislands resulted from thermal evaporation of a thin metal layer introduce substantial disorder into the crystalline structure of the thin MoS{sub 2} layers.

  10. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  11. A Review of Laser Ablation Propulsion

    International Nuclear Information System (INIS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-01-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  12. Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy

    International Nuclear Information System (INIS)

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Khumaeni, A.; Kato, M.; Wakaida, I.

    2015-01-01

    The dynamic behavior of an ablation plume in ambient gas has been investigated by laser-induced fluorescence imaging spectroscopy. The second harmonic beam from an Nd:YAG laser (0.5–6 J/cm 2 ) was focused on a sintered oxide pellet or a metal chip of gadolinium. The produced plume was subsequently intersected with a sheet-shaped UV beam from a dye laser so that time-resolved fluorescence images were acquired with an intensified CCD camera at various delay times. The obtained cross-sectional images of the plume indicate that the ablated ground state atoms and ions of gadolinium accumulate in a hemispherical contact layer between the plume and the ambient gas, and a cavity containing a smaller density of ablated species is formed near the center of the plume. At earlier expansion stage, another luminous component also expands in the cavity so that it coalesces into the hemispherical layer. The splitting and coalescence for atomic plume occur later than those for ionic plume. Furthermore, the hemispherical layer of neutral atoms appears later than that of ions; however, the locations of the layers are nearly identical. This coincidence of the appearance locations of the layers strongly suggests that the neutral atoms in the hemispherical layer are produced as a consequence of three-body recombination of ions through collisions with gas atoms. The obtained knowledge regarding plume expansion dynamics and detailed plume structure is useful for optimizing the experimental conditions for ablation-based spectroscopic analysis. - Highlights: • Ablated ground-state species accumulated in a thin hemispherical boundary layer • Inside the layer, a cavity containing a small density of ablated species was formed. • The hemispherical layers of atoms and ions appeared at a nearly identical location. • The measured intensity peak variation was in good agreement with a model prediction. • We ascribed the dominant process for forming the layer to a three-body recombination

  13. Observation of Au + AuAu + Au + ρ0 and Au + AuAu* + Au* + ρ0 with STAR

    International Nuclear Information System (INIS)

    Spencer, K.

    2002-01-01

    First observation of the reactions Au + AuAu + Au + ρ 0 and Au + AuAu* + Au* + ρ 0 with the STAR detector are reported. The ρ are produced at small perpendicular momentum, as expected if they couple coherently to both nuclei. Models of vector meson production and the correlation with nuclear breakup are discussed, as well as a fundamental test of quantum mechanics that is possible with the system. (author)

  14. Propagation of a probe pulse inside a Bose–Einstein condensate under conditions of electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Barberis-Blostein, Pablo; Aguilar-Loreto, Omar

    2015-01-01

    We obtain a partial differential equation for a pulse travelling inside a Bose–Einstein condensate under conditions of electromagnetically induced transparency. The equation is valid for a weak probe pulse. We solve the equation for the case of a three-level BEC in Λ configuration with one of its ground state spatial profiles initially constant. The solution characterizes, in detail, the effect that the evolution of the condensate wave function has on pulse propagation, including the process of stopping and releasing it. (invited comment)

  15. Temperature-induced assembly of semiconductor nanocrystals into fractal architectures and thermoelectric power properties in Au/Ge bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Li Quanbao; Wang Jian; Jiao Zheng [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Wu Minghong, E-mail: mhwu@staff.shu.edu.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Shek, Chan-Hung; Lawrence Wu, C.M.; Lai, Joseph K.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chen Zhiwen, E-mail: cnzwchen@yahoo.com.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2011-08-15

    Highlights: > Ge fractal architectures were achieved by temperature-induced assembly. > The appearance of fractal architectures influences the thermoelectric power. > But it has little effect on the resistivity. > The values of the superlocalization exponent were within 1.22 {<=} {xi} {<=} 1.29. > It was higher than expected for two-dimension fractal system. - Abstract: Fractal architectures of semiconductor nanocrystals were successfully achieved by temperature-induced assembly of semiconductor nanocrystals in gold/germanium (Au/Ge) bilayer films. New assessment strategies of fractal architectures are of fundamental importance in the development of micro/nano-devices. Temperature-dependent properties including resistivity and thermoelectric power (TEP) of Au/Ge bilayer films with self-similar fractal patterns were investigated in detail. Experimental results indicated that the microstructure of Au film plays an important role in the characteristics of Au/Ge bilayer films after annealing and the crystallization processes of amorphous Ge accompany by fractal formation of Ge nanocrystals via temperature-induced assembly. The appearance of fractal architectures has significantly influence on the TEP but little effect on the resistivity of the annealed bilayer film. By analysis of the data, we found that the values of superlocalization exponent are within 1.22 {<=} {xi} {<=} 1.29, which are higher than expected for two-dimension fractal systems. The results provided possible evidence for the superlocalization on fractal architectures in Au/Ge bilayer films. The TEP measurements are considered a more effective method than the conductivity for investigating superlocalization in a percolating system.

  16. Astigmatism induced by conventional spherical ablation after PRK and LASIK in myopia with astigmatism < 1.00 D

    Directory of Open Access Journals (Sweden)

    Christiansen SM

    2012-12-01

    Full Text Available Steven M Christiansen,1 Mark D Mifflin,1 Jason N Edmonds,1 Rachel G Simpson,2 Majid Moshirfar11John A Moran Eye Center, University of Utah, Salt Lake City, UT, 2The University of Arizona College of Medicine, Phoenix, AZ, USABackground: The purpose of this study was to evaluate surgically-induced astigmatism after spherical ablation in photorefractive keratectomy (PRK and laser-assisted in situ keratomileusis (LASIK for myopia with astigmatism < 1.00 D.Methods: The charts of patients undergoing spherical PRK or LASIK for the correction of myopia with minimal astigmatism of <1.00 D from 2002 to 2012 at the John A Moran Eye Center in Salt Lake City, UT, were retrospectively reviewed. Astigmatism was measured by manifest refraction. The final astigmatic refractive outcome at 6 months postoperatively was compared with the initial refraction by Alpins vector analysis.Results: For PRK, average cylinder increased from 0.39 ± 0.25 (0.00–0.75 preoperatively to 0.55 ± 0.48 (0.00–1.75 postoperatively (P = 0.014, compared with an increase in LASIK eyes from 0.40 ± 0.27 (0.00–0.75 preoperatively to 0.52 ± 0.45 (0.00–2.00 postoperatively (P = 0.041. PRK eyes experienced an absolute value change in cylinder of 0.41 ± 0.32 (0.00–1.50 and LASIK eyes experienced a change of 0.41 ± 0.31 (0.00–1.50, P = 0.955. Mean surgically-induced astigmatism was 0.59 ± 0.35 (0.00–1.70 in PRK eyes, with an increase in surgically-induced astigmatism of 0.44 D for each additional 1.00 D of preoperative cylinder; in LASIK eyes, mean surgically-induced astigmatism was 0.55 ± 0.32 (0.00–1.80, P = 0.482, with an increase in surgically-induced astigmatism of 0.29 D for each 1.00 D of preoperative cylinder.Conclusion: Spherical ablation can induce substantial astigmatism even in eyes with less than one diopter of preoperative astigmatism in both PRK and LASIK. No significant difference in the magnitude of surgically-induced astigmatism was found between eyes

  17. Tungsten oxide-Au nanosized film composites for glucose oxidation and sensing in neutral medium

    Directory of Open Access Journals (Sweden)

    Gougis M

    2015-04-01

    Full Text Available Maxime Gougis, Dongling Ma, Mohamed Mohamedi INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, Canada Abstract: In this work, we report for the first time the use of tungsten oxide (WOx as catalyst support for Au toward the direct electrooxidation of glucose. The nanostructured WOx/Au electrodes were synthesized by means of laser-ablation technique. Both micro-Raman spectroscopy and transmission electron microscopy showed that the produced WOx thin film is amorphous and made of ultrafine particles of subnanometer size. X-ray diffraction and X-ray photoelectron spectroscopy revealed that only metallic Au was present at the surface of the WOx/Au composite, suggesting that the WOx support did not alter the electronic structure of Au. The direct electrocatalytic oxidation of glucose in neutral medium such as phosphate buffered saline (pH 7.2 solution has been investigated with cyclic voltammetry, chronoamperometry, and square-wave voltammetry. Sensitivity as high as 65.7 µA cm-2 mM-1 up to 10 mM of glucose and a low detection limit of 10 µM were obtained with square-wave voltammetry. This interesting analytical performance makes the laser-fabricated WOx/Au electrode potentially promising for implantable glucose fuel cells and biomedical analysis as the evaluation of glucose concentration in biological fluids. Finally, owing to its unique capabilities proven in this work, it is anticipated that the laser-ablation technique will develop as a fabrication tool for chip miniature-sized sensors in the near future. Keywords: Au, tungsten oxide, nanostructures, pulsed laser deposition, glucose oxidation and sensing

  18. The effect of ethanol infusion on the size of the ablated lesion in radiofrequency thermal ablation: A pilot study

    International Nuclear Information System (INIS)

    Kim, Young Sun; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Kim, Yong Soo; Joo, Kyoung Bin

    2001-01-01

    To assess the effect of ethanol infusion on the size of ablated lesion during radiofrequency (RF) thermal ablation. We performed an ex vivo experimental study using a total of 15 pig livers. Three groups were designed: 1)normal control (n=10), 2) saline infusion (n=10) 3) ethanol infusion (n=10). Two radiofrequency ablations were done using a 50 watt RF generator and a 15 guage expandable elections with four prongs in each liver. During ablation for 8 minutes, continuous infusion of fluid at a rate of 0.5 ml/min through the side arm of electrode was performed. We checked the frequency of the 'impeded-out' phenomenon due to abrupt increase of impedance during ablation. Size of ablated lesion was measured according to length, width, height, and subsequently volume after the ablations. The sizes of the ablated lesions were compared between the three groups. 'Impeded-out' phenomenon during ablation was noted 4 times in control group, although that never happened in saline or ethanol infusion groups. There were significant differences in the volumes of ablated lesions between control group (10.62 ± 1.45 cm 3 ) and saline infusion group (15.33 ± 2.47 cm 3 ), and saline infusion group and ethanol infusion group (18.78 ± 3.58 cm 3 ) (p<0.05). Fluid infusion during radiofrequency thermal ablation decrease a chance of charming and increase the volume of the ablated lesion. Ethanol infusion during ablation may induce larger volume of ablated lesion than saline infusion.

  19. High stability of the goldalloy fullerenes: A density functional theory investigation of M12@Au20 (M = Na, Al, Ag, Sc, Y, La, Lu, and Au) clusters

    International Nuclear Information System (INIS)

    Zhang Meng; Feng Xiao-Juan; Zhao Li-Xia; Zhang Hong-Yu; Luo You-Hua

    2012-01-01

    Discovering highly stable metal fullerenes such as the celebrated C 60 is interesting in cluster science as they have potential applications as building blocks in new nanostructures. We here investigated the structural and electronic properties of the fullerenes M 12 @Au 20 (M = Na, Al, Ag, Sc, Y, La, Lu, and Au), using a first-principles investigation with the density functional theory. It is found that these compound clusters possess a similar cage structure to the icosahedral Au 32 fullerene. La 12 @Au 20 is found to be particularly stable among these clusters. The binding energy of La 12 @Au 20 is 3.43 eV per atom, 1.05 eV larger than that in Au 32 . The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap of La 12 @Au 20 is only 0.31 eV, suggesting that it should be relatively chemically reactive. (condensed matter: structural, mechanical, and thermal properties)

  20. Photo-induced wettability of TiO{sub 2} film with Au buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Purkayastha, Debarun Dhar; Sangani, L. D. Varma; Krishna, M. Ghanashyam [School of Physics, University of Hyderabad, Hyderabad-500046 (India); Madhurima, V., E-mail: madhurima.v@gmail.com [Department of Physics, Central University of Tamil Nadu, Thiruvarur-610004 (India)

    2014-04-24

    The effect of thickness of Au buffer layer (15-25 nm) between TiO{sub 2} film and substrate on the wettability of TiO{sub 2} films is reported. TiO{sub 2} films grown on Au buffer layer have a higher contact angle of 96-;100° as compared to 47.6o for the film grown without buffer layer. The transition from hydrophobicity to hydrophilicity under UV irradiation occurs within 10 min. for the buffer layered films whereas it is almost 30 min. for the film grown without buffer layer. The enhanced photo induced hydrophilicity is shown to be surface energy driven.

  1. Laser induced synthesis of nanoparticles in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, P.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38 Vavilov street, 117942 Moscow (Russian Federation); Simakin, A.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38 Vavilov street, 117942 Moscow (Russian Federation); Voronov, V.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38 Vavilov street, 117942 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38 Vavilov street, 117942 Moscow (Russian Federation)]. E-mail: shafeev@kapella.gpi.ru

    2006-04-30

    The review of results on nanoparticles formation is presented under laser ablation of Ag, Au, and Cu-containing solid targets in liquid environments (H{sub 2}O, C{sub 2}H{sub 5}OH, C{sub 2}H{sub 4}Cl{sub 2}, etc.). X-ray diffractometry (XRD), UV-vis optical transmission spectrometry, and high resolution transmission electron microscopy (HRTEM) characterize the nanoparticles. The morphology of nanoparticles is studied as the function of both laser fluence and nature of the liquid. The possibility to control the shape of nanoparticles by ablation of an Au target by an interference pattern of two laser beams is demonstrated. Formation of alloyed Au-Ag and Ag-Cu nanoparticles is reported under laser exposure of a mixture of individual nanoparticles. The effect of internal segregation of brass nanoparticles is discussed due to their small lateral dimensions. The factors are discussed that determine the distribution function of particles size under laser ablation. The influence of laser parameters as well as the nature on the liquid on the properties of nanoparticles is elucidated.

  2. Laser Ablation of Biological Tissue Using Pulsed CO2 Laser

    International Nuclear Information System (INIS)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-01-01

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO 2 laser (wavelength: 10.6 μm; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  3. Influence of different propellant systems on ablation of EPDM insulators in overload state

    Science.gov (United States)

    Guan, Yiwen; Li, Jiang; Liu, Yang; Xu, Tuanwei

    2018-04-01

    This study examines the propellants used in full-scale solid rocket motors (SRM) and investigates how insulator ablation is affected by two propellant formulations (A and B) during flight overload conditions. An experimental study, theoretical analysis, and numerical simulations were performed to discover the intrinsic causes of insulator ablation rates from the perspective of lab-scaled ground-firing tests, the decoupling of thermochemical ablation, and particle erosion. In addition, the difference in propellant composition, and the insulator charring layer microstructure were analyzed. Results reveal that the degree of insulator ablation is positively correlated with the propellant burn rate, particle velocity, and aggregate concentrations during the condensed phase. A lower ratio of energetic additive material in the AP oxidizer of the propellant is promising for the reduction in particle size and increase in the burn rate and pressure index. However, the overall higher velocity of a two-phase flow causes severe erosion of the insulation material. While the higher ratio of energetic additive to the AP oxidizer imparts a smaller ablation rate to the insulator (under lab-scale test conditions), the slag deposition problem in the combustion chamber may cause catastrophic consequences for future large full-scale SRM flight experiments.

  4. Percutaneous thermal ablation of renal neoplasms; Perkutane Thermoablation von Nierentumoren

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, J. [Inst. fuer Diagnostische und Interventionelle Radiologie/Neuroradiologie, Klinikum Passau (Germany); Mahnken, A.H.; Guenther, R.W. [Klinik fuer Radiologische Diagnostik, Universitaetsklinikum Aachen (Germany)

    2005-12-15

    Due to modern examination techniques such as multidetector computed tomography and high-field magnetic resonance imaging, the detection rate of renal neoplasms is continually increasing. Even though tumors exceeding 4 cm in diameter rarely metastasize, all renal lesions that are possible neoplasms should be treated. Traditional treatment techniques include radical nephrectomy or nephron-sparing resection, which are increasingly performed laparoscopically. Modern thermal ablation techniques such as hyperthermal techniques like radiofrequency ablation RFA, laser induced thermal ablation LITT, focused ultrasound FUS and microwave therapy MW, as well as hypothermal techniques (cryotherapy) may be a useful treatment option for patients who are unfit for or refuse surgical resection. Cryotherapy is the oldest and best known thermal ablation technique and can be performed laparoscopically or percutaneously. Since subzero temperatures have no antistyptic effect, additional maneuvers must be performed to control bleeding. Percutaneous cryotherapy of renal tumors is a new and interesting method, but experience with it is still limited. Radiofrequency ablation is the most frequently used method. Modern probe design allows volumes between 2 and 5 cm in diameter to be ablated. Due to hyperthermal tract ablation, the procedure is deemed to be safe and has a low complication rate. Although there are no randomized comparative studies to open resection, the preliminary results for renal RFA are promising and show RFA to be superior to other thermal ablation techniques. Clinical success rates are over 90% for both, cryo- and radiofrequency ablation. Whereas laser induced thermal therapy is established in hepatic ablation, experience is minimal with respect to renal application. For lesions of more than 2 cm in diameter, additional cooling catheters are required. MR thermometry offers temperature control during ablation. Microwave ablation is characterized by small ablation volumes

  5. Optical radiative properties of ablating polymers exposed to high-power arc plasmas

    Science.gov (United States)

    Becerra, Marley; Pettersson, Jonas

    2018-03-01

    The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer

  6. Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage

    International Nuclear Information System (INIS)

    Sigaev, Vladimir N; Savinkov, Vitaly I; Lotarev, Sergey V; Shakhgildyan, Georgiy Yu; Paleari, Alberto; Lorenzi, Roberto

    2013-01-01

    Herein we describe how UV excitation of localized electronic states in phosphate glasses can activate structural rearrangements that influence the kinetics of Au nanoparticle (NP) thermal growth in Au-doped glass. The results suggest a novel strategy to address the problem of controlling nano-assembly processes of metal NP patterns in fully inorganic and chemically stable hard materials, such as laser-quality glasses. We show that the mechanism is promoted by opening and subsequent cross-linkage of phosphate chains under UV excitation of non-bridging groups in the amorphous network of the glass, with a consequent modification of Au diffusion and metal NP growth. Importantly, the micro-Raman mapping of the UV-induced modifications demonstrates that the process is restricted within the beam waist region of the focused UV laser beam. This fact is consistent with the need for more than one excitation event, close in time and in space, in order to promote structural cross-linkage and Au diffusion confinement. The stability of the photo-induced modifications makes it possible to design new metal patterning approaches for the fabrication of three-dimensional metal structures in laser-quality materials for high-power nonlinear applications. (paper)

  7. Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage.

    Science.gov (United States)

    Sigaev, Vladimir N; Savinkov, Vitaly I; Lotarev, Sergey V; Shakhgildyan, Georgiy Yu; Lorenzi, Roberto; Paleari, Alberto

    2013-06-07

    Herein we describe how UV excitation of localized electronic states in phosphate glasses can activate structural rearrangements that influence the kinetics of Au nanoparticle (NP) thermal growth in Au-doped glass. The results suggest a novel strategy to address the problem of controlling nano-assembly processes of metal NP patterns in fully inorganic and chemically stable hard materials, such as laser-quality glasses. We show that the mechanism is promoted by opening and subsequent cross-linkage of phosphate chains under UV excitation of non-bridging groups in the amorphous network of the glass, with a consequent modification of Au diffusion and metal NP growth. Importantly, the micro-Raman mapping of the UV-induced modifications demonstrates that the process is restricted within the beam waist region of the focused UV laser beam. This fact is consistent with the need for more than one excitation event, close in time and in space, in order to promote structural cross-linkage and Au diffusion confinement. The stability of the photo-induced modifications makes it possible to design new metal patterning approaches for the fabrication of three-dimensional metal structures in laser-quality materials for high-power nonlinear applications.

  8. Femtosecond Laser Fabricated Ag@Au and Cu@Au Alloy Nanoparticles for Surface Enhanced Raman Spectroscopy Based Trace Explosives Detection

    Directory of Open Access Journals (Sweden)

    Moram Sree Satya Bharati

    2018-03-01

    Full Text Available Herein we present results from our detailed studies on the fabrication of Ag@Au and Cu@Au alloy nanoparticles (NPs using the femtosecond laser ablation in liquid technique. The NPs were obtained by ablating the pure Ag, Cu targets (bulk in HAuCl4 (5 mM solution. The absorption properties of the obtained NPs colloids were characterized using UV-Visible absorption spectrometer and their size, shape, and crystallinity were investigated using the XRD, FESEM and TEM techniques. The fabricated NPs were utilized for sensing of explosive molecules such as 2,4,6-trinitrophenol (PA, 2,4-dinitrotoluene (DNT and a common dye methylene blue (MB using the surface enhanced Raman spectroscopy (SERS technique. The detection limit in terms of weight was as low as few nano-grams in the case of nitroaromatic explosive compounds (PA, DNT and few picograms in the case of a common dye molecule (MB. Typical enhancement factors achieved were estimated to be ~104, ~105, and ~107, respectively, for PA, DNT, and MB. The significance of the present work lies in exploring the performance of the prepared NPs being used as SERS substrates for explosives detection using a portable Raman instrument. Such capability enables one to carry the spectrometer to the point of interest in the field and evaluate any hazardous samples within a short period of time.

  9. Astigmatism induced by conventional spherical ablation after PRK and LASIK in myopia with astigmatism < 1.00 D.

    Science.gov (United States)

    Christiansen, Steven M; Mifflin, Mark D; Edmonds, Jason N; Simpson, Rachel G; Moshirfar, Majid

    2012-01-01

    The purpose of this study was to evaluate surgically-induced astigmatism after spherical ablation in photorefractive keratectomy (PRK) and laser-assisted in situ keratomileusis (LASIK) for myopia with astigmatism PRK or LASIK for the correction of myopia with minimal astigmatism of PRK, average cylinder increased from 0.39 ± 0.25 (0.00-0.75) preoperatively to 0.55 ± 0.48 (0.00-1.75) postoperatively (P = 0.014), compared with an increase in LASIK eyes from 0.40 ± 0.27 (0.00-0.75) preoperatively to 0.52 ± 0.45 (0.00-2.00) postoperatively (P = 0.041). PRK eyes experienced an absolute value change in cylinder of 0.41 ± 0.32 (0.00-1.50) and LASIK eyes experienced a change of 0.41 ± 0.31 (0.00-1.50, P = 0.955). Mean surgically-induced astigmatism was 0.59 ± 0.35 (0.00-1.70) in PRK eyes, with an increase in surgically-induced astigmatism of 0.44 D for each additional 1.00 D of preoperative cylinder; in LASIK eyes, mean surgically-induced astigmatism was 0.55 ± 0.32 (0.00-1.80, P = 0.482), with an increase in surgically-induced astigmatism of 0.29 D for each 1.00 D of preoperative cylinder. Spherical ablation can induce substantial astigmatism even in eyes with less than one diopter of preoperative astigmatism in both PRK and LASIK. No significant difference in the magnitude of surgically-induced astigmatism was found between eyes treated with PRK and LASIK, although surgically-induced astigmatism was found to increase with greater levels of preoperative astigmatism in both PRK and LASIK.

  10. Characterization of reference standards for dirt by Laser Ablation Induced Photoacoustics (LAIP)

    International Nuclear Information System (INIS)

    Orzi, D J O; Bilmes, G M; Morel, E N; Torga, J R; Roviglione, A N

    2010-01-01

    Measurements of surface cleanliness and dirt characterization are important problems in a wide range of processes in industry and production. Standard methods are in most cases cumbersome laboratory procedures that must be performed out of the production lines. Instruments and methods for cleanliness determination and dirt characterization require reference standards for calibration. For that purpose we built a possible dirt reference standard (DRS) made by films of graphite grease subjected to heat treatment for mechanical stabilization. The DRS characterization was performed by Laser Ablation Induced Photoacoustics (LAIP). The measurement of the thickness of the films was made by low-coherence interferometry.

  11. Polymeric carbon nitride/mesoporous silica composites as catalyst support for Au and Pt nanoparticles.

    Science.gov (United States)

    Xiao, Ping; Zhao, Yanxi; Wang, Tao; Zhan, Yingying; Wang, Huihu; Li, Jinlin; Thomas, Arne; Zhu, Junjiang

    2014-03-03

    Small and homogeneously dispersed Au and Pt nanoparticles (NPs) were prepared on polymeric carbon nitride (CNx )/mesoporous silica (SBA-15) composites, which were synthesized by thermal polycondensation of dicyandiamide-impregnated preformed SBA-15. By changing the condensation temperature, the degree of condensation and the loading of CNx can be controlled to give adjustable particle sizes of the Pt and Au NPs subsequently formed on the composites. In contrast to the pure SBA-15 support, coating of SBA-15 with polymeric CNx resulted in much smaller and better-dispersed metal NPs. Furthermore, under catalytic conditions the CNx coating helps to stabilize the metal NPs. However, metal NPs on CNx /SBA-15 can show very different catalytic behaviors in, for example, the CO oxidation reaction. Whereas the Pt NPs already show full CO conversion at 160 °C, the catalytic activity of Au NPs seems to be inhibited by the CNx support. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. and Au nanoparticles for SERS applications

    Directory of Open Access Journals (Sweden)

    Fazio Enza

    2018-01-01

    Full Text Available The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  13. Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation

    International Nuclear Information System (INIS)

    Chu, Che-Kuan; Tu, Yi-Chou; Chang, Yu-Wei; Chu, Chih-Ken; Chen, Shih-Yang; Chi, Ting-Ta; Kiang, Yean-Woei; Yang, Chih-Chung

    2015-01-01

    Au nanorings (NRIs), which have the localized surface plasmon resonance (LSPR) wavelength around 1058 nm, either with or without linked antibodies, are applied to SAS oral cancer cells for cell inactivation through the LSPR-induced photothermal effect when they are illuminated by a laser of 1065 nm in wavelength. Different incubation times of cells with Au NRIs are considered for observing the variations of cell uptake efficiency of Au NRI and the threshold laser intensity for cell inactivation. In each case of incubation time, the cell sample is washed for evaluating the total Au NRI number per cell adsorbed and internalized by the cells based on inductively coupled plasma mass spectrometry measurement. Also, the Au NRIs remaining on cell membrane are etched with KI/I 2 solution to evaluate the internalized Au NRI number per cell. The threshold laser intensities for cell inactivation before washout, after washout, and after KI/I 2 etching are calibrated from the circular area sizes of inactivated cells around the illuminated laser spot center with various laser power levels. By using Au NRIs with antibodies, the internalized Au NRI number per cell increases monotonically with incubation time up to 24 h. However, the number of Au NRI remaining on cell membrane reaches a maximum at 12 h in incubation time. The cell uptake behavior of an Au NRI without antibodies is similar to that with antibodies except that the uptake NRI number is significantly smaller and the incubation time for the maximum NRI number remaining on cell membrane is delayed to 20 h. By comparing the threshold laser intensities before and after KI/I 2 etching, it is found that the Au NRIs remaining on cell membrane cause more effective cancer cell inactivation, when compared with the internalized Au NRIs. (paper)

  14. Steam condensation induced water hammer simulations for different pipelines

    International Nuclear Information System (INIS)

    Barna, I.F.; Ezsol, G.

    2011-01-01

    We investigate steam condensation induced water hammer (CIWH) phenomena and present theoretical results for different kind of pipelines. We analyze the process with the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shock-capturing numerical scheme was applied with different kind of limiters in the numerical calculations. At first, we present calculations for various pipelines in the VVER-440-312 type nuclear reactor. Our recent calculation clearly shows that the six conditions of Griffith are only necessary conditions for CIWH but not sufficient. As second results we performed calculations for various geometries and compare with the theory of Chun. (author)

  15. Theoretical analyses of the refractive implications of transepithelial PRK ablations.

    Science.gov (United States)

    Arba Mosquera, Samuel; Awwad, Shady T

    2013-07-01

    To analyse the refractive implications of single-step, transepithelial photorefractive keratectomy (TransPRK) ablations. A simulation for quantifying the refractive implications of TransPRK ablations has been developed. The simulation includes a simple modelling of corneal epithelial profiles, epithelial ablation profiles as well as refractive ablation profiles, and allows the analytical quantification of the refractive implications of TransPRK in terms of wasted tissue, achieved optical zone (OZ) and induced refractive error. Wasted tissue occurs whenever the actual corneal epithelial profile is thinner than the applied epithelial ablation profile, achieved OZ is reduced whenever the actual corneal epithelial profile is thicker than the applied epithelial ablation profile and additional refractive errors are induced whenever the actual difference centre-to-periphery in the corneal epithelial profile deviates from the difference in the applied epithelial ablation profile. The refractive implications of TransPRK ablations can be quantified using simple theoretical simulations. These implications can be wasted tissue (∼14 µm, if the corneal epithelial profile is thinner than the ablated one), reduced OZ (if the corneal epithelial profile is thicker than ablated one, very severe for low corrections) and additional refractive errors (∼0.66 D, if the centre-to-periphery progression of the corneal epithelial profile deviates from the progression of the ablated one). When TransPRK profiles are applied to normal, not previously treated, non-pathologic corneas, no specific refractive implications associated to the transepithelial profile can be anticipated; TransPRK would provide refractive outcomes equal to those of standard PRK. Adjustments for the planned OZ and, in the event of retreatments, for the target sphere can be easily derived.

  16. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    Science.gov (United States)

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  17. Indication of the radiofrequency induced lesion size by pre-ablation measurements

    DEFF Research Database (Denmark)

    Stagegaard, Niels; Petersen, Helen Høgh; Chen, Xu

    2005-01-01

    BACKGROUND: During radiofrequency ablation of arrhythmias tissue heating and hence lesion size depend on electrode-tissue contact and cooling of the electrode tip caused by cavitary blood flow. These factors are unique and unknown for each catheter placement in the beating heart. A tool for asses......BACKGROUND: During radiofrequency ablation of arrhythmias tissue heating and hence lesion size depend on electrode-tissue contact and cooling of the electrode tip caused by cavitary blood flow. These factors are unique and unknown for each catheter placement in the beating heart. A tool...... for assessing these factors prior to ablation may indicate the lesion size which will be obtained for any given catheter position. METHODS AND RESULTS: Radiofrequency ablation was performed in vitro on strips of left ventricular porcine myocardium during two different levels of convective cooling (0 or 0.1 m....../s), two different contact pressures (10 or 30 g) and parallel or perpendicular electrode-tissue orientation using 7F 4 mm tip catheters. Prior to ablation the impedance rise (DeltaIMP) caused by the obtained contact and the temperature rise with a 0.6 W 5 s test pulse (DeltaT) were measured. Subsequently...

  18. Pellet ablation and ablation model development

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1989-01-01

    A broad survey of pellet ablation is given, based primarily on information presented at this meeting. The implications of various experimental observations for ablation theory are derived from qualitative arguments of the physics involved. The major elements of a more complete ablation theory are then outlined in terms of these observations. This is followed by a few suggestions on improving the connections between theory and experimental results through examination of ablation data. Although this is a rather aggressive undertaking for such a brief (and undoubtedly incomplete) assessment, some of the discussion may help us advance the understanding of pellet ablation. 17 refs

  19. Percutaneous tumor ablation in medical radiology

    Energy Technology Data Exchange (ETDEWEB)

    Vogl, T.J.; Mack, M.G. [University Hospital Frankfurt Univ. (Germany). Inst. for Diagnostic and Interventional Radiology; Helmberger, T.K. [Klinikum Bogenhausen, Academic Teaching Hospital of the Technical Univ. Munich (Germany). Dept. for Diagnostic and Interventional Radiology and Nuclear Medicine; Reiser, M.F. (eds.) [University Hospitals - Grosshadern and Innenstadt Munich Univ. (Germany). Dept. of Clinical Radiology

    2008-07-01

    Thermal ablation has become an integral part of oncology, especially in the field of interventional oncology. This very comprehensive book encompasses the different technologies employed in thermal ablation, its indications and the results achieved in various clinical conditions. The first part of the book clearly explains the basics of thermal ablative techniques such as laser-induced thermotherapy, radiofrequency ablation, microwave ablation, cryotherapy, and localized tumor therapy. The latest developments in the application of minimally invasive therapies in localized neoplastic disease are demonstrated. In the main part of the book, techniques of guiding the applicators to the target structures by use of different imaging tools such as ultrasound, computed tomography and magnetic resonance imaging are discussed. The results are presented for a variety of clinical indications, including liver and lung tumors and metastases and some rather rare conditions involving the kidney, the head and neck, the prostate, and soft tissue structures. A large number of acknowledged experts have contributed to the book, which benefits from a lucid structure and excellent images. (orig.)

  20. Percutaneous tumor ablation in medical radiology

    International Nuclear Information System (INIS)

    Vogl, T.J.; Mack, M.G.; Helmberger, T.K.; Reiser, M.F.

    2008-01-01

    Thermal ablation has become an integral part of oncology, especially in the field of interventional oncology. This very comprehensive book encompasses the different technologies employed in thermal ablation, its indications and the results achieved in various clinical conditions. The first part of the book clearly explains the basics of thermal ablative techniques such as laser-induced thermotherapy, radiofrequency ablation, microwave ablation, cryotherapy, and localized tumor therapy. The latest developments in the application of minimally invasive therapies in localized neoplastic disease are demonstrated. In the main part of the book, techniques of guiding the applicators to the target structures by use of different imaging tools such as ultrasound, computed tomography and magnetic resonance imaging are discussed. The results are presented for a variety of clinical indications, including liver and lung tumors and metastases and some rather rare conditions involving the kidney, the head and neck, the prostate, and soft tissue structures. A large number of acknowledged experts have contributed to the book, which benefits from a lucid structure and excellent images. (orig.)

  1. Ablation from metals induced by visible and UV laser irradiation

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Schou, Jørgen; Thestrup Nielsen, Birgitte

    1996-01-01

    The deposition rate of laser-ablated silver has been determined for fluences between 0.5 and 15 J/cm2 at the wavelengths 532 and 355 nm for a beam spot area of around 0.01 cm2. The ablated metal was collected on a quartz crystal microbalance. The rate at 5 J/cm2 was about 4 × 1013 Ag/cm2 per pulse...

  2. Coincident measurement between neutron and fragment in reaction sup 1 sup 7 N + sup 1 sup 9 sup 7 Au

    CERN Document Server

    Li Xiang Qing; Jiang Dong Xing; Ye Yan Lin; Chen Tao; Li Zhi Huan; Ge Yuch Eng; Wang Quan Jin; Wu He Yu; Jin Ge; Duan Li Min; Xiao Zhi Gang; Wang Hong Wei; Li Zu Yu; Wang Su Fang

    2002-01-01

    In the reaction induced by 33.4 MeV/u sup 1 sup 7 N beam on sup 1 sup 9 sup 7 Au, the coincident measurement between neutron and fragment was performed with the different combinations of 16 neutron detectors at 4 degree-83 degree and 14 telescopes at 2.3 degree - 9.0 degree. Integrating the measured angular distributions of the different isotopes, the isotopic yield distributions of Z = 3-6 elements are obtained. Based on the Abrasion-ablation model, isotopic yield distributions are calculated using different density distributions for the projectile sup 1 sup 7 N and compared with the experiment data

  3. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-01-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  4. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    Science.gov (United States)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  5. A numerical analysis on the effect of inlet parameters for condensation induced water hammer

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Priyankan [Department of Mechanical Engineering, Jadavpur University, Kolkata (India); Chakravarty, Aranyak [Department of Mechanical Engineering, Jadavpur University, Kolkata (India); School of Nuclear Studies & Application, Jadavpur University, Kolkata (India); Ghosh, Koushik, E-mail: kghosh@mech.jdvu.ac.in [Department of Mechanical Engineering, Jadavpur University, Kolkata (India); Mukhopadhyay, Achintya; Sen, Swarnendu [Department of Mechanical Engineering, Jadavpur University, Kolkata (India); Dutta, Anu; Goyal, Priyanshu [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai (India)

    2016-08-01

    Highlights: • Condensation induced water hammer phenomenon is analysed with RELAP5/Mod 3.4. • Effect of various inlet conditions on the occurrence of CIWH are investigated. • Pressure peak amplitude and location has strong dependency on water subcooling. • Superheated steam does not have significant impact on pressure amplitude. • Presence of dry saturated steam is the necessary condition for CIWH. - Abstract: Direct contact condensation (DCC) is almost an inevitable phenomenon during accidental condition for all LWRs. Rapid condensation caused by the direct contact of steam and subcooled water can lead to condensation induced water hammer (CIWH). The present work explores the underlying physics of CIWH phenomenon in a horizontal pipe under different inlet conditions such as inlet water temperature, pressure difference between steam and water section, steam superheating, steam quality and duration of valve opening using RELAP5/Mod 3.4. This work emphasises on the prediction of pressure peak magnitude in conjunction with its location of occurrence under different parametric conditions. The stratified to slug flow transition is presented in terms of the ‘flow regime map’ which is identified as the primary cause for pressure wave generation. The strongest pressure wave amplitude due to CIWH is found to be 116.6 bar for ΔP = 10 bar. Observation reveals that peak pressure location shifts towards the subcooled water injection point for higher inlet water temperature. For the lowest inlet water temperature (T{sub in} = 20 °C), the peak pressure is found at a distance of 47.5 cm away from the water inlet whereas, for the high water temperature (T{sub in} = 120 °C), peak pressure is observed at 6.25 cm away from the injection point. It is also observed that the duration of valve opening significantly affects the location of peak pressure occurrence. This study also reveals that the presence of superheated or wet steam could possibly avoid the occurrence of

  6. A parametric study of laser induced ablation-oxidation on porous silicon surfaces

    International Nuclear Information System (INIS)

    De Stefano, Luca; Rea, Ilaria; Nigro, M Arcangela; Della Corte, Francesco G; Rendina, Ivo

    2008-01-01

    We have investigated the laser induced ablation-oxidation process on porous silicon layers having different porosities and thicknesses by non-destructive optical techniques. In particular, the interaction between a low power blue light laser and the porous silicon surfaces has been characterized by variable angle spectroscopic ellipsometry and Fourier transform infrared spectroscopy. The oxidation profiles etched on the porous samples can be tuned as functions of the layer porosity and laser fluence. Oxide stripes of width less than 2 μm and with thicknesses between 100 nm and 5 μm have been produced, depending on the porosity of the porous silicon, by using a 40 x focusing objective

  7. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies.

    Science.gov (United States)

    van den Bijgaart, Renske J E; Eikelenboom, Dylan C; Hoogenboom, Martijn; Fütterer, Jurgen J; den Brok, Martijn H; Adema, Gosse J

    2017-02-01

    Tumor ablation technologies, such as radiofrequency-, cryo- or high-intensity focused ultrasound (HIFU) ablation will destroy tumor tissue in a minimally invasive manner. Ablation generates large volumes of tumor debris in situ, releasing multiple bio-molecules like tumor antigens and damage-associated molecular patterns. To initiate an adaptive antitumor immune response, antigen-presenting cells need to take up tumor antigens and, following activation, present them to immune effector cells. The impact of the type of tumor ablation on the precise nature, availability and suitability of the tumor debris for immune response induction, however, is poorly understood. In this review, we focus on immune effects after HIFU-mediated ablation and compare these to findings using other ablation technologies. HIFU can be used both for thermal and mechanical destruction of tissue, inducing coagulative necrosis or subcellular fragmentation, respectively. Preclinical and clinical results of HIFU tumor ablation show increased infiltration and activation of CD4 + and CD8 + T cells. As previously observed for other types of tumor ablation technologies, however, this ablation-induced enhanced infiltration alone appears insufficient to generate consistent protective antitumor immunity. Therapies combining ablation with immune stimulation are therefore expected to be key to boost HIFU-induced immune effects and to achieve systemic, long-lasting, antitumor immunity.

  8. Pulsed Tm:YAG laser ablation of knee joint tissues

    Science.gov (United States)

    Shi, Wei-Qiang; Vari, Sandor G.; Duffy, J. T.; Miller, J. M.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1992-06-01

    We investigated the effect of a free-running 2.01 micron pulsed Tm:YAG laser on bovine knee joint tissues. Ablation rates of fresh fibrocartilage, hyaline cartilage, and bone were measured in saline as a function of laser fluence (160 - 640 J/cm2) and fiber core size (400 and 600 microns). All tissues could be effectively ablated and the ablation rate increased linearly with the increasing fluence. Use of fibers of different core sizes, while maintaining constant energy fluence, did not result in significant difference in ablation rate. Histology analyses of the ablated tissue samples reveal average Tm:YAG radiation induced thermal damage (denatunalization) zones ranging between 130 and 540 microns, depending on the laser parameters and the tissue type.

  9. Electrical properties of pseudo-single-crystalline Ge films grown by Au-induced layer exchange crystallization at 250 °C

    Science.gov (United States)

    Higashi, H.; Kudo, K.; Yamamoto, K.; Yamada, S.; Kanashima, T.; Tsunoda, I.; Nakashima, H.; Hamaya, K.

    2018-06-01

    We study the electrical properties of pseudo-single-crystalline Ge (PSC-Ge) films grown by a Au-induced layer exchange crystallization method at 250 °C. By inserting the SiNx layer between PSC-Ge and SiO2, we initiatively suppress the influence of the Ge/SiO2 interfacial defective layers, which have been reported in our previous works, on the electrical properties of the PSC-Ge layers. As a result, we can detect the influence of the ionized Au+ donors on the temperature-dependent hole concentration and Hall mobility. To further examine their electrical properties in detail, we also fabricate p-thin-film transistors (TFTs) with the PSC-Ge layer. Although the off-state leakage currents are suppressed by inserting the SiNx layer, the value of on/off ratio remains poor (leakage current although a nominal field effect mobility is enhanced up to ˜25 cm2/V s. Considering these features, we conclude that the Au contaminations into the PSC-Ge layer can affect the electrical properties and device performances despite a low-growth temperature of 250 °C. To achieve further high-performance p-TFTs, we have to suppress the Au contaminations into PSC-Ge during the Au-induced crystallization growth.

  10. Thermal-mechanical deformation modelling of soft tissues for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Jazar, Reza; Subic, Aleksandar

    2014-01-01

    Modeling of thermal-induced mechanical behaviors of soft tissues is of great importance for thermal ablation. This paper presents a method by integrating the heating process with thermal-induced mechanical deformations of soft tissues for simulation and analysis of the thermal ablation process. This method combines bio-heat transfer theories, constitutive elastic material law under thermal loads as well as non-rigid motion dynamics to predict and analyze thermal-mechanical deformations of soft tissues. The 3D governing equations of thermal-mechanical soft tissue deformation are discretized by using the finite difference scheme and are subsequently solved by numerical algorithms. Experimental results show that the proposed method can effectively predict the thermal-induced mechanical behaviors of soft tissues, and can be used for the thermal ablation therapy to effectively control the delivered heat energy for cancer treatment.

  11. Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains

    OpenAIRE

    Sabater, Carlos; Untiedt, Carlos; van Ruitenbeek, Jan M

    2015-01-01

    This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high volta...

  12. Synthesis and characterization of gold graphene composite with dyes as model substrates for decolorization: A surfactant free laser ablation approach

    Science.gov (United States)

    Sai Siddhardha, R. S.; Lakshman Kumar, V.; Kaniyoor, Adarsh; Sai Muthukumar, V.; Ramaprabhu, S.; Podila, Ramakrishna; Rao, A. M.; Ramamurthy, Sai Sathish

    2014-12-01

    A facile surfactant free laser ablation mediated synthesis (LAMS) of gold-graphene composite is reported here. The material was characterized using transmission electron microscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, powdered X-ray diffraction, Raman spectroscopy, Zeta potential measurements and UV-Visible spectroscopic techniques. The as-synthesized gold-graphene composite was effectively utilized as catalyst for decolorization of 4 important textile and laser dyes. The integration of gold nanoparticles (AuNPs) with high surface area graphene has enhanced the catalytic activity of AuNPs. This enhanced activity is attributed to the synergistic interplay of pristine gold's electronic relay and π-π stacking of graphene with the dyes. This is evident when the Rhodamine B (RB) reduction rate of the composite is nearly twice faster than that of commercial citrate capped AuNPs of similar size. In case of Methylene blue (MB) the rate of reduction is 17,000 times faster than uncatalyzed reaction. This synthetic method opens door to laser ablation based fabrication of metal catalysts on graphene for improved performance without the aid of linkers and surfactants.

  13. Sputtering of Au induced by single Xe ion impacts

    International Nuclear Information System (INIS)

    Birtcher, R. C.; Donnelly, S. E.

    1999-01-01

    Sputtering of Au thin films has been determined for Xe ions with energies between 50 and 600 keV. In-situ transmission electron microscopy was used to observe sputtered Au during deposition on a carbon foil near the specimen. Total reflection and transmission sputtering yields for a 62 nm thick Au thin film were determined by ex-situ measurement of the total amount of Au on the carbon foils. In situ observations show that individual Xe ions eject Au nanoparticles as large as 7 nm in diameter with an average diameter of approximately 3 nm. Particle emission correlates with crater formation due to single ion impacts. Nanoparticle emission contributes significantly to the total sputtering yield for Xe ions in this energy range in either reflection or transmission geometry

  14. Universal Multifunctional Nanoplatform Based on Target-Induced in Situ Promoting Au Seeds Growth to Quench Fluorescence of Upconversion Nanoparticles.

    Science.gov (United States)

    Wu, Qiongqiong; Chen, Hongyu; Fang, Aijin; Wu, Xinyang; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2017-12-22

    Construction of a new multifunctional chemo/biosensing platform for small biomolecules and tumor markers is of great importance in analytical chemistry. Herein, a novel universal multifunctional nanoplatform for biomolecules and enzyme activity detection was proposed based on fluorescence resonance energy transfer (FRET) between upconversion nanoparticles (UCNPs) and target-inducing enlarged gold nanoparticles (AuNPs). The reductive molecule such as H 2 O 2 can act as the reductant to reduce HAuCl 4 , which will make the Au seeds grow. The enlarged AuNPs can effectively quench the fluorescence of UCNPs owing to the good spectral overlap between the absorption band of the AuNPs and the emission band of the UCNPs. Utilizing the FRET between the UCNPs and enlarged AuNPs, good linear relationship between the fluorescence of UCNPs and the concentration of H 2 O 2 can be found. Based on this strategy, H 2 O 2 related molecules such as l-lactate, glucose, and uric acid can also be quantified. On the basis of UCNPs and PVP/HAuCl 4 , a general strategy for other reductants such as ascorbic acid (AA), dopamine (DA), or enzyme activity can be established. Therefore, the universal multifunctional nanoplatform based on UCNPs and the target-inducing in situ enlarged Au NPs will show its potential as a simple method for the detection of some life related reductive molecules, enzyme substrates, as well as enzyme activity.

  15. Effect of liquid properties on laser ablation of aluminum and titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Peixuan, E-mail: oypx12@mails.tsinghua.edu.cn [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); Li, Peijie [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Leksina, E.G.; Michurin, S.V. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992 (Russian Federation); He, Liangju [School of Aerospace, Tsinghua University, Beijing 100084 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Porous surfaces are formed in Al alloy after wet ablation due to phase explosion. • A higher ablation rate is produced in glycerin than that in water and isopropanol. • Effect of liquid properties on mass-removal mechanisms was discussed. • Phase explosion and plasma-induced pressure contribute greatly to mass removal. • Density, heat conductivity and shock impendence of liquid affect ablation rates. - Abstract: In order to study the effect of liquid properties on laser ablation in liquids, aluminum 5A06 and titanium TB5 targets were irradiated by single-pulse infrared laser in isopropanol, distilled water, glycerin and as a comparison, in air, respectively. Craters induced by laser ablation were characterized using scanning electron and white-light interferometric microscopies. The results show that for liquid-mediated ablation, craters with porous surface structures were formed in aluminum target through phase explosion, while no micro-cavities were formed in titanium target owing to high critical temperature of titanium. In addition, ablation rates of aluminum and titanium targets vary with types of ambient media in accordance with such sequence: air < isopropanol < water < glycerin. Further, the influence of liquid properties on material-removal mechanisms for laser ablation in liquid is discussed. It is concluded that the density, thermal conductivity and acoustical impedance of liquid play a dominant role in laser ablation efficiency.

  16. Assessment of a potential rapid condensation induced water hammer in a passive auxiliary feedwater system

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Shin, Byung Soo; Do, Kyu Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Moody, Frederick J. [General Electric (Retired), CA (United States)

    2012-10-15

    A passive auxiliary feedwater system (PAFS) which is incorporated in the APR+ system is a kind of closed natural circulation loop. The PAFS has no operating functions during normal plant operation, but it has a dedicated safety function of the residual heat removal following initiating events, including the unlikely event of the most limiting single failure occurring coincident with a loss of offsite power, when the feedwater system becomes inoperable or unavailable. Even in the unlikely event of a station blackout, the isolation valves can be opened either by DC power or manual operation and then the PAFS can also provide adequate condensate to the steam generator (SG). The PAFS piping in the vicinity of each of the two SGs is designed to minimize the potential for destructive water hammer during start up operation by setting the stroke time for full close or full open of the condensate isolation valves upon receipt of a passive auxiliary feedwater actuation signal. The temperature of the stagnant condensate water and its surrounding tubes and piping during the reactor normal operation modes may fall to the ambient temperature. A possible concern is the introduction of saturated steam into the PAFS recirculation pipe downstream of the PCHX in the beginning of the PAFS operation. Although the steam introduction rate is expected to be slow, a rapid condensation rate is expected due to the initial cold surrounding temperature in the pipe, which could result in a localized pressure reduction and the propagation of decompression and velocity disturbances into the condensate water leg, which might cause the sudden closure of check valves and associated water hammer. Thus, it is requisite for the licensing review of the PAFS design to confirm if destructive water hammers will not be produced due to such rapid condensation induced decompressions in the system. This paper addresses an assessment of the potential local decompressions which could result from the steam

  17. Advances in modelling of condensation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  18. Advances in modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-01-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described

  19. Additive Effects of Mechanical Marrow Ablation and PTH Treatment on de Novo Bone Formation in Mature Adult Rats

    Directory of Open Access Journals (Sweden)

    Jodi A. Carlson Scholz

    2012-12-01

    Full Text Available Mechanical ablation of bone marrow in young rats induces rapid but transient bone growth, which can be enhanced and maintained for three weeks by the administration of parathyroid hormone (PTH. Additionally, marrow ablation, followed by PTH treatment for three months leads to increased cortical thickness. In this study, we sought to determine whether PTH enhances bone formation after marrow ablation in aged rats. Aged rats underwent unilateral femoral marrow ablation and treatment with PTH or vehicle for four weeks. Both femurs from each rat were analyzed by X-ray and pQCT, then analyzed either by microCT, histology or biomechanical testing. Marrow ablation alone induced transient bone formation of low abundance that persisted over four weeks, while marrow ablation followed by PTH induced bone formation of high abundance that also persisted over four weeks. Our data confirms that the osteo-inducive effect of marrow ablation and the additive effect of marrow ablation, followed by PTH, occurs in aged rats. Our observations open new avenues of investigations in the field of tissue regeneration. Local marrow ablation, in conjunction with an anabolic agent, might provide a new platform for rapid site-directed bone growth in areas of high bone loss, such as in the hip and wrist, which are subject to fracture.

  20. Review of steam jet condensation in a water pool

    International Nuclear Information System (INIS)

    Kim, Y. S.; Song, C. H.; Park, C. K.; Kang, H. S.; Jeon, H. G.; Yoon, Y. J.

    2002-01-01

    In the advanced nuclear power plants including APR1400, the SDVS is adopted to increase the plant safety using the concept of feed-and-bleed operation. In the case of the TLOFW, the POSRV located at the top of the pressurizer is expected to open due to the pressurization of the reactor coolant system and discharges steam and/or water mixture into the water pool, where the mixture is condensed. During the condensation of the mixture, thermal-hydraulic loads such as pressure and temperature variations are induced to the pool structure. For the pool structure design, such thermal-hydraulic aspects should be considered. Understanding the phenomena of the submerged steam jet condensation in a water pool is helpful for system designers to design proper pool structure, sparger, and supports etc. This paper reviews and evaluates the steam jet condensation in a water pool on the physical phenomena of the steam condensation including condensation regime map, heat transfer coefficient, steam plume, steam jet condensation load, and steam jet induced flow

  1. Jet-Hadron Correlations in √sNN =200 GeV p +p and Central Au +Au Collisions

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L., Jr.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-03-01

    Azimuthal angular correlations of charged hadrons with respect to the axis of a reconstructed (trigger) jet in Au +Au and p +p collisions at √sNN =200 GeV in STAR are presented. The trigger jet population in Au +Au collisions is biased toward jets that have not interacted with the medium, allowing easier matching of jet energies between Au +Au and p +p collisions while enhancing medium effects on the recoil jet. The associated hadron yield of the recoil jet is significantly suppressed at high transverse momentum (pTassoc) and enhanced at low pTassoc in 0%-20% central Au +Au collisions compared to p +p collisions, which is indicative of medium-induced parton energy loss in ultrarelativistic heavy-ion collisions.

  2. Condensation induced water hammer driven sterilization

    Science.gov (United States)

    Kullberg, Craig M.

    2004-05-11

    A method and apparatus (10) for treating a fluid or materials therein with acoustic energy has a vessel (14) for receiving the fluid with inner walls shaped to focus acoustic energy to a target zone within the vessel. One or more nozzles (26) are directed into the vessel (14) for injecting a condensable vapor, such as steam, into the vessel (14). The system may include a steam source (18) for providing steam as the condensable vapor from an industrial waste heat source. Steam drums (88) are disposed between the steam source (18) and nozzles (26) to equalize and distribute the vapor pressure. A cooling source (30) provides a secondary fluid for maintaining the liquid in the vessel (14) in subcooled conditions. A heating jacket (32) surrounds the vessel (14) to heat the walls of the vessel (14) and prevent biological growth thereon. A pressurizer (33) may operate the system at elevated pressures.

  3. Water condensation promotes fungal growth in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Pasanen, P.; Pasanen, A.-L. (University of Kupopio, Department of Environmental Sciences, Kuopio (Finland)); Jantunen, M. (National Public Health Institute, Kuopio (Finland))

    1993-01-01

    In a subarctic climate the diurnal variation in temperature may cause water condensation in ducts placed in the unheated spaces of a building. In this study, germination time and sporulation of a fungus, Penicillium verrucosum, were studied on dusty, galvanized steel sheet under different moisture conditions at room temperature. The effect of condensed water in a supply air duct on spore amplification was studied in an experimental ventilation set-up. In the field, air temperatures and the dew point temperature of air in the duct were monitored continuously for a week. P. verrucosum germinated on steel surfaces during five-hour incubation of the surface under humid conditions, when the surface has been moist for half an hour, germ tubes appeared within 17 hours. During 24-hour incubation under moist conditions, P. verrucosum produced hyphae and spores. In the experimental set-up the airborne spore counts increased when the air passed through a water-condensing section of the duct. Penicillium was the most abundant fungus sporulated on the moist duct surface. In the field, during humid weather, the surface temperature on the air stream surface decreased to the dew point temperature of the air in the duct. thus water condensation in air ducts may promote fungal growth. (au)

  4. Modelling of pulsed electron beam induced graphite ablation: Sublimation versus melting

    Science.gov (United States)

    Ali, Muddassir; Henda, Redhouane

    2017-12-01

    Pulsed electron beam ablation (PEBA) has recently emerged as a very promising technique for the deposition of thin films with superior properties. Interaction of the pulsed electron beam with the target material is a complex process, which consists of heating, phase transition, and erosion of a small portion from the target surface. Ablation can be significantly affected by the nature of thermal phenomena taking place at the target surface, with subsequent bearing on the properties, stoichiometry and structure of deposited thin films. A two stage, one-dimensional heat conduction model is presented to describe two different thermal phenomena accounting for interaction of a graphite target with a polyenergetic electron beam. In the first instance, the thermal phenomena are comprised of heating, melting and vaporization of the target surface, while in the second instance the thermal phenomena are described in terms of heating and sublimation of the graphite surface. In this work, the electron beam delivers intense electron pulses of ∼100 ns with energies up to 16 keV and an electric current of ∼400 A to a graphite target. The temperature distribution, surface recession velocity, ablated mass per unit area, and ablation depth for the graphite target are numerically simulated by the finite element method for each case. Based on calculation findings and available experimental data, ablation appears to occur mainly in the regime of melting and vaporization from the surface.

  5. Stratified flow instability and slug formation leading to condensation-induced water hammer in a horizontal refrigerant pipe

    International Nuclear Information System (INIS)

    Samuel Martin, C.

    2005-01-01

    Full text of publication follows: An experimental apparatus was designed for the purpose of investigating the phenomenon of condensation-induced water hammer in an ammonia refrigeration system. Water hammer was initiated by introducing warm ammonia gas over static subcooled ammonia liquid placed in a horizontal 146.3 mm diameter carbon steel pipe 6.0 m in length. By means of fast response piezoelectric pressure transducers and a high speed data acquisition system rapid dynamic pressures were recorded whenever a shock event occurred. Moreover, by means of top-mounted diaphragm pressure transducers the speed of liquid slugs propagating along the pipe was determined. The occurrence of condensation induced water hammer depended upon three major variables; namely, (1) initial liquid depth, (2) liquid temperature, and (3) mass flow rate of warm gas. For given liquid depth and temperature, once the warm gas threshold conditions were exceeded shocks occurred with greater magnitude as the mass flow rate of gas input was increased. With adequate subcooling condensation-induced water hammer occurred for initial liquid depths ranging from 25% to 95% of internal pipe diameter. The threshold mass flow rate of warm gas necessary to initiate water hammer was greater as the initial liquid depth was lowered. Based upon experimental results obtained from four pressure transducers located on the top of the test pipe conditions corresponding to bridging were ascertained. For various initial liquid depths the onset of instability from stratified flow to bridging was correlated with the Taitel-Dukler instability criterion. (author)

  6. Femtosecond laser ablation of enamel

    Science.gov (United States)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  7. Characterization of Aerosols Generated by nano-second Laser Ablation of an Acrylic Paint

    International Nuclear Information System (INIS)

    Dewalle, P.; Vendel, J.; Dewalle, P.; Weulersse, J.M.; Dewalle, P.; Herve, Ph.; Dewalle, P.; Decobert, G.

    2010-01-01

    This study focuses on particles produced during laser ablation of a green colored acrylic wall paint, which is frequently used in industrial buildings and in particular in nuclear installations. Ablation is carried out with a Nd:YAG laser at a wavelength of 532 nm and a pulse duration of 5 ns, in a cell at ambient pressure and temperature, which is ventilated by filtered air. The number of particles emitted was measured with a Condensation Particle Counter (CPC) and their size with an Engine Exhaust Particle Sizer (or EEPS) for the nano-metric range, and an AEROSIZER (for the micrometric range). The mass and shape of particles were determined by sampling on filters as well as on the different impaction plates of a Low-Pressure Impactor (LPI). Two particle populations were detected: a population of aggregates of primary nano-particles with an electrical mobility diameter ranging from 30 to 150 nm, and a population of spherical submicron particles with an aerodynamic diameter ranging from 400 to 1000 nm. The spherical particles are mainly composed of titanium dioxide, and the aggregates most likely of carbon. The presence of two types of particles with different size distributions, shapes, and chemical compositions, implies that particles originating from the ablation of paint are formed by two different mechanisms: agglomeration in the case of the nano-metric aggregates, which is preceded by steps of nucleation, condensation, and coagulation of the primary particles, while the submicron spheres result from a direct ejection mechanism. (authors)

  8. Transient direct-contact condensation on liquid droplets

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Nelson, R.A.

    1987-01-01

    In this paper, direct-contact condensation on subcooled liquid droplets is studied in two parts. In the first part, simple design correlations for the condensation in a steady environment are developed based upon a conduction model. These correlations include the convective heat-transfer coefficient, condensation rate, total condensation, and the droplet-thermalization time. In the second part of the paper, the effect of a time-dependent saturation temperature on the condensation process is investigated. A rapid decrease in saturation temperature is typical of condensation environments in which the steam-supply rate is limited and condensation-induced depressurization becomes important. Design correlations are developed for condensation in an environment in which the saturation temperature decreases linearly with time. These correlations are graphically compared to the design correlations of the first part through a quasi-steady approach. The error associated with this approach is quantified as a function of the rate of change of the saturation temperature

  9. Analysis of the factors associated with radiofrequency ablation-induced pneumothorax

    International Nuclear Information System (INIS)

    Gillams, A.R.; Lees, W.R.

    2007-01-01

    Aim: To define the characteristics most likely to result in radiofrequency ablation (RFA)-induced pneumothorax. Methods and materials: CT-guided RFA was performed in 79 tumours in 55 lungs in 37 patients, 16 were women, mean age 62 years (range 34-83). Three had primary lung cancer, 34 had metastases. The number, size, and location of tumours, electrode type, treatment parameters, length of electrode trajectory through aerated lung, background emphysema, prior interventions, and use of positive-pressure ventilation were analysed. The size, timing of any pneumothoraces, and intervention were recorded. Results: Pneumothorax occurred in 21 of the 25 lungs treated (38%), 18 immediate and three delayed. Seventeen of the 21 (81%) occupied less than 30% of the hemithorax, whereas in four cases >31% was involved. Eight of the 55 (15%) pneumothoraces required aspiration. The length of the electrode trajectory through aerated lung in those who developed a pneumothorax was 5.4 ± 4.7 cm versus 1.9 ± 2.7 in those who did not (p = 0.001). The mean number of tumours ablated was higher in the pneumothorax group, 1.7 ± 1 versus 1.3 ± 0.6 (p = 0.03), as was the number of electrode positions, 6 ± 3.9 versus 3.6 ± 2.2 (p = 0.01). On multivariate analysis only the needle trajectory through aerated lung was significant (p = 0.04). Conclusions: The number of tumours, electrode positions, and the anticipated electrode trajectory through aerated lung impacts on the likelihood of a pneumothorax. These considerations should be factored into patient selection, the choice of approach, and trajectory used in RFA

  10. Effects of pressure rise on cw laser ablation of tissue

    Science.gov (United States)

    LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.

    1991-06-01

    The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.

  11. Ultra-relativistic Au+Au and d+Au collisions:

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    In this talk I will review PHOBOS data on charged particle multiplicities, obtained in Au+Au and d+Au collisions at RHIC. The general features of the Au+Au pseudorapidity distributions results will be discussed and compared to those of /line{p}p collisions. The total charged particle multiplicity, scaled by the number of participant pairs, is observed to be about 40% higher in Au+Au collisions than in /line{p}p and d+Au systems, but, surprisingly at the same level of e+e- collisions. Limiting fragmentation scaling is seen to be obeyed in Au+Au collisions.

  12. Unravelling Thiol’s Role in Directing Asymmetric Growth of Au Nanorod–Au Nanoparticle Dimers

    KAUST Repository

    Huang, Jianfeng

    2015-12-15

    Asymmetric nanocrystals have practical significance in nanotechnologies but present fundamental synthetic challenges. Thiol ligands have proven effective in breaking the symmetric growth of metallic nanocrystals but their exact roles in the synthesis remain elusive. Here, we synthesized an unprecedented Au nanorod-Au nanoparticle (AuNR-AuNP) dimer structure with the assistance of a thiol ligand. On the basis of our experimental observations, we unraveled for the first time that the thiol could cause an inhomogeneous distribution of surface strains on the seed crystals as well as a modulated reduction rate of metal precursors, which jointly induced the asymmetric growth of monometallic dimers. © 2015 American Chemical Society.

  13. An Experimental Study of the Dropwise Condensation on Physically Processed Surface

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Chang, Soonheung; Watanabe, N.; Sambuichi, T.; Shiota, D.; Aritomi, M.

    2013-01-01

    Recent research by Kawakubo et al. derived empirical condensation heat transfer correlation suitable for wider range of operating condition in presence of non-condensable gas. However, their proposals of PCCS are focused on plane tube surface. To design better PCCS heat exchanger with high heat transfer coefficient new treatment on condensation surface can be considered in order to maintain dropwise condensation, the heat transfer coefficient of which has an order of magnitude larger than those of film condensation. Advanced research measure dropwise condensation heat transfer coefficient of Au and Cr coated surface based on number of droplet and droplet growth rate. However, coated surface is not desirable in power plant due to its duration of few years. On the other hand, physical processing (micro holes and patterns) on stainless steel and titanium surface is expected to perform better heat transfer, also is durable for the whole reactor lifetime. Since there is no published research about dropwise condensation for physically processed surface on SUS and Ti, the purposes of this research are to measure the condensation heat transfer coefficient and analyze its mechanism of enhanced heat transfer of treated SUS and Ti commonly used to nuclear plant. In the comparison of theoretical equation and experiment, it shows same result that heat transfer coefficient is proportional to maximum droplet diameter power to -0.321. Moreover, in the comparison of bare and processed surface, heat transfer coefficient decreases in processed surface

  14. Modeling of beam-target interaction during pulsed electron beam ablation of graphite: Case of melting

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Muddassir, E-mail: mx1_ali@laurentian.ca; Henda, Redhouane

    2017-02-28

    Highlights: • Modeling of ablation stage induced during pulsed electron beam ablation (PEBA). • Thermal model to describe heating, melting and vaporization of a graphite target. • Model results show good accordance with reported data in the literature. - Abstract: A one-dimensional thermal model based on a two-stage heat conduction equation is employed to investigate the ablation of graphite target during nanosecond pulsed electron beam ablation. This comprehensive model accounts for the complex physical phenomena comprised of target heating, melting and vaporization upon irradiation with a polyenergetic electron beam. Melting and vaporization effects induced during ablation are taken into account by introducing moving phase boundaries. Phase transition induced during ablation is considered through the temperature dependent thermodynamic properties of graphite. The effect of electron beam efficiency, power density, and accelerating voltage on ablation is analyzed. For an electron beam operating at an accelerating voltage of 15 kV and efficiency of 0.6, the model findings show that the target surface temperature can reach up to 7500 K at the end of the pulse. The surface begins to melt within 25 ns from the pulse start. For the same process conditions, the estimated ablation depth and ablated mass per unit area are about 0.60 μm and 1.05 μg/mm{sup 2}, respectively. Model results indicate that ablation takes place primarily in the regime of normal vaporization from the surface. The results obtained at an accelerating voltage of 15 kV and efficiency factor of 0.6 are satisfactorily in good accordance with available experimental data in the literature.

  15. Ablative fractional laser alters biodistribution of ingenol mebutate in the skin

    DEFF Research Database (Denmark)

    Erlendsson, A M; Taudorf, E H; Eriksson, A. H.

    2015-01-01

    Topically applied ingenol mebutate (IngMeb) is approved for field-treatment of actinic keratosis and is currently being investigated for treatment of non-melanoma skin cancer (NMSC). Ablative fractional lasers (AFXLs) generate microscopic ablation zones (MAZs) in the skin, which may help induce...

  16. The fractional laser-induced coagulation zone characterized over time by laser scanning confocal microscopy-A proof of concept study.

    Science.gov (United States)

    Banzhaf, Christina A; Lin, Lynlee L; Dang, Nhung; Freeman, Michael; Haedersdal, Merete; Prow, Tarl W

    2018-01-01

    Ablative fractional laser (AFXL) is an acknowledged technique to increase uptake of topical agents in skin. Micro thermal ablation zones (MAZs) consist of ablated vertical channels surrounded by a coagulation zone (CZ). Laser scanning confocal microscopy (LSCM) images individual MAZs at 733 nm (reflectance confocal microscopy (RCM)). Further, LSCM can image sodium fluorescein (NaF) fluorescence with 488 nm excitation (fluorescence confocal microcopy (FCM)), a small hydrophilic test molecule (370 MW, log P -1.52), which may simulate uptake, bio-distribution and kinetics of small hydrophilic drugs. To explore LSCM for combined investigations of CZ thickness and uptake, bio-distribution and kinetics of NaF in AFXL-exposed skin. Excised human abdominal skin samples were exposed to AFXL (15 mJ/microbeam, 2% density) and NaF gel (1000 μg/ml, 10 μl/cm2) in six repetitions, including untreated control samples. CZ thickness and spatiotemporal fluorescence intensities (FI) were quantified up to four hours after NaF application by RCM and FCM. Test sites were scanned to a depth of 200 μm, quantifying thickness of skin compartments (stratum corneum, epidermis, upper dermis), individual CZ thicknesses and FI in CZ and surrounding skin. RCM images established skin morphology to a depth of 200 μm. The CZ thickness measurements were feasible to a depth of 50 μm, and remained unchanged over time at 50 μm (P > 0.5). FI were detected to a depth of 160 μm and remained constant in CZ up to four hours after NaF application (15 minutes: 79 AU (73-92 AU), 60 minutes: 72 AU (58-82 AU), four hours: 78 AU (71-90 AU), P > 0.1). In surrounding skin, FI increased significantly over time, but remained lower than FI in CZ (15 minutes: 21 AU (17-22 AU), 60 minutes: 21 AU (19-26 AU), four hours: 42 (31- 48 AU), P = 0.03). AFXL-processed skin generated higher FI compared to non-laser processed skin in epidermis and upper dermis at 60 minutes and four hours

  17. Experimental study on 800 nm femtosecond laser ablation of fused silica in air and vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shi-zhen, E-mail: xusz@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yao, Cai-zhen; Liao, Wei [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yuan, Xiao-dong, E-mail: yxd66my@163.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, Tao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zu, Xiao-tao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-10-15

    Ablation rates of fused silica were studied as a function of femtosecond laser pulse fluences (0.7–41 J/cm{sup 2}) in air and vacuum. The experiment was conducted by using a Ti:sapphire laser that emits radiation at 800 nm with a pulse width of 35 fs and a repetition rate of 10 Hz. The morphology and ablation depth of laser-induced damage crater were evaluated by using optical microscopy and scanning electron microscopy (SEM). Ablation rates were calculated from the depth of craters induced by multiple laser pulses. Results showed that two ablation regimes, i.e. non-thermal and thermal ablation co-existed in air and vacuum at low and moderate fluences. A drop of ablation rate was observed at high fluence (higher than 9.5 J/cm{sup 2}) in air. While in vacuum, the ablation rate increased continuously with the increasing of laser fluence and much higher than that in air. The drop of ablation rate observed at high fluence in air was due to the strong defocusing effects associated with the non-equilibrium ionization of air. Furthermore, the laser-induced damage threshold (LIDT), which was determined from the relationship between crater area and the logarithm of laser energy, was found to depend on the number of incident pulses on the same spot, and similar phenomenon was observed in air and vacuum.

  18. Visualization of chromatin events associated with repair of ultraviolet light-induced damage by premature chromosome condensation

    International Nuclear Information System (INIS)

    Hittelman, W.N.; Pollard, M.

    1984-01-01

    Quiescent normal human fibroblasts were irradiated with u.v. and the ensuing chromatin events were visualised by inducing premature chromosome condensation in the treated cells. Treatment with u.v. induced 1) a generalised elongation of the Gl premature condensed chromosomes (PCC) and 2) regions of localized elongation or gaps. The degree of chromatin change was dose dependent and could be seen immediately after irradiation. The generalised elongation process continued to increase for 24 h after irradiation, suggesting it represented a cellular reaction to the u.v.-induced damage, rather than a direct physical distortion. The localized decondensation reaction was associated with the site of unscheduled DNA synthesis. Post-treatment incubation of cells in the presence of cytosine arabinoside and hydroxyurea resulted in an accumulation of gaps. The inhibitor novobiocin predominantly inhibited the formation of gap regions, suggesting that a topoisomerase-like reaction might be important in their formation. The presence of cycloheximide after u.v. irradiation had no effect on the chromatin changes, suggesting that no new protein synthesis is required for these chromatin processes associated with repair. These results suggest that the PCC technique is useful in elucidating chromatin changes associated with DNA repair after u.v. treatment. (author)

  19. Investigation of condensation implosion by changing configurations of water and steam inlets

    International Nuclear Information System (INIS)

    Seporaitis, Marijus; Pabarcius, Raimondas; Almenas, Kazys

    2003-01-01

    A previous paper (Seporaitis, 2002) presented experimental results, which showed that it is possible to induce condensation implosion events in a horizontal cylindrical pulser solely by varying the introduction rate of sub-cooled liquid. Interface disruption is triggered when an increasing liquid-vapor inter-face generates a growing condensation rate that leads to larger vapor flows. Vapor flow and condensation induced shear initiate surface waves and when these exceed a 'critical' growth rate complete interface disruption leading to a rapid condensation pulse. Although initial experimental success-generation of condensation implosion events in a controlled manner-was achieved it was determined that the range of the liquid introduction rate is fairly narrow. To avoid a high liquid heat up (negative factor for initiation of condensation implosion events) during it inducing into pulser and to expend range of the controlling variable the internal flow configurations in the further tests were used. The experimental studies presented in this paper have shown that trace amount of non-condensable gas have a larger effect on the initiation of a controlled condensation implosion event then was initially assumed. The influence of non-condensable gas is shown to be of an equivalent importance as the liquid side turbulence that is modulated by the rate of liquid introduction. (author)

  20. Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24.

    Science.gov (United States)

    Zeng, Chenjie; Liu, Chunyan; Pei, Yong; Jin, Rongchao

    2013-07-23

    We report a disproportionation mechanism identified in the transformation of rod-like biicosahedral Au38(SCH2CH2Ph)24 to tetrahedral Au36(TBBT)24 nanoclusters. Time-dependent mass spectrometry and optical spectroscopy analyses unambiguously map out the detailed size-conversion pathway. The ligand exchange of Au38(SCH2CH2Ph)24 with bulkier 4-tert-butylbenzenethiol (TBBT) until a certain extent starts to trigger structural distortion of the initial biicosahedral Au38(SCH2CH2Ph)24 structure, leading to the release of two Au atoms and eventually the Au36(TBBT)24 nanocluster with a tetrahedral structure, in which process the number of ligands is interestingly preserved. The other product of the disproportionation process, i.e., Au40(TBBT)m+2(SCH2CH2Ph)24-m, was concurrently observed as an intermediate, which was the result of addition of two Au atoms and two TBBT ligands to Au38(TBBT)m(SCH2CH2Ph)24-m. The reaction kinetics on the Au38(SCH2CH2Ph)24 to Au36(TBBT)24 conversion process was also performed, and the activation energies of the structural distortion and disproportionation steps were estimated to be 76 and 94 kJ/mol, respectively. The optical absorption features of Au36(TBBT)24 are interpreted on the basis of density functional theory simulations.

  1. Gravitino Condensates in the Early Universe and Inflation

    CERN Document Server

    Mavromatos, Nick E

    2015-01-01

    We review work on the formation of gravitino condensates via the super-Higgs effect in the early Universe. This is a scenario for both inflating the early universe and breaking local supersymmetry (supergravity), entirely independent of any coupling to external matter. The goldstino mode associated with the breaking of (global) supersymmetry is "eaten" by the gravitino field, which becomes massive (via its own vacuum condensation) and breaks the local supersymmetry (supergravity) dynamically. The most natural association of gravitino condensates with inflation proceeds in an indirect way, via a Starobinsky-inflation-type phase. The higher-order curvature corrections of the (quantum) effective action of gravitino condensates induced by integrating out massive gravitino degrees of freedom in a curved space-time background, in the broken-supergravity phase, are responsible for inducing a scalar mode which inflates the Universe. The scenario is in agreement with Planck data phenomenology in a natural and phenomen...

  2. In situ deuterium inventory measurements of a-C:D layers on tungsten in TEXTOR by laser induced ablation spectroscopy

    International Nuclear Information System (INIS)

    Gierse, N; Brezinsek, S; Coenen, J W; Huber, A; Laengner, M; Möller, S; Nonhoff, M; Philipps, V; Pospieszczyk, A; Schweer, B; Sergienko, G; Xiao, Q; Zlobinski, M; Samm, U; Giesen, T F

    2014-01-01

    Laser induced ablation spectroscopy (LIAS) is a diagnostic to provide temporally and spatially resolved in situ measurements of tritium retention and material migration in order to characterize the status of the first wall in future fusion devices. In LIAS, a ns-laser pulse ablates the first nanometres of the first wall plasma-facing components into the plasma edge. The resulting line radiation by plasma excitation is observed by spectroscopy. In the case of the full ionizing plasma and with knowledge of appropriate photon efficiencies for the corresponding line emission the amount of ablated material can be measured in situ. We present the photon efficiency for the deuterium Balmer α-line resulting from ablation in TEXTOR by performing LIAS on amorphous hydrocarbon (a-C:D) layers deposited on tungsten substrate of thicknesses between 0.1 and 1.1 μm. An experimental inverse photon efficiency of [(D/(XB))] D α (EXP) a-C:D→ LIAS D =75.9±23.4 was determined. This value is a factor 5 larger than predicted values from the ADAS database for atomic injection of deuterium under TEXTOR plasma edge conditions and about twice as high, assuming normal wall recycling and release of molecular deuterium and break-up of D 2 via the molecular ion which is usually observed at the high temperature tokamak edge (T e  > 30 eV). (paper)

  3. Percutaneous laser ablation of benign and malignant thyroid nodules.

    Science.gov (United States)

    Papini, Enrico; Bizzarri, Giancarlo; Pacella, Claudio M

    2008-10-01

    Percutaneous image-guided procedures, largely based on thermal ablation, are at present under investigation for achieving a nonsurgical targeted cytoreduction in benign and malignant thyroid lesions. In several uncontrolled clinical trials and in two randomized clinical trials, laser ablation has demonstrated a good efficacy and safety for the shrinkage of benign cold thyroid nodules. In hyperfunctioning nodules, laser ablation induced a nearly 50% volume reduction with a variable frequency of normalization of thyroid-stimulating hormone levels. Laser ablation has been tested for the palliative treatment of poorly differentiated thyroid carcinomas, local recurrences or distant metastases. Laser ablation therapy is indicated for the shrinkage of benign cold nodules in patients with local pressure symptoms who are at high surgical risk. The treatment should be performed only by well trained operators and after a careful cytological evaluation. Laser ablation does not seem to be consistently effective in the long-term control of hyperfunctioning thyroid nodules and is not an alternative treatment to 131I therapy. Laser ablation may be considered for the cytoreduction of tumor tissue prior to external radiation therapy or chemotherapy of local or distant recurrences of thyroid malignancy that are not amenable to surgical or radioiodine treatment.

  4. Energy Dependence of Particle Multiplicities in Central Au+Au Collisions

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-01-01

    We present the first measurement of the pseudorapidity density of primary charged particles in Au+Au collisions at (sNN) = 200 GeV. For the 6% most central collisions, we obtain dNch/dη\\|\\|η\\|<1 = 650+/-35(syst). Compared to collisions at (sNN) = 130 GeV, the highest energy studied previously, an increase by a factor of 1.14+/-0.05 at 90% confidence level, is found. The energy dependence of the pseudorapidity density is discussed in comparison with data from proton-induced collisions and theoretical predictions.

  5. Jet-hadron correlations in √[s(NN)]=200  GeV p+p and central Au+Au collisions.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-03-28

    Azimuthal angular correlations of charged hadrons with respect to the axis of a reconstructed (trigger) jet in Au+Au and p+p collisions at √[s(NN)]=200  GeV in STAR are presented. The trigger jet population in Au+Au collisions is biased toward jets that have not interacted with the medium, allowing easier matching of jet energies between Au+Au and p+p collisions while enhancing medium effects on the recoil jet. The associated hadron yield of the recoil jet is significantly suppressed at high transverse momentum (pTassoc) and enhanced at low pTassoc in 0%-20% central Au+Au collisions compared to p+p collisions, which is indicative of medium-induced parton energy loss in ultrarelativistic heavy-ion collisions.

  6. X-ray emission, ablation pressure, and preheating for foils irradiated at 0. 26. mu. m wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Pepin, H.; Fabbro, R.; Faral, B.; Amiranoff, F.; Virmont, J.; Cottet, F.; Romain, J.P.

    1985-11-01

    The x-ray emission, ablation pressure, and preheating for foils irradiated with a 0.26 ..mu..m laser at intensities approx.10/sup 15/ W cm/sup -2/ are studied. The foils are Al with various thicknesses, coated or uncoated with CH or Au. The x-ray emission and conversion efficiency are obtained with a multichannel x-ray diode spectrometer, the ablation pressures are deduced from shock transit times, and the rear temperatures are inferred from x-ray pyrometry. For thin foils (<<12 ..mu..m), the rear temperatures can be predicted reasonably well with the use of the front x-ray spectra. For thick foils shock preheating is dominant.

  7. X-ray emission, ablation pressure, and preheating for foils irradiated at 0.26 μm wavelength

    International Nuclear Information System (INIS)

    Pepin, H.; Fabbro, R.; Faral, B.; Amiranoff, F.; Virmont, J.; Cottet, F.; Romain, J.P.

    1985-01-01

    The x-ray emission, ablation pressure, and preheating for foils irradiated with a 0.26 μm laser at intensities approx.10 15 W cm -2 are studied. The foils are Al with various thicknesses, coated or uncoated with CH or Au. The x-ray emission and conversion efficiency are obtained with a multichannel x-ray diode spectrometer, the ablation pressures are deduced from shock transit times, and the rear temperatures are inferred from x-ray pyrometry. For thin foils (<<12 μm), the rear temperatures can be predicted reasonably well with the use of the front x-ray spectra. For thick foils shock preheating is dominant

  8. Charge transport through O-deficient Au-MgO-Au junctions

    KAUST Repository

    Fadlallah, M. M.; Eckern, Ulrich; Rungger, Ivan; Schuster, Cosima; Schwingenschlö gl, Udo

    2009-01-01

    Metal-oxide heterostructures have been attracting considerable attention in recent years due to various technological applications. We present results of electronic structure and transport calculations for the Au-MgO-Au (metal-insulator-metal) heterostructure based on density-functional theory and the nonequilibrium Green’s functions method. The dependence of the conductance of the heterostructure on the thickness of the MgO interlayer and the interface spacing is studied. In addition, we address the effects of O vacancies. We observe deviations from an exponentially suppressed conductance with growing interlayer thickness caused by Au-O chemical bonds. Electronic states tracing back to O vacancies can increase the conductance. Furthermore, this effect can be enhanced by enlarging the interface spacing as the vacancy induced Mg states are shifted toward the Fermi energy.

  9. Charge transport through O-deficient Au-MgO-Au junctions

    KAUST Repository

    Fadlallah, M. M.

    2009-12-29

    Metal-oxide heterostructures have been attracting considerable attention in recent years due to various technological applications. We present results of electronic structure and transport calculations for the Au-MgO-Au (metal-insulator-metal) heterostructure based on density-functional theory and the nonequilibrium Green’s functions method. The dependence of the conductance of the heterostructure on the thickness of the MgO interlayer and the interface spacing is studied. In addition, we address the effects of O vacancies. We observe deviations from an exponentially suppressed conductance with growing interlayer thickness caused by Au-O chemical bonds. Electronic states tracing back to O vacancies can increase the conductance. Furthermore, this effect can be enhanced by enlarging the interface spacing as the vacancy induced Mg states are shifted toward the Fermi energy.

  10. Tissue Necrosis Monitoring for HIFU Ablation with T1 Contrast MRI Imaging

    Science.gov (United States)

    Hwang, San-Chao; Yao, Ching; Kuo, Ih-Yuan; Tsai, Wei-Cheng; Chang, Hsu

    2011-09-01

    In MR-guided HIFU ablation, MTC (Magnetization Transfer Contrast) or perfusion imaging is usually used after ablation to evaluate the ablated area based on the thermally induced necrosis contrast. In our MR-guided HIFU ablation study, a T1 contrast MRI scan sequence has been used to distinguish between necrotic and non-necrotic tissue. The ablation of porcine meat in-vitro and in-vivo pig leg muscle show that the necrotic area of T1 contrast MRI image coincides with the photographs of sliced specimen. The sequence is considerably easier to apply than MTC or perfusion imaging, while giving good necrosis contrast. In addition, no injection of contrast agent is needed, allowing multiple scans to be applied throughout the entire ablation procedure.

  11. Effect of absorbing coating on ablation of diamond by IR laser pulses

    Science.gov (United States)

    Kononenko, T. V.; Pivovarov, P. A.; Khomich, A. A.; Khmel'nitskii, R. A.; Konov, V. I.

    2018-03-01

    We study the possibility of increasing the efficiency and quality of laser ablation microprocessing of diamond by preliminary forming an absorbing layer on its surface. The laser pulses having a duration of 1 ps and 10 ns at a wavelength of 1030 nm irradiate the polycrystalline diamond surface coated by a thin layer of titanium or graphite. We analyse the dynamics of the growth of the crater depth as a function of the number of pulses and the change in optical transmission of the ablated surface. It is found that under irradiation by picosecond pulses the preliminary graphitisation allows one to avoid the laser-induced damage of the internal diamond volume until the appearance of a self-maintained graphitised layer. The absorbing coating (both graphite and titanium) much stronger affects ablation by nanosecond pulses, since it reduces the ablation threshold by more than an order of magnitude and allows full elimination of a laser-induced damage of deep regions of diamond and uncontrolled explosive ablation in the nearsurface layer.

  12. Chromatin condensation and differential sensitivity of mammalian and insect cells to DNA strand breaks induced by bleomycin

    International Nuclear Information System (INIS)

    Lopez-Larraza, Daniel M.; Padron, Juan; Ronci, Natalia E.; Vidal Rioja, Lidia A.

    2006-01-01

    Bleomycin (BLM) induces DNA damage in living cells. In this report we analyzed the role of chromatin compactness in the differential response of mosquito (ATC-15) and mammalian (CHO) cells to DNA strand breaks induced by BLM. We used cells unexposed and exposed to sodium butyrate (NaB), which induces chromatin decondensation. By nucleoid sedimentation assay and digestions of nuclei with DNAse I, untreated mosquito cells (no BLM; no NaB) were shown to have more chromatin condensation than untreated CHO cells. By alkaline unwinding ATC-15 cells treated with NaB showed more BLM-induced DNA strand breaks than NaB-untreated CHO cells. The time-course of BLM-induced DNA damage to nuclear DNA was similar for NaB-untreated mammalian and insect cells, but with mosquito cells showing less DNA strand breaks, both at physiological temperatures and at 4 o C. However, when DNA repair was inhibited by low temperatures and chromatin was decondensed by NaB treatments, differences in BLM-induced DNA damage between these cells lines were no longer observed. In both cell lines, NaB did not affect BLM action on cell growth and viability. On the other hand, the low sensitivity of ATC-15 cells to BLM was reflected in their better growth efficiency. These cells exhibited a satisfactory growth at BLM doses that produced a permanent arrest of growth in CHO cells. The data suggest that mosquito cells might have linker DNAs shorter than those of mammalian cells, which would result in the observed both greater chromatin condensation and greater resistance to DNA damage induced by BLM as compared to CHO cells

  13. Chromatin condensation and differential sensitivity of mammalian and insect cells to DNA strand breaks induced by bleomycin

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Larraza, Daniel M. [IMBICE, C.C. 403, 1900 La Plata (Argentina)]. E-mail: danielop@imbice.org.ar; Padron, Juan [IMBICE, C.C. 403, 1900 La Plata (Argentina); Ronci, Natalia E. [IMBICE, C.C. 403, 1900 La Plata (Argentina); Vidal Rioja, Lidia A. [IMBICE, C.C. 403, 1900 La Plata (Argentina)

    2006-08-30

    Bleomycin (BLM) induces DNA damage in living cells. In this report we analyzed the role of chromatin compactness in the differential response of mosquito (ATC-15) and mammalian (CHO) cells to DNA strand breaks induced by BLM. We used cells unexposed and exposed to sodium butyrate (NaB), which induces chromatin decondensation. By nucleoid sedimentation assay and digestions of nuclei with DNAse I, untreated mosquito cells (no BLM; no NaB) were shown to have more chromatin condensation than untreated CHO cells. By alkaline unwinding ATC-15 cells treated with NaB showed more BLM-induced DNA strand breaks than NaB-untreated CHO cells. The time-course of BLM-induced DNA damage to nuclear DNA was similar for NaB-untreated mammalian and insect cells, but with mosquito cells showing less DNA strand breaks, both at physiological temperatures and at 4 {sup o}C. However, when DNA repair was inhibited by low temperatures and chromatin was decondensed by NaB treatments, differences in BLM-induced DNA damage between these cells lines were no longer observed. In both cell lines, NaB did not affect BLM action on cell growth and viability. On the other hand, the low sensitivity of ATC-15 cells to BLM was reflected in their better growth efficiency. These cells exhibited a satisfactory growth at BLM doses that produced a permanent arrest of growth in CHO cells. The data suggest that mosquito cells might have linker DNAs shorter than those of mammalian cells, which would result in the observed both greater chromatin condensation and greater resistance to DNA damage induced by BLM as compared to CHO cells.

  14. Okadaic acid for radiation dose estimation using drug-induced premature chromosome condensation

    International Nuclear Information System (INIS)

    Wang Chunyan; Zhang Wei; Su Xu

    2005-01-01

    Objective: To establish simple biological method for high irradiation dose estimation using drug-induced prematurely condensed chromosomes (PCC) aberrations. Methods: Peripheral blood was taken from healthy adults and irradiated by 0, 1, 2, 5, 10, 15, 20 and 25 Gy 60 Co γ-rays. Then the blood samples were cultured for 48 hrs. One hr before the end of culture , okadaic acid was added into culture medium to induce PCC rings, which were counted for each dose point. Results: The yield of PCC rings was increased with the dose of radiation until 20 Gy. Within the range of 1 to 20 Gy, there was a good dose-response relationship between the yield of PCC rings and radiation dose. Conclusion: Compared with the analysis of frequency of dicentrics, the yield of PCC rings could be a good biodosimetry indicator for estimation of high dose irradiation. (authors)

  15. Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains.

    Science.gov (United States)

    Sabater, Carlos; Untiedt, Carlos; van Ruitenbeek, Jan M

    2015-01-01

    This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a 'Berry force'. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.

  16. Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains

    Directory of Open Access Journals (Sweden)

    Carlos Sabater

    2015-12-01

    Full Text Available This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.

  17. Electron induced conformational changes of an imine-based molecular switch on a Au(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Lotze, Christian; Henningsen, Nils; Franke, Katharina; Schulze, Gunnar; Pascual, Jose Ignacio [Inst. f. Experimentalphysik, Freie Universitaet Berlin (Germany); Luo, Ying; Haag, Rainer [Inst. f. Organische Chemie, Freie Universitaet Berlin (Germany)

    2009-07-01

    Azobenzene-based molecules exhibit a cis-trans configurational photoisomerisation in solution. Recently, the adsorption properties of azobenzene derivatives have been investigated on different metal surfaces in order to explore the possible changes in the film properties induced by external stimuli. In azobenzene, the diazo-bridge is a key group for the isomerization process. Its interaction with a metal surface is dominated through the N lone-pair electrons, which reduces the efficiency of the conformational change. In order to reduce the molecule-surface interaction, we explore an alternative molecular architecture by substituting the diazo-bridge (-N=N-) of azobenzene by an imine-group (-N=CH-). We have investigated the imine-based compound para-carboxyl-di-benzene-imine (PCI) adsorbed on a Au(111) surface. The carboxylic terminations mediates the formation of strongly bonded molecular dimers, which align in ordered rows preferentially following the fcc regions of the Au(111) herringbone reconstruction. Low temperature scanning tunneling microscopy was used to induce conformational changes between trans and cis state of individual molecules in a molecular monolayer.

  18. Microstructural changes in silicon induced by patterning with focused ion beams of Ga, Si and Au

    International Nuclear Information System (INIS)

    Chee, See Wee; Kammler, Martin; Balasubramanian, Prabhu; Reuter, Mark C.; Hull, Robert; Ross, Frances M.

    2013-01-01

    We use focused beams of Ga + , Au + and Si ++ ions to induce local microstructural changes in single crystal silicon. The ions were delivered as single spot pulses into thin Si membranes that could subsequently be imaged and annealed in situ in a transmission electron microscope. For each ion, the focused ion beam implantation created an array of amorphous regions in the crystalline membrane. Annealing causes solid phase epitaxial regrowth to take place, but we show that the resulting microstructure depends on the ion species. For Ga + and Au + , precipitates remain after recrystallization, while for Si ++ , dislocation loops form around the periphery of each implanted spot. We attribute these loops to defects formed during solid phase epitaxial regrowth, with controlled placement of the loops possible. - Highlights: ► Ga + , Au + and Si ++ were implanted into thin membranes of Si. ► Samples were imaged and annealed in situ in a transmission electron microscope. ► Focused ion beam implantation created an array of amorphous spots. ► After recrystallization, precipitates form for Ga + and Au + , dislocation loops for Si ++ . ► Controlled placement of the dislocation loops possible

  19. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets.

    Science.gov (United States)

    Chang, Nan; Lu, Shukuan; Qin, Dui; Xu, Tianqi; Han, Meng; Wang, Supin; Wan, Mingxi

    2018-07-01

    A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration. Copyright © 2018. Published by Elsevier B.V.

  20. Study on biological dosimetry of premature chromosome condensation technique

    International Nuclear Information System (INIS)

    Jiang Bo

    2005-01-01

    The premature chromosome condensation technique has been applied for biological dosimetry purpose. Premature chromo-some condensation was induced by incubating unstimulated human peripheral blood lymphocytes in the presence of okadaic acid or calyculin A (a phosphatase inhibitor) which eliminated the need for fusion with mitotic cells. It is now possible to examine the early damage induced by radiation. It is simple, exact when it combines with fluorecence in situ hybridization. (authors)

  1. Lesion size in relation to ablation site during radiofrequency ablation

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, A

    1998-01-01

    This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation was perfor......This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation...... was performed during two different flow-velocities in a tissue bath, while electrode contact pressure and position were unchanged. Target temperature was 80 degrees C. Obtained tip temperature, power consumption and lesion dimensions were measured. In vivo lesion volume, depth and width were found significantly.......61 in vitro). We conclude that during temperature controlled radiofrequency ablation lesion size differs for septal and apical left ventricular applications. Differences in convective cooling might play an important role in this respect. This is supported by our in vitro experiments, where increased...

  2. Cardiac ablation

    Directory of Open Access Journals (Sweden)

    Kelly Ratheal

    2016-01-01

    Full Text Available Cardiac ablation is a procedure that uses either radiofrequency or cryothermal energy to destroy cells in the heart to terminate and/or prevent arrhythmias. The indications for cardiac catheter ablation include refractory, symptomatic arrhythmias, with more specific guidelines for atrial fibrillation in particular. The ablation procedure itself involves mapping the arrhythmia and destruction of the aberrant pathway in an effort to permanently prevent the arrhythmia. There are many types of arrhythmias, and they require individualized approaches to ablation based on their innately different electrical pathways. Ablation of arrhythmias, such as Wolff-Parkinson-White syndrome, AV nodal reentrant tachycardia, and atrial-fibrillation, is discussed in this review. Ablation has a high success rate overall and minimal complication rates, leading to improved quality of life in many patients.

  3. Superhydrophobic/superoleophilic magnetic elastomers by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Milionis, Athanasios, E-mail: am2vy@virginia.edu [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Fragouli, Despina; Brandi, Fernando; Liakos, Ioannis; Barroso, Suset [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Athanassiou, Athanassia, E-mail: athanassia.athanassiou@iit.it [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy)

    2015-10-01

    Highlights: • We report the development of magnetic nanocomposite sheets. • Laser irradiation of the nanocomposites induces chemical and structural changes to the surface. • The laser-patterned surfaces exhibit superhydrophobicity and superoleophilicity. • The particle contribution in altering the surface and bulk properties of the material is studied. - Abstract: We report the development of magnetic nanocomposite sheets with superhydrophobic and supeoleophilic surfaces generated by laser ablation. Polydimethylsiloxane elastomer free-standing films, loaded homogeneously with 2% wt. carbon coated iron nanoparticles, were ablated by UV (248 nm), nanosecond laser pulses. The laser irradiation induces chemical and structural changes (both in micro- and nano-scale) to the surfaces of the nanocomposites rendering them superhydrophobic. The use of nanoparticles increases the UV light absorption efficiency of the nanocomposite samples, and thus facilitates the ablation process, since the number of pulses and the laser fluence required are greatly reduced compared to the bare polymer. Additionally the magnetic nanoparticles enhance significantly the superhydrophobic and oleophilic properties of the PDMS sheets, and provide to PDMS magnetic properties making possible its actuation by a weak external magnetic field. These nanocomposite elastomers can be considered for applications requiring magnetic MEMS for the controlled separation of liquids.

  4. Three dimensional characterization of laser ablation craters using high resolution X-ray computed tomography

    Science.gov (United States)

    Galmed, A. H.; du Plessis, A.; le Roux, S. G.; Hartnick, E.; Von Bergmann, H.; Maaza, M.

    2018-01-01

    Laboratory X-ray computed tomography is an emerging technology for the 3D characterization and dimensional analysis of many types of materials. In this work we demonstrate the usefulness of this characterization method for the full three dimensional analysis of laser ablation craters, in the context of a laser induced breakdown spectroscopy setup. Laser induced breakdown spectroscopy relies on laser ablation for sampling the material of interest. We demonstrate here qualitatively (in images) and quantitatively (in terms of crater cone angles, depths, diameters and volume) laser ablation crater analysis in 3D for metal (aluminum) and rock (false gold ore). We show the effect of a Gaussian beam profile on the resulting crater geometry, as well as the first visual evidence of undercutting in the rock sample, most likely due to ejection of relatively large grains. The method holds promise for optimization of laser ablation setups especially for laser induced breakdown spectroscopy.

  5. Preparation of PZT thin films on YBCO electrodes by KrF excimer laser ablation technique

    International Nuclear Information System (INIS)

    Kurogi, H.; Yamagata, Y.; Ebihara, K.

    1998-01-01

    Pb(Zr X Ti 1-X )O 3 (PZT) films have excellent ferroelectric, optical, piezoelectric, and pyroelectric properties. We prepared PZT thin films by the excimer laser ablation technique. A pulsed KrF excimer laser (Lambda Physik LPX305icc, pulse duration of 25 ns, λ=248 nm, 850 mJ Max.) was used to ablate the bulk targets. We investigated the influence of bottom electrode materials on the characteristics of the PZT thin films prepared on Pt and YBCO underlayers. The X-ray diffraction (XRD) patterns showed that the PZT films prepared with a laser fluence of 2 Jcm -2 on YBCO/MgO(100) substrate at a wide temperature range of 550-680 C have a perovskite (001) structure. At the same laser fluence, the PZT films prepared on Pt/MgO(100) substrate have a perovskite (001) structure only at 650 C. The polarization-electric field (P-E) characteristics and fatigue properties of PZT thin films were measured by the Sawyer-Tower circuit. The remnant polarization and coercive field have been found to be P r =15 μC cm -2 , 30 μC cm -2 and E c =200 kV cm -1 , 100 kV cm -1 for Au/PZT/Pt/MgO and Au/PZT/YBCO/MgO correspondingly. The remnant polarization of Au/PZT/YBCO/MgO thin film was reduced to one-half after about 10 8 cycles of switching. (orig.)

  6. Characterization of laser ablation of copper in the irradiance regime of laser-induced breakdown spectroscopy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Picard, J., E-mail: jessica.picard@cea.fr [Commissariat à l' Energie Atomique, DAM, Valduc, F-21120 Is-sur-Tille (France); Sirven, J.-B.; Lacour, J.-L. [Commissariat à l' Energie Atomique, DEN/DANS/DPC/SEARS/LANIE, Saclay, F-91191 Gif-sur-Yvette (France); Musset, O. [Université de Bourgogne, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 5209, F-21000 Dijon (France); Cardona, D.; Hubinois, J.-C. [Commissariat à l' Energie Atomique, DAM, Valduc, F-21120 Is-sur-Tille (France); Mauchien, P. [Commissariat à l' Energie Atomique, DEN/DANS/DPC/SEARS/LANIE, Saclay, F-91191 Gif-sur-Yvette (France)

    2014-11-01

    The LIBS signal depends both on the ablated mass and on the plasma excitation temperature. These fundamental parameters depend in a complex manner on laser ablation and on laser–plasma coupling. As several works in the literature suggest that laser ablation processes play a predominant role compared to plasma heating phenomena in the LIBS signal variations, this paper focuses on the study of laser ablation. The objective was to determine an interaction regime enabling to maximally control the laser ablation. Nanosecond laser ablation of copper at 266 nm was characterized by scanning electron microscopy and optical profilometry analysis, in air at 1 bar and in the vacuum. The laser beam spatial profile at the sample surface was characterized in order to give realistic values of the irradiance. The effect of the number of accumulated laser shots on the crater volume was studied. Then, the ablation crater morphology, volume, depth and diameter were measured as a function of irradiance between 0.35 and 96 GW/cm². Results show that in the vacuum, a regular trend is observed over the whole irradiance range. In air at 1 bar, below a certain irradiance, laser ablation is very similar to the vacuum case, and the ablation efficiency of copper was estimated at 0.15 ± 0.03 atom/photon. Beyond this irradiance, the laser beam propagation is strongly disrupted by the expansion of the dense plasma, and plasma shielding appears. The fraction of laser energy used for laser ablation and for plasma heating is estimated in the different irradiance regimes. - Highlights: • The morphology of copper's craters was studied as a function of the pulse energy. • Correlation at low energy and two pressures between crater volume and pulse energy • The ablation efficiency of copper at 1 bar is equal to 0.15 atom/photon. • Ablation efficiency in the vacuum is not limited by laser–plasma interaction. • Physical mechanisms of laser ablation at both pressures are discussed.

  7. Analysis of A-15 phase in the system Nb-Au

    International Nuclear Information System (INIS)

    Silveira, M.F. da.

    1982-01-01

    The Nb-Au system contains a A-15 structure with a superconducting critical temperature of the order of 11 K. According to the actually available phase diagrams there is some incertainty, whether the stoichiometric composition Nb 3 Au (75% at. Nb and 25% at. Au) occurs within the limits of stability. In the present work the samples (alloys of Nb and Au) are produced using a technique of melting by condenser discharge. The advantage of this technique consists in the possibility to obtain samples with compositions exceeding the limits of stability, as shown by lattice parameter analyses of the phase A-2 (Nb - solid solution) samples. The A-15 phase is obtained by heat treatments of samples crystallized originally in the A-2 structure. The inductively determined critical temperatures are close to the highest reported in the literature for this compound (11,5 K). Further we show by lattice parameter analyses that we are able to obtain the A-15 phase also with metastable compositions, very probably inclusively with the stoichiometric composition. (author) [pt

  8. Effect of liquid film on near-threshold laser ablation of a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongsik; Oh, Bukuk; Lee, Ho

    2004-01-30

    Enhancement of material ablation and photoacoustic excitation by an artificially deposited liquid film in the process of pulsed-laser ablation (PLA) is investigated in this paper. Ablation threshold, ablation rate, surface topography, and acoustic-transient emission are also measured for dry and liquid film-coated surfaces. The physical mechanisms of enhanced ablation in the liquid-assisted process are analyzed at relatively low laser fluences with negligible effect of laser-produced plasma. Particularly, correlation between material ablation and acoustic-transient generation is examined. In the experiment, aluminum thin-films and bulk foils are ablated by Q-switched Nd:YAG laser pulses. The dependence of ablation rate and laser-induced topography on liquid film thickness and chemical composition is also examined. Photoacoustic emission is measured by the probe beam deflection method utilizing a CW HeNe laser and a microphone. In comparison with a dry ablation process, the liquid-assisted ablation process results in substantially augmented ablation efficiency and reduced ablation threshold. The results indicate that both increased laser-energy coupling, i.e., lowered reflectance, and amplified photoacoustic excitation in explosive vaporization of liquid are responsible for the enhanced material ablation.

  9. Condensation model for the ESBWR passive condensers

    International Nuclear Information System (INIS)

    Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.

    2012-01-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)

  10. Near-field mapping by laser ablation of PMMA coatings

    DEFF Research Database (Denmark)

    Fiutowski, J.; Maibohm, C.; Kostiucenko, O.

    2011-01-01

    The optical near-field of lithography-defined gold nanostructures, arranged into regular arrays on a gold film, is characterized via ablation of a polymer coating by laser illumination. The method utilizes femto-second laser pulses from a laser scanning microscope which induces electrical field...... that the different stages in the ablation process can be controlled and characterized making the technique suitable for characterizing optical near-fields of metal nanostructures....

  11. Characterisation of tissue shrinkage during microwave thermal ablation.

    Science.gov (United States)

    Farina, Laura; Weiss, Noam; Nissenbaum, Yitzhak; Cavagnaro, Marta; Lopresto, Vanni; Pinto, Rosanna; Tosoratti, Nevio; Amabile, Claudio; Cassarino, Simone; Goldberg, S Nahum

    2014-11-01

    The aim of this study was to characterise changes in tissue volume during image-guided microwave ablation in order to arrive at a more precise determination of the true ablation zone. The effect of power (20-80 W) and time (1-10 min) on microwave-induced tissue contraction was experimentally evaluated in various-sized cubes of ex vivo liver (10-40 mm ± 2 mm) and muscle (20 and 40 mm ± 2 mm) embedded in agar phantoms (N = 119). Post-ablation linear and volumetric dimensions of the tissue cubes were measured and compared with pre-ablation dimensions. Subsequently, the process of tissue contraction was investigated dynamically during the ablation procedure through real-time X-ray CT scanning. Overall, substantial shrinkage of 52-74% of initial tissue volume was noted. The shrinkage was non-uniform over time and space, with observed asymmetry favouring the radial (23-43 % range) over the longitudinal (21-29%) direction. Algorithmic relationships for the shrinkage as a function of time were demonstrated. Furthermore, the smallest cubes showed more substantial and faster contraction (28-40% after 1 min), with more considerable volumetric shrinkage (>10%) in muscle than in liver tissue. Additionally, CT imaging demonstrated initial expansion of the tissue volume, lasting in some cases up to 3 min during the microwave ablation procedure, prior to the contraction phenomenon. In addition to an asymmetric substantial shrinkage of the ablated tissue volume, an initial expansion phenomenon occurs during MW ablation. Thus, complex modifications of the tissue close to a radiating antenna will likely need to be taken into account for future methods of real-time ablation monitoring.

  12. Therapeutic efficacy of percutaneous radiofrequency ablation versus microwave ablation for hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available The aim of this study was to investigate the therapeutic efficacy of percutaneous radiofrequency (RF ablation versus microwave (MW ablation for hepatocellular carcinoma (HCC measuring ≤ 5 cm in greatest diameter. From January 2006 to December 2006, 78 patients had undergone RF ablation whereas 77 had undergone MW ablation. Complete ablation (CA, local tumour progression (LTP and distant recurrence (DR were compared. The overall survival curves were calculated with the Kaplan-Meier technique and compared with the log-rank test. The CA rate was 83.4% (78/93 for RF ablation and 86.7%(91/105 for MW ablation. The LTP rate was 11.8% (11/93 for RF ablation and 10.5% (11/105 for MW ablation. DR was found in 51 (65.4% in the RF ablation and 62 (80.5% in the MW ablation. There was no significant difference in the 1-, 3-, and 5-year overall survival rates (P = 0.780 and the 1-, 3-, and 5-year disease-free survival rates (P = 0.123 between RF and MW ablation. At subgroup analyses, for patients with tumors ≤ 3.0 cm, there was no significant difference in the 1-, 3-, and 5-year overall survival rates (P = 0.067 and the corresponding disease-free survival rates(P = 0.849. For patients with tumor diameters of 3.1-5.0 cm, the 1-, 3-, and 5-year overall survival rates were 87.1%, 61.3%, and 40.1% for RF ablation and 85.4%, 36.6%, and 22% for MW ablation, with no significant difference (P = 0.068. The corresponding disease-free survival rates were 74.2%, 54.8%, and 45.2% for the RF ablation group and 53.3%, 26.8%, and 17.1% for the MW ablation group. The disease-free survival curve for the RF ablation group was significantly better than that for the MW ablation group (P = 0.018. RF ablation and MW ablation are both effective methods in treating hepatocellular carcinomas, with no significant differences in CA, LTP, DR, and overall survival.

  13. Heat transfer from a high temperature condensable mixture

    International Nuclear Information System (INIS)

    Chan, S.H.; Cho, D.H.; Condiff, D.W.

    1980-01-01

    Bulk condensation and heat transfer in a very hot gaseous mixture that contains a vapor component condensable at high temperature are investigated. A general formulation of the problem is presented in various forms. Analytical solutions for three specific cases involving both one- and two-component two-phase mixtures are obtained. It is shown that a detached fog formation is induced by rapid radiative cooling from the mixture. The formation of radiatively induced fog is found to be an interesting and important phenomenon as it not only exhibits unique features different from the conventional diffusion induced fog, but also greatly enhances heat transfer from the mixture to the boundary. (author)

  14. Direct quantitative comparison of molecular responses in photodamaged human skin to fractionated and fully ablative carbon dioxide laser resurfacing.

    Science.gov (United States)

    Orringer, Jeffrey S; Sachs, Dana L; Shao, Yuan; Hammerberg, Craig; Cui, Yilei; Voorhees, John J; Fisher, Gary J

    2012-10-01

    Fractionated ablative laser resurfacing has become a widely used treatment modality. Its clinical results are often found to approach those of traditional fully ablative laser resurfacing. To directly compare the molecular changes that result from fractionated and fully ablative carbon dioxide (CO(2)) laser resurfacing in photodamaged human skin. Photodamaged skin of 34 adult volunteers was focally treated at distinct sites with a fully ablative CO(2) laser and a fractionated CO(2) laser. Serial skin samples were obtained at baseline and several time points after treatment. Real-time reverse transcriptase polymerase chain reaction technology and immunohistochemistry were used to quantify molecular responses to each type of laser treatment. Fully ablative and fractionated CO(2) laser resurfacing induced significant dermal remodeling and collagen induction. After a single treatment, fractionated ablative laser resurfacing resulted in collagen induction that was approximately 40% to 50% as pronounced as that induced by fully ablative laser resurfacing. The fundamental cutaneous responses that result from fully ablative and fractionated carbon dioxide laser resurfacing are similar but differ in magnitude and duration, with the fully ablative procedure inducing relatively greater changes including more pronounced collagen induction. However, the molecular data reported here provide substantial support for fractionated ablative resurfacing as an effective treatment modality for improving skin texture. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  15. Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass

    International Nuclear Information System (INIS)

    Ma Fengxu; Yang Jianjun; Xiaonong Zhu; Liang Chunyong; Wang Hongshui

    2010-01-01

    Surface morphological evolution of Zr-based metallic glass ablated by femtosecond lasers is investigated in atmosphere condition. Three types of permanent ring structures with micro-level spacing are observed for different laser shots and fluences. In the case of low laser fluences, the generation of annular patterns with nonthermal features is observed on the rippled structure with the subwavelength scale, and the ring spacing shows a decrease tendency from the center to the margin. While in the case of high laser fluences, the concentric rings formation within the laser spot is found to have evident molten traces and display the increasing ring spacing along the radial direction. Moreover, when the laser shots accumulation becomes large, the above two types of ring microstructures begin to develop into the common ablation craters. Analysis and discussion suggests that the stress-induced condensation of ablation vapors and the frozen thermocapillary waves on the molten surfaces should be responsible for the formation of two different types of concentric ring structures, respectively. Eventually, a processing window for each resulting surface microstructure type is obtained experimentally and indicates the possibility to control the morphological transitions among different types.

  16. Successful Ablation for Atrial Tachycardia Originated from Sinus Venosa with Tachycardia-Induced Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Sou Takenaka

    2016-01-01

    Full Text Available A 74-year-old male suffering from congestive heart failure with atrial tachycardia (AT with 2 : 1 atrioventricular conduction was admitted to our hospital. After the therapy with diuretics and β-blocker, his rapid AT was still sustained. He took the catheter ablation for his AT. Postpacing interval mapping from entrainment and noncontact mapping system revealed the mechanism of his AT, originated from sinus venosa. His AT was successfully terminated and eliminated by radiofrequency catheter ablation. After the successful ablation, he has been free from any AT, and his cardiac function was also improved.

  17. Experimental and clinical studies with radiofrequency-induced thermal endometrial ablation for functional menorrhagia

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, J.H.; Lewis, B.V.; Prior, M.V.; Roberts, T. (Watford General Hospital, Herts (England))

    1990-11-01

    A method of ablating the endometrium has been introduced into clinical practice that uses radiofrequency electromagnetic energy to heat the endometrium, using a probe inserted through the cervix. Preliminary studies suggest that over 80% of patients treated will develop either amenorrhea or a significant reduction in flow. The advantages of radiofrequency endometrial ablation over laser ablation or resection are the avoidance of intravascular fluid absorption, simplicity (no special operative hysteroscopic skills are required), speed of operation, and reduced cost compared with the Nd:YAG laser. In this paper, we describe the experimental studies performed during development of this new technique.

  18. Condensers

    International Nuclear Information System (INIS)

    Andrieux, M.B.

    1984-01-01

    Characteristics of the condenser cooling waters of various French 900 MW nuclear power plants. Design and description of various types of condensers: condensers feeded directly with river water, condensers feeded by cooling towers, condensers feeded with sea water of brackish water. Presentation of the main problems encountered with the brass bundles (ammoniacal corrosion, erosion of the peripheral tubes, vibrations of the tubes), with the titanium bundles, with the tubular plates, the tubes-tubular plates assemblies, the coatings of the condenser water chamber (sea water), the vapor by-pass and with the air inlet. Analysis of the in service performances such as condensation pressure, oxygen content and availability [fr

  19. Atorvastatin can ameliorate left atrial stunning induced by radiofrequency ablation for atrial fibrillation.

    Science.gov (United States)

    Xie, Ruiqin; Yang, Yingtao; Cui, Wei; Yin, Hongning; Zheng, Hongmei; Zhang, Jidong; You, Ling

    2017-09-01

    The objective of this study was to study the functional changes of the left atrium after radiofrequency ablation treatment for atrial fibrillation and the therapeutic effect of atorvastatin. Fifty-eight patients undergoing radiofrequency ablation for atrial fibrillation were randomly divided into non-atorvastatin group and atorvastatin group. Patients in the atorvastatin group were treated with atorvastatin 20 mg p.o. per night in addition to the conventional treatment of atrial fibrillation; patients in the non-atorvastatin group received conventional treatment of atrial fibrillation only. Echocardiography was performed before radiofrequency ablation operation and 1 week, 2 weeks, 3 weeks, and 4 weeks after operation. Two-dimensional ultrasound speckle tracking imaging system was used to measure the structural indexes of the left atrium. Results indicated that there was no significant change for indexes representing the structural status of the left atrium within a month after radiofrequency ablation (P > 0.05); however, there were significant changes for indexes representing the functional status of the left atrium. There were also significant changes in indexes reflecting left atrial strain status: the S and SRs of atorvastatin group were higher than those of non-atorvastatin group (P atorvastatin could improve left atrial function and shorten the duration of atrial stunning after radiofrequency ablation of atrial fibrillation.

  20. Comparison of carbon stripper foils produced by ARC discharge and laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Ophel, T.R.; Rhode, A.; Lobanov, N.; Weisser, D.C.; Turkentine, R.; Wolf, B.; Wlliman, R.G. [Australian National Univ. Canberra, ACT (Australia). Research School of Physical Sciences and Engineering

    1998-06-01

    The present work describes a series of investigations which compared the arc-deposited foils, prepared at ANU with a batch of foils from Munich, prepared by laser-ablation. The two foil types were bombarded with a beam of 6.8 MeV of {sup 197}Au recording their behaviour and monitoring the total stripped current. Optical and electron spectroscopy was carried out and indicate that the arc-deposited foils were relatively amorphous and smooth, while the laser-ablated foils appears to be much more crystalline. It was found that the average useful lifetimes of the Munich foils were at least ten times longer than arc-deposited foils. Furthermore, they maintained a constant beam output during the time in marked contrast to the arc-deposited foils, for which the output decreased quite rapidly. The longevity, and no less importantly, the constant beam output of the laser-ablated foils have emerged as critical to the continuance of the ERDA program. More significantly though, such qualities have provoked re-examination of likely energies for heavy beams that could be obtained with the Linac booster if foil stripping were used in the 14UD terminal, rather than gas that had previously been considered the only viable option. A program is in progress to explore the means to produce laser-ablated foils, or their equivalent, locally. Extended abstract. 1 ref., 2 figs.

  1. Comparison of carbon stripper foils produced by ARC discharge and laser ablation

    International Nuclear Information System (INIS)

    Ophel, T.R.; Rhode, A.; Lobanov, N.; Weisser, D.C.; Turkentine, R.; Wolf, B.; Wlliman, R.G.

    1998-01-01

    The present work describes a series of investigations which compared the arc-deposited foils, prepared at ANU with a batch of foils from Munich, prepared by laser-ablation. The two foil types were bombarded with a beam of 6.8 MeV of 197 Au recording their behaviour and monitoring the total stripped current. Optical and electron spectroscopy was carried out and indicate that the arc-deposited foils were relatively amorphous and smooth, while the laser-ablated foils appears to be much more crystalline. It was found that the average useful lifetimes of the Munich foils were at least ten times longer than arc-deposited foils. Furthermore, they maintained a constant beam output during the time in marked contrast to the arc-deposited foils, for which the output decreased quite rapidly. The longevity, and no less importantly, the constant beam output of the laser-ablated foils have emerged as critical to the continuance of the ERDA program. More significantly though, such qualities have provoked re-examination of likely energies for heavy beams that could be obtained with the Linac booster if foil stripping were used in the 14UD terminal, rather than gas that had previously been considered the only viable option. A program is in progress to explore the means to produce laser-ablated foils, or their equivalent, locally

  2. Radiation-induced emesis in cats prevented by 24-hour prior exposure but not by ablation of the area postrema

    International Nuclear Information System (INIS)

    McCarthy, L.E.; Borison, H.L.; Douple, E.B.

    1985-01-01

    The acute emetic response induced by whole body exposure to cobalt radiation was quantified in cats at doses ranging from 1500 to 9000 rad (100 rad/min). Emesis occurred in a dose-related manner with a maximum incidence of 94% at 4500 rad (11 of 12 cats, mean latency of 98 min). At 6000 rad emesis occurred in 7 of 10 cats (mean latency of 69 min); however, a second exposure to this dose on the following day failed to induce vomiting in all of 5 cats (difference between groups significant at p = .01). After chronic ablation of the area postrema (chemoreceptor trigger zone for vomiting), 4 of 5 cats vomited in response to 4500 rad with a mean latency of 48 min. As was the case with the normal cats, all the postrema-ablated animals failed to vomit in response to a repeated dose of radiation delivered on the next day. The suppression of emesis observed on the second exposure was radiation-specific because 11 of 12 normal cats vomited appropriately in response to xylazine (0.6 mg/kg, im) during the period of refractoriness to radiation

  3. Radiofrequency thermal ablation of malignant hepatic tumors: post-ablation syndrome

    International Nuclear Information System (INIS)

    Choi, Jung Bin; Rhim, Hyunchul; Kim, Yongsoo; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Lee, Seung Ro

    2000-01-01

    To evaluate post-ablation syndrome after radiofrequency thermal ablation of malignant hepatic tumors. Forty-two patients with primary (n=3D29) or secondary (n=3D13) hepatic tumors underwent radiofrequency thermal ablation. A total of 65 nodules ranging in size from 1.1 to 5.0 (mean, 3.1) cm were treated percutaneously using a 50W RF generator with 15G expandable needle electrodes. We retrospectively evaluated the spectrum of post-ablation syndrome including pain, fever (≥3D 38 deg C), nausea, vomiting, right shoulder pain, and chest discomfort according to frequency, intensity and duration, and the findings were correlated with tumor location and number of ablations. We also evaluated changes in pre-/post-ablation serum aminotransferase (ALT/AST) and prothrombin time, and correlated these findings with the number of ablations. Post-ablation syndrome was noted in 29 of 42 patients (69.0%), and most symptoms improved with conservative treatment. The most important of these were abdominal plan (n=3D20, 47.6%), fever (n=3D8, 19.0%), and nausea (n=3D7, 16.7%), and four of 42 (9.5%) patients complained of severe pain. The abdominal pain lasted from 3 hours to 5.5 days (mean; 20.4 hours), the fever from 6 hours to 5 days (mean; 63.0 hours). And the nausea from 1 hours to 4 days (mean; 21.0 hours). Other symptoms were right shoulder pain (n=3D6, 14.3%), chest discomfort (n=3D3, 7.1%), and headache (n=3D3, 7.1%). Seventeen of 20 patients (85%) with abdominal pain had subcapsular tumor of the liver. There was significant correlation between pain, location of the tumor, and a number of ablations. After ablation, ALT/AST was elevated more than two-fold in 52.6%/73.7% of patients, respectively but there was no significant correlation with the number of ablation. Post-ablation syndrome is a frequent and tolerable post-procedural process after radiofrequency thermal ablation. The spectrum of this syndrome provides a useful guideline for the post-ablation management. (author)

  4. Controlling molecular condensation/diffusion of copper phthalocyanine by local electric field induced with scanning tunneling microscope tip

    Science.gov (United States)

    Nagaoka, Katsumi; Yaginuma, Shin; Nakayama, Tomonobu

    2018-02-01

    We have discovered the condensation/diffusion phenomena of copper phthalocyanine (CuPc) molecules controlled with a pulsed electric field induced by the scanning tunneling microscope tip. This behavior is not explained by the conventional induced dipole model. In order to understand the mechanism, we have measured the electronic structure of the molecule by tunneling spectroscopy and also performed theoretical calculations on molecular orbitals. These data clearly indicate that the molecule is positively charged owing to charge transfer to the substrate, and that hydrogen bonding exists between CuPc molecules, which makes the molecular island stable.

  5. Effects of Arsenic Trioxide on Radiofrequency Ablation of VX2 Liver Tumor: Intraarterial versus Intravenous Administration

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Nak Jong; Yoon, Chang Jin; Kang, Sung Gwon [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Chung, Jin Wook; Kim, Hyo Cheol; Park, Jae Hyung [Seoul National University Hospital, Seoul (Korea, Republic of)

    2012-03-15

    Arsenic trioxide (As{sub 2}O{sub 3}) can be used as a possible pharmaceutical alternative that augments radiofrequency (RF) ablation by reducing tumor blood flow. The aim of this study was to assess the effect of intraarterial and intravenous administration of As{sub 2}O{sub 3} on RF-induced ablation in an experimentally induced liver tumor. VX2 carcinoma was grown in the livers of 30 rabbits. As{sub 2}O{sub 3} (1 mg/kg) was administered through the hepatic artery (n = 10, group A) or ear vein (n = 10, group B), 30 minutes before RF ablation (125 mA {+-} 35; 90 {+-} 5 degrees Celsius). As a control group, 10 rabbits were treated with RF ablation alone (group C). RF was intentionally applied to the peripheral margin of the tumor so that ablation can cover the tumor and adjacent hepatic parenchyma. Ablation areas of the tumor and adjacent parenchymal changes among three groups were compared by the Kruskal-Wallis and Mann-Whitney U test. The overall ablation areas were 156 {+-} 28.9 mm{sup 2} (group A), 119 {+-} 31.7 (group B), and 92 {+-} 17.4 (group C, p < 0.04). The ablation area of the tumor was significantly larger in group A (73 {+-} 19.7 mm{sup 2}) than both group B (50 {+-} 19.4, p = 0.02) and group C (28 {+-} 2.2, p < 0.01). The ratios of the tumoral ablation area to the overall ablation area were larger in group A (47 {+-} 10.5%) than that of the other groups (42 {+-} 7.3% in group B and 32 {+-} 5.6% in group C) (p < 0.03). Radiofrequency-induced ablation area can be increased with intraarterial or intravenous administration of As{sub 2}O{sub 3}. The intraarterial administration of As{sub 2}O{sub 3} seems to be helpful for the selective ablation of the tumor.

  6. Analysis of plasma-mediated ablation in aqueous tissue

    International Nuclear Information System (INIS)

    Jiao Jian; Guo Zhixiong

    2012-01-01

    Plasma-mediated ablation using ultrafast lasers in transparent media such as aqueous tissues is studied. It is postulated that a critical seed free electron density exists due to the multiphoton ionization in order to trigger the avalanche ionization which causes ablation and during the avalanche ionization process the contribution of laser-induced photon ionization is negligible. Based on this assumption, the ablation process can be treated as two separate processes - the multiphoton and avalanche ionizations - at different time stages; so that an analytical solution to the evolution of plasma formation is obtained for the first time. The analysis is applied to plasma-mediated ablation in corneal epithelium and validated via comparison with experimental data available in the literature. The critical seed free-electron density and the time to initiate the avalanche ionization for sub-picosecond laser pulses are analyzed. It is found that the critical seed free-electron density decreases as the pulse width increases, obeying a t p -5.65 rule. This model is further extended to the estimation of crater size in the ablation of tissue-mimic polydimethylsiloxane (PDMS). The results match well with the available experimental measurements.

  7. UCP3 Ablation Exacerbates High-Salt Induced Cardiac Hypertrophy and Cardiac Dysfunction

    Directory of Open Access Journals (Sweden)

    Hongmei Lang

    2018-04-01

    Full Text Available Background/Aims: Excessive salt intake and left ventricular hypertrophy (LVH are both critical for the development of hypertension and heart failure. The uncoupling protein 3 (UCP3 plays a cardio-protective role in early heart failure development. However, the potential role for UCP3 in salt intake and LVH is unclear. Methods: UCP3-/- and C57BL/6 mice were placed on either a normal-salt (NS, 0.5% or a high-salt (HS, 8% diet for 24 weeks. The cardiac function, endurance capacity, energy expenditure, and mitochondrial functional capacity were measured in each group. Results: Elevated blood pressure was only observed in HS-fed UCP3-/- mice. High salt induced cardiac hypertrophy and dysfunction were observed in both C57BL/6 and UCP3-/- mice. However, the cardiac lesions were more profound in HS-fed UCP3-/- mice. Furthermore, HS-fed UCP3-/-mice experienced more severe mitochondrial respiratory dysfunction compared with HS-fed C57BL/6 mice, represented by the decreased volume of oxygen consumption and heat production at the whole-body level. Conclusion: UCP3 protein was involved in the incidence of high-salt induced hypertension and the progression of cardiac dysfunction in the early stages of heart failure. UCP3 ablation exacerbated high-salt-induced cardiac hypertrophy and cardiac dysfunction.

  8. Laser-ablative fabrication of nanoparticle inks for 3D inkjetprinting of multifunctional coatings

    Science.gov (United States)

    Ionin, A. A.; Ivanova, A. K.; Khmel'nitskii, R. A.; Klevkov, Yu V.; Kudryashov, S. I.; Mel'nik, N. N.; Nastulyavichus, A. A.; Rudenko, A. A.; Saraeva, I. N.; Smirnov, N. A.; Zayarny, D. A.

    2017-12-01

    We report the fabrication of multifunctional coatings via inkjet printing using water-based nanoinks in the form of selenium (Se) and gold (Au) nanoparticle (NP) colloids, prepared by laser ablation of solid targets in deionized water or 50%-isopropyl alcohol solution. Nanoparticles and NP-based coatings were deposited onto silver films, magnetronsputtered to silica-glass substrates, and characterized by means of scanning and transmission electron microscopy (SEM, TEM), UV-vis-IR, Raman and energy-dispersive X-ray spectroscopies.

  9. Laboratory experiments on the formation and recoil jet transport of aerosol by laser ablation

    Science.gov (United States)

    Hirooka, Yoshi; Tanaka, Kazuo A.; Imamura, Keisuke; Okazaki, Katsuya

    2016-05-01

    In a high-repetition rate inertial fusion reactor, the first wall will be subjected to repeated ablation along with pellet implosions, which then leads to the formation of aerosol to scatter and/or deflect laser beams for the subsequent implosion, affecting the overall reactor performance. Proposed in the present work is a method of in-situ directed transport of aerosol particles by the use of laser ablation-induced jet recoil momenta. Lithium and carbon are used as the primary ablation targets, the former of which is known to form aerosol in the form of droplet, and the latter of which tends to form carbon nanotubes. Laboratory-scale experiments have been conducted to irradiate airborne aerosol particles with high-intensity laser to produce ablation-induced jet. Data have indicated a change in aerosol flow direction, but only in the case of lithium.

  10. Fluorescent probe for turn-on sensing of L-cysteine by ensemble of AuNCs and polymer protected AuNPs.

    Science.gov (United States)

    Xu, Xiaozhe; Qiao, Juan; Li, Nan; Qi, Li; Zhang, Shufeng

    2015-06-16

    A new fluorescent probe based on ensemble of gold nanoclusters (AuNCs) and polymer protected gold nanoparticles (AuNPs) for turn-on sensing of L-cysteine was designed and prepared. The AuNCs were protected by bovine serum albumin and had strong fluorescence. The polymer protected AuNPs were synthesized by a facile in situ strategy at room temperature and could quench the fluorescence of AuNCs due to the Förster resonance energy transfer. Interestingly, it has been observed that the quenched fluorescence of AuNCs was recovered by L-cysteine, which could induce the aggregation of polymer protected AuNPs by sulfur group. Then the prepared fluorescent probe was successfully used for determination of L-Cys in human urines, which would have an evolving aspect and promote the subsequent exploration. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags.

    Science.gov (United States)

    Cruz-Alonso, María; Fernandez, Beatriz; Álvarez, Lydia; González-Iglesias, Héctor; Traub, Heike; Jakubowski, Norbert; Pereiro, Rosario

    2017-12-18

    An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma - mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. Graphical abstract Gold nanoclusters (AuNCs) conjugated to a primary specific antibody serve as a label for amplified bioimaging of metallothioneins (MTs) by laser ablation coupled to inductively coupled plasma - mass spectrometry (ICP-MS) in human ocular tissue sections.

  12. Investigation of the photoluminescence properties of Au/ZnO/sapphire and ZnO/Au/sapphire films by experimental study and electromagnetic simulation

    International Nuclear Information System (INIS)

    Zeng, Yong; Zhao, Yan; Jiang, Yijian

    2015-01-01

    Highlights: • Photoluminescent properties from Au/ZnO/sapphire and ZnO/Au/sapphire structures have been investigated. • The enhancement of UV intensity is a result of the enhanced electric field intensity of the 325 nm excitation light. • Electron transfer which induced by the local surface may be also account for the enhancement of UV emissions. • The suppression of the visible emissions might be due to the flowing of electrons in the defect states to the Au. - Abstract: Photoluminescent properties from Au/ZnO/sapphire and ZnO/Au/sapphire structures have been investigated. It is found that due to the co-interaction between the incident light and local surface plasmons, the ultraviolet (UV) emissions from the two structures were both enhanced and the visible emissions related to the defects were suppressed. By the means of electromagnetic simulation, it indicates that the enhancement of UV intensity is a result of the enhanced electric field intensity of the 325 nm excitation light, which is induced by localized surface plasmons resonance (LSPR). On the other hand, electron transfer which is induced by the local surface also account for the enhancement of UV emissions. The suppression of the visible emissions might be due to the flowing of electrons in the defect states to the Au, which caused the reduction of the electrons in the defect states

  13. Preparation of PZT thin films on YBCO electrodes by KrF excimer laser ablation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kurogi, H; Yamagata, Y; Ebihara, K [Kumamoto Univ. (Japan). Dept. of Electr. Eng. and Comput. Sci.; Inoue, N [Kyushu Electric Power Co., Inc., Suizenji, 1-6-36, Kumamoto 862 (Japan)

    1998-03-01

    Pb(Zr{sub X}Ti{sub 1-X})O{sub 3} (PZT) films have excellent ferroelectric, optical, piezoelectric, and pyroelectric properties. We prepared PZT thin films by the excimer laser ablation technique. A pulsed KrF excimer laser (Lambda Physik LPX305icc, pulse duration of 25 ns, {lambda}=248 nm, 850 mJ Max.) was used to ablate the bulk targets. We investigated the influence of bottom electrode materials on the characteristics of the PZT thin films prepared on Pt and YBCO underlayers. The X-ray diffraction (XRD) patterns showed that the PZT films prepared with a laser fluence of 2 Jcm{sup -2} on YBCO/MgO(100) substrate at a wide temperature range of 550-680 C have a perovskite (001) structure. At the same laser fluence, the PZT films prepared on Pt/MgO(100) substrate have a perovskite (001) structure only at 650 C. The polarization-electric field (P-E) characteristics and fatigue properties of PZT thin films were measured by the Sawyer-Tower circuit. The remnant polarization and coercive field have been found to be P{sub r}=15 {mu}C cm{sup -2}, 30 {mu}C cm{sup -2} and E{sub c}=200 kV cm{sup -1}, 100 kV cm{sup -1} for Au/PZT/Pt/MgO and Au/PZT/YBCO/MgO correspondingly. The remnant polarization of Au/PZT/YBCO/MgO thin film was reduced to one-half after about 10{sup 8} cycles of switching. (orig.) 7 refs.

  14. Measurement of intrahepatic pressure during radiofrequency ablation in porcine liver.

    Science.gov (United States)

    Kawamoto, Chiaki; Yamauchi, Atsushi; Baba, Yoko; Kaneko, Keiko; Yakabi, Koji

    2010-04-01

    To identify the most effective procedures to avoid increased intrahepatic pressure during radiofrequency ablation, we evaluated different ablation methods. Laparotomy was performed in 19 pigs. Intrahepatic pressure was monitored using an invasive blood pressure monitor. Radiofrequency ablation was performed as follows: single-step standard ablation; single-step at 30 W; single-step at 70 W; 4-step at 30 W; 8-step at 30 W; 8-step at 70 W; and cooled-tip. The array was fully deployed in single-step methods. In the multi-step methods, the array was gradually deployed in four or eight steps. With the cooled-tip, ablation was performed by increasing output by 10 W/min, starting at 40 W. Intrahepatic pressure was as follows: single-step standard ablation, 154.5 +/- 30.9 mmHg; single-step at 30 W, 34.2 +/- 20.0 mmHg; single-step at 70 W, 46.7 +/- 24.3 mmHg; 4-step at 30 W, 42.3 +/- 17.9 mmHg; 8-step at 30 W, 24.1 +/- 18.2 mmHg; 8-step at 70 W, 47.5 +/- 31.5 mmHg; and cooled-tip, 114.5 +/- 16.6 mmHg. The radiofrequency ablation-induced area was spherical with single-step standard ablation, 4-step at 30 W, and 8-step at 30 W. Conversely, the ablated area was irregular with single-step at 30 W, single-step at 70 W, and 8-step at 70 W. The ablation time was significantly shorter for the multi-step method than for the single-step method. Increased intrahepatic pressure could be controlled using multi-step methods. From the shapes of the ablation area, 30-W 8-step expansions appear to be most suitable for radiofrequency ablation.

  15. Comparison of wet radiofrequency ablation with dry radiofrequency ablation and radiofrequency ablation using hypertonic saline preinjection: ex vivo bovine liver

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Han, Joon Koo; Kim, Se Hyung; Lee, Jae Young; Park, Hee Sun; Hur, Hurn; Choi, Byung Ihn; Shin, Kyung Sook

    2004-01-01

    We wished to compare the in-vitro efficiency of wet radiofrequency (RF) ablation with the efficiency of dry RF ablation and RF ablation with preinjection of NaCl solutions using excised bovine liver. Radiofrequency was applied to excised bovine livers in a monopolar mode for 10 minutes using a 200 W generator and a perfused-cooled electrode with or without injection or slow infusion of NaCl solutions. After placing the perfused-cooled electrode in the explanted liver, 50 ablation zones were created with five different regimens: group A; standard dry RF ablation, group B; RF ablation with 11 mL of 5% NaCl solution preinjection, group C; RF ablation with infusion of 11 mL of 5% NaCl solution at a rate of 1 mL/min, group D; RFA with 6 mL of 36% NaCl solution preinjection, group E; RF ablation with infusion of 6 mL of 36% NaCl solution at a rate of 0.5 mL/min. In groups C and E, infusion of the NaCl solutions was started 1 min before RF ablation and then maintained during RF ablation (wet RF ablation). During RF ablation, we measured the tissue temperature at 15 mm from the electrode. The dimensions of the ablation zones and changes in impedance, current and liver temperature during RF ablation were then compared between the groups. With injection or infusion of NaCl solutions, the mean initial tissue impedance prior to RF ablation was significantly less in groups B, C, D, and E (43-75 Ω) than for group A (80 Ω) (ρ 3 in group A; 12.4 ± 3.8 cm 3 in group B; 80.9 ± 9.9 cm 3 in group C; 45.3 ± 11.3 cm 3 in group D and 81.6 ± 8.6 cm 3 in group E. The tissue temperature measured at 15 mm from the electrode was higher in groups C, D and E than other groups (ρ < 0.05): 53 ± 12 .deg. C in group A, 42 ± 2 .deg. C in group B, 93 ± 8 .deg. C in group C; 79 ± 12 .deg. C in group D and 83 ± 8 .deg.C in group E. Wet RF ablation with 5% or 36% NaCl solutions shows better efficiency in creating a large ablation zone than does dry RF ablation or RF ablation with

  16. UV and IR laser induced ablation of Al2O3/SiN:H and a-Si:H/SiN:H

    Directory of Open Access Journals (Sweden)

    Schutz-Kuchly T.

    2014-01-01

    Full Text Available Experimental work on laser induced ablation of thin Al2O3(20 nm/SiN:H (70 nm and a-Si:H (20 nm/SiN:H (70 nm stacks acting, respectively, as p-type and n-type silicon surface passivation layers is reported. Results obtained using two different laser sources are compared. The stacks are efficiently removed using a femtosecond infra-red laser (1030 nm wavelength, 300 fs pulse duration but the underlying silicon surface is highly damaged in a ripple-like pattern. This collateral effect is almost completely avoided using a nanosecond ultra-violet laser (248 nm wavelength, 50 ns pulse duration, however a-Si:H flakes and Al2O3 lace remain after ablation process.

  17. Stable Au-C bonds to the substrate for fullerene-based nanostructures

    Czech Academy of Sciences Publication Activity Database

    Chutora, Taras; López, Roso Redondo Jesús R.; De La Torre Cerdeño, Bruno; Švec, Martin; Jelínek, Pavel; Vázquez, Héctor

    2017-01-01

    Roč. 8, č. 1 (2017), s. 1073-1079 ISSN 2190-4286 R&D Projects: GA ČR GA15-19672S Institutional support: RVO:68378271 Keywords : Au-C bonds * density functional theory (DFT) * fullerenes * scanning tunneling microscopy (STM) * sputtering Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.127, year: 2016

  18. Decrease of the Curie temperature in La0.67Sr0.33MnO3 thin films induced by Au capping

    International Nuclear Information System (INIS)

    Brivio, S.; Cantoni, M.; Petti, D.; Cattoni, A.; Bertacco, R.; Finazzi, M.; Ciccacci, F.; Sidorenko, A.; Allodi, G.; Ghidini, M.; De Renzi, R.

    2007-01-01

    Ferromagnetism of La 0.67 Sr 0.33 MnO 3 is extremely sensitive to external perturbations like substrate-induced strain, charge injection and chemical interactions with neighbour layers. In this paper we discuss the perturbation induced by the presence of a metallic overlayer, typically deposited for electric contacts, in the prototypical case of the Au/La 0.67 Sr 0.33 MnO 3 interface. In particular we found a sizable decrease of the Curie temperature in thin films of La 0.67 Sr 0.33 MnO 3 after gold capping: 65 K for 5 nm thickness of the manganite. Apart from chemical reactions at the interface, charge injection-depletion induced by the difference in the work function between Au and La 0.67 Sr 0.33 MnO 3 could partially explain this phenomenon

  19. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic)], E-mail: kaiser@fme.vutbr.cz; Galiova, M.; Novotny, K.; Cervenka, R. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Reale, L. [Faculty of Sciences, University of L' Aquila, Via Vetoio (Coppito 1), 67010 L' Aquila (Italy); Novotny, J.; Liska, M.; Samek, O. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Kanicky, V.; Hrdlicka, A. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Stejskal, K.; Adam, V.; Kizek, R. [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, 613 00 Brno (Czech Republic)

    2009-01-15

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 {mu}m in a up to cm x cm area of sunflower (Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  20. Gold surfaces and nanoparticles are protected by Au(0)-thiyl species and are destroyed when Au(I)-thiolates form

    DEFF Research Database (Denmark)

    Reimers, Jeffrey R.; Ford, Michael J.; Halder, Arnab

    2016-01-01

    that it is the noble character of gold and nanoparticle surfaces that destabilizes Au(I)-thiolates. Bonding results from large van der Waals forces, influenced by covalent bonding induced through s-d hybridization and charge polarization effects that perturbatively mix in some Au(I)-thiolate character. A simple method...

  1. Drug-induced premature chromosome condensation (PCC) protocols: cytogenetic approaches in mitotic chromosome and interphase chromatin.

    Science.gov (United States)

    Gotoh, Eisuke

    2015-01-01

    Chromosome analysis is a fundamental technique which is used in wide areas of cytogenetic study including karyotyping species, hereditary diseases diagnosis, or chromosome biology study. Chromosomes are usually prepared from mitotic cells arrested by colcemid block protocol. However, obtaining mitotic chromosomes is often hampered under several circumstances. As a result, cytogenetic analysis will be sometimes difficult or even impossible in such cases. Premature chromosome condensation (PCC) (see Note 1) is an alternative method that has proved to be a unique and useful way in chromosome analysis. Former, PCC has been achieved following cell fusion method (cell-fusion PCC) mediated either by fusogenic viruses (e.g., Sendai virus) or cell fusion chemicals (e.g., polyethylene glycol), but the cell fusion PCC has several drawbacks. The novel drug-induced PCC using protein phosphatase inhibitors was introduced about 20 years ago. This method is much simpler and easier even than the conventional mitotic chromosome preparation protocol use with colcemid block and furthermore obtained PCC index (equivalent to mitotic index for metaphase chromosome) is usually much higher than colcemid block method. Moreover, this method allows the interphase chromatin to be condensed to visualize like mitotic chromosomes. Therefore drug-induced PCC has opened the way for chromosome analysis not only in metaphase chromosomes but also in interphase chromatin. The drug-induced PCC has thus proven the usefulness in cytogenetics and other cell biology fields. For this second edition version, updated modifications/changes are supplemented in Subheadings 2, 3, and 4, and a new section describing the application of PCC in chromosome science fields is added with citation of updated references.

  2. More Than Just Tumor Destruction: Immunomodulation by Thermal Ablation of Cancer

    Directory of Open Access Journals (Sweden)

    Sebastian P. Haen

    2011-01-01

    Full Text Available Over the past decades, thermoablative techniques for the therapy of localized tumors have gained importance in the treatment of patients not eligible for surgical resection. Anecdotal reports have described spontaneous distant tumor regression after thermal ablation, indicating a possible involvement of the immune system, hence an induction of antitumor immunity after thermoinduced therapy. In recent years, a growing body of evidence for modulation of both adaptive and innate immunity, as well as for the induction of danger signals through thermoablation, has emerged. Induced immune responses, however, are mostly weak and not sufficient for the complete eradication of established tumors or durable prevention of disease progression, and combination therapies with immunomodulating drugs are being evaluated with promising results. This article aims to summarize published findings on immune modulation through radiofrequency ablation, cryoablation, microwave ablation therapy, high-intensity focused ultrasound, and laser-induced thermotherapy.

  3. Condensation induced water hammer. Overview and own experiments

    International Nuclear Information System (INIS)

    Dirndorfer, Stefan; Doerfler, Michael; Kulisch, Helmut; Malcherek, Andreas

    2012-01-01

    A condensation induced water hammer is a severe effect that has caused damages and even fatalities worldwide. This effect is not limited to the nuclear industry only. Generally it can occur in every pipe that contains water and steam (two-phase-flow). To date many experiments were executed to study this phenomenon and to validate existing water hammer codes. But theoretically versus measured results show a very high degree of deviation. Information about those experiments was obtained by literature review. This information is presented additionally to a test facility, which has been developed in order to generate water hammers. The test device is introduced in this paper and its main functions are briefly explained. In contrast to other experiments, water hammers at the UniBw are performed under controlled conditions. Air in water is a disruptive parameter that causes vigorous deviations between the theoretical system code and the experimental measurements. As in the test device presented in this paper, deionised water without air is used, this effect is ruled out. Furthermore the inception of a water hammer is controlled by a scientist. The experimental results will characterise the dynamic response of the test device as a function of system pressure, filling degree and sub-cooling. (orig.)

  4. Condensation-induced water hammer - overview and own experiments

    International Nuclear Information System (INIS)

    Dirndorfer, S.; Doerfler, M.; Kulisch, H.; Malcherek, A.

    2011-01-01

    A condensation induced water hammer is a severe effect that has caused damages and even fatalities worldwide. This effect is not limited to the nuclear industry only. Generally it can occur in every pipe that contains water and steam (two-phase-flow). To date many experiments were executed to study this effect and to validate existing water hammer codes. But theoretically versus measured results show a very high degree of deviation. Information about those experiments was obtained by literature review. This information is presented additionally to a test facility, which has been developed in order to generate water hammers. The test device is introduced in this paper and its main functions are briefly explained. In contrast to other experiments, water hammers at the UniBw are performed under controlled conditions. Air in water is a disruptive parameter that causes vigorous deviations between the theoretical system code and the experimental measurements. As in the test device presented in this paper, deionised water without air is used, this effect is ruled out. Furthermore the inception of a water hammer is controlled by a scientist. The experimental results will characterise the dynamic response of the test device as a function of system pressure, filling degree and sub-cooling. (author)

  5. System size and energy dependence of jet-induced hadron pair correlation shapes in Cu+Cu and Au+Au collisions at square root sNN=200 and 62.4 GeV.

    Science.gov (United States)

    Adare, A; Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bickley, A A; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Campbell, S; Chai, J-S; Chand, P; Chang, B S; Chang, W C; Charvet, J-L; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Cussonneau, J P; Dahms, T; Das, K; David, G; Deák, F; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Dion, A; Donadelli, M; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dutta, D; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Eyser, K O; Fields, D E; Finck, C; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Forestier, B; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S-Y; Fusayasu, T; Gadrat, S; Garishvili, I; Gastineau, F; Germain, M; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Hadj Henni, A; Haegemann, C; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Han, R; Hansen, A G; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; He, X; Hidas, P; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holmes, M; Holzmann, W; Homma, K; Hong, B; Hoover, A; Horaguchi, T; Hornback, D; Hur, M G; Ichihara, T; Ikonnikov, V V; Imai, K; Inaba, M; Inoue, Y; Inuzuka, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kanou, H; Katou, K; Kawabata, T; Kawagishi, T; Kawall, D; Kazantsev, A V; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, E; Kim, G-B; Kim, H J; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Kohara, R; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kroon, P J; Kubart, J; Kuberg, C H; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y-S; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Lim, H; Liska, T; Litvinenko, A; Liu, M X; Li, X; Li, X H; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mao, Y; Martinez, G; Masek, L; Masui, H; Matathias, F; Matsumoto, T; McCain, M C; McCumber, M; McGaughey, P L; Miake, Y; Mikes, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, M; Mohanty, A K; Morreale, A; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oka, M; Omiwade, O O; Oskarsson, A; Otterlund, I; Ouchida, M; Oyama, K; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Penev, V; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pierson, A; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qualls, J M; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakata, H; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Seele, J; Seidl, R; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shevel, A; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Slunecka, M; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Toia, A; Tojo, J; Tomásek, L; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Uam, T J; Vale, C; Valle, H; vanHecke, H W; Velkovska, J; Velkovsky, M; Vertesi, R; Veszprémi, V; Vinogradov, A A; Virius, M; Volkov, M A; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Wohn, F K; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimányi, J; Zolin, L; Zong, X

    2007-06-08

    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from dijets in Cu+Cu and Au+Au collisions at square root sNN=62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from Delta phi=pi in central and semicentral collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.

  6. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry

    International Nuclear Information System (INIS)

    Koelmel, Jeremy; Leland, Thomas; Wang, Huanhua; Amarasiriwardena, Dulasiri; Xing, Baoshan

    2013-01-01

    The tissue level uptake and spatial distribution of gold nanoparticles (AuNPs) in rice (Oryza sativa L.) roots and shoots under hydroponic conditions was investigated using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Rice plants were hydroponically exposed to positively, neutrally, and negatively charged AuNPs [AuNP1(+), AuNP2(0), AuNP3(−)] with a core diameter of 2 nm. Plants were exposed to AuNPs having 1.6 mg Au/L for 5 days or 0.14 mg Au/L for 3 months to elucidate how the surface charges of the nanoparticles affects their uptake into living plant tissues. The results demonstrate that terminal functional groups greatly affected the AuNP uptake into plant tissues. Au concentration determined by LA-ICP-MS in 5 day treated rice roots followed this order: AuNP1(+) > AuNP2(0) > AuNP3(−) but this order was reversed for rice shoots, indicating preferential translocation of AuNP3(−). Bioimages revealed distributions of mesophyll and vascular AuNP dependent on organ or AuNP concentration. Highlights: ► LA-ICP-MS technique was effectively used to quantify engineered AuNP in rice plant. ► Uptake and translocation of AuNPs are evident in rice roots and shoots. ► Organ level distribution of AuNPs is affected by their surface charges. ► Bioimaging of AuNP distribution in rice tissues by LA-ICP-MS was demonstrated. -- The tissue level uptake and spatial distribution of engineered gold nanoparticles (AuNP) by rice plants was demonstrated by LA-ICP-MS bioimaging

  7. An experimental study of simultaneous ablation with dual probes in radiofrequency thermal ablation

    International Nuclear Information System (INIS)

    Jang, Il Soo; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Kim, Yong Soo; Kim, Young Sun; Heo, Jeong Nam

    2003-01-01

    To determine the differences between sequential ablation with a single probe and simultaneous ablation with dual probes. Using two 14-gauge expandable probes (nine internal prongs with 4-cm deployment), radiofrequency was applied sequentially (n=8) or simultaneously (n=8) to ten ex-vivo cow livers. Before starting ablation, two RF probes with an inter-probe space of 2 cm (n=8) or 3 cm (n=8) were inserted. In the sequential group, switching the connecting cable to an RF generator permitted ablation with the second probe just after ablation with the first probe had finished. In the simultaneous group, single ablation was performed only after connecting the shafts of both RF probes using a connection device. Each ablation lasted 7 minutes at a target temperature of 105-110 .deg. C. The size and shape of the ablated area, and total ablation time were then compared between the two groups. With 2-cm spacing, the group, mean length and overlapping width of ablated lesions were, respectively, 5.20 and 5.05 cm in the sequential group (n=4), and 5.81 and 5.65 cm in the simultaneous group (n=4). With 3-cm spacing, the corresponding figures were 4.99 and 5.60 cm in the sequential group (n=4), and 6.04 and 6.78 cm in the simultaneous group (n=4). With 2-cm spacing, the mean depth of the proximal waist was 0.58 cm in the sequential (group and 0.28 cm in the simultaneous group, while with 3-cm spacing, the corresponding figures were 1.65 and 1.48 cm. In neither group was there a distal waist. Mean total ablation time was 23.4 minutes in the sequential group and 14 minutes in the simultaneous group. In terms of ablation size and ablation time, simultaneous radiofrequency ablation with dual probes is superior to sequential ablation with a single probe. A simultaneous approach will enable an operator to overcome difficulty in probe repositioning during overlapping ablation, resulting in complete ablation with a successful safety margin

  8. Reactive Laser-induced Ablation as Approach to Titanium Oxycarbide Films

    Czech Academy of Sciences Publication Activity Database

    Jandová, Věra; Fajgar, Radek; Dytrych, Pavel; Koštejn, Martin; Dřínek, Vladislav; Kupčík, Jaroslav

    2015-01-01

    Roč. 590, SEP 1 (2015), s. 270-275 ISSN 0040-6090 Institutional support: RVO:67985858 Keywords : IR laser * reactive ablation * titanium ethoxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.761, year: 2015

  9. Low-temperature Au/a-Si wafer bonding

    International Nuclear Information System (INIS)

    Jing, Errong; Xiong, Bin; Wang, Yuelin

    2011-01-01

    The Si/SiO 2 /Ti/Au–Au/Ti/a-Si/SiO 2 /Si bonding structure, which can also be used for the bonding of non-silicon material, was investigated for the first time in this paper. The bond quality test showed that the bond yield, bond repeatability and average shear strength are higher for this bonding structure. The interfacial microstructure analysis indicated that the Au-induced crystallization of the amorphous silicon process leads to big Si grains extending across the bond interface and Au filling the other regions of the bond interface, which result into a strong and void-free bond interface. In addition, the Au-induced crystallization reaction leads to a change in the IR images of the bond interface. Therefore, the IR microscope can be used to evaluate and compare the different bond strengths qualitatively. Furthermore, in order to verify the superiority of the bonding structure, the Si/SiO 2 /Ti/Au–a-Si/SiO 2 /Si (i.e. no Ti/Au layer on the a-Si surface) and Si/SiO 2 /Ti/Au–Au/Ti/SiO 2 /Si bonding structures (i.e. Au thermocompression bonding) were also investigated. For the Si/SiO 2 /Ti/Au–a-Si/SiO 2 /Si bonding structure, the poor bond quality is due to the native oxide layer on the a-Si surface, and for the Si/SiO 2 /Ti/Au–Au/Ti/SiO 2 /Si bonding structure, the poor bond quality is caused by the wafer surface roughness which prevents intimate contact and limits the interdiffusion at the bond interface.

  10. Vortices in spin-orbit-coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Radic, J.; Sedrakyan, T. A.; Galitski, V.; Spielman, I. B.

    2011-01-01

    Realistic methods to create vortices in spin-orbit-coupled Bose-Einstein condensates are discussed. It is shown that, contrary to common intuition, rotation of the trap containing a spin-orbit condensate does not lead to an equilibrium state with static vortex structures but gives rise instead to nonequilibrium behavior described by an intrinsically time-dependent Hamiltonian. We propose here the following alternative methods to induce thermodynamically stable static vortex configurations: (i) to rotate both the lasers and the anisotropic trap and (ii) to impose a synthetic Abelian field on top of synthetic spin-orbit interactions. Effective Hamiltonians for spin-orbit condensates under such perturbations are derived for most currently known realistic laser schemes that induce synthetic spin-orbit couplings. The Gross-Pitaevskii equation is solved for several experimentally relevant regimes. The new interesting effects include spatial separation of left- and right-moving spin-orbit condensates, the appearance of unusual vortex arrangements, and parity effects in vortex nucleation where the topological excitations are predicted to appear in pairs. All these phenomena are shown to be highly nonuniversal and depend strongly on a specific laser scheme and system parameters.

  11. Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal.

    Science.gov (United States)

    Lundholm, Ida V; Rodilla, Helena; Wahlgren, Weixiao Y; Duelli, Annette; Bourenkov, Gleb; Vukusic, Josip; Friedman, Ran; Stake, Jan; Schneider, Thomas; Katona, Gergely

    2015-09-01

    Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins' function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long α-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second lifetime of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed.

  12. Observation of dynamic water microadsorption on Au surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  13. Spatial distribution of carbon species in laser ablation of graphite target

    International Nuclear Information System (INIS)

    Ikegami, T.; Ishibashi, S.; Yamagata, Y.; Ebihara, K.; Thareja, R.K.; Narayan, J.

    2001-01-01

    We report on the temporal evolution and spatial distribution of C 2 and C 3 molecules produced by KrF laser ablation of a graphite target using laser induced fluorescence imaging and optical emission spectroscopy. Spatial density profiles of C 2 were measured using two-dimensional fluorescence in various pressures of different ambient (vacuum, nitrogen, oxygen, hydrogen, helium, and argon) gases at various ablation laser fluences and ablation area. A large yield of C 2 is observed in the central part of the plume and near the target surface and its density and distribution was affected by the laser fluence and ambient gas. Fluorescent C 3 was studied in Ar gas and the yield of C 3 is enhanced at higher gas pressure and longer delay times after ablation

  14. Reduced sintering of mass-selected Au clusters on SiO2 by alloying with Ti: an aberration-corrected STEM and computational study

    DEFF Research Database (Denmark)

    Niu, Yubiao; Schlexer, Philomena; Sebök, Béla

    2018-01-01

    with a reactive metal, Ti. Mass-selected Au/Ti clusters (400 000 amu) and Au2057 clusters (405 229 amu) were produced with a magnetron sputtering, gas condensation cluster beam source in conjunction with a lateral time-of-flight mass filter, deposited onto a silica support and characterised by XPS and LEIS....... The sintering dynamics of mass-selected Au and Au/Ti alloy nanoclusters were investigated in real space and real time with atomic resolution aberration-corrected HAADF-STEM imaging, supported by model DFT calculations. A strong anchoring effect was revealed in the case of the Au/Ti clusters, because of a much...

  15. Conditioned random walks and interaction-driven condensation

    International Nuclear Information System (INIS)

    Szavits-Nossan, Juraj; Evans, Martin R; Majumdar, Satya N

    2017-01-01

    We consider a discrete-time continuous-space random walk under the constraints that the number of returns to the origin (local time) and the total area under the walk are fixed. We first compute the joint probability of an excursion having area a and returning to the origin for the first time after time τ . We then show how condensation occurs when the total area constraint is increased: an excursion containing a finite fraction of the area emerges. Finally we show how the phenomena generalises previously studied cases of condensation induced by several constraints and how it is related to interaction-driven condensation which allows us to explain the phenomenon in the framework of large deviation theory. (paper)

  16. Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria; Giangregorio, Maria M.; Bianco, Giuseppe V.; Sacchetti, Alberto; Capezzuto, Pio; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy)

    2009-10-15

    Au nanoparticles (NPs)/(n-type)a-Si:H/(p-type)c-Si heterojunctions have been deposited combining plasma-enhanced chemical-vapour deposition (PECVD) with Au sputtering. We demonstrate that a density of {proportional_to}1.3 x 10{sup 11} cm{sup -2} of Au nanoparticles with an approximately 20 nm diameter deposited onto (n-type)a-Si:H/(p-type)c-Si heterojunctions enhance performance exploiting the improved absorption of light by the surface plasmon resonance of Au NPs. In particular, Au NPs/(n-type)a-Si:H/(p-type)c-Si show an enhancement of 20% in the short-circuit current, J{sub SC}, 25% in the power output, P{sub max} and 3% in the fill factor, FF, compared to heterojunctions without Au NPs. Structures have been characterized by spectroscopic ellipsometry, atomic force microscopy and current-voltage (I-V) measurements to correlate the plasmon resonance-induced enhanced absorption of light with photovoltaic performance. (author)

  17. [Mechanism of ablation with nanosecond pulsed electric field].

    Science.gov (United States)

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  18. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, S.; Shimakura, H. [Niigata University of Pharmacy and Applied Life Sciences, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Tahara, S. [Faculty of Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213 (Japan); Okada, T. [Niigata College of Technology, Kamishin’eicho, Nishi-ku, Niigata 950-2076 (Japan)

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  19. QCD-motivated Nambu-Jona-Lasinio model with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1991-01-01

    We present a systematic study of the role of the nonperturbative gluon condensate arising in a QCD-motivated NJL model. The effects of the gluon condensate on induced meson couplings, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the change of the scale Λ of chiral symmetry breaking and of the universal four-quark coupling κ. (orig.)

  20. Preliminary condensation pool experiments with steam using DN80 and DN100 blowdown pipes

    International Nuclear Information System (INIS)

    Laine, J.; Puustinen, M.

    2004-03-01

    The report summarizes the results of the preliminary steam blowdown experiments. Altogether eight experiment series, each consisting of several steam blows, were carried out in autumn 2003 with a scaled-down condensation pool test rig designed and constructed at Lappeenranta University of Technology. The main purpose of the experiments was to evaluate the capabilities of the test rig and the needs for measurement and visualization devices. The experiments showed that a high-speed video camera is essential for visual observation due to the rapid condensation of steam bubbles. Furthermore, the maximum measurement frequency of the current combination of instrumentation and data acquisition system is inadequate for the actual steam tests in 2004. (au)

  1. Glycogen synthase kinase-3β ablation limits pancreatitis-induced acinar-to-ductal metaplasia.

    Science.gov (United States)

    Ding, Li; Liou, Geou-Yarh; Schmitt, Daniel M; Storz, Peter; Zhang, Jin-San; Billadeau, Daniel D

    2017-09-01

    Acinar-to-ductal metaplasia (ADM) is a reversible epithelial transdifferentiation process that occurs in the pancreas in response to acute inflammation. ADM can rapidly progress towards pre-malignant pancreatic intraepithelial neoplasia (PanIN) lesions in the presence of mutant KRas and ultimately pancreatic adenocarcinoma (PDAC). In the present work, we elucidate the role and related mechanism of glycogen synthase kinase-3beta (GSK-3β) in ADM development using in vitro 3D cultures and genetically engineered mouse models. We show that GSK-3β promotes TGF-α-induced ADM in 3D cultured primary acinar cells, whereas deletion of GSK-3β attenuates caerulein-induced ADM formation and PanIN progression in Kras G12D transgenic mice. Furthermore, we demonstrate that GSK-3β ablation influences ADM formation and PanIN progression by suppressing oncogenic KRas-driven cell proliferation. Mechanistically, we show that GSK-3β regulates proliferation by increasing the activation of S6 kinase. Taken together, these results indicate that GSK-3β participates in early pancreatitis-induced ADM and thus could be a target for the treatment of chronic pancreatitis and the prevention of PDAC progression. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. Quantum tunneling time of a Bose-Einstein condensate traversing through a laser-induced potential barrier

    International Nuclear Information System (INIS)

    Duan Zhenglu; Fan Bixuan; Yuan Chunhua; Zhang Weiping; Cheng Jing; Zhu Shiyao

    2010-01-01

    We theoretically study the effect of atomic nonlinearity on the tunneling time in the case of an atomic Bose-Einstein condensate (BEC) traversing the laser-induced potential barrier. The atomic nonlinearity is controlled to appear only in the region of the barrier by employing the Feshbach resonance technique to tune interatomic interaction in the tunneling process. Numerical simulation shows that the atomic nonlinear effect dramatically changes the tunneling behavior of the BEC matter wave packet and results in the violation of the Hartman effect and the occurrence of negative tunneling time.

  3. Condensation phenomena in BWR-pressure suppression containments under LOCA conditions

    International Nuclear Information System (INIS)

    Aust, E.; McCauley, E.W.; Niemann, H.R.

    1983-01-01

    Experimental studies on condensation phenomena in pressure suppression systems (PSS) have shown, that chugging produces the major dynamic loads in a PSS. Time correlation of digital and visual data have produced understanding of the essential physics of this phenomenon: chugging events are characterized by pipe outside and pipe inside condensation. Pipe outside condensation is smooth, sometimes accompanied by vent pipe acoustic frequency. Pipe inside condensation is ring-like and induces a strong pressure pulse with ringdown frequency. The steam ring is caused by the retreating steam front in the pipe exit, which acts as a BORDA-mouth. (orig.) [de

  4. Stability and decay rates of nonisotropic attractive Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Huepe, C.; Tuckerman, L. S.; Metens, S.; Brachet, M. E.

    2003-01-01

    Nonisotropic attractive Bose-Einstein condensates are investigated numerically with Newton and inverse Arnoldi methods. The stationary solutions of the Gross-Pitaevskii equation and their linear stability are computed. Bifurcation diagrams are calculated and used to find the condensate decay rates corresponding to macroscopic quantum tunneling, two-three-body inelastic collisions, and thermally induced collapse. Isotropic and nonisotropic condensates are compared. The effect of anisotropy on the bifurcation diagram and the decay rates is discussed. Spontaneous isotropization of the condensates is found to occur. The influence of isotropization on the decay rates is characterized near the critical point

  5. Photomechanical ablation of biological tissue induced by focused femtosecond laser and its application for acupuncture

    Science.gov (United States)

    Hosokawa, Yoichiroh; Ohta, Mika; Ito, Akihiko; Takaoka, Yutaka

    2013-03-01

    Photomechanical laser ablation due to focused femtosecond laser irradiation was induced on the hind legs of living mice, and its clinical influence on muscle cell proliferation was investigated via histological examination and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to examine the expression of the gene encoding myostatin, which is a growth repressor in muscle satellite cells. The histological examination suggested that damage of the tissue due to the femtosecond laser irradiation was localized on epidermis and dermis and hardly induced in the muscle tissue below. On the other hand, gene expression of the myostatin of muscle tissue after laser irradiation was suppressed. The suppression of myostatin expression facilitates the proliferation of muscle cells, because myostatin is a growth repressor in muscle satellite cells. On the basis of these results, we recognize the potential of the femtosecond laser as a tool for noncontact, high-throughput acupuncture in the treatment of muscle disease.

  6. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation.

    Science.gov (United States)

    Kwon, Ronald Y; Meays, Diana R; Meilan, Alexander S; Jones, Jeremiah; Miramontes, Rosa; Kardos, Natalie; Yeh, Jiunn-Chern; Frangos, John A

    2012-01-01

    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading

  7. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation.

    Directory of Open Access Journals (Sweden)

    Ronald Y Kwon

    Full Text Available Interstitial fluid flow (IFF is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of

  8. Radiofrequency Ablation of Lung Tumors

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Radiofrequency Ablation (RFA) / Microwave Ablation (MWA) of Lung Tumors ... and Microwave Ablation of Lung Tumors? What are Radiofrequency and Microwave Ablation of Lung Tumors? Radiofrequency ablation, ...

  9. Femtosecond laser ablation of bovine cortical bone

    Science.gov (United States)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  10. Field induced magnetic phase transition as a magnon Bose Einstein condensation

    Directory of Open Access Journals (Sweden)

    Teodora Radu et al

    2007-01-01

    Full Text Available We report specific heat, magnetocaloric effect and magnetization measurements on single crystals of the frustrated quasi-2D spin -½ antiferromagnet Cs2CuCl4 in the external magnetic field 0≤B≤12 T along a-axis and in the temperature range 0.03 K≤T≤6 K. Decreasing the applied magnetic field B from high fields leads to the closure of the field induced gap in the magnon spectrum at a critical field Bcsimeq8.44 T and a long-range incommensurate state below Bc. In the vicinity of Bc, the phase transition boundary is well described by the power law TN~(Bc-B1/phi with the measured critical exponent phisimeq1.5. These findings provide experimental evidence that the scaling law of the transition temperature TN can be described by the universality class of 3D Bose–Einstein condensation (BEC of magnons.

  11. Mechanism of laser ablation for aqueous media irradiated under confined-stress conditions

    International Nuclear Information System (INIS)

    Oraevsky, A.A.; Jacques, S.L.; Tittel, F.K.

    1995-01-01

    Pulsed laser ablation of aqueous medium irradiated under conditions of temporal confinement of thermal stress is described. Time-resolved measurements of laser-induced transient stress waves with simultaneous imaging of ablation process by laser-flash photography were performed. Stress transients induced in aqueous solution of K 2 CrO 4 by ablative nanosecond laser pulses at 355 nm were studied by a broad-band lithium niobate acoustic transducer. Recoil momentum upon material ejection was measured from the temporal profiles of the acoustic transducer signal as a function of incident laser fluence. Cavitation bubbles produced in the irradiated volume during the tensile phase of thermoelastic stress were shown to drive material ejection at temperatures substantially below 100 degree C. Experimental data are evident that nanosecond-pulse laser ablation of aqueous media (when temporal stress-confinement conditions are satisfied) include the following two main stages of material ejection: (1) ejection of water microdroplets due to expansion and rupture of subsurface cavitation bubbles; (2) ejection of liquid streams with substantial volume upon collapse of initial crater and large cavitation bubbles in the depth of irradiated volume (after coalescence of smaller bubbles). copyright 1995 American Institute of Physics

  12. Considering Angle Selection When Using Ultrasound Electrode Displacement Elastography to Evaluate Radiofrequency Ablation of Tissues

    Science.gov (United States)

    Li, Qiang; Chen, Pin-Yu; Wang, Chiao-Yin; Liu, Hao-Li; Teng, Jianfu

    2014-01-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive treatment to thermally destroy tumors. Ultrasound-based electrode-displacement elastography is an emerging technique for evaluating the region of RFA-induced lesions. The angle between the imaging probe and the RFA electrode can influence electrode-displacement elastography when visualizing the ablation zone. We explored the angle effect on electrode-displacement elastography to measure the ablation zone. Phantoms embedded with meatballs were fabricated and then ablated using an RFA system to simulate RFA-induced lesions. For each phantom, a commercial ultrasound scanner with a 7.5 MHz linear probe was used to acquire raw image data at different angles, ranging from 30° to 90° at increments of 10°, to construct electrode-displacement images and facilitate comparisons with tissue section images. The results revealed that the ablation regions detected using electrode-displacement elastography were highly correlated with those from tissue section images when the angle was between 30° and 60°. However, the boundaries of lesions were difficult to distinguish, when the angle was larger than 60°. The experimental findings suggest that angle selection should be considered to achieve reliable electrode-displacement elastography to describe ablation zones. PMID:24971347

  13. CFD simulation on condensation inside a Hybrid SIT

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byong Guk; Ryu, Sung Uk; Kim, Seok; Euh, Dong Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The concept of Hybrid Safety Injection Tank system (Hybrid SIT) was proposed by Korea Atomic Energy Research Institute (KAERI) aiming at Advanced Power Reactor Plus. The main advantage of the system is the ready injection of coolant into the reactor coolant system at high pressure. In this paper, a CFD simulation is conducted as a preliminary study. In Hybrid SITs, condensation inside the tank affects its pressure rise and injection time. In an attempt to explore the condensation in detail, we manufactured a dedicated experimental facility for visualization of condensation-induced thermal mixing and conducted a preliminary CFD simulation. Its condensation models were validated first and then computational domain was constructed. The water region was modeled as a solid for stable calculation. The CFD results gave less condensation and excessive pressurization because of lack of steam penetration into the water. In the future, the water region will be modeled as liquid using a VOF model.

  14. Spin polarized semimagnetic exciton-polariton condensate in magnetic field.

    Science.gov (United States)

    Król, Mateusz; Mirek, Rafał; Lekenta, Katarzyna; Rousset, Jean-Guy; Stephan, Daniel; Nawrocki, Michał; Matuszewski, Michał; Szczytko, Jacek; Pacuski, Wojciech; Piętka, Barbara

    2018-04-27

    Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relatively small Zeeman effect of standard semiconductor microcavity systems and the strong tendency to sustain an equal population of two spin components, which precludes the observation of condensates with a well defined spin projection along the axis of the system. The enhancement of the Zeeman splitting can be achieved by introducing magnetic ions to the quantum wells, and consequently forming semimagnetic polaritons. In this system, increasing magnetic field can induce polariton condensation at constant excitation power. Here we evidence the spin polarization of a semimagnetic polaritons condensate exhibiting a circularly polarized emission over 95% even in a moderate magnetic field of about 3 T. Furthermore, we show that unlike nonmagnetic polaritons, an increase on excitation power results in an increase of the semimagnetic polaritons condensate spin polarization. These properties open new possibilities for testing theoretically predicted phenomena of spin polarized condensate.

  15. Laser ablation for the synthesis of carbon nanotubes

    Science.gov (United States)

    Holloway, Brian C.; Eklund, Peter C.; Smith, Michael W.; Jordan, Kevin C.; Shinn, Michelle

    2010-04-06

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  16. Laser ablation for the synthesis of carbon nanotubes

    Science.gov (United States)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2012-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  17. SYNTHESIS OF 2,6-DIAMINOPYRIDINE-4-NITROPHENOL (2,6DAP4N COCRYSTAL NANOPARTICLES BY LASER ABLATION METHOD

    Directory of Open Access Journals (Sweden)

    N. A. Zulina

    2015-11-01

    Full Text Available We propose findings for laser ablation of organic materials in liquids as one of the perspective methods of nanoparticles synthesis on their basis. We describe nanoparticles synthesis for 2,6-diaminopyridine-4-nitrophenol (2,6DAP4N cocrystal by the method of material laser ablation at nanoparticles condensation in liquid (dodecane and polyphenyleneoxide. Laser radiation with wavelength equal to 355 nm, pulse duration - 10 ns, pulse repetition rate - 3.8 kHz, and pulse power density equal to 170 kW/cm2 has been used in the study. Nanoparticles in the form of colloids have been obtained and studied by visible range spectroscopy and optical microscopy. Obtained particles size is around 0.5 μm.

  18. Bimodal Nanoparticle Size Distributions Produced by Laser Ablation of Microparticles in Aerosols

    International Nuclear Information System (INIS)

    Nichols, William T.; Malyavanatham, Gokul; Henneke, Dale E.; O'Brien, Daniel T.; Becker, Michael F.; Keto, John W.

    2002-01-01

    Silver nanoparticles were produced by laser ablation of a continuously flowing aerosol of microparticles in nitrogen at varying laser fluences. Transmission electron micrographs were analyzed to determine the effect of laser fluence on the nanoparticle size distribution. These distributions exhibited bimodality with a large number of particles in a mode at small sizes (3-6-nm) and a second, less populated mode at larger sizes (11-16-nm). Both modes shifted to larger sizes with increasing laser fluence, with the small size mode shifting by 35% and the larger size mode by 25% over a fluence range of 0.3-4.2-J/cm 2 . Size histograms for each mode were found to be well represented by log-normal distributions. The distribution of mass displayed a striking shift from the large to the small size mode with increasing laser fluence. These results are discussed in terms of a model of nanoparticle formation from two distinct laser-solid interactions. Initially, laser vaporization of material from the surface leads to condensation of nanoparticles in the ambient gas. Material evaporation occurs until the plasma breakdown threshold of the microparticles is reached, generating a shock wave that propagates through the remaining material. Rapid condensation of the vapor in the low-pressure region occurs behind the traveling shock wave. Measurement of particle size distributions versus gas pressure in the ablation region, as well as, versus microparticle feedstock size confirmed the assignment of the larger size mode to surface-vaporization and the smaller size mode to shock-formed nanoparticles

  19. Does Artificial Ascites Induce the Heat-Sink Phenomenon during Percutaneous Radiofrequency Ablation of the Hepatic Subcapsular Area?: an in vivo Experimental Study Using a Rabbit Model

    International Nuclear Information System (INIS)

    Kim, Young Sun; Rhim, Hyun Chul; Choi, Dong Il; Lim, Hyo K.

    2009-01-01

    To evaluate the effect of the heat-sink phenomenon induced by artificial ascites on the size of the ablation zone during percutaneous radiofrequency (RF) ablation of the hepatic subcapsular area in an in vivo rabbit model. A total of 21 percutaneous rabbit liver RF ablations were performed with and without artificial ascites (5% dextrose aqueous solution). The rabbits were divided into three groups: a) control group (C, n = 7); b) room temperature ascites group (R, n = 7); and c) warmed ascites group (W, n = 7). The tip of a 1 cm, internally cooled electrode was placed on the subcapsular region of the hepatic dome via ultrasound guidance, and ablation was continued for 6 min. Changes in temperature of the ascites were monitored during the ablation. The size of the ablation zones of the excised livers and immediate complications rates were compared statistically between the groups (Mann-Whitney U test, Kruskal-Wallis test, linear-by-linear association, p = 0.05). One rabbit from the 'W' group expired during the procedure. In all groups, the ascites temperatures approached their respective body temperatures as the ablations continued; however, a significant difference in ascites temperature was found between groups 'W' and 'R' throughout the procedures (39.2± 0.4 .deg. C in group W and 33.4±4.3 .deg. C in group R at 6 min, p = 0.003). No significant difference was found between the size of the ablation zones (782.4±237.3 mL in group C, 1,172.0±468.9 mL in group R, and 1,030.6±665.1 mL in group W, p = 0.170) for the excised liver specimens. Diaphragmatic injury was identified in three of seven cases (42.9%) upon visual inspection of group 'C' rabbits (p = 0.030). Artificial ascites are not likely to cause a significant heat-sink phenomenon in the percutaneous RF ablation of the hepatic subcapsular region

  20. Does artificial ascites induce the heat-sink phenomenon during percutaneous radiofrequency ablation of the hepatic subcapsular area?: an in vivo experimental study using a rabbit model.

    Science.gov (United States)

    Kim, Young Sun; Rhim, Hyunchul; Choi, Dongil; Lim, Hyo K

    2009-01-01

    To evaluate the effect of the heat-sink phenomenon induced by artificial ascites on the size of the ablation zone during percutaneous radiofrequency (RF) ablation of the hepatic subcapsular area in an in vivo rabbit model. A total of 21 percutaneous rabbit liver RF ablations were performed with and without artificial ascites (5% dextrose aqueous solution). The rabbits were divided into three groups: a) control group (C, n = 7); b) room temperature ascites group (R, n = 7); and c) warmed ascites group (W, n = 7). The tip of a 1 cm, internally cooled electrode was placed on the subcapsular region of the hepatic dome via ultrasound guidance, and ablation was continued for 6 min. Changes in temperature of the ascites were monitored during the ablation. The size of the ablation zones of the excised livers and immediate complications rates were compared statistically between the groups (Mann-Whitney U test, Kruskal-Wallis test, linear-by-linear association, p = 0.05). One rabbit from the "W" group expired during the procedure. In all groups, the ascites temperatures approached their respective body temperatures as the ablations continued; however, a significant difference in ascites temperature was found between groups "W" and "R" throughout the procedures (39.2+/-0.4 degrees C in group W and 33.4+/-4.3 degrees C in group R at 6 min, p = 0.003). No significant difference was found between the size of the ablation zones (782.4+/-237.3 mL in group C, 1,172.0+/-468.9 mL in group R, and 1,030.6+/-665.1 mL in group W, p = 0.170) for the excised liver specimens. Diaphragmatic injury was identified in three of seven cases (42.9%) upon visual inspection of group "C" rabbits (p = 0.030). Artificial ascites are not likely to cause a significant heat-sink phenomenon in the percutaneous RF ablation of the hepatic subcapsular region.

  1. An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shi-zhen, E-mail: xusz@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yao, Cai-zhen [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Dou, Hong-qiang [Department of Material Science and Engineering, Sichuan Engineering Technical College, Deyang 618000 (China); Liao, Wei, E-mail: liaowei@caep.cn [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Xiao-yang; Ding, Ren-jie [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhang, Li-juan; Liu, Hao; Yuan, Xiao-dong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zu, Xiao-tao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2017-06-01

    Highlights: • The fs laser ablation of borosilicate glass (K9) were investigated under 35 and 500 fs pulses. • At high fluence regime, the ablation rate at 35 fs in air increased to a plateau, and 500 fs in air and vacuum decreased. • The mechanisms of multiple-photon ionization and impact ionization were included. • The ablation morphologies of smooth zone and laser-induced periodic surface structures were presented and illustrated. • The ablation mechanisms of non-thermal and thermal ablation were included. - Abstract: Ablation rates of K9 glass were studied as a function of femtosecond laser fluences. The central wavelength was 800 nm, and pulse durations of 35 fs and 500 fs in air and vacuum were employed. Ablation thresholds of 0.42 J/cm{sup 2} and 2.1 J/cm{sup 2} were obtained at 35 fs and 500 fs, respectively, which were independent with the ambient conditions and depend on the incident pulse numbers due to incubation effects. The ablation rate of 35 fs pulse laser increased with the increasing of laser fluence in vacuum, while in air condition, it slowly increased to a plateau at high fluence. The ablation rate of 500 fs pulse laser showed an increase at low fluence and a slow drop of ablation rate was observed at high fluence in air and vacuum, which may due to the strong defocusing effects associated with the non-equilibrium ionization of air, and/or the shielding effects of conduction band electrons (CBEs) produced by multi-photon ionization and impact ionization in K9 glass surface. The typical ablation morphologies, e.g. smooth zone and laser-induced periodic surface structures (LIPSS) were also presented and illustrated.

  2. QCD-motivated Nambu-Jona-Lasinio model with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1991-01-01

    A systematic study of the role of the nonperturbative gluon condensate arising in a QCD-motivated Nambu-Jona-Lasinio model is presented. The effects of the gluon condensate on induced meson couplings, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the change of the scale Λ of chiral symmetry breaking and of the universal four-quark coupling constant κ. 20 refs

  3. Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose—Einstein Condensates

    International Nuclear Information System (INIS)

    Duan Ya-Fan; Xu Zhen; Qian Jun; Sun Jian-Fang; Jiang Bo-Nan; Hong Tao

    2011-01-01

    We numerically analyze the dynamic behavior of Bose—Einstein condensate (BEC) in a one-dimensional disordered potential before it completely loses spatial quantum coherence. We find that both the disorder statistics and the atom interactions produce remarkable effects on localization. We also find that the single phase of the initial condensate is broken into many small pieces while the system approaches localization, showing a counter-intuitive step-wise phase but not a thoroughly randomized phase. Although the condensates as a whole show less flow and expansion, the currents between adjacent phase steps retain strong time dependence. Thus we show explicitly that the localization of a finite size Bose—Einstein condensate is a dynamic equilibrium state. (general)

  4. Harvesting liquid from unsaturated vapor - nanoflows induced by capillary condensation

    Science.gov (United States)

    Vincent, Olivier; Marguet, Bastien; Stroock, Abraham

    2016-11-01

    A vapor, even subsaturated, can spontaneously form liquid in nanoscale spaces. This process, known as capillary condensation, plays a fundamental role in various contexts, such as the formation of clouds or the dynamics of hydrocarbons in the geological subsurface. However, large uncertainties remain on the thermodynamics and fluid mechanics of the phenomenon, due to experimental challenges as well as outstanding questions about the validity of macroscale physics at the nanometer scale. We studied experimentally the spatio-temporal dynamics of water condensation in a model nanoporous medium (pore radius 2 nm), taking advantage of the color change of the material upon hydration. We found that at low relative humidities ( 60 % RH, driven by a balance between the pore capillary pressure and the condensation stress given by Kelvin equation. Further analyzing the imbibition dynamics as a function of saturation allowed us to extract detailed information about the physics of nano-confined fluids. Our results suggest excellent extension of macroscale fluid dynamics and thermodynamics even in pores 10 molecules in diameter.

  5. Nanoparticle mediated ablation of breast cancer cells using a nanosecond pulsed electric field

    Science.gov (United States)

    Burford, Christopher

    In the past, both nanomaterials and various heating modalities have been researched as means for treating cancers. However, many of the current methodologies have the flaws of inconsistent tumor ablation and significant destruction of healthy cells. Based on research performed using constant radiofrequency electric fields and metallic nanoparticles (where cell necrosis is induced by the heating of these nanoparticles) we have developed a modality that simlarly uses functionalized metallic nanoparticles, specific for the T47D breast cancer cell line, and nanosecond pulsed electric fields as the hyperthermic inducer. Using both iron oxide and gold nanoparticles the results of our pilot studies indicated that up to 90% of the cancer cells were ablated given the optimal treatment parameters. These quantities of ablated cells were achieved using a cumulative exposure time 6 orders of magnitude less than most in vitro radiofrequency electric field studies.

  6. Effects of Arsenic Trioxide on Radiofrequency Ablation of VX2 Liver Tumor: Intraarterial versus Intravenous Administration

    International Nuclear Information System (INIS)

    Seong, Nak Jong; Yoon, Chang Jin; Kang, Sung Gwon; Chung, Jin Wook; Kim, Hyo Cheol; Park, Jae Hyung

    2012-01-01

    Arsenic trioxide (As 2 O 3 ) can be used as a possible pharmaceutical alternative that augments radiofrequency (RF) ablation by reducing tumor blood flow. The aim of this study was to assess the effect of intraarterial and intravenous administration of As 2 O 3 on RF-induced ablation in an experimentally induced liver tumor. VX2 carcinoma was grown in the livers of 30 rabbits. As 2 O 3 (1 mg/kg) was administered through the hepatic artery (n = 10, group A) or ear vein (n = 10, group B), 30 minutes before RF ablation (125 mA ± 35; 90 ± 5 degrees Celsius). As a control group, 10 rabbits were treated with RF ablation alone (group C). RF was intentionally applied to the peripheral margin of the tumor so that ablation can cover the tumor and adjacent hepatic parenchyma. Ablation areas of the tumor and adjacent parenchymal changes among three groups were compared by the Kruskal-Wallis and Mann-Whitney U test. The overall ablation areas were 156 ± 28.9 mm 2 (group A), 119 ± 31.7 (group B), and 92 ± 17.4 (group C, p 2 ) than both group B (50 ± 19.4, p = 0.02) and group C (28 ± 2.2, p 2 O 3 . The intraarterial administration of As 2 O 3 seems to be helpful for the selective ablation of the tumor.

  7. Computational models to determine fluid dynamical transients due to condensation induced water hammer (CIWH)

    International Nuclear Information System (INIS)

    Swidersky, H.; Schaffrath, A.; Dudlik, A.

    2011-01-01

    Condensation induced water hammer (CIWH) represent a dangerous phenomenon in pipings, which can endanger the pipe integrity. If they cannot be excluded, they have to be taken into account for the integrity proof of components and pipe structures. Up to now, there exists no substantiated model, which sufficiently determines loads due to CIWH. Within the framework of the research alliance CIWA, a tool for estimating the potential and the amount of pressure loads will be developed based on theoretical work and supported by experimental results. This first study discusses used computational models, compares their results against experimental observations and gives an outlook onto future techniques. (author)

  8. Spectroscopic and shadowgraphic analysis of laser induced plasmas in the orthogonal double pulse pre-ablation configuration

    International Nuclear Information System (INIS)

    Cristoforetti, G.; Legnaioli, S.; Pardini, L.; Palleschi, V.; Salvetti, A.; Tognoni, E.

    2006-01-01

    This work focuses on the study of the plumes obtained in the double pulse orthogonal Laser Induced Breakdown Spectroscopy (LIBS) in the pre-ablation configuration using both spectroscopic and shadowgraphic approaches. Single and double pulse LIBS experiments were carried out on a brass sample in air. Both the distance of the air plasma from the target surface and the interpulse delay were varied (respectively in the range 0.1-4.2 mm and up to 50 μs) revealing a significant variation of the plasma emission and of the plume-shock wave dynamical expansion in different cases. The intensity of both atomic and ionized zinc lines was measured in all the cases, allowing the calculation of the spatially averaged temperature and electron density and an estimation of the ablated mass. The line intensities and the thermodynamic parameters obtained by the spectroscopic measurements were discussed bearing in mind the dynamical expansion characteristics obtained from the shadowgraphic approach. All the data seem to be consistent with the model previously proposed for the double pulse collinear configuration where the line enhancement is mainly attributed to the ambient gas rarefaction produced by the first laser pulse, which causes a less effective shielding of the second laser pulse

  9. Interaction of a Bose–Einstein condensate and a superconductor via eddy currents

    International Nuclear Information System (INIS)

    Sapina, Igor; Dahm, Thomas

    2013-01-01

    We study center-of-mass oscillations of a dipolar Bose–Einstein condensate in the vicinity of a superconducting surface. We show that the magnetic field of the magnetic dipoles induces eddy currents in the superconductor, which act back on the Bose–Einstein condensate. This leads to a shift of its oscillation frequency and to an anharmonic coupling of the Bose–Einstein condensate with the superconductor. The anharmonicity creates a coupling to one of the collective modes of the condensate that can be resonantly enhanced if the parameters of the condensate are chosen properly. This provides a new physical mechanism to couple a Bose–Einstein condensate and a superconductor, which becomes significant for 52 Cr, 168 Er or 164 Dy condensates in superconducting microtraps. (paper)

  10. 120 MeV Ag ion induced effects in Au/HfO2/Si MOSCAPs

    Science.gov (United States)

    Manikanthababu, N.; Prajna, K.; Pathak, A. P.; Rao, S. V. S. Nageswara

    2018-05-01

    HfO2/Si thinfilms were deposited by RF sputtering technique. 120 MeV Ag ion irradiation has been used to study the electrical properties of Au/HfO2/Si MOSCAPs. SHI (120 MeV Ag) induced annealing, defects creation and intermixing effects on the electrical properties of these systems have been studied. Here, we have observed that the high electronic excitation can cause a significant reduction of leakage currents in these MOSCAP devices. Various quantum mechanical tunneling phenomenon has been observed from the I-V characteristics.

  11. Effect of ablatant composition on the ablation of a fuelling pellet

    International Nuclear Information System (INIS)

    Chang, C.T.; Thomsen, K.; Piret, S.

    1988-01-01

    The single species neutral-shielding model for the ablation of a hydrogenic pellet is extended by considering the ablatant as a mixture of four species: molecular and atomic hydrogen, protons and electrons. Compared with the results of the frozen flow, (i.e. the single species molecular hydrogen gas model), results of the analysis showed that the presence of dissociation and ionization effects caused a marked difference of the ablatant state. The attenuations of the incoming electron energy and energy flux, however, are very much similar irrespective of whether the ablated flow is in a frozen or an equilibrium state. The scaling law of the pellet ablation rate with respect to the plasma state of Te, ne and the pellet radius remains the same; the ablation rate is reduced by approximately 15%. To examine the possible existence of a spherical shell around the pellet where most of the incoming electron energy is absorbed, acodmparison is made between the local electron collisional mean free path and the electron Larmor radius. A critical field at the ionization radius is evaluated. An effective spherical energyabsorbing region exists when the local field strength is below the critical value. For a plasma state of low Te and ne, (where the ablatant is hardly ionized), and for one near the thermonuclear condition (where a highly dense ablatant exists near the pellet), the effective energy absorption region is nearly spherical. 20 refs. (author)

  12. Nucleation and condensation in the primitive solar nebula

    International Nuclear Information System (INIS)

    Cameron, A.G.W.; Fegley, M.B.

    1982-01-01

    It is pointed out that the primitive solar nebula may be modeled using the frictionally induced transport theory of Lynden-Bell and Pringle (1974) if the principal frictional mechanism within the nebula is turbulent viscosity. The present investigation is concerned with the construction of a model of a section of the primitive solar nebula as a basis for the study of nucleation and condensation processes within this section. The construction involves a relatively simple application of the Lynden-Bell and Pringle theory subject to steady mass flow conditions. The calculations which are conducted in connection with the investigation indicate that by the time the gas in the primitive solar nebula has become sufficiently supercooled to nucleate condensation centers, several different compounds, including the magnesium silicates forsterite and enstatite (MgSiO 3 ), will probably be able to condense on the growing condensation center

  13. 130 MeV Au ion irradiation induced dewetting on In2Te3 thin film

    International Nuclear Information System (INIS)

    Matheswaran, P.; Abhirami, K.M.; Gokul, B.; Sathyamoorthy, R.; Prakash, Jai; Asokan, K.; Kanjilal, D.

    2012-01-01

    Highlights: ► In 2 Te 3 phase formed from In/Te bilayer by 130 MeV Au ion irradiation. ► Lower fluence results mixed phases with initial state of dewetting. ► At higher fluence, In 2 Te 3 phase with complete dewetting pattern is formed. ► Thermal spike model is used to explain the inter face mixing phenomena. ► SHI irradiation may be used to functionalize the structural and surface properties of thin films. - Abstract: In/Te bilayer thin films were prepared by sequential thermal evaporation and subsequently irradiated by 130 MeV Au ions. The pristine and irradiated samples were characterized by X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) techniques. RBS spectra reveal the sputtering of Te film and interface mixing, with increasing fluence. The surface morphology showed the beginning of dewetting of Te thin film and formation of the partially connected with the mixed zones at the fluence of 1 × 10 13 ions/cm 2 . At the higher fluence of 3 × 10 13 ions/cm 2 , dewetted structures were isolated at the surface. Above results are explained based on the formation of craters, sputtering and dewetting followed by inter-diffusion at the interface of molten zones due to thermal spike induced by Au ions.

  14. Ablation of the Ferroptosis Inhibitor Glutathione Peroxidase 4 in Neurons Results in Rapid Motor Neuron Degeneration and Paralysis.

    Science.gov (United States)

    Chen, Liuji; Hambright, William Sealy; Na, Ren; Ran, Qitao

    2015-11-20

    Glutathione peroxidase 4 (GPX4), an antioxidant defense enzyme active in repairing oxidative damage to lipids, is a key inhibitor of ferroptosis, a non-apoptotic form of cell death involving lipid reactive oxygen species. Here we show that GPX4 is essential for motor neuron health and survival in vivo. Conditional ablation of Gpx4 in neurons of adult mice resulted in rapid onset and progression of paralysis and death. Pathological inspection revealed that the paralyzed mice had a dramatic degeneration of motor neurons in the spinal cord but had no overt neuron degeneration in the cerebral cortex. Consistent with the role of GPX4 as a ferroptosis inhibitor, spinal motor neuron degeneration induced by Gpx4 ablation exhibited features of ferroptosis, including no caspase-3 activation, no TUNEL staining, activation of ERKs, and elevated spinal inflammation. Supplementation with vitamin E, another inhibitor of ferroptosis, delayed the onset of paralysis and death induced by Gpx4 ablation. Also, lipid peroxidation and mitochondrial dysfunction appeared to be involved in ferroptosis of motor neurons induced by Gpx4 ablation. Taken together, the dramatic motor neuron degeneration and paralysis induced by Gpx4 ablation suggest that ferroptosis inhibition by GPX4 is essential for motor neuron health and survival in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Experimental and theoretical study of steam condensation induced water hammer phenomena

    International Nuclear Information System (INIS)

    Barna, Imre Ferenc; Baranyai, Gabor; Ezsoel, Gyoergy

    2009-01-01

    We investigate steam condensation induced water hammer (waha) phenomena and present experimental and theoretical results. Some of the experiments were performed in the PMK-2 facility, which is a full-pressure thermohydraulic model of the nuclear power plant of VVER-440/312 type and located in the Atomic Energy Research Institute Budapest, Hungary. Other experiments were done in the ROSA facility in Japan. On the theoretical side waha is studied and analyzed with the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shock-capturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to Relap5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. Experimentally measured and theoretically calculated waha pressure peaks are in qualitative agreement. (author)

  16. Laser ablation principles and applications

    CERN Document Server

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  17. Molybdenum oxide nanocolloids prepared by an external field-assisted laser ablation in water

    Directory of Open Access Journals (Sweden)

    Spadaro Salvatore

    2018-01-01

    Full Text Available he synthesis of extremely stable molybdenum oxide nanocolloids by pulsed laser ablation was studied. This green technique ensures the formation of contaminant-free nanostructures and the absence of by-products. A focused picosecond pulsed laser beam was used to ablate a solid molybdenum target immersed in deionized water. Molybdenum oxide nearly spherical nanoparticles with dimensions within few nanometers (20-100 nm are synthesized when the ablation processes were carried out, in water, at room temperature and 80°C. The application of an external electric field during the ablation process induces a nanostructures reorganization, as indicated by Scanning-Transmission Electron Microscopy images analysis. The ablation products were also characterized by some spectroscopic techniques: conventional UV-vis optical absorption, atomic absorption, dynamic light scattering, micro-Raman and X-ray photoelectron spectroscopies. Finally, NIH/3T3 mouse fibroblasts were used to evaluate cell viability by the sulforhodamine B assay

  18. The electric dipole moments in the ground states of gold oxide, AuO, and gold sulfide, AuS.

    Science.gov (United States)

    Zhang, Ruohan; Yu, Yuanqin; Steimle, Timothy C; Cheng, Lan

    2017-02-14

    The B 2 Σ - - X 2 Π 3/2 (0,0) bands of a cold molecular beam sample of gold monoxide, AuO, and gold monosulfide, AuS, have been recorded at high resolution both field free and in the presence of a static electric field. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments, μ→ el , of 2.94±0.06 D and 2.22±0.05 D for the X 2 Π 3/2 (v = 0) states of AuO and AuS, respectively. A molecular orbital correlation diagram is used to rationalize the trend in ground state μ→ el values for AuX (X = F, Cl, O, and S) molecules. The experimentally determined μ→ el are compared to those computed at the coupled-cluster singles and doubles (CCSD) level augmented with a perturbative inclusion of triple excitations (CCSD(T)) level of theory.

  19. Specific interactions versus counterion condensation. 2. Theoretical treatment within the counterion condensation theory.

    Science.gov (United States)

    Donati, Ivan; Benegas, Julio C; Cesàro, Attilio; Paoletti, Sergio

    2006-05-01

    Polyuronates such as pectate and alginate are very well-known examples of biological polyelectrolytes undergoing, upon addition of divalent cations, an interchain association that acts as the junction of an eventually formed stable hydrogel. In the present paper, a thermodynamic model based on the counterion condensation theory has been developed to account for this cation-induced chain pairing of negatively charged polyelectrolytes. The strong interactions between cross-linking ions and uronate moieties in the specific binding site have been described in terms of chemical bonding, with complete charge annihilation between the two species. The chain-pairing process is depicted as progressively increasing with the concentration of cross-linking counterions and is thermodynamically defined by the fraction of each species. On these bases, the total Gibbs energy of the system has been expressed as the sum of the contributions of the Gibbs energy of the (single) chain stretches and of the (associated) dimers, weighted by their respective fractions 1 - theta and theta. In addition, the model assumes that the condensed divalent counterions exhibit an affinity free-energy for the chain, G(C)(aff,0), and the junction, G(D)(aff,0), respectively. Moreover, a specific Gibbs energy of chemical bonding, G(bond,0), has been introduced as the driving force for the formation of dimers. The model provides the mathematical formalism for calculating the fraction, theta, of chain dimers formed and the amount of ions condensed and bound onto the polyelectrolyte when two different types of counterions (of equal or different valence) are present. The effect of the parameter G(bond,0) has been investigated and, in particular, its difference from G(C,D)(aff,0) was found to be crucial in determining the distribution of the ions into territorial condensation and chemical bonding, respectively. Finally, the effect of the variation of the molar ratio between cross-linking ions and uronic groups

  20. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  1. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias; Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas; Mahnken, Andreas H.

    2012-01-01

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 ± 0.14, 1.45 ± 0.13, and 1.74 ± 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 ± 0.09 and 1.26 ± 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 ± 0.65, 2.85 ± 0.72, and 4.45 ± 0.47 cm 3 for MW ablation at outputs of 25W, 35W, and 45W and 1.18 ± 0.30 and 2.29 ± 0.55 cm 3 got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  2. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report.

    Science.gov (United States)

    Oddo, Silvia; Balestra, Margherita; Vera, Lara; Giusti, Massimo

    2018-05-11

    Radiofrequency ablation and laser ablation are safe and effective techniques for reducing thyroid nodule volume, neck symptoms, and cosmetic complaints. Therapeutic success is defined as a nodule reduction > 50% between 6 and 12 months after the procedure, but a percentage of nodules inexplicably do not respond to thermal ablation. We describe the case of a young Caucasian woman with a solid benign thyroid nodule who refused surgery and who had undergone radiofrequency ablation in 2013. The nodule did not respond in terms of either volume reduction or improvement in neck symptoms. After 2 years, given the patient's continued refusal of thyroidectomy, we proposed laser ablation. The nodule displayed a significant volume reduction (- 50% from radiofrequency ablation baseline volume, - 57% from laser ablation baseline), and the patient reported a significant improvement in neck symptoms (from 6/10 to 1/10 on a visual analogue scale). We conjecture that some benign thyroid nodules may be intrinsically resistant to necrosis when one specific ablation technique is used, but may respond to another technique. To the best of our knowledge, this is the first description of the effect of performing a different percutaneous ablation technique in a nodule that does not respond to radiofrequency ablation.

  3. Heavy quark condensates from dynamically borken flavour symmetry

    International Nuclear Information System (INIS)

    Elliott, T.; King, S.F.

    1992-01-01

    We study the dynamics of top quark condensation induced by gauge interactions resulting from a broken flavour symmetry. The gap equation in dressed ladder approximation is solved numerically to obtain directly the top quark mass. The new high energy dynamics reduces the prediction of m t somewhat, but the usual problems of m t being too large and fine tuning remain. In order to solve these problems we extend our discussion to include fourth generation quark condensates. (orig.)

  4. Synthesis of Au38(SCH2CH2Ph)24, Au36(SPh-tBu)24, and Au30(S-tBu)18 Nanomolecules from a Common Precursor Mixture.

    Science.gov (United States)

    Rambukwella, Milan; Dass, Amala

    2017-10-17

    Phenylethanethiol protected nanomolecules such as Au 25 , Au 38 , and Au 144 are widely studied by a broad range of scientists in the community, owing primarily to the availability of simple synthetic protocols. However, synthetic methods are not available for other ligands, such as aromatic thiol and bulky ligands, impeding progress. Here we report the facile synthesis of three distinct nanomolecules, Au 38 (SCH 2 CH 2 Ph) 24 , Au 36 (SPh-tBu) 24 , and Au 30 (S-tBu) 18 , exclusively, starting from a common Au n (glutathione) m (where n and m are number of gold atoms and glutathiolate ligands) starting material upon reaction with HSCH 2 CH 2 Ph, HSPh-tBu, and HStBu, respectively. The systematic synthetic approach involves two steps: (i) synthesis of kinetically controlled Au n (glutathione) m crude nanocluster mixture with 1:4 gold to thiol molar ratio and (ii) thermochemical treatment of the purified nanocluster mixture with excess thiols to obtain thermodynamically stable nanomolecules. Thermochemical reactions with physicochemically different ligands formed highly monodispersed, exclusively three different core-size nanomolecules, suggesting a ligand induced core-size conversion and structural transformation. The purpose of this work is to make available a facile and simple synthetic method for the preparation of Au 38 (SCH 2 CH 2 Ph) 24 , Au 36 (SPh-tBu) 24 , and Au 30 (S-tBu) 18 , to nonspecialists and the broader scientific community. The central idea of simple synthetic method was demonstrated with other ligand systems such as cyclopentanethiol (HSC 5 H 9 ), cyclohexanethiol(HSC 6 H 11 ), para-methylbenzenethiol(pMBT), 1-pentanethiol(HSC 5 H 11 ), 1-hexanethiol(HSC 6 H 13 ), where Au 36 (SC 5 H 9 ) 24 , Au 36 (SC 6 H 11 ) 24 , Au 36 (pMBT) 24 , Au 38 (SC 5 H 11 ) 24 , and Au 38 (SC 6 H 13 ) 24 were obtained, respectively.

  5. More accurate theory for Bose-Einstein condensation fraction

    International Nuclear Information System (INIS)

    Biswas, Shyamal

    2008-01-01

    Bose-Einstein statistics is derived in the thermodynamic limit when the ratio of system size to thermal de Broglie wavelength goes to infinity. However, according to the experimental setup of Bose-Einstein condensation of harmonically trapped Bose gas of alkali atoms, the ratio near the condensation temperature (T o ) is 30-50. And, at ultralow temperatures well below T o , this ratio becomes comparable to 1. We argue that finite size as well as the ultralow temperature induces corrections to Bose-Einstein statistics. From the corrected statistics we plot condensation fraction versus temperature graph. This theoretical plot satisfies well with the experimental plot [A. Griesmaier et al., Phys. Rev. Lett. 94 (2005) 160401

  6. Human erythrocytes and neuroblastoma cells are affected in vitro by Au(III) ions

    International Nuclear Information System (INIS)

    Suwalsky, Mario; Gonzalez, Raquel; Villena, Fernando; Aguilar, Luis F.; Sotomayor, Carlos P.; Bolognin, Silvia; Zatta, Paolo

    2010-01-01

    Gold compounds are well known for their neurological and nephrotoxic implications. However, haematological toxicity is one of the most serious toxic and less studied effects. The lack of information on these aspects of Au(III) prompted us to study the structural effects induced on cell membranes, particularly that of human erythrocytes. AuCl 3 was incubated with intact erythrocytes, isolated unsealed human erythrocyte membranes (IUM) and molecular models of the erythrocyte membrane. The latter consisted of multibilayers of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, phospholipids classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. This report presents evidence that Au(III) interacts with red cell membranes as follows: (a) in scanning electron microscopy studies on human erythrocytes it was observed that Au(III) induced shape changes at a concentration as low as 0.01 μM; (b) in isolated unsealed human erythrocyte membranes Au(III) induced a decrease in the molecular dynamics and/or water content at the glycerol backbone level of the lipid bilayer polar groups in a 5-50 μM concentration range, and (c) X-ray diffraction studies showed that Au(III) in the 10 μm-1 mM range induced increasing structural perturbation only to dimyristoylphosphatidylcholine bilayers. Additional experiments were performed in human neuroblastoma cells SH-SY5Y. A statistically significant decrease of cell viability was observed with Au(III) ranging from 0.1 μM to 100 μM.

  7. 3He induced reactions on natAg and 197Au at 1.8, 3.6 and 4.8 GeV

    International Nuclear Information System (INIS)

    Brzychczyk, J.; Jagiellonian Univ., Krakow; Pollacco, E.C.; Volant, C.; Legrain, R.; Kwiatkowski, K.; Morley, K.B.; Renshaw-Foxford, E.; Bracken, D.S.; Viola, V.E.; Yoder, N.R.

    1995-03-01

    The 3 He induced reactions on Ag and Au are studied using a large solid angle and low energy threshold detector array. The data show consistency with intranuclear cascade and expanding emitting source description. Charge moment analysis is presented. (author). 18 refs., 8 figs

  8. Increase in Volume of Ablation Zones during Follow-up Is Highly Suggestive of Ablation Site Recurrence in Colorectal Liver Metastases Treated with Radiofrequency Ablation

    NARCIS (Netherlands)

    Kele, Petra G.; de Jong, Koert P.; van der Jagt, Eric J.

    Purpose: To test the hypothesis that volume changes of ablation zones (AZs) on successive computed tomography (CT) scans could predict ablation site recurrences (ASRs) in patients with colorectal liver metastases treated by radiofrequency (RF) ablation. Materials and Methods: RF ablation was

  9. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    International Nuclear Information System (INIS)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein

    2017-01-01

    Highlights: • Laser ablation of aluminum target by single and double pulse (∼ 5 ns delay) in ambient air and distilled water • Comparing with air, in ambient water, plasma confinement results in higher crater depth. • In comparison with single pulse laser ablation, the absorption of the laser pulse energy is higher for double pulse regime. • As a result of ablated material expansion, the crater depth is decreased if the target is placed at lower depth. - Abstract: In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  10. On the elemental analysis of different cigarette brands using laser induced breakdown spectroscopy and laser-ablation time of flight mass spectrometry

    Science.gov (United States)

    Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.

    2017-10-01

    We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.

  11. Thermal Ablation of Lung Tissue: In Vivo Experimental Comparison of Microwave and Radiofrequency

    International Nuclear Information System (INIS)

    Crocetti, Laura; Bozzi, Elena; Faviana, Pinuccia; Cioni, Dania; Della Pina, Clotilde; Sbrana, Alberto; Fontanini, Gabriella; Lencioni, Riccardo

    2010-01-01

    This study was designed to compare feasibility, safety, and effectiveness of microwave (MW) ablation versus radiofrequency (RF) ablation of lung tissue in a rabbit model. Twenty New Zealand White rabbits were submitted to MW (n = 10, group A) or RF ablation (n = 10, group B). The procedures were performed with a prototype MW ablation device with a 1.6-cm radiating section antenna (Valleylab MW Ablation System) and with a 2-cm exposed-tip RF electrode (Cool-tip RF Ablation System). At immediate computed tomography increase in density, maximum diameters (D1-D3) of ablation zones were measured and ablation volume was calculated. Histopathologic assessment was performed 3 and 7 days after the procedure. Technical success was achieved in nine of 10 rabbits in each group. One death occurred in group B. Complications included pneumothorax (group A, n = 4; group B, n = 4), abscess (group A, n = 1; group B, n = 1), and thoracic wall burn (group A, n = 4). No significant differences were demonstrated in attenuation increase (P = 0.73), dimensions (P = 0.28, 0.86, 0.06, respectively, comparing D1-D3) and volume (P = 0.17). At histopathology, ablation zones were similar, with septal necrosis, edema, hemorrhage, and peripheral lymphocytic infiltrate. Complete thrombosis of more than 90% of vessels up to 2 mm in diameter was depicted at the periphery of the ablation zone in group A specimens. In group B specimens, complete thrombosis was depicted in 20% of vessels. Feasibility and safety of MW and RF ablation are similar in a lung rabbit model. MW ablation produces a greater damage to peripheral small vessels inducing thrombosis.

  12. Increased ionization supports growth of aerosols into cloud condensation nuclei

    DEFF Research Database (Denmark)

    Svensmark, H.; Enghoff, M. B.; Shaviv, N. J.

    2017-01-01

    Ions produced by cosmic rays have been thought to influence aerosols and clouds. In this study, the effect of ionization on the growth of aerosols into cloud condensation nuclei is investigated theoretically and experimentally. We show that the mass-flux of small ions can constitute an important...... and find good agreement with theory. Ion-induced condensation should be of importance not just in Earth’s present day atmosphere for the growth of aerosols into cloud condensation nuclei under pristine marine conditions, but also under elevated atmospheric ionization caused by increased supernova activity....

  13. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    Science.gov (United States)

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  14. A study of particle generation during laser ablation with applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunyi [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    A study has been made of the generation of particles during laser ablation and has included size distribution measurements and observation of the formation processes. The particle size distribution with respect to different laser parameters was obtained in-line using a differential mobility analyzer (DMA) and a particle counter. The experimental results show that the particle size varies with laser energy, laser pulsewidth, ambient gas flow rate and sample properties. The results serve as a basis for controlling the size of nanoparticles generated by laser ablation. Laser shadowgraph imaging was used to study mass ejection processes and mechanisms. At higher laser irradiance, some particles were ejected in the liquid and even in the solid phase. Time-resolved images show the propagation of the shockwaves: external shockwaves propagate outward and decelerate, and internal shockwaves reflect back and forth between the gas contact surface and the sample surface. The internal shockwave is proposed to cause the ejection of liquid particles when the internal shockwave strikes the liquid molten layer. A simulation based on vapor plume expansion was carried out and provides satisfactory agreement with experimental results. Different material properties result in different particle ejection behavior:particle ejection for most materials including metals result in a conically shaped envelope for the ejected material while ejection for silicon resembles a liquid jet. The difference in density change when the materials melt was proposed to be an important factor in the different ejection behavior. The characteristics of particles generated by laser ablation have a strong influence on the chemical analysis of the irradiated sample. Large particles are more difficult to completely vaporize and ionize, and induced preferential vaporization causes fractionation (i.e. a detected chemical composition that differs from the sample material). Large particles also result in spikes in

  15. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  16. Quantitative measurement of Au and Fe in ferromagnetic nanoparticles with Laser Induced Breakdown Spectroscopy using a polymer-based gel matrix

    International Nuclear Information System (INIS)

    Borowik, T.; Przybyło, M.; Pala, K.; Otlewski, J.; Langner, M.

    2011-01-01

    The medical applications of nanomaterials require substantial changes in the research and development stage, such as the introduction of new processes and methods, and adequate modifications of the national and international laws on the medical product registration. To accomplish this, proper parameterizations of nano-scaled products need to be developed and implemented, accompanied by suitable measuring methods. The introduction of metallic particles to medical practices requires the precise, quantitative evaluation of the production process and later quantification and characterization of the nanoparticles in biological matrices for the bioavailability and biodistribution evaluation. In order to address these issues we propose a method for the quantitative analysis of the metallic nanoparticles composition by Laser Induced Breakdown Spectroscopy (LIBS). Au/Fe ferro-magnetic nanoparticles were used to evaluate the method applicability. Since the powder form of nanoparticles spatters upon laser ablation, first we had to develop fast, convenient and quantitative method for the nano-powdered sample preparation. The proposed method is based on the polymer gelation of nanopowders or their water suspensions. It has been shown that nanopowders compositional changes throughout the production process, along with their final characterization, can be reliable performed with LIBS technique. The quantitative values obtained were successfully correlated with those derived with ICP technique. - Highlights: ► The atomic composition of nanoparticles was analyzed with LIBS. ► The amount of gold on ferromagnetic particles was quantified by the method. ► Gel fixation was used as new way of handling powdered samples. ► LIBS results are comparable with other equivalent methods (ICP). ► There was a difference between measured and assumed nanoparticle composition.

  17. The advent of ultrasound-guided ablation techniques in nodular thyroid disease

    DEFF Research Database (Denmark)

    Papini, Enrico; Pacella, Claudio M; Misischi, Irene

    2014-01-01

    non-functioning thyroid nodules that grow or become symptomatic, trained operators may safely induce, with a single session of laser ablation treatment or radiofrequency ablation, a 50% volume decrease and, in parallel, improve local symptoms. In contrast, hyperfunctioning nodules remain best treated...... minimally invasive treatments, directed towards office-based management of symptomatic nodules, without requiring general anaesthesia, and with negligible damage to the skin and cervical tissues, have been proposed during the past two decades. Today, ultrasound-guided percutaneous ethanol injection...

  18. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2004-01-01

    .... Intermittent androgen ablation therapy may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  19. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2005-01-01

    .... Intermittent androgen ablation therapy may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  20. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2003-01-01

    .... Intermittent androgen ablation therapy may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  1. Energy level alignment in Au/pentacene/PTCDA trilayer stacks

    OpenAIRE

    Sehati, P.; Braun, S.; Fahlman, M.

    2013-01-01

    Ultraviolet photoelectron spectroscopy is used to investigate the energy level alignment and molecular orientation at the interfaces in Au/pentacene/PTCDA trilayer stacks. We deduced a standing orientation for pentacene grown on Au while we conclude a flat lying geometry for PTCDA grown onto pentacene. We propose that the rough surface of polycrystalline Au induces the standing geometry in pentacene. It is further shown that in situ deposition of PTCDA on pentacene can influence the orientati...

  2. Nanoporous gold synthesized by plasma-assisted inert gas condensation: room temperature sintering, nanoscale mechanical properties and stability against high energy electron irradiation

    Science.gov (United States)

    Weyrauch, S.; Wagner, C.; Suckfuell, C.; Lotnyk, A.; Knolle, W.; Gerlach, J. W.; Mayr, S. G.

    2018-02-01

    With a plasma assisted gas condensation system it is possible to achieve high-purity nanoporous Au (np-Au) structures with minimal contaminations and impurities. The structures consist of single Au-nanoparticles, which partially sintered together due to their high surface to volume ratio. Through electron microscopy investigations a porosity  >50% with ligament sizes between 20-30 nm was revealed. The elastic modulus of the np-Au was determined via peak force quantitative nanomechanical mapping and resulted in values of 7.5  ±  1.5 GPa. The presented structures partially sintered at room temperature, but proved to be stable to electron irradiation with energies of 7 MeV up to doses of 100 MGy. The electron irradiation stability opens the venue for electron assisted functionalization with biomolecules.

  3. Short-term amiodarone treatment for atrial fibrillation after catheter ablation induces a transient thyroid dysfunction

    DEFF Research Database (Denmark)

    Diederichsen, Søren Zöga; Darkner, Stine; Chen, Xu

    2016-01-01

    ablation in a randomised, double-blind clinical trial. METHODS: 212 patients referred for AF ablation at two centres were randomized to 8weeks of oral amiodarone or placebo. Thyroid function tests (TSH, thyroid stimulating hormone; T4, thyroxine; T3, triiodothyronine; fT4, free T4; fT3, free T3) were...

  4. Preventing freezing of condensate inside tubes of air cooled condenser

    International Nuclear Information System (INIS)

    Joo, Jeong A; Hwang, In Hwan; Lee, Dong Hwan; Cho, Young Il

    2012-01-01

    An air cooled condenser is a device that is used for converting steam into condensate by using ambient air. The air cooled condenser is prone to suffer from a serious explosion when the condensate inside the tubes of a heat exchanger is frozen; in particular, tubes can break during winter. This is primarily due to the structural problem of the tube outlet of an existing conventional air cooled condenser system, which causes the backflow of residual steam and noncondensable gases. To solve the backflow problem in such condensers, such a system was simulated and a new system was designed and evaluated in this study. The experimental results using the simulated condenser showed the occurrence of freezing because of the backflow inside the tube. On the other hand, no backflow and freezing occurred in the advanced new condenser, and efficient heat exchange occurred

  5. Condensate subcooling near tube exit during horizontal in-tube condensation

    International Nuclear Information System (INIS)

    Hashizume, K.; Abe, N.; Ozeki, T.

    1992-01-01

    In-tube condensation is encountered in various applications for heat exchangers, such as domestic air-conditioning equipment, industrial air-cooled condensers, and moisture separator reheaters (MSRs) for nuclear power pants. Numerous research work has been conducted to predict the condensation heat transfer coefficient, and we have now enough information for thermal design of heat exchangers with horizontal in-tube condensation. Most of the research is analytical and/or experimental work in the annular or stratified flow regime, or experimental work on bulk condensation, i.e., from saturated vapor to complete condensation. On the other hand, there exist few data about the heat transfer phenomena in the very lower-quality region near the tube exit. The purpose of this paper is to clarify the condensation heat transfer phenomena near the tube exit experimentally and analytically, and to predict the degree of condensate subcooling

  6. Maximal entanglement of two spinor Bose-Einstein condensates

    OpenAIRE

    Jack, Michael W.; Yamashita, Makoto

    2005-01-01

    Starting with two weakly-coupled anti-ferromagnetic spinor condensates, we show that by changing the sign of the coefficient of the spin interaction, $U_{2}$, via an optically-induced Feshbach resonance one can create an entangled state consisting of two anti-correlated ferromagnetic condensates. This state is maximally entangled and a generalization of the Bell state from two anti-correlated spin-1/2 particles to two anti-correlated spin$-N/2$ atomic samples, where $N$ is the total number of...

  7. Preliminary condensation pool experiments with steam using DN80 and DN100 blowdown pipes[VIDEO CAMERAS

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M. [Lappeenranta University of Technology (Finland)

    2004-03-01

    The report summarizes the results of the preliminary steam blowdown experiments. Altogether eight experiment series, each consisting of several steam blows, were carried out in autumn 2003 with a scaled-down condensation pool test rig designed and constructed at Lappeenranta University of Technology. The main purpose of the experiments was to evaluate the capabilities of the test rig and the needs for measurement and visualization devices. The experiments showed that a high-speed video camera is essential for visual observation due to the rapid condensation of steam bubbles. Furthermore, the maximum measurement frequency of the current combination of instrumentation and data acquisition system is inadequate for the actual steam tests in 2004. (au)

  8. The effect of pre-vertebroplasty tumor ablation using laser-induced thermotherapy on biomechanical stability and cement fill in the metastatic spine

    OpenAIRE

    Ahn, Henry; Mousavi, Payam; Chin, Lee; Roth, Sandra; Finkelstein, Joel; Vitken, Alex; Whyne, Cari

    2007-01-01

    A biomechanical study comparing simulated lytic vertebral metastases treated with laser-induced thermotherapy (LITT) and vertebroplasty versus vertebroplasty alone. To investigate the effect of tumor ablation using LITT prior to vertebroplasty on biomechanical stability and cement fill patterns in a standardized model of spinal metastatic disease. Vertebroplasty in the metastatic spine is aimed at reducing pain, but is associated with risk of cement extravasation in up to 10%. Six pairs of fr...

  9. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2006-01-01

    .... Intermittent androgen ablation therapy (IAAT) may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  10. Smart app-based on-field colorimetric quantification of mercury via analyte-induced enhancement of the photocatalytic activity of TiO2-Au nanospheres.

    Science.gov (United States)

    Ravindranath, Rini; Periasamy, Arun Prakash; Roy, Prathik; Chen, Yu-Wen; Chang, Huan-Tsung

    2018-06-04

    We have devised a unique strategy for highly sensitive, selective, and colorimetric detection of mercury based on analyte-induced enhancement of the photocatalytic activity of TiO 2 -Au nanospheres (TiO 2 -Au NSs) toward degradation of methylene blue (MB). Through electrostatic interactions, Au nanoparticles are attached to poly-(sodium 4-styreneulfonate)/poly(diallyldimethylammonium chloride) modified TiO 2 nanoparticles, which then form an Au shell on each TiO 2 core through reduction of Au 3+ with ascorbic acid. Notably, the deposition of Hg species (Hg 2+ /CH 3 Hg + ) onto TiO 2 -Au NSs through strong Au-Hg aurophilic interactions speeds up catalytic degradation of MB. The first-order degradation rates of MB by TiO 2 -Au NSs and TiO 2 -Au-Hg NSs are 1.4 × 10 -2  min -1 and 2.1 × 10 -2  min -1 , respectively. Using a commercial absorption spectrometer, the TiO 2 -Au NSs/MB approach provides linearity (R 2  = 0.98) for Hg 2+ over a concentration range of 10.0 to 100.0 nM, with a limit of detection (LOD) of 1.5 nM. On the other hand, using a low-cost smartphone app that records the color changes (ΔRGB) of MB solution based on the red-blue-green (RGB) component values, the TiO 2 -Au NSs/MB approach provides an LOD of 2.0 nM for Hg 2+ and 5.0 nM for CH 3 Hg + , respectively. Furthermore, the smartphone app sensing system has been validated for the analyses of various samples, including tap water, lake water, soil, and Dorm II, showing its great potential for on-line analysis of environmental and biological samples. Graphical Abstract ᅟ.

  11. Measurement and analysis of the excitation function and isomeric cross section ratios for α-induced reaction on Ir, Au, Re and Ta nuclei

    International Nuclear Information System (INIS)

    Ismail, M.

    1998-01-01

    Excitation functions and a few isomeric cross section ratios for production of (1) 192 Au, 193 Au, 194 Au, 195 Au and 192 Ir nuclides in α-induced reactions on 191,193 Ir, (2) 197 Tl, 197m Hg, 198m.g Tl, 199 Tl and 200 Tl nuclides in α-induced reaction in 197 Au and (3) 183 Re and 184m.g Re nuclides in α-induced reaction in 181 Ta and 185 Re are obtained from the measurements of the residual activities by the conventional stacked-foils technique from threshold to 50 MeV. The excitation function and isomeric cross section ratios for nuclear reaction 181 Ta (α,n) 184m.g Re are compared with the theoretical calculation using the code Stapre which is based on exciton model for pre-equilibrium phase and Hauser-Feshbach formalism taking angular momentum and parity into account for the equilibrium phase of the nuclear reaction. All other experimental excitation functions are compared with the calculations considering equilibrium as well as pre-equilibrium reaction mechanism according to the geometry dependent hybrid (GDH) model and hybrid model of Blann using the code Alice/91. The high energy part of the excitation functions are dominated by pre-equilibrium reaction mechanism whereas the low energy parts are dominated by equilibrium evaporation with its characteristic peak. The GDH model provides a potentially better description of the physical process (i.e. a higher probability for peripheral collisions to undergo precompound decay than for central collisions) compared to hybrid model. However in the energy range of present measurement most of the excitation functions are fitted reasonably well by both GDH model and hybrid model with initial exciton number N 0 =4 (N n =2, N p =2, N h =0). Barring a few reactions we have found the overall agreement between theory and experiment is reasonably good taking the limitations of the theory into account. (author)

  12. Au nanorods-incorporated plasmonic-enhanced inverted organic solar cells

    Science.gov (United States)

    Peng, Ling; Mei, Yang; Chen, Shu-Fen; Zhang, Yu-Pei; Hao, Jing-Yu; Deng, Ling-Ling; Huang, Wei

    2015-11-01

    The effect of Au nanorods (NRs) on optical-to-electric conversion efficiency is investigated in inverted polymer solar cells, in which Au NRs are sandwiched between two layers of ZnO. Accompanied by the optimization of thickness of ZnO covered on Au NRs, a high-power conversion efficiency of 3.60% and an enhanced short-circuit current density (JSC) of 10.87 mA/cm2 are achieved in the poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC60BM)-based inverted cell and the power conversion efficiency (PCE) is enhanced by 19.6% compared with the control device. The detailed analyses of the light absorption characteristics, the simulated scattering induced by Au NRs, and the electromagnetic field around Au NRs show that the absorption improvement in the photoactive layer due to the light scattering from the longitudinal axis and the near-field increase around Au NRs induced by localized surface plasmon resonance plays a key role in enhancing the performances. Project supported by the Ministry of Science and Technology, China (Grant No. 2012CB933301), the National Natural Science Foundation of China (Grant Nos. 61274065, 51173081, 61136003, BZ2010043, 51372119, and 51172110), and the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions and Synergetic Innovation Center for Organic Electronics and Information Displays, China.

  13. Theory and design of heat exchanger : shell and tube condenser and reboiler

    International Nuclear Information System (INIS)

    Min, Ui Dong

    1996-02-01

    This book gives descriptions of shell and tube heat exchanger including from, sorts, structure like shell and shell side, channel, and sliding bar, basic design of heat exchanger, flow-induced vibration, shell side condenser, tube side condenser and design of basic structure of condenser by types, selection of reboiler type, kettle type reboiler, internal reboiler, pump through reboiler, design of reboiler like kettle and internal reboiler, and horizontal and vertical thermosyphon reboiler.

  14. Multiple condensation induced water hammer events, experiments and theoretical investigations

    International Nuclear Information System (INIS)

    Barna, Imre Ferenc; Ezsoel, Gyoergy

    2011-01-01

    We investigate steam condensation induced water hammer (CIWH) phenomena and present experimental and theoretical results. Some of the experiments were performed in the PMK-2 facility, which is a full-pressure thermalhydraulic model of the nuclear power plant of VVER-440/312 type and located in the Atomic Energy Research Institute Budapest, Hungary. Other experiments were done in the ROSA facility in Japan. On the theoretical side CIWH is studied and analyzed with the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shockcapturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to RELAP5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. New features are the existence of multiple, independent CIWH pressure peaks both in experiments and in simulations. Experimentally measured and theoretically calculated CIWH pressure peaks are in qualitative agreement. However, the computational results are very sensitive against flow velocity. (orig.)

  15. Non-ablative fractional laser provides long-term improvement of mature burn scars

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth H; Danielsen, Patricia L; Paulsen, Ida F

    2015-01-01

    BACKGROUND AND OBJECTIVES: Non-ablative fractional laser-treatment is evolving for burn scars. The objective of this study was to evaluate clinical and histological long-term outcome of 1,540 nm fractional Erbium: Glass laser, targeting superficial, and deep components of mature burn scars....... MATERIALS & METHODS: Side-by-side scar-areas were randomized to untreated control or three monthly non-ablative fractional laser-treatments using superficial and extra-deep handpieces. Patient follow-up were at 1, 3, and 6 months. Primary outcome was improvement in overall scar-appearance on a modified...... of scar-appearance. CONCLUSIONS: Combined superficial and deep non-ablative fractional laser-treatments induce long-term clinical and histological improvement of mature burn scars....

  16. Real-time near-IR imaging of laser-ablation crater evolution in dental enamel

    Science.gov (United States)

    Darling, Cynthia L.; Fried, Daniel

    2007-02-01

    We have shown that the enamel of the tooth is almost completely transparent near 1310-nm in the near-infrared and that near-IR (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue and for observing defects in the interior of the tooth. Lasers are now routinely used for many applications in dentistry including the ablation of dental caries. The objective of this study was to test the hypothesis that real-time NIR imaging can be used to monitor laser-ablation under varying conditions to assess peripheral thermal and transient-stress induced damage and to measure the rate and efficiency of ablation. Moreover, NIR imaging may have considerable potential for monitoring the removal of demineralized areas of the tooth during cavity preparations. Sound human tooth sections of approximately 3-mm thickness were irradiated by a CO II laser under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with band-pass filter centered at 131--nm combined with an InGaAs focal plane array with a NIR zoom microscope in transillumination. Due to the high transparency of enamel at 1310-nm, laser-incisions were clearly visible to the dentin-enamel junction and crack formation, dehydration and irreversible thermal changes were observed during ablation. This study showed that there is great potential for near-IR imaging to monitor laser-ablation events in real-time to: assess safe laser operating parameters by imaging thermal and stress-induced damage, elaborate the mechanisms involved in ablation such as dehydration, and monitor the removal of demineralized enamel.

  17. Global Modeling of Uranium Molecular Species Formation Using Laser-Ablated Plasmas

    Science.gov (United States)

    Curreli, Davide; Finko, Mikhail; Azer, Magdi; Armstrong, Mike; Crowhurst, Jonathan; Radousky, Harry; Rose, Timothy; Stavrou, Elissaios; Weisz, David; Zaug, Joseph

    2016-10-01

    Uranium is chemically fractionated from other refractory elements in post-detonation nuclear debris but the mechanism is poorly understood. Fractionation alters the chemistry of the nuclear debris so that it no longer reflects the chemistry of the source weapon. The conditions of a condensing fireball can be simulated by a low-temperature plasma formed by vaporizing a uranium sample via laser heating. We have developed a global plasma kinetic model in order to model the chemical evolution of U/UOx species within an ablated plasma plume. The model allows to track the time evolution of the density and energy of an uranium plasma plume moving through an oxygen atmosphere of given fugacity, as well as other relevant quantities such as average electron and gas temperature. Comparison of model predictions with absorption spectroscopy of uranium-ablated plasmas provide preliminary insights on the key chemical species and evolution pathways involved during the fractionation process. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16-1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Teghil, R; De Bonis, A; Galasso, A; Santagata, A; Albano, G; Villani, P; Spera, D; Parisi, G P

    2008-01-01

    In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.

  19. Bi induced step-flow growth in the homoepitaxial growth of Au(1 1 1)

    International Nuclear Information System (INIS)

    Kamiko, M.; Mizuno, H.; Chihaya, H.; Xu, J.-H.; Kojima, I.; Yamamoto, R.

    2005-01-01

    Homoepitaxial growth of Au on Bi-covered Au(1 1 1) was studied at room temperature using reflection high-energy electron diffraction (RHEED) and Auger electron spectroscopy (AES). From observations of RHEED it is found that the Au(1 1 1) (23 x 1) reconstruction structure changes to a (1 x 1) by about 0.16-0.5 ML deposition of Bi and to a (2√3 x 2√3)R30 deg by about 1.0 ML deposition of Bi, respectively. The surface morphology evolution by Bi deposition leads to a change of Au homoepitaxial growth behavior from layer-by-layer to step flow. This indicates that the surface diffusion distance of Au atoms on the Bi-precovered (1 x 1) and (2√3 x 2√3)R30 deg surfaces is longer than that on the Au(1 1 1) (23 x 1) clean surfaces. A strong surface segregation of Bi was found at top of surface. It is concluded that Bi atoms acted as an effective surfactant in the Au homoepitaxial growth by promoting Au intralayer mass transport

  20. Cross section of the 197Au(n,2n196Au reaction

    Directory of Open Access Journals (Sweden)

    Kalamara A.

    2017-01-01

    Full Text Available The 197Au(n,2n196Au reaction cross section has been measured at two energies, namely at 17.1 MeV and 20.9 MeV, by means of the activation technique, relative to the 27Al(n,α24Na reference reaction cross section. Quasi-monoenergetic neutron beams were produced at the 5.5 MV Tandem T11/25 accelerator laboratory of NCSR “Demokritos”, by means of the 3H(d,n4He reaction, implementing a new Ti-tritiated target of ∼ 400 GBq activity. The induced γ-ray activity at the targets and reference foils has been measured with HPGe detectors. The cross section for the population of the second isomeric (12− state m2 of 196Au was independently determined. Auxiliary Monte Carlo simulations were performed using the MCNP code. The present results are in agreement with previous experimental data and with theoretical calculations of the measured reaction cross sections, which were carried out with the use of the EMPIRE code.

  1. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D. E-mail: lumd@21cn.com; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up.

  2. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    International Nuclear Information System (INIS)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D.; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J.

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up

  3. Pulmonary vein region ablation in experimental vagal atrial fibrillation: role of pulmonary veins versus autonomic ganglia.

    Science.gov (United States)

    Lemola, Kristina; Chartier, Denis; Yeh, Yung-Hsin; Dubuc, Marc; Cartier, Raymond; Armour, Andrew; Ting, Michael; Sakabe, Masao; Shiroshita-Takeshita, Akiko; Comtois, Philippe; Nattel, Stanley

    2008-01-29

    Pulmonary vein (PV) -encircling radiofrequency ablation frequently is effective in vagal atrial fibrillation (AF), and there is evidence that PVs may be particularly prone to cholinergically induced arrhythmia mechanisms. However, PV ablation procedures also can affect intracardiac autonomic ganglia. The present study examined the relative role of PVs versus peri-PV autonomic ganglia in an experimental vagal AF model. Cholinergic AF was studied under carbachol infusion in coronary perfused canine left atrial PV preparations in vitro and with cervical vagal stimulation in vivo. Carbachol caused dose-dependent AF promotion in vitro, which was not affected by excision of all PVs. Sustained AF could be induced easily in all dogs during vagal nerve stimulation in vivo both before and after isolation of all PVs with encircling lesions created by a bipolar radiofrequency ablation clamp device. PV elimination had no effect on atrial effective refractory period or its responses to cholinergic stimulation. Autonomic ganglia were identified by bradycardic and/or tachycardic responses to high-frequency subthreshold local stimulation. Ablation of the autonomic ganglia overlying all PV ostia suppressed the effective refractory period-abbreviating and AF-promoting effects of cervical vagal stimulation, whereas ablation of only left- or right-sided PV ostial ganglia failed to suppress AF. Dominant-frequency analysis suggested that the success of ablation in suppressing vagal AF depended on the elimination of high-frequency driver regions. Intact PVs are not needed for maintenance of experimental cholinergic AF. Ablation of the autonomic ganglia at the base of the PVs suppresses vagal responses and may contribute to the effectiveness of PV-directed ablation procedures in vagal AF.

  4. Fermion condensate and vacuum current density induced by homogeneous and inhomogeneous magnetic fields in (2+1) dimensions

    International Nuclear Information System (INIS)

    Raya, Alfredo; Reyes, Edward

    2010-01-01

    We calculate the condensate and the vacuum current density induced by external static magnetic fields in (2+1) dimensions. At the perturbative level, we consider an exponentially decaying magnetic field along one Cartesian coordinate. Nonperturbatively, we obtain the fermion propagator in the presence of a uniform magnetic field by solving the Schwinger-Dyson equation in the rainbow-ladder approximation. In the large flux limit, we observe that both these quantities, either perturbative (inhomogeneous) and nonperturbative (homogeneous), are proportional to the external field, in agreement with early expectations.

  5. Understanding promotion of photocatalytic activity of TiO2 by Au nanoparticles

    NARCIS (Netherlands)

    Amrollahi Buky, Rezvaneh; Hamdy, Mohamed S.; Mul, Guido

    2014-01-01

    Au nanoparticles prepared by deposition–precipitation were evaluated in promoting photocatalytic activity of TiO2 (P25) in the oxidation of methylcyclohexane. At 375 nm and in particular at 425 nm, Au was found to significantly enhance the rate induced by P25. Illumination of Au-promoted P25 at 525

  6. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO2 laser.

    Science.gov (United States)

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2016-09-01

    Polyoxymethylene (POM) decomposes gradually as it is heated up by the irradiation of CO2 laser; the long-chain molecules of POM are broken into short chains, which leads to the lowering of the melting point and the critical temperature of the ablation products. When the product temperature is above the melting point, ablation comes up in the way of vaporization; when the product temperature is higher than the critical temperature, all liquid products are transformed into gas instantly and the ablation mechanism is changed. The laser fluence at which significant ablation is observed is defined as the ablation threshold, and the fluence corresponding to the ablation mechanism changing is denoted as the flyover threshold. In this paper, random pyrolysis is adopted to describe the pyrolytic decomposition of POM, and consequently, the components of the pyrolysis products under different pyrolysis rates are acquired. The Group Contribution method is used to count the thermodynamic properties of the pyrolysis products, and the melting point and the critical temperature of the product mixture are obtained by the Mixing Law. The Knudsen layer relationship is employed to evaluate the ablation mass removal when the product temperature is below the critical temperature. The gas dynamics conservation laws associated with the Jouguet condition are used to calculate the mass removal when the product temperature is higher than the critical temperature. Based on the model, a set of simulations for various laser intensities and lengths are carried out to generalize the relationships between the thresholds and the laser parameters. Besides the ablated mass areal density, which fits the experimental data quite well, the ablation temperature, pyrolysis rate, and product components are also discussed for a better understanding of the ablation mechanism of POM.

  7. Treatment of compounds and alloys in radiation hydrodynamics simulations of ablative laser loading

    International Nuclear Information System (INIS)

    Swift, Damian C.; Gammel, J. Tinka; Clegg, Samuel M.

    2004-01-01

    Different methods were compared for constructing models of the behavior of a prototype intermetallic compound, nickel aluminide, for use in radiation hydrodynamics simulations of shock wave generation by ablation induced by laser energy. The models included the equation of state, ionization, and radiation opacity. The methods of construction were evaluated by comparing the results of simulations of an ablatively generated shock wave in a sample of the alloy. The most accurate simulations were obtained using the 'constant number density' mixture model to calculate the equation of state and opacity, and Thomas-Fermi ionization. This model is consistent with that found to be most accurate for simulations of ablatively shocked elements

  8. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  9. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    Science.gov (United States)

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  10. Laser Ablation Experiments on the Tamdakht H5 Chondrite

    Science.gov (United States)

    White, Susan M.; Stern, Eric

    2017-01-01

    High-powered lasers were used to induce ablation and to form fusion crusts in the lab on Tamdakht H5 chondrites and basalt. These ground tests were undertaken to improve our understanding, and ultimately improve our abilty to model and predict, meteoroid ablation during atmospheric entry. The infrared fiber laser at the LHMEL facilty, operated in the continuous wave (i.e. non-pulsed) mode, provided radiation surface heat flux at levels similar to meteor entry for these tests. Results are presented from the first round of testing on samples of Tamdakht H5 ordinary chondrite which were ex-posed to entry-relevant heating rates between 2 and 10 kWcm2.

  11. Tuning the chemical activity through PtAu nanoalloying: a first principles study

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-06-21

    The electronic structure and adsorption properties of 1.5 nm sized Pt, Au, and PtAu nanoclusters are studied by density functional theory. We explain the recent experimental finding that 20% Au content in PtAu nanoparticles is optimal to induce a dramatically different catalytic behavior. Our results show that the d-band center together with the density of states at the Fermi energy can be used as an indicator of the chemical activity of PtAu nanoclusters. The most favorable adsorption sites on the cluster surfaces as a function of the Pt/Au ratio are identified using atomic H as a probe.

  12. Tuning the chemical activity through PtAu nanoalloying: a first principles study

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    The electronic structure and adsorption properties of 1.5 nm sized Pt, Au, and PtAu nanoclusters are studied by density functional theory. We explain the recent experimental finding that 20% Au content in PtAu nanoparticles is optimal to induce a dramatically different catalytic behavior. Our results show that the d-band center together with the density of states at the Fermi energy can be used as an indicator of the chemical activity of PtAu nanoclusters. The most favorable adsorption sites on the cluster surfaces as a function of the Pt/Au ratio are identified using atomic H as a probe.

  13. Characterizing DNA condensation and conformational changes in organic solvents.

    Directory of Open Access Journals (Sweden)

    Fuyou Ke

    Full Text Available Organic solvents offer a new approach to formulate DNA into novel structures suitable for gene delivery. In this study, we examined the in situ behavior of DNA in N, N-dimethylformamide (DMF at low concentration via laser light scattering (LLS, TEM, UV absorbance and Zeta potential analysis. Results revealed that, in DMF, a 21bp oligonucleotide remained intact, while calf thymus DNA and supercoiled plasmid DNA were condensed and denatured. During condensation and denaturation, the size was decreased by a factor of 8-10, with calf thymus DNA forming spherical globules while plasmid DNA exhibited a toroid-like conformation. In the condensed state, DNA molecules were still able to release the counterions to be negatively charged, indicating that the condensation was mainly driven by the excluded volume interactions. The condensation induced by DMF was reversible for plasmid DNA but not for calf thymus DNA. When plasmid DNA was removed from DMF and resuspended in an aqueous solution, the DNA was quickly regained a double stranded configuration. These findings provide further insight into the behavior and condensation mechanism of DNA in an organic solvent and may aid in developing more efficient non-viral gene delivery systems.

  14. Some recent results in Au+Au collisions at AGS

    International Nuclear Information System (INIS)

    Chen, Z.

    1996-01-01

    Many interesting results have been obtained for Au + Au reactions at AGS. The basic information about the reaction dynamics comes from the hadronic distribution. and this article reviews the recent progress of these distributions in details. The proton rapidity distribution shows significantly increased stopping compared to lighter systems, implying the formation of a state of high baryon density. Unlike reactions at this energy induced by lighter heavy ions, at low m t - m 0 the proton invariant spectra deviate from a single exponential shape and become fear,. while pion spectra are found to rise in this region, with the π - spectra rising faster than the π + spectra. The inverse slope parameter increases faster for particles of larger mass as the number of participants in the reaction increases, an indication of increased effect of radial expansion in central collision. Anti-proton Needs have been measured recently, and unfortunately a comparison among current results from different experiments indicates discrepancy

  15. Heart-type fatty acid binding protein is an early marker of myocardial damage after radiofrequency catheter ablation.

    Science.gov (United States)

    Giannessi, Daniela; Piacenti, Marcello; Maltinti, Maristella; Rossi, Andrea; Di Cecco, Pietro; Startari, Umberto; Cabiati, Manuela; Panchetti, Luca; Del Ry, Silvia; Morales, Maria-Aurora

    2010-10-01

    Radiofrequency (RF) ablation of arrhythmias induces myocardial damage and release of biomarkers. This study aimed to assess the kinetics of heart-type fatty acid-binding protein (h-FABP), a cytosolic protein released after myocardial injury incurred by both atrial and ventricular RF ablation, compared to other markers of myocardial injury. h-FABP, cTnI, CK-MB(mass) and myoglobin were evaluated in 30 patients with atrial or ventricular tachyarrhythmias before, immediately after and at 3, 6 and 24h after the procedure. h-FABP increased immediately after the procedure in all subjects (6.6 ± 1.2 μg/L vs 2.7 ± 0.3, pvalues of time for mean power of RF application in both the entire patient cohort and in ventricular ablations. h-FABP may be an early parameter for monitoring RF-induced lesions and the site of ablation was relevant for biomarker increase. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Chemically-induced solid-state dewetting of thin Au films

    International Nuclear Information System (INIS)

    Gazit, Nimrod; Klinger, Leonid; Rabkin, Eugen

    2017-01-01

    We employed the solid state dewetting technique to produce nanoparticles of silver-gold alloy on a sapphire substrate. We deposited a thin gold layer on the substrate with alloy nanoparticles, and studied its thermal stability at low homological temperatures. We demonstrated that a large number of densely spaced holes form at the initial stages of dewetting of the gold layer with nanoparticles. A similar homogeneous gold film deposited on a bare sapphire substrate remained stable under identical annealing conditions, exhibiting the onset of dewetting at higher temperatures, and with a lower number of holes. We attributed the decreased thermal stability of the gold film deposited on the substrate with the silver-gold nanoparticles to accelerated grooving at the grain boundaries and triple junctions in the film. The grooving process is accelerated by the diffusion fluxes of Au atoms driven from the film towards the nanoparticles by the gradient of chemical potential. We developed a quantitative model of this chemically-induced dewetting process, and discussed its applicability for the design of better catalytic systems. Our work demonstrates that the chemical driving forces have to be reckoned with in the analysis of thermal stability of multicomponent thin films.

  17. Transient effects in unstable ablation fronts and mixing layers in HEDP

    International Nuclear Information System (INIS)

    Clarisse, J-M; Gauthier, S; Dastugue, L; Vallet, A; Schneider, N

    2016-01-01

    We report results obtained for two elementary unstable flow configurations relevant to high energy density physics: the ablation front instability and the Rayleigh–Taylor -instability induced mixing layer. These two flows are characterized by a transience of their perturbation dynamics. In the ablative flow case, this perturbation dynamics transience takes the form of finite-durations of successive linear-perturbation evolution phases until reaching regimes of decaying oscillations. This behaviour is observed in various regimes: weakly or strongly accelerated ablation fronts, irradiation asymmetries or initial external-surface defects, and is a result of the mean-flow unsteadiness and stretching. In the case of the Rayleigh–Taylor-instability induced mixing layer, perturbation dynamics transience manifests itself through the extinction of turbulence and mixing as the flow reaches a stable state made of two stably stratified layers of pure fluids separated by an unstratified mixing layer. A second feature, also due to compressibility, takes the form of an intense acoustic wave production, mainly localized in the heavy fluid. Finally, we point out that a systematic short-term linear-perturbation dynamics analysis should be undertaken within the framework of non-normal stability theory. (paper)

  18. Nonlinear dynamics in a trapped atomic Bose-Einstein condensate induced by an oscillating Gaussian potential

    International Nuclear Information System (INIS)

    Fujimoto, Kazuya; Tsubota, Makoto

    2011-01-01

    We consider a trapped atomic Bose-Einstein condensate penetrated by a repulsive Gaussian potential and theoretically investigate the dynamics induced by oscillating the Gaussian potential. Our study is based on the numerical calculation of the two-dimensional Gross-Pitaevskii equation. Our calculation reveals the dependence of the characteristic behavior of the condensate on the amplitude and frequency of the oscillating potential. These dynamics are deeply related to the nucleation and dynamics of quantized vortices and solitons. When the potential oscillates with a large amplitude, it nucleates many vortex pairs that move away from the potential. When the amplitude of the oscillation is small, it nucleates solitons through an annihilation of vortex pairs. We discuss three issues concerning the nucleation of vortices. The first is the phase diagram for the nucleation of vortices and solitons near the oscillating potential. The second is the mechanism and critical velocity of the nucleation. The critical velocity of the nucleation is an important issue in quantum fluids, and we propose an expression for the velocity containing both the coherence length and the size of the potential. The third is the divergence of the nucleation time, which is the time it takes for the potential to nucleate vortices, near the critical parameters for vortex nucleation.

  19. Microstructure processes induced by phase transitions in a CuAu alloy as studied by acoustic emission and optical cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Masek, P.; Chmelik, F.; Sima, V. [Charles Univ., Prague (Czech Republic). Dept. of Metal Physics; Brinck, A.; Neuhaeuser, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Metallphysik und Nukleare Festkoerperphysik

    1999-01-15

    Combined acoustic emission measurements and surface cinematography observations have been applied to determine the structure evolution during thermal loading of the CuAu alloy. Thermal history and the fashion of thermal loading have been shown to affect considerably the structure response of the CuAu alloy on temperature changes. On thermal loading, intense plastic deformation occurs in certain temperature intervals due to the relaxation of internal stresses induced by phase transitions and structure anisotropy. The main mechanism is twinning taking place most probably in (110) planes. Dislocation glide and grain-boundary sliding have also been observed as minor mechanisms. A shape-restoration effect associated with the order-disorder transition is revealed. Thermal cycling with upper temperatures over 500 C may also result in structural damage.

  20. Radiofrequency ablation of pulmonary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Crocetti, Laura, E-mail: l.crocetti@med.unipi.i [Division of Diagnostic Imaging and Intervention, Department of Liver Transplants, Hepatology and Infectious Diseases, Pisa University School of Medicine (Italy); Lencioni, Riccardo [Division of Diagnostic Imaging and Intervention, Department of Liver Transplants, Hepatology and Infectious Diseases, Pisa University School of Medicine (Italy)

    2010-07-15

    The development of image-guided percutaneous techniques for local tumor ablation has been one of the major advances in the treatment of solid tumors. Among these methods, radiofrequency (RF) ablation is currently established as the primary ablative modality at most institutions. RF ablation is accepted as the best therapeutic choice for patients with early-stage hepatocellular carcinoma when liver transplantation or surgical resection are not suitable options and is considered as a viable alternate to surgery for inoperable patients with limited hepatic metastatic disease, especially from colorectal cancer. Recently, RF ablation has been demonstrated to be a safe and valuable treatment option for patients with unresectable or medically inoperable lung malignancies. Resection should remain the standard therapy for non-small cell lung cancer (NSCLC) but RF ablation may be better than conventional external-beam radiation for the treatment of the high-risk individual with NSCLC. Initial favourable outcomes encourage combining radiotherapy and RF ablation, especially for treating larger tumors. In the setting of colorectal cancer lung metastases, survival rates provided by RF ablation in selected patients, are substantially higher than those obtained with any chemotherapy regimens and provide indirect evidence that RF ablation therapy improves survival in patients with limited lung metastatic disease.

  1. Ablative skin resurfacing.

    Science.gov (United States)

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Dynamics of tissue shrinkage during ablative temperature exposures

    International Nuclear Information System (INIS)

    Rossmann, Christian; Haemmerich, Dieter; Garrett-Mayer, Elizabeth; Rattay, Frank

    2014-01-01

    There is a lack of studies that examine the dynamics of heat-induced shrinkage of organ tissues. Clinical procedures such as radiofrequency ablation, microwave ablation or high-intensity focused ultrasound, use heat to treat diseases such as cancer and cardiac arrhythmia. When heat is applied to tissues, shrinkage occurs due to protein denaturation, dehydration and contraction of collagen at temperatures greater 50 °C. This is particularly relevant for image-guided procedures such as tumor ablation, where pre- and post-treatment images are compared and any changes in dimensions must be considered to avoid misinterpretations of the treatment outcome. We present data from ex vivo, isothermal shrinkage tests in porcine liver tissue, where axial changes in tissue length were recorded during 15 min of heating to temperatures between 60 and 95 °C. A mathematical model was developed to accurately describe the time and temperature-dependent shrinkage behavior. The shrinkage dynamics had the same characteristics independent of temperature; the estimated relative shrinkage, adjusted for time since death, after 15 min heating to temperatures of 60, 65, 75, 85 and 95 °C, was 12.3, 13.8, 16.6, 19.2 and 21.7%, respectively. Our results demonstrate the shrinkage dynamics of organ tissues, and suggest the importance of considering tissue shrinkage for thermal ablative treatments. (paper)

  3. Ablation spot area and impulse characteristics of polymers induced by burst irradiation of 1 μm laser pulses

    Science.gov (United States)

    Tsuruta, Hisashi; Dondelewski, Oskar; Katagiri, Yusuke; Wang, Bin; Sasoh, Akihiro

    2017-07-01

    The ablation spot area and impulse characteristics of various polymers were experimentally investigated against burst irradiation of Nd: YLF laser pulses with a pulse repetition frequency of 1 kHz, wavelength of 1047 nm, temporal pulse width of 10 ns, and single-pulse fluence of 6.1 J/cm2 to 17.1 J/cm2. The dependences of ablation area on the pulse energy from 0.72 to 7.48 mJ and the number of pulses from 10 pulses to 1000 pulses were investigated. In order to characterize their impulse performance as a function of fluence, which should not depend on ablation material, an effective ablation spot area was defined as that obtained against aluminum, 1050 A, as the reference material. An impulse that resulted from a single burst of 200 pulses was measured with a torsion-type impulse stand. Various impulse dependences on the fluence, which were not readily predicted from the optical properties of the material without ablation, were obtained. By fitting the experimentally measured impulse performance to Phipps and Sinko's model in the vapor regime, the effective absorption coefficient with laser ablation was evaluated, thereby resulting in three to six orders of magnitude larger than that without ablation. Among the polymers examined using polytetrafluoroethylene (PTFE) as the best volume absorbers, the highest momentum coupling coefficient of 66 μNs/J was obtained with an effective absorption coefficient more than six times smaller than that of the other polymers.

  4. Synthesis; characterization; and growth mechanism of Au/CdS heterostructured nanoflowers constructed with nanorods

    International Nuclear Information System (INIS)

    Kong Qingcheng; Wu Rong; Feng Xiumei; Ye Cui; Hu Guanqi; Hu Jianqiang; Chen Zhiwu

    2011-01-01

    Research highlights: → Well-defined and flower-shaped Au/CdS heterostructured nanocrystals were for the first time synthesized. → The Au-nanorod-induced hydrothermal strategy was for the first time used to fabricate metal/semiconductor heterostructured nanomaterials. → A preliminary crystal growing mechanism was also proposed for better understanding the growth process of other Au/semiconductor heterostructure nanocrystals. → The route devised here should also be extendable to fabricate other Au/semiconductor heterostructure nanomaterials. - Abstract: Gold/sulfide cadmium (Au/CdS) heterostructured nanocrystals with a flower-like shape were for the first time synthesized through an Au-nanorod-induced hydrothermal method. The Au/CdS nanoflowers possessed the average size of about 350 nm while the nanorods constructing the nanoflowers had the average diameter, length, and aspect ratio of approximately 50 nm, 100 nm, and 2, respectively. Our method suggested that Au-nanorods played a decisive role in the formation of Au/CdS heterostructured nanoflowers, demonstrated by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), energy-dispersive X-ray spectroscopy (EDS), and UV-visible absorption spectroscopy measurements. A preliminary experiment model to reveal the Au/CdS growth mechanism was also put forward. The route devised here should be perhaps extendable to fabricate other Au/semiconductor heterostructured nanomaterials, and the Au/CdS nanoflowers may have potential applications in nanodevices, biolabels, and clinical detection and diagnosis.

  5. Optomechanically induced transparency with Bose–Einstein condensate in double-cavity optomechanical system

    Science.gov (United States)

    Liu, Li-Wei; Gengzang, Duo-Jie; An, Xiu-Jia; Wang, Pei-Yu

    2018-03-01

    We propose a novel technique of generating multiple optomechanically induced transparency (OMIT) of a weak probe field in hybrid optomechanical system. This system consists of a cigar-shaped Bose–Einstein condensate (BEC), trapped inside each high finesse Fabry-Pérot cavity. In the resolved sideband regime, the analytic solutions of the absorption and the dispersion spectrum are given. The tunneling strength of the two resonators and the coupling parameters of the each BEC in combination with the cavity field have the appearance of three distinct OMIT windows in the absorption spectrum. Furthermore, whether there is BEC in each cavity is a key factor in the number of OMIT windows determination. The technique presented may have potential applications in quantum engineering and quantum information networks. Project supported by the National Natural Science Foundation of China (Grant Nos. 11564034, 11105062, and 21663026) and the Scientific Research Funds of College of Electrical Engineering, Northwest University, China (Grant No. xbmuyjrc201115).

  6. Highly Ordered Periodic Au/TiO₂ Hetero-Nanostructures for Plasmon-Induced Enhancement of the Activity and Stability for Ethanol Electro-oxidation.

    Science.gov (United States)

    Jin, Zhao; Wang, Qiyu; Zheng, Weitao; Cui, Xiaoqiang

    2016-03-02

    The catalytic electro-oxidation of ethanol is the essential technique for direct alcohol fuel cells (DAFCs) in the area of alternative energy for the ability of converting the chemical energy of alcohol into the electric energy directly. Developing highly efficient and stable electrode materials with antipoisoning ability for ethanol electro-oxidation remains a challenge. A highly ordered periodic Au-nanoparticle (NP)-decorated bilayer TiO2 nanotube (BTNT) heteronanostructure was fabricated by a two-step anodic oxidation of Ti foil and the subsequent photoreduction of HAuCl4. The plasmon-induced charge separation on the heterointerface of Au/TiO2 electrode enhances the electrocatalytic activity and stability for the ethanol oxidation under visible light irradiation. The highly ordered periodic heterostructure on the electrode surface enhanced the light harvesting and led to the greater performance of ethanol electro-oxidation under irradiation compared with the ordinary Au NPs-decorated monolayer TiO2 nanotube (MTNT). This novel Au/TiO2 electrode also performed a self-cleaning property under visible light attributed to the enhanced electro-oxidation of the adsorbed intermediates. This light-driven enhancement of the electrochemical performances provides a development strategy for the design and construction of DAFCs.

  7. Water Condensation

    DEFF Research Database (Denmark)

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund

    2014-01-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics......, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address...

  8. Topographically supported customized ablation for the management of decentered laser in situ keratomileusis.

    Science.gov (United States)

    Kymionis, George D; Panagopoulou, Sophia I; Aslanides, Ioannis M; Plainis, Sotiris; Astyrakakis, Nikolaos; Pallikaris, Ioannis G

    2004-05-01

    To evaluate the efficacy, predictability, and safety of topographically supported customized ablations (TOSCAs) for decentered ablations following laser in situ keratomileusis (LASIK). Prospective nonrandomized clinical trial. Nine patients (11 eyes) with LASIK-induced decentered ablations underwent TOSCA following flap lifting. Topographically supported customized ablation was performed using a corneal topographer to obtain a customized ablation profile, combined with a flying spot laser. Mean follow-up was 9.22 +/- 2.82 months (range 6-12 months). No intra- or postoperative complications were observed. Manifest refraction (spherical equivalent) did not change significantly (pre-TOSCA: -0.14 +/- 1.58 diopters [range, -1.75 to +3.00 diopters] to +0.46 +/- 1.02 diopters [range, -1.00 to +1.75 diopters]; P =.76), whereas there was a statistically significant reduction in the refractive astigmatism (pre-TOSCA: -1.55 +/- 0.60 diopters [range, -3.00 to -0.75 diopters] to -0.70 +/- 0.56 diopters [range, -2.00 to -0.25 diopters]; P =.003). Mean uncorrected visual acuity improved significantly (P <.001) from 0.45 +/- 0.16 (range, 0.2-0.7) to 0.76 +/- 0.29 (range, 0.2-1.2) at last follow-up. Mean best-corrected visual acuity improved from 0.74 +/- 0.22 (range, 0.4-1.0) to 0.95 +/- 0.20 (range, 0.6-1.2; P =.002). Eccentricity showed a statistically significant reduction after TOSCA treatment (pre-TOSCA: 1.59 +/- 0.46 mm [range, 0.88-2.23 mm]; post-TOSCA: 0.29 +/- 0.09 mm [range, 0.18-0.44 mm]; P <.001). In our small sample, enhancement LASIK procedures with TOSCA appear to improve uncorrected and best-corrected visual acuity as well as eccentricity in patients with LASIK-induced decentered ablation.

  9. The quaternary arsenide oxides Ce{sub 9}Au{sub 5-x}As{sub 8}O{sub 6} and Pr{sub 9}Au{sub 5-x}As{sub 8}O{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Timo; Hoffmann, Rolf-Dieter; Poettgen, Rainer [Univ. Muenster (Germany). Inst. fuer Anorganische und Analytische Chemie

    2016-07-01

    The quaternary gold arsenide oxides Ce{sub 9}Au{sub 5-x}As{sub 8}O{sub 6} and Pr{sub 9}Au{sub 5-x}As{sub 8}O{sub 6} were synthesized from the rare earth elements (RE), rare earth oxides, arsenic and gold powder at maximum annealing temperatures of 1173 K. The structures were refined from single crystal X-ray diffractometer data: Pnnm, a=1321.64(6) pm, b=4073.0(3), c=423.96(2), wR2=0.0842, 3106 F{sup 2} values, 160 variables for Ce{sub 9}Au{sub 4.91(4)}As{sub 8}O{sub 6} and Pnnm, a=1315.01(4), b=4052.87(8), c=420.68(1) pm, wR2=0.0865, 5313 F{sup 2} values, 160 variables for Pr{sub 9}Au{sub 4.75(1)}As{sub 8}O{sub 6}. They represent a new structure type and show a further extension of pnictide oxide crystal chemistry. A complex polyanionic gold arsenide network [Au{sub 5}As{sub 8}]{sup 15-} (with some disorder in the gold substructure) is charge compensated with polycationic strands of condensed edge-sharing O rate at RE{sub 4/4} and O rate at RE{sub 4/3} tetrahedra ([RE{sub 4}O{sub 3}]{sub 2}{sup 12+}) as well as RE{sup 3+} cations in cavities.

  10. A novel platform designed by Au core/inorganic shell structure conjugated onto MTX/LDH for chemo-photothermal therapy.

    Science.gov (United States)

    Tian, De-Ying; Wang, Wei-Yuan; Li, Shu-Ping; Li, Xiao-Dong; Sha, Zhao-Lin

    2016-05-30

    A novel platform making up of methotrexate intercalated layered double hydroxide (MTX/LDH) hybrid doped with gold nanoparticles (NPs) may have great potential both in chemo-photothermal therapy and the simultaneous drug delivery. In this paper, a promising platform of Au@PDDA-MTX/LDH was developed for anti-tumor drug delivery and synergistic therapy. Firstly, Au NPs were coated using Layer-by-Layer (LbL) technology by alternate deposition of poly (diallyldimethylammonium chloride) (PDDA) and MTX molecules, and then the resulting core-shell structures (named as Au@PDDA-MTX) were directly conjugated onto the surface of MTX/LDH hybrid by electrostatic attraction to afford Au@PDDA-MTX/LDH NPs. Here MTX was used as both the agent for surface modification and the anti-tumor drug for chemotherapy. The platform of Au@PDDA-MTX/LDH NPs not only had a high drug-loading capacity, but also showed excellent colloidal stability and interesting pH-responsive release profile. In vitro drug release studies demonstrated that MTX released from Au@PDDA-MTX/LDH was relatively slow under normal physiological pH, but it was enhanced significantly at a weak acidic pH value. Furthermore, the combined treatment of cancer cells by using Au@PDDA-MTX/LDH for synergistic hyperthermia ablation and chemotherapy was demonstrated to exhibit higher therapeutic efficacy than either single treatment alone, underscoring the great potential of the platform for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. X-ray ablation measurements and modeling for ICF applications

    International Nuclear Information System (INIS)

    Anderson, A.T.

    1996-09-01

    X-ray ablation of material from the first wall and other components of an ICF (Inertial Confinement Fusion) chamber is a major threat to the laser final optics. Material condensing on these optics after a shot may cause damage with subsequent laser shots. To ensure the successful operation of the ICF facility, removal rates must be predicted accurately. The goal for this dissertation is to develop an experimentally validated x-ray response model, with particular application to the National Ignition Facility (NIF). Accurate knowledge of the x-ray and debris emissions from ICF targets is a critical first step in the process of predicting the performance of the target chamber system. A number of 1-D numerical simulations of NIF targets have been run to characterize target output in terms of energy, angular distribution, spectrum, and pulse shape. Scaling of output characteristics with variations of both target yield and hohlraum wall thickness are also described. Experiments have been conducted at the Nova laser on the effects of relevant x-ray fluences on various materials. The response was diagnosed using post-shot examinations of the surfaces with scanning electron microscope and atomic force microscope instruments. Judgments were made about the dominant removal mechanisms for each material. Measurements of removal depths were made to provide data for the modeling. The finite difference ablation code developed here (ABLATOR) combines the thermomechanical response of materials to x-rays with models of various removal mechanisms. The former aspect refers to energy deposition in such small characteristic depths (∼ micron) that thermal conduction and hydrodynamic motion are significant effects on the nanosecond time scale. The material removal models use the resulting time histories of temperature and pressure-profiles, along with ancillary local conditions, to predict rates of surface vaporization and the onset of conditions that would lead to spallation

  12. Modification of a Phenolic Resin with Epoxy- and Methacrylate-Functionalized Silica Sols to Improve the Ablation Resistance of Their Glass Fiber-Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Yu Hu

    2014-01-01

    Full Text Available Functionalized silica sols were obtained by the hydrolytic condensation of (γ-methacryloxypropyltrimethoxysilane (MPMS, (γ-glycidyloxypropyltrimethoxysilane (GPMS and tetraethoxysilane (TEOS. Three different sols were obtained: MPS (derived from MPMS and TEOS, GPS-MPS (derived from GPMS, MPMS and TEOS, and GPSD (derived from GPMS, TEOS and diglycidyl ether of bisphenol A, DGEBA. These silica sols were mixed with a phenolic resin (PR. Ethylenediamine was used as a hardener for epoxy-functionalized sols and benzoyl peroxide was used as an initiator of the free-radical polymerization of methacrylate-functionalized silica sols. Glass fiber-reinforced composites were obtained from the neat PR and MPS-PR, GPS-MPS-PR and GPSD-PR. The resulting composites were evaluated as ablation resistant materials in an acetylene-oxygen flame. A large increase in the ablation resistance was observed when the PR was modified by the functionalized silica sols. The ablation resistance of the composites decreased as follows: GPSD-PR > MPS-PR > GPS-MPS-PR > PR.

  13. Controlled growth of Au nanoparticles in co-evaporated metal/polymer composite films and their optical and electrical properties

    Science.gov (United States)

    Takele, H.; Schürmann, U.; Greve, H.; Paretkar, D.; Zaporojtchenko, V.; Faupel, F.

    2006-02-01

    Nanocomposite films containing Au nanoparticles embedded in a polymer matrix were prepared by vapour phase co-deposition of Au and polymers (Teflon AF and Poly(α -methylstyrene)) in high vacuum. The microstructure of the composite materials as well as metal content strongly depend on the condensation coefficient of the Au atoms, the deposition rates of the components, the substrate temperature, and the type of polymer matrix. The condensation coefficient, which varies between 0.03 and 1, was determined from energy dispersive X-ray spectrometer (EDX) and surface profilometry. It is shown that the microstructure of nanocomposites (size, size distribution, and interparticle separation of metal clusters), which was determined by transmission electron microscopy, can be controlled by the deposition parameters and the choice of polymer matrix. The optical absorption in the visible region due to the particle plasmon resonance has a strong dependence on the metal filling factor. The correlation between the microstructure of nanocomposites and optical properties, studied using UV-Vis spectroscopy, was also established. Further more, the electrical properties of the composites were studied as a function of the metal volume fraction. It was observed that the nanocomposite films exhibit a percolation threshold at a metal volume fraction of 0.43 and 0.20 for gold nanoclusters in Teflon AF and Poly(α-methylstyrene), respectively.

  14. Microstructural evolution of Au/TiO{sub 2} nanocomposite films: The influence of Au concentration and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J., E-mail: joelborges@fisica.uminho.pt [Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Kubart, T.; Kumar, S.; Leifer, K. [Solid-State Electronics, Department of Engineering Sciences, Uppsala University, P.O. Box 534, Uppsala SE-751 21 (Sweden); Rodrigues, M.S. [Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Duarte, N.; Martins, B.; Dias, J.P. [Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Vaz, F. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-04-01

    Nanocomposite thin films consisting of a dielectric matrix, such as titanium oxide (TiO{sub 2}), with embedded gold (Au) nanoparticles were prepared and will be analysed and discussed in detail in the present work. The evolution of morphological and structural features was studied for a wide range of Au concentrations and for annealing treatments in air, for temperatures ranging from 200 to 800 °C. Major findings revealed that for low Au atomic concentrations (at.%), there are only traces of clustering, and just for relatively high annealing temperatures, T ≥ 500 °C. Furthermore, the number of Au nanoparticles is extremely low, even for the highest annealing temperature, T = 800 °C. It is noteworthy that the TiO{sub 2} matrix also crystallizes in the anatase phase for annealing temperatures above 300 °C. For intermediate Au contents (5 at.% ≤ C{sub Au} ≤ 15 at.%), the formation of gold nanoclusters was much more evident, beginning at lower annealing temperatures (T ≥ 200 °C) with sizes ranging from 2 to 25 nm as the temperature increased. A change in the matrix crystallization from anatase to rutile was also observed in this intermediate range of compositions. For the highest Au concentrations (> 20 at.%), the films tended to form relatively larger clusters, with sizes above 20 nm (for T ≥ 400 °C). It is demonstrated that the structural and morphological characteristics of the films are strongly affected by the annealing temperature, as well as by the particular amounts, size and distribution of the Au nanoparticles dispersed in the TiO{sub 2} matrix. - Highlights: • Au:TiO{sub 2} films were produced by magnetron sputtering and post-deposition annealing. • The Au concentration in the films increases with the Au pellet area. • Annealing induced microstructural changes in the films. • The nanoparticle size evolution with temperature depends on the Au concentration.

  15. Conditional and specific cell ablation in the marine annelid Platynereis dumerilii.

    Directory of Open Access Journals (Sweden)

    Vinoth Babu Veedin-Rajan

    Full Text Available The marine annelid Platynereis dumerilii has become a model system for evo-devo, neurobiology and marine biology. The functional assessment of its cell types, however, has so far been very limited. Here we report on the establishment of a generally applicable, cell type specific ablation technique to overcome this restriction. Using a transgenic strain expressing the bacterial enzyme nitroreductase (ntr under the control of the worm's r-opsin1 locus, we show that the demarcated photoreceptor cells can be specifically ablated by the addition of the prodrug metronidazole (mtz. TUNEL staining indicates that ntr expressing cells undergo apoptotic cell death. As we used a transgenic strain co-expressing ntr with enhanced green fluorescent protein (egfp coding sequence, we were able to validate the ablation of photoreceptors not only in fixed tissue, using r-opsin1 riboprobes, but also by monitoring eGFP+ cells in live animals. The specificity of the ablation was demonstrated by the normal presence of the eye pigment cells, as well as of neuronal markers expressed in other cells of the brain, such as phc2, tyrosine hydroxylase and brn1/2/4. Additional analyses of the position of DAPI stained nuclei, the brain's overall neuronal scaffold, as well as the positions and projections of serotonergic neurons further confirmed that mtz treatment did not induce general abnormalities in the worm's brain. As the prodrug is administered by adding it to the water, targeted ablation of specific cell types can be achieved throughout the life of the animal. We show that ablation conditions need to be adjusted to the size of the worms, likely due to differences in the penetration of the prodrug, and establish ablation conditions for worms containing 10 to 55 segments. Our results establish mtz/ntr mediated conditional cell ablation as a powerful functional tool in Platynereis.

  16. Multiplicity and contiguity of ablation mechanisms in laser-assisted analytical micro-sampling

    International Nuclear Information System (INIS)

    Bleiner, Davide; Bogaerts, Annemie

    2006-01-01

    Laser ablation is implemented in several scientific and technological fields, as well as a rapid sample introduction technique in elemental and trace analysis. At high laser fluence, the ejection of micro-sized droplets causes the enhancement of the surface recession speed and depth resolution degradation as well as the alteration of the sampling stoichiometry. The origin of such large particles seems to be due to at least two different processes, phase explosion and melt splashing. Experimental evidence for both was found in metallic matrices, whereas non-metallic samples showed more complex phenomena like cracking. The spatial distribution of the beam energy profile is responsible for significant differences in the ablation mechanism across the irradiated region and for heterogeneous sampling. Under Gaussian irradiance distribution, the center of the crater, where the irradiance is the highest, experienced a fast heating with rapid ejection of a mixture of particles and vapor (spinodal breakdown). The crater periphery was subjected to more modest irradiation, with melt mobilization and walls formation. The overall resulting particle size distribution was composed of an abundant nano-sized fraction, produced by vapor condensation, and a micro-sized fraction during melt expulsion

  17. Bose-Einstein condensation of paraxial light

    Science.gov (United States)

    Klaers, J.; Schmitt, J.; Damm, T.; Vewinger, F.; Weitz, M.

    2011-10-01

    Photons, due to the virtually vanishing photon-photon interaction, constitute to very good approximation an ideal Bose gas, but owing to the vanishing chemical potential a (free) photon gas does not show Bose-Einstein condensation. However, this is not necessarily true for a lower-dimensional photon gas. By means of a fluorescence induced thermalization process in an optical microcavity one can achieve a thermal photon gas with freely adjustable chemical potential. Experimentally, we have observed thermalization and subsequently Bose-Einstein condensation of the photon gas at room temperature. In this paper, we give a detailed description of the experiment, which is based on a dye-filled optical microcavity, acting as a white-wall box for photons. Thermalization is achieved in a photon number-conserving way by photon scattering off the dye molecules, and the cavity mirrors both provide an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. The experimental results are in good agreement with both a statistical and a simple rate equation model, describing the properties of the thermalized photon gas.

  18. Ionic mixing on the Au/InP structures

    International Nuclear Information System (INIS)

    L'Haridon, H.; Chaplain, R.; Gauneau, M.; Guivarc'h, A.; Pelous, G.; Dearnaley, G.; Goode, P.D.

    1985-01-01

    The reactions induced by Zn + implantations near the interface of Au/InP contacts have been studied by using scanning electron microscopy, X-ray diffraction, He + Rutherford backscattering, secondary ion mass spectrometry and current-voltage measurements. A 5 x 10 14 Zn ions cm -2 dose does not induce compound formation but accelerates the growth of Au 3 In and of Au 2 P 3 patches during post-annealing treatment. After a 5 x 10 15 Zn ions cm -2 implantation, many compounds, different from those obtained by a thermal anneal, are detected. These compounds, which depend on the implantation temperature (25 or 200 0 C), have a layered structure. In this case no Au 2 P 3 is observed. However, for the range of doses (from 10 14 to 5 x 10 15 Zn ions cm -2 ), the temperatures of implantation (25 and 200 0 C) and the range of annealing temperatures (from 320 to 450 0 C) that were studied, no contact with a low resistivity is formed. The electrical properties are in fact limited by an InP layer damaged by the ion implantation in which the zinc atoms are trapped in an electrically inactive form. (Auth.)

  19. Mechanisms for enlarging lesion size during irrigated tip radiofrequency ablation

    DEFF Research Database (Denmark)

    Petersen, Helen Høgh; Roman-Gonzalez, Javier; Johnson, Susan B

    2004-01-01

    INTRODUCTION: Irrigated tip radiofrequency ablation of cardiac arrhythmias was developed to increase the size of the radiofrequency-induced lesion, since cooling of the electrode tip allows use of higher power settings. The purpose of this study was to determine if the increased lesion size during...

  20. Annealing-induced recovery of indents in thin Au(Fe bilayer films

    Directory of Open Access Journals (Sweden)

    Anna Kosinova

    2016-12-01

    Full Text Available We employed depth-sensing nanoindentation to produce ordered arrays of indents on the surface of 50 nm-thick Au(Fe films deposited on sapphire substrates. The maximum depth of the indents was approximately one-half of the film thickness. The indented films were annealed at a temperature of 700 °C in a forming gas atmosphere. While the onset of solid-state dewetting was observed in the unperturbed regions of the film, no holes to the substrate were observed in the indented regions. Instead, the film annealing resulted in the formation of hillocks at the indent locations, followed by their dissipation and the formation of shallow depressions nearby after subsequent annealing treatments. This annealing-induced evolution of nanoindents was interpreted in terms of annihilation of dislocation loops generated during indentation, accompanied by the formation of nanopores at the grain boundaries and their subsequent dissolution. The application of the processes uncovered in this work show great potential for the patterning of thin films.

  1. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF.

    Science.gov (United States)

    Martinez, D A; Smalyuk, V A; Kane, J O; Casner, A; Liberatore, S; Masse, L P

    2015-05-29

    We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130  μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  2. Asymptomatic Ventricular Pre-excitation: Between Sudden Cardiac Death and Catheter Ablation.

    Science.gov (United States)

    Brugada, Josep; Keegan, Roberto

    2018-03-01

    Debate about the best clinical approach to the management of asymptomatic patients with ventricular pre-excitation and advice on whether or not to invasively stratify and ablate is on-going. Weak evidence about the real risk of sudden cardiac death and the potential benefit of catheter ablation has probably prevented the clarification of action in this not infrequent and sometimes conflicting clinical situation. After analysing all available data, real evidence-based medicine could be the alternative strategy for managing this group of patients. According to recent surveys, most electrophysiologists invasively stratify. Based on all accepted risk factors - younger age, male, associated structural heart disease, posteroseptal localisation, ability of the accessory pathway to conduct anterogradely at short intervals of ≤250 milliseconds and inducibility of sustained atrioventricular re-entrant tachycardia and/or atrial fibrillation - a shared decisionmaking process on catheter ablation is proposed.

  3. Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids.

    Science.gov (United States)

    Martin, Gregory G; Landrock, Danilo; Chung, Sarah; Dangott, Lawrence J; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm

    2017-01-01

    The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids. The impact of Fabp1 gene ablation (LKO) on the effect of high-fat diet (HFD) on brain and plasma endocannabinoid levels was examined and data expressed for each parameter as the ratio of high-fat diet/control diet. In male wild-type mice, HFD markedly increased brain N-acylethanolamides, but not 2-monoacylglycerols. LKO blocked these effects of HFD in male mice. In female wild-type mice, HFD slightly decreased or did not alter these endocannabinoids as compared with male wild type. LKO did not block the HFD effects in female mice. The HFD-induced increase in brain arachidonic acid-derived arachidonoylethanolamide in males correlated with increased brain-free and total arachidonic acid. The ability of LKO to block the HFD-induced increase in brain arachidonoylethanolamide correlated with reduced ability of HFD to increase brain-free and total arachidonic acid in males. In females, brain-free and total arachidonic acid levels were much less affected by either HFD or LKO in the context of HFD. These data showed that LKO markedly diminished the impact of HFD on brain endocannabinoid levels, especially in male mice. © 2016 International Society for Neurochemistry.

  4. Anomalous interfacial tension temperature dependence of condensed phase drops in magnetic fluids

    Science.gov (United States)

    Ivanov, Aleksey S.

    2018-05-01

    Interfacial tension temperature dependence σ(T) of the condensed phase (drop-like aggregates) in magnetic fluids undergoing field induced phase transition of the "gas-liquid" type was studied experimentally. Numerical analysis of the experimental data has revealed the anomalous (if compared to ordinary one-component fluids) behavior of the σ(T) function for all tested magnetic colloid samples: the condensed phase drops at high T ≈ 75 C exhibit higher σ(T) than the drops condensed at low T ≈ 20 C. The σ(T) behavior is explained by the polydispersity of magnetic colloids: at high T, only the largest colloidal particles are able to take part in the field induced condensation; thus, the increase of T causes the growth of the average particle diameters inside the drop-like aggregates, what in its turn results in the growth of σ(T). The result is confirmed by qualitative theoretical estimations and qualitative experimental observation of the condensed phase "evaporation" process after the applied magnetic field is removed: the drops that are formed due to capillary instability of the drop-like aggregates retract by one order of magnitude faster at high T, and the evaporation of the drops slows down at high T.

  5. Cluster-to-cluster transformation among Au6, Au8 and Au11 nanoclusters.

    Science.gov (United States)

    Ren, Xiuqing; Fu, Junhong; Lin, Xinzhang; Fu, Xuemei; Yan, Jinghui; Wu, Ren'an; Liu, Chao; Huang, Jiahui

    2018-05-22

    We present the cluster-to-cluster transformations among three gold nanoclusters, [Au6(dppp)4]2+ (Au6), [Au8(dppp)4Cl2]2+ (Au8) and [Au11(dppp)5]3+ (Au11). The conversion process follows a rule that states that the transformation of a small cluster to a large cluster is achieved through an oxidation process with an oxidizing agent (H2O2) or with heating, while the conversion of a large cluster to a small one occurs through a reduction process with a reducing agent (NaBH4). All the reactions were monitored using UV-Vis spectroscopy and ESI-MS. This work may provide an alternative approach to the synthesis of novel gold nanoclusters and a further understanding of the structural transformation relationship of gold nanoclusters.

  6. A white-emitting ZnO-Au nanocomposite and its SERS applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lanlan [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhao Dongxu, E-mail: dxzhao2000@yahoo.com.cn [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Ding Meng; Zhao Haifeng; Zhang Zhenzhong; Li Binghui; Shen Dezhen [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China)

    2012-08-01

    We reported a simple method to synthesize ZnO-Au nanocomposites (hybrid A) by combining hydrothermal and electric beam evaporation deposition method. It was found that Au deposition time takes an important role in the generation of Au nanoparticles. Changing Au deposition time makes the thickness of Au formed on ZnO nanorods increase from 10 nm to 70 nm. On the other hand, white-emitting ZnO-Au nanocomposites (hybrid B) were obtained after treating hybrid A with HCl solution. Thanks to the covering of Au film and acid etching, it induces many defects on the surface of ZnO NRs, and largely enhances the visible emission of surviving ZnO and finally generates white emission on Au mesocrystals (hybrid B). Both of the ZnO-Au hybrids (A and B) can be applied as substrates in surface-enhanced Raman scattering (SERS) measurement. A typical probe molecule, 4-ATP was used to test the SERS activity of the ZnO-Au composites and the results indicated good Raman activity on the substrates.

  7. New dynamics information from experimental results obtained in d-Au collisions at RHIC-BNL energies

    International Nuclear Information System (INIS)

    Jipa, Alexandru

    2004-01-01

    During the last runs d-Au collisions at √s NN = 200 GeV have been investigated at RHIC-BNL using the BRAHMS Experiment. Some interesting experimental results on charged particle multiplicities, rapidity distributions, transverse momentum spectra, antiparticle to particle ratios, participant spectator evolution have been obtained. In this work the most interesting results are presented for different rapidity and collision centrality ranges. Taking into account the importance of the collision geometry and collision symmetry in the collision dynamics, comparisons with the similar experimental results obtained in Au-Au collisions have been done. New interesting results can be reported. The most significant are related to the evolution of the nuclear modification factor with rapidity and collision centrality. The high transverse momentum suppression and the behaviours in different rapidity and centrality ranges suggest strong initial state effects. These effects could be related to the gluonic structure of the colliding nuclei. Some insights on the Color Glass Condensate formation are possible. (author)

  8. IR Laser-induced Metal Ablation and Dielectric Breakdown in Benzene

    Czech Academy of Sciences Publication Activity Database

    Santos, M.; Diaz, L.; Camacho, J.; Urbanová, Markéta; Pokorná, Dana; Šubrt, Jan; Bakardjieva, Snejana; Bastl, Zdeněk; Pola, Josef

    2010-01-01

    Roč. 53, č. 1 (2010), s. 23-28 ISSN 1350-4495 R&D Projects: GA AV ČR IAA400720619; GA MŠk LC523 Grant - others:MEC(ES) CTQ2007/60177/BQU Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : metal ablation * benzene decomposition * nanosized carbon Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.926, year: 2010

  9. Dynamics of the Bose-Einstein condensate: quasi-one-dimension and beyond

    International Nuclear Information System (INIS)

    Carr, Lincoln D.; Leung, Mary Ann; Mills College, Oakland, CA 94613-1301; Reinhardt, William P.; Department of Chemistry, University of Washington, Seattle, WA 98195-1700

    2000-01-01

    It is shown that the quasi-one-dimensional Bose-Einstein condensate is experimentally accessible and rich in intriguing phenomena. We demonstrate numerically and analytically the existence, stability and perturbation-induced dynamics of all types of stationary states of the quasi-one-dimensional nonlinear Schroedinger equation for both repulsive and attractive cases. Among our results are: the connection between stationary states and solitons; creation of vortices from such states; manipulation of such states with simple phase profiles; demonstration of the fragility of the condensate phase in response to shock; and a robust stabilization of the attractive Bose-Einstein condensate. (author)

  10. RINGED SUBSTRUCTURE AND A GAP AT 1 au IN THE NEAREST PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Sean M.; Wilner, David J.; Bai, Xue-Ning; Öberg, Karin I.; Ricci, Luca [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Zhu, Zhaohuan [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Birnstiel, Tilman [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Carpenter, John M. [Joint ALMA Observatory (JAO), Alonso de Cordova 3107, Vitacura-Santiago de Chile (Chile); Pérez, Laura M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Hughes, A. Meredith [Department of Astronomy, Wesleyan University, Van Vleck Observatory, 96 Foss Hill Drive, Middletown, CT 06457 (United States); Isella, Andrea, E-mail: sandrews@cfa.harvard.edu [Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, TX 77005 (United States)

    2016-04-01

    We present long baseline Atacama Large Millimeter/submillimeter Array (ALMA) observations of the 870 μm continuum emission from the nearest gas-rich protoplanetary disk, around TW Hya, that trace millimeter-sized particles down to spatial scales as small as 1 au (20 mas). These data reveal a series of concentric ring-shaped substructures in the form of bright zones and narrow dark annuli (1–6 au) with modest contrasts (5%–30%). We associate these features with concentrations of solids that have had their inward radial drift slowed or stopped, presumably at local gas pressure maxima. No significant non-axisymmetric structures are detected. Some of the observed features occur near temperatures that may be associated with the condensation fronts of major volatile species, but the relatively small brightness contrasts may also be a consequence of magnetized disk evolution (the so-called zonal flows). Other features, particularly a narrow dark annulus located only 1 au from the star, could indicate interactions between the disk and young planets. These data signal that ordered substructures on ∼au scales can be common, fundamental factors in disk evolution and that high-resolution microwave imaging can help characterize them during the epoch of planet formation.

  11. A tubular electrode for radiofrequency ablation therapy

    KAUST Repository

    Antunes, Carlos Lemos Lemos Lemos

    2012-07-06

    Purpose – Due to its good mechanical and biocompatibility characteristics, nitinol SEMS is a popular endoprothesis used for relieving stricture problems in hollow organs due to carcinomas. Besides its mechanical application, SEMS can be regarded as well as potential electrode for performing RF ablation therapy on the tumor. The purpose of this work is to perform numerical and experimental analyses in order to characterize the lesion volume induced in biological tissue using this kind of tubular electrode. Design/methodology/approach – Data concerning electrical conductivity and dimension of the damaged tissue after RF ablation procedure were obtained from ex vivo samples. Next, numerical models using 3D finite element method were obtained reassembling the conditions considered at experimentation setup and results were compared. Findings – Numerical and experimental results show that a regular volume of damaged tissue can be obtained considering this type of electrode. Also, results obtained from numerical simulation are close to those obtained by experimentation. Originality/value – SEMSs, commonly used as devices to minimize obstruction problems due to the growth of tumors, may still be considered as an active electrode for RF ablation procedures. A method considering this observation is presented in this paper. Also, numerical simulation can be regarded in this case as a tool for determining the lesion volume.

  12. Laboratory Simulations of Micrometeoroid Ablation

    Science.gov (United States)

    Thomas, Evan Williamson

    Each day, several tons of meteoric material enters Earth's atmosphere, the majority of which consist of small dust particles (micrometeoroids) that completely ablate at high altitudes. The dust input has been suggested to play a role in a variety of phenomena including: layers of metal atoms and ions, nucleation of noctilucent clouds, effects on stratospheric aerosols and ozone chemistry, and the fertilization of the ocean with bio-available iron. Furthermore, a correct understanding of the dust input to the Earth provides constraints on inner solar system dust models. Various methods are used to measure the dust input to the Earth including satellite detectors, radar, lidar, rocket-borne detectors, ice core and deep-sea sediment analysis. However, the best way to interpret each of these measurements is uncertain, which leads to large uncertainties in the total dust input. To better understand the ablation process, and thereby reduce uncertainties in micrometeoroid ablation measurements, a facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to accelerate iron particles to relevant meteoric velocities (10-70 km/s). The particles are then introduced into a chamber pressurized with a target gas, and they partially or completely ablate over a short distance. An array of diagnostics then measure, with timing and spatial resolution, the charge and light that is generated in the ablation process. In this thesis, we present results from the newly developed ablation facility. The ionization coefficient, an important parameter for interpreting meteor radar measurements, is measured for various target gases. Furthermore, experimental ablation measurements are compared to predictions from commonly used ablation models. In light of these measurements, implications to the broader context of meteor ablation are discussed.

  13. Performance of evaporative condensers

    Energy Technology Data Exchange (ETDEWEB)

    Ettouney, Hisham M.; El-Dessouky, Hisham T.; Bouhamra, Walid; Al-Azmi, Bader

    2001-07-01

    Experimental investigation is conducted to study the performance of evaporative condensers/coolers. The analysis includes development of correlations for the external heat transfer coefficient and the system efficiency. The evaporative condenser includes two finned-tube heat exchangers. The system is designed to allow for operation of a single condenser, two condensers in parallel, and two condensers in series. The analysis is performed as a function of the water-to-air mass flow rate ratio (L/G) and the steam temperature. Also, comparison is made between the performance of the evaporative condenser and same device as an air-cooled condenser. Analysis of the collected data shows that the system efficiency increases at lower L/G ratios and higher steam temperatures. The system efficiency for various configurations for the evaporative condenser varies between 97% and 99%. Lower efficiencies are obtained for the air-cooled condenser, with values between 88% and 92%. The highest efficiency is found for the two condensers in series, followed by two condensers in parallel and then the single condenser. The parallel condenser configuration can handle a larger amount of inlet steam and can provide the required system efficiency and degree of subcooling. The correlation for the system efficiency gives a simple tool for preliminary system design. The correlation developed for the external heat transfer coefficient is found to be consistent with the available literature data. (Author)

  14. Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches

    Science.gov (United States)

    Qiu, Haodong; Wang, Hong; Ke, Feixiang

    2014-06-01

    The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

  15. Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Haodong; Wang, Hong, E-mail: ewanghong@ntu.edu.sg [NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ke, Feixiang [Temasek Laboratories at Nanyang Technological University, Research Techno Plaza, Singapore 637553 (Singapore)

    2014-06-23

    The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

  16. Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches

    International Nuclear Information System (INIS)

    Qiu, Haodong; Wang, Hong; Ke, Feixiang

    2014-01-01

    The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

  17. Temporal and spatial effects of ablation plume on number density distribution of droplets in an aerosol measured by laser-induced breakdown

    International Nuclear Information System (INIS)

    Yashiro, H.; Kakehata, M.

    2013-01-01

    We proposed and experimentally demonstrated a novel method of evaluating the number density of droplets in an aerosol by laser-induced breakdown. The number density of droplets is evaluated from the volume in which the laser intensity exceeds the breakdown threshold intensity for droplets, and the number of droplets in this volume, which is evaluated by the experimentally observed breakdown probability. This measurement method requires a large number of laser shots for not only precise measurement but also highly temporally and spatially resolved density distribution in aerosol. Laser ablation plumes ejected from liquid droplets generated by breakdown disturb the density around the measurement points. Therefore, the recovery time of the density determines the maximum repetition rate of the probe laser irradiating a fixed point. The expansion range of the ablation plume determines the minimum distance at which the measurement points are unaffected by a neighboring breakdown when multiple laser beams are simultaneously irradiated. These laser irradiation procedures enable the measurement of the number density distribution of droplets in an aerosol at a large number of points within a short measurement time.

  18. Temporal and spatial effects of ablation plume on number density distribution of droplets in an aerosol measured by laser-induced breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Yashiro, H.; Kakehata, M. [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2013-05-07

    We proposed and experimentally demonstrated a novel method of evaluating the number density of droplets in an aerosol by laser-induced breakdown. The number density of droplets is evaluated from the volume in which the laser intensity exceeds the breakdown threshold intensity for droplets, and the number of droplets in this volume, which is evaluated by the experimentally observed breakdown probability. This measurement method requires a large number of laser shots for not only precise measurement but also highly temporally and spatially resolved density distribution in aerosol. Laser ablation plumes ejected from liquid droplets generated by breakdown disturb the density around the measurement points. Therefore, the recovery time of the density determines the maximum repetition rate of the probe laser irradiating a fixed point. The expansion range of the ablation plume determines the minimum distance at which the measurement points are unaffected by a neighboring breakdown when multiple laser beams are simultaneously irradiated. These laser irradiation procedures enable the measurement of the number density distribution of droplets in an aerosol at a large number of points within a short measurement time.

  19. Unscheduled DNA synthesis in human skin after in vitro ultraviolet-excimer laser ablation

    International Nuclear Information System (INIS)

    Green, H.A.; Margolis, R.; Boll, J.; Kochevar, I.E.; Parrish, J.A.; Oseroff, A.R.

    1987-01-01

    DNA damage repaired by the excision repair system and measured as unscheduled DNA synthesis (UDS) was assessed in freshly excised human skin after 193 and 248 nm ultraviolet (UV)-excimer laser ablative incisions. Laser irradiation at 248 nm induced DNA damage throughout a zone of cells surrounding the ablated and heat-damaged area. In contrast, with 193 nm irradiation UDS was not detected in cells adjacent to the ablated area, even though DNA strongly absorbs this wavelength. Our results suggest that the lack of UDS after 193 nm irradiation is due to: ''shielding'' of DNA by the cellular interstitium, membrane, and cytoplasm, DNA damage that is not repaired by excision repair, or thermal effects that either temporarily or permanently inhibit the excision repair processes

  20. Ventricular fibrillation occurring after atrioventricular node ablation despite minimal difference between pre- and post-ablation heart rates.

    Science.gov (United States)

    Squara, F; Theodore, G; Scarlatti, D; Ferrari, E

    2017-02-01

    We report the case of an 82-year-old man presenting with ventricular fibrillation (VF) occurring acutely after atrioventricular node (AVN) ablation. This patient had severe valvular cardiomyopathy, chronic atrial fibrillation (AF), and underwent prior to the AVN ablation a biventricular implantable cardiac defibrillator positioning. The VF was successfully cardioverted with one external electrical shock. What makes this presentation original is that the pre-ablation spontaneous heart rate in AF was slow (84 bpm), and that VF occurred after ablation despite a minimal heart rate drop of only 14 bpm. VF is the most feared complication of AVN ablation, but it had previously only been described in case of acute heart rate drop after ablation of at least 30 bpm (and more frequently>50 bpm). This case report highlights the fact that VF may occur after AVN ablation regardless of the heart rate drop, rendering temporary fast ventricular pacing mandatory whatever the pre-ablation heart rate. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Condensation of steam

    International Nuclear Information System (INIS)

    Prisyazhniuk, V.A.

    2002-01-01

    An equation for nucleation kinetics in steam condensation has been derived, the equation taking into account the concurrent and independent functioning of two nucleation mechanisms: the homogeneous one and the heterogeneous one. The equation is a most general-purpose one and includes all the previously known condensation models as special cases. It is shown how the equation can be used in analyzing the process of steam condensation in the condenser of an industrial steam-turbine plant, and in working out new ways of raising the efficiency of the condenser, as well as of the steam-turbine plant as a whole. (orig.)

  2. Ultrasound-guided radiofrequency ablation of thyroid gland: a preliminary study in dogs

    International Nuclear Information System (INIS)

    Choi, Ji Won; Yoo, Seung Min; Kwak, Seo Hyun

    2005-01-01

    The purpose of this study was to evaluate the possibility of using radiofrequency ablation as the treatment modality for the benign or malignant thyroid nodules in humans. Therefore, we examined the results of using radiofrequency ablation on the thyroid glands in dogs, in respect of the extent of the ablated tissue and the complications. Five dogs (10 lobes of the thyroid glands) were included in this study. US-guided radiofrequency ablation was undertaken with a 10 mm, uncovered 17 gauge cool-tip needle. The power and duration was 20 wattage and 1 minute in five thyroid lobes (group 1) and 20 wattage and 2 minutes in another 5 thyroid lobes (group 2). The ultrasound scans and the pre-and post-enhancement CT scans were undertaken before and immediately after the procedures, and at 24 hours, 72 hours and 1 week later. The US and CT findings of the ablated tissue and complications were evaluated. Blood sampling was done at the pre-procedure time and 1 week later for evaluating the functional status of the thyroid gland. Laryngoscopy was done at the pre-procedure and post-procedure times, and at 24 hours, 72 hours and 1 week later for the evaluation of any recurrent laryngeal nerve palsy. The echo pattern of the ablated thyroid gland at immediately after the radiofrequency ablation appeared as poorly marginated and hyperechoic. On the US obtained 24 hours after radiofrequency ablation, the echo pattern of the ablated thyroid gland was hypoechoic. The maximum diameters after RFA were 9.4 ρ 0.5 mm in group I and 11.4 ρ 0.5 mm in group II. The pre-enhanced CT scan taken at immediately after the radiofrequency ablation showed ill defined hypodense areas in the ablated thyroid gland. Differentiation between the normal and abnormal portions of the thyroid gland was difficult on the contrast enhanced CT scan. Complications induced by radiofrequency ablation were one recurrent laryngeal nerve palsy, two perforations of esophagus and five thickenings of the esophageal wall

  3. Ultrasound-guided radiofrequency ablation of thyroid gland: a preliminary study in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Won; Yoo, Seung Min [College of Medicine, Chungang University, Seoul, (Korea, Republic of); Kwak, Seo Hyun [Seoul Veterans Hospital, Seoul (Korea, Republic of)

    2005-07-15

    The purpose of this study was to evaluate the possibility of using radiofrequency ablation as the treatment modality for the benign or malignant thyroid nodules in humans. Therefore, we examined the results of using radiofrequency ablation on the thyroid glands in dogs, in respect of the extent of the ablated tissue and the complications. Five dogs (10 lobes of the thyroid glands) were included in this study. US-guided radiofrequency ablation was undertaken with a 10 mm, uncovered 17 gauge cool-tip needle. The power and duration was 20 wattage and 1 minute in five thyroid lobes (group 1) and 20 wattage and 2 minutes in another 5 thyroid lobes (group 2). The ultrasound scans and the pre-and post-enhancement CT scans were undertaken before and immediately after the procedures, and at 24 hours, 72 hours and 1 week later. The US and CT findings of the ablated tissue and complications were evaluated. Blood sampling was done at the pre-procedure time and 1 week later for evaluating the functional status of the thyroid gland. Laryngoscopy was done at the pre-procedure and post-procedure times, and at 24 hours, 72 hours and 1 week later for the evaluation of any recurrent laryngeal nerve palsy. The echo pattern of the ablated thyroid gland at immediately after the radiofrequency ablation appeared as poorly marginated and hyperechoic. On the US obtained 24 hours after radiofrequency ablation, the echo pattern of the ablated thyroid gland was hypoechoic. The maximum diameters after RFA were 9.4 {rho} 0.5 mm in group I and 11.4 {rho} 0.5 mm in group II. The pre-enhanced CT scan taken at immediately after the radiofrequency ablation showed ill defined hypodense areas in the ablated thyroid gland. Differentiation between the normal and abnormal portions of the thyroid gland was difficult on the contrast enhanced CT scan. Complications induced by radiofrequency ablation were one recurrent laryngeal nerve palsy, two perforations of esophagus and five thickenings of the esophageal

  4. Thermal Ablation of T1c Renal Cell Carcinoma: A Comparative Assessment of Technical Performance, Procedural Outcome, and Safety of Microwave Ablation, Radiofrequency Ablation, and Cryoablation.

    Science.gov (United States)

    Zhou, Wenhui; Arellano, Ronald S

    2018-04-06

    To evaluate perioperative outcomes of thermal ablation with microwave (MW), radiofrequency (RF), and cryoablation for stage T1c renal cell carcinoma (RCC). A retrospective analysis of 384 patients (mean age, 71 y; range, 22-88 y) was performed between October 2006 and October 2016. Mean radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines; preoperative aspects and dimensions used for anatomic classification; and centrality index scores were 6.3, 7.9, and 2.7, respectively. Assessment of pre- and postablation serum blood urea nitrogen, creatinine, and estimated glomerular filtration rate was performed to assess functional outcomes. Linear regression analyses were performed to compare sedation medication dosages among the three treatment cohorts. Univariable and multivariable logistic regression analyses were performed to compare rates of residual disease and complications among treatment modalities. A total of 437 clinical stage T1N0M0 biopsy-proven RCCs measuring 1.2-6.9 cm were treated with computed tomography (CT)-guided MW ablation (n = 44; 10%), RF ablation (n = 347; 79%), or cryoablation (n = 46; 11%). There were no significant differences in patient demographic or tumor characteristics among cohorts. Complication rates and immediate renal function changes were similar among the three ablation modalities (P = .46 and P = .08, respectively). MW ablation was associated with significantly decreased ablation time (P < .05), procedural time (P < .05), and dosage of sedative medication (P < .05) compared with RF ablation and cryoablation. CT-guided percutaneous MW ablation is comparable to RF ablation or cryoablation for the treatment of stage T1N0M0 RCC with regard to treatment response and is associated with shorter treatment times and less sedation than RF ablation or cryoablation. In addition, the safety profile of CT-guided MW ablation is noninferior to those of RF ablation or

  5. The effect of the number of condensed phases modeled on aerosol behavior during an induced steam generator tube rupture sequence

    International Nuclear Information System (INIS)

    Bixler, N.E.; Schaperow, J.H.

    1998-06-01

    VICTORIA is a mechanistic computer code designed to analyze fission product behavior within a nuclear reactor coolant system (RCS) during a severe accident. It provides detailed predictions of the release of radioactive and nonradioactive materials from the reactor core and transport and deposition of these materials within the RCS. A recently completed independent peer review of VICTORIA, while confirming the overall adequacy of the code, recommended a number of modeling improvements. One of these recommendations, to model three rather than a single condensed phase, is the focus of the work reported here. The recommendation has been implemented as an option so that either a single or three condensed phases can be treated. Both options have been employed in the study of fission product behavior during an induced steam generator tube rupture sequence. Differences in deposition patterns and mechanisms predicted using these two options are discussed

  6. Improved condenser design and condenser-fan operation for air-cooled chillers

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2006-01-01

    Air-cooled chillers traditionally operate under head pressure control via staging constant-speed condenser fans. This causes a significant drop in their coefficient of performance (COP) at part load or low outdoor temperatures. This paper describes how the COP of these chillers can be improved by a new condenser design, using evaporative pre-coolers and variable-speed fans. A thermodynamic model for an air-cooled screw-chiller was developed, within which the condenser component considers empirical equations showing the effectiveness of an evaporative pre-cooler in lowering the outdoor temperature in the heat-rejection process. The condenser component also contains an algorithm to determine the number and speed of the condenser fans staged at any given set point of condensing temperature. It is found that the chiller's COP can be maximized by adjusting the set point based on any given chiller load and wet-bulb temperature of the outdoor air. A 5.6-113.4% increase in chiller COP can be achieved from the new condenser design and condenser fan operation. This provides important insights into how to develop more energy-efficient air-cooled chillers

  7. Perioral Rejuvenation With Ablative Erbium Resurfacing.

    Science.gov (United States)

    Cohen, Joel L

    2015-11-01

    Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.

  8. Optical Characterization of SERS Substrates Based on Porous Au Films Prepared by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    V. V. Strelchuk

    2015-01-01

    Full Text Available The SERS (surface enhanced Raman spectroscopy substrates based on nanocomposite porous films with gold nanoparticles (Au NPs arrays were formed using the method of the pulsed laser deposition from the back low-energy flux of erosion torch particles on the glass substrate fixed at the target plain. The dependencies of porosity, and morphology of the surface of the film regions located near and far from the torch axis on the laser ablation regime, laser pulses energy density, their number, and argon pressure in the vacuum chamber, were ascertained. The Au NPs arrays with the controllable extinction spectra caused by the local surface plasmon resonance were prepared. The possibility of the formation of SERS substrates for the detection of the Rhodamine 6G molecules with the concentration 10−10 Mol/L with the enhancement factor 4·107 was shown.

  9. Dynamics of vitellogenin and vitellogenesis-inhibiting hormone levels in adult and subadult whiteleg shrimp, Litopenaeus vannamei: relation to molting and eyestalk ablation.

    Science.gov (United States)

    Kang, Bong Jung; Okutsu, Tomoyuki; Tsutsui, Naoaki; Shinji, Junpei; Bae, Sun-Hye; Wilder, Marcy N

    2014-01-01

    Levels of vitellogenin (VG) and vitellogenesis-inhibiting hormone (VIH) in the whiteleg shrimp, Litopenaeus vannamei, were measured by time-resolved fluoroimmunoassay in relation to the molting cycle and ovarian maturation induced by eyestalk ablation. During the molt cycle, VG mRNA expression levels and VG concentrations showed similar patterns of fluctuation. VG levels increased significantly at early intermolt (stage C0) in adults, but not in subadults. Unilateral and bilateral eyestalk ablation increased VG levels in adults, whereas only bilateral eyestalk ablation affected subadults. VIH levels showed contrasting patterns between adults and subadults. In adults, levels were high in late postmolt adults (stage B) and then low thereafter, whereas they increased from postmolt (stage A) to intermolt (stage C0) in subadults and remained high. Unilateral eyestalk ablation increased VIH levels 10 days following ablation in adults, after which levels decreased at 20 days. VIH levels decreased from 10 to 20 days after bilateral ablation. Both unilateral and bilateral ablation led to increased VIH levels in subadults. Eyestalk ablation induced ovarian maturation, but did not reduce VIH concentrations in the hemolymph. This phenomenon was perhaps due to other crustacean hyperglycemic hormone peptides having cross-reactivity with VIH antibodies. This is the first report to quantify concentrations of VG and VIH together in L. vannamei hemolymph, and to examine their relative dynamics.

  10. Polymers designed for laser ablation-influence of photochemical properties

    International Nuclear Information System (INIS)

    Lippert, T.; Dickinson, J.T.; Hauer, M.; Kopitkovas, G.; Langford, S.C.; Masuhara, H.; Nuyken, O.; Robert, J.; Salmio, H.; Tada, T.; Tomita, K.; Wokaun, A.

    2002-01-01

    The ablation characteristics of various polymers were studied at low and high fluences. The polymers can be divided into three groups, i.e. polymers containing triazene and ester groups, the same polymers without the triazene group, and polyimide as reference polymer. At high fluences similar ablation parameters, i.e. etch rates and effective absorption coefficients, were obtained for all polymers. The main difference is the absence of carbon deposits for the designed polymers. At low fluences (at 308 nm) very pronounced differences are detected. The polymers containing the photochemically most active group (triazene) exhibit the lowest threshold of ablation (as low as 25 mJ cm -2 ) and the highest etch rates (up to 3 μm/pulse), followed by the designed polyesters and then polyimide. The laser-induced decomposition of the designed polymers was studied by nanosecond-interferometry. Only the triazene-polymer reveals etching without any sign of surface swelling, which is observed for all other polymers. The etching of the triazene-polymer starts and ends with the laser pulse, clearly indicating photochemical etching. The triazene-polymer was also studied by time-of-flight mass spectrometry (TOF-MS). The intensities of the ablation fragments show pronounced differences between irradiation at the absorption band of the triazene group (308 nm) and irradiation at a shorter wavelength (248 nm)

  11. Outcomes of Radiofrequency Ablation for Dysplastic Barrett's Esophagus: A Comprehensive Review

    Science.gov (United States)

    Iabichino, Giuseppe; Arena, Monica; Consolo, Pierluigi; Morace, Carmela; Opocher, Enrico; Mangiavillano, Benedetto

    2016-01-01

    Barrett's esophagus is a condition in which the normal squamous lining of the esophagus has been replaced by columnar epithelium containing intestinal metaplasia induced by recurrent mucosal injury related to gastroesophageal reflux disease. Barrett's esophagus is a premalignant condition that can progress through a dysplasia-carcinoma sequence to esophageal adenocarcinoma. Multiple endoscopic ablative techniques have been developed with the goal of eradicating Barrett's esophagus and preventing neoplastic progression to esophageal adenocarcinoma. For patients with high-grade dysplasia or intramucosal neoplasia, radiofrequency ablation with or without endoscopic resection for visible lesions is currently the most effective and safe treatment available. Recent data demonstrate that, in patients with Barrett's esophagus and low-grade dysplasia confirmed by a second pathologist, ablative therapy results in a statistically significant reduction in progression to high-grade dysplasia and esophageal adenocarcinoma. Treatment of dysplastic Barrett's esophagus with radiofrequency ablation results in complete eradication of both dysplasia and of intestinal metaplasia in a high proportion of patients with a low incidence of adverse events. A high proportion of treated patients maintain the neosquamous epithelium after successful treatment without recurrence of intestinal metaplasia. Following successful endoscopic treatment, endoscopic surveillance should be continued to detect any recurrent intestinal metaplasia and/or dysplasia. This paper reviews all relevant publications on the endoscopic management of Barrett's esophagus using radiofrequency ablation. PMID:28070182

  12. Asymptomatic Ventricular Pre-excitation: Between Sudden Cardiac Death and Catheter Ablation

    Science.gov (United States)

    Brugada, Josep

    2018-01-01

    Debate about the best clinical approach to the management of asymptomatic patients with ventricular pre-excitation and advice on whether or not to invasively stratify and ablate is on-going. Weak evidence about the real risk of sudden cardiac death and the potential benefit of catheter ablation has probably prevented the clarification of action in this not infrequent and sometimes conflicting clinical situation. After analysing all available data, real evidence-based medicine could be the alternative strategy for managing this group of patients. According to recent surveys, most electrophysiologists invasively stratify. Based on all accepted risk factors – younger age, male, associated structural heart disease, posteroseptal localisation, ability of the accessory pathway to conduct anterogradely at short intervals of ≤250 milliseconds and inducibility of sustained atrioventricular re-entrant tachycardia and/or atrial fibrillation – a shared decisionmaking process on catheter ablation is proposed. PMID:29636970

  13. Field synergy characteristics in condensation heat transfer with non-condensable gas over a horizontal tube

    Directory of Open Access Journals (Sweden)

    Junxia Zhang

    2017-05-01

    Full Text Available Field synergy characteristics in condensation heat transfer with non-condensable gas (NCG over a horizontal tube were numerically simulated. Consequently, synergy angles between velocity and pressure or temperature gradient fields, gas film layer thickness, and induced velocity and shear stress on gas–liquid interface were obtained. Results show that synergy angles between velocity and temperature gradient fields are within 73.2°–88.7° and ascend slightly with the increment in mainstream velocity and that the synergy is poor. However, the synergy angle between velocity and pressure gradient fields decreases intensively with the increase in mainstream velocity at θ ≤ 30°, thereby improving the pressure loss. As NCG mass fraction increases, the gas film layer thickness enlarges and the induced velocity and shear stress on gas–liquid interface decreases. The synergy angles between velocity and temperature gradient fields increase, and the synergy angles between velocity and pressure gradient fields change at θ = 70°, decrease at θ 70°. When the horizontal tube circumference angle increases, the synergy angles between velocity and temperature or pressure gradient fields decrease, the synergy between velocity and pressure fields enhances, and the synergy between velocity and temperature fields degrades.

  14. Proceedings: Condenser technology conference

    International Nuclear Information System (INIS)

    Tsou, J.L.; Mussalli, Y.G.

    1991-08-01

    Seam surface condenser and associated systems performance strongly affects availability and heat rate in nuclear and fossil power plants. Thirty-six papers presented at a 1990 conference discuss research results, industry experience, and case histories of condenser problems and solutions. This report contains papers on life extension, performance improvement, corrosion and failure analysis, fouling prevention, and recommendation for future R ampersand D. The information represents recent work on condenser problems and solutions to improve the procurement, operation, and maintenance functions of power plant personnel. Several key points follow: A nuclear and a fossil power plant report show that replacing titanium tube bundles improves condenser availability and performance. One paper reports 10 years of experience with enhanced heat transfer tubes in utility condensers. The newly developed enhanced condenser tubes could further improve condensing heat transfer. A new resistance summation method improves the accuracy of condenser performance prediction, especially for stainless steel and titanium tubed condensers. Several papers describe improved condenser fouling monitoring techniques, including a review of zebra mussel issues

  15. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S. E-mail: kubis@alf.ifj.edu.pl; Kutschera, M

    2003-06-02

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  16. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists

  17. CT-guided Bipolar and Multipolar Radiofrequency Ablation (RF Ablation) of Renal Cell Carcinoma: Specific Technical Aspects and Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Lemm, G.; Hohenstein, E. [Minimally Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Clinic for Radiology (Germany); Bellemann, N.; Stampfl, U. [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Goezen, A. S.; Rassweiler, J. [Clinic for Urology, SLK Kliniken Heilbronn GmbH (Germany); Kauczor, H. U.; Radeleff, B. A. [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Pereira, P. L. [Minimally Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Clinic for Radiology (Germany)

    2013-06-15

    Purpose. This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. Methods. We included 22 consecutive patients (3 women; age 74.2 {+-} 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 {+-} 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Results. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 {+-} 13.6 min and 43.7 {+-} 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 {+-} 8.8 months, local recurrence-free survival was 14.4 {+-} 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 {+-} 16.6 ml/min/1.73 m{sup 2} before RF ablation vs. 47.2 {+-} 11.9 ml/min/1.73 m{sup 2} after RF ablation; not significant). Conclusions. CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  18. Condensate cleaning systems

    International Nuclear Information System (INIS)

    Yamamoto, Michiyoshi; Oosumi, Katsumi; Takashima, Yoshie; Mitani, Shinji.

    1982-01-01

    Purpose: To decrease the frequency for the backwash and regeneration operations due to the increase in the differential pressure resulted from claddings captured in a mixed floor type desalter, and decrease the amount of radioactive liquid wastes of claddings from the condensate systems by removing claddings with electromagnetic filters. Constitution: In an existent plant, a valves is disposed between a condensate pump and a mixed floor type desalter. A pipeway is branched from a condensate pipe between the condensate pipe and the valve, through which condensates are transferred by a pump to an electromagnetic filter such as of a high gradient type electromagntic filter to remove claddings, then returned to a condensate pipe between the valve and the mixed floor type desalter and, thereafter, are removed with ionic components in the mixed floor type desalter and fed to the reactor. (Yoshino, Y.)

  19. Growth mode, magnetic and magneto-optical properties of pulsed-laser-deposited Au/Co/Au(1 1 1) trilayers

    International Nuclear Information System (INIS)

    Clavero, C.; Cebollada, A.; Armelles, G.; Fruchart, O.

    2010-01-01

    The growth mode, magnetic and magneto-optical properties of epitaxial Au/Co/Au(1 1 1) ultrathin trilayers grown by pulsed-laser deposition (PLD) under ultra-high vacuum are presented. Sapphire wafers buffered with a single-crystalline Mo(1 1 0) buffer layer were used as substrates. Owing to PLD-induced interfacial intermixing at the lower Co/Au(1 1 1) interface, a close-to layer-by-layer growth mode is promoted. Surprisingly, despite this intermixing, ferromagnetic behavior is found at room temperature for coverings starting at 1 atomic layer (AL). The films display perpendicular magnetization with anisotropy constants reduced by 50% compared to TD-grown or electrodeposited films, and with a coercivity more than one order of magnitude lower (≤5mT). The magneto-optical (MO) response in the low Co thickness range is dominated by Au/Co interface contributions. For thicknesses starting at 3 AL Co, the MO response has a linear dependence with the Co thickness, indicative of a continuous-film-like MO behavior.

  20. Effects of Foveal Ablation on Emmetropization and Form-Deprivation Myopia

    Science.gov (United States)

    Smith, Earl L.; Ramamirtham, Ramkumar; Qiao-Grider, Ying; Hung, Li-Fang; Huang, Juan; Kee, Chea-su; Coats, David; Paysse, Evelyn

    2009-01-01

    Purpose Because of the prominence of central vision in primates, it has generally been assumed that signals from the fovea dominate refractive development. To test this assumption, the authors determined whether an intact fovea was essential for either normal emmetropization or the vision-induced myopic errors produced by form deprivation. Methods In 13 rhesus monkeys at 3 weeks of age, the fovea and most of the perifovea in one eye were ablated by laser photocoagulation. Five of these animals were subsequently allowed unrestricted vision. For the other eight monkeys with foveal ablations, a diffuser lens was secured in front of the treated eyes to produce form deprivation. Refractive development was assessed along the pupillary axis by retinoscopy, keratometry, and A-scan ultrasonography. Control data were obtained from 21 normal monkeys and three infants reared with plano lenses in front of both eyes. Results Foveal ablations had no apparent effect on emmetropization. Refractive errors for both eyes of the treated infants allowed unrestricted vision were within the control range throughout the observation period, and there were no systematic interocular differences in refractive error or axial length. In addition, foveal ablation did not prevent form deprivation myopia; six of the eight infants that experienced monocular form deprivation developed myopic axial anisometropias outside the control range. Conclusions Visual signals from the fovea are not essential for normal refractive development or the vision-induced alterations in ocular growth produced by form deprivation. Conversely, the peripheral retina, in isolation, can regulate emmetropizing responses and produce anomalous refractive errors in response to abnormal visual experience. These results indicate that peripheral vision should be considered when assessing the effects of visual experience on refractive development. PMID:17724167

  1. XAFS studies of monodisperse Au nanoclusters formation in the etching process

    International Nuclear Information System (INIS)

    Yang, Lina; Huang, Ting; Liu, Wei; Bao, Jie; Huang, Yuanyuan; Cao, Yuanjie; Yao, Tao; Sun, Zhihu; Wei, Shiqiang

    2016-01-01

    Understanding the formation mechanism of gold nanoclusters is essential to the development of their synthetic chemistry. Here, by using x-ray absorption fine-structure (XAFS) spectroscopy, UV-Vis and MS spectra, the formation process of monodisperse Au 13 nanoclusters is investigated. We find that a critical step involving the formation of smaller Au 8 -Au 11 metastable intermediate clusters induced by the HCl + HSR etching of the polydisperse Au n precursor clusters occurs firstly. Then these intermediate species undergo a size-growth to Au 13 cores, followed by a slow structure rearrangement to reach the final stable structure. This work enriches the understanding of cluster formation chemistry and may guide the way towards the design and the controllable synthesis of nanoclusters. (paper)

  2. Properties of the divalent-Yb compound YbAu.sub.2./sub.Si.sub.2./sub. under extreme conditions

    Czech Academy of Sciences Publication Activity Database

    Kaštil, Jiří; Míšek, Martin; Kamarád, Jiří; Arnold, Zdeněk; Vlášková, K.; Prchal, J.; Diviš, M.; Doležal, P.; Prokleška, J.; Valenta, J.; Fikáček, J.; Rudajevová, A.; Kriegner, D.

    2017-01-01

    Roč. 505, Jan (2017), s. 41-44 ISSN 0921-4526 R&D Projects: GA ČR GA15-03777S Institutional support: RVO:68378271 Keywords : YbAu 2 Si 2 * valence state * high pressure * GGA method Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.386, year: 2016

  3. Water spray assisted ultrashort laser pulse ablation

    International Nuclear Information System (INIS)

    Silvennoinen, M.; Kaakkunen, J.J.J.; Paivasaari, K.; Vahimaa, P.

    2013-01-01

    Highlights: ► We show the novel method to use multibeam processing with ultrashort pulses efficiently. ► Sprayed thin water layer on ablation zone enhances ablation rate and quality. ► In some cases this method also enables ablation of the deeper and straighter holes compared to ones made without the water layer. ► Method also makes possible to directly write features without the self-organizing structures. - Abstract: We have studied femtosecond ablation under sprayed thin water film and its influence and benefits compared with ablation in the air atmosphere. These have been studied in case of the hole and the groove ablation using IR femtosecond laser. Water enhances the ablation rate and in some situations it makes possible to ablate the holes with a higher aspect ratio. While ablating the grooves, the water spray allows using the high fluences without the generation of the self-organized structures.

  4. Observation of self-sputtering in energetic condensation of metal ions

    International Nuclear Information System (INIS)

    Anders, Andre

    2004-01-01

    The condensation of energetic metal ions on a surface may cause self-sputtering even in the absence of substrate bias. Charge-state-averaged self-sputtering yields were determined for both zirconium and gold ions generated by a cathodic vacuum arc. Films were deposited on differently biased substrates exposed to streaming Zr and Au vacuum arc plasma. The self-sputtering yields for both metals were estimated to be about 0.05 in the absence of bias, and exceeding 0.5 when bias reached-50 V. These surprisingly high values can be reconciled with binary collision theory and molecular dynamics calculations taking high the kinetic and potential energy of vacuum arc ions into account

  5. Condensation coefficient of water in a weak condensation state

    International Nuclear Information System (INIS)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-01-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  6. Condensation coefficient of water in a weak condensation state

    Science.gov (United States)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-07-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  7. Mechanism of H2O-Induced Conductance Changes in AuCl4-Functionalized CNTs

    KAUST Repository

    Murat, Altynbek

    2015-04-30

    We employ ab initio self-interaction corrected density functional theory combined with the nonequilibrium Green\\'s function method to study the electronic and quantum transport properties of carbon nanotubes (CNTs) functionalized with AuCl4 molecules. In particular, we investigate the electronic structure and characterize the conductance for different concentrations and configurations of randomly distributed AuCl4 molecules with and without the adsorption of H2O. We thus propose a mechanism that explains the origin of the recently observed resistivity changes of AuCl4-functionalized CNTs upon H2O adsorption. We find that water adsorption shifts the highest occupied Cl and Au states down in energy and thereby reduces the scattering of the electrons around the Fermi energy, hence enhancing the conductivity. Our results help in the development of highly sensitive nanoscale H2O vapor sensors based on AuCl4-functionalized CNTs. © 2015 American Chemical Society.

  8. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy: Effect of nanoparticles deposited on sample surface on laser ablation and plasma emission

    International Nuclear Information System (INIS)

    De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell'Aglio, M.; De Pascale, O.

    2014-01-01

    In this paper the use of metallic nanoparticles (NPs) for improving Laser Induced Breakdown Spectroscopy (LIBS) is discussed. In the case of conductors an emission signal enhancement up to 1–2 orders of magnitude was obtained depositing NPs on the sample surface by drying a micro-drop of colloidal solution. The basic mechanisms of Nanoparticle Enhanced LIBS (NELIBS) were studied and the main causes of this significantly large enhancement were found to be related to the effect of NPs on the laser ablation process, in terms of a faster and more efficient production of seed electrons with respect to conventional LIBS. The characteristics of NELIBS-produced plasma were investigated by emission spectroscopy and spectrally resolved images. In spite of similar plasma parameters, the NELIBS plasma was found to have larger emission volume and longer persistence than the LIBS one. A method to determine NP concentration and size was also proposed, which involved depositing NPs on non-interacting substrates, and proved the feasibility of LIBS as a fast detection tool for a preliminary characterization of NPs. - Highlights: • Effect of NPs on sample surface enables instantaneous field emission. • More efficient ablation • LIBS emission enhancement up to 1–2 orders of magnitude • Possibility of NP characterization in terms of concentration and size

  9. GISAXS study of Au-coated light-induced polymer gratings

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Colin, M., E-mail: miguel.castro-colin@bruker.com; Korolkov, D. [Bruker AXS, Rheinbrueckenstr. 49, 76187 Karlsruhe (Germany); Yadavalli, N. S. [Nanostructured Materials Lab, The University of Georgia, 30602 Athens, Georgia (United States); Mayorova, M.; Kentzinger, M. [Research Center Juelich, 52425 Juelich (Germany); Santer, S. [Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam (Germany)

    2015-07-23

    Surface Relief Gratings (SRGs) are inscribed in the Au-coated azobenzene containing photosensitive polymer films on a glass substrate. The structures consist of micrometer-period sinusoidal patterns of sub-micron amplitudes, formed by photo-isomerization and molecular reorientation processes in the polymer film during exposure to the light interference pattern that drove the formation of a SRG; the precursor is a stack sequence of Au, polymer, and glass. The SRG structures were exposed in GISAXS geometry to high-intensity X-ray radiation from a liquid Ga source (0.134 nm). Scattered photons were registered by a 2D detector, and their intensity distribution enabled us to characterize the structures. Analysis of the 2D patterns yielded information about the pitch of the gratings as well as the thickness of the films forming the gratings. The GISAXS experiments were carried out at the Research Center Juelich.

  10. Maintaining steam/condensate lines

    International Nuclear Information System (INIS)

    Russum, S.A.

    1992-01-01

    Steam and condensate systems must be maintained with the same diligence as the boiler itself. Unfortunately, they often are not. The water treatment program, critical to keeping the boiler at peak efficiency and optimizing operating life, should not stop with the boiler. The program must encompass the steam and condensate system as well. A properly maintained condensate system maximizes condensate recovery, which is a cost-free energy source. The fuel needed to turn the boiler feedwater into steam has already been provided. Returning the condensate allows a significant portion of that fuel cost to be recouped. Condensate has a high heat content. Condensate is a readily available, economical feedwater source. Properly treated, it is very pure. Condensate improves feedwater quality and reduces makeup water demand and pretreatment costs. Higher quality feedwater means more reliable boiler operation

  11. The influence of thin film grain size on the size of nanoparticles generated during UV femtosecond laser ablation of thin gold films

    International Nuclear Information System (INIS)

    Haustrup, N.; O’Connor, G.M.

    2013-01-01

    The upsurge in the number of thin film products has encouraged studies into every aspect of their fabrication and application. An additional source of industrial interest is the laser ablation of thin films to generate nanoparticles. This technique offers advantages over other fabrication methods, as no chemical pre-cursers are required, thereby giving rise to a pure product. The main disadvantage lies in the difficulty with controlling the size of the nanoparticles. This study aims to clarify the influence of the microstructure of a thin film on its optical properties and also to establish the size relationship between the film grain and the nanoparticles generated during laser ablation. A comprehensive sample set of Gold (Au) films with different grain sizes was achieved using different deposition rates, temperatures, film thicknesses (<100 nm) and substrates: Silica, Quartz and Sapphire. The microstructure of each film was analyzed using Atomic Force Microscopy (AFM). Single femtosecond laser pulses, above the ablation threshold fluence of each film, were applied to generate nanoparticles. Scanning Electron Microscopy (SEM) was used to image the re-deposited nanoparticles, from which the nanoparticle size distribution was established. Results confirm that the film microstructure is directly linked to the nanoparticles generated during laser ablation.

  12. The influence of thin film grain size on the size of nanoparticles generated during UV femtosecond laser ablation of thin gold films

    Energy Technology Data Exchange (ETDEWEB)

    Haustrup, N., E-mail: natalie.haustrup@nuigalway.ie [National Centre for Laser Applications, School of Physics, National University of Ireland, Galway (Ireland); O’Connor, G.M. [National Centre for Laser Applications, School of Physics, National University of Ireland, Galway (Ireland)

    2013-08-01

    The upsurge in the number of thin film products has encouraged studies into every aspect of their fabrication and application. An additional source of industrial interest is the laser ablation of thin films to generate nanoparticles. This technique offers advantages over other fabrication methods, as no chemical pre-cursers are required, thereby giving rise to a pure product. The main disadvantage lies in the difficulty with controlling the size of the nanoparticles. This study aims to clarify the influence of the microstructure of a thin film on its optical properties and also to establish the size relationship between the film grain and the nanoparticles generated during laser ablation. A comprehensive sample set of Gold (Au) films with different grain sizes was achieved using different deposition rates, temperatures, film thicknesses (<100 nm) and substrates: Silica, Quartz and Sapphire. The microstructure of each film was analyzed using Atomic Force Microscopy (AFM). Single femtosecond laser pulses, above the ablation threshold fluence of each film, were applied to generate nanoparticles. Scanning Electron Microscopy (SEM) was used to image the re-deposited nanoparticles, from which the nanoparticle size distribution was established. Results confirm that the film microstructure is directly linked to the nanoparticles generated during laser ablation.

  13. Laser ablation in CdZnTe crystal due to thermal self-focusing: Secondary phase hydrodynamic expansion

    Energy Technology Data Exchange (ETDEWEB)

    Medvid’, A., E-mail: mychko@latnet.lv [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia); Mychko, A.; Dauksta, E. [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia); Kosyak, V. [Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy (Ukraine); Grase, L. [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia)

    2016-06-30

    Highlights: • We found two laser induced threshold intensity for CdZnTe crystal. • The laser beam self-focusing lead to increase of intensity of laser radiation at exit surface. • Laser ablation is a result of Te inclusion hydrodynamic expansion. - Abstract: The present paper deals with the laser ablation in CdZnTe crystal irradiated by pulsed infrared laser. Two values of threshold intensities of the laser ablation were determined, namely of about 8.5 and 6.2 MW/cm{sup 2} for the incident and the rear surfaces, correspondingly. Lower intensity of the laser ablation for the rear surface is explained by thermal self-focusing of the laser beam in the CdZnTe crystal due to heating of Te inclusions with a following hydrodynamic expansion.

  14. Enhanced Condensation Heat Transfer

    Science.gov (United States)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  15. Ablation of Solid Hydrogen in a Plasma

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment.......Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment....

  16. Spin-polarized ballistic conduction through correlated Au-NiMnSb-Au heterostructures

    KAUST Repository

    Morari, C.

    2017-11-20

    We examine the ballistic conduction through Au-NiMnSb-Au heterostructures consisting of up to four units of the half-metallic NiMnSb in the scattering region, using density functional theory (DFT) methods. For a single NiMnSb unit the transmission function displays a spin polarization of around 50% in a window of 1eV centered around the Fermi level. By increasing the number of layers, an almost complete spin polarization of the transmission is obtained in this energy range. Supplementing the DFT calculations with local electronic interactions, of Hubbard-type on the Mn sites, leads to a hybridization between the interface and many-body states. The significant reduction of the spin polarization seen in the density of states is not apparent in the spin polarization of the conduction electron transmission, which suggests that the hybridized interface and many-body induced states are localized.

  17. 130 MeV Au ion irradiation induced dewetting on In{sub 2}Te{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Matheswaran, P.; Abhirami, K.M.; Gokul, B. [Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029 (India); Sathyamoorthy, R., E-mail: rsathya1959@gmail.com [Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029 (India); Prakash, Jai [Department of Chemistry, M.M.H. College, Ghaziabad 201001 (India); Asokan, K.; Kanjilal, D. [Materials Science Division, Inter University Accelerator Centre, New Delhi 110067 (India)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer In{sub 2}Te{sub 3} phase formed from In/Te bilayer by 130 MeV Au ion irradiation. Black-Right-Pointing-Pointer Lower fluence results mixed phases with initial state of dewetting. Black-Right-Pointing-Pointer At higher fluence, In{sub 2}Te{sub 3} phase with complete dewetting pattern is formed. Black-Right-Pointing-Pointer Thermal spike model is used to explain the inter face mixing phenomena. Black-Right-Pointing-Pointer SHI irradiation may be used to functionalize the structural and surface properties of thin films. - Abstract: In/Te bilayer thin films were prepared by sequential thermal evaporation and subsequently irradiated by 130 MeV Au ions. The pristine and irradiated samples were characterized by X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) techniques. RBS spectra reveal the sputtering of Te film and interface mixing, with increasing fluence. The surface morphology showed the beginning of dewetting of Te thin film and formation of the partially connected with the mixed zones at the fluence of 1 Multiplication-Sign 10{sup 13} ions/cm{sup 2}. At the higher fluence of 3 Multiplication-Sign 10{sup 13} ions/cm{sup 2}, dewetted structures were isolated at the surface. Above results are explained based on the formation of craters, sputtering and dewetting followed by inter-diffusion at the interface of molten zones due to thermal spike induced by Au ions.

  18. CT-guided Bipolar and Multipolar Radiofrequency Ablation (RF Ablation) of Renal Cell Carcinoma: Specific Technical Aspects and Clinical Results

    International Nuclear Information System (INIS)

    Sommer, C. M.; Lemm, G.; Hohenstein, E.; Bellemann, N.; Stampfl, U.; Goezen, A. S.; Rassweiler, J.; Kauczor, H. U.; Radeleff, B. A.; Pereira, P. L.

    2013-01-01

    Purpose. This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. Methods. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Results. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m 2 before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m 2 after RF ablation; not significant). Conclusions. CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  19. Unscheduled DNA synthesis in human skin after in vitro ultraviolet-excimer laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Green, H.A.; Margolis, R.; Boll, J.; Kochevar, I.E.; Parrish, J.A.; Oseroff, A.R.

    1987-08-01

    DNA damage repaired by the excision repair system and measured as unscheduled DNA synthesis (UDS) was assessed in freshly excised human skin after 193 and 248 nm ultraviolet (UV)-excimer laser ablative incisions. Laser irradiation at 248 nm induced DNA damage throughout a zone of cells surrounding the ablated and heat-damaged area. In contrast, with 193 nm irradiation UDS was not detected in cells adjacent to the ablated area, even though DNA strongly absorbs this wavelength. Our results suggest that the lack of UDS after 193 nm irradiation is due to: ''shielding'' of DNA by the cellular interstitium, membrane, and cytoplasm, DNA damage that is not repaired by excision repair, or thermal effects that either temporarily or permanently inhibit the excision repair processes.

  20. Thermodynamics of face-centered-cubic silicon nucleation at the nanoscale from laser ablation

    International Nuclear Information System (INIS)

    Hu Shengliang; Li Wuhong; Liu Wei; Dong Yingge; Cao Shirui; Yang Jinlong

    2011-01-01

    The thermodynamic nucleation and the phase transition of the face-centered-cubic structure of Si (fcc-Si) on the nanoscale are performed by taking the effect of nanosize-induced additional pressure on the fcc-Si formation under the conditions generated by laser ablation in liquid into account. The thermodynamic analyses showed that the formation of fcc-Si nanocrystals with sizes of 2-6 nm would take place prior to that of large fcc-Si nanocrystals, and the phase transition probability from diamond-like structure Si (d-Si) to fcc-Si is rather high, up to 10 -3 -10 -2 , under the conditions created by laser ablation of an Si target in water. These theoretical results suggest that laser ablation in liquid would be an effective industrial route to prepare ultrasmall fcc-Si nanocrystals.

  1. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    Science.gov (United States)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  2. Radiofrequency ablation of pancreas and optimal cooling of peripancreatic tissue in an ex-vivo porcine model

    Directory of Open Access Journals (Sweden)

    Michal Crha

    2011-01-01

    Full Text Available Radiofrequency ablation is a possible palliative treatment for patients suffering from pancreatic neoplasia. However, radiofrequency-induced damage to the peripancreatic tissues during pancreatic ablation might cause fatal complications. The aim of this experimental ex vivo study on pigs was to verify ablation protocols and evaluate whether or not the cooling of peripancereatic tissues during pancreatic ablation has any benefit for their protection against thermal injury. Radiofrequency ablation was performed on 52 pancreatic specimens obtained from pigs. During each pancreatic ablation, continuous measurements of the temperature in the portal vein and duodenal lumen were performed. Peripancreatic tissues were either not cooled or were cooled by being submerged in 14 °C water, or by a perfusion of the portal vein and duodenum with 14 °C saline. The effects of variation in target temperature of the ablated area (90 °C and 100 °C, duration of ablation (5 and 10 min and the effect of peripancreatic tissues cooling were studied. We proved that optimal radiofrequency ablation of the porcine pancreas can be reached with the temperature of 90  °C for 5 min in the ablated area. The perfusion of the duodenal and portal vein by 14 °C saline was found to be the most effective cooling method for minimizing damage to the walls. Continuous measurement of temperatures in peripancreatic tissues will provide useful feedback to assist in their protection against thermal injury. This therapy could be used in the treatment of pancreatic tumours.

  3. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity

    Science.gov (United States)

    Liang, Hong; Wu, Ying; Ou, Xiang-Yu; Li, Jing-Ying; Li, Juan

    2017-11-01

    Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.

  4. Ultra-fast movies of thin-film laser ablation

    Science.gov (United States)

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2012-11-01

    Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.

  5. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    International Nuclear Information System (INIS)

    Baladi, Arash; Sarraf Mamoory, Rasoul

    2010-01-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  6. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Baladi, Arash [Materials Engineering Department, Tarbiat Modares University, Jalal Al Ahmad, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Sarraf Mamoory, Rasoul, E-mail: rsarrafm@modares.ac.ir [Materials Engineering Department, Tarbiat Modares University, Jalal Al Ahmad, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2010-10-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  7. Percutaneous Renal Tumor Ablation: Radiation Exposure During Cryoablation and Radiofrequency Ablation

    Energy Technology Data Exchange (ETDEWEB)

    McEachen, James C., E-mail: james.mceachen2@gmail.com [Mayo Clinic, Division of Preventive, Occupational, and Aerospace Medicine (United States); Leng, Shuai; Atwell, Thomas D. [Mayo Clinic, Department of Radiology (United States); Tollefson, Matthew K. [Mayo Clinic, Department of Urology (United States); Friese, Jeremy L. [Mayo Clinic, Department of Radiology (United States); Wang, Zhen; Murad, M. Hassan [Mayo Clinic, Division of Preventive, Occupational, and Aerospace Medicine (United States); Schmit, Grant D. [Mayo Clinic, Department of Radiology (United States)

    2016-02-15

    IntroductionOnce reserved solely for non-surgical cases, percutaneous ablation is becoming an increasingly popular treatment option for a wider array of patients with small renal masses and the radiation risk needs to be better defined as this transition continues.Materials and MethodsRetrospective review of our renal tumor ablation database revealed 425 patients who underwent percutaneous ablation for treatment of 455 renal tumors over a 5-year time period. Imparted radiation dose information was reviewed for each procedure and converted to effective patient dose and skin dose using established techniques. Statistical analysis was performed with each ablative technique.ResultsFor the 331 cryoablation procedures, the mean DLP was 6987 mGycm (SD = 2861) resulting in a mean effective dose of 104.7 mSv (SD = 43.5) and the mean CTDI{sub vol} was 558 mGy (SD = 439) resulting in a mean skin dose of 563.2 mGy (SD = 344.1). For the 124 RFA procedures, the mean DLP was 3485 mGycm (SD = 1630) resulting in a mean effective dose of 50.3 mSv (SD = 24.0) and the mean CTDI{sub vol} was 232 mGy (SD = 149) resulting in a mean skin dose of 233.2 mGy (SD = 117.4). The difference in patient radiation exposure between the two renal ablation techniques was statistically significant (p < 0.001).ConclusionBoth cryoablation and RFA imparted an average skin dose that was well below the 2 Gy deterministic threshold for appreciable sequela. Renal tumor cryoablation resulted in a mean skin and effective radiation dose more than twice that for RFA. The radiation exposure for both renal tumor ablation techniques was at the high end of the medical imaging radiation dose spectrum.

  8. PPARγ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding.

    Science.gov (United States)

    Long, Lihong; Toda, Chitoku; Jeong, Jing Kwon; Horvath, Tamas L; Diano, Sabrina

    2014-09-01

    Activation of central PPARγ promotes food intake and body weight gain; however, the identity of the neurons that express PPARγ and mediate the effect of this nuclear receptor on energy homeostasis is unknown. Here, we determined that selective ablation of PPARγ in murine proopiomelanocortin (POMC) neurons decreases peroxisome density, elevates reactive oxygen species, and induces leptin sensitivity in these neurons. Furthermore, ablation of PPARγ in POMC neurons preserved the interaction between mitochondria and the endoplasmic reticulum, which is dysregulated by HFD. Compared with control animals, mice lacking PPARγ in POMC neurons had increased energy expenditure and locomotor activity; reduced body weight, fat mass, and food intake; and improved glucose metabolism when exposed to high-fat diet (HFD). Finally, peripheral administration of either a PPARγ activator or inhibitor failed to affect food intake of mice with POMC-specific PPARγ ablation. Taken together, our data indicate that PPARγ mediates cellular, biological, and functional adaptations of POMC neurons to HFD, thereby regulating whole-body energy balance.

  9. Laser induced ablatively driven interfacial nonlinear fluid instabilities in multilayer targets

    International Nuclear Information System (INIS)

    Manoranjan Khan; Gupta, M.R.; Mandal, L.K.; Roy, S.; Banerjee, R.

    2010-01-01

    Complete text of publication follows. High power laser driven shock waves in condensed matter have important application for studying equation of state (EOS) and high pressure physics. This is an important phenomenon in fuel compression for Inertial Confinement Fusion (ICF) experiments where multilayer targets of differing shock impedance are interacted by laser induced shocks. The interface between the two fluid becomes unstable when driven by the impulsive force (Richtmyer-Meshkov) due to such a shock wave or a continuously acting force e.g., gravity (Rayleigh-Taylor). In the nonlinear stage, the fluid interface is found to develop structures having finger-like shapes. The structures resemble a bubble (spike) accordingly as a lighter (heavier) fluid pushes in a heavier (lighter) fluid. These effects need to be mitigated for efficient compression in ICF experiment. We have studied the effect of density variation on R-T and R-M instability on the temporal development of nonlinear two fluid interfacial structures like bubble and spike. It is shown that the velocity of bubble or spike decreases leading to stabilization if the density of the fluids leads to lowering of the Atwood number. The Atwood number A = ρ a -ρ b / ρ a +ρ b changes to A* = ρ a *ρ b */ ρ a *ρ b * where ρ* m = ρ m (1-1/γ m ), m = [a,b], assuming ρ a > ρ b . It has been seen that the stabilization or destabilization (depending on the algebraic sign of the gradient) will be proportional to the pressure p 0 at the interface. The set of equation describing the dynamics of the bubbles and spikes in presence of fluid density variation are not analytically integrable in closed form. All the results are derived by numerical methods and are represented and interpreted. Analytical calculations are performed (not presented here) to modify the dynamical boundary condition between the two fluids and we have finally arrived at the following expression for the asymptotic bubble velocity ν b 2 = 2(r

  10. Dynamics of bright-bright solitons in Bose-Einstein condensate with Raman-induced one-dimensional spin-orbit coupling

    Science.gov (United States)

    Wen, Lin; Zhang, Xiao-Fei; Hu, Ai-Yuan; Zhou, Jing; Yu, Peng; Xia, Lei; Sun, Qing; Ji, An-Chun

    2018-03-01

    We investigate the dynamics of bright-bright solitons in one-dimensional two-component Bose-Einstein condensates with Raman-induced spin-orbit coupling, via the variational approximation and the numerical simulation of Gross-Pitaevskii equations. For the uniform system without trapping potential, we obtain two population balanced stationary solitons. By performing the linear stability analysis, we find a Goldstone eigenmode and an oscillation eigenmode around these stationary solitons. Moreover, we derive a general dynamical solution to describe the center-of-mass motion and spin evolution of the solitons under the action of spin-orbit coupling. The effects of a harmonic trap have also been discussed.

  11. Carbon monoxide oxidation on bimetallic Ru/Au(111 surfaces

    Directory of Open Access Journals (Sweden)

    ROLF-JÜRGEN BEHM

    2001-02-01

    Full Text Available The electrochemical deposition of Ru on Au(111 was performed in 0.5 M H2SO4+10-4 M RuCl3 . The obtained bimetallic Ru/Au(111 surfaces were character-ised by cyclic voltammetry and in situ STM in 0.5 MH2SO4. The Ru deposit consists of nanoscale islands, which merge with increasing coverage. Two different types of bimetallic Ru/Au(111 surfaces with respect to the distribution of Ru islands over the Au(111 substrate surface were obtained. When the deposition was performed at potentials more positive than the range of Au(111 reconstruction, homogeneous nucleation occured resulting in a random distribution of Ru islands. When the deposition was performed on reconstructed Au(111 at low overpotentials, selective nucleation occured resulting in the replication of the Au(111 reconstruction. Only at higher deposition overpotentials, can multilayer deposits be formed, which exhibit a very rough surface morphology. The electrocatalytic activity of such structurally well defined Ru/Au(111 bimetallic surfaces was studied towards CO oxidation with the Ru coverage ranging from submonolayer to several monolayer. COstripping commences at about 0.2 Vand occurs over a broad potential range. The observed influence of the Ru structure on the CO stripping voltammetry is explained by local variations in the COadsorption energy, caused by differences in the local Ru structure and by effects induced by the Au(111 substrate.

  12. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    Science.gov (United States)

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-08

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  13. Nanogranular Au films deposited on carbon covered Si substrates for enhanced optical reflectivity and Raman scattering

    International Nuclear Information System (INIS)

    Bhuvana, T; Kumar, G V Pavan; Narayana, Chandrabhas; Kulkarni, G U

    2007-01-01

    Electroless deposition of gold has been carried out on Si(100) surfaces precoated with laser ablated carbon layers of different thicknesses, and the resulting substrates have been characterized by a host of techniques. We first established the porous nature of the amorphous carbon layer by Raman and profilometric measurements. The Au uptake from the plating solution was optimal at a carbon layer thickness of 90 nm, where we observed nanogranules of ∼60-70 nm, well separated from each other in the carbon matrix (mean interparticle spacing ∼7 nm). We believe that the observed nanostructure is a result of Au 3+ electroless reduction on the Si surface through porous channels present in the amorphous carbon matrix. Importantly, this nanostructured substrate exhibited high reflectivity in the near IR region besides being effective as a substrate for surface enhanced Raman scattering (SERS) measurements with enhancement factors up to 10 7

  14. Fabrication of Pt/Au concentric spheres from triblock copolymer.

    Science.gov (United States)

    Koh, Haeng-Deog; Park, Soojin; Russell, Thomas P

    2010-02-23

    Dispersion of an aqueous H(2)PtCl(6) solution into a trifluorotoluene (TFT) solution of a polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO) triblock copolymer produced an emulsion-induced hollow micelle (EIHM), comprising a water nanodroplet stabilized by PEO, H(2)PtCl(6)/P2VP, and PS, sequentially. The following addition of an aqueous LiAuCl(4) solution into the dispersion led to a coordination of LiAuCl(4) and PEO. The resulting spherical EIHM structure was transformed to a hollow cylindrical micelle by the fusion of spherical EIHM with the addition of methanol. This structural transition was reversible by the alternative addition of methanol and TFT. Oxygen plasma was used to generate Pt/Au concentric spheres and hollow cylindrical Pt/Au nano-objects.

  15. Laser ablation-laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils.

    Science.gov (United States)

    Pareja, Jhon; López, Sebastian; Jaramillo, Daniel; Hahn, David W; Molina, Alejandro

    2013-04-10

    The performances of traditional laser-induced breakdown spectroscopy (LIBS) and laser ablation-LIBS (LA-LIBS) were compared by quantifying the total elemental concentration of potassium in highly heterogeneous solid samples, namely soils. Calibration curves for a set of fifteen samples with a wide range of potassium concentrations were generated. The LA-LIBS approach produced a superior linear response different than the traditional LIBS scheme. The analytical response of LA-LIBS was tested with a large set of different soil samples for the quantification of the total concentration of Fe, Mn, Mg, Ca, Na, and K. Results showed an acceptable linear response for Ca, Fe, Mg, and K while poor signal responses were found for Na and Mn. Signs of remaining matrix effects for the LA-LIBS approach in the case of soil analysis were found and discussed. Finally, some improvements and possibilities for future studies toward quantitative soil analysis with the LA-LIBS technique are suggested.

  16. Study of the most violent collisions in Kr + Au and Pb + Au reactions close to 30 MeV per nucleon

    International Nuclear Information System (INIS)

    Galin, J.

    1991-01-01

    Within the past two years, the use of the high efficiency, sectorized 4π neutron detector, ORION, enabled a new approach in the investigation of nuclear collisions between very heavy nuclei. This talk discusses recent developments of this technique applied to Kr + Au and Pb + Au reactions induced at 32 and 29 MeV per nucleon respectively. The effectiveness of the neutron multiplicity meter as a filter on the violence of the collision is presented and the characteristics of the most violent collisions examined in some detail by considering associated charged particles

  17. The effect of gamma-irradiation on laser ablation of polyketone

    International Nuclear Information System (INIS)

    Golodkov, O.N.; Ol'khov, Yu.A.; Allayarov, S.R.; Belov, G.P.; Ivanov, L.F.; Kalinin, L.A.; Grakovich, P.N.

    2013-01-01

    Results of a pioneering study of the effect of laser radiation in vacuum on the surface of a polyketone (alternating terpolymer of ethylene, propylene, and carbon monoxide, POK) plate are presented. The preliminary γirradiation of POK to a dose of 100 kGy enhances its laser ablation rate. It has been found that laser beam irradiation leads to the surface heating of the plate, its melting, and the formation of a characteristic surface microrelief, an ablation crater, from which the gas flow of the ablation plume carries away products that are deposited on surfaces outside the laser beam area to form a coating with a chemical composition close to that of the substrate POK. A rim grows from molten POK around the crater. The melting point of the crystalline modification (377 K), the molecular flow temperature (427 K), and the molecular weight of the coating (25 560) are much lower than those of the initial POK (464 K, 477 K, and 159200, respectively), thereby indicating laser - induced chain degradation of POK. (authors)

  18. Parametric Amplification of Vacuum Fluctuations in a Spinor Condensate

    DEFF Research Database (Denmark)

    Klempt, C.; Topic, O.; Gebreyesus, G.

    2010-01-01

    to correlated pair creation in the mF=±1 states from an initial mF=0 condensate, which acts as a vacuum for mF≠0. Although this pair creation from a pure mF=0 condensate is ideally triggered by vacuum fluctuations, unavoidable spurious initial mF=±1 atoms induce a classical seed which may become the dominant...... triggering mechanism. We show that pair creation is insensitive to a classical seed for sufficiently large magnetic fields, demonstrating the dominant role of vacuum fluctuations. The presented system thus provides a direct path towards the generation of nonclassical states of matter....

  19. Radiofrequency tissue ablation with cooled-tip electrodes:an experimental study in a bovine liver model on variables influencing lesion size

    International Nuclear Information System (INIS)

    Han, Hyun Young; Lee, Jeong Min; Kim, Chong Soo

    2001-01-01

    The purpose of this study was to determine the influence of various factors on the extent of thermal coagulation necrosis after radiofrequency (RF) tissue ablation using a cooled-tip electrode in bovine liver. RF ablation was induced by a monopolar 500 KHz-RF generator (CC-1; Radionics, Burlington, Mass., U.S.A.) and an 18-G cooled-tip with single or clustered electrodes. The ablation protocol involved a combination of varying current, ablation time, power output, gradual or abrupt increase of this out-put, and pulsed radiofrequency techniques. The maximum diameter of all thermal lesions which showed a color change was measured perpendicular to the electrode axis by two observers who reached their decisions by consensus. Twenty representative lesions were pathologically examined. With increasing current lesion diameter also increased, but above 1500 mA no further increase was induced. Extending the ablation time to 9 minutes for a single electrode and 15 minutes for a clustered electrode increased lesion diameter until a steady state was reached. Higher power levels caused larger lesions, but above 100 W no increase was observed. Ample exposure time coupled with a stepwise increase in power level induced a lesion larger than that resulting from an abrupt increase. Continuous pulsed RF with a high current led to increased coagulation necrosis diameter. These experimental findings may be useful thermotherapy. The data suggest that all involved factors significantly affect lesion size:if the factors are better understood, cancer thermotherapy can be better controlled

  20. Hydrodynamic instabilities in an ablation front

    International Nuclear Information System (INIS)

    Piriz, A R; Portugues, R F

    2004-01-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved