WorldWideScience

Sample records for ablation plumes produced

  1. Dynamics of the plume produced by nanosecond ultraviolet laser ablation of metals

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen; Lunney, J.G.

    2003-01-01

    The dynamics of the ablation plume of a partially ionized plasma produced by a nanosecond UV laser with different irradiation spot geometries has been explored. We have used an ensemble of quartz crystal microbalances to make the first systematic and quantitative study of how the shape of the plume...... varies as the aspect ratio (b/a) of the elliptical laser spot is varied by about a factor of ten. The flip-over effect can be described by the adiabatic expansion model of Anisimov using a value of the adiabatic constant of about gamma = 1.4. We have also studied the forward peaking of the ablation plume...... for a large number of metals at the same laser fluence. Contrary to earlier reports, we find that the more refractory metals have the broader angular distributions....

  2. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  3. Diagnostics of laser ablated plasma plumes

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2004-01-01

    The effect of an ambient gas on the expansion dynamics of laser ablated plasmas has been studied for two systems by exploiting different diagnostic techniques. First, the dynamics of a MgB2 laser produced plasma plume in an Ar atmosphere has been investigated by space-and time-resolved optical...... of the laser ablated plasma plume propagation in a background gas. (C) 2003 Elsevier B.V All rights reserved....

  4. Appearance property and mechanism of plume produced by pulsed ultraviolet laser ablating copper

    International Nuclear Information System (INIS)

    Huang Qingju; Li Fuquan; Wang Honghua

    2008-01-01

    Time-resolved measurements of plume emission spectra by pulsed ultraviolet laser ablating copper in neon were analyzed, and the photographs of plume from laser ablating copper were taken. The experimental results show that plume has different colours in different ranges. At low pressure the centre layer and middle layer colours of plume are mixed colour, and the outer layer colours of plume are yellow and green. At middle pressure the centre layer and middle layer colours of plume are white, and the outer layer colour of plume is pea green. At high pressure the centre layer and middle layer colours of plume are white, and the outer layer colour of plume is faintness green. The plume range is pressed with the rising of ambient gas pressure, and the range colour gets thin with the rising of ambient gas pressure. The plume excitation radiation mechanism in pulsed ultraviolet laser ablating copper was discussed. The primary excitation radiation mechanism in plume is electron collision energy transfer and atom collision energy transfer at low pressure and middle pressure, and it is electrons Bremsstrahlung and recombination excitation radiation of electron and ion at high pressure. The model can be used to explain the experimental result qualitatively. (authors)

  5. Diagnostics of Carbon Nanotube Formation in a Laser Produced Plume: An Investigation of the Metal Catalyst by Laser Ablation Atomic Fluorescence Spectroscopy

    Science.gov (United States)

    deBoer, Gary; Scott, Carl

    2003-01-01

    Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal

  6. Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy

    International Nuclear Information System (INIS)

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Khumaeni, A.; Kato, M.; Wakaida, I.

    2015-01-01

    The dynamic behavior of an ablation plume in ambient gas has been investigated by laser-induced fluorescence imaging spectroscopy. The second harmonic beam from an Nd:YAG laser (0.5–6 J/cm 2 ) was focused on a sintered oxide pellet or a metal chip of gadolinium. The produced plume was subsequently intersected with a sheet-shaped UV beam from a dye laser so that time-resolved fluorescence images were acquired with an intensified CCD camera at various delay times. The obtained cross-sectional images of the plume indicate that the ablated ground state atoms and ions of gadolinium accumulate in a hemispherical contact layer between the plume and the ambient gas, and a cavity containing a smaller density of ablated species is formed near the center of the plume. At earlier expansion stage, another luminous component also expands in the cavity so that it coalesces into the hemispherical layer. The splitting and coalescence for atomic plume occur later than those for ionic plume. Furthermore, the hemispherical layer of neutral atoms appears later than that of ions; however, the locations of the layers are nearly identical. This coincidence of the appearance locations of the layers strongly suggests that the neutral atoms in the hemispherical layer are produced as a consequence of three-body recombination of ions through collisions with gas atoms. The obtained knowledge regarding plume expansion dynamics and detailed plume structure is useful for optimizing the experimental conditions for ablation-based spectroscopic analysis. - Highlights: • Ablated ground-state species accumulated in a thin hemispherical boundary layer • Inside the layer, a cavity containing a small density of ablated species was formed. • The hemispherical layers of atoms and ions appeared at a nearly identical location. • The measured intensity peak variation was in good agreement with a model prediction. • We ascribed the dominant process for forming the layer to a three-body recombination

  7. Confinement effect of laser ablation plume in liquids probed by self-absorption of C2 Swan band emission

    International Nuclear Information System (INIS)

    Sakka, Tetsuo; Saito, Kotaro; Ogata, Yukio H.

    2005-01-01

    The (0,0) Swan band of the C 2 molecules in a laser ablation plume produced on the surface of graphite target submerged in water was used as a probe to estimate the density of C 2 molecules in the plume. Observed emission spectra were reproduced excellently by introducing a self-absorption parameter to the theoretical spectral profile expected by a rotational population distribution at a certain temperature. The optical density of the ablation plume as a function of time was determined as a best-fit parameter by the quantitative fitting of the whole spectral profile. The results show high optical densities for the laser ablation plume in water compared with that in air. It is related to the plume confinement or the expansion, which are the important phenomena influencing the characteristics of laser ablation plumes in liquids

  8. Plume dynamics in TiC laser ablation

    International Nuclear Information System (INIS)

    D'Alessio, L.; Galasso, A.; Santagata, A.; Teghil, R.; Villani, A.R.; Villani, P.; Zaccagnino, M.

    2003-01-01

    In this work, the analysis of the gaseous phase, produced by pulsed laser ablation of a TiC target and performed by emission spectroscopy and intensified charge coupled device (ICCD) imaging is reported. In the case of laser fluence higher than 3 J/cm 2 , the front of the emitting plume is identified with the presence of Ti 2+ ions, while the presence of a double maximum is due to the neutral and ionized titanium particles traveling with different velocities. At a laser fluence lower than 3 J/cm 2 , the front is marked by C + emission and only one maximum is present. The results, compared with those obtained for other carbides of group 4, evidence that only in the plume produced from TiC targets there is the presence of a large amount of ions with high kinetic energy. In particular, the highly energetic M 2+ ions (M=Ti, Zr, Hf) are present only in the TiC plume. The different energy and concentration of ions in the different carbide plumes confirm the importance of the ionized part of the gaseous phase in the film growth mechanism. In fact only in the TiC films, we find a layered structure in contrast with the columnar structure found in the other carbides of the same group

  9. Characterization and Comparison of Aluminum, Silicon, and Carbon Laser Ablation Plumes

    Science.gov (United States)

    Iratcabal, Jeremy; Swanson, Kyle; Covington, Aaron

    2017-10-01

    Laser ablation of solid targets produces plasma plumes with rapidly evolving temperature and density gradients. These gradients can be measured using laser interferometric techniques that allow for the study of the plasma as the plume expands from the target surface and the temperature and density decrease. A systematic study of the temperature and density of aluminum, silicon, and carbon plasma plumes produced with a 2 TW/cm2 laser using spectroscopic, interferometric, fast imaging, and charge diagnostics will be presented. Carbon, aluminum, and silicon plumes are of interest because they are closely grouped on the periodic table but have very different material characteristics. Temporally and spatially resolved data was collected to characterize the evolution of the plasma in the plume. To probe the plasmas produced from these materials, optical spectroscopy was employed to identify and measure the temperature of the coexisting neutral and ionized atomic and molecular species. A Mach-Zehnder interferometer was employed to measure electron density. ICCD imaging and shadowgraphy were used to image the plume dynamics. A comparison of plasma evolution for each element will also be presented and will provide data to benchmark plasma codes. This work was supported by the University of Nevada, Reno, the U.S. DOE /NNSA Cooperative Agreement No. DE-NA0002075, and National Securities Technologies, LLC under Contract No. DE-AC52-06NA25946/Subcontract No. 165819.

  10. Characterization of ablated species in laser-induced plasma plume

    International Nuclear Information System (INIS)

    Furusawa, Hideki; Sakka, Tetsuo; Ogata, Yukio H.

    2004-01-01

    Plasma electron density and atomic population densities in the plasma plume produced by a laser ablation of aluminum metal were determined in various ambient gases at relatively high pressures. The method is based on the fit of a spectral line profile of Al(I) 2 P (convolutionsign) - 2 S emission to the theoretical spectrum obtained by one-dimensional radiative transfer calculation. The electron density was higher for a higher ambient gas pressure, suggesting the confinement of the plume by an ambient gas. The electron density also depends on the type of ambient gases, i.e., it increased in the order He 4 2 4 , while the atomic population density is almost independent of the type of ambient species and pressure. The population densities of the upper and lower levels of the transition were compared, and the ratio between their spatial distribution widths was calculated. These results provide valuable information regarding the confinement of the plume by the ambient gas and give insight into the time evolution of the plume

  11. Morphological changes in ultrafast laser ablation plumes with varying spot size.

    Science.gov (United States)

    Harilal, S S; Diwakar, P K; Polek, M P; Phillips, M C

    2015-06-15

    We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present results clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.

  12. Plume expansion dynamics during laser ablation of manganates in oxygen atmosphere

    International Nuclear Information System (INIS)

    Amoruso, S.; Sambri, A.; Wang, X.

    2007-01-01

    The effect of ambient gas on the expansion dynamics of the plasma plume generated by excimer laser ablation of a LaMnO 3 target is investigated by using fast photography and optical emission spectroscopy. The plume propagation in an oxygen environment is examined with pressure ranging from vacuum to few hundreds Pa. Imaging analysis of the plume emission has allowed following the changes in the plume front dynamics as a function of time and pressure. The expansion dynamics of the plume front is examined by means of a theoretical description of plume evolution and shock-wave propagation in dimensionless variables. Optical emission spectroscopy analysis showed that the oxides are mainly formed in the gas-phase through reaction of the ablated atomic species with ambient oxygen. Moreover, we observed that the formation of oxides is strongly favoured at a pressure level where the formation of a shock-wave occurs

  13. Investigation of plume dynamics during picosecond laser ablation of H13 steel using high-speed digital holography

    Science.gov (United States)

    Pangovski, Krste; Otanocha, Omonigho B.; Zhong, Shan; Sparkes, Martin; Liu, Zhu; O'Neill, William; Li, Lin

    2017-02-01

    Ablation of H13 tool steel using pulse packets with repetition rates of 400 and 1000 kHz and pulse energies of 75 and 44 μ {J}, respectively, is investigated. A drop in ablation efficiency (defined here as the depth per pulse or μ {m}{/}μ {J}) is shown to occur when using pulse energies of E_{{pulse}} > 44 μ {J}, accompanied by a marked difference in crater morphology. A pulsed digital holographic system is applied to image the resulting plumes, showing a persistent plume in both cases. Holographic data are used to calculate the plume absorption and subsequently the fraction of pulse energy arriving at the surface after traversing the plume for different pulse arrival times. A significant proportion of the pulse energy is shown to be absorbed in the plume for E_{{pulse}} > 44 μ {J} for pulse arrival times corresponding to {>}1 MHz pulse repetition rate, shifting the interaction to a vapour-dominated ablation regime, an energetically costlier ablation mechanism.

  14. Evolution of plasma double layers in laser-ablation plumes

    International Nuclear Information System (INIS)

    Gurlui, S.; Sanduloviciu, M.; Mihesan, C.; Ziskind, M.; Focsa, C.

    2005-01-01

    The double layers (DLs) are one of the most complex problems of the plasma physics. These layers are apparently important not only in laboratory plasmas and laser-ablation plasma plumes but also in natural phenomena, e.g. the aurora and fire balls.This work studies the dynamics of the double layers in a laser ablation plume from different targets irradiated by a Nd: YAG 10 ns pulsed laser. The plasma formation was studied by means of both Langmuir probe and mass spectrometry methods using an experimental set-up developed for the study of environmental or technological interest samples. The ionic current distribution in plasma plume formation was recorded in different experimental conditions. We have found that it depends on the laser energy, the pressure of the buffer gas and the probe position. The periodical oscillations recorded in different experimental conditions prove that these plasma formations (DLs) are local physical systems able to accumulate and release energy. Acting as storing and releasing energy elements, the DLs can sustain periodical or non-periodical variations of the current or of the other global parameters of the plasma. (author)

  15. Toward single-cell analysis by plume collimation in laser ablation electrospray ionization mass spectrometry.

    Science.gov (United States)

    Stolee, Jessica A; Vertes, Akos

    2013-04-02

    Ambient ionization methods for mass spectrometry have enabled the in situ and in vivo analysis of biological tissues and cells. When an etched optical fiber is used to deliver laser energy to a sample in laser ablation electrospray ionization (LAESI) mass spectrometry, the analysis of large single cells becomes possible. However, because in this arrangement the ablation plume expands in three dimensions, only a small portion of it is ionized by the electrospray. Here we show that sample ablation within a capillary helps to confine the radial expansion of the plume. Plume collimation, due to the altered expansion dynamics, leads to greater interaction with the electrospray plume resulting in increased ionization efficiency, reduced limit of detection (by a factor of ~13, reaching 600 amol for verapamil), and extended dynamic range (6 orders of magnitude) compared to conventional LAESI. This enhanced sensitivity enables the analysis of a range of metabolites from small cell populations and single cells in the ambient environment. This technique has the potential to be integrated with flow cytometry for high-throughput metabolite analysis of sorted cells.

  16. Influence of the atomic mass of the background gas on laser ablation plume propagation

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2008-01-01

    A combination of time-of-flight ion probe measurements and gas dynamical modeling has been used to investigate the propagation of a laser ablation plume in gases of different atomic/molecular weight. The pressure variation of the ion time-of-flight was found to be well described by the gas...... dynamical model of Predtechensky and Mayorov (Appl. Supercond. 1:2011, 1993). In particular, the model describes how the pressure required to stop the plume in a given distance depends on the atomic/molecular weight of the gas, which is a feature that cannot be explained by standard point......-blast-wave descriptions of laser ablation plume expansion in gas....

  17. Reaction between laser ablation plume and ambient gas studied by laser-induced fluorescence imaging spectroscopy

    International Nuclear Information System (INIS)

    Sasaki, K; Watarai, H

    2007-01-01

    We visualized the density distributions of C 2 (plume), NO (ambient gas), and CN (reaction product) when a graphite target was ablated by irradiating YAG laser pulses at wavelengths of 1064 and 355 nm in ambient gas mixture of NO and He. It has been shown by the density distributions of C 2 and NO that the expansion of the plume removes the ambient gas and the plume and the ambient gas locate exclusively in both the cases at 1064 and 355 nm. A high CN density was observed at the interface between the plume and the ambient gas at 1064 nm, which is reasonable since chemical reactions between the plume and the ambient gas may occur only at their interface. On the other hand, in the case at 355 nm, we observed considerable CN inside the plume, indicating that the chemical reaction processes in the laser ablation at 355 nm is different from that expected from the density distributions of the plume and the ambient gas

  18. Evaluation of pressure in a plasma produced by laser ablation of steel

    Science.gov (United States)

    Hermann, Jörg; Axente, Emanuel; Craciun, Valentin; Taleb, Aya; Pelascini, Frédéric

    2018-05-01

    We investigated the time evolution of pressure in the plume generated by laser ablation with ultraviolet nanosecond laser pulses in a near-atmospheric argon atmosphere. These conditions were previously identified to produce a plasma of properties that facilitate accurate spectroscopic diagnostics. Using steel as sample material, the present investigations benefit from the large number of reliable spectroscopic data available for iron. Recording time-resolved emission spectra with an echelle spectrometer, we were able to perform accurate measurements of electron density and temperature over a time interval from 200 ns to 12 μs. Assuming local thermodynamic equilibrium, we computed the plasma composition within the ablated vapor material and the corresponding kinetic pressure. The time evolution of plume pressure is shown to reach a minimum value below the pressure of the background gas. This indicates that the process of vapor-gas interdiffusion has a negligible influence on the plume expansion dynamics in the considered timescale. Moreover, the results promote the plasma pressure as a control parameter in calibration-free laser-induced breakdown spectroscopy.

  19. Energy distribution of ions produced by laser ablation of silver in vacuum

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen; Canulescu, Stela

    2013-01-01

    the ablation process. A silver target in vacuum was irradiated with a Nd:YAG laser at a wavelength of 355nm and detailed measurements of the time-resolved angular distribution of plume ions were made. In contrast to earlier work, the beam spot was circular such that any flip-over effect of the plume is avoided......The ion energy in a silver ablation plume for fluence in the range of 0.6–2.4Jcm−2, typical for a pulsed laser deposition (PLD) experiment has been investigated. In this fluence range the ion fraction of the ablated particles becomes gradually dominant and can be utilized to characterize...

  20. Evolution of the plasma parameters in the expanding laser ablation plume of silver

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen; Hansen, T.N.

    2002-01-01

    The angular and radial variation of the ion density and electron temperature in the plasma plume produced by laser ablation of silver at fluences of 0.8-1.3 J cm(-2) at 355 nm have been studied using a time-resolving Langmuir probe. The angular dependence of the electron temperature...... and the magnitude of the ion flux, at the time when the ion flux is maximised, agree with the predictions of the self-similar isentropic model of the plasma expansion by Anisimov et al. (C) 2002 Elsevier Science B.V. All rights reserved....

  1. High-Resolution Spectroscopy of Laser Ablation Plumes Using Laser-Induced Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2017-02-06

    We used a CW laser as a narrow-band (~50kHz) tunable LIF excitation source to probe absorption from selected atomic transitions (Al, U etc. ) in a ns laser ablation plume. A comparison of fluorescence signal with respect to emission spectroscopy show significant increase in the magnitude and persistence from selected Al and U transitions in a LIBS plume. The high spectral resolution provided by the LIF measurement allows peaks to be easily separated even if they overlap in the emission spectra.

  2. Optical Thomson scatter from laser-ablated plumes

    International Nuclear Information System (INIS)

    Delserieys, A.; Khattak, F. Y.; Lewis, C. L. S.; Riley, D.; Pedregosa Gutierrez, J.

    2008-01-01

    We have obtained density and temperature informations on an expanding KrF laser-ablated magnesium plume via optical Thomson scatter with a frequency doubled Nd:YAG laser. The electron temperature was found to decay with the expected T e ∝t -1 dependence. However, we have found the electron density to have a time dependence n e ∝t -4.95 which can be explained by strong recombination processes. We also observed atomic Raman satellites originating from transitions between the different angular momentum levels of the metastable 3 P 0 term in Mg I

  3. Modeling of Heat Transfer and Ablation of Refractory Material Due to Rocket Plume Impingement

    Science.gov (United States)

    Harris, Michael F.; Vu, Bruce T.

    2012-01-01

    CR Tech's Thermal Desktop-SINDA/FLUINT software was used in the thermal analysis of a flame deflector design for Launch Complex 39B at Kennedy Space Center, Florida. The analysis of the flame deflector takes into account heat transfer due to plume impingement from expected vehicles to be launched at KSC. The heat flux from the plume was computed using computational fluid dynamics provided by Ames Research Center in Moffet Field, California. The results from the CFD solutions were mapped onto a 3-D Thermal Desktop model of the flame deflector using the boundary condition mapping capabilities in Thermal Desktop. The ablation subroutine in SINDA/FLUINT was then used to model the ablation of the refractory material.

  4. Energy distribution of ions produced by laser ablation of silver in vacuum

    International Nuclear Information System (INIS)

    Toftmann, B.; Schou, J.; Canulescu, S.

    2013-01-01

    The ion energy in a silver ablation plume for fluence in the range of 0.6–2.4 J cm −2 , typical for a pulsed laser deposition (PLD) experiment has been investigated. In this fluence range the ion fraction of the ablated particles becomes gradually dominant and can be utilized to characterize the ablation process. A silver target in vacuum was irradiated with a Nd:YAG laser at a wavelength of 355 nm and detailed measurements of the time-resolved angular distribution of plume ions were made. In contrast to earlier work, the beam spot was circular such that any flip-over effect of the plume is avoided. The angular energy distribution of ions in forward direction exceeds values of 500 eV, while at large angles the ion energy tail is below 100 eV. The maximum for the time-of-flight distributions agrees consistently with the prediction of Anisimov's model in the low fluence range, in which hydrodynamic motion prevails.

  5. Energy balance of a laser ablation plume expanding in a background gas

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2010-01-01

    The energy balance of a laser ablation plume in an ambient gas for nanosecond pulses has been investigated on the basis of the model of Predtechensky and Mayorov (PM), which provides a relatively simple and clear description of the essential hydrodynamics. This approach also leads to an insightfu...

  6. Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2004-01-01

    Combined diagnostic measurements of deposition rates and ion time-of-flight signals have been employed to study the expansion of a laser ablation plume into a background gas. With increasing gas pressure the angular distribution of the collected ablated atoms becomes broader, while the total...

  7. Effect of ablation geometry on the dynamics, composition, and geometrical shape of thin film plasma

    Science.gov (United States)

    Mondal, Alamgir; Singh, R. K.; Kumar, Ajai

    2018-01-01

    The characteristics of plasma plume produced by front and back ablation of thin films have been investigated using fast imaging and optical emission spectroscopy. Ablation geometry dependence of the plume dynamics, its geometrical aspect and composition is emphasized. Also, the effect of an ambient environment and the beam diameter of an ablating laser on the front and back ablations is briefly discussed. Analysis of time resolved images and plasma parameters indicates that the energetic and spherical plasma formed by front ablation is strikingly different in comparison to the slow and nearly cylindrical plasma plume observed in the case of back ablation. Further shock formation, plume confinement, thermalization and validity of different expansion models in these two ablation geometries are also presented. The present study demonstrates the manipulation of kinetic energy, shape, ion/neutral compositions and directionality of the expanding plume by adjusting the experimental configuration, which is highly relevant to its utilization in various applications e.g., generation of energetic particles, tokamak edge plasma diagnostics, thin film deposition, etc.

  8. Expansion dynamics and equilibrium conditions in a laser ablation plume of lithium: Modeling and experiment

    International Nuclear Information System (INIS)

    Stapleton, M.W.; McKiernan, A.P.; Mosnier, J.-P.

    2005-01-01

    The gas dynamics and atomic kinetics of a laser ablation plume of lithium, expanding adiabatically in vacuum, are included in a numerical model, using isothermal and isentropic self-similar analytical solutions and steady-state collisional radiative equations, respectively. Measurements of plume expansion dynamics using ultrafast imaging for various laser wavelengths (266-1064 nm), fluences (2-6.5 J cm -2 ), and spot sizes (50-1000 μm) are performed to provide input parameters for the model and, thereby, study the influence of laser spot size, wavelength, and fluence, respectively, on both the plume expansion dynamics and atomic kinetics. Target recoil pressure, which clearly affects plume dynamics, is included in the model. The effects of laser wavelength and spot size on plume dynamics are discussed in terms of plasma absorption of laser light. A transition from isothermal to isentropic behavior for spot sizes greater than 50 μm is clearly evidenced. Equilibrium conditions are found to exist only up to 300 ns after the plume creation, while complete local thermodynamic equilibrium is found to be confined to the very early parts of the expansion

  9. Composition of the excimer laser-induced plume produced during LASIK refractive surgery

    Science.gov (United States)

    Glickman, Randolph D.; Liu, Yun; Mayo, George L.; Baribeau, Alan D.; Starck, Tomy; Bankhead, Tom

    2003-07-01

    Because of concerns about potential hazards to surgical personnel of the plume associated with laser refractive surgery, this study was performed to characterize the composition of such plumes. Filter elements were removed from the smoke evacuator of a VISX S3 excimer laser (filter pore size ~0.3 microns) and from a Mastel Clean Room ( filter pore size ~0.2 microns) used with a LADARVISION excimer laser. The filters from both laser systems captured the laser-induced plumes from multiple, routine, LASIK patient procedures. Some filters were processed for scanning electron microscopy, while others were extracted with methanol and chloroform for biochemical analysis. Both the VISX "Final Air" filter and the Mastel "Clean Room" filter captured material that was not observed in filters that had clean operating room air only passed through them. In the VISX system, air flows through the filter unit parallel to the filter matrix. SEM analysis showed these filters captured discrete particles of 0.3 to 3.0 microns in size. In the Mastel Clean Room unit, air flows orthogonally through the filter, and the filter matrix was heavily layered with captured debris so that individual particles were not readily distinguished. Amino acid analysis and gel electrophoresis of extracted material revealed proteinaceous molecules as large as 5000 molecular weight. Such large molecules in the laser plume are not predicted by the existing theory of photochemical ablation. The presence of relatively large biomolecules may constitute a risk of allergenic reactions in personnel exposed to the plume, and also calls into question the precise mechanism of excimer laser photochemical ablation. Supported by the RMG Research Endowment, and Research to Prevent Blindness

  10. Synthesis of Fe–Ni bimetallic nanoparticles from pixel target ablation: plume dynamics and surface characterization

    International Nuclear Information System (INIS)

    Niu Xiaoxu; Murray, Paul T.; Sarangan, Andrew

    2012-01-01

    A novel Fe–Ni bimetallic nanoparticle synthesis technique, denoted pixel target ablation, is reported. The technique entails ablating a thin film target consisting of patterned Fe and Ni pixels with a selected ratio using a KrF excimer laser. The laser energy breaks a known amount of target materials into metal atoms, which then form nanoparticles by recombination in the gas phase. Due to the nature of thin-film ablation, splashing of large particles was eliminated with the added benefit of minimizing nanoparticle agglomeration. Plume dynamics and surface characterizations were carried out to exploit the formation of Fe–Ni nanoparticles more fully. The composition was readily controlled by varying the initial relative amount of Fe and Ni target pixels. Synthesis of multi-element nanoparticles by pixel target ablation should be possible with any element combination that can be prepared as a thin-film target.

  11. Plume splitting and oscillatory behavior in transient plasmas generated by high-fluence laser ablation in vacuum

    Science.gov (United States)

    Focsa, C.; Gurlui, S.; Nica, P.; Agop, M.; Ziskind, M.

    2017-12-01

    We present a short overview of studies performed in our research groups over the last decade on the characterization of transient plasma plumes generated by laser ablation in various temporal regimes, from nanosecond to femtosecond. New results are also presented along with this overview, both being placed in the context of similar studies performed by other investigators. Optical (fast gate intensified CCD camera imaging and space- and time-resolved emission spectroscopy) and electrical (mainly Langmuir probe) methods have been applied to experimentally explore the dynamics of the plasma plume and its constituents. Peculiar effects as plume splitting and sharpening or oscillations onset have been evidenced in vacuum at high laser fluence. New theoretical approaches have been developed to account for the experimental observations.

  12. Laser ablation for the synthesis of carbon nanotubes

    Science.gov (United States)

    Holloway, Brian C.; Eklund, Peter C.; Smith, Michael W.; Jordan, Kevin C.; Shinn, Michelle

    2010-04-06

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  13. Laser ablation for the synthesis of carbon nanotubes

    Science.gov (United States)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2012-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  14. Nanosecond and femtosecond ablation of La0.6Ca0.4CoO3: a comparison between plume dynamics and composition of the films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Papadopoulou, E.; Anglos, D.

    2011-01-01

    Thin films of La0.6Ca0.4CoO3 were grown by pulsed laser ablation with nanosecond and femtosecond pulses. The films deposited with femtosecond pulses (248 nm, 500 fs pulse duration) exhibit a higher surface roughness and deficiency in the cobalt content compared to the films deposited with nanosec......Thin films of La0.6Ca0.4CoO3 were grown by pulsed laser ablation with nanosecond and femtosecond pulses. The films deposited with femtosecond pulses (248 nm, 500 fs pulse duration) exhibit a higher surface roughness and deficiency in the cobalt content compared to the films deposited...... and in a background pressure of 60 Pa of oxygen. The ns-induced plume in vacuum exhibits a spherical shape, while for femtosecond ablation the plume is more elongated along the expansion direction, but with similar velocities for ns and fs laser ablation. In the case of ablation in the background gas similar...

  15. UV and IR laser ablation for inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Smith, M.R.; Koppenaal, D.W.; Farmer, O.T.

    1993-06-01

    Laser ablation particle plume compositions are characterized using inductively coupled plasma mass spectrometry (ICP/MS). This study evaluates the mass response characteristics peculiar to ICP/MS detection as a function of laser fluence and frequency. Evaluation of the ICP/MS mass response allows deductions to be made concerning how representative the laser ablation produced particle plume composition is relative to the targeted sample. Using a black glass standard, elemental fractionation was observed, primarily for alkalis and other volatile elements. The extent of elemental fractionation between the target sample and the sampled plume varied significantly as a function of laser fluences and IR and UV laser frequency

  16. Particulates reduction in laser-ablated YBa2Cu3O7-δ thin films by laser-induced plume heating

    International Nuclear Information System (INIS)

    Koren, G.; Baseman, R.J.; Gupta, A.; Lutwyche, M.I.; Laibowitz, R.B.

    1990-01-01

    Experimental demonstration of reduction in the number and size of particulates formed in the laser ablation deposition of YBa 2 Cu 3 O 7-δ thin films is obtained by the use of a second laser which further heats and fragments the blowoff material in the plume formed by the first laser. This results in a smoother film with higher critical current density as compared to that obtained without the second laser irradiation of the plume

  17. Simulation of ablation and plume dynamics under femtosecond double-pulse laser irradiation of aluminum: Comparison of atomistic and continual approaches

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, Vladimir B.; Povarnitsyn, Mikhail E., E-mail: povar@ihed.ras; Levashov, Pavel R.

    2017-02-28

    Highlights: • We model double-pulse laser ablation of aluminum using microscopic and macroscopic approaches. • Both methods show decrease in depth of crater with increasing delay between pulses. • Both methods reveal the plume temperature growth with the increasing delay. • Good agreement between results is a step towards the development of combined model. - Abstract: We elaborated two numerical methods, two-temperature hydrodynamics and hybrid two-temperature molecular dynamics, which take into account basic mechanisms of a metal target response to ultrashort laser irradiation. The model used for the description of the electronic subsystem is identical for both approaches, while the ionic part is defined by an equation of state in hydrodynamics and by an interatomic potential in molecular dynamics. Since the phase diagram of the equation of state and corresponding potential match reasonably well, the dynamics of laser ablation obtained by both methods is quite similar. This correspondence can be considered as a first step towards the development of a self-consistent combined model. Two important processes are highlighted in simulations of double-pulse ablation: (1) the crater depth decrease as a result of recoil flux formation in the nascent plume when the delay between the pulses increases; (2) the plume reheating by the second pulse that gives rise to two- three-fold growth of the electron temperature with the delay varying from 0 to 200 ps.

  18. A thermal model for nanosecond pulsed laser ablation of aluminum

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-07-01

    Full Text Available In order to simulate the nanosecond pulsed laser ablation of aluminum, a novel model was presented for the target ablation and plume expansion. The simulation of the target ablation was based on one-dimensional heat conduction, taking into account temperature dependent material properties, phase transition, dielectric transition and phase explosion. While the simulation of the plume expansion was based on one-dimensional gas-dynamical equation, taking into account ionization, plume absorption and shielding. By coupling the calculations of the target ablation and plume expansion, the characteristics of the target and plume were obtained. And the calculated results were in good agreement with the experimental data, in terms of ablation threshold and depth within the fluence range of the tested laser. Subsequently, investigations were carried out to analyze the mechanisms of nanosecond pulsed laser ablation. The calculated results showed that the maximum surface temperature remained at about 90% of the critical temperature (0.9Tc due to phase explosion. Moreover, the plume shielding has significant effects on the laser ablation, and the plume shielding proportion increase as the laser fluence increasing. The ambient pressure belows 100 Pa is more suitable for laser ablation, which can obtained larger ablation depth.

  19. Expansion-limited aggregation of nanoclusters in a single-pulse laser-produced plume

    International Nuclear Information System (INIS)

    Gamaly, E. G.; Madsen, N. R.; Rode, A. V.; Golberg, D.

    2009-01-01

    Formation of carbon nanoclusters in a single-laser-pulse created ablation plume was studied both in vacuum and in a noble gas environment at various pressures. The developed theory provides cluster radius dependence on combination of laser parameters, properties of ablated material, and type and pressure of an ambient gas in agreement with experiments. The experiments were performed on carbon nanoclusters formed by laser ablation of graphite targets with 12 picosecond 532 nm laser pulses at MHz-range repetition rate in a broad range of ambient He, Ar, Kr, and Xe gas pressures from 2x10 -2 to 1500 Torr. The experimental results confirmed our theoretical prediction that the average size of the nanoparticles depends weakly on the type of the ambient gas used, and is determined exclusively by the single laser pulse parameters even at the repetition rate as high as 28 MHz with the time gap 36 ns between the pulses. The most important finding relates to the fact that in vacuum the cluster size is mainly determined by hydrodynamic expansion of the plume while in the ambient gas it is controlled by atomic diffusion in the gas. We demonstrate that the ultrashort pulses can be used for production of clusters with the size less than the critical value, which separates the particles with properties drastically different from those of a material in a bulk. The presented results of experiments on formation of carbon nanoclusters are in close agreement with the theoretical scaling. The developed theory is applicable for cluster formation from any monatomic material, such as silicon for example.

  20. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  1. Laser-generated plasma plume expansion: Combined continuous-microscopic modeling

    Science.gov (United States)

    Itina, Tatiana E.; Hermann, Jörg; Delaporte, Philippe; Sentis, Marc

    2002-12-01

    The physical phenomena involved in the interaction of a laser-generated plasma plume with a background gas are studied numerically. A three-dimensional combined model is developed to describe the plasma plume formation and its expansion in vacuum or into a background gas. The proposed approach takes advantages of both continuous and microscopic descriptions. The simulation technique is suitable for the simulation of high-rate laser ablation for a wide range of background pressure. The model takes into account the mass diffusion and the energy exchange between the ablated and background species, as well as the collective motion of the ablated species and the background-gas particles. The developed approach is used to investigate the influence of the background gas on the expansion dynamics of the plume obtained during the laser ablation of aluminum. At moderate pressures, both plume and gas compressions are weak and the process is mainly governed by the diffusive mixing. At higher pressures, the interaction is determined by the plume-gas pressure interplay, the plume front is strongly compressed, and its center exhibits oscillations. In this case, the snowplough effect takes place, leading to the formation of a compressed gas layer in front of the plume. The background pressure needed for the beginning of the snowplough effect is determined from the plume and gas density profiles obtained at various pressures. Simulation results are compared with experimentally measured density distributions. It is shown that the calculations suggest localized formation of molecules during reactive laser ablation.

  2. Laser-generated plasma plume expansion: Combined continuous-microscopic modeling

    International Nuclear Information System (INIS)

    Itina, Tatiana E.; Hermann, Joerg; Delaporte, Philippe; Sentis, Marc

    2002-01-01

    The physical phenomena involved in the interaction of a laser-generated plasma plume with a background gas are studied numerically. A three-dimensional combined model is developed to describe the plasma plume formation and its expansion in vacuum or into a background gas. The proposed approach takes advantages of both continuous and microscopic descriptions. The simulation technique is suitable for the simulation of high-rate laser ablation for a wide range of background pressure. The model takes into account the mass diffusion and the energy exchange between the ablated and background species, as well as the collective motion of the ablated species and the background-gas particles. The developed approach is used to investigate the influence of the background gas on the expansion dynamics of the plume obtained during the laser ablation of aluminum. At moderate pressures, both plume and gas compressions are weak and the process is mainly governed by the diffusive mixing. At higher pressures, the interaction is determined by the plume-gas pressure interplay, the plume front is strongly compressed, and its center exhibits oscillations. In this case, the snowplough effect takes place, leading to the formation of a compressed gas layer in front of the plume. The background pressure needed for the beginning of the snowplough effect is determined from the plume and gas density profiles obtained at various pressures. Simulation results are compared with experimentally measured density distributions. It is shown that the calculations suggest localized formation of molecules during reactive laser ablation

  3. Desorption/ablation of lithium fluoride induced by extreme ultraviolet laser radiation

    Directory of Open Access Journals (Sweden)

    Blejchař Tomáš

    2016-06-01

    Full Text Available The availability of reliable modeling tools and input data required for the prediction of surface removal rate from the lithium fluoride targets irradiated by the intense photon beams is essential for many practical aspects. This study is motivated by the practical implementation of soft X-ray (SXR or extreme ultraviolet (XUV lasers for the pulsed ablation and thin film deposition. Specifically, it is focused on quantitative description of XUV laser-induced desorption/ablation from lithium fluoride, which is a reference large band-gap dielectric material with ionic crystalline structure. Computational framework was proposed and employed here for the reconstruction of plume expansion dynamics induced by the irradiation of lithium fluoride targets. The morphology of experimentally observed desorption/ablation craters were reproduced using idealized representation (two-zone approximation of the laser fluence profile. The calculation of desorption/ablation rate was performed using one-dimensional thermomechanic model (XUV-ABLATOR code taking into account laser heating and surface evaporation of the lithium fluoride target occurring on a nanosecond timescale. This step was followed by the application of two-dimensional hydrodynamic solver for description of laser-produced plasma plume expansion dynamics. The calculated plume lengths determined by numerical simulations were compared with a simple adiabatic expansion (blast-wave model.

  4. Appearance and water quality of turbidity plumes produced by dredging in Tampa Bay, Florida

    Science.gov (United States)

    Goodwin, Carl R.; Michaelis, D.M.

    1984-01-01

    Turbidity plumes in Tampa Bay, Florida, produced during ship-channel dredging operations from February 1977 to August 1978, were monitored in order to document plume appearance and water quality, evaluate plume influence on the characteristics of Tampa Bay water, and provide a data base for comparison with other areas that have similar sediment, dredge, placement, containment, and tide conditions. The plumes investigated originated from the operation of one hopper dredge and three cutterhead-pipeline dredges. Composition of bottom sediment was found to vary from 85 percent sand and shell fragments to 60 percent silt and clay. Placement methods for dredged sediment included beach nourishment, stationary submerged discharge, oscillating surface discharge, and construction of emergent dikes. Tidal currents ranged from slack water to flow velocities of 0.60 meter per second. Plumes were monitored simultaneously by (1) oblique and vertical 35-millimeter aerial photography and (2) water-quality sampling to determine water clarity and concentrations of nutrients, metals, pesticides, and industrial compounds. Forty-nine photographs depict plumes ranging in length from a few tens of meters to several kilometers and ranging in turbidity level from hopper-dredge unloading operations also produced plumes of low visibility. Primary turbidity plumes were produced directly by dredging and placement operations; secondary plumes were produced indirectly by resuspension of previously deposited material. Secondary plumes were formed both by erosion, in areas of high-velocity tidal currents, and by turbulence from vessels passing over fine material deposited in shallow areas. Where turbidity barriers were not used, turbidity plumes visible at the surface were good indicators of the location of turbid water at depth. Where turbidity barriers were used, turbid bottom water was found at locations having no visible surface plumes. A region of rapidly accelerating then decelerating flow

  5. Temporal and spatial effects of ablation plume on number density distribution of droplets in an aerosol measured by laser-induced breakdown

    International Nuclear Information System (INIS)

    Yashiro, H.; Kakehata, M.

    2013-01-01

    We proposed and experimentally demonstrated a novel method of evaluating the number density of droplets in an aerosol by laser-induced breakdown. The number density of droplets is evaluated from the volume in which the laser intensity exceeds the breakdown threshold intensity for droplets, and the number of droplets in this volume, which is evaluated by the experimentally observed breakdown probability. This measurement method requires a large number of laser shots for not only precise measurement but also highly temporally and spatially resolved density distribution in aerosol. Laser ablation plumes ejected from liquid droplets generated by breakdown disturb the density around the measurement points. Therefore, the recovery time of the density determines the maximum repetition rate of the probe laser irradiating a fixed point. The expansion range of the ablation plume determines the minimum distance at which the measurement points are unaffected by a neighboring breakdown when multiple laser beams are simultaneously irradiated. These laser irradiation procedures enable the measurement of the number density distribution of droplets in an aerosol at a large number of points within a short measurement time.

  6. Temporal and spatial effects of ablation plume on number density distribution of droplets in an aerosol measured by laser-induced breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Yashiro, H.; Kakehata, M. [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2013-05-07

    We proposed and experimentally demonstrated a novel method of evaluating the number density of droplets in an aerosol by laser-induced breakdown. The number density of droplets is evaluated from the volume in which the laser intensity exceeds the breakdown threshold intensity for droplets, and the number of droplets in this volume, which is evaluated by the experimentally observed breakdown probability. This measurement method requires a large number of laser shots for not only precise measurement but also highly temporally and spatially resolved density distribution in aerosol. Laser ablation plumes ejected from liquid droplets generated by breakdown disturb the density around the measurement points. Therefore, the recovery time of the density determines the maximum repetition rate of the probe laser irradiating a fixed point. The expansion range of the ablation plume determines the minimum distance at which the measurement points are unaffected by a neighboring breakdown when multiple laser beams are simultaneously irradiated. These laser irradiation procedures enable the measurement of the number density distribution of droplets in an aerosol at a large number of points within a short measurement time.

  7. Langmuir probe study of plasma expansion in pulsed laser ablation

    DEFF Research Database (Denmark)

    Hansen, T.N.; Schou, Jørgen; Lunney, J.G.

    1999-01-01

    Langmuir probes were used to monitor the asymptotic expansion of the plasma produced by the laser ablation of a silver target in a vacuum. The measured angular and temporal distributions of the ion flux and electron temperature were found to be in good agreement with the self-similar isentropic...... and adiabatic solution of the gas dynamics equations describing the expansion. The value of the adiabatic index gamma was about 1.25, consistent with the ablation plume being a low temperature plasma....

  8. Ablation plume dynamics in a background gas

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2010-01-01

    The expansion of a plume in a background gas of pressure comparable to that used in pulsed laser deposition (PLD) has been analyzed in terms of the model of Predtechensky and Mayorov (PM). This approach gives a relatively clear and simple description of the essential hydrodynamics during the expa......The expansion of a plume in a background gas of pressure comparable to that used in pulsed laser deposition (PLD) has been analyzed in terms of the model of Predtechensky and Mayorov (PM). This approach gives a relatively clear and simple description of the essential hydrodynamics during...... the expansion. The model also leads to an insightful treatment of the stopping behavior in dimensionless units for plumes and background gases of different atomic/molecular masses. The energetics of the plume dynamics can also be treated with this model. Experimental time-of-flight data of silver ions in a neon...... background gas show a fair agreement with predictions from the PM-model. Finally we discuss the validity of the model, if the work done by the pressure of the background gas is neglected....

  9. Langmuir probe measurement of the bismuth plasma plume formed by an extreme-ultraviolet pulsed laser

    International Nuclear Information System (INIS)

    Pira, P; Burian, T; Kolpaková, A; Tichý, M; Kudrna, P; Daniš, S; Wild, J; Juha, L; Lančok, J; Vyšín, L; Civiš, S; Zelinger, Z; Kubát, P

    2014-01-01

    Properties of the plasma plume produced on a bismuth (Bi) target irradiated by a focused extreme-ultraviolet (XUV) capillary-discharge laser beam were investigated. Langmuir probes were used in both single- and double-probe arrangements to determine the electron temperature and the electron density, providing values of 1–3 eV and ∼10 13 –10 14  m −3 , respectively. Although the temperatures seem to be comparable with values obtained in ablation plasmas produced by conventional, long-wavelength lasers, the density is significantly lower. This finding indicates that the desorption-like phenomena are responsible for the plume formation rather than the ablation processes. A very thin Bi film was prepared on an MgO substrate by pulsed XUV laser deposition. The non-uniform, sub-monolayer character of the deposited bismuth film confirms the Langmuir probe's observation of the desorption-like erosion induced by the XUV laser on the primary Bi target. (paper)

  10. Dynamic behaviors of laser ablated Si particles

    International Nuclear Information System (INIS)

    Ohyanagi, T.; Murakami, K.; Miyashita, A.; Yoda, O.

    1995-01-01

    The dynamics of laser-ablated Si particles produced by laser ablation have been investigated by time-and-space resolved X-ray absorption spectroscopy in a time scale ranging from 0 ns to 120 ns with a time resolution of 10 ns. Neutral and charged particles are observed through all X-ray absorption spectra. Assignments of transitions from 2s and 2p initial states to higher Rydberg states of Si atom and ions are achieved, and we experimentally determine the L II,III absorption edges of neutral Si atom (Si 0 ) and Si + , Si 2+ , Si 3+ and Si 4+ ions. The main ablated particles are found to be Si atom and Si ions in the initial stage of 0 ns to 120 ns. The relative amounts depend strongly on times and laser energy densities. We find that the spatial distributions of particles produced by laser ablation are changed with supersonic helium gas bombardment, but no cluster formation takes place. This suggests that a higher-density region of helium gas is formed at the top of the plume of ablated particles, and free expansion of particles is restrained by this helium cloud, and that it takes more than 120 ns to form Si clusters. (author)

  11. Spatial distribution of carbon species in laser ablation of graphite target

    International Nuclear Information System (INIS)

    Ikegami, T.; Ishibashi, S.; Yamagata, Y.; Ebihara, K.; Thareja, R.K.; Narayan, J.

    2001-01-01

    We report on the temporal evolution and spatial distribution of C 2 and C 3 molecules produced by KrF laser ablation of a graphite target using laser induced fluorescence imaging and optical emission spectroscopy. Spatial density profiles of C 2 were measured using two-dimensional fluorescence in various pressures of different ambient (vacuum, nitrogen, oxygen, hydrogen, helium, and argon) gases at various ablation laser fluences and ablation area. A large yield of C 2 is observed in the central part of the plume and near the target surface and its density and distribution was affected by the laser fluence and ambient gas. Fluorescent C 3 was studied in Ar gas and the yield of C 3 is enhanced at higher gas pressure and longer delay times after ablation

  12. Particle Simulation of Pulsed Plasma Thruster Plumes

    National Research Council Canada - National Science Library

    Boyd, Ian

    2002-01-01

    .... Our modeling had made progress in al aspects of simulating these complex devices including Teflon ablation, plasma formation, electro-magnetic acceleration, plume expansion, and particulate transport...

  13. Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining

    International Nuclear Information System (INIS)

    Dowding, Colin; Lawrence, Jonathan

    2010-01-01

    A closed flowing thick film filtered water immersion technique ensures a controlled geometry for both the optical interfaces of the flowing liquid film and allows repeatable control of flow-rate during machining. This has the action of preventing splashing, ensures repeatable machining conditions and allows control of liquid flow velocity. To investigate the impact of this technique on ablation threshold, bisphenol A polycarbonate samples have been machined using KrF excimer laser radiation passing through a medium of filtered water flowing at a number of flow velocities, that are controllable by modifying the liquid flow-rates. An average decrease in ablation threshold of 7.5% when using turbulent flow velocity regime closed thick film filtered water immersed ablation, compared to ablation using a similar beam in ambient air; however, the use of laminar flow velocities resulted in negligible differences between closed flowing thick film filtered water immersion and ambient air. Plotting the recorded threshold fluence achieved with varying flow velocity showed that an optimum flow velocity of 3.00 m/s existed which yielded a minimum ablation threshold of 112 mJ/cm 2 . This is attributed to the distortion of the ablation plume effected by the flowing immersion fluid changing the ablation mechanism: at laminar flow velocities Bremsstrahlung attenuation decreases etch rate, at excessive flow velocities the plume is completely destroyed, removing the effect of plume etching. Laminar flow velocity regime ablation is limited by slow removal of debris causing a non-linear etch rate over 'n' pulses which is a result of debris produced by one pulse remaining suspended over the feature for the next pulse. The impact of closed thick film filtered water immersed ablation is dependant upon beam fluence: high fluence beams achieved greater etch efficiency at high flow velocities as the effect of Bremsstrahlung attenuation is removed by the action of the fluid on the plume; low

  14. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; Brumfield, Brian E.; LaHaye, Nicole L.; Hartig, Kyle C.; Phillips, Mark C.

    2018-04-20

    This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.

  15. Laser ablation studies of Deposited Silver Colloids Active in SERS

    International Nuclear Information System (INIS)

    La Porte, R.T.; Moreno, D.S.; Striano, M.C.; Munnoz, M.M.; Garcia-Ramos, J.V.; Cortes, S.S.; Koudoumas, E.

    2002-01-01

    Laser ablation of deposited silver colloids, active in SERS, is carried out at three different laser wavelengths (KrF, XeCl and Nd:YAG at λ = 248, 308 and 532 nm respectively). Emission form excited neutral Ag and Na atoms, present in the ablation plume, is detected with spectral and temporal resolution. The expansion velocity of Ag in the plume is estimated in ∼1x104m s-1, Low-fluence laser ablation of the colloids yields ionized species that are analyzed by time-of-flight mass spectroscopy. Na+ and Agn+(n≤3) are observed. Composition of the mass spectra and widths of the mass peaks are found to be dependent on laser wavelength, suggesting that the dominant ablation mechanisms are different at the different wavelenghts.

  16. Expansion of laser-produced plasmas into vacuum and ambient gases

    International Nuclear Information System (INIS)

    Williams, T.

    2001-01-01

    Presented in this thesis are observations recorded using optical absorption spectroscopy, laser induced fluorescence imaging and Langmuir probe techniques for a low temperature laser-produced plasma. The plasma was generated using a KrF (248 nm, 30ns) excimer laser system focused onto a solid target surface (Ti, Mg) housed within a vacuum chamber. Plasma studies were made within vacuum (x10 -5 mTorr) and low pressure ( 2 and Ar ambient gas environments. Experimental results from a volumetric integration technique for plasma species number densities are used to yield total plume content for a laser-produced plasma in vacuum. This was used to determine the threshold power density for titanium neutral species formation. Temporally resolved electron number densities were determined using a Langmuir probe technique, for a titanium plasma generated under 532 nm and 248 nm ablation, for similar power densities and spot geometries. In this case the ablation thresholds for titanium are determined in terms of average power density and peak power density. Plume opacity problems which limit OAS and LIF diagnostic techniques are minimised using novel ablations configurations. Both techniques used, the 'composite target' and the 'plasma-jet' configurations, rely on reducing the optical thickness of the plume. The plasma-jets produced were allowed to interact with an ambient argon background and the ion/neutral ratio of the plasma-jet determined. Laser-produced plasma interactions with a d.c. biased copper mesh ∼15 mm in front of the target surface are observed. Self-emission studies of plume interactions with the mesh are monitored for positive and negative biases. Also ground-state neutral and ion interactions with the mesh are observed using OAS and LIF techniques to study individual species effects. A simple model was used to predict the perturbations to charged species distributions resulting from positive and negative applied potentials, but more complex interaction

  17. Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas

    International Nuclear Information System (INIS)

    Ma Qianli; Motto-Ros, Vincent; Laye, Fabrice; Yu Jin; Lei Wenqi; Bai Xueshi; Zheng Lijuan; Zeng Heping

    2012-01-01

    Laser-induced plasma from an aluminum target in one-atmosphere argon background has been investigated with ablation using nanosecond ultraviolet (UV: 355 nm) or infrared (IR: 1064 nm) laser pulses. Time- and space-resolved emission spectroscopy was used as a diagnostics tool to have access to the plasma parameters during its propagation into the background, such as optical emission intensity, electron density, and temperature. The specific feature of nanosecond laser ablation is that the pulse duration is significantly longer than the initiation time of the plasma. Laser-supported absorption wave due to post-ablation absorption of the laser radiation by the vapor plume and the shocked background gas plays a dominant role in the propagation and subsequently the behavior of the plasma. We demonstrate that the difference in absorption rate between UV and IR radiations leads to different propagation behaviors of the plasma produced with these radiations. The consequence is that higher electron density and temperature are observed for UV ablation. While for IR ablation, the plasma is found with lower electron density and temperature in a larger and more homogenous axial profile. The difference is also that for UV ablation, the background gas is principally evacuated by the expansion of the vapor plume as predicted by the standard piston model. While for IR ablation, the background gas is effectively mixed to the ejected vapor at least hundreds of nanoseconds after the initiation of the plasma. Our observations suggest a description by laser-supported combustion wave for the propagation of the plasma produced by UV laser, while that by laser-supported detonation wave for the propagation of the plasma produced by IR laser. Finally, practical consequences of specific expansion behavior for UV or IR ablation are discussed in terms of analytical performance promised by corresponding plasmas for application with laser-induced breakdown spectroscopy.

  18. Laser ablated copper plasmas in liquid and gas ambient

    Science.gov (United States)

    Kumar, Bhupesh; Thareja, Raj K.

    2013-05-01

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (ne) determined using Stark broadening of the Cu I (3d104d1 2D3/2-3d104p1 2P3/2 at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (Te) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ˜590 nm.

  19. Laser ablation characteristics of metallic materials: Role of Debye-Waller thermal parameter

    International Nuclear Information System (INIS)

    Butt, M Z

    2014-01-01

    The interaction of a high intensity laser pulse with a solid target results in the formation of a crater and a plasma plume. The characteristics of both depend on physical properties of target material, environmental conditions, and laser parameters (e.g. wavelength, pulse duration, energy, beam diameter) etc. It has been shown for numerous metals and their alloys that plasma threshold fluence, plasma threshold energy, ablation efficiency, ablation yield, angular distribution of laser produced plasma (LPP) ions, etc. are a unique function of the Debye-Waller thermal parameter B or the mean-square amplitude of atomic vibration of the target material for given experimental conditions. The FWHM of the angular distribution of LPP ions, ablation yield, and ablation efficiency increase whereas plasma threshold fluence and plasma threshold energy decrease as B-factor of the target material increases

  20. Glass particles produced by laser ablation for ICP-MSmeasurements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50 J cm{sup -2}. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloys samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns and fs-laser ablation than for metals alloys.

  1. Time resolved measurement of laser-ablated particles by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy)

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Murakami, Kouichi

    1999-01-01

    The time- and spatially-resolved properties of laser ablated carbon, boron and silicon particles were measured by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy). The maximum speed of positively charged ions is higher than those of neutral atoms and negatively charged ions. The spatial distributions of the laser-ablated particles in the localized rare gas environment were measured. In helium gas environment, by the helium cloud generated on the top of ablation plume depressed the ablation plume. There is no formation of silicon clusters till 15 μs after laser ablation in the argon gas environment. (author)

  2. Energy distributions of plume ions from silver at different angles ablated in vacuum

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen; Canulescu, Stela

    A typical pulsed laser deposition (PLD) is carried out for a fluence between 0.5 and 2.5 J/cm2. The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence and accounts for more 0.5 of the particles at 2.5 J/cm2 [1,2]. Since it may...... be comparatively difficult to measure the energy and angular distribution of neutrals, measurements of the ionic fraction will be valuable for any modeling of PLD. We have irradiated silver in a vacuum chamber (~ 10-7 mbar) with a Nd:YAG laser at a wavelength of 355 nm and made detailed measurements of the time......-resolved angular distribution. The ion flow in different directions has been measured with a hemispherical array of Langmuir probes, by which the time-of-flight spectra the in all directions can be recorded [1,2]. In contrast to earlier work the beam spot was circular such that any flip-over effect of the plume...

  3. Understanding plume splitting of laser ablated plasma: A view from ion distribution dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian; Li, Xingwen; Wei, Wenfu; Jia, Shenli; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China)

    2013-11-15

    Plume splitting in low-pressure ambient air was understood in view of ion distribution dynamics from the laser ablated Al plasma (1064 nm 0.57 J/mm{sup 2}) by combining fast photography and spatially resolved spectroscopy. In the beginning, the spectral lines were mainly from the Al III ion. Then, the Bragg peak in stopping power of the ambient gas to Al III could be the dominant reason for the enhanced emission from the fast moving part, and the recombination of Al III to Al I-II ions near the target surface was response to the radiations from the slow moving/stationary part. As the ambient gas pressure increased, stopping distances of the Al III decreased, and radiation from the air ions became pronounced. The laser shadowgraph image at 1100 Pa indicated that the shock wave front located between the fast moving and slow moving parts. Electron densities of the fast moving plasma, which peaked at the plasma front, were on the order of 10{sup 16} cm{sup −3}, and the electron temperatures were 2–3 eV.

  4. Laser ablation for analytical sampling: what can we learn from modeling?

    International Nuclear Information System (INIS)

    Bogaerts, Annemie; Chen Zhaoyang; Gijbels, Renaat; Vertes, Akos

    2003-01-01

    The paper is built up in two parts. First, a rather comprehensive introduction is given, with a brief overview of the different application fields of laser ablation, focusing mainly on the analytical applications, and an overview of the different modeling approaches available for laser ablation. Further, a discussion is presented here about the laser evaporated plume expansion in vacuum or in a background gas, as well as about the different mechanisms for particle formation in the laser ablation process, which is most relevant for laser ablation as solid sampling technique for inductively coupled plasma (ICP) spectrometry. In the second part, a model is presented that describes the interaction of an ns-pulsed laser with a Cu target, as well as the resulting plume expansion and plasma formation. The results presented here, include the temperature distribution in the target, the melting and evaporation of the target, the vapor density, velocity and temperature distribution in the evaporated plume, the ionization degree and the density profiles of Cu 0 atoms, Cu + and Cu 2+ ions and electrons in the plume (plasma), as well as the resulting plasma shielding of the incoming laser beam. Results are presented as a function of time during and after the laser pulse, and as a function of position in the target or in the plume. The influence of the target reflection coefficient on the above calculation results is investigated. Finally, the effect of the laser pulse fluence on the target heating, melting and vaporization, and on the plume characteristics and plasma formation is studied. Our modeling results are in reasonable agreement with calculated and measured data from literature

  5. Laser ablated copper plasmas in liquid and gas ambient

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Bhupesh; Thareja, Raj K. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2013-05-15

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (n{sub e}) determined using Stark broadening of the Cu I (3d{sup 10}4d{sup 1} {sup 2}D{sub 3/2}-3d{sup 10}4p{sup 1} {sup 2}P{sub 3/2} at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (T{sub e}) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ∼590 nm.

  6. Resonance absorption spectroscopy for laser-ablated lanthanide atom. (1) Optimized experimental conditions for isotope-selective absorption of gadolinium (Contract research)

    International Nuclear Information System (INIS)

    Miyabe, Masabumi; Oba, Masaki; Iimura, Hideki; Akaoka, Katsuaki; Maruyama, Yoichiro; Wakaida, Ikuo; Watanabe, Kazuo

    2008-06-01

    For remote isotope analysis of low-decontaminated TRU fuel, we are developing an analytical technique on the basis of the resonance absorption spectroscopy for the laser-ablation plume. To improve isotopic selectivity and detection sensitivity of this technique, we measured absorption spectra of Gd atom with various plume production conditions (ablation laser intensity, ambient gas and its pressure) and observation conditions (transition, probe height from sample, observation timing). As a result, high resolution spectrum was obtained from the observation of slow component of the plume produced under low-pressure rare-gas ambient. The observed narrowest linewidth of about 0.85GHz was found to be close to the Doppler width estimated for Gd atom of room temperature. Furthermore, relaxation rate of higher meta-stable state was found to be higher than that of ground state, suggesting that use of the transition arising from ground state or lower meta-stable state is preferable for highly sensitive isotope analysis. (author)

  7. Plasma plume expansion dynamics in nanosecond Nd:YAG laserosteotome

    Science.gov (United States)

    Abbasi, Hamed; Rauter, Georg; Guzman, Raphael; Cattin, Philippe C.; Zam, Azhar

    2018-02-01

    In minimal invasive laser osteotomy precise information about the ablation process can be obtained with LIBS in order to avoid carbonization, or cutting of wrong types of tissue. Therefore, the collecting fiber for LIBS needs to be optimally placed in narrow cavities in the endoscope. To determine this optimal placement, the plasma plume expansion dynamics in ablation of bone tissue by the second harmonic of a nanosecond Nd:YAG laser at 532 nm has been studied. The laserinduced plasma plume was monitored in different time delays, from one nanosecond up to one hundred microseconds. Measurements were performed using high-speed gated illumination imaging. The expansion features were studied using illumination of the overall visible emission by using a gated intensified charged coupled device (ICCD). The camera was capable of having a minimum gate width (Optical FWHM) of 3 ns and the timing resolution (minimum temporal shift of the gate) of 10 ps. The imaging data were used to generate position-time data of the luminous plasma-front. Moreover, the velocity of the plasma plume expansion was studied based on the time-resolved intensity data. By knowing the plasma plume profile over time, the optimum position (axial distance from the laser spot) of the collecting fiber and optimal time delay (to have the best signal to noise ratio) in spatial-resolved and time-resolved laser-induced breakdown spectroscopy (LIBS) can be determined. Additionally, the function of plasma plume expansion could be used to study the shock wave of the plasma plume.

  8. Computational Modeling of Ablation on an Irradiated Target

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva

    2017-11-01

    Computational modeling of pulsed nanosecond laser interaction with an irradiated metallic target is presented. The model formulation involves ablation of the metallic target irradiated by pulsed high intensity laser at normal atmospheric conditions. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented along with its relevance for the development of protective shields. In this context, the available results for a representative irradiation from 1064 nm laser pulse is used to analyze various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.

  9. Formation of ring-patterned nanoclusters by laser–plume interaction

    International Nuclear Information System (INIS)

    Sivayoganathan, Mugunthan; Tan Bo; Venkatakrishnan, Krishnan

    2013-01-01

    This article reports for the first time a unique study performed to regulate the ring diameter of nanoclusters fabricated during femtosecond laser ablation of solids and a mechanism is proposed for the formation of those ring clusters. The ring nanoclusters are made out of nanoparticles with a range of 10–30 nm. Our experimental studies showed the synthesis of ring nanoclusters with random diameter distribution on metals, nonmetals, and semiconductors, such as titanium, aluminum, glasses, ceramics, graphite, and silicon. To regulate the ring size, the effects of laser parameters, such as wavelength, pulse duration, pulse energy, and repetition rate on the ring diameter are analyzed. The influence of ablated materials and the background gas on ring size is also elaborated in this article. The motion of plume species under the influence of ponderomotive force on free electrons possibly played a key role in the formation of the ring-patterned nanoclusters. This study could help to understand the fundamentals in laser ablative nanosynthesis as well as to produce nanostructures with organized ring diameter that controls the density and porosity of those 3D nanostructures.

  10. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  11. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    International Nuclear Information System (INIS)

    Geohegan, D.B.

    1994-01-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume

  12. Experimental studies of the effect target geometry on the evolution of laser produced plasma plumes

    Science.gov (United States)

    Beatty, Cuyler; Anderson, Austin; Iratcabal, Jeremy; Dutra, Eric; Covington, Aaron

    2016-10-01

    The expansion of the laser plumes was shown to be dependent on the initial target geometry. A 16 channel framing camera was used to record the plume shape and propagation speeds were determined from analysis of the images. Plastic targets were manufactured using different methods including 3D printing, CNC machining and vacuum casting. Preliminary target designs were made using a 3D printer and ABS plastic material. These targets were then tested using a 3 J laser with a 5 ns duration pulse. Targets with a deep conical depression were shown to produce highly collimated plumes when compared to flat top targets. Preliminary results of these experiments will be discussed along with planned future experiments that will use the indented targets with a 30 J laser with a 0.8 ns duration pulse in preparation for pinched laser plume experiments at the Nevada Terawatt Facility. Other polymers that are readily available in a deuterated form will also be explored as part of an effort to develop a cost effective plasma plume target for follow on neutron production experiments. Dr. Austin Anderson.

  13. Plume-induced stress in pulsed-laser deposited CeO2 films

    International Nuclear Information System (INIS)

    Norton, D.P.; Park, C.; Budai, J.D.; Pennycook, S.J.; Prouteau, C.

    1999-01-01

    Residual compressive stress due to plume-induced energetic particle bombardment in CeO 2 films deposited by pulsed-laser deposition is reported. For laser ablation film growth in low pressures, stresses as high as 2 GPa were observed as determined by substrate curvature and four-circle x-ray diffraction. The amount of stress in the films could be manipulated by controlling the kinetic energies of the ablated species in the plume through gas-phase collisions with an inert background gas. The film stress decreased to near zero for argon background pressures greater than 50 mTorr. At these higher background pressures, the formation of nanoparticles in the deposited film was observed. copyright 1999 American Institute of Physics

  14. Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol

    Science.gov (United States)

    Kudryashov, S. I.; Saraeva, I. N.; Lednev, V. N.; Pershin, S. M.; Rudenko, A. A.; Ionin, A. A.

    2018-05-01

    Single-shot IR femtosecond-laser ablation of gold surfaces in ambient air and liquid isopropyl alcohol was studied by scanning electron microscopy characterization of crater topographies and time-resolved optical emission spectroscopy of ablative plumes in regimes, typical for non-filamentary and non-fragmentation laser production of nanoparticle sols. Despite one order of magnitude shorter (few nanoseconds) lifetimes and almost two orders of magnitude lower intensities of the quenched ablative plume emission in the alcohol ambient at the same peak laser fluence, craters for the dry and wet conditions appeared with rather similar nanofoam-like spallative topographies and the same thresholds. These facts envision the underlying surface spallation as one of the basic ablation mechanisms relevant for both dry and wet advanced femtosecond laser surface nano/micro-machining and texturing, as well as for high-throughput femtosecond laser ablative production of colloidal nanoparticles by MHz laser-pulse trains via their direct nanoscale jetting from the nanofoam in air and fluid environments.

  15. A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dayu; Liang, Peipei; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian, E-mail: jsun@fudan.edu.cn

    2013-01-01

    The spatial confinement effects of shock wave on the expansion of a carbon plume induced by pulsed laser ablation of graphite in air and the enhancement of the plume emission were studied by optical emission spectroscopy and probe beam deflection measurements. A metal disk was set in the way of the ablation-generated shock wave to block and reflect the supersonically propagating shock wave. The reflected shock wave propagated backwards and confined the expanding plume. The optical emission of CN molecules was enhanced in contrast to the case without the block disk and the emission enhancement was dependent on the position of the disk. Based on the results of time-integrated and -resolved optical emission spectroscopy, and the time- and space-resolved probe beam deflection measurements, the processes occurring in the plume were discussed and the mechanisms responsible for the enhancement of molecular emission in the spatially confined plume were investigated. - Highlights: ► Spatial confinement and optical emission enhancement of carbon plume were studied. ► Ablation-generated shockwave propagating in air was reflected by a block disk. ► The effects of reflected shockwave on the emission enhancement were confirmed. ► The reflect shockwave confined the carbon plume and enhanced the plume emission.

  16. A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements

    International Nuclear Information System (INIS)

    Ding, Dayu; Liang, Peipei; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian

    2013-01-01

    The spatial confinement effects of shock wave on the expansion of a carbon plume induced by pulsed laser ablation of graphite in air and the enhancement of the plume emission were studied by optical emission spectroscopy and probe beam deflection measurements. A metal disk was set in the way of the ablation-generated shock wave to block and reflect the supersonically propagating shock wave. The reflected shock wave propagated backwards and confined the expanding plume. The optical emission of CN molecules was enhanced in contrast to the case without the block disk and the emission enhancement was dependent on the position of the disk. Based on the results of time-integrated and -resolved optical emission spectroscopy, and the time- and space-resolved probe beam deflection measurements, the processes occurring in the plume were discussed and the mechanisms responsible for the enhancement of molecular emission in the spatially confined plume were investigated. - Highlights: ► Spatial confinement and optical emission enhancement of carbon plume were studied. ► Ablation-generated shockwave propagating in air was reflected by a block disk. ► The effects of reflected shockwave on the emission enhancement were confirmed. ► The reflect shockwave confined the carbon plume and enhanced the plume emission

  17. Effect of ablation geometry on the formation of stagnation layer in laterally colliding plasmas

    International Nuclear Information System (INIS)

    Mondal, Alamgir; Singh, Rajesh K.; Kumar, Ajai

    2015-01-01

    Interaction between two parallel propagating plasma plumes have been investigated in two different ablation schemes e.g. laser-blow-off (LBO) of thin film and conventional laser ablation (LPP). Fast imagine technique is used to study the dynamical and geometrical aspect of seed plasmas and induced stagnation layer in between the two expanding seed plasmas. Interaction between the energetic particles, coming from the seed plasmas are responsible for formation of stagnation layer. It has been found that geometrical shape, size, kinetic energy and divergence of plasma plumes are highly dependent on the ablation geometry. These variations in seed plasmas initiate the significant differences in the stagnation layer formed by LBO and LPP geometry. In this presentation, characteristic feature of stagnation layer which includes density, initiation time, emissive life time and geometry in both LBO and LPP geometry are briefly discussed. A comparative study of present results suggests that the plume composition and directionality of seed plasma play crucial role in mechanistic aspect of stagnation layer. (author)

  18. The structure and composition of lithium fluoride films grown by off-axis pulsed laser ablation

    International Nuclear Information System (INIS)

    Henley, S.J.; Ashfold, M.N.R.; Pearce, S.R.J.

    2003-01-01

    Alkali halide coatings have been reported to act as effective dipole layers to lower the surface work function and induce a negative electron affinity of diamond surfaces. Here, the results of the analysis of films grown on silicon and quartz substrates by 193 nm pulsed laser ablation from a commercially available sintered disk of LiF are reported. The morphology, composition and crystallinity of films grown are examined and suitable deposition parameters for optimising the growth are suggested. The ablation was shown to be very efficient at removing a large amount of material from the target, even at relatively low fluence. The morphology of the films produced was poor, however, with a high density of asperities categorised as either particulates produced by exfoliation, or as droplets produced by hydrodynamic sputtering. An improved morphology with smaller droplets and fewer particulates could be produced by mounting the substrate at an angle of 65 deg. to the axis of the ablation plume and using a fluence close to the measured ablation threshold of 1.2±0.1 J/cm 2 . The elemental composition of the films was shown to be indistinguishable from that of bulk LiF, despite evidence for significant recondensation of Li back onto the target. Films containing crystal grains oriented with the direction normal to the substrate surface were observed at substrate temperatures in excess of 300 deg. C. An improved extent of orientation was observed on the quartz substrates

  19. FOOTPRINT: A Screening Model for Estimating the Area of a Plume Produced From Gasoline Containing Ethanol

    Science.gov (United States)

    FOOTPRINT is a screening model used to estimate the length and surface area of benzene, toluene, ethylbenzene, and xylene (BTEX) plumes in groundwater, produced from a gasoline spill that contains ethanol.

  20. Dynamics of ZnO laser produced plasma in high pressure argon

    International Nuclear Information System (INIS)

    Kaydashev, V.E.; Lunney, J.G.

    2011-01-01

    Pulsed laser deposition of ZnO in high pressure gas offers a route for the catalyst-free preparation of ZnO nanorods less than 10 nm in diameter. This paper describes the results of some experiments to investigate the laser plume dynamics in the high gas pressure (5 x 10 3 -10 4 Pa) regime used for PLD of ZnO nanorods. In this regime the ablation plume is strongly coupled to the gas and the plume expansion is brought to a halt within about 1 cm from the target. A 248 nm excimer laser was used to ablate a ceramic ZnO target in various pressures of argon. Time- and space-resolved UV/vis emission spectroscopy and Langmuir probe measurements were used to diagnose the plasma and follow the plume dynamics. By measuring the spatial profiles of Zn I and Zn II spectral lines it was possible to follow the propagation of the external and internal shock waves associated with the interaction of the ablation plume with the gas. The Langmuir probe measurements showed that the electron density was 10 9 -10 10 cm -3 and the electron temperature was several eV. At these conditions the ionization equilibrium is described by the collisional-radiative model. The plume dynamics was also studied for ZnO targets doped with elements which are lighter (Mg), comparable to (Ga), and heavier (Er) than Zn, to see if there is any elemental segregation in the plume.

  1. Improved model for the angular dependence of excimer laser ablation rates in polymer materials

    Science.gov (United States)

    Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.

    2009-10-01

    Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.

  2. Laser-induced shockwave propagation from ablation in a cavity

    International Nuclear Information System (INIS)

    Zeng Xianzhong; Mao Xianglei; Mao, Samuel S.; Wen, S.-B.; Greif, Ralph; Russo, Richard E.

    2006-01-01

    The propagation of laser-induced shockwaves from ablation inside of cavities was determined from time-resolved shadowgraph images. The temperature and electron number density of the laser-induced plasma was determined from spectroscopic measurements. These properties were compared to those for laser ablation on the flat surface under the same energy and background gas condition. A theoretical model was proposed to determine the amount of energy and vaporized mass stored in the vapor plume based on these measurements

  3. On predicting mantle mushroom plumes

    Directory of Open Access Journals (Sweden)

    Ka-Kheng Tan

    2011-04-01

    Top cooling may produce plunging plumes of diameter of 585 km and at least 195 Myr old. The number of cold plumes is estimated to be 569, which has not been observed by seismic tomography or as cold spots. The cold plunging plumes may overwhelm and entrap some of the hot rising plumes from CMB, so that together they may settle in the transition zone.

  4. Comparison of carbon stripper foils produced by ARC discharge and laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Ophel, T.R.; Rhode, A.; Lobanov, N.; Weisser, D.C.; Turkentine, R.; Wolf, B.; Wlliman, R.G. [Australian National Univ. Canberra, ACT (Australia). Research School of Physical Sciences and Engineering

    1998-06-01

    The present work describes a series of investigations which compared the arc-deposited foils, prepared at ANU with a batch of foils from Munich, prepared by laser-ablation. The two foil types were bombarded with a beam of 6.8 MeV of {sup 197}Au recording their behaviour and monitoring the total stripped current. Optical and electron spectroscopy was carried out and indicate that the arc-deposited foils were relatively amorphous and smooth, while the laser-ablated foils appears to be much more crystalline. It was found that the average useful lifetimes of the Munich foils were at least ten times longer than arc-deposited foils. Furthermore, they maintained a constant beam output during the time in marked contrast to the arc-deposited foils, for which the output decreased quite rapidly. The longevity, and no less importantly, the constant beam output of the laser-ablated foils have emerged as critical to the continuance of the ERDA program. More significantly though, such qualities have provoked re-examination of likely energies for heavy beams that could be obtained with the Linac booster if foil stripping were used in the 14UD terminal, rather than gas that had previously been considered the only viable option. A program is in progress to explore the means to produce laser-ablated foils, or their equivalent, locally. Extended abstract. 1 ref., 2 figs.

  5. Comparison of carbon stripper foils produced by ARC discharge and laser ablation

    International Nuclear Information System (INIS)

    Ophel, T.R.; Rhode, A.; Lobanov, N.; Weisser, D.C.; Turkentine, R.; Wolf, B.; Wlliman, R.G.

    1998-01-01

    The present work describes a series of investigations which compared the arc-deposited foils, prepared at ANU with a batch of foils from Munich, prepared by laser-ablation. The two foil types were bombarded with a beam of 6.8 MeV of 197 Au recording their behaviour and monitoring the total stripped current. Optical and electron spectroscopy was carried out and indicate that the arc-deposited foils were relatively amorphous and smooth, while the laser-ablated foils appears to be much more crystalline. It was found that the average useful lifetimes of the Munich foils were at least ten times longer than arc-deposited foils. Furthermore, they maintained a constant beam output during the time in marked contrast to the arc-deposited foils, for which the output decreased quite rapidly. The longevity, and no less importantly, the constant beam output of the laser-ablated foils have emerged as critical to the continuance of the ERDA program. More significantly though, such qualities have provoked re-examination of likely energies for heavy beams that could be obtained with the Linac booster if foil stripping were used in the 14UD terminal, rather than gas that had previously been considered the only viable option. A program is in progress to explore the means to produce laser-ablated foils, or their equivalent, locally

  6. High-speed photography of laser ablation plasmas from the high temperature superconductor YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Scott, K.; Huntley, J.M.; Phillips, W.A.

    1993-01-01

    The luminous plume formed by laser ablation of the high-temperature superconductor YBa 2 Cu 3 O 7-δ has been investigated using high-speed framing photography. Variation of the background oxygen pressure was found to significantly influence the velocity distribution of the ablated species, leading in particular to shock wave formation and instabilities on the shock front at higher pressures. Spectral characteristics of the plume were studied using optical interference filters, and two distinct regions of emission were identified. (orig.)

  7. Adrenergic innervation of the developing chick heart: neural crest ablations to produce sympathetically aneural hearts

    International Nuclear Information System (INIS)

    Kirby, M.; Stewart, D.

    1984-01-01

    Ablation of various regions of premigratory trunk neural crest which gives rise to the sympathetic trunks was used to remove sympathetic cardiac innervation. Neuronal uptake of [ 3 H]-norepinephrine was used as an index of neuronal development in the chick atrium. Following ablation of neural crest over somites 10-15 or 15-20, uptake was significantly decreased in the atrium at 16 and 17 days of development. Ablation of neural crest over somites 5-10 and 20-25 caused no decrease in [ 3 H]-norepinephrine uptake. Removal of neural crest over somites 5-25 or 10-20 caused approximately equal depletions of [ 3 H]-norepinephrine uptake in the atrium. Cardiac norepinephrine concentration was significantly depressed following ablation of neural crest over somites 5-25 but not over somites 10-20. Light-microscopic and histofluorescent preparations confirmed the absence of sympathetic trunks in the region of the normal origin of the sympathetic cardiac nerves following neural crest ablation over somites 10-20. The neural tube and dorsal root ganglia were damaged in the area of the neural-crest ablation; however, all of these structures were normal cranial and caudal to the lesioned area. Development of most of the embryos as well as the morphology of all of the hearts was normal following the lesion. These results indicate that it is possible to produce sympathetically aneural hearts by neural-crest ablation; however, sympathetic cardiac nerves account for an insignificant amount of cardiac norepinephrine

  8. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  9. Insight into electronic mechanisms of nanosecond-laser ablation of silicon

    International Nuclear Information System (INIS)

    Marine, Wladimir; Patrone, Lionel; Ozerov, Igor; Bulgakova, Nadezhda M.

    2008-01-01

    We present experimental and theoretical studies of nanosecond ArF excimer laser desorption and ablation of silicon with insight into material removal mechanisms. The experimental studies involve a comprehensive analysis of the laser-induced plume dynamics and measurements of the charge gained by the target during irradiation time. At low laser fluences, well below the melting threshold, high-energy ions with a narrow energy distribution are observed. When the fluence is increased, a thermal component of the plume is formed superimposing on the nonthermal ions, which are still abundant. The origin of these ions is discussed on the basis of two modeling approaches, thermal and electronic, and we analyze the dynamics of silicon target excitation, heating, melting, and ablation. An electronic model is developed that provides insight into the charge-carrier transport in the target. We demonstrate that, contrary to a commonly accepted opinion, a complete thermalization between the electron and lattice subsystems is not reached during the nanosecond-laser pulse action. Moreover, the charging effects can retard the melting process and have an effect on the overall target behavior and laser-induced plume dynamics

  10. Spectroscopic analysis of coal plasma emission produced by laser ablation

    OpenAIRE

    Vera-Londoño, Liliana Patricia; Pérez-Taborda, Jaime Andrés; Riascos-Landázuri, Henry

    2016-01-01

    An analysis of plasma produced by laser ablation using 1,064 nm of laser radiation from a Q-switched Nd:YAG on coal mineral samples under air ambient, was performed. The emission of molecular band systems such as C2 Swan System , the First Negative System N2 (Band head at 501.53 nm) and different emission lines were investigated using the optical emission spectroscopy technique. The C2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0.62 eV). The density and ...

  11. Footprint (A Screening Model for Estimating the Area of a Plume Produced from Gasoline Containing Ethanol

    Science.gov (United States)

    FOOTPRINT is a simple and user-friendly screening model to estimate the length and surface area of BTEX plumes in ground water produced from a spill of gasoline that contains ethanol. Ethanol has a potential negative impact on the natural biodegradation of BTEX compounds in groun...

  12. Comparison of the laser ablation process on Zn and Ti using pulsed digital holographic interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Amer, E., E-mail: eynas.amer@ltu.se [Department of Applied Physics and Mechanical Engineering, Lulea University of Technology, SE-971 87 Lulea (Sweden); Gren, P.; Kaplan, A.F.H.; Sjoedahl, M. [Department of Applied Physics and Mechanical Engineering, Lulea University of Technology, SE-971 87 Lulea (Sweden); El Shaer, M. [Department of Engineering Physics and Mathematics, Faculty of Engineering, Zagazig University, Zagazig (Egypt)

    2010-05-01

    Pulsed digital holographic interferometry has been used to compare the laser ablation process of a Q-switched Nd-YAG laser pulse (wavelength 1064 nm, pulse duration 12 ns) on two different metals (Zn and Ti) under atmospheric air pressure. Digital holograms were recorded for different time delays using collimated laser light (532 nm) passed through the volume along the target. Numerical data of the integrated refractive index field were calculated and presented as phase maps. Intensity maps were calculated from the recorded digital holograms and are used to calculate the attenuation of the probing laser beam by the ablated plume. The different structures of the plume, namely streaks normal to the surface for Zn in contrast to absorbing regions for Ti, indicates that different mechanisms of laser ablation could happen for different metals for the same laser settings and surrounding gas. At a laser fluence of 5 J/cm{sup 2}, phase explosion appears to be the ablation mechanism in case of Zn, while for Ti normal vaporization seems to be the dominant mechanism.

  13. Observation of the initial stage of the laser ablation

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Ohyanagi, Takasumi; Murakami, Kouichi.

    1994-01-01

    The time and space resolved properties of laser ablated carbon particles were measured by X-ray absorption spectroscopy using Laser Plasma X-ray (LPX) as an X-ray source. The energy density of the irradiation laser on the sample was in the range of 0.5-20 J/cm 2 and the time delay was varied between 0 and 120ns. The absorption spectra exhibits several peaks originated from level to level transitions and an intense broad absorption in the energy range of C-K edge. At a delay time of 120ns, the absorption peak of 1s → 2p transition of neutral carbon atom (C 0 ), C - , C + and C 2+ ions were observed. The absorption peak from C 0 is stronger as the probing position is closer to the sample surface and its intensity decreases rapidly with distance from the sample surface. The absorption peak C 2+ ion was observed only at comparatively distant positions from surface. The maximum speed of highly charged ions are faster than that of neutral atoms and negative charged ions. The neutral atom and lower charged ions are emitted from the sample surface even after laser irradiation. The spatial distribution of the laser ablated particles in the localized helium gas environment were measured. In the helium gas environment, the ablation plume is depressed by the helium cloud generated on the top of ablation plume. (author)

  14. Self-limiting and complete oxidation of silicon nanostructures produced by laser ablation in water

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, L.; Messina, F.; Camarda, P.; Gelardi, F. M.; Cannas, M., E-mail: marco.cannas@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Popescu, R.; Schneider, R.; Gerthsen, D. [Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131 Karlsruhe (Germany)

    2016-07-14

    Oxidized Silicon nanomaterials produced by 1064 nm pulsed laser ablation in deionized water are investigated. High-resolution transmission electron microscopy coupled with energy dispersive X-ray spectroscopy allows to characterize the structural and chemical properties at a sub-nanometric scale. This analysis clarifies that laser ablation induces both self-limiting and complete oxidation processes which produce polycrystalline Si surrounded by a layer of SiO{sub 2} and amorphous fully oxidized SiO{sub 2}, respectively. These nanostructures exhibit a composite luminescence spectrum which is investigated by time-resolved spectroscopy with a tunable laser excitation. The origin of the observed luminescence bands agrees with the two structural typologies: Si nanocrystals emit a μs-decaying red band; defects of SiO{sub 2} give rise to a ns-decaying UV band and two overlapping blue bands with lifetime in the ns and ms timescale.

  15. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence

    International Nuclear Information System (INIS)

    Mahdieh, Mohammad Hossein; Fattahi, Behzad

    2015-01-01

    Highlights: • Colloidal aluminum- and titanium-based nanoparticles fabricated by laser ablation. • Various liquid environments and laser fluences were applied as variable parameters. • Physical characteristics of liquid medium influence ablation process and nanoparticle formation. • Size properties of prepared nanoparticles depend on liquid medium and laser fluence. • Ablation of both metals in ethanol results in nanoparticles with smaller size. - Abstract: In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet–visible (UV–vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles’ mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution

  16. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Mohammad Hossein, E-mail: mahdm@iust.ac.ir; Fattahi, Behzad

    2015-02-28

    Highlights: • Colloidal aluminum- and titanium-based nanoparticles fabricated by laser ablation. • Various liquid environments and laser fluences were applied as variable parameters. • Physical characteristics of liquid medium influence ablation process and nanoparticle formation. • Size properties of prepared nanoparticles depend on liquid medium and laser fluence. • Ablation of both metals in ethanol results in nanoparticles with smaller size. - Abstract: In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet–visible (UV–vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles’ mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution.

  17. Spectroscopic and shadowgraphic analysis of laser induced plasmas in the orthogonal double pulse pre-ablation configuration

    International Nuclear Information System (INIS)

    Cristoforetti, G.; Legnaioli, S.; Pardini, L.; Palleschi, V.; Salvetti, A.; Tognoni, E.

    2006-01-01

    This work focuses on the study of the plumes obtained in the double pulse orthogonal Laser Induced Breakdown Spectroscopy (LIBS) in the pre-ablation configuration using both spectroscopic and shadowgraphic approaches. Single and double pulse LIBS experiments were carried out on a brass sample in air. Both the distance of the air plasma from the target surface and the interpulse delay were varied (respectively in the range 0.1-4.2 mm and up to 50 μs) revealing a significant variation of the plasma emission and of the plume-shock wave dynamical expansion in different cases. The intensity of both atomic and ionized zinc lines was measured in all the cases, allowing the calculation of the spatially averaged temperature and electron density and an estimation of the ablated mass. The line intensities and the thermodynamic parameters obtained by the spectroscopic measurements were discussed bearing in mind the dynamical expansion characteristics obtained from the shadowgraphic approach. All the data seem to be consistent with the model previously proposed for the double pulse collinear configuration where the line enhancement is mainly attributed to the ambient gas rarefaction produced by the first laser pulse, which causes a less effective shielding of the second laser pulse

  18. High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films

    International Nuclear Information System (INIS)

    Ko, Seung H.; Pan Heng; Hwang, David J.; Chung, Jaewon; Ryu, Sangil; Grigoropoulos, Costas P.; Poulikakos, Dimos

    2007-01-01

    Ablation of gold nanoparticle films on polymer was explored using a nanosecond pulsed laser, with the goal to achieve feature size reduction and functionality not amenable with inkjet printing. The ablation threshold fluence for the unsintered nanoparticle deposit was at least ten times lower than the reported threshold for the bulk film. This could be explained by the combined effects of melting temperature depression, lower conductive heat transfer loss, strong absorption of the incident laser beam, and the relatively weak bonding between nanoparticles. The ablation physics were verified by the nanoparticle sintering characterization, ablation threshold measurement, time resolved ablation plume shadowgraphs, analysis of ablation ejecta, and the measurement and calculation of optical properties. High resolution and clean feature fabrication with small energy and selective multilayer processing are demonstrated

  19. Detecting frontal ablation processes from direct observations of submarine terminus morphology

    Science.gov (United States)

    Fried, M.; Carroll, D.; Catania, G. A.; Sutherland, D. A.; Stearns, L. A.; Bartholomaus, T. C.; Shroyer, E.; Nash, J. D.

    2017-12-01

    Tidewater glacier termini couple glacier and ocean systems. Subglacial discharge emerging from the terminus produces buoyant plumes that modulate submarine melting, calving, fjord circulation and, in turn, changes in ice dynamics from back-stress perturbations. However, the absence of critical observational data at the ice-ocean interface limits plume and, by extension, melt models from incorporating realistic submarine terminus face morphologies and assessing their impact on terminus behavior at tidewater glaciers. Here we present a comprehensive inventory and characterization of submarine terminus face shapes from a side-looking, multibeam echo sounding campaign across Kangerdlugssuaq Sermerssua glacier, central-west Greenland. We combine these observations with in-situ measurements of ocean stratification and remotely sensed subglacial discharge, terminus positions, ice velocity, and ice surface datasets to infer the spectrum of processes sculpting the submarine terminus face. Subglacial discharge outlet locations are confirmed through observations of sediment plumes, localized melt-driven undercutting of the terminus face, and bathymetry of the adjacent seafloor. From our analysis, we differentiate terminus morphologies resulting from submarine melt and calving and assess the contribution of each process to the net frontal ablation budget. Finally, we constrain a plume model using direct observations of the submarine terminus face and conduit geometry. Plume model simulations demonstrate that the majority of discharge outlets are fed by small discharge fluxes, suggestive of a distributed subglacial hydrologic system. Outlets with the largest, concentrated discharge fluxes are morphologically unique and strongly control seasonal terminus position. At these locations, we show that the spatiotemporal pattern of terminus retreat is well correlated with time periods when local melt rate exceeds ice velocity.

  20. Kinetic energy of ions produced with first-, second-, and multi-shot femtosecond laser ablation on a solid surface

    International Nuclear Information System (INIS)

    Kobayashi, Tohru; Kato, Toshiyuki; Kurata-Nishimura, Mizuki; Matsuo, Yukari; Kawai, Jun; Motobayashi, Tohru; Hayashizaki, Yoshihide

    2007-01-01

    We report that the kinetic energy of samarium (Sm) atom and Sm + ion produced by femtosecond laser ablation of solid samarium is strongly dependent on the number of ablation laser shots in the range from 1 to 10. By ablating the fresh surface (i.e. 1st shot), we find the kinetic energy of both Sm and Sm + ion to be the largest (24 and 250 eV, respectively). Almost 10 times larger kinetic energy of Sm + ion than that of Sm clearly indicates the contribution of Coulomb explosion in the acceleration process. From the second shot, kinetic energies of Sm and Sm + ion are lower than those of the first shot and almost constant (ca. 12 and 80 eV, respectively). This behaviour suggests the change in the nature of the solid surface after femtosecond laser ablation, which can be explained by the amorphization of ablated sample surface reported in recent studies

  1. On the elemental analysis of different cigarette brands using laser induced breakdown spectroscopy and laser-ablation time of flight mass spectrometry

    Science.gov (United States)

    Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.

    2017-10-01

    We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.

  2. Gas and Pressure Dependence for the Mean Size of Nanoparticles Produced by Laser Ablation of Flowing Aerosols

    International Nuclear Information System (INIS)

    Nichols, William T.; Malyavanatham, Gokul; Henneke, Dale E.; Brock, James R.; Becker, Michael F.; Keto, John W.; Glicksman, Howard D.

    2000-01-01

    Silver nanoparticles were produced by laser ablation of a continuously flowing aerosol of microparticles entrained in argon, nitrogen and helium at a variety of gas pressures. Nanoparticles produced in this new, high-volume nanoparticle production technique are compared with our earlier experiments using laser ablation of static microparticles. Transmission electron micrographs of the samples show the nanoparticles to be spherical and highly non-agglomerated under all conditions tested. These micrographs were analyzed to determine the effect of carrier gas type and pressure on size distributions. We conclude that mean diameters can be controlled from 4 to 20 nm by the choice of gas type and pressure. The smallest nanoparticles were produced in helium, with mean sizes increasing with increasing molecular weight of the carrier gas. These results are discussed in terms of a model based on cooling via collisional interaction of the nanoparticles, produced in the laser exploded microparticle, with the ambient gas

  3. Monitoring the formation of inorganic fullerene-like MoS2 nanostructures by laser ablation in liquid environments

    International Nuclear Information System (INIS)

    Compagnini, Giuseppe; Sinatra, Marco G.; Messina, Gabriele C.; Patanè, Giacomo; Scalese, Silvia; Puglisi, Orazio

    2012-01-01

    Laser ablation of solid targets in liquid media is emerging as a simple, clean and reproducible way to generate a large number of intriguing nanometric structures with peculiar properties. In this work we present some results on the formation of MoS 2 fullerene-like nanoparticles (10-15 nm diameter) obtained by the ablation of crystalline targets in water. Such a top-down approach can be considered greener than standard sulphidization reactions and represents an intriguing single step procedure. The generation of the MoS 2 nanostructures is in competition with that of oxide clusters and strongly depends on the oxidative environment created by the plasma plume. The size, shape and crystalline phase of the obtained nanoparticles are studied by microscopy while X-Ray Photoelectron Spectroscopy is used to investigate the chemical state of produced nanostructures and to propose mechanisms for their growth.

  4. Chesapeake Bay plume dynamics from LANDSAT

    Science.gov (United States)

    Munday, J. C., Jr.; Fedosh, M. S.

    1981-01-01

    LANDSAT images with enhancement and density slicing show that the Chesapeake Bay plume usually frequents the Virginia coast south of the Bay mouth. Southwestern (compared to northern) winds spread the plume easterly over a large area. Ebb tide images (compared to flood tide images) show a more dispersed plume. Flooding waters produce high turbidity levels over the shallow northern portion of the Bay mouth.

  5. Toward a comprehensive UV laser ablation modeling of multicomponent materials—A non-equilibrium investigation on titanium carbide

    Science.gov (United States)

    Ait Oumeziane, Amina; Parisse, Jean-Denis

    2018-05-01

    Titanium carbide (TiC) coatings of great quality can be produced using nanosecond pulsed laser deposition (PLD). Because the deposition rate and the transfer of the target stoichiometry depend strongly on the laser-target/laser-plasma interaction as well as the composition of the laser induced plume, investigating the ruling fundamental mechanisms behind the material ablation and the plasma evolution in the background environment under PLD conditions is essential. This work, which extends previous investigations dedicated to the study of nanosecond laser ablation of pure target materials, is a first step toward a comprehensive non-equilibrium model of multicomponent ones. A laser-material interaction model coupled to a laser-plasma interaction one is presented. A UV 20 ns KrF (248 nm) laser pulse is considered. Ablation depths, plasma ignition thresholds, and shielding rates have been calculated for a wide range of laser beam fluences. A comparison of TiC behavior with pure titanium material under the same conditions is made. Plasma characteristics such as temperature and composition have been investigated. An overall correlation between the various results is presented.

  6. Infrared laser ablation atmospheric pressure photoionization mass spectrometry.

    Science.gov (United States)

    Vaikkinen, Anu; Shrestha, Bindesh; Kauppila, Tiina J; Vertes, Akos; Kostiainen, Risto

    2012-02-07

    In this paper we introduce laser ablation atmospheric pressure photoionization (LAAPPI), a novel atmospheric pressure ion source for mass spectrometry. In LAAPPI the analytes are ablated from water-rich solid samples or from aqueous solutions with an infrared (IR) laser running at 2.94 μm wavelength. Approximately 12 mm above the sample surface, the ablation plume is intercepted with an orthogonal hot solvent (e.g., toluene or anisole) jet, which is generated by a heated nebulizer microchip and directed toward the mass spectrometer inlet. The ablated analytes are desolvated and ionized in the gas-phase by atmospheric pressure photoionization using a 10 eV vacuum ultraviolet krypton discharge lamp. The effect of operational parameters and spray solvent on the performance of LAAPPI is studied. LAAPPI offers ~300 μm lateral resolution comparable to, e.g., matrix-assisted laser desorption ionization. In addition to polar compounds, LAAPPI efficiently ionizes neutral and nonpolar compounds. The bioanalytical application of the method is demonstrated by the direct LAAPPI analysis of rat brain tissue sections and sour orange (Citrus aurantium) leaves. © 2012 American Chemical Society

  7. Liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy detection of laser ablation produced particles: A feasibility study

    International Nuclear Information System (INIS)

    Quarles, C. Derrick; Gonzalez, Jhanis; Choi, Inhee; Ruiz, Javier; Mao, Xianglei; Marcus, R. Kenneth; Russo, Richard E.

    2012-01-01

    The use of a liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma source as an alternative to conventional inductively coupled plasma (ICP) detection of laser ablation (LA) produced particles using a Nd:YAG laser at 1064 nm is demonstrated. This configuration utilizes a 180° geometry, which is different from the 40° geometry that was used to ionize ablated particles followed by mass spectrometric detection. The use of a hollow counter electrode (nickel, 0.3 cm o.d., 0.1 cm i.d.) was implemented to introduce ablated particles directly into the APGD plasma with helium as a carrier gas. The LS-APGD source was optimized using ablated copper as the test sample (helium carrier gas flow rate (0.30 L min −1 He), discharge current (60 mA), laser power (44 mJ), and solution electrode sheath gas (0.2 L min −1 He) and solution flow rates (10 μL min −1 5% HNO 3 )). Standard brass samples having known Zn/Cu percentages were ablated and analyzed using the LS-APGD source. As a comparison, the established technique of laser-induced breakdown spectroscopy (LIBS) was used to analyze the same set of brass standards under similar ablation conditions to the LS-AGPD measurements, yielding comparable results. The Zn/Cu ratio results for the LS-APGD and LIBS measurements showed good similarity to previous measurements using ICP-MS detection. The performance of the LS-APGD–OES microplasma, comparable to well established methods, with lower capital and operational overhead expenses, suggests a great deal of promise as an analytical excitation source. - Highlights: ► Particles formed by laser ablation are readily introduced to the LS-APGD microplasma. ► The low power microplasma has sufficient energy to vaporize laser produced particles. ► Qualitative analysis of brass alloys is performed using a simple OES ratio method. ► The qualitative performance of the LS-APGD microplasma is on-par with LIBS analysis.

  8. Broadening and attenuation of UV laser ablation plumes in background gases

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2005-01-01

    The expansion of a laser-induced silver plume in a background gas has been studied in a variety of gases ranging from helium, oxygen and argon to xenon. We have measured the angular distribution of the total deposit of silver on an array of quartz crystal microbalances as well as the time...

  9. Oxide or carbide nanoparticles synthesized by laser ablation of a bulk Hf target in liquids and their structural, optical, and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Semaltianos, N. G., E-mail: nsemaltianos@yahoo.com [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Friedt, J.-M.; Blondeau-Patissier, V.; Combe, G. [Dépt. Temps-Fréquence, Femto-st, UMR CNRS 6174, Université de Franche-Comté, Besançon 25030 (France); Chassagnon, R. [Laboratoire Interdisciplinaire Carnot De Bourgogne, ICB UMR CNRS 6303, Université de Bourgogne Franche-Comté, Dijon 21078 (France); Moutarlier, V. [UTINAM, UMR CNRS 6213, Université de Franche-Comté, Besançon 25030 (France); Assoul, M.; Monteil, G. [Dépt. Mécanique Appliquée, Femto-st, UMR CNRS 6174, Université de Franche-Comté, Besançon 25030 (France)

    2016-05-28

    Laser ablation of a bulk Hf target in deionized (DI) water, ethanol, or toluene was carried out for the production of nanoparticles' colloidal solutions. Due to the interaction of the ablation plasma plume species with the species which are produced by the liquid decomposition at the plume-liquid interface, hafnia (HfO{sub 2}) nanoparticles are synthesized in DI water, hafnium carbide (HfC) nanoparticles in toluene, and a mixture of these in ethanol. The hafnia nanoparticles are in the monoclinic low temperature phase and in the tetragonal and fcc high temperature phases. Their size distribution follows log-normal function with a median diameter in the range of 4.3–5.3 nm. Nanoparticles synthesized in DI water have band gaps of 5.6 and 5.4 eV, in ethanol 5.72 and 5.65 eV (using low and high pulse energy), and in toluene 3 eV. The values for the relative permittivity in the range of 7.74–8.90 were measured for hafnia nanoparticles' thin films deposited on substrates by drop-casting (self-assembled layers) in parallel plate capacitor structures.

  10. Nanostructured high valence silver oxide produced by pulsed laser deposition

    International Nuclear Information System (INIS)

    Dellasega, D.; Facibeni, A.; Di Fonzo, F.; Russo, V.; Conti, C.; Ducati, C.; Casari, C.S.; Li Bassi, A.; Bottani, C.E.

    2009-01-01

    Among silver oxides, Ag 4 O 4 , i.e. high valence Ag(I)Ag(III) oxide, is interesting for applications in high energy batteries and for the development of antimicrobial coatings. We here show that ns UV pulsed laser deposition (PLD) in an oxygen containing atmosphere allows the synthesis of pure Ag 4 O 4 nanocrystalline thin films, permitting at the same time to control the morphology of the material at the sub-micrometer scale. Ag 4 O 4 films with a crystalline domain size of the order of tens of nm can be deposited provided the deposition pressure is above a threshold (roughly 4 Pa pure O 2 or 20 Pa synthetic air). The formation of this particular high valence silver oxide is explained in terms of the reactions occurring during the expansion of the ablated species in the reactive atmosphere. In particular, expansion of the PLD plasma plume is accompanied by formation of low stability Ag-O dimers and atomic oxygen, providing reactive species at the substrate where the film grows. Evidence of reactive collisions in the expanding ablation plume is obtained by analysis of the plume visible shape in inert and reactive atmospheres. In addition, we show how the dimensionless deposition parameter L, relating the target-to-substrate distance to the ablation plume maximum expansion length, can be used to classify different growth regimes. It is thus possible to vary the stoichiometry and the morphology of the films, from compact and columnar to foam-like, by controlling both the gas pressure and the target-to-substrate distance

  11. Harmonic generation by atomic and nanoparticle precursors in a ZnS laser ablation plasma

    International Nuclear Information System (INIS)

    Oujja, M.; Lopez-Quintas, I.; Benítez-Cañete, A.; Nalda, R. de; Castillejo, M.

    2017-01-01

    Highlights: • Plume species in infrared ns laser ablation of ZnS studied by low-order harmonic generation. • Different spatiotemporal properties of harmonics from atoms and nanoparticles. • Results compared with calculations of optical frequency up-conversion in perturbative regime. - Abstract: Harmonic generation of a driving laser propagating across a laser ablation plasma serves for the diagnosis of multicomponent plumes. Here we study the contribution of atomic and nanoparticle precursors to the generation of coherent ultraviolet and vacuum ultraviolet light as low-order harmonics of the fundamental emission (1064 nm) of a Q-switched Nd:YAG laser in a nanosecond infrared ZnS laser ablation plasma. Odd harmonics from the 3rd up to the 9th order (118.2 nm) have been observed with distinct temporal and spatial characteristics which were determined by varying the delay between the ablation and driving nanosecond pulses and by spatially scanning the plasma with the focused driving beam propagating parallel to the target. At short distances from the target surface (≤1 mm), the harmonic intensity displays two temporal components peaked at around 250 ns and 10 μs. While the early component dies off quickly with increasing harmonic order and vanishes for the 9th order, the late component is notably intense for the 7th harmonic and is still clearly visible for the 9th. Spectral analysis of spontaneous plume emissions help to assign the origin of the two components. While the early plasma component is mainly constituted by neutral Zn atoms, the late component is mostly due to nanoparticles, which upon interaction with the driving laser are subject to breakup and ionization. With the aid of calculations of the phase matching integrals within the perturbative model of optical harmonic generation, these results illustrate how atom and nanoparticle populations, with differing temporal and spatial distributions within the ablation plasma, contribute to the nonlinear

  12. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    Science.gov (United States)

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  13. Life Cycle of Mantle Plumes: A perspective from the Galapagos Plume (Invited)

    Science.gov (United States)

    Gazel, E.; Herzberg, C. T.

    2009-12-01

    Hotspots are localized sources of heat and magmatism considered as modern-day evidence of mantle plumes. Some hotspots are related to massive magmatic production that generated Large Igneous Provinces (LIPS), an initial-peak phase of plume activity with a mantle source hotter and more magmatically productive than present-day hotspots. Geological mapping and geochronological studies have shown much lower eruption rates for OIB compared to lavas from Large Igneous Provinces LIPS such as oceanic plateaus and continental flood provinces. Our study is the first quantitative petrological comparison of mantle source temperatures and extent of melting for OIB and LIP sources. The wide range of primary magma compositions and inferred mantle potential temperatures for each LIP and OIB occurrence suggest that this rocks originated form a hotspot, a spatially localized source of heat and magmatism restricted in time. Extensive outcrops of basalt, picrite, and sometimes komatiite with circa 65-95 Ma ages occupy portions of the pacific shore of Central and South America included in the Caribbean Large Igneous Province (CLIP). There is general consensus of a Pacific-origin of CLIP and most studies suggest that it was produced by melting in the Galapagos mantle plume. The Galapagos connection is consistent with isotopic and geochemical similarities with lavas from the present-day Galapagos hotspot. A Galapagos link for rocks in South American oceanic complexes (eg. the island of Gorgona) is more controversial and requires future work. The MgO and FeO contents of lavas from the Galapagos related lavas and their primary magmas have decreased since the Cretaceous. From petrological modeling we infer that these changes reflect a cooling of the Galapagos mantle plume from a potential temperature of 1560-1620 C in the Cretaceous to 1500 C at the present time. These temperatures are higher than 1350 C for ambient mantle associated with oceanic ridges, and provide support for the mantle

  14. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Science.gov (United States)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  15. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Science.gov (United States)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  16. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Diaz, M; Ponce, L; Arronte, M; Flores, T [Laboratorio TecnologIa Laser, CICATA-IPN, Unidad Altamira, Carretera Tampico-Puerto Ind. Altamira, 89600, TAMPS (Mexico)

    2007-04-15

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  17. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    International Nuclear Information System (INIS)

    Pena-Diaz, M; Ponce, L; Arronte, M; Flores, T

    2007-01-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained

  18. Diagnosis of laser ablated carbon particles measured by time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Ohyanagi, T.; Murakami, K.

    1995-01-01

    The time and space resolved properties of laser ablated carbon particles were measured by X-ray absorption spectroscopy using LPX as an X-ray source. The energy density of the irradiation laser on the sample was in the range of 0.5-20J/cm 2 and the time delay was varied between 0 and 120ns. The absorption spectra exhibited several peaks originated from level to level transitions and an intense broad absorption in the energy range of C-K edge. At a delay time of 120ns, the absorption peak from 1s→2p transition of neutral carbon atom (C 0 ), C - , C + and C 2+ ions were observed. The absorption peak from C 0 was stronger as the probing position was closer to the sample surface and decreased rapidly with distance from the sample surface. The absorption peak C 2+ ion was observed only at comparatively distant positions from surface. The maximum speeds of highly charged ions were faster than that of neutral atoms and negative charged ions. The neutral atom and lower charged ions were emitted from the sample even after laser irradiation. The spatial distributions of the laser ablated carbon particles in the localized helium gas environment were measured. In the helium gas environment, the ablation plume was depressed by the helium cloud generated on the top of ablation plume. (author)

  19. A numerical study of the Magellan Plume

    Science.gov (United States)

    Palma, Elbio D.; Matano, Ricardo P.

    2012-05-01

    In this modeling study we investigate the dynamical mechanisms controlling the spreading of the Magellan Plume, which is a low-salinity tongue that extends along the Patagonian Shelf. Our results indicate that the overall characteristics of the plume (width, depth, spreading rate, etc.) are primarily influenced by tidal forcing, which manifests through tidal mixing and tidal residual currents. Tidal forcing produces a homogenization of the plume's waters and an offshore displacement of its salinity front. The interaction between tidal and wind-forcing reinforces the downstream and upstream buoyancy transports of the plume. The influence of the Malvinas Current on the Magellan Plume is more dominant north of 50°S, where it increases the along-shelf velocities and generates intrusions of saltier waters from the outer shelf, thus causing a reduction of the downstream buoyancy transport. Our experiments also indicate that the northern limit of the Magellan Plume is set by a high salinity discharge from the San Matias Gulf. Sensitivity experiments show that increments of the wind stress cause a decrease of the downstream buoyancy transport and an increase of the upstream buoyancy transport. Variations of the magnitude of the discharge produce substantial modifications in the downstream penetration of the plume and buoyancy transport. The Magellan discharge generates a northeastward current in the middle shelf, a recirculation gyre south of the inlet and a region of weak currents father north.

  20. Seismic Imaging of Mantle Plumes

    Science.gov (United States)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  1. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  2. Laser-solid interaction and dynamics of the laser-ablated materials

    International Nuclear Information System (INIS)

    Chen, K.R.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-01-01

    Rapid transformations through the liquid and vapor phases induced by laser-solid interactions are described by the authors' thermal model with the Clausius-Clapeyron equation to determine the vaporization temperature under different surface pressure condition. Hydrodynamic behavior of the vapor during and after ablation is described by gas dynamic equations. These two models are coupled. Modeling results show that lower background pressure results lower laser energy density threshold for vaporization. The ablation rate and the amount of materials removed are proportional to the laser energy density above its threshold. The authors also demonstrate a dynamic source effect that accelerates the unsteady expansion of laser-ablated material in the direction perpendicular to the solid. A dynamic partial ionization effect is studied as well. A self-similar theory shows that the maximum expansion velocity is proportional to c s α, where 1 - α is the slope of the velocity profile. Numerical hydrodynamic modeling is in good agreement with the theory. With these effects, α is reduced. Therefore, the expansion front velocity is significantly higher than that from conventional models. The results are consistent with experiments. They further study how the plume propagates in high background gas condition. Under appropriate conditions, the plume is slowed down, separates with the background, is backward moving, and hits the solid surface. Then, it splits into two parts when it rebounds from the surface. The results from the modeling will be compared with experimental observations where possible

  3. Intra-operative ultrasound hand-held strain imaging for the visualization of ablations produced in the liver with a toroidal HIFU transducer: first in vivo results

    Energy Technology Data Exchange (ETDEWEB)

    Chenot, J; Melodelima, D; N' Djin, W A; Souchon, Remi; Rivoire, M; Chapelon, J Y, E-mail: jeremy.chenot@inserm.f [Inserm, U556, Lyon, F-69003 (France)

    2010-06-07

    The use of hand-held ultrasound strain imaging for the intra-operative real-time visualization of HIFU (high-intensity focused ultrasound) ablations produced in the liver by a toroidal transducer was investigated. A linear 12 MHz ultrasound imaging probe was used to obtain radiofrequency signals. Using a fast cross-correlation algorithm, strain images were calculated and displayed at 60 frames s{sup -1}, allowing the use of hand-held strain imaging intra-operatively. Fourteen HIFU lesions were produced in four pigs. Intra-operative strain imaging of HIFU ablations in the liver was feasible owing to the high frame rate. The correlation between dimensions measured on gross pathology and dimensions measured on B-mode images and on strain images were R = 0.72 and R = 0.94 respectively. The contrast between ablated and non-ablated tissue was significantly higher (p < 0.05) in the strain images (22 dB) than in the B-mode images (9 dB). Strain images allowed equivalent or improved definition of ablated regions when compared with B-mode images. Real-time intra-operative hand-held strain imaging seems to be a promising complement to conventional B-mode imaging for the guidance of HIFU ablations produced in the liver during an open procedure. These results support that hand-held strain imaging outperforms conventional B-mode ultrasound and could potentially be used for the assessment of thermal therapies.

  4. Experimental and computational study of the effect of 1 atm background gas on nanoparticle generation in femtosecond laser ablation of metals

    Science.gov (United States)

    Wu, Han; Wu, Chengping; Zhang, Nan; Zhu, Xiaonong; Ma, Xiuquan; Zhigilei, Leonid V.

    2018-03-01

    Laser ablation of metal targets is actively used for generation of chemically clean nanoparticles for a broad range of practical applications. The processes involved in the nanoparticle formation at all relevant spatial and temporal scales are still not fully understood, making the precise control of the size and shape of the nanoparticles challenging. In this paper, a combination of molecular dynamics simulations and experiments is applied to investigate femtosecond laser ablation of aluminum targets in vacuum and in 1 atm argon background gas. The results of the simulations reveal a strong effect of the background gas environment on the initial plume expansion and evolution of the nanoparticle size distribution. The suppression of the generation of small/medium-size Al clusters and formation of a dense layer at the front of the expanding ablation plume, observed during the first nanosecond of the plume expansion in a simulation performed in the gas environment, have important implications on the characteristics of the nanoparticles deposited on a substrate and characterized in the experiments. The nanoparticles deposited in the gas environment are found to be more round-shaped and less flattened as compared to those deposited in vacuum. The nanoparticle size distributions exhibit power-law dependences with similar values of exponents obtained from fitting experimental and simulated data. Taken together, the results of this study suggest that the gas environment may be effectively used to control size and shape of nanoparticles generated by laser ablation.

  5. High excitation of the species in nitrogen–aluminum plasma generated by electron cyclotron resonance microwave discharge of N2 gas and pulsed laser ablation of Al target

    International Nuclear Information System (INIS)

    Liang, Peipei; Li, Yanli; Cai, Hua; You, Qinghu; Yang, Xu; Huang, Feiling; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-01-01

    A reactive nitrogen–aluminum plasma generated by electron cyclotron resonance (ECR) microwave discharge of N 2 gas and pulsed laser ablation of an Al target is characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy (OES). The vibrational and rotational temperatures of N 2 species are determined by spectral simulation. The generated plasma strongly emits radiation from a variety of excited species including ambient nitrogen and ablated aluminum and exhibits unique features in optical emission and temperature evolution compared with the plasmas generated by a pure ECR discharge or by the expansion of the ablation plume. The working N 2 gas is first excited by ECR discharge and the excitation of nitrogen is further enhanced due to the fast expansion of the aluminum plume induced by target ablation, while the excitation of the ablated aluminum is prolonged during the plume expansion in the ECR nitrogen plasma, resulting in the formation of strongly reactive nitrogen–aluminum plasma which contains highly excited species with high vibrational and rotational temperatures. The enhanced intensities and the prolonged duration of the optical emissions of the combined plasma would provide an improved analytical capability for spectrochemical analysis. - Highlights: • ECR discharge and pulsed laser ablation generate highly excited ECR–PLA plasma. • The expansion of PLA plasma results in excitation enhancement of ECR plasma species. • The ECR plasma leads to excitation prolongation of PLA plasma species. • The ECR–PLA plasma emits strong emissions from a variety of excited species. • The ECR–PLA plasma maintains high vibrational–rotational temperatures for a long time

  6. Spectrum diagnoses of laser plasma in 'ablation mode' laser propulsion

    International Nuclear Information System (INIS)

    Zhang Ling; Tang Zhiping; Tong Huifeng; Su Maogen; Xue Simin

    2007-01-01

    The propellant materials (LY12 aluminium, No.45 steel, H62 brass, graphite, polyvinyl chloride, polyoxymethylene) in laser propulsion are ablated by a Nd: YAG laser (1.06 μm, 10 ns). The space-resolved and the power density-depended emission spectrums of aluminum and copper plasma are recorded and analyzed. Under the local thermo equilibrium assumption, the electronic temperature and density as well as the average intensity of ionization from the relative intensity of characteristic spectrum for aluminum are obtained. Their dependence on laser power-density and spatial variation are also investigated. The ablation imagines (the ejected plumes) of the six materials in vacuum are obtained and discussed by using a B shutter camera. (authors)

  7. Galileo observations of volcanic plumes on Io

    Science.gov (United States)

    Geissler, P.E.; McMillan, M.T.

    2008-01-01

    Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.

  8. Gold nanoparticles and films produced by a laser ablation/gas deposition (LAGD) method

    International Nuclear Information System (INIS)

    Kawakami, Yuji; Seto, Takafumi; Yoshida, Toshinobu; Ozawa, Eiichi

    2002-01-01

    Gold nanoparticles have great potential for various nanoelectronic applications such as single electron transistors, an infrared absorption sensor and so on. It is very important to understand and control the size distribution of the particles for such a variety of applications. In this paper, we report the size distribution of gold nanoparticles and the relationship between the nanoparticle-films and the electrical property produced by a laser ablation method. Gold nanoparticle-films were prepared by a technique, which sprays nanoparticles on the substrate through a nozzle. We call it a gas deposition method. The nanoparticles were generated by the nanosecond pulsed Nd:YAG laser ablation of a gold substrate under a low-pressure inert gas atmosphere. The ambient pressure was changed to control the average size and their distribution. The particles produced in the generation chamber were transported by a helium carrier gas to the deposition chamber and deposited on a substrate to form the films composed of gold nanoparticles. The electrical resistivity of the generated gold nanoparticle-films on the glass substrates was measured using a four-probe method. The size distribution of the nanoparticles was examined using transmission electron microscopy (TEM) and a low-pressure differential mobility analyzer (LP-DMA). The relationship between the particle size and the electrical properties of each film made by the different synthesis conditions were analyzed. The electrical resistivity changed from the order of 10 -5 to 10 -1 Ω cm depending on the ambient pressure and the size distribution

  9. Global Modeling of Uranium Molecular Species Formation Using Laser-Ablated Plasmas

    Science.gov (United States)

    Curreli, Davide; Finko, Mikhail; Azer, Magdi; Armstrong, Mike; Crowhurst, Jonathan; Radousky, Harry; Rose, Timothy; Stavrou, Elissaios; Weisz, David; Zaug, Joseph

    2016-10-01

    Uranium is chemically fractionated from other refractory elements in post-detonation nuclear debris but the mechanism is poorly understood. Fractionation alters the chemistry of the nuclear debris so that it no longer reflects the chemistry of the source weapon. The conditions of a condensing fireball can be simulated by a low-temperature plasma formed by vaporizing a uranium sample via laser heating. We have developed a global plasma kinetic model in order to model the chemical evolution of U/UOx species within an ablated plasma plume. The model allows to track the time evolution of the density and energy of an uranium plasma plume moving through an oxygen atmosphere of given fugacity, as well as other relevant quantities such as average electron and gas temperature. Comparison of model predictions with absorption spectroscopy of uranium-ablated plasmas provide preliminary insights on the key chemical species and evolution pathways involved during the fractionation process. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16-1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Are splash plumes the origin of minor hotspots?

    Science.gov (United States)

    Davies, J. H.; Bunge, H.-P.

    2006-05-01

    It has been claimed that focused hot cylindrical upwelling plumes cause many of the surface volcanic hotspots on Earth. It has also been argued that they must originate from thermal boundary layers. In this paper, we present spherical simulations of mantle circulation at close to Earth-like vigor with significant internal heating. These show, in addition to thermal boundary layer plumes, a new class of plumes that are not rooted in thermal boundary layers. These plumes develop as instabilities from the edge of bowls of hot mantle, which are produced by cold downwelling material deforming hot sheets of mantle. The resulting bowl and plume structure can look a bit like the “splash” of a water droplet. These splash plumes might provide an explanation for some hotspots that are not underlain by thermal boundary layer sourced plumes and not initiated by large igneous provinces. We suggest that in Earth's mantle, lithospheric instabilities or small pieces of subducting slab could play the role of the model downwelling material in initiating splash plumes. Splash plumes would have implications for interpreting ocean-island basalt geochemistry, plume fixity, excess plume temperature, and estimating core heat flux. Improved seismic imaging will ultimately test this hypothesis.

  11. Thermophysical property measurement at high temperatures by laser-produced plasmas

    International Nuclear Information System (INIS)

    Kim, Y.W.

    1993-01-01

    Excitation by a high-power laser pulse of a material surface generates a sequence of plasma, fluid flow, and acoustic events. These are well separated in time, and their detection and analysis can lead to determination of material properties of the condensed phase target. We have developed a new methodology for real-time determination of molten metal composition by time-resolved spectroscopy of laser-produced plasmas (LPP). If the laser pulse is shaped in such a way that the movement of the bulk surface due to evaporation is kept in pace with the thermal diffusion front advancing into the interior of the target, the LPP plume becomes representative of the bulk in elemental composition. In addition, the mass loss due to LPP ablation is very well correlated with the thermal diffusivity of the target matter. For several elemental solid specimens, we show that the product of the ablation thickness and heat of formation is proportional to the thermal diffusivity per unit molecular weight. Such measurements can be extended to molten metal specimens if the mass loss by ablation, density, heat of formation, and molecular weight can be determined simultaneously. The results from the solid specimen and the progress with a levitation-assisted molten metal experiment are presented

  12. PLUME and research sotware

    Science.gov (United States)

    Baudin, Veronique; Gomez-Diaz, Teresa

    2013-04-01

    The PLUME open platform (https://www.projet-plume.org) has as first goal to share competences and to value the knowledge of software experts within the French higher education and research communities. The project proposes in its platform the access to more than 380 index cards describing useful and economic software for this community, with open access to everybody. The second goal of PLUME focuses on to improve the visibility of software produced by research laboratories within the higher education and research communities. The "development-ESR" index cards briefly describe the main features of the software, including references to research publications associated to it. The platform counts more than 300 cards describing research software, where 89 cards have an English version. In this talk we describe the theme classification and the taxonomy of the index cards and the evolution with new themes added to the project. We will also focus on the organisation of PLUME as an open project and its interests in the promotion of free/open source software from and for research, contributing to the creation of a community of shared knowledge.

  13. Ion time-of-flight study of laser ablation of silver in low pressure gases

    DEFF Research Database (Denmark)

    Hansen, T.N.; Schou, Jørgen; Lunney, J.G.

    1999-01-01

    The dynamics of ions from a laser-ablated silver target in low pressure background atmospheres have been investigated in a simple geometry using an electrical probe. A simple scattering picture for the first transmitted peak of the observed plume splitting has been used to calculate cross section...... of the ablated silver ions in oxygen (sigma{O(2)} = 4.8 x 10(-16) cm(2)) and in argon (sigma{Ar} = 6.7 x 10(-16) cm(2)). The dynamics of the blast wave is well described by blast wave theory. (C) 1999 Elsevier Science B.V. All rights reserved....

  14. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    Science.gov (United States)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  15. Experimental Investigation of Molecular Species Formation in Metal Plasmas During Laser Ablation

    Science.gov (United States)

    Radousky, H.; Crowhurst, J.; Rose, T.; Armstrong, M.; Stavrou, E.; Zaug, J.; Weisz, D.; Azer, M.; Finko, M.; Curreli, D.

    2016-10-01

    Atomic and molecular spectra on metal plasmas generated by laser ablation have been measured using single, nominally 6-7 ns pulses at 1064 nm, and with energies less than 50 mJ. The primary goal for these studies is to constrain the physical and chemical mechanisms that control the distribution of radionuclides in fallout after a nuclear detonation. In this work, laser emission spectroscopy was used to obtain in situdata for vapor phase molecular species as they form in a controlled oxygen atmosphere for a variety of metals such as Fe, Al, as well as preliminary results for U. In particular, the ablation plumes created from these metals have been imaged with a resolution of 10 ns, and it is possible to observe the expansion of the plume out to 0.5 us. These data serve as one set of inputs for a semi-empirical model to describe the chemical fractionation of uranium during fallout formation. Prepared by LLNL under Contract DE-AC52-07NA27344. This project was sponsored by the Department of the Defense, Defense Threat Reduction Agency, under Grant Number HDTRA1-16-1-0020.

  16. Laser ablation and deposition of wide bandgap semiconductors: plasma and nanostructure of deposits diagnosis

    Science.gov (United States)

    Sanz, M.; López-Arias, M.; Rebollar, E.; de Nalda, R.; Castillejo, M.

    2011-12-01

    Nanostructured CdS and ZnS films on Si (100) substrates were obtained by nanosecond pulsed laser deposition at the wavelengths of 266 and 532 nm. The effect of laser irradiation wavelength on the surface structure and crystallinity of deposits was characterized, together with the composition, expansion dynamics and thermodynamic parameters of the ablation plume. Deposits were analyzed by environmental scanning electron microscopy, atomic force microscopy and X-ray diffraction, while in situ monitoring of the plume was carried out with spectral, temporal and spatial resolution by optical emission spectroscopy. The deposits consist of 25-50 nm nanoparticle assembled films but ablation in the visible results in larger aggregates (150 nm) over imposed on the film surface. The aggregate free films grown at 266 nm on heated substrates are thicker than those grown at room temperature and in the former case they reveal a crystalline structure congruent with that of the initial target material. The observed trends are discussed in reference to the light absorption step, the plasma composition and the nucleation processes occurring on the substrate.

  17. Microwave Tissue Ablation: Biophysics, Technology and Applications

    Science.gov (United States)

    2010-01-01

    Microwave ablation is an emerging treatment option for many cancers, cardiac arrhythmias and other medical conditions. During treatment, microwaves are applied directly to tissues to produce rapid temperature elevations sufficient to produce immediate coagulative necrosis. The engineering design criteria for each application differ, with individual consideration for factors such as desired ablation zone size, treatment duration, and procedural invasiveness. Recent technological developments in applicator cooling, power control and system optimization for specific applications promise to increase the utilization of microwave ablation in the future. This article will review the basic biophysics of microwave tissue heating, provide an overview of the design and operation of current equipment, and outline areas for future research for microwave ablation. PMID:21175404

  18. 10 GHz surface impedance measurements of (Y9Er)BaCuO films produced by MOCVD, laser ablation, and sputtering

    International Nuclear Information System (INIS)

    Luine, J.; Daly, K.; Hu, R.; Kain, A.; Lee, A.; Manasevit, H.; Pettiette-Hall, C.; Simon, R.; St John, D.; Wagner, M.

    1991-01-01

    This paper reports on a parallel-plate resonator technique previously used to measure microwave surface resistance R s (T) extended to also measure absolute penetration depth λ(T). Measurements of both quantities near 10 GHz from 4.2 K to Tc are reported for ErBaCuO thin films produced by metal-organic chemical vapor deposition (MOCVD) and YBaCuO think films produced by laser ablation and single-target off-axis sputtering. All the films were made at TRW. Each production method gives rise to films whose surface resistance is below 1 milliohm at temperatures below 40K. The low temperature penetration depths range from 250 nm for the laser ablation and sputtered films to 800 nm for the MOCVD films. The penetration depths in all cases increase with temperature according to the Gorter-Casimir temperature dependence

  19. Time-resolved emission from laser-ablated uranium

    International Nuclear Information System (INIS)

    Stoffels, E.; Mullen, J. van der; Weijer, P. van de

    1991-01-01

    Time-resolved emission spectra from the plasma, induced by laser ablation of uranium samples have been studied. The dependence of the emission intensity on time is strongly affected by the nature and pressure of the buffer gas. Air and argon have been used in the pressure range 0.002 to 5 mbar. The emission intensity as a function of time displays three maxima, indicating that three different processes within the expanding plasma plume are involved. On basis of the time-resolved spectra we propose a model that explains qualitatively the phenomena that are responsible for this time behaviour. (author)

  20. Time-resolved and integrated angular distributions of plume ions from silver at low and medium laser fluence

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    2013-01-01

    Laser impact on metals in the UV regime results in a significant number of ablated plume ions even at moderate fluence (0.7–2.4 J/cm2). The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence. The ion flow in different directions...... from a silver target irradiated by a laser beam at a wavelength of 355 nm in vacuum was measured with a hemispherical array of Langmuir probes. The time-of-flight spectra in all directions, as well as the total angular yield were determined. The angular distribution peaks strongly in forward direction...

  1. Buoyant plume calculations

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures

  2. Spectroscopic study of emission coal mineral plasma produced by laser ablation

    International Nuclear Information System (INIS)

    Vera, L P; Pérez, J A; Riascos, H

    2014-01-01

    Spectroscopic analysis of plasma produced by laser ablation of coal samples using 1064 nm radiation pulses from a Q-switched Nd:YAG on different target under air ambient, was performed. The emission of molecular band systems such as C 2 Swan System (d 3 Π g →a 3 Π u ), the First Negative System N 2 (Band head at 501,53 nm) and emission lines of the C I, C II, were investigated using the optical emission spectroscopy technique. The C 2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0,62 eV); the density and electron temperature of the plasma have been evaluated using Stark broadening and the intensity of the nitrogen emission lines N II, the found values of 1,2 eV and 2,2 x10 18 cm −3 respectively.

  3. The effect of gamma-irradiation on laser ablation of polyketone

    International Nuclear Information System (INIS)

    Golodkov, O.N.; Ol'khov, Yu.A.; Allayarov, S.R.; Belov, G.P.; Ivanov, L.F.; Kalinin, L.A.; Grakovich, P.N.

    2013-01-01

    Results of a pioneering study of the effect of laser radiation in vacuum on the surface of a polyketone (alternating terpolymer of ethylene, propylene, and carbon monoxide, POK) plate are presented. The preliminary γirradiation of POK to a dose of 100 kGy enhances its laser ablation rate. It has been found that laser beam irradiation leads to the surface heating of the plate, its melting, and the formation of a characteristic surface microrelief, an ablation crater, from which the gas flow of the ablation plume carries away products that are deposited on surfaces outside the laser beam area to form a coating with a chemical composition close to that of the substrate POK. A rim grows from molten POK around the crater. The melting point of the crystalline modification (377 K), the molecular flow temperature (427 K), and the molecular weight of the coating (25 560) are much lower than those of the initial POK (464 K, 477 K, and 159200, respectively), thereby indicating laser - induced chain degradation of POK. (authors)

  4. Time resolved emission spectroscopy investigations of pulsed laser ablated plasmas of ZrO2 and Al2O3

    International Nuclear Information System (INIS)

    Hadoko, A D; Lee, P S; Lee, P; Mohanty, S R; Rawat, R S

    2006-01-01

    With the rising trend of synthesizing ultra thin films and/or quantum-confined materials using laser ablation, optimization of deposition parameters plays an essential role in obtaining desired film characteristics. This paper presents the initial step of plasma optimization study by examining temporal distribution of the plasma formation by pulsed laser ablation of materials. The emitted spectra of ZrO 2 and Al 2 O 3 are obtained ∼3mm above the ablated target to derive the ablated plasma characteristics. The plasma temperature is estimated to be at around 2.35 eV, with electron density of 1.14 x 10 16 (cm -3 ). Emission spectra with different gate delay time (40-270 ns) are captured to study the time resolved plume characteristics. Transitory elemental species are identified

  5. Dynamics expansion of laser produced plasma with different materials in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rabia Qindeel; Noriah Bte Bidin; Yaacob Mat daud [Laser Technology Laboratory, Physics Department, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)], E-mail: plasmaqindeel@yahoo.com

    2008-12-01

    The dynamics expansion of the plasma generated by laser ablation of different materials has been investigated. The dynamics and confinement of laser generated plasma plumes are expanding across variable magnetic fields. A Q-switched neodymium-doped yttrium aluminum garnet laser with 1064 nm, 8 ns pulse width and 0.125 J laser energy was used to generate plasma that was allowed to expand across variable magnetic within 0.1 - 0.8 T. The expansions of laser-produced plasma of different materials are characterized by using constant laser power. CCD video camera was used to visualize and record the activities in the focal region. The plasma plume length, width and area were measured by using Matrox Inpector 2.1 and video Test 0.5 software. Spectrums of plasma beam from different materials are studied via spectrometer. The results show that the plasma generated by aluminum target is the largest than Brass and copper. The optical radiation from laser generated plasma beam spectrums are obtained in the range of UV to visible light.

  6. The growth and decay of equatorial backscatter plumes

    Science.gov (United States)

    Tsunoda, R. T.

    1980-02-01

    During the past three years, a series of rocket experiments from the Kwajalein Atoll, Marshall Islands, were conducted to investigate the character of intense, scintillation-producing irregularities that occur in the nighttime equatorial ionosphere. Because the source mechanism of equatorial irregularities, believed to be the Rayleigh-Taylor instability, is analogous to that which generates plasma-density striations in a nuclear-induced environment, there is considerable interest in the underlying physics that controls the characteristics of these irregularities. A primary objective of ALTAIR investigations of equatorial irregularities is to seek an understanding of the underlying physics by establishing the relationship between meter-scale irregularities (detected by ALTAIR), and the large-scale plasma-density depletions (or 'bubbles') that contain the kilometer-scale, scintillation-producing irregularities. We describe the time evolution of backscatter 'plumes' produced by one meter equatorial field-aligned irregularities. Using ALTAIR, a fully steerable backscatter radar, to repeatedly map selected plumes, we characterize the dynamic behavior of plumes in terms of growth and a decay phase. Most of the observed characteristics are found to be consistent with equatorial-irregularity generation predicted by current theories of Rayleigh-Taylor and gradient-drift instabilities. However, other characteristics have been found that suggest key roles played by the eastward neutral wind and by altitude-modulation of the bottomside F layer in establishing the initial conditions for plume growth.

  7. Desorption/ablation of lithium fluoride induced by extreme ultraviolet laser radiation

    Czech Academy of Sciences Publication Activity Database

    Blejchař, T.; Nevrlý, V.; Vašinek, M.; Dostál, M.; Kozubková, M.; Dlabka, J.; Stachoň, M.; Juha, Libor; Bitala, P.; Zelinger, Zdeněk; Pira, Peter; Wild, J.

    2016-01-01

    Roč. 61, č. 2 (2016), s. 131-138 ISSN 0029-5922. [PLASMA 2015 : International Conference on Research and Applications of Plasmas. Warsaw, 07.09.2015-11.09.2015] R&D Projects: GA ČR(CZ) GAP108/11/1312 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : desorption * fluid dynamics * lithium fluoride * numerical simulation * plume expansion * pulsed laser ablation Subject RIV: BL - Plasma and Gas Discharge Physics; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 0.760, year: 2016

  8. Conditional probability of intense rainfall producing high ground concentrations from radioactive plumes

    International Nuclear Information System (INIS)

    Wayland, J.R.

    1977-03-01

    The overlap of the expanding plume of radioactive material from a hypothetical nuclear accident with rainstorms over dense population areas is considered. The conditional probability of the occurrence of hot spots from intense cellular rainfall is presented

  9. Bimodal Nanoparticle Size Distributions Produced by Laser Ablation of Microparticles in Aerosols

    International Nuclear Information System (INIS)

    Nichols, William T.; Malyavanatham, Gokul; Henneke, Dale E.; O'Brien, Daniel T.; Becker, Michael F.; Keto, John W.

    2002-01-01

    Silver nanoparticles were produced by laser ablation of a continuously flowing aerosol of microparticles in nitrogen at varying laser fluences. Transmission electron micrographs were analyzed to determine the effect of laser fluence on the nanoparticle size distribution. These distributions exhibited bimodality with a large number of particles in a mode at small sizes (3-6-nm) and a second, less populated mode at larger sizes (11-16-nm). Both modes shifted to larger sizes with increasing laser fluence, with the small size mode shifting by 35% and the larger size mode by 25% over a fluence range of 0.3-4.2-J/cm 2 . Size histograms for each mode were found to be well represented by log-normal distributions. The distribution of mass displayed a striking shift from the large to the small size mode with increasing laser fluence. These results are discussed in terms of a model of nanoparticle formation from two distinct laser-solid interactions. Initially, laser vaporization of material from the surface leads to condensation of nanoparticles in the ambient gas. Material evaporation occurs until the plasma breakdown threshold of the microparticles is reached, generating a shock wave that propagates through the remaining material. Rapid condensation of the vapor in the low-pressure region occurs behind the traveling shock wave. Measurement of particle size distributions versus gas pressure in the ablation region, as well as, versus microparticle feedstock size confirmed the assignment of the larger size mode to surface-vaporization and the smaller size mode to shock-formed nanoparticles

  10. Formation of metal nanoparticles of various sizes in plasma plumes produced by Ti:sapphire laser pulses

    International Nuclear Information System (INIS)

    Chakravarty, U.; Naik, P. A.; Mukherjee, C.; Kumbhare, S. R.; Gupta, P. D.

    2010-01-01

    In this paper, an experimental study on generation of nanoparticle various sizes using Ti:sapphire laser pulses, is reported. Nanoparticle formation in plasma plumes of metals like silver and copper, expanding in vacuum, has been studied using stretched pulses of 300 ps duration [subnanoseconds (sub-ns)] from a Ti:sapphire laser. It has been compared with the nanoparticle formation (of the same materials) when compressed pulses of 45 fs duration were used under similar focusing conditions. Nanoparticle formation is observed at intensities as high as 2x10 16 W/cm 2 . The structural analysis of the nanoparticle deposition on a silicon substrate showed that, using 45 fs pulses, smaller nanoparticles of average size ∼20 nm were generated, whereas on using the sub-ns pulses, larger particles were produced. Also, the visible light transmission and reflection from the nanoparticle film of Ag on glass substrate showed surface plasmon resonance (SPR). The SPR curves of the films of nanoparticles deposited by femtosecond pulses were always broader and reflection/transmission was always smaller when compared with the films formed using the sub-ns pulses, indicating smaller size particle formation by ultrashort pulses. Thus, it has been demonstrated that variation in the laser pulse duration of laser offers a simple tool for varying the size of the nanoparticles generated in plasma plumes.

  11. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    Science.gov (United States)

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; Hartig, K. C.; Phillips, M. C.

    2018-06-01

    lineshapes, as opposed to emission spectroscopy which requires higher plasma temperatures to be able to detect thermally excited emission. Improvements in laser and detection systems and spectroscopic techniques have allowed for isotopic measurements to be carried out at standoff distances under ambient atmospheric conditions, which have expanded the applicability of optical spectroscopy-based isotopic measurements to a variety of scientific fields. These technological advances offer an in-situ measurement capability that was previously not available. This review will focus on isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing knowledge/technological gaps identified from the current literature and suggestions for the future work.

  12. Influence of the shielding effect on the formation of a micro-texture on the cermet with nanosecond pulsed laser ablation.

    Science.gov (United States)

    Yuan, Jiandong; Liang, Liang; Jiang, Lelun; Liu, Xin

    2018-04-01

    The degree of laser pulse overlapping in a laser scanning path has a significant impact on the ablation regime in the laser machining of a micro-texture. In this Letter, a nanosecond pulsed laser is used to prepare the micro-scaled groove on WC-8Co cermet under different scanning speeds. It is observed that as the scanning speed increases, the ablated trace morphology in the first scanning pass transits from a succession of intermittent deep dimples to the consecutive overlapped shallow pits. The test result also indicates that ablated trace morphology with respect to the low scanning speed stems from a plume shielding effect. Moreover, the ablation regime considering the shielding effect in micro-groove formation process is clarified. The critical scanning speed that can circumvent the shielding effect is also summarized with respect to different laser powers.

  13. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    Science.gov (United States)

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  14. The evolution of photochemical smog in a power plant plume

    Science.gov (United States)

    Luria, Menachem; Valente, Ralph J.; Tanner, Roger L.; Gillani, Noor V.; Imhoff, Robert E.; Mueller, Stephen F.; Olszyna, Kenneth J.; Meagher, James F. Present address: Aeronomy Laboratory, NOAA, 325 Broadway, Boulder CO 80303, USA.)

    The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study - Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west-northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50-60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O 3 that peaked at 120 ppbv at a short distance (15-25 km) downwind of Nashville. Ozone productivity (the ratio of excess O 3 to NO y and NO z) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism.

  15. The evolution of photochemical smog in a power plant plume

    International Nuclear Information System (INIS)

    Luria, M.; The Hebrew University, Jerusalem; Valente, R.J.; Tanner, R.L.; Imhoff, R.E.; Mueller, S.F.; Olszyna, K.J.; Meagher, J.F.; Gillani, N.V.; University of Alabama, Huntsville, AL

    1999-01-01

    The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study - Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west-northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50-60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O 3 that peaked at 120 ppbv at a short distance (15-25 km) downwind of Nashville. Ozone productivity (the ratio of excess O 3 to NO y and NO z ) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism. (author)

  16. Theory and numerical modeling of the accelerated expansion of laser-ablated materials near a solid surface

    International Nuclear Information System (INIS)

    Chen, K.R.; King, T.C.; Hes, J.H.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Puretzky, A.A.; Donato, J.M.

    1999-01-01

    A self-similar theory and numerical hydrodynamic modeling is developed to investigate the effects of dynamic source and partial ionization on the acceleration of the unsteady expansion of laser-ablated material near a solid target surface. The dynamic source effect accelerates the expansion in the direction perpendicular to the target surface, while the dynamic partial ionization effect accelerates the expansion in all directions. The vaporized material during laser ablation provides a nonadiabatic dynamic source at the target surface into the unsteady expanding fluid. For studying the dynamic source effect, the self-similar theory begins with an assumed profile of plume velocity, u=v/v m =α+(1-α)ξ, where v m is the maximum expansion velocity, α is a constant, and ξ=x/v m t. The resultant profiles of plume density and plume temperature are derived. The relations obtained from the conservations of mass, momentum, and energy, respectively, all show that the maximum expansion velocity is inversely proportional to α, where 1-α is the slope of plume velocity profile. The numerical hydrodynamic simulation is performed with the Rusanov method and the Newton Raphson method. The profiles and scalings obtained from numerical hydrodynamic modeling are in good agreement with the theory. The dynamic partial ionization requires ionization energy from the heat at the expansion front, and thus reduces the increase of front temperature. The reduction of thermal motion would increase the flow velocity to conserve the momentum. This dynamic partial ionization effect is studied with the numerical hydrodynamic simulation including the Saha equation. With these effects, α is reduced from its value of conventional free expansion. This reduction on α increases the flow velocity slope, decreases the flow velocity near the surface, and reduces the thermal motion of plume, such that the maximum expansion velocity is significantly increased over that found from conventional models

  17. Mobile Bay turbidity plume study

    Science.gov (United States)

    Crozier, G. F.

    1976-01-01

    Laboratory and field transmissometer studies on the effect of suspended particulate material upon the appearance of water are reported. Quantitative correlations were developed between remotely sensed image density, optical sea truth data, and actual sediment load. Evaluation of satellite image sea truth data for an offshore plume projects contours of transmissivity for two different tidal phases. Data clearly demonstrate the speed of change and movement of the optical plume for water patterns associated with the mouth of Mobile bay in which relatively clear Gulf of Mexico water enters the bay on the eastern side. Data show that wind stress in excess of 15 knots has a marked impact in producing suspended sediment loads.

  18. Can molecular diffusion explain Space Shuttle plume spreading?

    Science.gov (United States)

    Meier, R. R.; Plane, John M. C.; Stevens, Michael H.; Paxton, L. J.; Christensen, A. B.; Crowley, G.

    2010-04-01

    The satellite-borne Global Ultraviolet Imager (GUVI) has produced more than 20 images of NASA Space Shuttle main engine plumes in the lower thermosphere. These reveal atomic hydrogen and, by inference, water vapor transport over hemispherical-scale distances with speeds much faster than expected from models of thermospheric wind motions. Furthermore, the hydrogen plumes expand rapidly. We find rates that exceed the horizontal diffusion speed at nominal plume altitudes of 104-112 km. Kelley et al. (2009) have proposed a 2-D turbulence mechanism to explain the observed spreading rates (and rapid advection) of the plumes. But upon further investigation, we conclude that H atom diffusion can indeed account for the observed expansion rates by recognizing that vertical diffusion quickly conveys atoms to higher altitudes where horizontal diffusion is much more rapid. We also find evidence for H atom production directly during the Shuttle's main engine burn.

  19. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    Science.gov (United States)

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to

  20. Gas-phase mechanisms in the growth of ZrCyN1-y thin films by pulsed reactive crossed-beam laser ablation

    International Nuclear Information System (INIS)

    Spillmann, H.; Clerc, C.; Doebeli, M.; Willmott, P.R.

    2002-01-01

    Superhard zirconium carbonitride films have been grown via pulsed reactive crossed-beam laser ablation (PRCLA) using zirconium metal and a nitrogen- and carbon-containing gas pulse mixture. The control of stoichiometry was much simplified by using the thermally stable gas-phase species N 2 and CH 4 . The gas-phase processes are investigated using quadrupole mass spectroscopy and optical emission spectroscopy. The excitation of the ablation plume depends intimately on the collision partner of the gas pulse, in particular on its density of states and the probability of energy transfer to internal degrees of freedom

  1. Stability of contamination-free gold and silver nanoparticles produced by nanosecond laser ablation of solid targets in water

    International Nuclear Information System (INIS)

    Nikov, R.G.; Nikolov, A.S.; Nedyalkov, N.N.; Dimitrov, I.G.; Atanasov, P.A.; Alexandrov, M.T.

    2012-01-01

    Highlights: ► Au and Ag colloids were prepared by nanosecond laser ablation of solids in water. ► The alteration of the produced colloids during one month was investigated. ► Optical transmission spectra of the samples were measured from 350 to 800 nm. ► TEM measurements were made of as-prepared colloids and on the 30-th day. ► Zeta potential measurements were performed of as-prepared samples. - Abstract: Preparation of noble metal nanoparticle (NPs) colloids using pulsed laser ablation in water has an inherent advantage compared to the different chemical methods used, especially when biological applications of the colloids are considered. The fabrication method is simple and the NPs prepared in this way are contamination free. The method of laser ablation of a solid target in water is applied in the present work in order to obtain gold and silver NP colloids. The experiment was preformed by using the fundamental wavelength (1064 nm) of a Nd:YAG laser system. The target immersed in double distilled water was irradiated for 20 min by laser pulses with duration of 15 ns and repetition rate of 10 Hz. The sedimentation and aggregation of NPs in the colloids, stored at constant temperature, as a function of the time after preparation were investigated. The analyses are based on optical transmission spectroscopy in UV and vis regions. The change of the plasmon resonance wavelength as a function of time was studied. Zeta potential measurement was also utilized to measure the charge of the NPs in the colloids. The size distribution of the NPs and its change in time was determined by transmission electron microscopy (TEM). On the basis of the results obtained, the optimal conditions of post fabrication manipulation with gold and silver colloids are defined in view of producing stable NPs with a narrow size distribution.

  2. Dilution in Transition Zone between Rising Plumes and Surface Plumes

    DEFF Research Database (Denmark)

    Larsen, Torben

    2004-01-01

    The papers presents some physical experiments with the dilution of sea outfall plumes with emphasize on the transition zone where the relative fast flowing vertical plume turns to a horizontal surface plume following the slow sea surface currents. The experiments show that a considerable dilution...

  3. Simulating Bubble Plumes from Breaking Waves with a Forced-Air Venturi

    Science.gov (United States)

    Long, M. S.; Keene, W. C.; Maben, J. R.; Chang, R. Y. W.; Duplessis, P.; Kieber, D. J.; Beaupre, S. R.; Frossard, A. A.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.

    2017-12-01

    It has been hypothesized that the size distribution of bubbles in subsurface seawater is a major factor that modulates the corresponding size distribution of primary marine aerosol (PMA) generated when those bubbles burst at the air-water interface. A primary physical control of the bubble size distribution produced by wave breaking is the associated turbulence that disintegrates larger bubbles into smaller ones. This leads to two characteristic features of bubble size distributions: (1) the Hinze scale which reflects a bubble size above which disintegration is possible based on turbulence intensity and (2) the slopes of log-linear regressions of the size distribution on either side of the Hinze scale that indicate the state of plume evolution or age. A Venturi with tunable seawater and forced air flow rates was designed and deployed in an artificial PMA generator to produce bubble plumes representative of breaking waves. This approach provides direct control of turbulence intensity and, thus, the resulting bubble size distribution characterizable by observations of the Hinze scale and the simulated plume age over a range of known air detrainment rates. Evaluation of performance in different seawater types over the western North Atlantic demonstrated that the Venturi produced bubble plumes with parameter values that bracket the range of those observed in laboratory and field experiments. Specifically, the seawater flow rate modulated the value of the Hinze scale while the forced-air flow rate modulated the plume age parameters. Results indicate that the size distribution of sub-surface bubbles within the generator did not significantly modulate the corresponding number size distribution of PMA produced via bubble bursting.

  4. The modeling and synthesis of nanodiamonds by laser ablation of graphite and diamond-like carbon in liquid-confined ambient

    Science.gov (United States)

    Basso, L.; Gorrini, F.; Bazzanella, N.; Cazzanelli, M.; Dorigoni, C.; Bifone, A.; Miotello, A.

    2018-01-01

    Nanodiamonds have attracted considerable interest for their potential applications in quantum computation, sensing, and bioimaging. However, synthesis of nanodiamonds typically requires high pressures and temperatures, and is still a challenge. Here, we demonstrate production of nanodiamonds by pulsed laser ablation of graphite and diamond-like carbon in water. Importantly, this technique enables production of nanocrystalline diamonds at room temperature and standard pressure conditions. Moreover, we propose a method for the purification of nanodiamonds from graphitic and amorphous carbon phases that do not require strong acids and harsh chemical conditions. Finally, we present a thermodynamic model that describes the formation of nanodiamonds during pulsed laser ablation. We show that synthesis of the crystalline phase is driven by a graphite-liquid-diamond transition process that occurs at the extreme thermodynamic conditions reached inside the ablation plume.

  5. Atmospheric ice nuclei: No detectable effects from a coal-fired powerplant plume

    International Nuclear Information System (INIS)

    Schnell, R.C.; Van Valin, C.C.; Pueschel, R.F.

    1976-01-01

    Atmospheric ice nuclei were measured upwind and within the effluent plume of a coalfired powerplant during February 1976. Aerosol particles were captured on two types of membrane filters (Nuclepore and Millipore) and processed in two different thermal diffusion chambers, one calibrated to produce a 100% saturation relative to water and the other to produce a slight supersaturation relative to water. Consequently, the ice nuclei measured were active in the modes that are dominant in diffusion chambers, viz., deposition nucleation and condensation-followed-by-freezing nucleation. Results indicate that plume particles do not act as ice nuclei between the temperatures of -10 and -20degreeC, nor do combustion gases in the plume deactivate natural ice nuclei

  6. Is surgical plume developing during routine LEEPs contaminated with high-risk HPV? A pilot series of experiments.

    Science.gov (United States)

    Neumann, Kay; Cavalar, Markus; Rody, Achim; Friemert, Luisa; Beyer, Daniel A

    2018-02-01

    Growing evidence shows a causal role of high-risk humane papillomavirus (HPV) infections in the development of head and neck cancer. A recent case report shows two patients suffering from tonsillar cancer without any risk factors apart from their work as gynecologists doing laser ablations and loop electrosurgical excision procedures (LEEP). The aim of the present investigation is to evaluate whether surgical plume resulting from routine LEEPs of HSIL of the cervix uteri might be contaminated with the DNA of high-risk HPV. The prospective pilot study is done at the Department of Gynecology and Obstetrics of the University of Lübeck, Germany. The primary outcome was defined as HPV subtype in resected cone and in surgical plume resulting from LEEPs of HSIL of the cervix uteri. Plume resulting from LEEPs was analyzed using a Whatman FTA Elute Indicating Card which was placed in the tube of an exhaust suction device used to remove the resulting aerosols. For detection of HPV and analysis of its subtype, the novel EUROArray HPV test was performed. Resected cones of LEEPs were evaluated separately for HPV subtypes. Four samples of surgical plume resulting from routine LEEPs indicated contamination with high-risk HPV and showed the same HPV subtype as identified in the resected cones. Surgical plume resulting from routine LEEPs for HSIL of the cervix uteri has the risk of contamination with high-risk HPV. Further investigations of infectiousness of surgical plume are necessary for evaluation of potential hazards to involved healthcare professionals.

  7. Is the 'Fast Halo' around Hawaii as imaged in the PLUME experiment direct evidence for buoyant plume-fed asthenosphere?

    Science.gov (United States)

    Morgan, J. P.; Shi, C.; Hasenclever, J.

    2010-12-01

    through faster mantle and reduces the distance though the slower asthenosphere. With this interpretation, the inference of a radially symmetric ~40-70 km high-~250 km-radius ‘bump’ of uplift of the base of buoyant plume-fed asthenosphere (PFA) can be directly estimated from PLUME results and the measured ~6-10% reduction in shear velocity between the PFA and underlying mantle. The inferred dynamic relief at the base of the PFA due to buoyancy within the underlying plume conduit is strikingly similar to the relief we find in recent axisymmetric 2D and Cartesian 3-D numerical experiments that explore the dynamics of mantle convection with a PFA. The width and height of the bump scale directly with the total buoyancy anomaly in the upper ~500km of the plume conduit, we discuss numerical experiments that quantify this relationship, show that it is, to first order, independent of the viscosity of material in the plume conduit or asthenosphere, and which also quantify the ~400km-radius geoid anomaly produced by these subasthenospheric mantle density anomalies. This effect can only happen if the asthenosphere is more buoyant than underlying mantle — and is therefore direct evidence that a buoyant plume-fed asthenosphere exists around Hawaii.

  8. Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Dawood

    2015-10-01

    Full Text Available In this article, we present a comprehensive study of the plume dynamics of plasmas generated by laser ablation of an aluminum target. The effect of both ambient gas composition (helium, nitrogen or argon and pressure (from ∼5 × 10−7 Torr up to atmosphere is studied. The time- and space- resolved observation of the plasma plume are performed from spectrally integrated images using an intensified Charge Coupled Device (iCCD camera. The iCCD images show that the ambient gas does not significantly influence the plume as long as the gas pressure is lower than 20 Torr and the time delay below 300 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important, the shortest plasma plume length being observed when the gas mass species is highest. On the other hand, space- and time- resolved emission spectroscopy of aluminum ions at λ = 281.6 nm are used to determine the Time-Of-Flight (TOF profiles. The effect of the ambient gas on the TOF profiles and therefore on the propagation velocity of Al ions is discussed. A correlation between the plasma plume expansion velocity deduced from the iCCD images and that estimated from the TOF profiles is presented. The observed differences are attributed mainly to the different physical mechanisms governing the two diagnostic techniques.

  9. Laser wavelength dependent properties of YBa2Cu3O7-δ thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Koren, G.; Gupta, A.; Baseman, R.J.; Lutwyche, M.I.; Laibowitz, R.B.

    1989-01-01

    YBa 2 Cu 3 O 7-δ thin films were deposited onto (100) SrTiO 3 substrates using 1064, 532, 355, 248, and 193 nm laser ablation. Transport measurements show lower normal-state resistivities and higher critical currents in films deposited by the shorter wavelength lasers. The surface morphology of the films was rough with large particulates when the 1064 nm laser was used whereas much smoother surfaces with fewer and smaller particulates were obtained with the UV lasers. It is suggested that the better film quality obtained when the UV lasers are used is due to a small absorption depth of the UV photons in the ceramic target and to higher absorption by the ablated fragments. This leads to smaller ablated species and further fragmentation in the hotter plume and, therefore, to smoother and denser films

  10. Analysis of laser ablation: Contribution of ionization energy to the plasma and shock wave properties

    International Nuclear Information System (INIS)

    Wen, S.-B.; Mao Xianglei; Greif, Ralph; Russo, Richard E.

    2007-01-01

    By fitting simulation results with experimentally measured trajectories of the shock wave and the vapor/background gas contact surface, we found that inclusion of ionization energy in the analysis leads to a change in the evolution of the pressure, mass density, electron number density, and temperature of the vapor plume. The contribution of ionization energy to both the plasma and shock wave has been neglected in most studies of laser ablation. Compared to previous simulations, the densities, pressures, and temperatures are lower shortly after the laser pulse ( 50 ns). The predicted laser energy conversion ratio also showed about a 20% increase (from 35% to 45%) when the ionization energy is considered. The changes in the evolution of the physical quantities result from the retention of the ionization energy in the vapor plume, which is then gradually transformed to kinetic and thermal energies. When ionization energy is included in the simulation, the vapor plume attains higher expansion speeds and temperatures for a longer time after the laser pulse. The better determination of the temperature history of the vapor plume not only improves the understanding of the expansion process of the laser induced vapor plume but also is important for chemical analysis. The accurate temperature history provides supplementary information which enhances the accuracy of chemical analysis based on spectral emission measurements (e.g., laser induced breakdown spectroscopy)

  11. Femtosecond pulsed laser ablation of GaAs

    International Nuclear Information System (INIS)

    Trelenberg, T.W.; Dinh, L.N.; Saw, C.K.; Stuart, B.C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed

  12. Dependence of high order harmonics intensity on laser focal spot position in preformed plasma plumes

    International Nuclear Information System (INIS)

    Singhal, H.; Ganeev, R.; Naik, P. A.; Arora, V.; Chakravarty, U.; Gupta, P. D.

    2008-01-01

    The dependence of the high-order harmonic intensity on the laser focal spot position in laser produced plasma plumes is experimentally studied. High order harmonics up to the 59th order (λ∼13.5 nm) were generated by focusing 48 fs laser pulses from a Ti:sapphire laser system in silver plasma plume produced using 300 ps uncompressed laser radiation as the prepulse. The intensity of harmonics nearly vanished when the best focus was located in the plume center, whereas it peaked on either side with unequal intensity. The focal spot position corresponding to the peak harmonic intensity moved away from the plume center for higher order harmonics. The results are explained in terms of the variation of phase mismatch between the driving laser beam and harmonics radiation produced, relativistic drift of electrons, and defocusing effect due to radial ionization gradient in the plasma for different focal spot positions

  13. Plume expansion of a laser-induced plasma studied with the particle-in-cell method

    DEFF Research Database (Denmark)

    Ellegaard, O.; Nedelea, T.; Schou, Jørgen

    2002-01-01

    energy as well as electron energy. We have estimated the time constant for energy transfer between the electrons and the ions. The scaling of these processes is given by a single parameter determined by the Debye length obtained from the electron density in the plasma outside the surface. (C) 2002......The initial stage of laser-induced plasma plume expansion from a solid in vacuum and the effect of the Coulomb field have been studied. We have performed a one-dimensional numerical calculation by mapping the charge on a computational grid according to the particle-in-cell (PIC) method of Birdsall...... et al. It is assumed that the particle ablation from a surface with a fixed temperature takes place as a pulse, i.e. within a finite period of time. A number of characteristic quantities for the plasma plume are compared with similar data for expansion of neutrals as well as fluid models: Density...

  14. Pellet ablation and ablation model development

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1989-01-01

    A broad survey of pellet ablation is given, based primarily on information presented at this meeting. The implications of various experimental observations for ablation theory are derived from qualitative arguments of the physics involved. The major elements of a more complete ablation theory are then outlined in terms of these observations. This is followed by a few suggestions on improving the connections between theory and experimental results through examination of ablation data. Although this is a rather aggressive undertaking for such a brief (and undoubtedly incomplete) assessment, some of the discussion may help us advance the understanding of pellet ablation. 17 refs

  15. Laser ablation of toluene liquid for surface micro-structuring of silica glass

    International Nuclear Information System (INIS)

    Niino, H.; Kawaguchi, Y.; Sato, T.; Narazaki, A.; Gumpenberger, T.; Kurosaki, R.

    2006-01-01

    Microstructures with well-defined micropatterns were fabricated on the surfaces of silica glass using a laser-induced backside wet etching (LIBWE) method by diode-pumped solid state (DPSS) UV laser at the repetition rate of 10 kHz. For a demonstration of flexible rapid prototyping as mask-less exposure system, the focused laser beam was directed to the sample by galvanometer-based point scanning system. Additionally, a diagnostics study of plume propagation in the ablated products of toluene solid film was carried out with an intensified CCD (ICCD) camera

  16. Integrating wildfire plume rises within atmospheric transport models

    Science.gov (United States)

    Mallia, D. V.; Kochanski, A.; Wu, D.; Urbanski, S. P.; Krueger, S. K.; Lin, J. C.

    2016-12-01

    Wildfires can generate significant pyro-convection that is responsible for releasing pollutants, greenhouse gases, and trace species into the free troposphere, which are then transported a significant distance downwind from the fire. Oftentimes, atmospheric transport and chemistry models have a difficult time resolving the transport of smoke from these wildfires, primarily due to deficiencies in estimating the plume injection height, which has been highlighted in previous work as the most important aspect of simulating wildfire plume transport. As a result of the uncertainties associated with modeled wildfire plume rise, researchers face difficulties modeling the impacts of wildfire smoke on air quality and constraining fire emissions using inverse modeling techniques. Currently, several plume rise parameterizations exist that are able to determine the injection height of fire emissions; however, the success of these parameterizations has been mixed. With the advent of WRF-SFIRE, the wildfire plume rise and injection height can now be explicitly calculated using a fire spread model (SFIRE) that is dynamically linked with the atmosphere simulated by WRF. However, this model has only been tested on a limited basis due to computational costs. Here, we will test the performance of WRF-SFIRE in addition to several commonly adopted plume parameterizations (Freitas, Sofiev, and Briggs) for the 2013 Patch Springs (Utah) and 2012 Baker Canyon (Washington) fires, for both of which observations of plume rise heights are available. These plume rise techniques will then be incorporated within a Lagrangian atmospheric transport model (STILT) in order to simulate CO and CO2 concentrations during NASA's CARVE Earth Science Airborne Program over Alaska during the summer of 2012. Initial model results showed that STILT model simulations were unable to reproduce enhanced CO concentrations produced by Alaskan fires observed during 2012. Near-surface concentrations were drastically

  17. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  18. Simulating Irregular Source Geometries for Ionian Plumes

    Science.gov (United States)

    McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2011-05-01

    Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.

  19. Simulating Irregular Source Geometries for Ionian Plumes

    International Nuclear Information System (INIS)

    McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2011-01-01

    Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.

  20. Entrainment by turbulent plumes

    Science.gov (United States)

    Parker, David; Burridge, Henry; Partridge, Jamie; Linden, Paul

    2017-11-01

    Plumes are of relevance to nature and real consequence to industry. While the Morton, Taylor & Turner (1956) plume model is able to estimate the mean physical flux parameters, the process of entrainment is only parametrised in a time-averaged sense and a deeper understanding is key to understanding how they evolve. Various flow configurations, resulting in different entrainment values, are considered; we perform simultaneous PIV and plume-edge detection on saline plumes in water resulting from a point source, a line source and a line source where a vertical wall is placed immediately adjacent. Of particular interest is the effect the large scale eddies, forming at the edge of the plume and engulfing ambient fluid, have on the entrainment process. By using velocity statistics in a coordinate system based on the instantaneous scalar edge of the plume the significance of this large scale engulfment is quantified. It is found that significant mass is transported outside the plumes, in particular in regions where large scale structures are absent creating regions of relatively high-momentum ambient fluid. This suggests that the large scale processes, whereby ambient fluid is engulfed into the plume, contribute significantly to the entrainment.

  1. Initiation of an early-stage plasma during picosecond laser ablation of solids

    International Nuclear Information System (INIS)

    Mao, Samuel S.; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

    2000-01-01

    Picosecond time-resolved images of plasma initiation were recorded during pulsed-laser ablation of metal targets in an air atmosphere. An early-stage plasma was observed to form before the release of a material vapor plume. Close to the target surface, interferometry measurements indicate that the early-stage plasma has an electron number density on the order of 10 20 cm -3 . The longitudinal expansion of the ionization front for this plasma has a velocity 10 9 cm/s, during the laser pulse. In contrast, a material--vapor plume forms approximately 200 ps after the laser pulse, and it moves away from the target at 10 6 cm/s. The experimental observations of the early-stage plasma were simulated by using a theoretical model based on a two-fluids description of laser plasmas. The results indicate that the initiation of the plasma is due to air breakdown assisted by electron emission from the target

  2. Opacity and atomic analysis of double pulse laser ablated Li plasma

    Science.gov (United States)

    Sivakumaran, V.; Joshi, H. C.; Kumar, Ajai

    2014-09-01

    Opacity effects for neutral and ionic emission lines of lithium have been investigated by Atomic Data Analysis Structure (ADAS). Line ratios and opacity corrected photon emissivity coefficients are calculated over a wide range of electron temperatures and densities. The experimentally measured temporal evolution of the line profiles of the over dense Li plasma formed in the double pulse laser ablation experiment have been explained using the ADAS analysis and the plasma parameters of the plasma plume under consideration have been estimated. These results could be projected as a diagnostic tool to estimate plasma parameters of an over dense lithium plasma.

  3. Simulations of the Effects of Jupiter's Plasma Torus on Io's Pele Plume

    Science.gov (United States)

    McDoniel, William; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2014-11-01

    Io’s plumes rise hundreds of kilometers above its surface and sublimation atmosphere, presenting large targets for incoming ions from Jupiter’s plasma torus. The direct simulation Monte Carlo method is used to model the gas plume at Pele and its interaction with the Jovian plasma torus. Chemical reactions resulting from ion impacts in a plume change its composition and energy from the impacts changes the plume’s structure (asymmetrically). The presence of non-condensible daughter species in a warmer plume canopy produces a more diffuse deposition ring on Io’s surface, compared to simulations without plasma. Energized molecules also escape from the plume, forming a diffuse cloud of fast particles above the plume’s canopy, which may function to resupply the plasma torus and which suggests a mechanism for lofting other species to very high altitudes.

  4. Simulation of plume rise: Study the effect of stably stratified turbulence layer on the rise of a buoyant plume from a continuous source by observing the plume centroid

    Science.gov (United States)

    Bhimireddy, Sudheer Reddy; Bhaganagar, Kiran

    2016-11-01

    Buoyant plumes are common in atmosphere when there exists a difference in temperature or density between the source and its ambience. In a stratified environment, plume rise happens until the buoyancy variation exists between the plume and ambience. In a calm no wind ambience, this plume rise is purely vertical and the entrainment happens because of the relative motion of the plume with ambience and also ambient turbulence. In this study, a plume centroid is defined as the plume mass center and is calculated from the kinematic equation which relates the rate of change of centroids position to the plume rise velocity. Parameters needed to describe the plume are considered as the plume radius, plumes vertical velocity and local buoyancy of the plume. The plume rise velocity is calculated by the mass, momentum and heat conservation equations in their differential form. Our study focuses on the entrainment velocity, as it depicts the extent of plume growth. This entrainment velocity is made up as sum of fractions of plume's relative velocity and ambient turbulence. From the results, we studied the effect of turbulence on the plume growth by observing the variation in the plume radius at different heights and the centroid height reached before loosing its buoyancy.

  5. Fire analog: a comparison between fire plumes and energy center cooling tower plumes

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-10-01

    Thermal plumes or convection columns associated with large fires are compared to thermal plumes from cooling towers and proposed energy centers to evaluate the fire analog concept. Energy release rates of mass fires are generally larger than for single or small groups of cooling towers but are comparable to proposed large energy centers. However, significant physical differences exist between cooling tower plumes and fire plumes. Cooling tower plumes are generally dominated by ambient wind, stability and turbulence conditions. Fire plumes, depending on burning rates and other factors, can transform into convective columns which may cause the fire behavior to become more violent. This transformation can cause strong inflow winds and updrafts, turbulence and concentrated vortices. Intense convective columns may interact with ambient winds to create significant downwind effects such as wakes and Karman vortex streets. These characteristics have not been observed with cooling tower plumes to date. The differences in physical characteristics between cooling tower and fire plumes makes the fire analog concept very questionable even though the approximate energy requirements appear to be satisfied in case of large energy centers. Additional research is suggested in studying the upper-level plume characteristics of small experimental fires so this information can be correlated with similar data from cooling towers. Numerical simulation of fires and proposed multiple cooling tower systems could also provide comparative data.

  6. Spatial and temporal migration of a landfill leachate plume in alluvium

    Science.gov (United States)

    Masoner, Jason R.; Cozzarelli, Isabelle M.

    2015-01-01

    Leachate from unlined or leaky landfills can create groundwater contaminant plumes that last decades to centuries. Understanding the dynamics of leachate movement in space and time is essential for monitoring, planning and management, and assessment of risk to groundwater and surface-water resources. Over a 23.4-year period (1986–2010), the spatial extent of the Norman Landfill leachate plume increased at a rate of 7800 m2/year and expanded by 878 %, from an area of 20,800 m2 in 1986 to 203,400 m2 in 2010. A linear plume velocity of 40.2 m/year was calculated that compared favorably to a groundwater-seepage velocity of 55.2 m/year. Plume-scale hydraulic conductivity values representative of actual hydrogeological conditions in the alluvium ranged from 7.0 × 10−5 to 7.5 × 10−4 m/s, with a median of 2.0 × 10−4 m/s. Analyses of field-measured and calculated plume-scale hydraulic conductivity distributions indicate that the upper percentiles of field-measured values should be considered to assess rates of plume-scale migration, spreading, and biodegradation. A pattern of increasing Cl− concentrations during dry periods and decreasing Cl− concentrations during wet periods was observed in groundwater beneath the landfill. The opposite occurred in groundwater downgradient from the landfill; that is, Cl− concentrations in groundwater downgradient from the landfill decreased during dry periods and increased during wet periods. This pattern of changing Cl−concentrations in response to wet and dry periods indicates that the landfill retains or absorbs leachate during dry periods and produces lower concentrated leachate downgradient. During wet periods, the landfill receives more recharge which dilutes leachate in the landfill but increases leachate migration from the landfill and produces a more concentrated contaminant plume. This approach of quantifying plume expansion, migration, and concentration during variable hydrologic

  7. Biological effects of simulated discharge plume entrainment at Indian Point Nuclear Power Station, Hudson River estuary, USA

    International Nuclear Information System (INIS)

    Lanza, G.R.; Lauer, G.J.; Ginn, T.C.; Storm, P.C.; Zubarik, L.; New York Univ., N.Y.

    1975-01-01

    Laboratory and field simulations of the discharge plume entrainment of phytoplankton, zooplankton and fish were carried out at the Indian Point Nuclear Station, Hudson River estuary, USA. Phytoplankton assemblages studied on two dates produced different response patterns measured as photosynthetic activity. Chlorophyll-a levels did not change following simulated entrainment. Possible explanations for the differences are discussed. The two abundant copepods Acartia tonsa and Eurytemorta affinis appear to tolerate exposure to discharge plume ΔT without adverse effects. Copepods subjected to plume entrainment may suffer considerable mortality during periods of condenser chlorination. In general, the amphipod Gammarus spp. did not appear to suffer significant mortality during simulated entrainment. Juvenile striped bass, Morone saxatilis, were not affected by simulated plume transit before and during plant condenser chlorination; however, a simulated ''worst possible case'' plume ΔT produced statistically significant moralities. (author)

  8. Measurement of fuel corrosion products using planar laser-induced fluorescence

    International Nuclear Information System (INIS)

    Wantuck, P.J.; Sappey, A.D.; Butt, D.P.

    1993-01-01

    Characterizing the corrosion behavior of nuclear fuel material in a high-temperature hydrogen environment is critical for ascertaining the operational performance of proposed nuclear thermal propulsion (NTP) concepts. In this paper, we describe an experimental study undertaken to develop and test non-intrusive, laser-based diagnostics for ultimately measuring the distribution of key gas-phase corrosion products expected to evolve during the exposure of NTP fuel to hydrogen. A laser ablation technique is used to produce high temperature, vapor plumes from uranium-free zirconium carbide (ZrC) and niobium carbide (NbC) forms for probing by various optical diagnostics including planar laser-induced fluorescence (PLIF). We discuss the laser ablation technique, results of plume emission measurements, and we describe both the actual and proposed planar LIF schemes for imaging constituents of the ablated ZrC and NbC plumes. Envisioned testing of the laser technique in rf-heated, high temperature gas streams is also discussed

  9. A study of space shuttle plumes in the lower thermosphere

    Science.gov (United States)

    Meier, R. R.; Stevens, Michael H.; Plane, John M. C.; Emmert, J. T.; Crowley, G.; Azeem, I.; Paxton, L. J.; Christensen, A. B.

    2011-12-01

    During the space shuttle main engine burn, some 350 t of water vapor are deposited at between 100 and 115 km. Subsequent photodissociation of water produces large plumes of atomic hydrogen that can expand rapidly and extend for thousands of kilometers. From 2002 to 2007, the Global Ultraviolet Imager (GUVI) on NASA's Thermosphere Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) satellite imaged many of these hydrogen plumes at Lyman α (121.567 nm) while viewing in the nadir. The images reveal rapid plume expansion and occasional very fast transport to both north and south polar regions. Some plumes persist for up to 6 d. Near-simultaneous direct detections of water vapor were made with the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) instrument, also on TIMED. We compare the spreading of the hydrogen plume with a two-dimensional model that includes photodissociation as well as both vertical and horizontal diffusion. Molecular diffusion appears to be sufficient to account for the horizontal expansion, although wind shears and turbulent mixing may also contribute. We compare the bulk motion of the observed plumes with wind climatologies derived from satellite observations. The plumes can move much faster than predictions of wind climatologies. But dynamical processes not contained in wind climatologies, such as the quasi-two-day wave, can account for at least some of the high speed observations. The plume phenomena raise a number of important questions about lower thermospheric and mesospheric processes, ranging from dynamics and chemistry to polar mesospheric cloud formation and climatology.

  10. Influence of the laser light absorption by the colloid on the properties of silver nanoparticles produced by laser ablation in stirred and stationary liquid

    International Nuclear Information System (INIS)

    Resano-Garcia, A.; Battie, Y.; Koch, A.; En Naciri, A.; Chaoui, N.

    2015-01-01

    Silver nanoparticles were produced by nanosecond pulsed-laser ablation at 1064 nm of Ag in pure water. These experiments were performed using an alternative ablation cell design where a cylindrical shaped Ag target was horizontally irradiated, while the liquid was stirred by a stir rod coaxially arranged to the target. The repeatability of the generated colloids properties (extinction and size distribution) is assessed by statistical tools. The colloids properties prepared under stationary liquid are found to be unpredictable, while they are highly repeatable at high stirring speed. At the same time, electronic microscopy examinations of the irradiated Ag targets revealed that the width of the laser-machined grooves exponentially decays in stationary liquid and almost linearly under high stirring speed as the ablation proceeds. In the latter case, the decay rate was found to be constant from one experiment to the other, while it was not repeatable stationary liquid. We show that the decay of the groove width is due to an attenuation of the laser energy reaching the target surface due to the formation of a more or less dense NPs layer in front of the target as the ablation proceeds. Using the ablation time-dependence of the groove width, we can quantify the attenuation factor of the laser energy with exposure time. Finally, the relationship between the laser energy attenuation, stirring speed, and repeatability of the colloids properties is interpreted and discussed in terms of mass transfer

  11. Hubble Captures Volcanic Eruption Plume From Io

    Science.gov (United States)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through the plume and is

  12. FOOTPRINT: A New Tool to Predict the Potential Impact of Biofuels on BTEX Plumes

    Science.gov (United States)

    Ahsanuzzaman et al. (2008) used the Deeb et al. (2002) conceptual model to construct a simple screening model to estimate the area of a plume of benzene produced from a release of gasoline containing ethanol. The screening model estimates the plume area, or footprint of the plum...

  13. Microwave ablation devices for interventional oncology.

    Science.gov (United States)

    Ward, Robert C; Healey, Terrance T; Dupuy, Damian E

    2013-03-01

    Microwave ablation is one of the several options in the ablation armamentarium for the treatment of malignancy, offering several potential benefits when compared with other ablation, radiation, surgical and medical treatment modalities. The basic microwave system consists of the generator, power distribution system and antennas. Often under image (computed tomography or ultrasound) guidance, a needle-like antenna is inserted percutaneously into the tumor, where local microwave electromagnetic radiation is emitted from the probe's active tip, producing frictional tissue heating, capable of causing cell death by coagulation necrosis. Half of the microwave ablation systems use a 915 MHz generator and the other half use a 2450 MHz generator. To date, there are no completed clinical trials comparing microwave devices head-to-head. Prospective comparisons of microwave technology with other treatment alternatives, as well as head-to-head comparison with each microwave device, is needed if this promising field will garner more widespread support and use in the oncology community.

  14. Direct His bundle pacing post AVN ablation.

    Science.gov (United States)

    Lakshmanadoss, Umashankar; Aggarwal, Ashim; Huang, David T; Daubert, James P; Shah, Abrar

    2009-08-01

    Atrioventricular nodal (AVN) ablation with concomitant pacemaker implantation is one of the strategies that reduce symptoms in patients with atrial fibrillation (AF). However, the long-term adverse effects of right ventricular (RV) apical pacing have led to the search for alternating sites of pacing. Biventricular pacing produces a significant improvement in functional capacity over RV pacing in patients undergoing AVN ablation. Another alternative site for pacing is direct His bundle to reduce the adverse outcome of RV pacing. Here, we present a case of direct His bundle pacing using steerable lead delivery system in a patient with symptomatic paroxysmal AF with concurrent AVN ablation.

  15. Long-term bioremediation of a subsurface plume in silty soil

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.

    2000-01-01

    In northern Virginia, a loss from a tank farm has produced two plumes, containing about 200,000 gal of diesel fuel, jet-A fuel, and gasoline. Evidence suggests that the longest part of the contamination plume moved to its present length of 2,500 ft in less than 5 years. Since natural biodegradation would require about 2,500 years to reduce the hydrocarbon contamination to the remediation endpoints, other methods have been considered. Excavation of the plumes would take an estimated 5 years. However, the tank farm is surrounded by commercial buildings and expensive homes, and many of these buildings would have to be removed to reach the plumes. Enhanced natural bioremediation would require about 200 years at a start-up cost of about $1 million dollars and recurring costs of approximately $500,000/year. Infiltration galleries and enhanced subsurface permeability could reduce the remediation time to as little as 20 years

  16. Electron beam produced in a transient hollow cathode discharge: beam electron distribution function, X-ray emission and solid target ablation

    International Nuclear Information System (INIS)

    Nistor, Magdalena

    2000-01-01

    This research thesis aims at a better knowledge of phenomena occurring during transient hollow cathode discharges. The author first recalls the characteristics of such a discharge which make it different from conventional pseudo-spark discharges. The objective is to characterise the electron beam produced within the discharge, and the phenomena associated with its interaction with a solid or gaseous target, leading to the production of an X ray or visible radiation. Thus, the author reports the measurement (by magnetic deflection) of the whole time-averaged electronic distribution function. Such a knowledge is essential for a better use of the electron beam in applications such as X-ray source or material ablation. As high repetition frequency pulse X ray sources are very interesting tools, he reports the development and characterisation of Bremsstrahlung X rays during a beam-target interaction. He finally addresses the implementation of a spectroscopic diagnosis for the filamentary plasma and the ablation of a solid target by the beam [fr

  17. Characterizing Io’s Pele, Tvashtar and Pillan plumes: Lessons learned from Hubble

    Science.gov (United States)

    Jessup, Kandis Lea; Spencer, John R.

    2012-03-01

    Hubble Space Telescope/Wide Field and Planetary Camera 2 (HST/WFPC2) images of Io obtained between 1995 and 2007 between 0.24 and 0.42 μm led to the detection of the Pele plume in reflected sunlight in 1995 and 1999; imaging of the Pele plume via absorption of jovian light in 1996 and 1999; detection of the Prometheus-type Pillan plume in reflected sunlight in 1997; and detection of the 2007 Pele-type Tvashtar plume eruption in reflected sunlight and via absorption of jovian light. Based on a detailed analysis of these observations we characterize and compare the gas and dust properties of each of the detected plumes. In each case, the brightness of the plumes in reflected sunlight is less at 0.26 μm than at 0.33 μm. Mie scattering analysis of the wavelength dependence of each plume’s reflectance signature suggests that range of particle sizes within the plumes is quite narrow. Assuming a normal distribution of particle sizes, the range of mean particle sizes is ∼0.035-0.12 μm for the 1997 Pillan eruption, ∼0.05-0.08 μm for the 1999 Pele and 2007 Tvasthar plumes, and ∼0.05-0.11 μm for the 1995 Pele plume, and in each case the standard deviation in the particle size distribution is Pele eruption released ∼109 g of SO2 dust, the 1997 Pillan eruption released ∼1010 g of SO2 dust, and the 1995 Pele plume may have released ∼1010 g of SO2 dust. Analysis of the plume absorption signatures recorded in the F255W filter bandpass (0.24-0.28 μm) indicates that the opacity of the 2007 Tvashtar plume was 2× that of the 1996 and 1999 Pele plume eruptions. While the sulfur dust density estimated for the Tvashtar from the reflected sunlight data could have produced 61% of the observed plume opacity, Pele F255W plume opacity could have resulted from the SO2 dust detected in the eruption. Accounting for the remaining F255W opacity level of the Pele and Tvasthar plumes based on SO2 and S2 gas absorption, the SO2 and S2 gas density inferred for each plume is

  18. The effect of elastic modulus on ablation catheter contact area.

    Science.gov (United States)

    Camp, Jon J; Linte, Cristian A; Rettmann, Maryam E; Sun, Deyu; Packer, Douglas L; Robb, Richard A; Holmes, David R

    2015-02-21

    Cardiac ablation consists of navigating a catheter into the heart and delivering RF energy to electrically isolate tissue regions that generate or propagate arrhythmia. Besides the challenges of accurate and precise targeting of the arrhythmic sites within the beating heart, limited information is currently available to the cardiologist regarding intricate electrode-tissue contact, which directly impacts the quality of produced lesions. Recent advances in ablation catheter design provide intra-procedural estimates of tissue-catheter contact force, but the most direct indicator of lesion quality for any particular energy level and duration is the tissue-catheter contact area, and that is a function of not only force, but catheter pose and material elasticity as well. In this experiment, we have employed real-time ultrasound (US) imaging to determine the complete interaction between the ablation electrode and tissue to accurately estimate contact, which will help to better understand the effect of catheter pose and position relative to the tissue. By simultaneously recording tracked position, force reading and US image of the ablation catheter, the differing material properties of polyvinyl alcohol cryogel [1] phantoms are shown to produce varying amounts of tissue depression and contact area (implying varying lesion quality) for equivalent force readings. We have shown that the elastic modulus significantly affects the surface-contact area between the catheter and tissue at any level of contact force. Thus we provide evidence that a prescribed level of catheter force may not always provide sufficient contact area to produce an effective ablation lesion in the prescribed ablation time.

  19. Fast imaging of the laser-blow-off plume driven shock wave: Dependence on the mass and density of the ambient gas

    Energy Technology Data Exchange (ETDEWEB)

    George, Sony [ISP, Cochin University of Science and Tech., Cochin 682 022 (India); Singh, R.K., E-mail: rajesh@ipr.res.in [Institute for Plasma Research, Gandhinagar 382 428 (India); Nampoori, V.P.N. [ISP, Cochin University of Science and Tech., Cochin 682 022 (India); Kumar, Ajai [Institute for Plasma Research, Gandhinagar 382 428 (India)

    2013-01-17

    A systemic investigation of expansion dynamics of plasma plume, produced by laser-blow-off of LiF–C thin film has been done with emphasis on the formation of shock wave and their dependence on the pressure and nature of the ambient gas. The present results demonstrate that highly directional plume produces a strong shock wave in comparison to shock produced by the diverging plume. Shock-velocity, strength and its structure are strongly dependent on ambient environment; maximum shock velocity is observed in helium whereas shock strength is highest in argon environment. The role of chemically reactive processes was not observed in the present case as the plume structure is almost similar in argon and oxygen.

  20. Characterization of aerosols produced by laser-matter interaction during paint-stripping experiments by laser

    International Nuclear Information System (INIS)

    Dewalle, P.

    2009-01-01

    Laser ablation is one of the physical processes that are being considered for paint stripping in possibly contaminated areas, especially for decommissioning and dismantling of nuclear facilities. In this regard, the knowledge of 'ablation products', consisting of particles and gases, is an important issue.The numeric and weight concentration of particles, their size distribution, their morphology and their density have been determined for laser ablation of two wall paints. The main gas species have also been identified. The aerosol is composed of nano-particles, of which the number is predominant, and sub-micron particles. Their morphologies and their chemical composition are very distinct: carbon aggregates have been identified, as well as spherical particles of titanium dioxide. These results show that nano-scale aggregates come from the vaporization of the paint polymer, whereas sub-micron particles are due to mechanical ejection of titanium dioxide particles. The expansion of the plume resulting from laser-paint interaction has been monitored by means of three optical techniques: light extinction, scattering and emission. The frames show the propagation of a shock wave followed by the ejection of matter with a specific 'mushroom' shape. Measurements based on these results show that the peripheral part of the plume contains the primary particles of carbon aggregates; it is the warmest area, which reaches a few thousands Kelvin degrees. Its central part is composed of titanium dioxide spherical particles. (author) [fr

  1. Ablation of fast-spiking interneurons in the dorsal striatum, recapitulating abnormalities seen post-mortem in Tourette syndrome, produces anxiety and elevated grooming.

    Science.gov (United States)

    Xu, M; Li, L; Pittenger, C

    2016-06-02

    Tic disorders, including Tourette syndrome (TS), are thought to involve pathology of cortico-basal ganglia loops, but their pathology is not well understood. Post-mortem studies have shown a reduced number of several populations of striatal interneurons, including the parvalbumin-expressing fast-spiking interneurons (FSIs), in individuals with severe, refractory TS. We tested the causal role of this interneuronal deficit by recapitulating it in an otherwise normal adult mouse using a combination transgenic-viral cell ablation approach. FSIs were reduced bilaterally by ∼40%, paralleling the deficit found post-mortem. This did not produce spontaneous stereotypies or tic-like movements, but there was increased stereotypic grooming after acute stress in two validated paradigms. Stereotypy after amphetamine, in contrast, was not elevated. FSI ablation also led to increased anxiety-like behavior in the elevated plus maze, but not to alterations in motor learning on the rotorod or to alterations in prepulse inhibition, a measure of sensorimotor gating. These findings indicate that a striatal FSI deficit can produce stress-triggered repetitive movements and anxiety. These repetitive movements may recapitulate aspects of the pathophysiology of tic disorders. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Reassembling Solid Materials by Femtosecond Laser Ablation: Case of Aluminum Nitride

    Science.gov (United States)

    Kobayashi, Tohru; Matsuo, Yukari

    2013-06-01

    Through atomization and ionization, we could completely alter the composition of a nonconductive material, aluminum nitride, by femtosecond laser ablation. Preferential production of pure aluminum cluster cations Aln+ (n≤32) reflects not only their higher energetic stability compared with mixed clusters AlnNm+ but also completion of thermal relaxation in ablation plasma. Observation of metastable dissociation of Aln+ indicates that cluster cations have still enough internal energy for dissociation to occur, although the process is much slower than the cluster formation. Almost no cluster formation has been observed after nanosecond laser ablation of aluminum nitride, which highlights the distinct nature of ablation plasma produced by femtosecond laser ablation.

  3. Effects of endocardial microwave energy ablation

    Directory of Open Access Journals (Sweden)

    Vicente Climent

    2005-07-01

    Full Text Available Until recently the treatment of atrial fibrillation (AF consisted primarily of palliation, mostly in the form of pharmacological intervention. However because of recent advances in nonpharmacologic therapies, the current expectation of patients and referring physicians is that AF will be cured, rather than palliated. In recent years there has been a rapid expansion in the availability and variety of energy sources and devices for ablation. One of these energies, microwave, has been applied clinically only in the last few years, and may be a promising technique that is potentially capable of treating a wide range of ventricular and supraventricular arrhythmias. The purpose of this study was to review microwave energy ablation in surgical treatment of AF with special interest in histology and ultrastructure of lesions produced by this endocardial ablation procedure.

  4. A buoyant plume adjacent to a headland-Observations of the Elwha River plume

    Science.gov (United States)

    Warrick, J.A.; Stevens, A.W.

    2011-01-01

    Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100. cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the "small-scale" or "narrow" dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently "bent over" toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1. h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1. km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. ?? 2010.

  5. Non-coaxial-based microwave ablation antennas for creating symmetric and asymmetric coagulation zones

    Science.gov (United States)

    Mohtashami, Yahya; Luyen, Hung; Hagness, Susan C.; Behdad, Nader

    2018-06-01

    We present an investigation of a new class of microwave ablation (MWA) antennas capable of producing axially symmetric or asymmetric heating patterns. The antenna design is based on a dipole fed by a balanced parallel-wire transmission line. The angle and direction of the deployed dipole arms are used to control the heating pattern. We analyzed the specific absorption rate and temperature profiles using electromagnetic and thermal simulations. Two prototypes were fabricated and tested in ex vivo ablation experiments: one was designed to produce symmetric heating patterns and the other was designed to generate asymmetric heating patterns. Both fabricated prototypes exhibited good impedance matching and produced localized coagulation zones as predicted by the simulations. The prototype operating in porcine muscle created an ˜10 cm3 symmetric ablation zone after 10 min of ablation with a power level of 18 W. The prototype operating in egg white created an ˜4 cm3 asymmetric ablation zone with a directionality ratio of 40% after 5 min of ablation with a power level of 25 W. The proposed MWA antenna design shows promise for minimally invasive treatment of tumors in various clinical scenarios where, depending on the situation, a symmetric or an asymmetric heating pattern may be needed.

  6. Structural and optical properties of {beta}-FeSi{sub 2}/Si(100) prepared by laser ablation method

    Energy Technology Data Exchange (ETDEWEB)

    Kakemoto, H; Makita, Y; Obara, A; Tsai, Y; Sakuragi, S; Ando, S; Tsukamoto, T

    1997-07-01

    {beta}-FeSi{sub 2} is a promising material for the application of various electronic, optoelectronic and energy devices. The authors present here the semiconducting properties of {beta}-FeSi{sub 2} films on Si(100) substrate prepared by laser ablation method. Samples were grown using poly-crystalline bulk {beta}-FeSi{sub 2} prepared by horizontal gradient freeze method. For the monitoring of growth, in-situ observation of ablation plume was made through fluorescence spectroscopy. Reflection of high-energy electron beam diffraction (RHEED) was also made in-situ to see the surface morphology. Characterization of the films by X-ray diffraction presented purely {beta}(220) orientation. Raman scattering measurements at room temperature also indicated that the grown films are semiconducting {beta}-FeSi{sub 2}. Optical absorption spectra at room temperature showed absorption coefficient higher than 10{sup 5} cm{sup {minus}1} above the band-gap ({approximately}1.2 eV). It was revealed that high quality semiconducting {beta}-FeSi{sub 2} films can be fabricated by laser ablation method without post-annealing.

  7. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G. de

    2007-01-01

    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened

  8. Measurements at cooling tower plumes. Part 3. Three-dimensional measurements at cooling tower plumes

    International Nuclear Information System (INIS)

    Fortak, H.

    An extended field experiment is described in which cooling tower plumes were studied by means of three-dimensional in situ measurements. The goal was to obtain input data for numerical models of cooling tower plumes. Of special interest were data for testing or developing assumptions for sub-grid parametrizations. Utilizing modern systems for high-resolution aerology and small aircraft, four measuring campaigns were conducted: two campaigns (1974) at the cooling towers of the RWE power station Neurath and also two (1975) at the single cooling tower of the RWE power station Meppen. Because of the broad spectrum of weather situations it can be assumed that the results are representative with regard to the interrelationship between structure of cooling tower plume and large-scale meteorological situation. A large number of flights with a powered glider crossing the plumes on orthogonal tracks was performed. All flights showed that the plume could be identified up to large downwind distances by discontinuous jumps of temperature and vapor pressure. Therefore, a definite geometry of the plume could always be defined. In all cross sections a vertical circulation could be observed. At the boundary, which could be defined by the mentioned jumps of temperature and vapor pressure, a maximum of downward vertical motion could be observed in most cases. Entrainment along the boundary of a cross section seems to be very small, except at the lower part of the plume. There, the mass entrainment is maximum and is responsible for plume rise as well as for enlargement of the cross section. The visible part of the plume (cloud) was only a small fraction of the whole plume. High-resolution aerology is necessary in order to explain the structure and behavior of such plumes. This is especially the case in investigations regarding the dynamic break-through of temperature inversions. Such cases were observed frequently under various meteorological conditions and are described

  9. Radiofrequency thermal ablation of a metastatic lung nodule

    Energy Technology Data Exchange (ETDEWEB)

    Highland, Adrian M. [Department of Clinical Radiology, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ (United Kingdom); Mack, Paul [Diana Princess of Wales Hospital, Scartho Road, Grimsby, DN33 2BA (United Kingdom); Breen, David J. [Department of Radiology, Southampton University Hospitals, Tremona Road, Southampton, SO16 6YD (United Kingdom)

    2002-07-01

    Pulmonary metastases are a common finding in patients with colonic adenocarcinoma. We report the treatment of a metastatic lung nodule with radiofrequency (RF) ablation under CT guidance. This case illustrates the use of RF ablation in a patient in whom surgical resection was no longer possible and where chemotherapy was unlikely to produce benefit. This technique may offer a viable method of cytoreduction when other treatments have not succeeded. (orig.)

  10. Radiofrequency thermal ablation of a metastatic lung nodule

    International Nuclear Information System (INIS)

    Highland, Adrian M.; Mack, Paul; Breen, David J.

    2002-01-01

    Pulmonary metastases are a common finding in patients with colonic adenocarcinoma. We report the treatment of a metastatic lung nodule with radiofrequency (RF) ablation under CT guidance. This case illustrates the use of RF ablation in a patient in whom surgical resection was no longer possible and where chemotherapy was unlikely to produce benefit. This technique may offer a viable method of cytoreduction when other treatments have not succeeded. (orig.)

  11. Design of Ablation Test Device for Brick Coating of Gun

    Science.gov (United States)

    shirui, YAO; yongcai, CHEN; fei, WANG; jianxin, ZHAO

    2018-03-01

    As a result of the live ammunition test conditions, the barrel resistance of the barrel coating has high cost, time consuming, low efficiency and high test site requirements. This article designed a simple, convenient and efficient test device. Through the internal trajectory calculation by Matlab, the ablation environment produced by the ablation test device has achieved the expected effect, which is consistent with the working condition of the tube in the launching state, which can better reflect the ablation of the coating.

  12. The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture)

    Science.gov (United States)

    Morgan, Jason P.

    2016-04-01

    The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for

  13. Thermal plumes in ventilated rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    1990-01-01

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects. Free...... above a point heat source cannot be used. This is caused either by the way of generating the plume including a long intermediate region or by the environmental conditions where vertical temperature gradients are present. The flow has a larger angle of spread and the entrainment factor is greather than...... turbulent plumes from different heated bodies are investigated. The measurements have taken place in a full-scale test room where the vertical temperature gradient have been changed. The velocity and the temperature distribution in the plume are measured. Large scale plume axis wandering is taken...

  14. Lesion size in relation to ablation site during radiofrequency ablation

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, A

    1998-01-01

    This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation was perfor......This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation...... was performed during two different flow-velocities in a tissue bath, while electrode contact pressure and position were unchanged. Target temperature was 80 degrees C. Obtained tip temperature, power consumption and lesion dimensions were measured. In vivo lesion volume, depth and width were found significantly.......61 in vitro). We conclude that during temperature controlled radiofrequency ablation lesion size differs for septal and apical left ventricular applications. Differences in convective cooling might play an important role in this respect. This is supported by our in vitro experiments, where increased...

  15. Cardiac ablation

    Directory of Open Access Journals (Sweden)

    Kelly Ratheal

    2016-01-01

    Full Text Available Cardiac ablation is a procedure that uses either radiofrequency or cryothermal energy to destroy cells in the heart to terminate and/or prevent arrhythmias. The indications for cardiac catheter ablation include refractory, symptomatic arrhythmias, with more specific guidelines for atrial fibrillation in particular. The ablation procedure itself involves mapping the arrhythmia and destruction of the aberrant pathway in an effort to permanently prevent the arrhythmia. There are many types of arrhythmias, and they require individualized approaches to ablation based on their innately different electrical pathways. Ablation of arrhythmias, such as Wolff-Parkinson-White syndrome, AV nodal reentrant tachycardia, and atrial-fibrillation, is discussed in this review. Ablation has a high success rate overall and minimal complication rates, leading to improved quality of life in many patients.

  16. Physico-chemical properties of Pd nanoparticles produced by Pulsed Laser Ablation in different organic solvents

    International Nuclear Information System (INIS)

    Cristoforetti, Gabriele; Pitzalis, Emanuela; Spiniello, Roberto; Ishak, Randa; Giammanco, Francesco; Muniz-Miranda, Maurizio; Caporali, Stefano

    2012-01-01

    Palladium nanoparticles are arousing an increasing interest because of their strong activity in heterogeneous catalysis in a wide range of reactions. Driven by the interest of producing Pd nanoparticles to be deposited for catalysis over hydrophobic supports, we investigated their synthesis via Pulsed Laser Ablation in Liquid in several organic solvents, as acetone, ethanol, 2-propanol, toluene, n-hexane. The colloids were produced by using a Nd:YAG ns laser and without the addition of surfactant agents. The morphology, composition, stability and oxidation state of the obtained nanoparticles were investigated by TEM-EDS analysis, UV-vis spectroscopy, X-ray Photoelectron Spectroscopy and micro-Raman spectroscopy. The results evidence that the nature of the solvent influences both the yield and the physico-chemical properties of the produced nanoparticles. While in acetone and alcohols spheroidal, non aggregated and stable particles are obtained, in case of toluene and n-hexane few unstable particles surrounded by a gel-like material are produced. Raman/XPS measurements suggest the presence of amorphous or graphitic carbon onto crystalline Pd nanoparticles, which could have hindered their growth and determined the observed smaller sizes if compared to nanoparticles produced in water. The stability of Pd colloids obtained in acetone and alcohols was attributed to adsorbed anions like enolates or alcoholates; non polar solvents like toluene and n-hexane, unable to give rise to adsorbed anionic species, cannot provide any stabilization to the palladium nanoparticles. XPS analyses also evidenced a partial oxidation of particles surface, with a ratio Pd 2+ :Pd 0 of 1:2.5 and 1:4 in acetone and ethanol, respectively.

  17. Scaling for turbulent viscosity of buoyant plumes in stratified fluids: PIV measurement with implications for submarine hydrothermal plume turbulence

    Science.gov (United States)

    Zhang, Wei; He, Zhiguo; Jiang, Houshuo

    2017-11-01

    Time-resolved particle image velocimetry (PIV) has been used to measure instantaneous two-dimensional velocity vector fields of laboratory-generated turbulent buoyant plumes in linearly stratified saltwater over extended periods of time. From PIV-measured time-series flow data, characteristics of plume mean flow and turbulence have been quantified. To be specific, maximum plume penetration scaling and entrainment coefficient determined from the mean flow agree well with the theory based on the entrainment hypothesis for buoyant plumes in stratified fluids. Besides the well-known persistent entrainment along the plume stem (i.e., the 'plume-stem' entrainment), the mean plume velocity field shows persistent entrainment along the outer edge of the plume cap (i.e., the 'plume-cap' entrainment), thereby confirming predictions from previous numerical simulation studies. To our knowledge, the present PIV investigation provides the first measured flow field data in the plume cap region. As to measured plume turbulence, both the turbulent kinetic energy field and the turbulence dissipation rate field attain their maximum close to the source, while the turbulent viscosity field reaches its maximum within the plume cap region; the results also show that maximum turbulent viscosity scales as νt,max = 0.030(B/N)1/2, where B is source buoyancy flux and N is ambient buoyancy frequency. These PIV data combined with previously published numerical simulation results have implications for understanding the roles of hydrothermal plume turbulence, i.e. plume turbulence within the cap region causes the 'plume-cap' entrainment that plays an equally important role as the 'plume-stem' entrainment in supplying the final volume flux at the plume spreading level.

  18. A Review of Laser Ablation Propulsion

    International Nuclear Information System (INIS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-01-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  19. Therapeutic efficacy of percutaneous radiofrequency ablation versus microwave ablation for hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available The aim of this study was to investigate the therapeutic efficacy of percutaneous radiofrequency (RF ablation versus microwave (MW ablation for hepatocellular carcinoma (HCC measuring ≤ 5 cm in greatest diameter. From January 2006 to December 2006, 78 patients had undergone RF ablation whereas 77 had undergone MW ablation. Complete ablation (CA, local tumour progression (LTP and distant recurrence (DR were compared. The overall survival curves were calculated with the Kaplan-Meier technique and compared with the log-rank test. The CA rate was 83.4% (78/93 for RF ablation and 86.7%(91/105 for MW ablation. The LTP rate was 11.8% (11/93 for RF ablation and 10.5% (11/105 for MW ablation. DR was found in 51 (65.4% in the RF ablation and 62 (80.5% in the MW ablation. There was no significant difference in the 1-, 3-, and 5-year overall survival rates (P = 0.780 and the 1-, 3-, and 5-year disease-free survival rates (P = 0.123 between RF and MW ablation. At subgroup analyses, for patients with tumors ≤ 3.0 cm, there was no significant difference in the 1-, 3-, and 5-year overall survival rates (P = 0.067 and the corresponding disease-free survival rates(P = 0.849. For patients with tumor diameters of 3.1-5.0 cm, the 1-, 3-, and 5-year overall survival rates were 87.1%, 61.3%, and 40.1% for RF ablation and 85.4%, 36.6%, and 22% for MW ablation, with no significant difference (P = 0.068. The corresponding disease-free survival rates were 74.2%, 54.8%, and 45.2% for the RF ablation group and 53.3%, 26.8%, and 17.1% for the MW ablation group. The disease-free survival curve for the RF ablation group was significantly better than that for the MW ablation group (P = 0.018. RF ablation and MW ablation are both effective methods in treating hepatocellular carcinomas, with no significant differences in CA, LTP, DR, and overall survival.

  20. Predicted and observed cooling tower plume rise and visible plume length at the John E. Amos power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, S R

    1976-01-01

    A one-dimensional numerical cloud growth model and several empirical models for plume rise and cloud growth are compared with twenty-seven sets of observations of cooling tower plumes from the 2900 MW John E. Amos power plant in West Virginia. The three natural draft cooling towers are 200 m apart. In a cross wind, the plumes begin to merge at a distance of about 500 m downwind. In calm conditions, with reduced entrainment, the plumes often do not merge until heights of 1000 m. The average plume rise, 750 m, is predicted well by the models, but day-to-day variations are simulated with a correlation coefficient of about 0.5. Model predictions of visible plume length agree, on the average, with observations for visible plumes of short to moderate length (less than about 1 km). The prediction of longer plumes is hampered by our lack of knowledge of plume spreading after the plumes level off. Cloud water concentrations predicted by the numerical model agree with those measured in natural cumulus clouds (about 0.1 to 1 g kg/sup -1/).

  1. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  2. Bimodal electric tissue ablation (BETA) - in-vivo evaluation of the effect of applying direct current before and during radiofrequency ablation of porcine liver

    International Nuclear Information System (INIS)

    Cockburn, J.F.; Maddern, G.J.; Wemyss-Holden, S.A.

    2007-01-01

    Aim: To examine the effect of applying increasing amounts of direct current (DC) before and during alternating current radiofrequency ablation of porcine liver. Materials and methods: Using a Radiotherapeutics RF3000 generator, a 9 V AC/DC transformer and a 16 G plain aluminium tube as an electrode, a control group of 24 porcine hepatic radiofrequency ablation zones was compared with 24 zones created using a bimodal electric tissue ablation (BETA) technique in three pigs. All ablations were terminated when tissue impedance rose to greater than 999 Ω or radiofrequency energy input fell below 5 W on three successive measurements taken at 1 min intervals. BETA ablations were performed in two phases: an initial phase of variable duration DC followed by a second phase during which standard radiofrequency ablation was applied simultaneously with DC. During this second phase, radiofrequency power input was regulated by the feedback circuitry of the RF3000 generator according to changes in tissue impedance. The diameters (mm) of each ablation zone were measured by two observers in two planes perpendicular to the plane of needle insertion. The mean short axis diameter of each ablation zone was subjected to statistical analysis. Results: With increased duration of prior application of DC, there was a progressive increase in the diameter of the ablation zone (p < 0.001). This effect increased sharply up to 300 s of pre-treatment after which a further increase in diameter occurred, but at a much lesser rate. A maximum ablation zone diameter of 32 mm was produced (control diameters 10-13 mm). Conclusion: Applying a 9 V DC to porcine liver in vivo, and continuing this DC application during subsequent radiofrequency ablation, results in larger ablation zone diameters compared with radiofrequency ablation alone

  3. A distribution-based parametrization for improved tomographic imaging of solute plumes

    Science.gov (United States)

    Pidlisecky, Adam; Singha, K.; Day-Lewis, F. D.

    2011-01-01

    Difference geophysical tomography (e.g. radar, resistivity and seismic) is used increasingly for imaging fluid flow and mass transport associated with natural and engineered hydrologic phenomena, including tracer experiments, in situ remediation and aquifer storage and recovery. Tomographic data are collected over time, inverted and differenced against a background image to produce 'snapshots' revealing changes to the system; these snapshots readily provide qualitative information on the location and morphology of plumes of injected tracer, remedial amendment or stored water. In principle, geometric moments (i.e. total mass, centres of mass, spread, etc.) calculated from difference tomograms can provide further quantitative insight into the rates of advection, dispersion and mass transfer; however, recent work has shown that moments calculated from tomograms are commonly biased, as they are strongly affected by the subjective choice of regularization criteria. Conventional approaches to regularization (Tikhonov) and parametrization (image pixels) result in tomograms which are subject to artefacts such as smearing or pixel estimates taking on the sign opposite to that expected for the plume under study. Here, we demonstrate a novel parametrization for imaging plumes associated with hydrologic phenomena. Capitalizing on the mathematical analogy between moment-based descriptors of plumes and the moment-based parameters of probability distributions, we design an inverse problem that (1) is overdetermined and computationally efficient because the image is described by only a few parameters, (2) produces tomograms consistent with expected plume behaviour (e.g. changes of one sign relative to the background image), (3) yields parameter estimates that are readily interpreted for plume morphology and offer direct insight into hydrologic processes and (4) requires comparatively few data to achieve reasonable model estimates. We demonstrate the approach in a series of

  4. The internal structure and dynamics of the railgun plasma armature between infinitely wide ablating rails

    International Nuclear Information System (INIS)

    Frese, M.F.

    1991-01-01

    This paper reports on computer simulations of the plasma flow in two-dimensionally symmetric railgun plasma arcs that were performed. The direction of symmetry is normal to the insulator surface, so that the rails are effectively infinite in width. The rail surface ablates according to one of two ablation models, in which either all absorbed energy flux, or only the excess over that which the rail material can conduct away, ablates mass. A number of combinations of initial conditions, boundary conditions and resistivity models were explored. The full ablation model produces an arc of continuously growing mass and length, in which the current distribution reaches from the projectile half-way to the breech. The conduction limited ablation model produces a compact arc approximately eight times the bore height in length, which ceases to ablate material from the rails before the projectile reaches a velocity of 1 km/s. There is need for further study in several areas. These include the arc initiation process, the ablation of the insulators, and three-dimensional effects

  5. Similarities and differences in ablative and non-ablative iron oxide nanoparticle hyperthermia cancer treatment

    Science.gov (United States)

    Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. Jack

    2015-03-01

    The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. It has been demonstrated by many research groups that ablative temperatures and cytotoxicity can be produced with locally NP-based hyperthermia. Such ablative NP techniques have demonstrated the potential for success. Much attention has also been given to the fact that NP may be administered systemically, resulting in a broader cancer therapy approach, a lower level of tumor NP content and a different type of NP cancer therapy (most likely in the adjuvant setting). To use NP based hyperthermia successfully as a cancer treatment, the technique and its goal must be understood and utilized in the appropriate clinical context. The parameters include, but are not limited to, NP access to the tumor (large vs. small quantity), cancer cell-specific targeting, drug carrying capacity, potential as an ionizing radiation sensitizer, and the material properties (magnetic characteristics, size and charge). In addition to their potential for cytotoxicity, the material properties of the NP must also be optimized for imaging, detection and direction. In this paper we will discuss the differences between, and potential applications for, ablative and non-ablative magnetic nanoparticle hyperthermia.

  6. Radiofrequency thermal ablation of malignant hepatic tumors: post-ablation syndrome

    International Nuclear Information System (INIS)

    Choi, Jung Bin; Rhim, Hyunchul; Kim, Yongsoo; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Lee, Seung Ro

    2000-01-01

    To evaluate post-ablation syndrome after radiofrequency thermal ablation of malignant hepatic tumors. Forty-two patients with primary (n=3D29) or secondary (n=3D13) hepatic tumors underwent radiofrequency thermal ablation. A total of 65 nodules ranging in size from 1.1 to 5.0 (mean, 3.1) cm were treated percutaneously using a 50W RF generator with 15G expandable needle electrodes. We retrospectively evaluated the spectrum of post-ablation syndrome including pain, fever (≥3D 38 deg C), nausea, vomiting, right shoulder pain, and chest discomfort according to frequency, intensity and duration, and the findings were correlated with tumor location and number of ablations. We also evaluated changes in pre-/post-ablation serum aminotransferase (ALT/AST) and prothrombin time, and correlated these findings with the number of ablations. Post-ablation syndrome was noted in 29 of 42 patients (69.0%), and most symptoms improved with conservative treatment. The most important of these were abdominal plan (n=3D20, 47.6%), fever (n=3D8, 19.0%), and nausea (n=3D7, 16.7%), and four of 42 (9.5%) patients complained of severe pain. The abdominal pain lasted from 3 hours to 5.5 days (mean; 20.4 hours), the fever from 6 hours to 5 days (mean; 63.0 hours). And the nausea from 1 hours to 4 days (mean; 21.0 hours). Other symptoms were right shoulder pain (n=3D6, 14.3%), chest discomfort (n=3D3, 7.1%), and headache (n=3D3, 7.1%). Seventeen of 20 patients (85%) with abdominal pain had subcapsular tumor of the liver. There was significant correlation between pain, location of the tumor, and a number of ablations. After ablation, ALT/AST was elevated more than two-fold in 52.6%/73.7% of patients, respectively but there was no significant correlation with the number of ablation. Post-ablation syndrome is a frequent and tolerable post-procedural process after radiofrequency thermal ablation. The spectrum of this syndrome provides a useful guideline for the post-ablation management. (author)

  7. Effect of liquid film on near-threshold laser ablation of a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongsik; Oh, Bukuk; Lee, Ho

    2004-01-30

    Enhancement of material ablation and photoacoustic excitation by an artificially deposited liquid film in the process of pulsed-laser ablation (PLA) is investigated in this paper. Ablation threshold, ablation rate, surface topography, and acoustic-transient emission are also measured for dry and liquid film-coated surfaces. The physical mechanisms of enhanced ablation in the liquid-assisted process are analyzed at relatively low laser fluences with negligible effect of laser-produced plasma. Particularly, correlation between material ablation and acoustic-transient generation is examined. In the experiment, aluminum thin-films and bulk foils are ablated by Q-switched Nd:YAG laser pulses. The dependence of ablation rate and laser-induced topography on liquid film thickness and chemical composition is also examined. Photoacoustic emission is measured by the probe beam deflection method utilizing a CW HeNe laser and a microphone. In comparison with a dry ablation process, the liquid-assisted ablation process results in substantially augmented ablation efficiency and reduced ablation threshold. The results indicate that both increased laser-energy coupling, i.e., lowered reflectance, and amplified photoacoustic excitation in explosive vaporization of liquid are responsible for the enhanced material ablation.

  8. CFD investigation of balcony spill plumes in atria

    International Nuclear Information System (INIS)

    McCartney, C.J.; Lougheed, G.D.; Weckman, E.J.

    2004-01-01

    Smoke management in buildings during fire events often uses mechanical ventilation systems to maintain smoke layer elevation above a safe evacuation path. Design of these systems requires accurate correlations for the smoke production rate of the buoyant fire plume. One design issue is the smoke production rate of fire plumes which spill out from a fire compartment, under a balcony and up through an atrium or other large volume. Current engineering correlations for these balcony spill plumes are based on a combination of one-tenth scale test data and theoretical analysis. Questions have arisen over the suitability of these correlations for real-scale designs. A combined program of full-scale experimentation and CFD modeling is being conducted to analyze the accuracy of these correlations. A full-scale experimental facility was constructed with a 5 m by 5 m by 15 m fire compartment connected to a four-story atrium. Propane fires in the compartment produce balcony spill plumes which form steady-state smoke layers in the atrium. Experimental variables include fire size, compartment opening width, balcony depth and compartment fascia depth. A variable exhaust system was used to achieve various smoke layer heights for each of 100 compartment configurations. Temperature, smoke obscuration and gas concentrations were measured in the compartment, atrium and exhaust system. The experimental data was used to determine the atrium smoke layer elevation and balcony spill plume smoke production rate for each configuration and fire size. Comparison of this data with zone model results and design correlations for atrium smoke management systems will be performed to evaluate their accuracy. A CFD model of the experimental facility was implemented using the Fire Dynamics Simulator software (Version 3). Large-eddy simulations of the flow were performed with a constant radiative fraction and an infinitely fast mixture fraction combustion model. A grid sensitivity analysis was

  9. SRS reactor stack plume marking tests

    International Nuclear Information System (INIS)

    Petry, S.F.

    1992-03-01

    Tests performed in 105-K in 1987 and 1988 demonstrated that the stack plume can successfully be made visible (i.e., marked) by introducing smoke into the stack breech. The ultimate objective of these tests is to provide a means during an emergency evacuation so that an evacuee can readily identify the stack plume and evacuate in the opposite direction, thus minimizing the potential of severe radiation exposure. The EPA has also requested DOE to arrange for more tests to settle a technical question involving the correct calculation of stack downwash. New test canisters were received in 1988 designed to produce more smoke per unit time; however, these canisters have not been evaluated, because normal ventilation conditions have not been reestablished in K Area. Meanwhile, both the authorization and procedure to conduct the tests have expired. The tests can be performed during normal reactor operation. It is recommended that appropriate authorization and procedure approval be obtained to resume testing after K Area restart

  10. Comparative study of the expansion dynamics of laser-driven plasma and shock wave in in-air and underwater ablation regimes

    Science.gov (United States)

    Nguyen, Thao T. P.; Tanabe, Rie; Ito, Yoshiro

    2018-03-01

    We compared the expansion characteristics of the plasma plumes and shock waves generated in laser-induced shock process between the two ablation regimes: in air and under water. The observation was made from the initial moment when the laser pulse hit the target until 1.5 μs. The shock processes were driven by focusing a single laser pulse (1064 nm, FWHM = 13 ns) onto the surface of epoxy-resin blocks using a 40-mm focal length lens. The estimated laser intensity at the target plane is approximate to 9 ×109Wcm-2 . We used the fast-imaging technique to observe the expansion of the plasma plume and a custom-designed time-resolved photoelasticity imaging technique to observe the propagation of shock waves with the time resolution of nanoseconds. We found that at the same intensity of the laser beam, the plasma expansion during the laser pulse follows different mechanisms: the plasma plume that grows in air follows a radiation-wave model while a detonation-wave model can explain the expansion of the plasma plume induced in water. The ideal blast wave theory can be used to predict the decay of the shock wave in air but is not appropriate to describe the decay of the shock wave induced under water.

  11. Generation of nanoclusters by ultrafast laser ablation of Al: Molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Miloshevsky, Alexander; Phillips, Mark C.; Harilal, Sivanandan S.; Dressman, Phillip; Miloshevsky, Gennady

    2017-11-01

    The laser ablation of materials induced by an ultrashort femtosecond pulse is a complex phenomenon, which depends on both the material properties and the properties of the laser pulse. The unique capability of a combination of molecular dynamics (MD) and Momentum Scaling Model (MSM) methods is developed and applied to a large atomic system for studying the process of ultrafast laser-material interactions, behavior of matter in a highly non-equilibrium state, material disintegration, and formation of nanoparticles (NPs). Laser pulses with several fluences in the range from 500 J/m2 to 5000 J/m2 interacting with a large system of aluminum atoms are simulated. The response of Al material to the laser energy deposition is investigated within the finite-size laser spot. It is found that the shape of the plasma plume is dynamically changing during an expansion process. At several tens of picoseconds it can be characterized as a long hollow ellipsoid surrounded by atomized and nano-clustered particles. The time evolution of NP clusters in the plume is investigated. The collisions between the single Al atoms and generated NPs and fragmentation of large NPs determine the fractions of different-size NP clusters in the plume. The MD-MSM simulations show that laser fluence greatly affects the size distribution of NPs, their polar angles, magnitude and direction vectors of NP velocities. These results and predictions are supported by the experimental data and previous MD simulations.

  12. Plume rise from multiple sources

    International Nuclear Information System (INIS)

    Briggs, G.A.

    1975-01-01

    A simple enhancement factor for plume rise from multiple sources is proposed and tested against plume-rise observations. For bent-over buoyant plumes, this results in the recommendation that multiple-source rise be calculated as [(N + S)/(1 + S)]/sup 1/3/ times the single-source rise, Δh 1 , where N is the number of sources and S = 6 (total width of source configuration/N/sup 1/3/ Δh 1 )/sup 3/2/. For calm conditions a crude but simple method is suggested for predicting the height of plume merger and subsequent behavior which is based on the geometry and velocity variations of a single buoyant plume. Finally, it is suggested that large clusters of buoyant sources might occasionally give rise to concentrated vortices either within the source configuration or just downwind of it

  13. Experimental investigation of the ribbon-array ablation process

    International Nuclear Information System (INIS)

    Li Zhenghong; Xu Rongkun; Chu Yanyun; Yang Jianlun; Xu Zeping; Ye Fan; Chen Faxin; Xue Feibiao; Ning Jiamin; Qin Yi; Meng Shijian; Hu Qingyuan; Si Fenni; Feng Jinghua; Zhang Faqiang; Chen Jinchuan; Li Linbo; Chen Dingyang; Ding Ning; Zhou Xiuwen

    2013-01-01

    Ablation processes of ribbon-array loads, as well as wire-array loads for comparison, were investigated on Qiangguang-1 accelerator. The ultraviolet framing images indicate that the ribbon-array loads have stable passages of currents, which produce axially uniform ablated plasma. The end-on x-ray framing camera observed the azimuthally modulated distribution of the early ablated ribbon-array plasma and the shrink process of the x-ray radiation region. Magnetic probes measured the total and precursor currents of ribbon-array and wire-array loads, and there exists no evident difference between the precursor currents of the two types of loads. The proportion of the precursor current to the total current is 15% to 20%, and the start time of the precursor current is about 25 ns later than that of the total current. The melting time of the load material is about 16 ns, when the inward drift velocity of the ablated plasma is taken to be 1.5 × 10 7 cm/s.

  14. Time resolved study of the emission enhancement mechanisms in orthogonal double-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanginés, R., E-mail: roberto.sangines@ccadet.unam.mx; Sobral, H.

    2013-10-01

    The evolution of laser induced ablation plume on aluminum targets has been investigated in orthogonal pre-ablation double pulse scheme at atmospheric pressure from the earliest stages of plasma evolution. Time-resolved emission spectra from neutrals, singly- and doubly-ionized species obtained with the double pulse experiment have been compared with those from the single pulse configuration. Signal-to-noise enhancement reaches values of up to 15 depending on the analyzed species; and the lower the charge state the later its maximum signal-to-noise ratio is reached. Ablation plume dynamics was monitored from 10 ns after the plasma onset via shadowgraphy and fast-photography with narrow interference filters to follow the evolution of individual species. Results show that ionic species from the target are located at the plasma core while nitrogen from the background air is found at the plume peripheral. Initially both configurations exhibit similar ablation plume sizes and their expansions were successfully fitted with the strong explosion model for the first 500 ns. At later times a good agreement was obtained by using the drag model, which predicts that the plume expansion eventually stops due to interaction with the background gas particles. The emission enhancement measured in the double pulse scheme is discussed in terms of the models describing the plume dynamics. - Highlights: • Production of 2 + ions at the earliest stages of plasma evolution • The higher the charge state the inner the location within the ablation plume. • The expansion rate of the second (ablation) plume was measured. • Shock and drag models successfully fit the ablation shock front expansion.

  15. Experimental research on local renal injury of dog with microwave ablation guided by DSA

    International Nuclear Information System (INIS)

    Lin Jianping; Xian Zhengyuan; Shi Rongshu; Zhang Gaofeng; Li Xianlang

    2008-01-01

    Objective: To explore the efficiency, complications and probability of preserving part renal function by local renal microwave ablation. Methods: The fresh pig renal pelvis full filled with 30% diatrizoate meglumine and the dogs kidney taken arterial pyelography were both ablated with microwave. Dogs were divided into three groups: measuring temperature after ablation group, single point ablation both on the two kidneys group and double points ablation on unilateral kidney group. In measuring temperature after ablation group, DSA and pathology were performed immediately after ablation. In the other groups, DSA with blood and urine samplings were taken for routine tests including renal function right after the ablation and 10 days later. Results: Experiment in vitro showed conspicuous renal pelvic contraction and convolution. The group under power rate of 70, 3 min produced urine leak easily. Preliminary test in vivo with DSA showed the disappearance of local kidney blood supply. The residual renal function was related to areas of necrosis. Acute stage pathology revealed acute renal cortex medulla and pelvic cells injury. DSA of chronic stage showed no change in size of the area of ablation. The blood supply of necrotic areas was not restored. The residual kidney possessed the excretion contrast medium with no urine leaks. Upper pole of right kidney adhered with adjacent tissue, together with thickened covering. Pathology revealed fibrous proliferation around the coagulative necrosis. Conclusion: Microwave ablation can inactivate the local renal tissue, and, effectively preserve the big blood vessels and function of residual kidney. No urine leaks occurred in chronic stage but easily to produce adhesions with adjacent tissue. (authors)

  16. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Science.gov (United States)

    Fernández-Nóvoa, D; Gómez-Gesteira, M; Mendes, R; deCastro, M; Vaz, N; Dias, J M

    2017-01-01

    The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward) winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward) winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  17. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Directory of Open Access Journals (Sweden)

    D Fernández-Nóvoa

    Full Text Available The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  18. Comparison of wet radiofrequency ablation with dry radiofrequency ablation and radiofrequency ablation using hypertonic saline preinjection: ex vivo bovine liver

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Han, Joon Koo; Kim, Se Hyung; Lee, Jae Young; Park, Hee Sun; Hur, Hurn; Choi, Byung Ihn; Shin, Kyung Sook

    2004-01-01

    We wished to compare the in-vitro efficiency of wet radiofrequency (RF) ablation with the efficiency of dry RF ablation and RF ablation with preinjection of NaCl solutions using excised bovine liver. Radiofrequency was applied to excised bovine livers in a monopolar mode for 10 minutes using a 200 W generator and a perfused-cooled electrode with or without injection or slow infusion of NaCl solutions. After placing the perfused-cooled electrode in the explanted liver, 50 ablation zones were created with five different regimens: group A; standard dry RF ablation, group B; RF ablation with 11 mL of 5% NaCl solution preinjection, group C; RF ablation with infusion of 11 mL of 5% NaCl solution at a rate of 1 mL/min, group D; RFA with 6 mL of 36% NaCl solution preinjection, group E; RF ablation with infusion of 6 mL of 36% NaCl solution at a rate of 0.5 mL/min. In groups C and E, infusion of the NaCl solutions was started 1 min before RF ablation and then maintained during RF ablation (wet RF ablation). During RF ablation, we measured the tissue temperature at 15 mm from the electrode. The dimensions of the ablation zones and changes in impedance, current and liver temperature during RF ablation were then compared between the groups. With injection or infusion of NaCl solutions, the mean initial tissue impedance prior to RF ablation was significantly less in groups B, C, D, and E (43-75 Ω) than for group A (80 Ω) (ρ 3 in group A; 12.4 ± 3.8 cm 3 in group B; 80.9 ± 9.9 cm 3 in group C; 45.3 ± 11.3 cm 3 in group D and 81.6 ± 8.6 cm 3 in group E. The tissue temperature measured at 15 mm from the electrode was higher in groups C, D and E than other groups (ρ < 0.05): 53 ± 12 .deg. C in group A, 42 ± 2 .deg. C in group B, 93 ± 8 .deg. C in group C; 79 ± 12 .deg. C in group D and 83 ± 8 .deg.C in group E. Wet RF ablation with 5% or 36% NaCl solutions shows better efficiency in creating a large ablation zone than does dry RF ablation or RF ablation with

  19. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    Science.gov (United States)

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  20. Mössbauer study of iron carbide nanoparticles produced by laser ablation in alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Amagasa, S., E-mail: B115608@ed.tus.ac.jp; Nishida, N. [Tokyo University of Science, Department of Chemistry (Japan); Kobayashi, Y. [The University of Electro-Communications, Graduate School of Informatics and Engineering (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan)

    2016-12-15

    Iron carbide nanoparticles were synthesized by laser ablation of iron in alcohols (methanol and ethanol). A new cell, designed to allow the ablation to be conducted in a flowing solvent, enabled separation and collection of the nanoparticles immediately after production, thus preventing further photochemical reactions of the colloids. The nanoparticles were investigated using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. In methanol, they consisted of α-iron, γ-iron, iron carbide, and amorphous paramagnetic iron carbides, whereas in ethanol they consisted of iron carbides and amorphous paramagnetic iron carbides. The difference in products depending on the alcohol was attributed to the different carbon supplies for methanol and ethanol. For both solvents, the average particle size was found to be 16 nm, and the nanoparticles were dispersed in amorphous carbon. We also examined the effect of further laser irradiation of the colloids using stagnant solvent, and the particle size was found to increase and a very small amount of carbonization was observed.

  1. Effect of carbide particles on the ablation properties of tungsten composites

    International Nuclear Information System (INIS)

    Song Guiming; Zhou Yu; Wang Yujin

    2003-01-01

    The high temperature ablation behavior of tungsten composites containing carbides produced by vacuum hot pressing is studied as a function of reinforcement chemistry (ZrC and TiC) and content using a self-made oxyacetylene ablation equipment. A dynamic responding multiwavelength pyrometer was employed to measure the temperature of the ablation surface, and a thermocouple was employed to measure the temperature of the back surface during the time that a specimen was being ablated. The mass and linear ablation rates are lower in composites containing ZrC, decreasing with increasing particle content in both composites system. The values of the mass and linear ablation rates were in the order from high to low: W>30TiC/W>40TiC/W>30ZrC/W>40ZrC/W (30TiC/W stands for 30 vol.% TiC particle content in the W matrix, the same below). The important temperature curves of the ablation surfaces of specimens were successfully detected online. Ablated surfaces and vertical sections of the specimens were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Thermochemical oxidation of tungsten, TiC, and ZrC was the main ablation mechanism of ZrC/W and TiC/W composites. These ablation behaviors are discussed based on the thermophysical and chemical properties of both the composite systems

  2. Periodic large-amplitude thermal oscillations occurring in a buoyant plume

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1983-01-01

    Reactor events such as N-1 loop operation in conjunction with a leaky check valve in the down loop can cause flow to be convected back into the reactor outlet nozzle/piping region and to be back-flushed into the reactor outlet plenum. The preceding results in a temperature difference between pipe inflow and plenum. This temperature difference causes buoyancy forces which if large enough can cause: a pipe backflow and recirculation loop; and a thermal plume in the plenum. Both phenomena are being studied because they can produce undesirable pipe, nozzle and plenum wall thermal distributions, and hence undesirable thermal stresses. This paper discusses some features of the plume

  3. Magnetotelluric Detection Thresholds as a Function of Leakage Plume Depth, TDS and Volume

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mansoor, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carroll, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-21

    We conducted a synthetic magnetotelluric (MT) data analysis to establish a set of specific thresholds of plume depth, TDS concentration and volume for detection of brine and CO2 leakage from legacy wells into shallow aquifers in support of Strategic Monitoring Subtask 4.1 of the US DOE National Risk Assessment Partnership (NRAP Phase II), which is to develop geophysical forward modeling tools. 900 synthetic MT data sets span 9 plume depths, 10 TDS concentrations and 10 plume volumes. The monitoring protocol consisted of 10 MT stations in a 2×5 grid laid out along the flow direction. We model the MT response in the audio frequency range of 1 Hz to 10 kHz with a 50 Ωm baseline resistivity and the maximum depth up to 2000 m. Scatter plots show the MT detection thresholds for a trio of plume depth, TDS concentration and volume. Plumes with a large volume and high TDS located at a shallow depth produce a strong MT signal. We demonstrate that the MT method with surface based sensors can detect a brine and CO2 plume so long as the plume depth, TDS concentration and volume are above the thresholds. However, it is unlikely to detect a plume at a depth larger than 1000 m with the change of TDS concentration smaller than 10%. Simulated aquifer impact data based on the Kimberlina site provides a more realistic view of the leakage plume distribution than rectangular synthetic plumes in this sensitivity study, and it will be used to estimate MT responses over simulated brine and CO2 plumes and to evaluate the leakage detectability. Integration of the simulated aquifer impact data and the MT method into the NRAP DREAM tool may provide an optimized MT survey configuration for MT data collection. This study presents a viable approach for sensitivity study of geophysical monitoring methods for leakage detection. The results come in handy for rapid assessment of leakage detectability.

  4. Evaluation of plume potential and plume abatement of evaporative cooling towers in a subtropical region

    International Nuclear Information System (INIS)

    Xu Xinhua; Wang Shengwei; Ma Zhenjun

    2008-01-01

    Hong Kong is a typical subtropical region with frequently high humidity in late spring and summer seasons. Plume from evaporative cooling towers, which service air-conditioning systems of civil buildings, has aroused public concerns since 2000 when the fresh water evaporative cooling towers were allowed to be used for high energy efficiency and environmental issues. This paper presents the evaluation of the plume potential and its effect on the sizing of the plume abatement system in a large commercial office building in Hong Kong for practical application. This evaluation was conducted based on a dynamic simulation platform using the typical meteorological year of Hong Kong since the occurrence of the plume heavily depends on the state conditions of the exhaust air from cooling towers and the ambient air, while the state condition of the exhaust air is determined by the total building cooling load and the control strategies of cooling towers employed mainly for improving energy efficiency. The results show that the control strategies have a significant effect on the plume potential and further affect the system design and sizing of the plume abatement system

  5. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A.G.; Stordal, F.; Knudsen, S. [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  6. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A G; Stordal, F; Knudsen, S [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  7. An experimental study of simultaneous ablation with dual probes in radiofrequency thermal ablation

    International Nuclear Information System (INIS)

    Jang, Il Soo; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Kim, Yong Soo; Kim, Young Sun; Heo, Jeong Nam

    2003-01-01

    To determine the differences between sequential ablation with a single probe and simultaneous ablation with dual probes. Using two 14-gauge expandable probes (nine internal prongs with 4-cm deployment), radiofrequency was applied sequentially (n=8) or simultaneously (n=8) to ten ex-vivo cow livers. Before starting ablation, two RF probes with an inter-probe space of 2 cm (n=8) or 3 cm (n=8) were inserted. In the sequential group, switching the connecting cable to an RF generator permitted ablation with the second probe just after ablation with the first probe had finished. In the simultaneous group, single ablation was performed only after connecting the shafts of both RF probes using a connection device. Each ablation lasted 7 minutes at a target temperature of 105-110 .deg. C. The size and shape of the ablated area, and total ablation time were then compared between the two groups. With 2-cm spacing, the group, mean length and overlapping width of ablated lesions were, respectively, 5.20 and 5.05 cm in the sequential group (n=4), and 5.81 and 5.65 cm in the simultaneous group (n=4). With 3-cm spacing, the corresponding figures were 4.99 and 5.60 cm in the sequential group (n=4), and 6.04 and 6.78 cm in the simultaneous group (n=4). With 2-cm spacing, the mean depth of the proximal waist was 0.58 cm in the sequential (group and 0.28 cm in the simultaneous group, while with 3-cm spacing, the corresponding figures were 1.65 and 1.48 cm. In neither group was there a distal waist. Mean total ablation time was 23.4 minutes in the sequential group and 14 minutes in the simultaneous group. In terms of ablation size and ablation time, simultaneous radiofrequency ablation with dual probes is superior to sequential ablation with a single probe. A simultaneous approach will enable an operator to overcome difficulty in probe repositioning during overlapping ablation, resulting in complete ablation with a successful safety margin

  8. The Alberta smoke plume observation study

    Directory of Open Access Journals (Sweden)

    K. Anderson

    2018-02-01

    Full Text Available A field project was conducted to observe and measure smoke plumes from wildland fires in Alberta. This study used handheld inclinometer measurements and photos taken at lookout towers in the province. Observations of 222 plumes were collected from 21 lookout towers over a 6-year period from 2010 to 2015. Observers reported the equilibrium and maximum plume heights based on the plumes' final levelling heights and the maximum lofting heights, respectively. Observations were tabulated at the end of each year and matched to reported fires. Fire sizes at assessment times and forest fuel types were reported by the province. Fire weather conditions were obtained from the Canadian Wildland Fire Information System (CWFIS. Assessed fire sizes were adjusted to the appropriate size at plume observation time using elliptical fire-growth projections. Though a logical method to collect plume observations in principle, many unanticipated issues were uncovered as the project developed. Instrument limitations and environmental conditions presented challenges to the investigators, whereas human error and the subjectivity of observations affected data quality. Despite these problems, the data set showed that responses to fire behaviour conditions were consistent with the physical processes leading to plume rise. The Alberta smoke plume observation study data can be found on the Canadian Wildland Fire Information System datamart (Natural Resources Canada, 2018 at http://cwfis.cfs.nrcan.gc.ca/datamart.

  9. The Alberta smoke plume observation study

    Science.gov (United States)

    Anderson, Kerry; Pankratz, Al; Mooney, Curtis; Fleetham, Kelly

    2018-02-01

    A field project was conducted to observe and measure smoke plumes from wildland fires in Alberta. This study used handheld inclinometer measurements and photos taken at lookout towers in the province. Observations of 222 plumes were collected from 21 lookout towers over a 6-year period from 2010 to 2015. Observers reported the equilibrium and maximum plume heights based on the plumes' final levelling heights and the maximum lofting heights, respectively. Observations were tabulated at the end of each year and matched to reported fires. Fire sizes at assessment times and forest fuel types were reported by the province. Fire weather conditions were obtained from the Canadian Wildland Fire Information System (CWFIS). Assessed fire sizes were adjusted to the appropriate size at plume observation time using elliptical fire-growth projections. Though a logical method to collect plume observations in principle, many unanticipated issues were uncovered as the project developed. Instrument limitations and environmental conditions presented challenges to the investigators, whereas human error and the subjectivity of observations affected data quality. Despite these problems, the data set showed that responses to fire behaviour conditions were consistent with the physical processes leading to plume rise. The Alberta smoke plume observation study data can be found on the Canadian Wildland Fire Information System datamart (Natural Resources Canada, 2018) at http://cwfis.cfs.nrcan.gc.ca/datamart.

  10. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    Science.gov (United States)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  11. NW Iberia Shelf Dynamics. Study of the Douro River Plume.

    Directory of Open Access Journals (Sweden)

    Isabel Iglesias

    2014-06-01

    Full Text Available River plumes are one of the most important mechanisms that transport the terrestrial materials to the coast and the ocean. Some examples of those materials are pollutants, essential nutrients, which enhance the phytoplankton productivity or sediments, which settle on the seabed producing modifications on the bathymetry affecting the navigation channels. The mixing between the riverine and the oceanic waters can induce instabilities, which might generate bulges, filaments, and buoyant currents over the continental shelf. Offshore, the buoyant riverine water could form a front with the oceanic waters often related with the occurrence of current-jets, eddies and strong mixing. The study and modelling of the river plumes is a key factor for the complete understanding of sediment transport mechanisms and patterns, and of coastal physics and dynamic processes. On this study the Douro River plume will be simulated. The Douro River is located on the north-west Iberian coast and its daily averaged freshwater discharge can range values from 0 to 13000 m3/s. This variability impacts the formation of the river plumes and its dispersion along the continental shelf. This study builds on the long-term objective of generate a Douro River plume forecasting system as part of the RAIA and RAIA.co projects. Satellite imagery was analyzed showing that the river Douro is one of the main sources of suspended particles, dissolved material and chlorophyll in the NW Iberian Shelf. The Regional Oceanic Modeling System (ROMS model was selected to reproduce scenarios of plume generation, retention and dispersion. Whit this model, three types of simulations were performed: (i schematic winds simulations with prescribed river flow, wind speed and direction; (ii multi-year climatological simulation, with river flow and temperature change for each month; (iii extreme case simulation, based on the Entre-os-Rios accident situation. The schematic wind case-studies suggest that the

  12. CT thermometry for cone-beam CT guided ablation

    Science.gov (United States)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  13. A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: Results in ex vivo and in vivo porcine livers

    International Nuclear Information System (INIS)

    Yu Jie; Liang Ping; Yu Xiaoling; Liu Fangyi; Chen Lei; Wang Yang

    2011-01-01

    Purpose: The purpose of this study was to compare the effectiveness of microwave (MW) ablation and radiofrequency (RF) ablation using a single internally cooled probe in a hepatic porcine model. Materials and methods: In the ex vivo experiment, MW ablations (n = 40) were performed with a 2450 MHz and 915 MHz needle antenna, respectively at 60 W, 70 W power settings. Bipolar RF ablations (n = 20) were performed with a 3-cm (T30) and 4-cm (T40) active tip needle electrodes, respectively at a rated power 30 W and 40 W according to automatically systematic power setting. In the in vivo experiment, the 2450 MHz and 915 MHz MW ablation both at 60 W and T30 bipolar RF ablation at 30 W were performed (n = 30). All of the application time were 10 min. Long-axis diameter (Dl), short-axis diameter (Ds), ratio of Ds/Dl, the temperature data 5 mm from the needle and the time of temperature 5 mm from the needle rising to 54 deg. C were measured. Results: Both in ex vivo and in vivo models, Ds and Dl of 915 MHz MW ablations were significantly larger than all the RF ablations (P < 0.05); the Ds for all the 2450 MHz MW ablations were significantly larger than that of T30 RF ablations (P < 0.05). 2450 MHz MW and T30 RF ablation tended to produce more elliptical-shaped ablation zone. Tissue temperatures 5 mm from the needle were considerably higher with MW ablation, meanwhile MW ablation achieved significantly faster rate of temperature rising to 54 deg. C than RF ablation. For in vivo study after 10 min of ablation, the Ds and Dl of 2450 MHz MW, 915 MHz MW and Bipolar RF were 2.35 ± 0.75, 2.95 ± 0.32, 1.61 ± 0.33 and 3.86 ± 0.81, 5.79 ± 1.03, 3.21 ± 0.51, respectively. Highest tissue temperatures 5 mm from the needle were 80.07 ± 12.82 deg. C, 89.07 ± 3.52 deg. C and 65.56 ± 15.31 deg. C and the time of temperature rising to 54 deg. C were respectively 37.50 ± 7.62 s, 24.50 ± 4.09 s and 57.29 ± 23.24 s for three applicators. Conclusion: MW ablation may have higher

  14. Measurement of polynuclear aromatic hydrocarbon concentrations in the plume of Kuwait oil well fires

    International Nuclear Information System (INIS)

    Olsen, K.B.; Wright, C.W.; Veverka, C.; Ball, J.C.; Stevens, R.

    1995-03-01

    Following their retreat from Kuwait during February and March of 1991, the Iraqi Army set fire to over 500 oil wells dispersed throughout the Kuwait oil fields. During the period of sampling from July to August 1991, it was estimated that between 3.29 x 10 6 barrels per day of crude oil were combusted. The resulting fires produced several plumes of black and white smoke that coalesced to form a composite ''super'' plume. Because these fires were uncontrolled, significant quantities of organic materials were dispersed into the atmosphere and drifted throughout the Middle East. The organic particulants associated with the plume of the oil well fires had a potential to be rich in polynuclear aromatic hydrocarbon (PAH) compounds. Based on the extreme mutagenic and carcinogenic activities of PAHs found in laboratory testing, a serious health threat to the population of that region potentially existed. Furthermore, the Kuwait oil fire plumes represented a unique opportunity to study the atmospheric chemistry associated with PAHs in the plume. If samples were collected near the plume source and from the plume many kilometers downwind from the source, comparisons could be made to better understand atmospheric reactions associated with particle-bound and gas-phase PAHs. To help answer health-related concerns and to better understand the fate and transport of PAHs in an atmospheric environment, a sampling and analysis program was developed

  15. Radiofrequency Ablation of Lung Malignancies: Where Do We Stand?

    International Nuclear Information System (INIS)

    Lencioni, Riccardo; Crocetti, Laura; Cioni, Roberto; Mussi, Alfredo; Fontanini, Gabriella; Ambrogi, Marcello; Franchini, Chiara; Cioni, Dania; Fanucchi, Olivia; Gemignani, Raffaello; Baldassarri, Rubia; Angeletti, Carlo Alberto; Bartolozzi, Carlo

    2004-01-01

    Percutaneous radiofrequency (RF) ablation is a minimally invasive technique used to treat solid tumors. Because of its ability to produce large volumes of coagulation necrosis in a controlled fashion, this technique has gained acceptance as a viable therapeutic option for unresectable liver malignancies. Recently, investigation has been focused on the clinical application of RF ablation in the treatment of lung malignancies. In theory, lung tumors are well suited to RF ablation because the surrounding air in adjacent normal parenchyma provides an insulating effect, thus facilitating energy concentration within the tumor tissue. Experimental studies in rabbits have confirmed that lung RF ablation can be safely and effectively performed via a percutaneous, transthoracic approach, and have prompted the start of clinical investigation. Pilot clinical studies have shown that RF ablation enables successful treatment of relatively small lung malignancies with a high rate of complete response and acceptable morbidity, and have suggested that the technique could represent a viable alternate or complementary treatment method for patients with non-small cell lung cancer or lung metastases of favorable histotypes who are not candidates for surgical resection. This article gives an overview of lung RF ablation, discussing experimental animal findings, rationale for clinical application, technique and methodology, clinical results, and complications

  16. Transmission Geometry Laser Ablation into a Non-Contact Liquid Vortex Capture Probe for Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, Olga S [ORNL; Bhandari, Deepak [ORNL; Lorenz, Matthias [ORNL; Van Berkel, Gary J [ORNL

    2014-01-01

    RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the

  17. Constraining Diameters of Ash Particles in Io's Pele Plume by DSMC Simulation

    Science.gov (United States)

    McDoniel, William; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2013-10-01

    The black “butterfly wings” seen at Pele are produced by silicate ash which is to some extent entrained in the gas flow from very low altitudes. These particles are key to understanding the volcanism at Pele. However, the Pele plume is not nearly as dusty as Prometheus, and these are not the only particles in the plume, as the SO2 in the plume will also condense as it cools. It is therefore difficult to estimate a size distribution for the ash particles by observation, and the drag on ash particles from the plume flow is significant enough that ballistic models are also of limited use. Using Direct Simulation Monte Carlo, we can simulate a gas plume at Pele which demonstrates very good agreement with observations. By extending this model down to nearly the surface of the lava lake, ash particles can be included in the simulation by assuming that they are initially entrained in the very dense (for Io) gas immediately above the magma. Particles are seen to fall to the ground to the east and west of the vent, agreeing with the orientation of the “butterfly wings”, and particles with larger diameters fall to the ground closer to the lava lake. We present a model for mapping simulated deposition density to the coloration of the surface and we use it to estimate the size distribution of ash particles in the plume.

  18. Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) with plume capture by continuous flow solvent probe

    Science.gov (United States)

    O'Brien, Jeremy T.; Williams, Evan R.; Holman, Hoi-Ying N.

    2017-10-31

    A new experimental setup for spatially resolved ambient infrared laser ablation mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is .about.50%. This transfer efficiency is significantly higher than values reported for similar techniques.

  19. Liquid Booster Module (LBM) plume flowfield model

    Science.gov (United States)

    Smith, S. D.

    1981-01-01

    A complete definition of the LBM plume is important for many Shuttle design criteria. The exhaust plume shape has a significant effect on the vehicle base pressure. The LBM definition is also important to the Shuttle base heating, aerodynamics and the influence of the exhaust plume on the launch stand and environment. For these reasons a knowledge of the LBM plume characteristics is necessary. A definition of the sea level LBM plume as well as at several points along the Shuttle trajectory to LBM, burnout is presented.

  20. Measurements on cooling tower plumes. Pt. 3

    International Nuclear Information System (INIS)

    Fortak, H.

    1975-11-01

    In this paper an extended field experiment is described in which cooling tower plumes were investigated by means of three-dimensional in situ measurements. The goal of this program was to obtain input data for numerical models of cooling tower plumes. Data for testing or developing assumptions for sub-grid parametrizations were of special interest. Utilizing modern systems for high-resolution aerology and small aircraft, four measuring campaigns were conducted: two campaigns (1974) at the cooling towers of the RWE power station at Neurath and also two (1975) at the single cooling tower of the RWE power station at Meppen. Because of the broad spectrum of weather situations, it can be assumed that the results are representative with regard to the interrelationship between the structure of cooling tower plumes and the large-scale meteorological situation. A large number of flights with a powered glider ASK 16 (more than 100 flight hours) crossing the plumes on orthogonal tracks was performed. All flights showed that the plume could be identified up to large downwind distances by discontinuous jumps of temperature and vapour pressure. Therefore a definite geometry of the plume could always be defined. In all cross sections a vertical circulation could be observed. At the plumes boundaries, which could be defined by the mentioned jumps of temperature and vapour pressure, a maximum of downward vertical motion was observed in most cases. Entrainment along the boundary of a cross section seems to be very small, except at the lower part of the plume. There, the mass entrainment is maximum and is responsible for plume rise as well as for enlargement of the cross section. The visible part of the plume (cloud) was only a small fraction of the whole plume. The discontinuities of temperature and vapour pressure show that the plume fills the space below the visible plume down to the ground. However, all effects decrease rapidly towards the ground. It turned out that high

  1. Radioactive Plumes Monitoring Simulator

    International Nuclear Information System (INIS)

    Kapelushnik, I.; Sheinfeld, M.; Avida, R.; Kadmon, Y.; Ellenbogen, M.; Tirosh, D.

    1999-01-01

    The Airborne Radiation Monitoring System (ARMS) monitors air or ground radioactive contamination. The contamination source can be a radioactive plume or an area contaminated with radionuclides. The system is based on two major parts, an airborne unit carried by a helicopter and a ground station carried by a truck. The system enables real time measurement and analysis of radioactive plumes as well as post flight processing. The Radioactive Plumes Monitoring Simulator purpose is to create a virtual space where the trained operators experience full radiation field conditions, without real radiation hazard. The ARMS is based on a flying platform and hence the simulator allows a significant reduction of flight time costs

  2. Intense harmonic generation from various ablation media

    International Nuclear Information System (INIS)

    Ozaki, T.; Elouga, L.; Suzuki, M.; Kuroda, H.; Ganeev, R.A.

    2006-01-01

    Complete test of publication follows. High-order harmonic generation (HHG) is a unique source of coherent extreme ultraviolet (XUV) radiation, which can produce soft x-rays within the spectral 'water-window' (between 2.3 and 4.4 nm), and ultimately short pulses with attosecond duration. However, the intensity of present-day harmonics is still low, and serious applications will need an increase of the conversion efficiency. Instead of using gas media, one can also use ablation material, produced on solid targets using a low-intensity prepulse, as the nonlinear medium to generate high-order harmonics. Recently, we have successfully demonstrated the generation of up to the 63 rd harmonic (λ = 12.6 nm) of a Ti:sapphire laser radiation using boron ablation, and a strong enhancement in the intensity of the 13 th harmonic from indium ablation. These harmonics were generated with a modest laser (10 mJ, 150 fs) and with the pre-pulse to main pulse energy ratio constant. In this paper, we perform systematic investigations of ablation harmonics, using the 200 mJ, 30 fs Ti:sapphire beam line of the Canadian Advanced Laser Light Source (ALLS) facility. ALLS allows studying ablation harmonics over wider experimental parameters, and with independent control over the pre-pulse and main pulse energies. The 10 Hz, 200 mJ Ti:sapphire beam line of ALLS is divided into two beams. Each beam has its own energy control system, which allows independent control over the energy of each beam. One of the beams is used as a pre-pulse for creating ablation, which is focused onto the solid target without pulse compression, with pulse duration of 200 ps. The second beam is used as the main pulse for harmonic generation. The main pulse is delayed in time relative to the pre-pulse by propagating through an optical delay line, and then sent through a pulse compressor. The compressed pulse duration have typical pulse duration of 30 fs FWHM, which is then focused onto the ablation medium using MgF 2

  3. Investigation of Balcony Plume Entrainment

    OpenAIRE

    Liu, F.; Nielsen, Peter V.; Heiselberg, Per; Brohus, Henrik; Li, B. Z.

    2009-01-01

    An investigation on the scenarios of the spill plume and its equation was presented in this paper. The study includes two aspects, i.e., the small-scale experiment and the numerical simulation. Two balcony spill plume models are assessed by comparing with the FDS (Fire Dynamic Simulation) and small scale model experiment results. Besides validating the spill model by experiments, the effect of different fire location on balcony plume is also discussed.The results show that the balcony equatio...

  4. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskiy, D P; Petrovskii, V N; Uspenskiy, S A [National Research Nuclear University ' MEPhI' (Russian Federation)

    2015-03-31

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study. (interaction of laser radiation with matter)

  5. Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation

    KAUST Repository

    Gondal, M. A.; Qahtan, Talal F.; Dastageer, Mohamed Abdulkader; Saleh, Tawfik A.; Maganda, Yasin W.; Anjum, Dalaver H.

    2013-01-01

    Pulsed laser ablation in liquid (PLAL) with 532 nm wavelength laser with 5 ns pulse duration is used to produce the nanostructure copper oxide and the effects of oxidizing media (deionized water and hydrogen peroxide) on the composition, morphology and optical properties of the product materials produced by PLAL were studied. XRD and TEM studies indicate that in the absence of hydrogen peroxide, the product material is in two phases (Cu/Cu2O) with the spherical nanoparticle structure, whereas in the presence of hydrogen peroxide in the liquid medium, the product material revealed other two phases (Cu/CuO) with nanorod-like structure. The optical studies revealed a considerable red shift (3.34-2.5 eV) in the band gap energy in the case of hydrogen peroxide in the liquid medium in PLAL synthesis compared to the one in the absence of it. Also the product material in the presence of hydrogen peroxide in the liquid medium showed a reduced photoluminescence intensity indicating the reduced electron-hole recombination rate. The red shift in the band gap energy and the reduced electron-hole recombination rate make the product material an ideal photocatalyst to harvest solar radiation for various applications. The most relevant signals on the FTIR spectrum for the samples are the absorption bands in the region between 450 and 700 cm-1 which are the characteristics bands of copperoxygen bonds. The reported laser ablation approach for the synthesis of Cu2O and CuO nanoparticles has the advantages of being clean method with controlled particle properties. © 2013 Elsevier B.V. All rights reserved.

  6. Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation

    KAUST Repository

    Gondal, M. A.

    2013-12-01

    Pulsed laser ablation in liquid (PLAL) with 532 nm wavelength laser with 5 ns pulse duration is used to produce the nanostructure copper oxide and the effects of oxidizing media (deionized water and hydrogen peroxide) on the composition, morphology and optical properties of the product materials produced by PLAL were studied. XRD and TEM studies indicate that in the absence of hydrogen peroxide, the product material is in two phases (Cu/Cu2O) with the spherical nanoparticle structure, whereas in the presence of hydrogen peroxide in the liquid medium, the product material revealed other two phases (Cu/CuO) with nanorod-like structure. The optical studies revealed a considerable red shift (3.34-2.5 eV) in the band gap energy in the case of hydrogen peroxide in the liquid medium in PLAL synthesis compared to the one in the absence of it. Also the product material in the presence of hydrogen peroxide in the liquid medium showed a reduced photoluminescence intensity indicating the reduced electron-hole recombination rate. The red shift in the band gap energy and the reduced electron-hole recombination rate make the product material an ideal photocatalyst to harvest solar radiation for various applications. The most relevant signals on the FTIR spectrum for the samples are the absorption bands in the region between 450 and 700 cm-1 which are the characteristics bands of copperoxygen bonds. The reported laser ablation approach for the synthesis of Cu2O and CuO nanoparticles has the advantages of being clean method with controlled particle properties. © 2013 Elsevier B.V. All rights reserved.

  7. Seismic images of the transition zone: is Hawaiian volcanism produced by a secondary plume from the top of the lower mantle?

    Science.gov (United States)

    Cao, Q.; van der Hilst, R. D.; Shim, S.; De Hoop, M. V.

    2011-12-01

    The Hawaiian hotspot is often attributed to hot material rising from depth in the mantle, but efforts to detect a thermal plume seismically have been inconclusive. Most tomographic models reveal anomalously low wavespeeds beneath Hawaii, but the depth extent of this structure is not well known. S or P data used in traveltime inversions are associated with steep rays to distant sources, which degrades depth resolution, and surface wave dispersion does not have sufficient sensitivity at the depths of interest. To investigate pertinent thermal anomalies we mapped depth variations of upper mantle discontinuities using precursors of the surface-reflected SS wave. Instead of stacking the data over geographical bins, which leads to averaging of topography and hence loss of spatial resolution, we used a generalized Radon transform (GRT) to detect and map localized elasticity contrasts in the transition zone (Cao et al., PEPI, 2010). We apply the GRT to produce 3D image volumes beneath a large area of the Pacific Ocean, including Hawaii and the Hawaii-Emperor seamount chain (Cao et al., Science, 2011). The 3D image volumes reveal laterally continuous interfaces near 410 and 660 km depths, that is, the traditional boundaries of the transition zone, but also suggest (perhaps intermittent) scatter horizons near 300-350, 520-550, and 800-1000 km depth. The upper mantle appears generally hot beneath Hawaii, but the most conspicuous topographic (and probably thermal) anomalies are found west of Hawaii. The GRT images reveal a 800 km wide uplift of the 660 discontinuity just west of Hawaii, but there is no evidence for a corresponding localized depression of the 410 discontinuity. This expression of the 410 and 660 km topographies is consistent with some existed geodynamical modeling results, in which a deep-rooted mantle plume impinging on the transition zone, creating a broad pond of hot material underneath endothermic phase change at 660 km depth, and with secondary plumes

  8. Radiofrequency Ablation of Lung Tumors

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Radiofrequency Ablation (RFA) / Microwave Ablation (MWA) of Lung Tumors ... and Microwave Ablation of Lung Tumors? What are Radiofrequency and Microwave Ablation of Lung Tumors? Radiofrequency ablation, ...

  9. Optimization of KrF laser ablation parameters for in-situ growth of Y1Ba2Cu3O7-δ thin films

    International Nuclear Information System (INIS)

    Pinto, R.; Pai, S.P.; Souza, C.P. d'; Gupta, L.C.; Vijayaraghavan, R.; Kumar, D.; Sharon, M.

    1992-01-01

    Using a KrF pulsed excimer laser, various interrelated deposition parameters governing the quality of laser-ablated Y 1 Ba 2 Cu 3 O 1-δ (123) thin films have been systematically studied. Modification of the 123 target with increasing laser exposure has been found to affect the plume stability, and the axis of the plume has been found to shift slowly towards the direction of the laser beam. Small laser spots exposing a relatively large diameter annular track of the rotating target have been found to give better plume stability than larger spots exposing the same diameter track. Because of better plume stability and larger plume expansion, smaller laser spots have been found to give significantly better quality 123 films as compared with large spots under optimised growth conditions. The effects of varying O 2 pressure and target-substrate distance have been found to be similar and the location of the substrates at or close to the tip of the plume has been found to be important for the realization of film stoichiometry and high quality. Results have shown that under optimised conditions of 3 J cm -2 fluence, 200 mTorr O 2 pressure and 4.5 cm target-substrate distance, films with Tc = 90 K, D T ∝ 1 K and critical current density, J c ≥ 2x10 6 A cm -2 at 77 K can be reproducibly realized on MgO substrates with small (3 mm x 0.8 mm) laser spots. (orig.)

  10. The propagation of GPS signals through electrically charged plumes

    Science.gov (United States)

    Méndez Harper, J.; Steffes, P. G.; Dufek, J.

    2017-12-01

    Probing the interior dynamics of eruptive columns using electrostatic processes generated within the flows themselves has garnered much interest in the recent years. Indeed, large eruptions are often accompanied by brilliant displays of lightning, testifying to the high potentials that can be accumulated by a diverse set of electrification mechanisms. Unfortunately, lightning on its own cannot be used as a general remote sensing tool because not all volcanic eruptions produce spark discharges. As pointed out by McNutt and Williams, 2010, only 30-35% of volcanoes maintain lightning storms. The absence of lightning in two thirds of all eruptions indicates that most volcanoes produce flows with 1) inefficient or limited granular charging processes or 2) dynamics that do not promote the charge separation that sets up coherent electric fields needed for lightning. Yet, even if the prerequisites for spark discharges are not met, it is difficult to argue for plumes which are completely electrostatically neutral. The problems permeating passive electromagnetic sensing may be overcome through the use of active methods which involve interrogating charged volcanic plumes with electromagnetic radiation. The scattering of electromagnetic waves has been a common method to retrieve the physical properties of collections of particles, specifically those which cannot be accessed directly. By modifying the standard Mie formulation, Klavcka et al., 2007 showed that surface charge may influence the extinction properties of grains if such particles are much smaller than the wavelength of the incident radiation. Based on this model, we posit that the properties of charged clouds of particles can be readily assessed using robust, existing infrastructure-the Global Positioning System. In the present work, we numerically explore the manner in which electrostatic charge on particles affect the propagation of electromagnetic waves through volcanic plumes. We show that, for the range of

  11. Submarine Alkalic Lavas Around the Hawaiian Hotspot; Plume and Non-Plume Signatures Determined by Noble Gases

    Science.gov (United States)

    Hanyu, T.; Clague, D. A.; Kaneoka, I.; Dunai, T. J.; Davies, G. R.

    2004-12-01

    Noble gas isotopic ratios were determined for submarine alkalic volcanic rocks distributed around the Hawaiian islands to constrain the origin of such alkalic volcanism. Samples were collected by dredging or using submersibles from the Kauai Channel between Oahu and Kauai, north of Molokai, northwest of Niihau, Southwest Oahu, South Arch and North Arch volcanic fields. Sites located downstream from the center of the hotspot have 3He/4He ratios close to MORB at about 8 Ra, demonstrating that the magmas erupted at these sites had minimum contribution of volatiles from a mantle plume. In contrast, the South Arch, located upstream of the hotspot on the Hawaiian Arch, has 3He/4He ratios between 17 and 21 Ra, indicating a strong plume influence. Differences in noble gas isotopic characteristics between alkalic volcanism downstream and upstream of the hotspot imply that upstream volcanism contains incipient melts from an upwelling mantle plume, having primitive 3He/4He. In combination with lithophile element isotopic data, we conclude that the most likely source of the upstream magmatism is depleted asthenospheric mantle that has been metasomatised by incipient melt from a mantle plume. After major melt extraction from the mantle plume during production of magmas for the shield stage, the plume material is highly depleted in noble gases and moderately depleted in lithophile elements. Partial melting of the depleted mantle impregnated by melts derived from this volatile depleted plume source may explain the isotopic characteristics of the downstream alkalic magmatism.

  12. Case Experience of Radiofrequency Ablation for Benign Thyroid Nodules: From an Ex Vivo Animal Study to an Initial Ablation in Taiwan

    Directory of Open Access Journals (Sweden)

    Ming-Tsang Lee

    2016-03-01

    Full Text Available Radiofrequency ablation (RFA is a minimally invasive technique, used with ultrasound or computed tomography guidance, which can produce tissue coagulation necrosis in various kinds of tumors in the human body. In the past 10 years, numerous studies about RFA in benign thyroid nodules have been published. Reviewing these studies, we noticed that the effectiveness of ablation was higher when it was performed with the “moving-shot technique” via an internally cooled electrode. A consensus statement published from the Korean Society of Radiology also suggested the moving-shot technique as a standard ablation procedure for benign thyroid nodule ablation in Korea. In Taiwan, most symptomatic benign nodules are currently treated with surgical removal. RFA for mass lesions is primarily performed for the treatment of metastatic hepatic tumors. In our case, we have attempted to introduce RFA for benign thyroid nodules in Taiwan. Because endocrinologists in Taiwan were not familiar with this technique, we adopted a stepwise approach in learning how to perform RFA. We conducted ex vivo animal ablation exercises to gain experience in setting the radiofrequency generator for the right ablation mode and appropriate power output. The thyroid nodule volume reduction rate after 1 year of follow up was approximately 50% in this case. The most important thing we learned from this trial is that we confirmed the safety of thyroid nodule ablation. To the best of our knowledge, this is the first reported study of RFA of a thyroid nodule in Taiwan.

  13. Effects of Foveal Ablation on Emmetropization and Form-Deprivation Myopia

    Science.gov (United States)

    Smith, Earl L.; Ramamirtham, Ramkumar; Qiao-Grider, Ying; Hung, Li-Fang; Huang, Juan; Kee, Chea-su; Coats, David; Paysse, Evelyn

    2009-01-01

    Purpose Because of the prominence of central vision in primates, it has generally been assumed that signals from the fovea dominate refractive development. To test this assumption, the authors determined whether an intact fovea was essential for either normal emmetropization or the vision-induced myopic errors produced by form deprivation. Methods In 13 rhesus monkeys at 3 weeks of age, the fovea and most of the perifovea in one eye were ablated by laser photocoagulation. Five of these animals were subsequently allowed unrestricted vision. For the other eight monkeys with foveal ablations, a diffuser lens was secured in front of the treated eyes to produce form deprivation. Refractive development was assessed along the pupillary axis by retinoscopy, keratometry, and A-scan ultrasonography. Control data were obtained from 21 normal monkeys and three infants reared with plano lenses in front of both eyes. Results Foveal ablations had no apparent effect on emmetropization. Refractive errors for both eyes of the treated infants allowed unrestricted vision were within the control range throughout the observation period, and there were no systematic interocular differences in refractive error or axial length. In addition, foveal ablation did not prevent form deprivation myopia; six of the eight infants that experienced monocular form deprivation developed myopic axial anisometropias outside the control range. Conclusions Visual signals from the fovea are not essential for normal refractive development or the vision-induced alterations in ocular growth produced by form deprivation. Conversely, the peripheral retina, in isolation, can regulate emmetropizing responses and produce anomalous refractive errors in response to abnormal visual experience. These results indicate that peripheral vision should be considered when assessing the effects of visual experience on refractive development. PMID:17724167

  14. Lithosphere erosion atop mantle plumes

    Science.gov (United States)

    Agrusta, R.; Arcay, D.; Tommasi, A.

    2012-12-01

    Mantle plumes are traditionally proposed to play an important role in lithosphere erosion. Seismic images beneath Hawaii and Cape Verde show a lithosphere-asthenosphere-boundary (LAB) up to 50 km shallower than the surroundings. However, numerical models show that unless the plate is stationary the thermo-mechanical erosion of the lithosphere does not exceed 30 km. We use 2D petrological-thermo-mechanical numerical models based on a finite-difference method on a staggered grid and marker in cell method to study the role of partial melting on the plume-lithosphere interaction. A homogeneous peridotite composition with a Newtonian temperature- and pressure-dependent viscosity is used to simulate both the plate and the convective mantle. A constant velocity, ranging from 5 to 12.5 cm/yr, is imposed at the top of the plate. Plumes are created by imposing a thermal anomaly of 150 to 350 K on a 50 km wide domain at the base of the model (700 km depth); the plate right above the thermal anomaly is 40 Myr old. Partial melting is modeled using batch-melting solidus and liquidus in anhydrous conditions. We model the progressive depletion of peridotite and its effect on partial melting by assuming that the melting degree only strictly increases through time. Melt is accumulated until a porosity threshold is reached and the melt in excess is then extracted. The rheology of the partially molten peridotite is determined using viscous constitutive relationship based on a contiguity model, which enables to take into account the effects of grain-scale melt distribution. Above a threshold of 1%, melt is instantaneously extracted. The density varies as a function of partial melting degree and extraction. Besides, we analyze the kinematics of the plume as it impacts a moving plate, the dynamics of time-dependent small-scale convection (SSC) instabilities developing in the low-viscosity layer formed by spreading of hot plume material at the lithosphere base, and the resulting thermal

  15. Turbulent forces within river plumes affect spread

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-08-01

    When rivers drain into oceans through narrow mouths, hydraulic forces squeeze the river water into buoyant plumes that are clearly visible in satellite images. Worldwide, river plumes not only disperse freshwater, sediments, and nutrients but also spread pollutants and organisms from estuaries into the open ocean. In the United States, the Columbia River—the largest river by volume draining into the Pacific Ocean from North America—generates a plume at its mouth that transports juvenile salmon and other fish into the ocean. Clearly, the behavior and spread of river plumes, such as the Columbia River plume, affect the nation's fishing industry as well as the global economy.

  16. Plume rise measurements at Turbigo

    Energy Technology Data Exchange (ETDEWEB)

    Anfossi, D

    1982-01-01

    This paper presents analyses of plume measurements obtained during that campaign by the ENEL ground-based Lidar. The five stacks of Turbigo Power Plant have different heights and emission parameters and their plumes usually combine, so a model for multiple sources was used to predict the plume rises. These predictions are compared with the observations. Measurements of sigma/sub v/ and sigma/sub z/ over the first 1000 m are compared with the curves derived from other observations in the Po Valley, using the no-lift balloon technique over the same range of downwind distance. Skewness and kurtosis distributions are shown, both along the vertical and the horizontal directions. In order to show the plume structure in more detail, we present two examples of Lidar-derived cross sections and the corresponding vertically and horizontally integrated concentration profiles.

  17. High-order harmonic generation in laser plasma plumes

    CERN Document Server

    Ganeev, Rashid A

    2013-01-01

    This book represents the first comprehensive treatment of high-order harmonic generation in laser-produced plumes, covering the principles, past and present experimental status and important applications. It shows how this method of frequency conversion of laser radiation towards the extreme ultraviolet range matured over the course of multiple studies and demonstrated new approaches in the generation of strong coherent short-wavelength radiation for various applications. Significant discoveries and pioneering contributions of researchers in this field carried out in various laser scientific centers worldwide are included in this first attempt to describe the important findings in this area of nonlinear spectroscopy. "High-Order Harmonic Generation in Laser Plasma Plumes" is a self-contained and unified review of the most recent achievements in the field, such as the application of clusters (fullerenes, nanoparticles, nanotubes) for efficient harmonic generation of ultrashort laser pulses in cluster-containin...

  18. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Directory of Open Access Journals (Sweden)

    Chenguo Yao

    Full Text Available Irreversible electroporation (IRE produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs to create a large electroporated area and long low-voltage pulses (LVPs to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  19. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Science.gov (United States)

    Yao, Chenguo; Lv, Yanpeng; Dong, Shoulong; Zhao, Yajun; Liu, Hongmei

    2017-01-01

    Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  20. Effect of liquid properties on laser ablation of aluminum and titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Peixuan, E-mail: oypx12@mails.tsinghua.edu.cn [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); Li, Peijie [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Leksina, E.G.; Michurin, S.V. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992 (Russian Federation); He, Liangju [School of Aerospace, Tsinghua University, Beijing 100084 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Porous surfaces are formed in Al alloy after wet ablation due to phase explosion. • A higher ablation rate is produced in glycerin than that in water and isopropanol. • Effect of liquid properties on mass-removal mechanisms was discussed. • Phase explosion and plasma-induced pressure contribute greatly to mass removal. • Density, heat conductivity and shock impendence of liquid affect ablation rates. - Abstract: In order to study the effect of liquid properties on laser ablation in liquids, aluminum 5A06 and titanium TB5 targets were irradiated by single-pulse infrared laser in isopropanol, distilled water, glycerin and as a comparison, in air, respectively. Craters induced by laser ablation were characterized using scanning electron and white-light interferometric microscopies. The results show that for liquid-mediated ablation, craters with porous surface structures were formed in aluminum target through phase explosion, while no micro-cavities were formed in titanium target owing to high critical temperature of titanium. In addition, ablation rates of aluminum and titanium targets vary with types of ambient media in accordance with such sequence: air < isopropanol < water < glycerin. Further, the influence of liquid properties on material-removal mechanisms for laser ablation in liquid is discussed. It is concluded that the density, thermal conductivity and acoustical impedance of liquid play a dominant role in laser ablation efficiency.

  1. Bioinspired algorithm for autonomous sensor-driven guidance in turbulent chemical plumes

    International Nuclear Information System (INIS)

    Webster, D R; Volyanskyy, K Y; Weissburg, M J

    2012-01-01

    We designed and implemented a control algorithm for sensor-mediated chemical plume tracking in a turbulent flow environment. In our design, we focused on development of a signal processing strategy capable of replicating behavioral responses of actively tracking blue crabs (Callinectes sapidus) to chemical stimuli. The control algorithm is evaluated in a hardware platform that allows motion in two directions (i.e. forward–back and left–right). The geometric arrangement of the sensor array is inspired by the location of blue crab sensor populations. Upstream motion is induced by a binary response to supra-threshold spikes of concentration, and cross-stream steering is controlled by contrast between bilaterally-separated sensors. Like animal strategies, the developed control algorithm is dynamic. This property allows the algorithm to function effectively in the highly irregular turbulent environment and produces adaptive adjustments of motion to minimize the distance to the source of a plume. Tracking trials indicate that roughly 80% of the tracks successfully stop near the plume source location. Both success rate and movement patterns of the tracker compare favorably to that of blue crabs searching for odorant plume sources, thus suggesting that our sensory-mediated behavior hypothesis are generally accurate and that the associated tracking mechanisms may be successfully implemented in hardware. (paper)

  2. Plume meander and dispersion in a stable boundary layer

    Science.gov (United States)

    Hiscox, April L.; Miller, David R.; Nappo, Carmen J.

    2010-11-01

    Continuous lidar measurements of elevated plume dispersion and corresponding micrometeorology data are analyzed to establish the relationship between plume behavior and nocturnal boundary layer dynamics. Contrasting nights of data from the JORNADA field campaign in the New Mexico desert are analyzed. The aerosol lidar measurements were used to separate the plume diffusion (plume spread) from plume meander (displacement). Mutiresolution decomposition was used to separate the turbulence scale (90 s). Durations of turbulent kinetic energy stationarity and the wind steadiness were used to characterize the local scale and submesoscale turbulence. Plume meander, driven by submesoscale wind motions, was responsible for most of the total horizontal plume dispersion in weak and variable winds and strong stability. This proportion was reduced in high winds (i.e., >4 m s-1), weakly stable conditions but remained the dominant dispersion mechanism. The remainder of the plume dispersion in all cases was accounted for by internal spread of the plume, which is a small eddy diffusion process driven by turbulence. Turbulence stationarity and the wind steadiness are demonstrated to be closely related to plume diffusion and plume meander, respectively.

  3. Effect of ablatant composition on the ablation of a fuelling pellet

    International Nuclear Information System (INIS)

    Chang, C.T.; Thomsen, K.; Piret, S.

    1988-01-01

    The single species neutral-shielding model for the ablation of a hydrogenic pellet is extended by considering the ablatant as a mixture of four species: molecular and atomic hydrogen, protons and electrons. Compared with the results of the frozen flow, (i.e. the single species molecular hydrogen gas model), results of the analysis showed that the presence of dissociation and ionization effects caused a marked difference of the ablatant state. The attenuations of the incoming electron energy and energy flux, however, are very much similar irrespective of whether the ablated flow is in a frozen or an equilibrium state. The scaling law of the pellet ablation rate with respect to the plasma state of Te, ne and the pellet radius remains the same; the ablation rate is reduced by approximately 15%. To examine the possible existence of a spherical shell around the pellet where most of the incoming electron energy is absorbed, acodmparison is made between the local electron collisional mean free path and the electron Larmor radius. A critical field at the ionization radius is evaluated. An effective spherical energyabsorbing region exists when the local field strength is below the critical value. For a plasma state of low Te and ne, (where the ablatant is hardly ionized), and for one near the thermonuclear condition (where a highly dense ablatant exists near the pellet), the effective energy absorption region is nearly spherical. 20 refs. (author)

  4. Experimental investigation of bubble plume structure instability

    Energy Technology Data Exchange (ETDEWEB)

    Marco Simiano; Robert Zboray; Francois de Cachard [Thermal-Hydraulics Laboratory, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Djamel Lakehal; George Yadigaroglu [Institute of Energy Technology, Swiss Federal Institute of Technology, ETH-Zentrum/CLT, 8092 Zurich (Switzerland)

    2005-07-01

    Full text of publication follows: The hydrodynamic properties of a 3D bubble plume in a large water pool are investigated experimentally. Bubble plumes are present in various industrial processes, including chemical plants, stirred reactors, and nuclear power plants, e.g. in BWR suppression pools. In these applications, the main issue is to predict the currents induced by the bubbles in the liquid phase, and to determine the consequent mixing. Bubble plumes, especially large and unconfined ones, present strong 3D effects and a superposition of different characteristic length scales. Thus, they represent relevant test cases for assessment and verification of 3D models in thermal-hydraulic codes. Bubble plumes are often unsteady, with fluctuations in size and shape of the bubble swarm, and global movements of the plume. In this case, local time-averaged data are not sufficient to characterize the flow. Additional information regarding changes in plume shape and position is required. The effect of scale on the 3D flow structure and stability being complex, there was a need to conduct studies in a fairly large facility, closer to industrial applications. Air bubble plumes, up to 30 cm in base diameter and 2 m in height were extensively studied in a 2 m diameter water pool. Homogeneously sized bubbles were obtained using a particular injector. The main hydrodynamic parameters. i.e., gas and liquid velocities, void fraction, bubble shape and size, plume shape and position, were determined experimentally. Photographic and image processing techniques were used to characterize the bubble shape, and double-tip optical probes to measure bubble size and void fraction. Electromagnetic probes measured the recirculation velocity in the pool. Simultaneous two-phase flow particle image velocimetry (STPFPIV) in a vertical plane containing the vessel axis provided instantaneous velocity fields for both phases and therefore the relative velocity field. Video recording using two CCD

  5. PLUME-MoM 1.0: A new integral model of volcanic plumes based on the method of moments

    Science.gov (United States)

    de'Michieli Vitturi, M.; Neri, A.; Barsotti, S.

    2015-08-01

    In this paper a new integral mathematical model for volcanic plumes, named PLUME-MoM, is presented. The model describes the steady-state dynamics of a plume in a 3-D coordinate system, accounting for continuous variability in particle size distribution of the pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging from a few microns up to several centimeters and more. A proper description of such a multi-particle nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore, for better characterization of source conditions of ash dispersal models. The new model is based on the method of moments, which allows for a description of the pyroclastic mixture dynamics not only in the spatial domain but also in the space of parameters of the continuous size distribution of the particles. This is achieved by formulation of fundamental transport equations for the multi-particle mixture with respect to the different moments of the grain-size distribution. Different formulations, in terms of the distribution of the particle number, as well as of the mass distribution expressed in terms of the Krumbein log scale, are also derived. Comparison between the new moments-based formulation and the classical approach, based on the discretization of the mixture in N discrete phases, shows that the new model allows for the same results to be obtained with a significantly lower computational cost (particularly when a large number of discrete phases is adopted). Application of the new model, coupled with uncertainty quantification and global sensitivity analyses, enables the investigation of the response of four key output variables (mean and standard deviation of the grain-size distribution at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to changes in the main input parameters (mean and standard deviation) characterizing the

  6. Fossil plume head beneath the Arabian lithosphere?

    Science.gov (United States)

    Stein, Mordechai; Hofmann, Albrecht W.

    1992-12-01

    Phanerozoic alkali basalts from Israel, which have erupted over the past 200 Ma, have isotopic compositions similar to PREMA ("prevalent mantle") with narrow ranges of initial ɛ Nd(T) = +3.9-+5.9; 87Sr/ 86Sr(T)= 0.70292-0.70334; 206Pb/ 204Pb(T)= 18.88-19.99; 207Pb/ 204Pb(T)= 15.58-15.70; and 208Pb/ 204Pb(T)= 38.42-39.57. Their Nb/U(43 ± 9) and Ce/Pb(26 ± 6) ratios are identical to those of normal oceanic basalts, demonstrating that the basalts are essentially free of crustal contamination. Overall, the basalts are chemically and isotopically indistinguishable from many ordinary plume basalts, but no plume track can be identified. We propose that these and other, similar, magmas from the Arabian plate originated from a "fossilized" head of a mantle plume, which was unable to penetrate the continental lithosphere and was therefore trapped and stored beneath it. The plume head was emplaced some time between the late Proterozoic crust formation and the initiation of the Phanerozoic magmatic cycles. Basalts from rift environments in other continental localities show similar geochemistry to that of the Arabian basalts and their sources may also represent fossil plume heads trapped below the continents. We suggest that plume heads are, in general, characterized by the PREMA isotopic mantle signature, because the original plume sources (which may have HIMU or EM-type composition) have been diluted by overlying mantle material, which has been entrained by the plume heads during ascent. On the Arabian plate, rifting and thinning of the lithosphere caused partial melting of the stored plume, which led to periodic volcanism. In the late Cenozoic, the lithosphere broke up and the Red Sea opened. N-MORB tholeiites are now erupting in the central trough of the Red Sea, where the lithosphere has moved apart and the fossil plume has been exhausted, whereas E-MORBs are erupting in the northern and southern troughs, still tapping the plume reservoir. Fossil plumes, which are

  7. The planet beyond the plume hypothesis

    Science.gov (United States)

    Smith, Alan D.; Lewis, Charles

    1999-12-01

    Acceptance of the theory of plate tectonics was accompanied by the rise of the mantle plume/hotspot concept which has come to dominate geodynamics from its use both as an explanation for the origin of intraplate volcanism and as a reference frame for plate motions. However, even with a large degree of flexibility permitted in plume composition, temperature, size, and depth of origin, adoption of any limited number of hotspots means the plume model cannot account for all occurrences of the type of volcanism it was devised to explain. While scientific protocol would normally demand that an alternative explanation be sought, there have been few challenges to "plume theory" on account of a series of intricate controls set up by the plume model which makes plumes seem to be an essential feature of the Earth. The hotspot frame acts not only as a reference but also controls plate tectonics. Accommodating plumes relegates mantle convection to a weak, sluggish effect such that basal drag appears as a minor, resisting force, with plates having to move themselves by boundary forces and continents having to be rifted by plumes. Correspondingly, the geochemical evolution of the mantle is controlled by the requirement to isolate subducted crust into plume sources which limits potential buffers on the composition of the MORB-source to plume- or lower mantle material. Crustal growth and Precambrian tectonics are controlled by interpretations of greenstone belts as oceanic plateaus generated by plumes. Challenges to any aspect of the plume model are thus liable to be dismissed unless a counter explanation is offered across the geodynamic spectrum influenced by "plume theory". Nonetheless, an alternative synthesis can be made based on longstanding petrological evidence for derivation of intraplate volcanism from volatile-bearing sources (wetspots) in conjunction with concepts dismissed for being incompatible or superfluous to "plume theory". In the alternative Earth, the sources for

  8. Three-dimensional simulation of gas and dust in Io's Pele plume

    Science.gov (United States)

    McDoniel, William J.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2015-09-01

    Io's giant Pele plume rises high above the moon's surface and produces a complex deposition pattern. We use the direct simulation Monte Carlo (DSMC) method to model the flow of SO2 gas and silicate ash from the surface of the lava lake, into the umbrella-shaped canopy of the plume, and eventually onto the surface where the flow leaves black "butterfly wings" surrounded by a large red ring. We show how the geometry of the lava lake, from which the gas is emitted, is responsible for significant asymmetry in the plume and for the shape of the red deposition ring by way of complicated gas-dynamic interactions between parts of the gas flow arising from different areas in the lava lake. We develop a model for gas flow in the immediate vicinity of the lava lake and use it to show that the behavior of ash particles of less than about 2 μm in diameter in the plume is insensitive to the details of how they are introduced into the flow because they are coupled to the gas at low altitudes. We simulate dust particles in the plume to show how particle size determines the distance from the lava lake at which particles deposit on the surface, and we use this dependence to find a size distribution of black dust particles in the plume that provides the best explanation for the observed black fans to the east and west of the lava lake. This best-fit particle size distribution suggests that there may be two distinct mechanisms of black dust creation at Pele, and when two log-normal distributions are fit to our results we obtain a mean particle diameter of 88 nm. We also propose a mechanism by which the condensible plume gas might overlay black dust in areas where black coloration is not observed and compare this to the observed overlaying of Pillanian dust by Pele's red ring.

  9. Guided Seismic Waves: Possible Diagnostics for Hot Plumes in the Mantle

    Science.gov (United States)

    Evans, J. R.; Julian, B. R.; Foulger, G. R.

    2005-12-01

    Seismic waves potentially provide by far the highest resolution view of the three-dimensional structure of the mantle, and the hope of detecting wave-speed anomalies caused by hot or compositionally buoyant mantle plumes has been a major incentive to the development of tomographic seismic techniques. Seismic tomography is limited, however, by the uneven geographical distribution of earthquakes and seismometers, which can produce artificial tomographic wave-speed anomalies that are difficult to distinguish from real structures in the mantle. An alternate approach may be possible, because hot plumes and possibly some compositional upwellings would have low seismic-wave speeds and would act as efficient waveguides over great depth ranges in the mantle. Plume-guided waves would be little affected by bends or other geometric complexities in the waveguides (analogously to French horns and fiber-optic cables), and their dispersion would make them distinctive on seismograms and would provide information on the size and structure of the waveguide. The main unanswered question is whether guided waves in plumes could be excited sufficiently to be observable. Earthquakes do not occur in the deep mantle, but at least two other possible sources of excitation can be imagined: (1) shallow earthquakes at or near plume-fed hotspots; and (2) coupling of plume-guided waves to seismic body waves near the bottom of the mantle. In the first case, downward-traveling guided waves transformed to seismic body waves at the bottom of the waveguide would have to be detected at teleseismic distances. In the second case, upward-traveling guided waves generated by teleseismic body waves would be detected on seismometers at hotspots. Qualitative reasoning based on considerations of reciprocity suggests that the signals in these two situations should be similar in size and appearance. The focusing of seismic core phases at caustics would amplify plume waves excited by either mechanism (1) or (2) at

  10. Is the track of the Yellowstone hotspot driven by a deep mantle plume? -- Review of volcanism, faulting, and uplift in light of new data

    Science.gov (United States)

    Pierce, Kenneth L.; Morgan, Lisa A.

    2009-01-01

    Geophysical imaging of a tilted mantle plume extending at least 500 km beneath the Yellowstone caldera provides compelling support for a plume origin of the entire Yellowstone hotspot track back to its inception at 17 Ma with eruptions of flood basalts and rhyolite. The widespread volcanism, combined with a large volume of buoyant asthenosphere, supports a plume head as an initial phase. Estimates of the diameter of the plume head suggest it completely spanned the upper mantle and was fed from sources beneath the transition zone, We consider a mantle–plume depth to at least 1,000 km to best explain the large scale of features associated with the hotspot track. The Columbia River–Steens flood basalts form a northward-migrating succession consistent with the outward spreading of a plume head beneath the lithosphere. The northern part of the inferred plume head spread (pancaked) upward beneath Mesozoic oceanic crust to produce flood basalts, whereas basalt melt from the southern part intercepted and melted Paleozoic and older crust to produce rhyolite from 17 to 14 Ma. The plume head overlapped the craton margin as defined by strontium isotopes; westward motion of the North American plate has likely "scraped off" the head from the plume tail. Flood basalt chemistries are explained by delamination of the lithosphere where the plume head intersected this cratonic margin. Before reaching the lithosphere, the rising plume head apparently intercepted the east-dipping Juan de Fuca slab and was deflected ~ 250 km to the west; the plume head eventually broke through the slab, leaving an abruptly truncated slab. Westward deflection of the plume head can explain the anomalously rapid hotspot movement of 62 km/m.y. from 17 to 10 Ma, compared to the rate of ~ 25 km/m.y. from 10 to 2 Ma.

  11. Characterization of redox conditions in pollution plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bjerg, Poul Løgstrup; Banwart, Steven A.

    2000-01-01

    Evalution of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few...

  12. Plan for PLEX X-Ray Ablation Experiments and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J F; Reyes, S

    2001-09-27

    PLEX is a Z-pinch based x-ray source that can produce x-rays with fluences (0.3-18 J/cm{sup 2}), pulselengths (10-30 ns), repetition rates (<10 Hz), and energies (50-500 eV) of interest for IFE chambers and optics. It provides an affordable, dedicated method to advance our understanding of x-ray damage to materials. The PLEX x-ray source will be used to experimentally validate and further develop the ABLATOR x-ray ablation code for use in inertial fusion energy (IFE) studies.

  13. Laser ablation principles and applications

    CERN Document Server

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  14. Io Pele plume

    Science.gov (United States)

    2000-01-01

    Voyager 1 took this narrow-angle camera image on 5 March 1979 from a distance of 450,000 kilometers. At this geometry, the camera looks straight down through a volcanic plume at one of Io's most active volcanos, Pele. The large heart-shaped feature is the region where Pele's plume falls to the surface. At the center of the 'heart' is the small dark fissure that is the source of the eruption. The Voyager Project is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  15. Io's Active Eruption Plumes: Insights from HST

    Science.gov (United States)

    Jessup, K. L.; Spencer, J. R.

    2011-10-01

    Taking advantage of the available data, we recently [10] completed a detailed analysis of the spectral signature of Io's Pele-type Tvashtar plume as imaged by the HST Wide Field and Planetary Camera 2 (HST/WFPC2) via absorption during Jupiter transit and via reflected sunlight in 2007, as well as HST/WFPC2 observations of the 1997 eruption of Io's Prometheus-type Pillan plume (Fig. 1). These observations were obtained in the 0.24-0.42 μm range, where the plumes gas absorption and aerosol scattering properties are most conspicuous. By completing a detailed analysis of these observations, several key aspects of the reflectance and the absorption properties of the two plumes have been revealed. Additionally, by considering the analysis of the HST imaging data in light of previously published spectral analysis of Io's Prometheus and Pele-type plumes several trends in the plume properties have been determined, allowing us to define the relative significance of each plume on the rate of re-surfacing occurring on Io and providing the measurements needed to better assess the role the volcanoes play in the stability of Io's tenuous atmosphere.

  16. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias; Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas; Mahnken, Andreas H.

    2012-01-01

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 ± 0.14, 1.45 ± 0.13, and 1.74 ± 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 ± 0.09 and 1.26 ± 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 ± 0.65, 2.85 ± 0.72, and 4.45 ± 0.47 cm 3 for MW ablation at outputs of 25W, 35W, and 45W and 1.18 ± 0.30 and 2.29 ± 0.55 cm 3 got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  17. Small rocket exhaust plume data

    Science.gov (United States)

    Chirivella, J. E.; Moynihan, P. I.; Simon, W.

    1972-01-01

    During recent cryodeposit tests with an 0.18-N thruster, the mass flux in the plume back field was measured for the first time for nitrogen, carbon dioxide, and a mixture of nitrogen, hydrogen, and ammonia at various inlet pressures. This mixture simulated gases that would be generated by a hydrazine plenum attitude propulsion system. The measurements furnish a base upon which to build a mathematical model of plume back flow that will be used in predicting the mass distribution in the boundary region of other plumes. The results are analyzed and compared with existing analytical predictions.

  18. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report.

    Science.gov (United States)

    Oddo, Silvia; Balestra, Margherita; Vera, Lara; Giusti, Massimo

    2018-05-11

    Radiofrequency ablation and laser ablation are safe and effective techniques for reducing thyroid nodule volume, neck symptoms, and cosmetic complaints. Therapeutic success is defined as a nodule reduction > 50% between 6 and 12 months after the procedure, but a percentage of nodules inexplicably do not respond to thermal ablation. We describe the case of a young Caucasian woman with a solid benign thyroid nodule who refused surgery and who had undergone radiofrequency ablation in 2013. The nodule did not respond in terms of either volume reduction or improvement in neck symptoms. After 2 years, given the patient's continued refusal of thyroidectomy, we proposed laser ablation. The nodule displayed a significant volume reduction (- 50% from radiofrequency ablation baseline volume, - 57% from laser ablation baseline), and the patient reported a significant improvement in neck symptoms (from 6/10 to 1/10 on a visual analogue scale). We conjecture that some benign thyroid nodules may be intrinsically resistant to necrosis when one specific ablation technique is used, but may respond to another technique. To the best of our knowledge, this is the first description of the effect of performing a different percutaneous ablation technique in a nodule that does not respond to radiofrequency ablation.

  19. Increase in Volume of Ablation Zones during Follow-up Is Highly Suggestive of Ablation Site Recurrence in Colorectal Liver Metastases Treated with Radiofrequency Ablation

    NARCIS (Netherlands)

    Kele, Petra G.; de Jong, Koert P.; van der Jagt, Eric J.

    Purpose: To test the hypothesis that volume changes of ablation zones (AZs) on successive computed tomography (CT) scans could predict ablation site recurrences (ASRs) in patients with colorectal liver metastases treated by radiofrequency (RF) ablation. Materials and Methods: RF ablation was

  20. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects....

  1. Interactive Volumetry Of Liver Ablation Zones.

    Science.gov (United States)

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-10-20

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm's results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.

  2. Interactive Volumetry Of Liver Ablation Zones

    Science.gov (United States)

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-10-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm’s results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.

  3. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    Science.gov (United States)

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  4. Pulmonary ablation: a primer.

    Science.gov (United States)

    Roberton, Benjamin J; Liu, David; Power, Mark; Wan, John M C; Stuart, Sam; Klass, Darren; Yee, John

    2014-05-01

    Percutaneous image-guided thermal ablation is safe and efficacious in achieving local control and improving outcome in the treatment of both early stage non-small-cell lung cancer and pulmonary metastatic disease, in which surgical treatment is precluded by comorbidity, poor cardiorespiratory reserve, or unfavorable disease distribution. Radiofrequency ablation is the most established technology, but new thermal ablation technologies such as microwave ablation and cryoablation may offer some advantages. The use of advanced techniques, such as induced pneumothorax and the popsicle stick technique, or combining thermal ablation with radiotherapy, widens the treatment options available to the multidisciplinary team. The intent of this article is to provide the reader with a practical knowledge base of pulmonary ablation by concentrating on indications, techniques, and follow-up. Copyright © 2014 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  5. Mathematical modelling of thermal-plume interaction at Waterford Nuclear Power Station

    International Nuclear Information System (INIS)

    Tsai, S.Y.H.

    1981-01-01

    The Waldrop plume model was used to analyze the mixing and interaction of thermal effluents in the Mississippi River resulting from heated-water discharges from the Waterford Nuclear Power Station Unit 3 and from two nearby fossil-fueled power stations. The computer program of the model was modified and expanded to accommodate the multiple intake and discharge boundary conditions at the Waterford site. Numerical results of thermal-plume temperatures for individual and combined operation of the three power stations were obtained for typical low river flow (200,000 cfs) and maximum station operating conditions. The predicted temperature distributions indicated that the surface jet discharge from Waterford Unit 3 would interact with the thermal plumes produced by the two fossil-fueled stations. The results also showed that heat recirculation between the discharge of an upstream fossil-fueled plant and the intake of Waterford Unit 3 is to be expected. However, the resulting combined temperature distributions were found to be well within the thermal standards established by the state of Louisiana

  6. Rise of a cold plume

    International Nuclear Information System (INIS)

    Kakuta, Michio

    1977-06-01

    The rise of smoke from the stacks of two research reactors in normal operation was measured by photogrametric method. The temperature of effluent gas is less than 20 0 C higher than that of the ambient air (heat emission of the order 10 4 cal s -1 ), and the efflux velocity divided by the wind speed is between 0.5 and 2.8 in all 16 smoke runs. The field data obtained within downwind distance of 150m are compared with those by plume rise formulas presently available. Considering the shape of bending-over plume, the Briggs' formula for 'jet' gives a reasonable explanation of the observed plume rise. (auth.)

  7. PLUME-MoM 1.0: a new 1-D model of volcanic plumes based on the method of moments

    Science.gov (United States)

    de'Michieli Vitturi, M.; Neri, A.; Barsotti, S.

    2015-05-01

    In this paper a new mathematical model for volcanic plumes, named PlumeMoM, is presented. The model describes the steady-state 1-D dynamics of the plume in a 3-D coordinate system, accounting for continuous variability in particle distribution of the pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging from a few microns up to several centimeters and more. Proper description of such a multiparticle nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore, for better characterization of source conditions of ash dispersal models. The new model is based on the method of moments, which allows description of the pyroclastic mixture dynamics not only in the spatial domain but also in the space of properties of the continuous size-distribution of the particles. This is achieved by formulation of fundamental transport equations for the multiparticle mixture with respect to the different moments of the grain-size distribution. Different formulations, in terms of the distribution of the particle number, as well as of the mass distribution expressed in terms of the Krumbein log scale, are also derived. Comparison between the new moments-based formulation and the classical approach, based on the discretization of the mixture in N discrete phases, shows that the new model allows the same results to be obtained with a significantly lower computational cost (particularly when a large number of discrete phases is adopted). Application of the new model, coupled with uncertainty quantification and global sensitivity analyses, enables investigation of the response of four key output variables (mean and standard deviation (SD) of the grain-size distribution at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to changes in the main input parameters (mean and SD) characterizing the pyroclastic mixture at the base of the plume

  8. DSMC Simulations of Irregular Source Geometries for Io's Pele Plume

    Science.gov (United States)

    McDoniel, William; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2010-10-01

    Volcanic plumes on Io represent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D rarefied gas dynamics method (DSMC) is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. These deposition patterns, such as the deposition ring's shape and orientation, as well as the presence and shape of ash deposits around the vent, are linked to the shape of the vent from which the plume material arises. We will present three-dimensional simulations for a variety of possible vent geometries for Pele based on observations of the volcano's caldera. One is a curved line source corresponding to a Galileo IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire lava lake at the center of the plume. The curvature of the former is seen to be sufficient to produce the features seen in observations of Pele's deposition pattern, but the particular orientation of the source is found to be such that it cannot match the orientation of these features on Io's surface. The latter corrects the error in orientation while losing some of the structure, suggesting that the actual source may correspond well with part of the shore of the lava lake. In addition, we are collaborating with a group at the University of Illinois at Urbana-Champaign to develop a hybrid method to link the continuum flow beneath Io's surface and very close to the vent to the more rarefied flow in the large volcanic plumes. This work was funded by NASA-PATM grant NNX08AE72G.

  9. Femtosecond envelope of the high-harmonic emission from ablation plasmas

    International Nuclear Information System (INIS)

    Haessler, S; Gobert, O; Hergott, J-F; Lepetit, F; Perdrix, M; Carré, B; Salières, P; Bom, L B Elouga; Ozaki, T

    2012-01-01

    We characterize the temporal profile of the high-order harmonic emission from ablation plasma plumes using cross-correlations with the infrared (IR) laser beam provided by two-photon harmonic+IR ionization of rare gas atoms. We study both non-resonant plasmas (lead, gold and chrome) and resonant plasmas (indium and tin), i.e. plasmas presenting in the singly charged ions a strong radiative transition coinciding with a harmonic order. The cross-correlation traces are found to be very similar for all harmonic orders and all plasma targets. The recovered harmonic pulse durations are very similar to the driving laser, with a tendency towards being shorter, demonstrating that the emission is a directly laser-driven process even in the case of resonant harmonics. This provides a valuable input for theories describing resonant-harmonic emission and opens the perspective of a very high flux tabletop XUV source for applications. (paper)

  10. Thermal Ablation of Lung Tissue: In Vivo Experimental Comparison of Microwave and Radiofrequency

    International Nuclear Information System (INIS)

    Crocetti, Laura; Bozzi, Elena; Faviana, Pinuccia; Cioni, Dania; Della Pina, Clotilde; Sbrana, Alberto; Fontanini, Gabriella; Lencioni, Riccardo

    2010-01-01

    This study was designed to compare feasibility, safety, and effectiveness of microwave (MW) ablation versus radiofrequency (RF) ablation of lung tissue in a rabbit model. Twenty New Zealand White rabbits were submitted to MW (n = 10, group A) or RF ablation (n = 10, group B). The procedures were performed with a prototype MW ablation device with a 1.6-cm radiating section antenna (Valleylab MW Ablation System) and with a 2-cm exposed-tip RF electrode (Cool-tip RF Ablation System). At immediate computed tomography increase in density, maximum diameters (D1-D3) of ablation zones were measured and ablation volume was calculated. Histopathologic assessment was performed 3 and 7 days after the procedure. Technical success was achieved in nine of 10 rabbits in each group. One death occurred in group B. Complications included pneumothorax (group A, n = 4; group B, n = 4), abscess (group A, n = 1; group B, n = 1), and thoracic wall burn (group A, n = 4). No significant differences were demonstrated in attenuation increase (P = 0.73), dimensions (P = 0.28, 0.86, 0.06, respectively, comparing D1-D3) and volume (P = 0.17). At histopathology, ablation zones were similar, with septal necrosis, edema, hemorrhage, and peripheral lymphocytic infiltrate. Complete thrombosis of more than 90% of vessels up to 2 mm in diameter was depicted at the periphery of the ablation zone in group A specimens. In group B specimens, complete thrombosis was depicted in 20% of vessels. Feasibility and safety of MW and RF ablation are similar in a lung rabbit model. MW ablation produces a greater damage to peripheral small vessels inducing thrombosis.

  11. Simulation of Mexico City plumes during the MIRAGE-Mex field campaign using the WRF-Chem model

    Directory of Open Access Journals (Sweden)

    X. Tie

    2009-07-01

    Full Text Available The quantification of tropospheric O3 production in the downwind of the Mexico City plume is a major objective of the MIRAGE-Mex field campaign. We used a regional chemistry-transport model (WRF-Chem to predict the distribution of O3 and its precursors in Mexico City and the surrounding region during March 2006, and compared the model with in-situ aircraft measurements of O3, CO, VOCs, NOx, and NOy concentrations. The comparison shows that the model is capable of capturing the timing and location of the measured city plumes, and the calculated variability along the flights is generally consistent with the measured results, showing a rapid increase in O3 and its precursors when city plumes are detected. However, there are some notable differences between the calculated and measured values, suggesting that, during transport from the surface of the city to the outflow plume, ozone mixing ratios are underestimated by about 0–25% during different flights. The calculated O3-NOx, O3-CO, and O3-NOz correlations generally agree with the measured values, and the analyses of these correlations suggest that photochemical O3 production continues in the plume downwind of the city (aged plume, adding to the O3 already produced in the city and exported with the plume. The model is also used to quantify the contributions to OH reactivity from various compounds in the aged plume. This analysis suggests that oxygenated organics (OVOCs have the highest OH reactivity and play important roles for the O3 production in the aging plume. Furthermore, O3 production per NOx molecule consumed (O3 production efficiency is more efficient in the aged plume than in the young plume near the city. The major contributor to the high O3 production efficiency in the aged plume is the

  12. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D. E-mail: lumd@21cn.com; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up.

  13. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    International Nuclear Information System (INIS)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D.; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J.

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up

  14. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO2 laser.

    Science.gov (United States)

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2016-09-01

    Polyoxymethylene (POM) decomposes gradually as it is heated up by the irradiation of CO2 laser; the long-chain molecules of POM are broken into short chains, which leads to the lowering of the melting point and the critical temperature of the ablation products. When the product temperature is above the melting point, ablation comes up in the way of vaporization; when the product temperature is higher than the critical temperature, all liquid products are transformed into gas instantly and the ablation mechanism is changed. The laser fluence at which significant ablation is observed is defined as the ablation threshold, and the fluence corresponding to the ablation mechanism changing is denoted as the flyover threshold. In this paper, random pyrolysis is adopted to describe the pyrolytic decomposition of POM, and consequently, the components of the pyrolysis products under different pyrolysis rates are acquired. The Group Contribution method is used to count the thermodynamic properties of the pyrolysis products, and the melting point and the critical temperature of the product mixture are obtained by the Mixing Law. The Knudsen layer relationship is employed to evaluate the ablation mass removal when the product temperature is below the critical temperature. The gas dynamics conservation laws associated with the Jouguet condition are used to calculate the mass removal when the product temperature is higher than the critical temperature. Based on the model, a set of simulations for various laser intensities and lengths are carried out to generalize the relationships between the thresholds and the laser parameters. Besides the ablated mass areal density, which fits the experimental data quite well, the ablation temperature, pyrolysis rate, and product components are also discussed for a better understanding of the ablation mechanism of POM.

  15. Ocean outfall plume characterization using an Autonomous Underwater Vehicle.

    Science.gov (United States)

    Rogowski, Peter; Terrill, Eric; Otero, Mark; Hazard, Lisa; Middleton, William

    2013-01-01

    A monitoring mission to map and characterize the Point Loma Ocean Outfall (PLOO) wastewater plume using an Autonomous Underwater Vehicle (AUV) was performed on 3 March 2011. The mobility of an AUV provides a significant advantage in surveying discharge plumes over traditional cast-based methods, and when combined with optical and oceanographic sensors, provides a capability for both detecting plumes and assessing their mixing in the near and far-fields. Unique to this study is the measurement of Colored Dissolved Organic Matter (CDOM) in the discharge plume and its application for quantitative estimates of the plume's dilution. AUV mission planning methodologies for discharge plume sampling, plume characterization using onboard optical sensors, and comparison of observational data to model results are presented. The results suggest that even under variable oceanic conditions, properly planned missions for AUVs equipped with an optical CDOM sensor in addition to traditional oceanographic sensors, can accurately characterize and track ocean outfall plumes at higher resolutions than cast-based techniques.

  16. Atmospheric pressure arc discharge with ablating graphite anode

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2015-01-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement. (paper)

  17. Atmospheric pressure arc discharge with ablating graphite anode

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2015-06-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322-6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  18. The effect of exhaust plume/afterbody interaction on installed Scramjet performance

    Science.gov (United States)

    Edwards, Thomas Alan

    1988-01-01

    Newly emerging aerospace technology points to the feasibility of sustained hypersonic flight. Designing a propulsion system capable of generating the necessary thrust is now the major obstacle. First-generation vehicles will be driven by air-breathing scramjet (supersonic combustion ramjet) engines. Because of engine size limitations, the exhaust gas leaving the nozzle will be highly underexpanded. Consequently, a significant amount of thrust and lift can be extracted by allowing the exhaust gases to expand along the underbody of the vehicle. Predicting how these forces influence overall vehicle thrust, lift, and moment is essential to a successful design. This work represents an important first step toward that objective. The UWIN code, an upwind, implicit Navier-Stokes computer program, has been applied to hypersonic exhaust plume/afterbody flow fields. The capability to solve entire vehicle geometries at hypersonic speeds, including an interacting exhaust plume, has been demonstrated for the first time. Comparison of the numerical results with available experimental data shows good agreement in all cases investigated. For moderately underexpanded jets, afterbody forces were found to vary linearly with the nozzle exit pressure, and increasing the exit pressure produced additional nose-down pitching moment. Coupling a species continuity equation to the UWIN code enabled calculations indicating that exhaust gases with low isentropic exponents (gamma) contribute larger afterbody forces than high-gamma exhaust gases. Moderately underexpanded jets, which remain attached to unswept afterbodies, underwent streamwise separation on upswept afterbodies. Highly underexpanded jets produced altogether different flow patterns, however. The highly underexpanded jet creates a strong plume shock, and the interaction of this shock with the afterbody was found to produce complicated patterns of crossflow separation. Finally, the effect of thrust vectoring on vehicle balance has

  19. Plume structure in high-Rayleigh-number convection

    Science.gov (United States)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    2005-10-01

    Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.

  20. Single exponential decay waveform; a synergistic combination of electroporation and electrolysis (E2 for tissue ablation

    Directory of Open Access Journals (Sweden)

    Nina Klein

    2017-04-01

    Full Text Available Background Electrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study, we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2. Method A new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW was applied to the pig liver, and the effect of various parameters on the extent of tissue ablation was examined with histology. Results Histological analysis shows that E2 delivered as EDW can produce tissue ablation in volumes of clinical significance, using electrical and temporal parameters which, if used in electroporation or electrolysis separately, cannot ablate the tissue. Discussion The E2 combination has advantages over the three basic technologies of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible electroporation with injection of drugs and irreversible electroporation. E2 ablates clinically relevant volumes of tissue in a shorter period of time than electrolysis and electroporation, without the need to inject drugs as in reversible electroporation or use paralyzing anesthesia as in irreversible electroporation.

  1. DSMC Simulations of Io's Pele Plume

    Science.gov (United States)

    McDoniel, William; Goldstein, D.; Varghese, P.; Trafton, L.

    2012-10-01

    Io’s Pele plume rises over 300km in altitude and leaves a deposition ring 1200km across on the surface of the moon. Material emerges from an irregularly-shaped vent, and this geometry gives rise to complex 3D flow features. The Direct Simulation Monte Carlo method is used to model the gas flow in the rarefied plume, demonstrating how the geometry of the source region is responsible for the asymmetric structure of the deposition ring and illustrating the importance of very small-scale vent geometry in explaining large observed features of interest. Simulations of small particles in the plume and comparisons to the black “butterfly wings” seen at Pele are used to constrain particle sizes and entrainment mechanisms. Preliminary results for the effects of plasma energy and momentum transfer to the plume will also be presented.

  2. Simulating Fine-Scale Marine Pollution Plumes for Autonomous Robotic Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Muhammad Fahad

    2018-05-01

    Full Text Available Marine plumes exhibit characteristics such as intermittency, sinuous structure, shape and flow field coherency, and a time varying concentration profile. Due to the lack of experimental quantification of these characteristics for marine plumes, existing work often assumes marine plumes exhibit behavior similar to aerial plumes and are commonly modeled by filament based Lagrangian models. Our previous field experiments with Rhodamine dye plumes at Makai Research Pier at Oahu, Hawaii revealed that marine plumes show similar characteristics to aerial plumes qualitatively, but quantitatively they are disparate. Based on the field data collected, this paper presents a calibrated Eulerian plume model that exhibits the qualitative and quantitative characteristics exhibited by experimentally generated marine plumes. We propose a modified model with an intermittent source, and implement it in a Robot Operating System (ROS based simulator. Concentration time series of stationary sampling points and dynamic sampling points across cross-sections and plume fronts are collected and analyzed for statistical parameters of the simulated plume. These parameters are then compared with statistical parameters from experimentally generated plumes. The comparison validates that the simulated plumes exhibit fine-scale qualitative and quantitative characteristics similar to experimental plumes. The ROS plume simulator facilitates future evaluations of environmental monitoring strategies by marine robots, and is made available for community use.

  3. Radiofrequency ablation of pulmonary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Crocetti, Laura, E-mail: l.crocetti@med.unipi.i [Division of Diagnostic Imaging and Intervention, Department of Liver Transplants, Hepatology and Infectious Diseases, Pisa University School of Medicine (Italy); Lencioni, Riccardo [Division of Diagnostic Imaging and Intervention, Department of Liver Transplants, Hepatology and Infectious Diseases, Pisa University School of Medicine (Italy)

    2010-07-15

    The development of image-guided percutaneous techniques for local tumor ablation has been one of the major advances in the treatment of solid tumors. Among these methods, radiofrequency (RF) ablation is currently established as the primary ablative modality at most institutions. RF ablation is accepted as the best therapeutic choice for patients with early-stage hepatocellular carcinoma when liver transplantation or surgical resection are not suitable options and is considered as a viable alternate to surgery for inoperable patients with limited hepatic metastatic disease, especially from colorectal cancer. Recently, RF ablation has been demonstrated to be a safe and valuable treatment option for patients with unresectable or medically inoperable lung malignancies. Resection should remain the standard therapy for non-small cell lung cancer (NSCLC) but RF ablation may be better than conventional external-beam radiation for the treatment of the high-risk individual with NSCLC. Initial favourable outcomes encourage combining radiotherapy and RF ablation, especially for treating larger tumors. In the setting of colorectal cancer lung metastases, survival rates provided by RF ablation in selected patients, are substantially higher than those obtained with any chemotherapy regimens and provide indirect evidence that RF ablation therapy improves survival in patients with limited lung metastatic disease.

  4. Palladium nanoparticles produced by CW and pulsed laser ablation in water

    Energy Technology Data Exchange (ETDEWEB)

    Boutinguiza, M., E-mail: mohamed@uvigo.es [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Department, University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310 (Spain); Lusquiños, F. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Riveiro, A. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de España 2, 36920 Marín (Spain); Val, J. del; Pou, J. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2014-05-01

    Palladium nanoparticles are receiving important interest due to its application as catalyst. In this work Pd nanoparticles have been obtained by ablating a Pd target submerged in de-ionized using both, pulsed as well as continuous wave (CW) laser. The influence of laser parameters involved in the formation in nanoparticles has been studied. Crystalline phases, morphology and optical properties of the obtained colloidal nanoparticles were characterized by means of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV/vis absorption spectroscopy. The obtained colloidal suspensions consisted of pure Pd nanoparticles showing spherical shape with diameters ranging from few nanometers to 5–60 nm. The moderate irradiance delivered by the CW laser favours high production of uniform nanoparticles.

  5. Ablative skin resurfacing.

    Science.gov (United States)

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    International Nuclear Information System (INIS)

    Happel, A.M.; Rice, D.; Beckenbach, E.; Savalin, L.; Temko, H.; Rempel, R.; Dooher, B.

    1996-11-01

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites

  7. Empirical Profiling of Cold Hydrogen Plumes Formed from Venting Of LH2 Storage Vessels: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rivkin, Carl H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schmidt, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hartmann, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Hannah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Weidner, Eveline [Joint Research Centre, Petten, the Netherlands; Ciotti, Michael [H2 Fueling and CIP Markets Engineering

    2017-11-16

    Liquid hydrogen (LH2) storage is a viable approach to assuring sufficient hydrogen capacity at commercial fuelling stations. Presently, LH2 is produced at remote facilities and then transported to the end-use site by road vehicles (i.e., LH2 tanker trucks). Venting of hydrogen to depressurize the transport storage tank is a routine part of the LH2 delivery process. The behaviour of cold hydrogen plumes has not been well-characterized because empirical field data is essentially non-existent. The NFPA 2 Hydrogen Storage Safety Task Group, which consists of hydrogen producers, safety experts, and CFD modellers, has identified the lack of understanding of hydrogen dispersion during LH2 venting of storage vessel as a critical gap for establishing safety distances at LH2 facilities, especially commercial hydrogen fuelling stations. To address this need, the NREL sensor laboratory, in collaboration with the NFPA 2 Safety Task Group developed the Cold Hydrogen Plume Analyzer to empirically characterize the hydrogen plume formed during LH2 storage tank venting. A prototype Analyzer was developed and field-deployed at an actual LH2 venting operation with critical findings that included: - H2 being detected as much as 2 m lower than the release point, which is not predicted by existing models - A small and inconsistent correlation between oxygen depletion and the hydrogen concentration - A negligible to non-existent correlation between in-situ temperature and the hydrogen concentration The Analyzer is currently being upgraded for enhanced metrological capabilities including improved real-time spatial and temporal profiling of the plume and tracking of prevailing weather conditions. Additional deployments are planned to monitor plume behaviour under different wind, humidity, and temperatures. This data will be shared with the NFPA 2 Safety Task Group and ultimately will be used support theoretical models and code requirements prescribed in NFPA 2.

  8. Paducah Gaseous Diffusion Plant Northwest Plume interceptor system evaluation

    International Nuclear Information System (INIS)

    Laase, A.D.; Clausen, J.L.

    1998-01-01

    The Paducah Gaseous Diffusion Plant (PGDP) recently installed an interceptor system consisting of four wells, evenly divided between two well fields, to contain the Northwest Plume. As stated in the Northwest Plume Record of Decision (ROD), groundwater will be pumped at a rate to reduce further contamination and initiate control of the northwest contaminant plume. The objective of this evaluation was to determine the optimum (minimal) well field pumping rates required for plume hotspot containment. Plume hotspot, as defined in the Northwest Plume ROD and throughout this report, is that portion of the plume with trichloroethene (TCE) concentrations greater than 1,000 microg/L. An existing 3-dimensional groundwater model was modified and used to perform capture zone analyses of the north and south interceptor system well fields. Model results suggest that the plume hotspot is not contained at the system design pumping rate of 100 gallons per minute (gal/min) per well field. Rather, the modeling determined that north and south well field pumping rates of 400 and 150 gal/min, respectively, are necessary for plume hotspot containment. The difference between the design and optimal pumping rates required for containment can be attributed to the discovery of a highly transmissive zone in the vicinity of the two well fields

  9. Follow the plume: the habitability of Enceladus.

    Science.gov (United States)

    McKay, Christopher P; Anbar, Ariel D; Porco, Carolyn; Tsou, Peter

    2014-04-01

    The astrobiological exploration of other worlds in our Solar System is moving from initial exploration to more focused astrobiology missions. In this context, we present the case that the plume of Enceladus currently represents the best astrobiology target in the Solar System. Analysis of the plume by the Cassini mission indicates that the steady plume derives from a subsurface liquid water reservoir that contains organic carbon, biologically available nitrogen, redox energy sources, and inorganic salts. Furthermore, samples from the plume jetting out into space are accessible to a low-cost flyby mission. No other world has such well-studied indications of habitable conditions. Thus, the science goals that would motivate an Enceladus mission are more advanced than for any other Solar System body. The goals of such a mission must go beyond further geophysical characterization, extending to the search for biomolecular evidence of life in the organic-rich plume. This will require improved in situ investigations and a sample return.

  10. Design of a chamber for deposit of thin films by laser ablation

    International Nuclear Information System (INIS)

    Chirino O, S.

    2001-01-01

    The present work has as purpose to design a vacuum chamber, to the one that is denominated chamber of ablation, in which were carried out deposits of thin films using the well-known technique as laser ablation. To fulfill the purpose, the work has been distributed in the following way: in the chapter 1 there are discussed the generalities of the technique of ablation laser for the obtaining of materials in form of thin film, in the chapter 2 the basic concepts of the vacuum technology are mentioned that includes among other things, systems to produce vacuum and vacuum gages and in the chapter 3 the design of the chamber is presented with the accessories and specific systems. (Author)

  11. Heat Sink Effect on Tumor Ablation Characteristics as Observed in Monopolar Radiofrequency, Bipolar Radiofrequency, and Microwave, Using Ex Vivo Calf Liver Model

    Science.gov (United States)

    Pillai, Krishna; Akhter, Javid; Chua, Terence C.; Shehata, Mena; Alzahrani, Nayef; Al-Alem, Issan; Morris, David L.

    2015-01-01

    Abstract Thermal ablation of liver tumors near large blood vessels is affected by the cooling effect of blood flow, leading to incomplete ablation. Hence, we conducted a comparative investigation of heat sink effect in monopolar (MP) and bipolar (BP) radiofrequency ablation (RFA), and microwave (MW) ablation devices. With a perfused calf liver, the ablative performances (volume, mass, density, dimensions), with and without heat sink, were measured. Heat sink was present when the ablative tip of the probes were 8.0 mm close to a major hepatic vein and absent when >30 mm away. Temperatures (T1 and T2) on either side of the hepatic vein near the tip of the probes, heating probe temperature (T3), outlet perfusate temperature (T4), and ablation time were monitored. With or without heat sink, BP radiofrequency ablated a larger volume and mass, compared with MP RFA or MW ablation, with latter device producing the highest density of tissue ablated. MW ablation produced an ellipsoidal shape while radiofrequency devices produced spheres. Percentage heat sink effect in Bipolar radiofrequency : Mono-polar radiofrequency : Microwave was (Volume) 33:41:22; (mass) 23:56:34; (density) 9.0:26:18; and (relative elipscity) 5.8:12.9:1.3, indicating that BP and MW devices were less affected. Percentage heat sink effect on time (minutes) to reach maximum temperature (W) = 13.28:9.2:29.8; time at maximum temperature (X) is 87:66:16.66; temperature difference (Y) between the thermal probes (T3) and the temperature (T1 + T2)/2 on either side of the hepatic vessel was 100:87:20; and temperature difference between the (T1 + T2)/2 and temperature of outlet circulating solution (T4), Z was 20.33:30.23:37.5. MW and BP radiofrequencies were less affected by heat sink while MP RFA was the most affected. With a single ablation, BP radiofrequency ablated a larger volume and mass regardless of heat sink. PMID:25738477

  12. Birth, life, and death of a solar coronal plume

    Energy Technology Data Exchange (ETDEWEB)

    Pucci, Stefano; Romoli, Marco [Department of Physics and Astronomy, University of Firenze, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Poletto, Giannina [INAF-Arcetri Astrophysical Observatory, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Sterling, Alphonse C., E-mail: stpucci@arcetri.astro.it [Space Science Office, NASA/MSFC, Huntsville, AL 35812 (United States)

    2014-10-01

    We analyze a solar polar-coronal-hole (CH) plume over its entire ≈40 hr lifetime, using high-resolution Solar Dynamic Observatory Atmospheric Imaging Assembly (AIA) data. We examine (1) the plume's relationship to a bright point (BP) that persists at its base, (2) plume outflows and their possible contribution to the solar wind mass supply, and (3) the physical properties of the plume. We find that the plume started ≈2 hr after the BP first appeared and became undetectable ≈1 hr after the BP disappeared. We detected radially moving radiance variations from both the plume and from interplume regions, corresponding to apparent outflow speeds ranging over ≈(30-300) km s{sup –1} with outflow velocities being higher in the 'cooler' AIA 171 Å channel than in the 'hotter' 193 Å and 211 Å channels, which is inconsistent with wave motions; therefore, we conclude that the observed radiance variations represent material outflows. If they persist into the heliosphere and plumes cover ≈10% of a typical CH area, these flows could account for ≈50% of the solar wind mass. From a differential emission measure analysis of the AIA images, we find that the average electron temperature of the plume remained approximately constant over its lifetime, at T {sub e} ≈ 8.5 × 10{sup 5} K. Its density, however, decreased with the age of the plume, being about a factor of three lower when the plume faded compared to when it was born. We conclude that the plume died due to a density reduction rather than to a temperature decrease.

  13. Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Delong; Sun, Shunkai; Zhao, Yingkui; Ding, Ning; Wu, Jiming; Dai, Zihuan; Yin, Li; Zhang, Yang; Xue, Chuang [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2015-05-15

    In a dynamic hohlraum driven inertial confinement fusion (ICF) configuration, the target may experience two different kinds of implosions. One is driven by hohlraum radiation ablation, which is approximately symmetric at the equator and poles. The second is caused by the radiating shock produced in Z-pinch dynamic hohlraums, only taking place at the equator. To gain a symmetrical target implosion driven by radiation ablation and avoid asymmetric shock compression is a crucial issue in driving ICF using dynamic hohlraums. It is known that when the target is heated by hohlraum radiation, the ablated plasma will expand outward. The pressure in the shocked converter plasma qualitatively varies linearly with the material temperature. However, the ablation pressure in the ablated plasma varies with 3.5 power of the hohlraum radiation temperature. Therefore, as the hohlraum temperature increases, the ablation pressure will eventually exceed the shock pressure, and the expansion of the ablated plasma will obviously weaken the shock propagation and decrease its velocity after propagating into the ablator plasma. Consequently, longer time duration is provided for the symmetrical target implosion driven by radiation ablation. In this paper these processes are numerically investigated by changing drive currents or varying load parameters. The simulation results show that a critical hohlraum radiation temperature is needed to provide a high enough ablation pressure to decelerate the shock, thus providing long enough time duration for the symmetric fuel compression driven by radiation ablation.

  14. Smoke plumes: Emissions and effects

    Science.gov (United States)

    Susan O' Neill; Shawn Urbanski; Scott Goodrick; Sim Larkin

    2017-01-01

    Smoke can manifest itself as a towering plume rising against the clear blue sky-or as a vast swath of thick haze, with fingers that settle into valleys overnight. It comes in many forms and colors, from fluffy and white to thick and black. Smoke plumes can rise high into the atmosphere and travel great distances across oceans and continents. Or smoke can remain close...

  15. Plume Splitting in a Two-layer Stratified Ambient Fluid

    Science.gov (United States)

    Ma, Yongxing; Flynn, Morris; Sutherland, Bruce

    2017-11-01

    A line-source plume descending into a two-layer stratified ambient fluid in a finite sized tank is studied experimentally. Although the total volume of ambient fluid is fixed, lower- and upper-layer fluids are respectively removed and added at a constant rate mimicking marine outfall through diffusers and natural and hybrid ventilated buildings. The influence of the plume on the ambient depends on the value of λ, defined as the ratio of the plume buoyancy to the buoyancy loss of the plume as it crosses the ambient interface. Similar to classical filling-box experiments, the plume can always reach the bottom of the tank if λ > 1 . By contrast, if λ < 1 , an intermediate layer eventually forms as a result of plume splitting. Eventually all of the plume fluid spreads within the intermediate layer. The starting time, tv, and the ending time, tt, of the transition process measured from experiments correlate with the value of λ. A three-layer ambient fluid is observed after transition, and the mean value of the measured densities of the intermediate layer fluid is well predicted using plume theory. Acknowledgments: Funding for this study was provided by NSERC.

  16. Teaching the Mantle Plumes Debate

    Science.gov (United States)

    Foulger, G. R.

    2010-12-01

    There is an ongoing debate regarding whether or not mantle plumes exist. This debate has highlighted a number of issues regarding how Earth science is currently practised, and how this feeds into approaches toward teaching students. The plume model is an hypothesis, not a proven fact. And yet many researchers assume a priori that plumes exist. This assumption feeds into teaching. That the plume model is unproven, and that many practising researchers are skeptical, may be at best only mentioned in passing to students, with most teachers assuming that plumes are proven to exist. There is typically little emphasis, in particular in undergraduate teaching, that the origin of melting anomalies is currently uncertain and that scientists do not know all the answers. Little encouragement is given to students to become involved in the debate and to consider the pros and cons for themselves. Typically teachers take the approach that “an answer” (or even “the answer”) must be taught to students. Such a pedagogic approach misses an excellent opportunity to allow students to participate in an important ongoing debate in Earth sciences. It also misses the opportunity to illustrate to students several critical aspects regarding correct application of the scientific method. The scientific method involves attempting to disprove hypotheses, not to prove them. A priori assumptions should be kept uppermost in mind and reconsidered at all stages. Multiple working hypotheses should be entertained. The predictions of a hypothesis should be tested, and unpredicted observations taken as weakening the original hypothesis. Hypotheses should not be endlessly adapted to fit unexpected observations. The difficulty with pedagogic treatment of the mantle plumes debate highlights a general uncertainty about how to teach issues in Earth science that are not yet resolved with certainty. It also represents a missed opportunity to let students experience how scientific theories evolve, warts

  17. Contrasted continental rifting via plume-craton interaction: Applications to Central East African Rift

    Directory of Open Access Journals (Sweden)

    Alexander Koptev

    2016-03-01

    Full Text Available The East African Rift system (EARS provides a unique system with the juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either sides of the old thick Tanzanian craton embedded in a younger lithosphere. Data on the pre-rift, syn-rift and post-rift far-field volcanic and tectonic activity show that the EARS formed in the context of the interaction between a deep mantle plume and a horizontally and vertically heterogeneous lithosphere under far-field tectonic extension. We bring quantitative insights into this evolution by implementing high-resolution 3D thermo-mechanical numerical deformation models of a lithosphere of realistic rheology. The models focus on the central part of the EARS. We explore scenarios of plume-lithosphere interaction with plumes of various size and initial position rising beneath a tectonically pre-stretched lithosphere. We test the impact of the inherited rheological discontinuities (suture zones along the craton borders, of the rheological structure, of lithosphere plate thickness variations, and of physical and mechanical contrasts between the craton and the embedding lithosphere. Our experiments indicate that the ascending plume material is deflected by the cratonic keel and preferentially channeled along one of its sides, leading to the formation of a large rift zone along the eastern side of the craton, with significant magmatic activity and substantial melt amount derived from the mantle plume material. We show that the observed asymmetry of the central EARS, with coeval amagmatic (western and magmatic (eastern branches, can be explained by the splitting of warm material rising from a broad plume head whose initial position is slightly shifted to the eastern side of the craton. In that case, neither a mechanical weakness of the contact between the craton and the embedding lithosphere nor the presence of second plume are required to

  18. Lidar sounding of volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  19. Saharan dust plume charging observed over the UK

    Science.gov (United States)

    Harrison, R. Giles; Nicoll, Keri A.; Marlton, Graeme J.; Ryder, Claire L.; Bennett, Alec J.

    2018-05-01

    A plume of Saharan dust and Iberian smoke was carried across the southern UK on 16th October 2017, entrained into an Atlantic cyclone which had originated as Hurricane Ophelia. The dust plume aloft was widely noticed as it was sufficiently dense to redden the visual appearance of the sun. Time series of backscatter from ceilometers at Reading and Chilbolton show two plumes: one carried upwards to 2.5 km, and another below 800 m into the boundary layer, with a clear slot between. Steady descent of particles at about 50 cm s‑1 continued throughout the morning, and coarse mode particles reached the surface. Plumes containing dust are frequently observed to be strongly charged, often through frictional effects. This plume passed over atmospheric electric field sensors at Bristol, Chilbolton and Reading. Consistent measurements at these three sites indicated negative plume charge. The lower edge plume charge density was (‑8.0 ± 3.3) nC m‑2, which is several times greater than that typical for stratiform water clouds, implying an active in situ charge generation mechanism such as turbulent triboelectrification. A meteorological radiosonde measuring temperature and humidity was launched into the plume at 1412 UTC, specially instrumented with charge and turbulence sensors. This detected charge in the boundary layer and in the upper plume region, and strong turbulent mixing was observed throughout the atmosphere’s lowest 4 km. The clear slot region, through which particles sedimented, was anomalously dry compared with modelled values, with water clouds forming intermittently in the air beneath. Electrical aspects of dust should be included in numerical models, particularly the charge-related effects on cloud microphysical properties, to accurately represent particle behaviour and transport.

  20. Comparison of QuadrapolarTM radiofrequency lesions produced by standard versus modified technique: an experimental model

    Directory of Open Access Journals (Sweden)

    Safakish R

    2017-06-01

    Full Text Available Ramin Safakish Allevio Pain Management Clinic, Toronto, ON, Canada Abstract: Lower back pain (LBP is a global public health issue and is associated with substantial financial costs and loss of quality of life. Over the years, different literature has provided different statistics regarding the causes of the back pain. The following statistic is the closest estimation regarding our patient population. The sacroiliac (SI joint pain is responsible for LBP in 18%–30% of individuals with LBP. Quadrapolar™ radiofrequency ablation, which involves ablation of the nerves of the SI joint using heat, is a commonly used treatment for SI joint pain. However, the standard Quadrapolar radiofrequency procedure is not always effective at ablating all the sensory nerves that cause the pain in the SI joint. One of the major limitations of the standard Quadrapolar radiofrequency procedure is that it produces small lesions of ~4 mm in diameter. Smaller lesions increase the likelihood of failure to ablate all nociceptive input. In this study, we compare the standard Quadrapolar radiofrequency ablation technique to a modified Quadrapolar ablation technique that has produced improved patient outcomes in our clinic. The methodology of the two techniques are compared. In addition, we compare results from an experimental model comparing the lesion sizes produced by the two techniques. Taken together, the findings from this study suggest that the modified Quadrapolar technique provides longer lasting relief for the back pain that is caused by SI joint dysfunction. A randomized controlled clinical trial is the next step required to quantify the difference in symptom relief and quality of life produced by the two techniques. Keywords: lower back pain, radiofrequency ablation, sacroiliac joint, Quadrapolar radiofrequency ablation

  1. UV laser-ablated surface textures as potential regulator of cellular response.

    Science.gov (United States)

    Chandra, Prafulla; Lai, Karen; Sung, Hak-Joon; Murthy, N Sanjeeva; Kohn, Joachim

    2010-06-01

    Textured surfaces obtained by UV laser ablation of poly(ethylene terephthalate) films were used to study the effect of shape and spacing of surface features on cellular response. Two distinct patterns, cones and ripples with spacing from 2 to 25 μm, were produced. Surface features with different shapes and spacings were produced by varying pulse repetition rate, laser fluence, and exposure time. The effects of the surface texture parameters, i.e., shape and spacing, on cell attachment, proliferation, and morphology of neonatal human dermal fibroblasts and mouse fibroblasts were studied. Cell attachment was the highest in the regions with cones at ∼4 μm spacing. As feature spacing increased, cell spreading decreased, and the fibroblasts became more circular, indicating a stress-mediated cell shrinkage. This study shows that UV laser ablation is a useful alternative to lithographic techniques to produce surface patterns for controlling cell attachment and growth on biomaterial surfaces.

  2. Proceedings of plumes, plates and mineralisation symposium: an introduction

    CSIR Research Space (South Africa)

    Hatton, CJ

    1997-12-01

    Full Text Available of plume-theory. Mechanisms of magma formation are identified and plume positions and distances to their surface expression considered. Mantle plumes are considered as a heat and fluid source for the Witwatersrand gold deposits....

  3. Simplified scheme or radioactive plume calculations

    International Nuclear Information System (INIS)

    Gibson, T.A.; Montan, D.N.

    1976-01-01

    A simplified mathematical scheme to estimate external whole-body γ radiation exposure rates from gaseous radioactive plumes was developed for the Rio Blanco Gas Field Nuclear Stimulation Experiment. The method enables one to calculate swiftly, in the field, downwind exposure rates knowing the meteorological conditions and γ radiation exposure rates measured by detectors positioned near the plume source. The method is straightforward and easy to use under field conditions without the help of mini-computers. It is applicable to a wide range of radioactive plume situations. It should be noted that the Rio Blanco experiment was detonated on May 17, 1973, and no seep or release of radioactive material occurred

  4. Percutaneous thermal ablation of renal neoplasms

    International Nuclear Information System (INIS)

    Tacke, J.; Mahnken, A.H.; Guenther, R.W.

    2005-01-01

    Due to modern examination techniques such as multidetector computed tomography and high-field magnetic resonance imaging, the detection rate of renal neoplasms is continually increasing. Even though tumors exceeding 4 cm in diameter rarely metastasize, all renal lesions that are possible neoplasms should be treated. Traditional treatment techniques include radical nephrectomy or nephron-sparing resection, which are increasingly performed laparoscopically. Modern thermal ablation techniques such as hyperthermal techniques like radiofrequency ablation RFA, laser induced thermal ablation LITT, focused ultrasound FUS and microwave therapy MW, as well as hypothermal techniques (cryotherapy) may be a useful treatment option for patients who are unfit for or refuse surgical resection. Cryotherapy is the oldest and best known thermal ablation technique and can be performed laparoscopically or percutaneously. Since subzero temperatures have no antistyptic effect, additional maneuvers must be performed to control bleeding. Percutaneous cryotherapy of renal tumors is a new and interesting method, but experience with it is still limited. Radiofrequency ablation is the most frequently used method. Modern probe design allows volumes between 2 and 5 cm in diameter to be ablated. Due to hyperthermal tract ablation, the procedure is deemed to be safe and has a low complication rate. Although there are no randomized comparative studies to open resection, the preliminary results for renal RFA are promising and show RFA to be superior to other thermal ablation techniques. Clinical success rates are over 90% for both, cryo- and radiofrequency ablation. Whereas laser induced thermal therapy is established in hepatic ablation, experience is minimal with respect to renal application. For lesions of more than 2 cm in diameter, additional cooling catheters are required. MR thermometry offers temperature control during ablation. Microwave ablation is characterized by small ablation volumes

  5. Saline Infusion Markedly Reduces Impedance and Improves Efficacy of Pulmonary Radiofrequency Ablation

    International Nuclear Information System (INIS)

    Gananadha, Sivakumar; Morris, David Lawson

    2004-01-01

    Radiofrequency ablation (RFA) is a relatively new technique that has been investigated for the treatment of lung tumors. We evaluated for the first time the in vivo use of saline infusion during radiofrequency ablation of sheep lung. We performed RFA on 5 sheep using open and closed chest RFA and the RITA starburst XL and Xli probes using saline infusion with the Xli probe. The impedance and volume of ablation were compared. A total of 16 ablations were produced, 5 percutaneously and 11 open. The impedance during percutaneous and open RFA without saline infusion was 110 ± 16.2 and 183.3 ± 105.8 O, respectively. With the saline infusion the impedance was 71.3 ± 22O and 103.6 ± 37.5O. The effect of this was a significantly larger volume of ablation using the saline infusion during percutaneous RFA (90.6 ± 23 cm 3 vs 10.47 ± 2.9 cm 3 , p = 0.01) and open RFA (107.8 ± 25.8 cm 3 vs 24.9 ± 19.3 cm 3 , p = 0.0002). Saline infusion during RFA is associated with lower impedance, higher power delivery and larger lesion size.

  6. Saline Infusion Markedly Reduces Impedance and Improves Efficacy of Pulmonary Radiofrequency Ablation

    International Nuclear Information System (INIS)

    Gananadha, Sivakumar; Morris, David Lawson

    2004-01-01

    Radiofrequency ablation (RFA) is a relatively new technique that has been investigated for the treatment of lung tumors. We evaluated for the first time the in vivo use of saline infusion during radiofrequency ablation of sheep lung. We performed RFA on 5 sheep using open and closed chest RFA and the RITA starburst XL and Xli probes using saline infusion with the Xli probe. The impedance and volume of ablation were compared. A total of 16 ablations were produced, 5 percutaneously and 11 open. The impedance during percutaneous and open RFA without saline infusion was 110 ± 16.2 and 183.3 ± 105.8 O, respectively. With the saline infusion the impedance was 71.3 ± 22O and 103.6 ± 37.5O. The effect of this was a significantly larger volume of ablation using the saline infusion during percutaneous RFA (90.6 ± 23 cm 3 vs 10.47 ± 2.9 cm 3 , p = 0.01) and open RFA (107.8 ± 25.8 cm 3 vs 24.9 ± 19.3 cm 3 , p = 0.0002). Saline infusion during RFA is associated with lower impedance, higher power delivery and larger lesion size

  7. The effect of radiofrequency ablation on different organs: Ex vivo and in vivo comparative studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoo Na [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Rhim, Hyunchul, E-mail: rhimhc@skku.edu [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Choi, Dongil; Kim, Young-sun; Lee, Min Woo; Chang, Ilsoo; Lee, Won Jae; Lim, Hyo K. [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of)

    2011-11-15

    Objective: The purposes of this study are to evaluate the ex vivo and in vivo efficacy of radiofrequency ablation (RFA) on different porcine tissues by the ablation of three different sites simultaneously. Materials and methods: A multichannel RFA system, enables three separate tumors to be ablated simultaneously, was used. RFA procedures were applied to normal porcine liver, kidney, and muscle together ex vivo (n = 12) and in vivo (n = 17). Pre-impedances, defined as baseline systemic impedances of tissues before beginning RFA, and the areas of ablation zones were measured and compared. Results: The areas of ablation zones among three organs had a significant difference in decreasing order as follows: liver, muscle, and kidney in the ex vivo study (p = 0.001); muscle, liver, and kidney in the in vivo study (p < 0.0001). The areas of ablation zones between ex vivo and in vivo had a significant difference in the liver and muscle (each p < 0.05). There was no significant correlation between the areas of ablation zones and pre-impedances in both studies. Conclusions: Renal RFA produced the smallest ablation zone in both in vivo and ex vivo studies. Muscular RFA demonstrated the largest ablation zone in the in vivo study, and hepatic RFA showed the largest ablation zone in the ex vivo study. This variability in the tissues should be considered for performing an optimized RFA for each organ site.

  8. How plume-ridge interaction shapes the crustal thickness pattern of the Réunion hotspot track

    Science.gov (United States)

    Bredow, Eva; Steinberger, Bernhard; Gassmöller, Rene; Dannberg, Juliane

    2017-08-01

    The Réunion mantle plume has shaped a large area of the Earth's surface over the past 65 million years: from the Deccan Traps in India along the hotspot track comprising the island chains of the Laccadives, Maldives, and Chagos Bank on the Indian plate and the Mascarene Plateau on the African plate up to the currently active volcanism at La Réunion Island. This study addresses the question how the Réunion plume, especially in interaction with the Central Indian Ridge, created the complex crustal thickness pattern of the hotspot track. For this purpose, the mantle convection code ASPECT was used to design three-dimensional numerical models, which consider the specific location of the plume underneath moving plates and surrounded by large-scale mantle flow. The results show the crustal thickness pattern produced by the plume, which altogether agrees well with topographic maps. Especially two features are consistently reproduced by the models: the distinctive gap in the hotspot track between the Maldives and Chagos is created by the combination of the ridge geometry and plume-ridge interaction; and the Rodrigues Ridge, a narrow crustal structure which connects the hotspot track and the Central Indian Ridge, appears as the surface expression of a long-distance sublithospheric flow channel. This study therefore provides further insight how small-scale surface features are generated by the complex interplay between mantle and lithospheric processes.

  9. Laboratory Simulations of Micrometeoroid Ablation

    Science.gov (United States)

    Thomas, Evan Williamson

    Each day, several tons of meteoric material enters Earth's atmosphere, the majority of which consist of small dust particles (micrometeoroids) that completely ablate at high altitudes. The dust input has been suggested to play a role in a variety of phenomena including: layers of metal atoms and ions, nucleation of noctilucent clouds, effects on stratospheric aerosols and ozone chemistry, and the fertilization of the ocean with bio-available iron. Furthermore, a correct understanding of the dust input to the Earth provides constraints on inner solar system dust models. Various methods are used to measure the dust input to the Earth including satellite detectors, radar, lidar, rocket-borne detectors, ice core and deep-sea sediment analysis. However, the best way to interpret each of these measurements is uncertain, which leads to large uncertainties in the total dust input. To better understand the ablation process, and thereby reduce uncertainties in micrometeoroid ablation measurements, a facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to accelerate iron particles to relevant meteoric velocities (10-70 km/s). The particles are then introduced into a chamber pressurized with a target gas, and they partially or completely ablate over a short distance. An array of diagnostics then measure, with timing and spatial resolution, the charge and light that is generated in the ablation process. In this thesis, we present results from the newly developed ablation facility. The ionization coefficient, an important parameter for interpreting meteor radar measurements, is measured for various target gases. Furthermore, experimental ablation measurements are compared to predictions from commonly used ablation models. In light of these measurements, implications to the broader context of meteor ablation are discussed.

  10. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    International Nuclear Information System (INIS)

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-01-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  11. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon [Manufacturing Processes Department, Fundacion TEKNIKER, Av. Otaola 20, 20600, Eibar, Guipuzcoa (Spain); Lejardi, Ainhoa; Sarasua, Jose-Ramon [Department of Mining and Metallurgy Engineering and Materials Science, School of Engineering, University of the Basque Country (EHU-UPV), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  12. Biogeochemistry of landfill leachate plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup

    2001-01-01

    are relatively narrow and do not in terms of width exceed the width of the landfill. The concept of redox zones being present in the plume has been confirmed by the reported composition of the leachate contaminated groundwater at several landfills and constitutes an important framework for understanding...... the behavior of the contaminants in the plume as the leachate migrates away from the landfill. Diverse microbial communities have been identified in leachate plumes and are believed to be responsible for the redox processes. Dissolved organic C in the leachate, although it appears to be only slowly degradable...... to be subject to anaerobic oxidation, but the mechanisms are not yet understood. Heavy metals do not seem to constitute a significant pollution problem at landfills, partly because the heavy metal concentrations in the leachate often are low, and partly because of strong attenuation by sorption...

  13. Emission study of alumina plasma produced by a KrF laser

    Energy Technology Data Exchange (ETDEWEB)

    Yahiaoui, K., E-mail: kyahiaoui@cdta.dz [Centre de Développement des Technologies Avancées, cité 20 aout 1956, BP 17, Baba Hassen, Alger (Algeria); Abdelli-Messaci, S.; Messaoud-Aberkane, S.; Kerdja, T. [Centre de Développement des Technologies Avancées, cité 20 aout 1956, BP 17, Baba Hassen, Alger (Algeria); Kellou, H. [Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Allia, 16111 Bab-Ezzouar, Alger (Algeria)

    2014-03-01

    We report on the plasma emission formed from an α-alumina target when irradiated by laser into vacuum and through oxygen gas. Two diagnostic tools have been used: ICCD camera fast imaging and optical emission spectroscopy. The alumina plasma was induced by a KrF laser beam at a wavelength of 248 nm and pulse duration of 25 ns. The laser fluence was set to 8 J/cm{sup 2} and the oxygen pressure was varied from 0.01 to 5 mbar. By using the ICCD camera, two dimensional images of the plasma expansion were taken at different times. Depending on oxygen pressure and time delay, the expansion behavior of the plasma showed free expansion, plume splitting, shock wave formation, hydrodynamic instability and deceleration of the plume. Using optical emission spectroscopy, the plasma emission revealed the presence of neutral Al I, Al II, Al III into vacuum and under oxygen ambiance. The molecular emission of aluminum oxide (AlO) was detected only in oxygen ambiance. It should be noted that no oxygen lines were observed. Finally, the evolution of the electronic temperature along the normal axis from the target surface, into vacuum, was estimated using the Boltzmann plot method. - Highlights: • Ablated mass measurements of α-alumina target irradiated by a laser in nanosecond regime. • Optical emission spectroscopy of alumina plasma. • Fast imaging diagnostic of alumina plume using ICCD camera.

  14. Ventricular fibrillation occurring after atrioventricular node ablation despite minimal difference between pre- and post-ablation heart rates.

    Science.gov (United States)

    Squara, F; Theodore, G; Scarlatti, D; Ferrari, E

    2017-02-01

    We report the case of an 82-year-old man presenting with ventricular fibrillation (VF) occurring acutely after atrioventricular node (AVN) ablation. This patient had severe valvular cardiomyopathy, chronic atrial fibrillation (AF), and underwent prior to the AVN ablation a biventricular implantable cardiac defibrillator positioning. The VF was successfully cardioverted with one external electrical shock. What makes this presentation original is that the pre-ablation spontaneous heart rate in AF was slow (84 bpm), and that VF occurred after ablation despite a minimal heart rate drop of only 14 bpm. VF is the most feared complication of AVN ablation, but it had previously only been described in case of acute heart rate drop after ablation of at least 30 bpm (and more frequently>50 bpm). This case report highlights the fact that VF may occur after AVN ablation regardless of the heart rate drop, rendering temporary fast ventricular pacing mandatory whatever the pre-ablation heart rate. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Plumes do not Exist: Plate Circulation is Confined to Upper Mantle

    Science.gov (United States)

    Hamilton, W. B.

    2002-12-01

    Plumes from deep mantle are widely conjectured to define an absolute reference frame, inaugurate rifting, drive plates, and profoundly modify oceans and continents. Mantle properties and composition are assumed to be whatever enables plumes. Nevertheless, purported critical evidence for plume speculation is false, and all data are better interpreted without plumes. Plume fantasies are made ever more complex and ad hoc to evade contradictory data, and have no predictive value because plumes do not exist. All plume conjecture derives from Hawaii and the guess that the Emperor-Hawaii inflection records a 60-degree change in Pacific plate direction at 45 Ma. Paleomagnetic latitudes and smooth Pacific spreading patterns disprove any such change. Rationales for other fixed plumes collapse when tested, and hypotheses of jumping, splitting, and gyrating plumes are specious. Thermal and physical properties of Hawaiian lithosphere falsify plume predictions. Purported tomographic support elsewhere represents artifacts and misleading presentations. Asthenosphere is everywhere near solidus temperature, so melt needs a tensional setting for egress but not local heat. Gradational and inconsistent contrasts between MORB and OIB are as required by depth-varying melt generation and behavior in contrasted settings and do not indicate systematically unlike sources. MORB melts rise, with minimal reaction, through hot asthenosphere, whereas OIB melts react with cool lithosphere, and lose mass, by crystallizing refractories and retaining and assimilating fusibles. The unfractionated lower mantle of plume conjecture is contrary to cosmologic and thermodynamic data, for mantle below 660 km is more refractory than that above. Subduction, due to density inversion by top-down cooling that forms oceanic lithosphere, drives plate tectonics and upper-mantle circulation. It organizes plate motions and lithosphere stress, which controls plate boundaries and volcanic chains. Hinge rollback is the

  16. Wildland fire emissions, carbon, and climate: Plume rise, atmospheric transport, and chemistry processes

    Science.gov (United States)

    Warren Heilman; Yongqiang Liu; Shawn Urbanski; Vladimir Kovalev; Robert Mickler

    2014-01-01

    This paper provides an overview and summary of the current state of knowledge regarding critical atmospheric processes that affect the distribution and concentrations of greenhouse gases and aerosols emitted from wildland fires or produced through subsequent chemical reactions in the atmosphere. These critical atmospheric processes include the dynamics of plume rise,...

  17. Thermal Ablation of T1c Renal Cell Carcinoma: A Comparative Assessment of Technical Performance, Procedural Outcome, and Safety of Microwave Ablation, Radiofrequency Ablation, and Cryoablation.

    Science.gov (United States)

    Zhou, Wenhui; Arellano, Ronald S

    2018-04-06

    To evaluate perioperative outcomes of thermal ablation with microwave (MW), radiofrequency (RF), and cryoablation for stage T1c renal cell carcinoma (RCC). A retrospective analysis of 384 patients (mean age, 71 y; range, 22-88 y) was performed between October 2006 and October 2016. Mean radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines; preoperative aspects and dimensions used for anatomic classification; and centrality index scores were 6.3, 7.9, and 2.7, respectively. Assessment of pre- and postablation serum blood urea nitrogen, creatinine, and estimated glomerular filtration rate was performed to assess functional outcomes. Linear regression analyses were performed to compare sedation medication dosages among the three treatment cohorts. Univariable and multivariable logistic regression analyses were performed to compare rates of residual disease and complications among treatment modalities. A total of 437 clinical stage T1N0M0 biopsy-proven RCCs measuring 1.2-6.9 cm were treated with computed tomography (CT)-guided MW ablation (n = 44; 10%), RF ablation (n = 347; 79%), or cryoablation (n = 46; 11%). There were no significant differences in patient demographic or tumor characteristics among cohorts. Complication rates and immediate renal function changes were similar among the three ablation modalities (P = .46 and P = .08, respectively). MW ablation was associated with significantly decreased ablation time (P < .05), procedural time (P < .05), and dosage of sedative medication (P < .05) compared with RF ablation and cryoablation. CT-guided percutaneous MW ablation is comparable to RF ablation or cryoablation for the treatment of stage T1N0M0 RCC with regard to treatment response and is associated with shorter treatment times and less sedation than RF ablation or cryoablation. In addition, the safety profile of CT-guided MW ablation is noninferior to those of RF ablation or

  18. Comparison of microbubble presence in the right heart during mechanochemical and radiofrequency ablation for varicose veins.

    Science.gov (United States)

    Moon, K H; Dharmarajah, B; Bootun, R; Lim, C S; Lane, Tra; Moore, H M; Sritharan, K; Davies, A H

    2017-07-01

    Objective Mechanochemical ablation is a novel technique for ablation of varicose veins utilising a rotating catheter and liquid sclerosant. Mechanochemical ablation and radiofrequency ablation have no reported neurological side-effect but the rotating mechanism of mechanochemical ablation may produce microbubbles. Air emboli have been implicated as a cause of cerebrovascular events during ultrasound-guided foam sclerotherapy and microbubbles in the heart during ultrasound-guided foam sclerotherapy have been demonstrated. This study investigated the presence of microbubbles in the right heart during varicose vein ablation by mechanochemical abaltion and radiofrequency abaltion. Methods Patients undergoing great saphenous vein ablation by mechanochemical abaltion or radiofrequency ablation were recruited. During the ablative procedure, the presence of microbubbles was assessed using transthoracic echocardiogram. Offline blinded image quantification was performed using International Consensus Criteria grading guidelines. Results From 32 recruited patients, 28 data sets were analysed. Eleven underwent mechanochemical abaltion and 17 underwent radiofrequency abaltion. There were no neurological complications. In total, 39% (11/28) of patients had grade 1 or 2 microbubbles detected. Thirty-six percent (4/11) of mechanochemical abaltion patients and 29% (5/17) of radiofrequency ablation patients had microbubbles with no significant difference between the groups ( p=0.8065). Conclusion A comparable prevalence of microbubbles between mechanochemical abaltion and radiofrequency ablation both of which are lower than that previously reported for ultrasound-guided foam sclerotherapy suggests that mechanochemical abaltion may not confer the same risk of neurological events as ultrasound-guided foam sclerotherapy for treatment of varicose veins.

  19. Perioral Rejuvenation With Ablative Erbium Resurfacing.

    Science.gov (United States)

    Cohen, Joel L

    2015-11-01

    Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.

  20. Historical ablation rates on south-east Greenland glaciers measured in the 1933 warm summer

    Directory of Open Access Journals (Sweden)

    Bent Hasholt

    2016-07-01

    Full Text Available Ice ablation rates measured on four glaciers in south-east Greenland in summer 1933 are recovered from an old field book of geologist K. Milthers. These unpublished ablation data are among the first measured in Greenland and were obtained during a warm period comparable to that of recent years. Ablation rates of up to 45 mm ice eq. d−1 were observed. Using the Tasiilaq meteorological record, we calculate degree-day factors of ca. 3–5 mm ice eq. d−1°C−1. Comparing these results with 1996–2012 observations at one of Milthers’ glaciers (Mittivakkat, we find that ablation rates and degree-day factors are significantly higher (61±50% in recent years. We speculate this to be due to a reduction in surface albedo, and perhaps the retreat of the glaciers out of the cold maritime inversion layer. Our findings suggest that using a temperature-index method that assumes constant degree-day factors may produce inaccurate long-term ablation estimates for south-east Greenland glaciers, further emphasizing the value of the rare 1933 measurements for validation of ablation models.

  1. An integral model of plume rise from high explosive detonations

    International Nuclear Information System (INIS)

    Boughton, B.A.; De Laurentis, J.M.

    1987-01-01

    A numerical model has been developed which provides a complete description of the time evolution of both the physical and thermodynamic properties of the cloud formed when a high explosive is detonated. This simulation employs the integral technique. The model equations are derived by integrating the three-dimensional conservation equations of mass, momentum and energy over the plume cross section. Assumptions are made regarding (a) plume symmetry; (b) the shape of profiles of velocity, temperature, etc. across the plume; and (c) the methodology for simulating entrainment and the effects of the crossflow induced pressure drag force on the plume. With these assumptions, the integral equations can be reduced to a set of ordinary differential equations on the plume centerline variables. Only the macroscopic plume characteristics, e.g., plume radius, centerline height, temperature and density, are predicted; details of the plume intrastructure are ignored. The model explicitly takes into account existing meteorology and has been expanded to consider the alterations in plume behavior which occur when aqueous foam is used as a dispersal mitigating material. The simulation was tested by comparison with field measurements of cloud top height and diameter. Predictions were within 25% of field observations over a wide range of explosive yield and atmospheric stability

  2. The controversy over plumes: Who is actually right?

    Science.gov (United States)

    Puchkov, V. N.

    2009-01-01

    The current state of the theory of mantle plumes and its relation to classic plate tectonics show that the “plume” line of geodynamic research is in a period of serious crisis. The number of publications criticizing this concept is steadily increasing. The initial suggestions of plumes’ advocates are disputed, and not without grounds. Questions have been raised as to whether all plumes are derived from the mantle-core interface; whether they all have a wide head and a narrow tail; whether they are always accompanied by uplifting of the Earth’s surface; and whether they can be reliably identified by geochemical signatures, e.g., by the helium-isotope ratio. Rather convincing evidence indicates that plumes cannot be regarded as a strictly fixed reference frame for moving lithospheric plates. More generally, the very existence of plumes has become the subject of debate. Alternative ideas contend that all plumes, or hot spots, are directly related to plate-tectonic mechanisms and appear as a result of shallow tectonic stress, subsequent decompression, and melting of the mantle enriched in basaltic material. Attempts have been made to explain the regular variation in age of volcanoes in ocean ridges by the crack propagation mechanism or by drift of melted segregations of enriched mantle in a nearly horizontal asthenospheric flow. In the author’s opinion, the crisis may be overcome by returning to the beginnings of the plume concept and by providing an adequate specification of plume attributes. Only mantle flows with sources situated below the asthenosphere should be referred to as plumes. These flows are not directly related to such plate-tectonic mechanisms as passive rifting and decompression melting in the upper asthenosphere and are marked by time-progressive volcanic chains; their subasthenospheric roots are detected in seismic tomographic images. Such plumes are mostly located at the margins of superswells, regions of attenuation of seismic waves at the

  3. CALIOP-based Biomass Burning Smoke Plume Injection Height

    Science.gov (United States)

    Soja, A. J.; Choi, H. D.; Fairlie, T. D.; Pouliot, G.; Baker, K. R.; Winker, D. M.; Trepte, C. R.; Szykman, J.

    2017-12-01

    Carbon and aerosols are cycled between terrestrial and atmosphere environments during fire events, and these emissions have strong feedbacks to near-field weather, air quality, and longer-term climate systems. Fire severity and burned area are under the control of weather and climate, and fire emissions have the potential to alter numerous land and atmospheric processes that, in turn, feedback to and interact with climate systems (e.g., changes in patterns of precipitation, black/brown carbon deposition on ice/snow, alteration in landscape and atmospheric/cloud albedo). If plume injection height is incorrectly estimated, then the transport and deposition of those emissions will also be incorrect. The heights to which smoke is injected governs short- or long-range transport, which influences surface pollution, cloud interaction (altered albedo), and modifies patterns of precipitation (cloud condensation nuclei). We are working with the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) science team and other stakeholder agencies, primarily the Environmental Protection Agency and regional partners, to generate a biomass burning (BB) plume injection height database using multiple platforms, sensors and models (CALIOP, MODIS, NOAA HMS, Langley Trajectory Model). These data have the capacity to provide enhanced smoke plume injection height parameterization in regional, national and international scientific and air quality models. Statistics that link fire behavior and weather to plume rise are crucial for verifying and enhancing plume rise parameterization in local-, regional- and global-scale models used for air quality, chemical transport and climate. Specifically, we will present: (1) a methodology that links BB injection height and CALIOP air parcels to specific fires; (2) the daily evolution of smoke plumes for specific fires; (3) plumes transport and deposited on the Greenland Ice Sheet; and (4) compare CALIOP-derived smoke plume injection

  4. CT-guided Bipolar and Multipolar Radiofrequency Ablation (RF Ablation) of Renal Cell Carcinoma: Specific Technical Aspects and Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Lemm, G.; Hohenstein, E. [Minimally Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Clinic for Radiology (Germany); Bellemann, N.; Stampfl, U. [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Goezen, A. S.; Rassweiler, J. [Clinic for Urology, SLK Kliniken Heilbronn GmbH (Germany); Kauczor, H. U.; Radeleff, B. A. [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Pereira, P. L. [Minimally Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Clinic for Radiology (Germany)

    2013-06-15

    Purpose. This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. Methods. We included 22 consecutive patients (3 women; age 74.2 {+-} 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 {+-} 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Results. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 {+-} 13.6 min and 43.7 {+-} 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 {+-} 8.8 months, local recurrence-free survival was 14.4 {+-} 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 {+-} 16.6 ml/min/1.73 m{sup 2} before RF ablation vs. 47.2 {+-} 11.9 ml/min/1.73 m{sup 2} after RF ablation; not significant). Conclusions. CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  5. Laboratory experiments on the formation and recoil jet transport of aerosol by laser ablation

    Science.gov (United States)

    Hirooka, Yoshi; Tanaka, Kazuo A.; Imamura, Keisuke; Okazaki, Katsuya

    2016-05-01

    In a high-repetition rate inertial fusion reactor, the first wall will be subjected to repeated ablation along with pellet implosions, which then leads to the formation of aerosol to scatter and/or deflect laser beams for the subsequent implosion, affecting the overall reactor performance. Proposed in the present work is a method of in-situ directed transport of aerosol particles by the use of laser ablation-induced jet recoil momenta. Lithium and carbon are used as the primary ablation targets, the former of which is known to form aerosol in the form of droplet, and the latter of which tends to form carbon nanotubes. Laboratory-scale experiments have been conducted to irradiate airborne aerosol particles with high-intensity laser to produce ablation-induced jet. Data have indicated a change in aerosol flow direction, but only in the case of lithium.

  6. Correlating the electrification of volcanic plumes with ashfall textures at Sakurajima Volcano, Japan

    Science.gov (United States)

    Smith, Cassandra M.; Van Eaton, Alexa R.; Charbonnier, Sylvain; McNutt, Stephen R.; Behnke, Sonja A.; Thomas, Ronald J.; Edens, Harald E.; Thompson, Glenn

    2018-06-01

    Volcanic lightning detection has become a useful resource for monitoring remote, under-instrumented volcanoes. Previous studies have shown that the behavior of volcanic plume electrification responds to changes in the eruptive processes and products. However, there has not yet been a study to quantify the links between ash textures and plume electrification during an actively monitored eruption. In this study, we examine a sequence of vulcanian eruptions from Sakurajima Volcano in Japan to compare ash textural properties (grain size, shape, componentry, and groundmass crystallinity) to plume electrification using a lightning mapping array and other monitoring data. We show that the presence of the continual radio frequency (CRF) signal is more likely to occur during eruptions that produce large seismic amplitudes (>7 μm) and glass-rich volcanic ash with more equant particle shapes. We show that CRF is generated during energetic, impulsive eruptions, where charge buildup is enhanced by secondary fragmentation (milling) as particles travel out of the conduit and into the gas-thrust region of the plume. We show that the CRF signal is influenced by a different electrification process than later volcanic lightning. By using volcanic CRF and lightning to better understand the eruptive event and its products these key observations will help the monitoring community better utilize volcanic electrification as a method for monitoring and understanding ongoing explosive eruptions.

  7. On the relative motions of long-lived Pacific mantle plumes.

    Science.gov (United States)

    Konrad, Kevin; Koppers, Anthony A P; Steinberger, Bernhard; Finlayson, Valerie A; Konter, Jasper G; Jackson, Matthew G

    2018-02-27

    Mantle plumes upwelling beneath moving tectonic plates generate age-progressive chains of volcanos (hotspot chains) used to reconstruct plate motion. However, these hotspots appear to move relative to each other, implying that plumes are not laterally fixed. The lack of age constraints on long-lived, coeval hotspot chains hinders attempts to reconstruct plate motion and quantify relative plume motions. Here we provide 40 Ar/ 39 Ar ages for a newly identified long-lived mantle plume, which formed the Rurutu hotspot chain. By comparing the inter-hotspot distances between three Pacific hotspots, we show that Hawaii is unique in its strong, rapid southward motion from 60 to 50 Myrs ago, consistent with paleomagnetic observations. Conversely, the Rurutu and Louisville chains show little motion. Current geodynamic plume motion models can reproduce the first-order motions for these plumes, but only when each plume is rooted in the lowermost mantle.

  8. Volcanic eruption plumes on Io

    International Nuclear Information System (INIS)

    Strom, R.G.; Terrile, R.J.; Masursky, H.; Hansen, C.

    1979-01-01

    The detection of an umbrella-shaped plume extending about 280 km above the bright limb of Io was one of the most important discoveries made during the Voyager 1 encounter with the jovian system. This discovery proves that Io is volcanically active at present, and the number and magnitude of these eruptions indicate that Io is the most volcanically active body so far discovered in the Solar System. Preliminary analyses of these eruptive plumes are presented. (U.K.)

  9. NW Iberia shelf dynamics and the behaviour of the Douro River plume

    Science.gov (United States)

    Iglesias, Isabel; Couvelard, Xavier; Avilez-Valente, Paulo; Caldeira, Rui M. A.

    2015-04-01

    The study and modelling of the river plumes is a key factor to complete understand the coastal physics and dynamic processes and sediment transport mechanisms. Some the terrestrial materials that they transport to the ocean are pollutants, essential nutrients, which enhance the phytoplankton productivity or sediments, which settle on the seabed producing bathymetric modifications. When the riverine water join the ocean several instabilities can be induced, generating bulges, filaments, and buoyant currents over the continental shelf. Offshore, the riverine water could form fronts that could be related with the occurrence of current-jets, eddies and strong mixing. This study focused on the Douro River plume simulation. This river is located on the north-west Iberian coast. Its daily averaged freshwater discharge can range values from 0 to 13000 m3/s, which impacts on the formation of the river plumes and its dispersion along the continental shelf. The Regional Oceanic Modeling System (ROMS) model was used to reproduce scenarios of plume generation, retention and dispersion (Shchepetkin and McWilliams, 2005). Three types of simulations were performed: schematic winds simulations with prescribed river flow, wind speed and direction; multi-year climatological simulation, with river flow and temperature change for each month; extreme case simulation. The schematic wind case-studies suggest that the plume is wind-driven. Important differences appear in its structure and dispersion pathways depending on the wind direction and strength. Northerly winds induce plumes with a narrow coastal current meanwhile southerly winds push the river water to the north finding water associated with the Douro River in the Galician Rías. The high surface salinity on the plume regions during strong wind events suggests that the wind enhances the vertical mixing. Extreme river discharges, associated with southerly winds, can transport debris to the Galician coast in about 60 h, helping to

  10. Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations

    Directory of Open Access Journals (Sweden)

    F. Darrouzet

    2006-07-01

    Full Text Available Plasmaspheric plumes have been routinely observed by CLUSTER and IMAGE. The CLUSTER mission provides high time resolution four-point measurements of the plasmasphere near perigee. Total electron density profiles have been derived from the electron plasma frequency identified by the WHISPER sounder supplemented, in-between soundings, by relative variations of the spacecraft potential measured by the electric field instrument EFW; ion velocity is also measured onboard these satellites. The EUV imager onboard the IMAGE spacecraft provides global images of the plasmasphere with a spatial resolution of 0.1 RE every 10 min; such images acquired near apogee from high above the pole show the geometry of plasmaspheric plumes, their evolution and motion. We present coordinated observations of three plume events and compare CLUSTER in-situ data with global images of the plasmasphere obtained by IMAGE. In particular, we study the geometry and the orientation of plasmaspheric plumes by using four-point analysis methods. We compare several aspects of plume motion as determined by different methods: (i inner and outer plume boundary velocity calculated from time delays of this boundary as observed by the wave experiment WHISPER on the four spacecraft, (ii drift velocity measured by the electron drift instrument EDI onboard CLUSTER and (iii global velocity determined from successive EUV images. These different techniques consistently indicate that plasmaspheric plumes rotate around the Earth, with their foot fully co-rotating, but with their tip rotating slower and moving farther out.

  11. An experimental study on hepatic ablation using an expandable radio-frequency needle electrode

    International Nuclear Information System (INIS)

    Choi, Dong Il; Lim, Hyo Keun; Park, Jong Min; Kang, Bo Kyung; Woo, Ji Young; Jang, Hyun Jung; Kim, Seung Hoon; Lee, Won Jae; Park, Cheol Keun; Heo, Jin Seok

    1999-01-01

    The purpose of this study was to determine the factors influencing on the size of thermal lesions after ablation using an expendable radio-frequency needle electrode in porcine liver. Ablation procedures involved the use of a monopolar radio-frequency generator and 15-G needle electrodes with four and seven retractable hooks (RITA Medical System, Mountain View, Cal., U.S.A.). The ablation protocol in fresh porcine liver comprised of combinations of varying hook deployment, highest set temperature, and ablation time. Following ablation, the maximum diameter of all thermal lesions was measured on a longitudinal section of the specimen. Ten representive lesions were examined by an experienced pathologist. At 3-cm hook deployment of the needle electrode with four lateral hooks, the size of spherical thermal lesions increased substantially with increases in the highest set temperature and ablation time until 11 minutes. After 11 minutes lesion size remained similar, with a maximum diameter of 3.3 cm. At 2-cm hook deployment, sizes decreased to about 2/3 of those at 3 cm , and at 1-cm hook deployment lesions were oblong. At 3-cm hook deployment of a needle electrode with seven hooks, the size of thermal lesions increased with increasing ablation time until 14 minutes, and the maximum diameter was 4.1 cm. Microscopic examination showed a wide zone of degeneration and focal coagulation necrosis. The size of thermal lesions produced by the use of an expandable radio-frequency needle electrode were predictable, varying according to degree of hook deployment, highest set temperature, and ablation time

  12. The mid-Cretaceous super plume, carbon dioxide, and global warming

    Science.gov (United States)

    Caldeira, Ken; Rampino, Michael R.

    1991-01-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. A carbonate-silicate cycle model is developed to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern preindustrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 C over today's glogal mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 C, within the 6 to 14 C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20 percent of the mid-Cretaceous increase in atmospheric CO2.

  13. River plume patterns and dynamics within the Southern California Bight

    Science.gov (United States)

    Warrick, J.A.; DiGiacomo, P.M.; Weisberg, S.B.; Nezlin, N.P.; Mengel, M.; Jones, B.H.; Ohlmann, J.C.; Washburn, L.; Terrill, E.J.; Farnsworth, K.L.

    2007-01-01

    Stormwater river plumes are important vectors of marine contaminants and pathogens in the Southern California Bight. Here we report the results of a multi-institution investigation of the river plumes across eight major river systems of southern California. We use in situ water samples from multi-day cruises in combination with MODIS satellite remote sensing, buoy meteorological observations, drifters, and HF radar current measurements to evaluate the dispersal patterns and dynamics of the freshwater plumes. River discharge was exceptionally episodic, and the majority of storm discharge occurred in a few hours. The combined plume observing techniques revealed that plumes commonly detach from the coast and turn to the left, which is the opposite direction of Coriolis influence. Although initial offshore velocity of the buoyant plumes was ∼50 cm/s and was influenced by river discharge inertia (i.e., the direct momentum of the river flux) and buoyancy, subsequent advection of the plumes was largely observed in an alongshore direction and dominated by local winds. Due to the multiple day upwelling wind conditions that commonly follow discharge events, plumes were observed to flow from their respective river mouths to down-coast waters at rates of 20–40 km/d. Lastly, we note that suspended-sediment concentration and beam-attenuation were poorly correlated with plume salinity across and within the sampled plumes (mean r2=0.12 and 0.25, respectively), while colored dissolved organic matter (CDOM) fluorescence was well correlated (mean r2=0.56), suggesting that CDOM may serve as a good tracer of the discharged freshwater in subsequent remote sensing and monitoring efforts of plumes.

  14. Driving Solar Giant Cells through the Self-organization of Near-surface Plumes

    Science.gov (United States)

    Nelson, Nicholas J.; Featherstone, Nicholas A.; Miesch, Mark S.; Toomre, Juri

    2018-06-01

    Global 3D simulations of solar giant-cell convection have provided significant insight into the processes which yield the Sun’s observed differential rotation and cyclic dynamo action. However, as we move to higher-resolution simulations a variety of codes have encountered what has been termed the convection conundrum. As these simulations increase in resolution and hence the level of turbulence achieved, they tend to produce weak or even anti-solar differential rotation patterns associated with a weak rotational influence (high Rossby number) due to large convective velocities. One potential culprit for this convection conundrum is the upper boundary condition applied in most simulations, which is generally impenetrable. Here we present an alternative stochastic plume boundary condition which imposes small-scale convective plumes designed to mimic near-surface convective downflows, thus allowing convection to carry the majority of the outward solar energy flux up to and through our simulated upper boundary. The use of a plume boundary condition leads to significant changes in the convective driving realized in the simulated domain and thus to the convective energy transport, the dominant scale of the convective enthalpy flux, and the relative strength of the strongest downflows, the downflow network, and the convective upflows. These changes are present even far from the upper boundary layer. Additionally, we demonstrate that, in spite of significant changes, giant cell morphology in the convective patterns is still achieved with self-organization of the imposed boundary plumes into downflow lanes, cellular patterns, and even rotationally aligned banana cells in equatorial regions. This plume boundary presents an alternative pathway for 3D global convection simulations where driving is non-local and may provide a new approach toward addressing the convection conundrum.

  15. Water spray assisted ultrashort laser pulse ablation

    International Nuclear Information System (INIS)

    Silvennoinen, M.; Kaakkunen, J.J.J.; Paivasaari, K.; Vahimaa, P.

    2013-01-01

    Highlights: ► We show the novel method to use multibeam processing with ultrashort pulses efficiently. ► Sprayed thin water layer on ablation zone enhances ablation rate and quality. ► In some cases this method also enables ablation of the deeper and straighter holes compared to ones made without the water layer. ► Method also makes possible to directly write features without the self-organizing structures. - Abstract: We have studied femtosecond ablation under sprayed thin water film and its influence and benefits compared with ablation in the air atmosphere. These have been studied in case of the hole and the groove ablation using IR femtosecond laser. Water enhances the ablation rate and in some situations it makes possible to ablate the holes with a higher aspect ratio. While ablating the grooves, the water spray allows using the high fluences without the generation of the self-organized structures.

  16. The effect of ethanol infusion on the size of the ablated lesion in radiofrequency thermal ablation: A pilot study

    International Nuclear Information System (INIS)

    Kim, Young Sun; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Kim, Yong Soo; Joo, Kyoung Bin

    2001-01-01

    To assess the effect of ethanol infusion on the size of ablated lesion during radiofrequency (RF) thermal ablation. We performed an ex vivo experimental study using a total of 15 pig livers. Three groups were designed: 1)normal control (n=10), 2) saline infusion (n=10) 3) ethanol infusion (n=10). Two radiofrequency ablations were done using a 50 watt RF generator and a 15 guage expandable elections with four prongs in each liver. During ablation for 8 minutes, continuous infusion of fluid at a rate of 0.5 ml/min through the side arm of electrode was performed. We checked the frequency of the 'impeded-out' phenomenon due to abrupt increase of impedance during ablation. Size of ablated lesion was measured according to length, width, height, and subsequently volume after the ablations. The sizes of the ablated lesions were compared between the three groups. 'Impeded-out' phenomenon during ablation was noted 4 times in control group, although that never happened in saline or ethanol infusion groups. There were significant differences in the volumes of ablated lesions between control group (10.62 ± 1.45 cm 3 ) and saline infusion group (15.33 ± 2.47 cm 3 ), and saline infusion group and ethanol infusion group (18.78 ± 3.58 cm 3 ) (p<0.05). Fluid infusion during radiofrequency thermal ablation decrease a chance of charming and increase the volume of the ablated lesion. Ethanol infusion during ablation may induce larger volume of ablated lesion than saline infusion.

  17. Catheter ablation as a treatment of atrioventricular block.

    Science.gov (United States)

    Tuohy, Stephen; Saliba, Walid; Pai, Manjunath; Tchou, Patrick

    2018-01-01

    Symptomatic second-degree atrioventricular (AV) block is typically treated by implantation of a pacemaker. An otherwise healthy AV conduction system can nevertheless develop AV block due to interference from junctional extrasystoles. When present with a high burden, these can produce debilitating symptoms from AV block despite an underlying normal AV node and His-Purkinje system properties. The purpose of this study was to describe a catheter ablation approach for alleviating symptomatic AV block due to a ventricular nodal pathway interfering with AV conduction. Common clinical monitoring techniques such as Holter and event recorders were used. Standard electrophysiological study techniques using multipolar recording and ablation catheters were utilized during procedures. A 55-year-old woman presented with highly symptomatic, high-burden second-degree AV block due to concealed and manifest junctional premature beats. Electrophysiological characteristics indicated interference of AV conduction due to a concealed ventricular nodal pathway as the cause of the AV block. The patient's AV nodal and His-Purkinje system conduction characteristics were otherwise normal. Radiofrequency catheter ablation of the pathway was successful in restoring normal AV conduction and eliminating her clinical symptoms. Pathways inserting into the AV junction can interfere with AV conduction. When present at a high burden, this type of AV block can be highly symptomatic. Catheter ablation techniques can be used to alleviate this type of AV block and restore normal AV conduction. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  18. Characterization of redox conditions in groundwater contaminant plumes

    Science.gov (United States)

    Christensen, Thomas H.; Bjerg, Poul L.; Banwart, Steven A.; Jakobsen, Rasmus; Heron, Gorm; Albrechtsen, Hans-Jørgen

    2000-10-01

    Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few cases have been reported. No standardised or generally accepted approach exists. Slow electrode kinetics and the common lack of internal equilibrium of redox processes in pollution plumes make, with a few exceptions, direct electrochemical measurement and rigorous interpretation of redox potentials dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial tools, such as MPN counts, PLFA biomarkers and redox bioassays. This paper reviews the principles behind the different approaches, summarizes methods used and evaluates the approaches based on the experience from the reported applications.

  19. The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing.

    Science.gov (United States)

    Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A

    2008-05-01

    The drive to attain cosmetic facial enhancement with minimal risk and rapid recovery has inspired the field of nonsurgical skin rejuvenation. Laser resurfacing was introduced in the 1980s with continuous wave carbon dioxide (CO(2)) lasers; however, because of a high rate of side effects, including scarring, short-pulse, high-peak power, and rapidly scanned, focused-beam CO(2) lasers and normal-mode erbium-doped yttrium aluminium garnet lasers were developed, which remove skin in a precisely controlled manner. The prolonged 2-week recovery time and small but significant complication risk prompted the development of non-ablative and, more recently, fractional resurfacing in order to minimize risk and shorten recovery times. Nonablative resurfacing produces dermal thermal injury to improve rhytides and photodamage while preserving the epidermis. Fractional resurfacing thermally ablates microscopic columns of epidermal and dermal tissue in regularly spaced arrays over a fraction of the skin surface. This intermediate approach increases efficacy as compared to nonablative resurfacing, but with faster recovery as compared to ablative resurfacing. Neither nonablative nor fractional resurfacing produces results comparable to ablative laser skin resurfacing, but both have become much more popular than the latter because the risks of treatment are limited in the face of acceptable improvement. At the completion of this learning activity, participants should be familiar with the spectrum of lasers and light technologies available for skin resurfacing, published studies of safety and efficacy, indications, methodologies, side effects, complications, and management.

  20. Using satellite imagery for qualitative evaluation of plume transport in modeling the effects of the Kuwait oil fire smoke plumes

    International Nuclear Information System (INIS)

    Bass, A.; Janota, P.

    1992-01-01

    To forecast the behavior of the Kuwait oil fire smoke plumes and their possible acute or chronic health effects over the Arabian Gulf region, TASC created a comprehensive health and environmental impacts modeling system. A specially-adapted Lagrangian puff transport model was used to create (a) short-term (multiday) forecasts of plume transport and ground-level concentrations of soot and SO 2 ; and (b) long-term (seasonal and longer) estimates of average surface concentrations and depositions. EPA-approved algorithms were used to transform exposures to SO 2 and soot (as PAH/BaP) into morbidity, mortality and crop damage risks. Absent any ground truth, satellite imagery from the NOAA Polar Orbiter and the ESA Geostationary Meteosat offered the only opportunity for timely qualitative evaluation of the long-range plume transport and diffusion predictions. This paper shows the use of actual satellite images (including animated loops of hourly Meteosat images) to evaluate plume forecasts in near-real-time, and to sanity-check the meso- and long-range plume transport projections for the long-term estimates. Example modeled concentrations, depositions and health effects are shown

  1. Field experimental observations of highly graded sediment plumes

    DEFF Research Database (Denmark)

    Hjelmager Jensen, Jacob; Saremi, Sina; Jimenez, Carlos

    2015-01-01

    A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes......-bed positions gives unique insight into the dynamics of the descending plume and near-field dispersion processes, and enables good understanding of flow and sediment transport processes involved from-release-to-deposition of the load in a non-scaled environment. The high resolution images and footages...... are available through the link provided herein. Observations support the development of a detailed multi-fractional sediment plume model....

  2. Dispersal of volcaniclastic material by buoyant water plumes in deep-ocean explosive basaltic eruptions

    Science.gov (United States)

    Barreyre, T.; Soule, S.; Reves-Sohn, R. A.

    2009-12-01

    The ability of mid-ocean ridge (MOR) volcanic systems to generate explosive eruptions is inhibited by the large hydrostatic pressures associated with their deep-sea location, which suppress volatile exsolution from the magma, and which preclude the generation of steam from lava-water interaction. Nevertheless, volcaniclastic material indicative of explosive activity has been found along many parts of the global MOR, raising important questions regarding the volatile systematics within mid-ocean ridge magmatic systems, and the processes by which volcaniclastic material may be dispersed during deep-sea eruptions. In this study we measured the settling velocities of volcaniclastic grains recovered from the Gakkel Ridge, Loihi Seamount, and Axial Volcano, and developed empirical settling velocity models as a function of particle size for three different particle shapes (angular, sheet, and rod). We then used the Morton, Turner, Taylor turbulent plume model to investigate how a plume of buoyant water may distribute this volcaniclastic material during a deep-sea eruption so that the physical characteristics of the deposits may be used to constrain the location and size (i.e., energy) of the eruptions that produced them. We ran the turbulent plume model for conditions ranging from a typical black smoker (~150 MW) to a megaplume (~30000 MW), and for water column density stratifications and currents corresponding to nominal conditions for the Arctic and Pacific Oceans. We found that maximum dispersal distances for the dominant size of volcaniclastic material within buoyant water plumes range from Pele). These distances are insufficient to explain the areal extent of the volcaniclastic deposits observed along the 85°E segment of the Gakkel Ridge and various portions of the Juan de Fuca Ridge, indicating that additional energy in the form of momentum from expanding gases is required to produce the observed deposits.

  3. 915 MHz microwave ablation with high output power in in vivo porcine spleens

    International Nuclear Information System (INIS)

    Gao Yongyan; Wang Yang; Duan Yaqi; Li Chunling; Sun Yuanyuan; Zhang Dakun; Lu Tong; Liang Ping

    2010-01-01

    Objective: The purpose of this study was to evaluate the efficacy of 915 MHz microwave (MW) ablation with high output power in in vivo porcine spleens. Materials and methods: MW ablations were performed in 9 porcine spleens with an internally cooled 915 MHz antenna. Thermocouples were placed at 5, 10, 15, 20 mm away from the antenna to measure temperatures in real-time during MW emission. The energy was applied for 10 min at high output power of 60 W, 70 W or 80 W. Gross specimens were sectioned and measured to determine ablation size. Representative areas were examined by light microscopy and electron microscopy. Coagulation sizes and temperatures were compared among the three power groups. Results: Hematoxylin-eosin staining showed irreversible necrosis in the splenic coagulation area after MW ablation. As the power was increased, long-axis diameter enlarged significantly (p .05). The coagulation size of long-axis and short-axis diameter with 80 W in vivo spleen ablation was 6.43 ± 0.52 and 4.95 ± 0.30 cm, respectively. With the increase of output power, maximum temperatures at 5, 10, 15, 20 mm from the antenna were increased accordingly (p o C respectively. Conclusion: With internally cooled antenna and high output power, 915 MHz MW ablation in the spleen could produce irreversible tissue necrosis of clinical significance. MW ablation may be used as a promising minimally invasive method for the treatment of splenic diseases.

  4. Volcanic Plume Measurements with UAV (Invited)

    Science.gov (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  5. Ablation of Solid Hydrogen in a Plasma

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment.......Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment....

  6. Calculation of doses received while crossing a plume of radioactive material

    International Nuclear Information System (INIS)

    Scherpelz, R.I.; Desrosiers, A.E.

    1981-04-01

    A method has been developed for determining the dose received by a person while crossing a plume of radioactive material. The method uses a Gaussian plume model to arrive at a dose rate on the plume centerline at the position of the plume crossing. This dose rate may be due to any external or internal dose pathway. An algebraic formula can then be used to convert the plume centerline dose rate to a total dose integrated over the total time of plume crossing. Correction factors are presented for dose pathways in which the dose rate is not normally distributed about the plume centerline. The method is illustrated by a study done at the Pacific Northwest Laboratory, and results of this study are presented

  7. CT-guided Bipolar and Multipolar Radiofrequency Ablation (RF Ablation) of Renal Cell Carcinoma: Specific Technical Aspects and Clinical Results

    International Nuclear Information System (INIS)

    Sommer, C. M.; Lemm, G.; Hohenstein, E.; Bellemann, N.; Stampfl, U.; Goezen, A. S.; Rassweiler, J.; Kauczor, H. U.; Radeleff, B. A.; Pereira, P. L.

    2013-01-01

    Purpose. This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. Methods. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Results. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m 2 before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m 2 after RF ablation; not significant). Conclusions. CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  8. Comparative study of excimer and erbium:YAG lasers for ablation of structural components of the knee

    Science.gov (United States)

    Vari, Sandor G.; Shi, Wei-Qiang; van der Veen, Maurits J.; Fishbein, Michael C.; Miller, J. M.; Papaioannou, Thanassis; Grundfest, Warren S.

    1991-05-01

    This study was designed to compare the efficiency and thermal effect of a 135 ns pulsed-stretched XeCl excimer laser (308 nm) and a free-running Erbium:YAG laser (2940 nm) with 200 microsecond(s) pulse duration for ablation of knee joint structures (hyaline and fibrous cartilage, tendon and bone). The radiant exposure used for tissue ablation ranged from 2 to 15 J/cm2 for the XeCl excimer and from 33 to 120 J/cm2 for Er:YAG. The excimer and Er:YAG lasers were operated at 4 and 5 Hz respectively. The ablative laser energy was delivered to tissue through fibers. Ablation rates of soft tissues (hyaline and fibrous cartilage, tendon) varied from 8.5 to 203 micrometers /pulse for excimer and from 8.2 to 273 micrometers /pulse for Er:YAG lasers. Ablation rates of soft tissues are linearly dependent on the radiant exposure. Within the range of parameters tested all the tissues except the bone could be rapidly ablated by both lasers. Bone ablation was much less efficient, requiring 15 J/cm2 and 110 J/cm2 radiant exposure for excimer and Er:YAG lasers to ablate 9.5 and 8.2 micrometers tissue per pulse. However, excimer laser ablation produced less thermal damage in the tissues studied compared to Er:YAG at the same laser parameters. The authors conclude that both lasers are capable of efficient knee joint tissue ablation. XeCl excimer laser requires an order of magnitude less energy than Er:YAG laser for comparable tissue ablation.

  9. Real time determination of the laser ablated mass by means of electric field-perturbation measurement

    Science.gov (United States)

    Pacheco, P.; Álvarez, J.; Sarmiento, R.; Bredice, F.; Sánchez-Aké, C.; Villagrán-Muniz, M.; Palleschi, V.

    2018-04-01

    A Nd:YAG ns-pulsed laser was used to ablate Al, Cd and Zn targets, which were placed between the plates of a planar charged capacitor. The plasma generates a transient redistribution of the electrical charges on the plates that can be measured as a voltage drop across a resistor connected to the ground plate. This signal is proportional to the capacitor applied voltage, the distance between the plates and the total number of ions produced in the ablation process which in turn is related to the laser energy and the ablated mass. After a series of pulses, the targets were weighed on a thermogravimetric balance to measure the ablated mass. Our results show that the electrical signal measured on the resistor is univocally related to the ablated mass from the target. Therefore, after a proper calibration depending on the material and the experimental geometry, the electrical signal can be used for real time quantitative measurement of the ablated mass in pulsed laser generated plasma experiments. The experiments were repeated on an aluminum target, with and without the presence of the external electric field in order to determine the possible influence of the applied electric field on the ablated mass.

  10. Argonne National Laboratory's thermal plume measurements: instruments and techniques

    International Nuclear Information System (INIS)

    Van Loon, L.S.; Frigo, A.A.; Paddock, R.A.

    1977-12-01

    Instrumentation and techniques were developed at Argonne National Laboratory for measuring the three-dimensional temperature structure of thermal plumes from power plants, along with the limnological, meteorological, and plant operating conditions affecting their behavior. The equipment and procedures were designed to provide field data for use in evaluating predictive models that describe thermal plume behavior, and over 100 sets of these data have been collected. The instrument systems and techniques employed in a typical thermal discharge survey are highly integrated. Continuous monitoring of ambient and plant conditions is coupled with plume mapping from a moving survey boat. The instantaneous location of the boat together with subsurface temperature measurements from a towed thermistor chain provide a quasisynoptic view of the plume structure. Real-time, onboard display of the boat path and vertical temperatures supply feedback to investigators for determining the extent and spatial resolution of measurements required. The unique design, reliability, accuracy, calibration, and historical development of the components of these integrated systems are described. Survey system interfaces with data handling and processing techniques are also explained. Special supportive studies to investigate plume dynamics, values of eddy diffusivities, time-temperature histories of water parcels in thermal plumes, and rapid changes in plume shape are also described along with instrumentation used

  11. Processing of Dielectric Optical Coatings by Nanosecond and Femtosecond UV Laser Ablation

    International Nuclear Information System (INIS)

    Ihlemann, J.; Bekesi, J.; Klein-Wiele, J.H.; Simon, P.

    2008-01-01

    Micro processing of dielectric optical coatings by UV laser ablation is demonstrated. Excimer laser ablation at deep UV wavelengths (248 nm, 193 nm) is used for the patterning of thin oxide films or layer stacks. The layer removal over extended areas as well as sub-μm-structuring is possible. The ablation of SiO2, Al2O3, HfO2, and Ta2O5 layers and layer systems has been investigated. Due to their optical, chemical, and thermal stability, these inorganic film materials are well suited for optical applications, even if UV-transparency is required. Transparent patterned films of SiO2 are produced by patterning a UV-absorbing precursor SiOx suboxide layer and oxidizing it afterwards to SiO2. In contrast to laser ablation of bulk material, in the case of thin films, the layer-layer or layer-substrate boundaries act as predetermined end points, so that precise depth control and a very smooth surface can be achieved. For large area ablation, nanosecond lasers are well suited; for patterning with submicron resolution, femtosecond excimer lasers are applied. Thus the fabrication of optical elements like dielectric masks, pixelated diffractive elements, and gratings can be accomplished.

  12. The Time Variability of Individual Geysers in the Plume of Enceladus

    Science.gov (United States)

    Trumbo, S. K.; Ewald, S. P.; Ingersoll, A. P.

    2016-12-01

    Porco et al. (2014) [1] published the locations of 100 jets along the so-called "tiger stripes" that feed the massive plume of Enceladus. Hedman et al. (2013) [2] observed fluctuations in integrated plume brightness in response to periodic tidal forcing on the orbital timescale of Enceladus, in which the plume is brightest near apocenter and dimmest near pericenter. The thin crack models of Hurford et al. (2007, 2012) [3, 4] suggest that individual jets should respond to the same forces on similar timescales. However, if the jets are produced via vapor and liquid propagation through thin subterranean cracks, then they may also be controlled thermodynamically and dependent on the timescale of ice buildup on the conduit walls. Ingersoll and Ewald (2016) [5] demonstrate that the plume also varies on decadal timescales, perhaps as a result of an eleven-year tide or long-term ice accumulation within source cracks. We examine Cassini ISS Narrow Angle Camera images spanning 2005 - 2012 in order to assess the temporal variability of individual geysers and regional emission in the plume. We observe both the appearance and disappearance of individual jets, as well as visible changes in regional emission. Our observations suggest localized variations on timescales of months to years that are not easily tied to mean anomaly, but that may be indicative of subsurface processes. Theoretical models of the geyser mechanisms and subsurface plumbing predict closure timescales of individual cracks that are dependent on model parameters, such as crack width, crack tortuosity, and water table depth [6, 7, 8]. Thus, we discuss possible implications of these observations for both the mechanism and anatomy of an Enceladus geyser. [1] Porco et al. (2014), AJ, 148, 3. [2] Hedman et al. (2013), Nature, 500, 182 - 184. [3] Hurford et al. (2007), Nature, 447, 292 - 294. [4] Hurford et al. (2012), Icarus, 220, 896 - 903. [5] Ingersoll and Ewald (2016), Icarus, in review. [6] Ingersoll and

  13. Plasmonic angular tunability of gold nanoparticles generated by fs laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pace, M.L.; Guarnaccio, A.; Ranù, F. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Trucchi, D. [CNR, ISM UOS Montelibretti, Via Salaria km 29.300, Monterotondo Scalo, (RM) 00015 (Italy); Orlando, S., E-mail: stefano.orlando@ism.cnr.it [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Mollica, D.; Parisi, G.P. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Medici, L.; Lettino, A. [CNR, IMAA, Area della Ricerca di Potenza -Zona Industriale, Tito Scalo, (PZ) 85050 (Italy); De Bonis, A.; Teghil, R. [Dipart. di Scienze,Università della Basilicata, Viale dell’Ateneo Lucano 10, Potenza, 85100 (Italy); Santagata, A. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy)

    2016-06-30

    Highlights: • fs pulsed laser ablation as a technique to produce nanoparticles. • Nanoparticle distribution as an evidence for plasmonic tunable resonances. • Correlation between angular distribution of deposited nanoparticles and specific plasmonic resonances. - Abstract: With the aim to study the influence of deposition parameters on the plasmonic properties of gold (Au) nanoparticles (NPs) deposited by ultra-short ablation, we have focused our attention in evaluating how their size distribution can be varied. In this work, the role played by the NPs’ angular distribution, agglomeration and growth is related to the resulting optical properties. UV–vis-NIR absorption spectra together with Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray microdiffraction observations are presented in order to show how the angular distribution of fs laser ablation and deposition of Au NPs provides different plasmonic properties which can be beneficial for several aims, from optoelectronic to biosensor applications.

  14. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    International Nuclear Information System (INIS)

    Baladi, Arash; Sarraf Mamoory, Rasoul

    2010-01-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  15. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Baladi, Arash [Materials Engineering Department, Tarbiat Modares University, Jalal Al Ahmad, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Sarraf Mamoory, Rasoul, E-mail: rsarrafm@modares.ac.ir [Materials Engineering Department, Tarbiat Modares University, Jalal Al Ahmad, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2010-10-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  16. Percutaneous Renal Tumor Ablation: Radiation Exposure During Cryoablation and Radiofrequency Ablation

    Energy Technology Data Exchange (ETDEWEB)

    McEachen, James C., E-mail: james.mceachen2@gmail.com [Mayo Clinic, Division of Preventive, Occupational, and Aerospace Medicine (United States); Leng, Shuai; Atwell, Thomas D. [Mayo Clinic, Department of Radiology (United States); Tollefson, Matthew K. [Mayo Clinic, Department of Urology (United States); Friese, Jeremy L. [Mayo Clinic, Department of Radiology (United States); Wang, Zhen; Murad, M. Hassan [Mayo Clinic, Division of Preventive, Occupational, and Aerospace Medicine (United States); Schmit, Grant D. [Mayo Clinic, Department of Radiology (United States)

    2016-02-15

    IntroductionOnce reserved solely for non-surgical cases, percutaneous ablation is becoming an increasingly popular treatment option for a wider array of patients with small renal masses and the radiation risk needs to be better defined as this transition continues.Materials and MethodsRetrospective review of our renal tumor ablation database revealed 425 patients who underwent percutaneous ablation for treatment of 455 renal tumors over a 5-year time period. Imparted radiation dose information was reviewed for each procedure and converted to effective patient dose and skin dose using established techniques. Statistical analysis was performed with each ablative technique.ResultsFor the 331 cryoablation procedures, the mean DLP was 6987 mGycm (SD = 2861) resulting in a mean effective dose of 104.7 mSv (SD = 43.5) and the mean CTDI{sub vol} was 558 mGy (SD = 439) resulting in a mean skin dose of 563.2 mGy (SD = 344.1). For the 124 RFA procedures, the mean DLP was 3485 mGycm (SD = 1630) resulting in a mean effective dose of 50.3 mSv (SD = 24.0) and the mean CTDI{sub vol} was 232 mGy (SD = 149) resulting in a mean skin dose of 233.2 mGy (SD = 117.4). The difference in patient radiation exposure between the two renal ablation techniques was statistically significant (p < 0.001).ConclusionBoth cryoablation and RFA imparted an average skin dose that was well below the 2 Gy deterministic threshold for appreciable sequela. Renal tumor cryoablation resulted in a mean skin and effective radiation dose more than twice that for RFA. The radiation exposure for both renal tumor ablation techniques was at the high end of the medical imaging radiation dose spectrum.

  17. High-density carbon ablator experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    MacKinnon, A. J., E-mail: mackinnon2@llnl.gov; Meezan, N. B.; Ross, J. S.; Le Pape, S.; Berzak Hopkins, L.; Divol, L.; Ho, D.; Milovich, J.; Pak, A.; Ralph, J.; Döppner, T.; Patel, P. K.; Thomas, C.; Tommasini, R.; Haan, S.; MacPhee, A. G.; McNaney, J.; Caggiano, J.; Hatarik, R.; Bionta, R. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2014-05-15

    High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2× higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 ± 20 km/s with no observed ablator mixing into the hot spot.

  18. Experiments on Plume Spreading by Engineered Injection and Extraction

    Science.gov (United States)

    Mays, D. C.; Jones, M.; Tigera, R. G.; Neupauer, R.

    2014-12-01

    The notion that groundwater remediation is transport-limited emphasizes the coupling between physical (i.e., hydrodynamic), geochemical, and microbiological processes in the subsurface. Here we leverage this coupling to promote groundwater remediation using the approach of engineered injection and extraction. In this approach, inspired by the literature on chaotic advection, uncontaminated groundwater is injected and extracted through a manifold of wells surrounding the contaminated plume. The potential of this approach lies in its ability to actively manipulate the velocity field near the contaminated plume, generating plume spreading above and beyond that resulting from aquifer heterogeneity. Plume spreading, in turn, promotes mixing and reaction by chemical and biological processes. Simulations have predicted that engineered injection and extraction generates (1) chaotic advection whose characteristics depend on aquifer heterogeneity, and (2) faster rates and increased extent of groundwater remediation. This presentation focuses on a complimentary effort to experimentally demonstrate these predictions experimentally. In preparation for future work using refractive index matched (RIM) porous media, the experiments reported here use a Hele-Shaw apparatus containing silicone oil. Engineered injection and extraction is used to manipulate the geometry of an initially circular plume of black pigment, and photographs record the plume geometry after each step of injection of extraction. Image analysis, using complimentary Eulerian and Lagrangian approaches, reveals the thickness and variability of the dispersion zone surrounding the deformed plume of black pigment. The size, shape, and evolution of this dispersion zone provides insight into the interplay between engineered injection and extraction, which generates plume structure, and dispersion (here Taylor dispersion), which destroys plume structure. These experiments lay the groundwork for application of engineered

  19. Study of the interference of plumes released from two near-ground point sources in an open channel

    International Nuclear Information System (INIS)

    Oskouie, Shahin N.; Wang, Bing-Chen; Yee, Eugene

    2015-01-01

    Highlights: • DNS study of turbulent dispersion and mixing of passive scalars. • Interference of two passive plumes in a boundary layer flow. • Cross correlation, co-spectra and coherency spectra of two plumes. - Abstract: The dispersion and mixing of passive scalars released from two near-ground point sources into an open-channel flow are studied using direct numerical simulation. A comparative study based on eight test cases has been conducted to investigate the effects of Reynolds number and source separation distance on the dispersion and interference of the two plumes. In order to determine the nonlinear relationship between the variance of concentration fluctuations of the total plume and those produced by each of the two plumes, the covariance of the two concentration fields is studied in both physical and spectral spaces. The results show that at the source height, the streamwise evolution of the cross correlation between the fluctuating components of the two concentration fields can be classified into four stages, which feature zero, destructive and constructive interferences and a complete mixing state. The characteristics of these four stages of plume mixing are further confirmed through an analysis of the pre-multiplied co-spectra and coherency spectra. From the coherency spectrum, it is observed that there exists a range of ‘leading scales’, which are several times larger than the Kolmogorov scale but are smaller than or comparable to the scale of the most energetic eddies of turbulence. At the leading scales, the mixing between the two interfering plumes is the fastest and the coherency spectrum associated with these scales can quickly approach its asymptotic value of unity.

  20. Synthesis of Mg(OH)2, MgO, and Mg nanoparticles using laser ablation of magnesium in water and solvents

    Energy Technology Data Exchange (ETDEWEB)

    Tran, P.X.; Howard, B.H.; Martello, D.V.; Soong, Y.; Chyu, M.K.

    2008-01-01

    laser ablation of magnesium in deionized water (OW), solutions of OW and sodium dodecyl sulfate (50S) with different concentrations, acetone and 2-propanol has been conducted, The results showed that ablation in acetone and 2-propanol yielded MgO and Mg nanocrystallites as isolated particles and agglomerated chains probably intermixed with organic residues resulting from the alterationj decomposition of the solvents under the high-energy conditions. Brucite-like Mg(OH)2 particles were mainly produced by laser ablation of Mg in either OW or OW~SOS solutions. Ablation in OW yielded particles of fiber-like shapes having a diameter of about 5-lOnm and length as long as 150nm. Materials produced in DW-SOS solutions were composed of various size and shape particles, Some had rough surfaces with irregular shapes. Small particles were about 20-30nm and larger particles were about 120 nm. Particles with rod-like, triangular, and plate-like shapes were also observed.

  1. Synthesis of Mg(OH) 2, MgO, and Mg nanoparticles using laser ablation of magnesium in water and solvents

    Science.gov (United States)

    Phuoc, Tran X.; Howard, Bret. H.; Martello, Donald V.; Soong, Yee; Chyu, Minking K.

    2008-11-01

    Laser ablation of magnesium in deionized water (DW), solutions of DW and sodium dodecyl sulfate (SDS) with different concentrations, acetone and 2-propanol has been conducted. The results showed that ablation in acetone and 2-propanol yielded MgO and Mg nanocrystallites as isolated particles and agglomerated chains probably intermixed with organic residues resulting from the alteration/decomposition of the solvents under the high-energy conditions. Brucite-like Mg(OH) 2 particles were mainly produced by laser ablation of Mg in either DW or DW-SDS solutions. Ablation in DW yielded particles of fiber-like shapes having a diameter of about 5-10 nm and length as long as 150 nm. Materials produced in DW-SDS solutions were composed of various size and shape particles. Some had rough surfaces with irregular shapes. Small particles were about 20-30 nm and larger particles were about 120 nm. Particles with rod-like, triangular, and plate-like shapes were also observed.

  2. Io with Loki Plume on Bright Limb

    Science.gov (United States)

    1990-01-01

    Voyager 1 image of Io showing active plume of Loki on limb. Heart-shaped feature southeast of Loki consists of fallout deposits from active plume Pele. The images that make up this mosaic were taken from an average distance of approximately 490,000 kilometers (340,000 miles).

  3. Resonant infrared pulsed laser deposition of a polyimide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Dygert, N L; Schriver, K E; Jr, R F Haglund [Department of Physics and Astronomy and W M Keck Foundation Free-Electron Laser Centre, Vanderbilt University, Nashville TN 37235 (United States)

    2007-04-15

    Poly(amic acid) (PAA), a precursor to polyimide, was successfully deposited on substrates without reaching curing temperature, by resonant infrared pulsed laser ablation. The PAA was prepared by dissolving pyromellitic dianhydride and 4, 4' oxidianiline in the polar solvent Nmethyl pyrrolidinone (NMP). The PAA was deposited in droplet-like morphologies when ablation occurred in air, and in string-like moieties in the case of ablation in vacuum. In the as-deposited condition, the PAA was easily removed by washing with NMP; however, once cured thermally for thirty minutes, the PAA hardened, indicating the expected thermosetting property. Plume shadowgraphy showed very clear contrasts in the ablation mechanism between ablation of the solvent alone and the ablation of the PAA, even at low concentrations. A Wavelength dependence in plume velocity was also observed.

  4. Optical radiative properties of ablating polymers exposed to high-power arc plasmas

    Science.gov (United States)

    Becerra, Marley; Pettersson, Jonas

    2018-03-01

    The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer

  5. Field experimental observations of highly graded sediment plumes.

    Science.gov (United States)

    Jensen, Jacob Hjelmager; Saremi, Sina; Jimenez, Carlos; Hadjioannou, Louis

    2015-06-15

    A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes, gravitating towards the seafloor, were filmed simultaneously by four divers situated at different depths in the water column, and facing the plume at different angles. The processes were captured using GoPro-Hero-series cameras. The high-quality underwater footage from near-surface, mid-depth and near-bed positions gives unique insight into the dynamics of the descending plume and near-field dispersion processes, and enables good understanding of flow and sediment transport processes involved from-release-to-deposition of the load in a non-scaled environment. The high resolution images and footages are available through the link provided herein. Observations support the development of a detailed multi-fractional sediment plume model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Hydrodynamic instabilities in an ablation front

    International Nuclear Information System (INIS)

    Piriz, A R; Portugues, R F

    2004-01-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved

  7. Hydrodynamic instabilities in an ablation front

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A R; Portugues, R F [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2004-06-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved.

  8. Using TES retrievals to investigate PAN in North American biomass burning plumes

    Science.gov (United States)

    Fischer, Emily V.; Zhu, Liye; Payne, Vivienne H.; Worden, John R.; Jiang, Zhe; Kulawik, Susan S.; Brey, Steven; Hecobian, Arsineh; Gombos, Daniel; Cady-Pereira, Karen; Flocke, Frank

    2018-04-01

    Peroxyacyl nitrate (PAN) is a critical atmospheric reservoir for nitrogen oxide radicals, and plays a lead role in their redistribution in the troposphere. We analyze new Tropospheric Emission Spectrometer (TES) PAN observations over North America from July 2006 to July 2009. Using aircraft observations from the Colorado Front Range, we demonstrate that TES can be sensitive to elevated PAN in the boundary layer (˜ 750 hPa) even in the presence of clouds. In situ observations have shown that wildfire emissions can rapidly produce PAN, and PAN decomposition is an important component of ozone production in smoke plumes. We identify smoke-impacted TES PAN retrievals by co-location with NOAA Hazard Mapping System (HMS) smoke plumes. Depending on the year, 15-32 % of cases where elevated PAN is identified in TES observations (retrievals with degrees of freedom (DOF) > 0.6) overlap smoke plumes during July. Of all the retrievals attempted in the July 2006 to July 2009 study period, 18 % is associated with smoke . A case study of smoke transport in July 2007 illustrates that PAN enhancements associated with HMS smoke plumes can be connected to fire complexes, providing evidence that TES is sufficiently sensitive to measure elevated PAN several days downwind of major fires. Using a subset of retrievals with TES 510 hPa carbon monoxide (CO) > 150 ppbv, and multiple estimates of background PAN, we calculate enhancement ratios for tropospheric average PAN relative to CO in smoke-impacted retrievals. Most of the TES-based enhancement ratios fall within the range calculated from in situ measurements.

  9. Degradation of carbon-based materials under ablative conditions produced by a high enthalpy plasma jet

    Directory of Open Access Journals (Sweden)

    Gilberto Petraconi

    2010-04-01

    Full Text Available A stationary experiment was performed to study the degradation of carbon-based materials by immersion in a plasma jet. In the experiment, graphite and C/C composite were chosen as the target materials, and the reactive plasma jet was generated by an air plasma torch. For macroscopic study of the material degradation, the sample’s mass losses were measured as function of the exposure time under various temperatures on the sample surface. A microscopic analysis was then carried out for the study of microscopic aspects of the erosion of material surface. These experiments showed that the mass loss per unit area is approximately proportional to the exposure time and strongly depends on the temperature of the material surface. The mass erosion rate of graphite was appreciably higher than the C/C composite. The ablation rate in the carbon matrix region in C/C composite was also noticeably higher than that in the fiber region. In addition, the latter varied according to the orientation of fibers relatively to the flow direction. These tests indicated an excellent ablation resistance of the C/C composite, thus being a reliable material for rocket nozzles and heat shielding elements of the protection systems of hypersonic apparatuses from aerodynamic heating.

  10. Plume rise from stacks with scrubbers: a state-of-the-art review

    International Nuclear Information System (INIS)

    Schatzmann, M.; Policastro, A.J.

    1984-01-01

    The state of the art of predicting plume rise from stacks with scrubbers is evaluated critically. The significant moisture content of the scrubbed plume upon exit leads to important thermodynamic effects during plume rise that are unaccounted for in the usual dry plume rise theories. For example, under conditionally unstable atmospheres, a wet scrubbed plume treated as completely dry acts as if the atmosphere were stable, whereas in reality the scrubbed plume behaves instead as if the atmosphere were unstable. Even the use of moist plume models developed for application to cooling tower plume rise is not valid since these models 1) employ the Boussinesq approximation, 2) use a number of additional simplifying approximations that require small exit temperature differences between tower exit and ambient temperatures, and 3) are not calibrated to stack data

  11. Mantle plumes on Venus revisited

    Science.gov (United States)

    Kiefer, Walter S.

    1992-01-01

    The Equatorial Highlands of Venus consist of a series of quasicircular regions of high topography, rising up to about 5 km above the mean planetary radius. These highlands are strongly correlated with positive geoid anomalies, with a peak amplitude of 120 m at Atla Regio. Shield volcanism is observed at Beta, Eistla, Bell, and Atla Regiones and in the Hathor Mons-Innini Mons-Ushas Mons region of the southern hemisphere. Volcanos have also been mapped in Phoebe Regio and flood volcanism is observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in many of these regions. It is now widely accepted that at least Beta, Atla, Eistla, and Bell Regiones are the surface expressions of hot, rising mantel plumes. Upwelling plumes are consistent with both the volcanism and the extensional tectonism observed in these regions. The geoid anomalies and topography of these four regions show considerable variation. Peak geoid anomalies exceed 90 m at Beta and Atla, but are only 40 m at Eistla and 24 m at Bell. Similarly, the peak topography is greater at Beta and Atla than at Eistla and Bell. Such a range of values is not surprising because terrestrial hotspot swells also have a side range of geoid anomalies and topographic uplifts. Kiefer and Hager used cylindrical axisymmetric, steady-state convection calculations to show that mantle plumes can quantitatively account for both the amplitude and the shape of the long-wavelength geoid and topography at Beta and Atla. In these models, most of the topography of these highlands is due to uplift by the vertical normal stress associated with the rising plume. Additional topography may also be present due to crustal thickening by volcanism and crustal thinning by rifting. Smrekar and Phillips have also considered the geoid and topography of plumes on Venus, but they restricted themselves to considering only the geoid-topography ratio and did not

  12. Confluence or independence of microwave plasma bullets in atmospheric argon plasma jet plumes

    Science.gov (United States)

    Li, Ping; Chen, Zhaoquan; Mu, Haibao; Xu, Guimin; Yao, Congwei; Sun, Anbang; Zhou, Yuming; Zhang, Guanjun

    2018-03-01

    Plasma bullet is the formation and propagation of a guided ionization wave (streamer), normally generated in atmospheric pressure plasma jet (APPJ). In most cases, only an ionization front produces in a dielectric tube. The present study shows that two or three ionization fronts can be generated in a single quartz tube by using a microwave coaxial resonator. The argon APPJ plumes with a maximum length of 170 mm can be driven by continuous microwaves or microwave pulses. When the input power is higher than 90 W, two or three ionization fronts propagate independently at first; thereafter, they confluence to form a central plasma jet plume. On the other hand, the plasma bullets move independently as the lower input power is applied. For pulsed microwave discharges, the discharge images captured by a fast camera show the ionization process in detail. Another interesting finding is that the strongest lightening plasma jet plumes always appear at the shrinking phase. Both the discharge images and electromagnetic simulations suggest that the confluence or independent propagation of plasma bullets is resonantly excited by the local enhanced electric fields, in terms of wave modes of traveling surface plasmon polaritons.

  13. Bio-Physical Coupling of Seabirds and Prey with a Dynamic River Plume

    Science.gov (United States)

    Phillips, E. M.; Horne, J. K.; Zamon, J. E.; Adams, J.

    2016-02-01

    Freshwater plumes and plume density fronts are important regions of bio-physical coupling. On the west coast of North America, discharge from the Columbia River into the northern California Current creates a large, dynamic plume and multiple plume fronts. These nutrient-rich, productive waters fuel primary and secondary production, supporting a wide variety of small pelagic prey fish, large populations of Pacific salmon, seabirds, and marine mammals. To determine the influence of the Columbia River plume on marine predators, we analyzed at-sea seabird counts, in situ environmental data, surface trawl densities of prey fish, and acoustic backscatter measurements collected from research vessels in May and June 2010-2012. Concurrent distribution patterns of satellite-tagged sooty shearwaters (Puffinus griseus) and common murres (Uria aalge) were compared with seabird counts from ship surveys. To evaluate plume use by satellite-tagged birds, daily surface salinity values from SELFE hindcast models were extracted at each tag location. Both seabird species occurred in plume waters disproportionate to the total surveyed area, concentrating in the river plume when river flow and plume volume decreased. Murres were consistently within 20 km of the geographic mean center of the river plume. In contrast, shearwaters consistently occurred 100 km to the north of the plume center, where high densities of prey fish occur. Although acoustically detected prey also occurred in greater densities within the plume when volume decreased, surface catches of prey in the plume did not vary with changing plume conditions. Geographic indices of colocation (GIC) were low between murres and prey species caught in surface trawls, whereas GICs were >0.5 between shearwaters and prey species including squid (Loligo opalescens), juvenile Chinook salmon (Oncorhynchus tshawytscha), and coho (O. kisutch) salmon. We conclude that the river plume and associated fronts are identifiable, predictable, and

  14. Catheter ablation of epicardial ventricular tachycardia

    Directory of Open Access Journals (Sweden)

    Takumi Yamada, MD, PhD

    2014-08-01

    Full Text Available Ventricular tachycardias (VTs can usually be treated by endocardial catheter ablation. However, some VTs can arise from the epicardial surface, and their substrate can be altered only by epicardial catheter ablation. There are two approaches to epicardial catheter ablation: transvenous and transthoracic. The transvenous approach through the coronary venous system (CVS has been commonly used because it is easily accessible. However, this approach may be limited by the distribution of the CVS and insufficient radiofrequency energy delivery. Transthoracic epicardial catheter ablation has been developed to overcome these limitations of the transvenous approach. It is a useful supplemental or even preferred strategy to eliminate epicardial VTs in the electrophysiology laboratory. This technique has been applied for scar-related VTs secondary to often non-ischemic cardiomyopathy and sometimes ischemic cardiomyopathy, and idiopathic VTs as the epicardial substrates of these VTs have become increasingly recognized. When endocardial ablation and epicardial ablation through the CVS are unsuccessful, transthoracic epicardial ablation should be the next option. Intrapericardial access is usually obtained through a subxiphoidal pericardial puncture. This approach might not be possible in patients with pericardial adhesions caused by prior cardiac surgery or pericarditis. In such cases, a hybrid procedure involving surgical access with a subxiphoid pericardial window and a limited anterior or lateral thoracotomy might be a feasible and safe method of performing an epicardial catheter ablation in the electrophysiology laboratory. Potential complications associated with this technique include bleeding and collateral damage to the coronary arteries and phrenic nerve. Although the risk of these complications is low, electrophysiologists who attempt epicardial catheter ablation should know the complications associated with this technique, how to minimize their

  15. ALOFT-PC a smoke plume trajectory model for personal computers

    International Nuclear Information System (INIS)

    Walton, W.D.; McGrattan, K.B.; Mullin, J.V.

    1996-01-01

    A computer model, named ALOFT-PC, was developed for use during in-situ burning of oil spills to predict smoke plume trajectory. The downwind distribution of smoke particulate is a complex function of fire parameters, meteorological conditions, and topographic features. Experimental burns have shown that the downwind distribution of smoke is not Gaussian and simple smoke plume models do not capture the observed plume features. ALOFT-PC consists of the Navier-Stokes equations using an eddy viscosity over a uniform grid that spans the smoke plume and its surroundings. The model inputs are wind speed and variability, atmospheric temperature profile, and fire parameters and the output is the average of the plume. 7 refs., 3 tabs

  16. Loire and Gironde turbid plumes: Characterization and influence on thermohaline properties

    Science.gov (United States)

    Costoya, X.; Fernández-Nóvoa, D.; deCastro, M.; Gómez-Gesteira, M.

    2017-12-01

    Knowledge and predictability of turbid river plumes is of great importance because they modulate the properties of the seawater adjacent to river mouths. The Loire and Gironde Rivers form the most important plumes in the Bay of Biscay, as they provide > 75% of total runoff. The development of the turbid plume under the influence of its main drivers was analyzed using Moderate Resolution Imaging Spectroradiometer satellite data from the period 2003-2015. River discharge was found to be the main driver, followed by wind, which also had an important effect in modulating the turbid plume during periods of high river discharge. Seaward and upwelling favorable winds enhanced the dispersion of plumes on seawater, whereas landward and downwelling favorable winds limited mixing with the adjacent ocean water. The maximum extension of the turbid plume was reached under landward winds. In addition, the spatio-temporal evolution of the East Atlantic pattern and the North Atlantic Oscillation was observed to affect the dynamics of plumes: positive values of both indices favored a greater extension of the plume. Thermohaline properties differed inside and outside the area affected by both rivers. In particular, these rivers maintain winter stratification inside the turbid plume, which results in a different warming ratio when compared with the adjacent ocean.

  17. Thermal damage produced by high-irradiance continuous wave CO2 laser cutting of tissue.

    Science.gov (United States)

    Schomacker, K T; Walsh, J T; Flotte, T J; Deutsch, T F

    1990-01-01

    Thermal damage produced by continuous wave (cw) CO2 laser ablation of tissue in vitro was measured for irradiances ranging from 360 W/cm2 to 740 kW/cm2 in order to investigate the extent to which ablative cooling can limit tissue damage. Damage zones thinner than 100 microns were readily produced using single pulses to cut guinea pig skin as well as bovine cornea, aorta, and myocardium. Multiple pulses can lead to increased damage. However, a systematic decrease in damage with irradiance, predicted theoretically by an evaporation model of ablation, was not observed. The damage-zone thickness was approximately constant around the periphery of the cut, consistent with the existence of a liquid layer which stores heat and leads to tissue damage, and with a model of damage and ablation recently proposed by Zweig et al.

  18. The Green Propellant Infusion Mission Thruster Performance Testing for Plume Diagnostics

    Science.gov (United States)

    Deans, Matthew C.; Reed, Brian D.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters are currently being tested in a small rocket, altitude facility at NASA GRC. A suite of diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, and Schlieren imaging are being used to acquire plume measurements of AF-M315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  19. [Radiofrequency ablation of hepatocellular carcinoma].

    Science.gov (United States)

    Widmann, Gerlig; Schullian, Peter; Bale, Reto

    2013-03-01

    Percutaneous radiofrequency ablation (RFA) is well established in the treatment of hepatocellular carcinoma (HCC). Due to its curative potential, it is the method of choice for non resectable BCLC (Barcelona Liver Clinic) 0 and A. RFA challenges surgical resection for small HCC and is the method of choice in bridging for transplantation and recurrence after resection or transplantation. The technical feasibility of RFA depends on the size and location of the HCC and the availability of ablation techniques (one needle techniques, multi-needle techniques). More recently, stereotactic multi-needle techniques with 3D trajectory planning and guided needle placement substantially improve the spectrum of treatable lesions including large volume tumors. Treatment success depends on the realization of ablations with large intentional margins of tumor free tissue (A0 ablation in analogy to R0 resection), which has to be documented by fusion of post- with pre-ablation images, and confirmed during follow-up imaging.

  20. A spectral analysis of ablating meteors

    Science.gov (United States)

    Bloxam, K.; Campbell-Brown, M.

    2017-09-01

    Meteor ablation features in the spectral lines occurring at 394, 436, 520, and 589 nm were observed using a four-camera spectral system between September and December 2015. In conjunction with this multi-camera system the Canadian Automated Meteor Observatory was used to observe the orbital parameters and fragmentation of these meteors. In total, 95 light curves with complete data in the 520 and 589 nm filters were analyzed; some also had partial or complete data in the 394 nm filter, but no usable data was collected with the 436 nm filter. Of the 95 events, 70 exhibited some degree of differential ablation, and in all except 3 of these 70 events the 589 nm filter started or ended sooner compared with the 520 nm filter, indicating early ablation at the 589 nm wavelength. In the majority of cases the meteor showed evidence of fragmentation regardless of the type of ablation (differential or uniform). A surprising result was the lack of correlation found concerning the KB parameter, linked to meteoroid strength, and differential ablation. In addition, 22 shower-associated meteors were observed; Geminids showed mainly slight differential ablation, while Taurids were more likely to ablate uniformly.

  1. Biodegradation at Dynamic Plume Fringes: Mixing Versus Reaction Control

    Science.gov (United States)

    Cirpka, O. A.; Eckert, D.; Griebler, C.; Haberer, C.; Kürzinger, P.; Bauer, R.; Mellage, A.

    2014-12-01

    Biodegradation of continuously emitted plumes is known to be most pronounced at the plume fringe, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. Under steady-state conditions, physical mixing of contaminant and electron acceptor by transverse dispersion was shown to be the major bottleneck for biodegradation, with plume lengths scaling inversely with the bulk transverse dispersivity in quasi two-dimensional settings. Under these conditions, the presence of suitable microbes is essential but the biokinetic parameters do not play an important role. When the location of the plume shifts (caused, e.g., by a fluctuating groundwater table), however, the bacteria are no more situated at the plume fringe and biomass growth, decay, activation and deactivation determine the time lag until the fringe-controlled steady state is approached again. During this time lag, degradation is incomplete. The objective of the presented study was to analyze to which extent flow and transport dynamics diminish effectiveness of fringe-controlled biodegradation and which microbial processes and related biokinetic parameters determine the system response in overall degradation to hydraulic fluctuations. We performed experiments in quasi-two-dimensional flow through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth and maintenance (often subsumed as "biomass decay") microbial dormancy (that is, change into a metabolically inactive state) and

  2. The Entrainment Rate for Buoyant Plumes in a Crossflow

    Science.gov (United States)

    Devenish, B. J.; Rooney, G. G.; Webster, H. N.; Thomson, D. J.

    2010-03-01

    We consider large-eddy simulations (LES) of buoyant plumes from a circular source with initial buoyancy flux F 0 released into a stratified environment with constant buoyancy frequency N and a uniform crossflow with velocity U. We make a systematic comparison of the LES results with the mathematical theory of plumes in a crossflow. We pay particular attention to the limits {tilde{U}≪1} and {tilde{U}≫ 1}, where {tilde{U}=U/(F_0 N)^{1/4}}, for which analytical results are possible. For {tilde{U}≫ 1}, the LES results show good agreement with the well-known two-thirds law for the rise in height of the plume. Sufficiently far above the source, the centreline vertical velocity of the LES plumes is consistent with the analytical z -1/3 and z -1/2 scalings for respectively {tilde{U}≪ 1} and {tilde{U}≫ 1}. In the general case, where the entrainment is assumed to be the sum of the contributions from the horizontal and vertical velocity components, we find that the discrepancy between the LES data and numerical solutions of the plume equations is largest for {tilde{U}=O(1)}. We propose a modified additive entrainment assumption in which the contributions from the horizontal and vertical velocity components are not equally weighted. We test this against observations of the plume generated by the Buncefield fire in the U.K. in December 2005 and find that the results compare favourably. We also show that the oscillations of the plume as it settles down to its final rise height may be attenuated by the radiation of gravity waves. For {tilde{U}≪ 1} the oscillations decay rapidly due to the transport of energy away from the plume by gravity waves. For {tilde{U}>rsim 1} the gravity waves travel in the same direction and at the same speed as the flow. In this case, the oscillations of the plume do not decay greatly by radiation of gravity waves.

  3. One-step synthesis of Zn/ZnO hollow nanoparticles by the laser ablation in liquid technique

    International Nuclear Information System (INIS)

    Desarkar, H S; Kumbhakar, P; Mitra, A K

    2013-01-01

    Here, one-step synthesis of Zn/ZnO hollow nanoparticles along with solid nanoparticles is reported using the laser ablation in liquid (LAL) technique. Laser radiation of the 1064 nm wavelength is emitted from a Q-switched Nd:YAG laser and is incident on a solid zinc target kept in a water medium. The as-obtained hollow and solid particles are characterized by transmission electron microscopy (TEM) and UV–visible absorption spectroscopy. Hollow nanoparticles are produced by the laser generated bubbles produced in water. The surface of a hollow nanoparticle is assembled from smaller solid nanoparticles. A strong laser–particle interaction is also observed when laser ablation is carried out for a longer time duration. Photoluminescence (PL) emission measurements at room temperature show that all samples exhibit PL emission in the UV–visible region. A reduction in size and an increase in concentration of the synthesized nanoparticles is observed with increasing laser ablation time. (letter)

  4. CuInGaSe{sub 2} nanoparticles by pulsed laser ablation in liquid medium

    Energy Technology Data Exchange (ETDEWEB)

    Mendivil, M.I.; García, L.V. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); Krishnan, B. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); CIIDIT—Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); Avellaneda, D. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); and others

    2015-12-15

    Highlights: • CIGS nanocolloids were synthesized using PLAL technique. • Characterized their morphology, structure, composition and optical properties. • Morphologies were dependent on ablation wavelength and liquid medium. • Optical absorption and bandgap of these nanocolloids were tunable. - Abstract: Pulsed laser ablation in liquid medium (PLALM) is a nanofabrication technique to produce complex nanostructures. CuInGaSe{sub 2} (CIGS) is an alloy with applications in photovoltaic industry. In this work, we studied the effects of laser ablation wavelength, energy fluence and liquid medium on the properties of the CIGS nanoparticles synthesized by PLALM. The nanoparticles obtained were analyzed by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. XPS results confirmed the chemical states and composition of the ablated products. TEM analysis showed different morphologies for the nanomaterials obtained in different liquid media and ablation wavelengths. The optical properties for these CIGS nanocolloids were analyzed using UV–vis absorption spectroscopy. The results demonstrated the use of PLALM as a useful synthesis technique for nanoparticles of quaternary photovoltaic materials.

  5. Use of a Microphone Phased Array to Determine Noise Sources in a Rocket Plume

    Science.gov (United States)

    Panda, J.; Mosher, R.

    2010-01-01

    A 70-element microphone phased array was used to identify noise sources in the plume of a solid rocket motor. An environment chamber was built and other precautions were taken to protect the sensitive condenser microphones from rain, thunderstorms and other environmental elements during prolonged stay in the outdoor test stand. A camera mounted at the center of the array was used to photograph the plume. In the first phase of the study the array was placed in an anechoic chamber for calibration, and validation of the indigenous Matlab(R) based beamform software. It was found that the "advanced" beamform methods, such as CLEAN-SC was partially successful in identifying speaker sources placed closer than the Rayleigh criteria. To participate in the field test all equipments were shipped to NASA Marshal Space Flight Center, where the elements of the array hardware were rebuilt around the test stand. The sensitive amplifiers and the data acquisition hardware were placed in a safe basement, and 100m long cables were used to connect the microphones, Kulites and the camera. The array chamber and the microphones were found to withstand the environmental elements as well as the shaking from the rocket plume generated noise. The beamform map was superimposed on a photo of the rocket plume to readily identify the source distribution. It was found that the plume made an exceptionally long, >30 diameter, noise source over a large frequency range. The shock pattern created spatial modulation of the noise source. Interestingly, the concrete pad of the horizontal test stand was found to be a good acoustic reflector: the beamform map showed two distinct source distributions- the plume and its reflection on the pad. The array was found to be most effective in the frequency range of 2kHz to 10kHz. As expected, the classical beamform method excessively smeared the noise sources at lower frequencies and produced excessive side-lobes at higher frequencies. The "advanced" beamform

  6. Developing laser ablation in an electron cyclotron resonance ion source for actinide detection with AMS

    Energy Technology Data Exchange (ETDEWEB)

    Bauder, W. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Pardo, R.C.; Kondev, F.G.; Kondrashev, S.; Nair, C.; Nusair, O. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Palchan, T. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel); Scott, R.; Seweryniak, D.; Vondrasek, R. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Collon, P. [University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Paul, M. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel)

    2015-10-15

    A laser ablation material injection system has been developed at the ATLAS electron cyclotron resonance (ECR) ion source for use in accelerator mass spectrometry experiments. Beam production with laser ablation initially suffered from instabilities due to fluctuations in laser energy and cratering on the sample surface by the laser. However, these instabilities were rectified by applying feedback correction for the laser energy and rastering the laser across the sample surface. An initial experiment successfully produced and accelerated low intensity actinide beams with up to 1000 counts per second. With continued development, laser ablation shows promise as an alternative material injection scheme for ECR ion sources and may help substantially reduce cross talk in the source.

  7. Changes in wetting and contact charge transfer by femtosecond laser-ablation of polyimide

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.D., E-mail: xiaodong.guo@uib.no [Department of Physics and Technology, Allegaten 55, 5020 Bergen, University of Bergen (Norway); Dai, Y.; Gong, M. [Department of Physics, Shanghai 200444, Shanghai University (China); Qu, Y.G. [Center for Geobiology, Allegaten 41, 5020 Bergen, University of Bergen (Norway); Helseth, L.E. [Department of Physics and Technology, Allegaten 55, 5020 Bergen, University of Bergen (Norway)

    2015-09-15

    Highlights: • Laser ablation significantly reduced the triboelectric charging of polyimide films. • Hierarchical micro/nanostructures formed on the surface of the sample. • Structural anisotropy leads to spatially varying contact angles of water droplets. • Raman spectroscopy revealed a carbonization of the polyimide sample. • The corresponding loss of insulation may explain the reduction of charge transfer. - Abstract: In this study it is demonstrated that the triboelectric charging of polyimide thin films is significantly reduced by using a femtosecond laser to nanostructure its. It is found that the contact charge transfer between laser-ablated Kapton and aluminum is almost negligible, and even much lower than the significant current occurring when non-treated Kapton touches the metal. Scanning electron microscopy demonstrates that laser ablation produces a hierarchical micro and nanostructure, and it is found that the structural anisotropy leads to spatially varying contact angles of water droplets residing on the surface. Raman spectra suggest that the centers of the laser-ablated tracks are carbonized; therefore, the loss of insulation can be responsible for the reduction of charge transfer.

  8. CT-guided radiofrequency tumor ablation in children

    International Nuclear Information System (INIS)

    Botsa, Evanthia; Poulou, Loukia S.; Koundouraki, Antonia; Thanos, Loukas; Koutsogiannis, Ioannis; Ziakas, Panayiotis D.; Alexopoulou, Efthimia

    2014-01-01

    Image-guided radiofrequency ablation is a well-accepted technique of interventional oncology in adults. To evaluate the efficacy and safety of CT-guided radiofrequency ablation as a minimally invasive treatment for metastatic neoplasms in children. A total of 15 radiofrequency ablation sessions were performed in 12 children and young adults (median age 9.5; range 5-18 years) with metastatic malignancies. Seven children and young adults had secondary hepatic lesions, three had pulmonary and two had bone lesions. Radiofrequency ablation was performed under conscious sedation. The median lesion size was 1.7 cm (range 1.3-2.8 cm). The median time for ablation was 8 min (range 7-10 min). Radiofrequency procedures were technically successful in all tumors. Postablation imaging immediately after, and 1 month and 3 months after radiofrequency ablation showed total necrosis in all patients. At 6-month follow-up, three patients (all with lesion size >2 cm) had local recurrence and underwent a second radiofrequency ablation session. At 2-year follow-up no patient had recurrence of the treated tumor. Post-ablation syndrome occurred in four children. No major complication occurred. CT-guided radiofrequency tumor ablation was safe and efficient for palliative treatment in our cohort of patients. (orig.)

  9. CT-guided radiofrequency tumor ablation in children

    Energy Technology Data Exchange (ETDEWEB)

    Botsa, Evanthia [National and Kapodistrian University of Athens, First Pediatric Clinic, Agia Sofia Children' s Hospital, Athens (Greece); Poulou, Loukia S.; Koundouraki, Antonia; Thanos, Loukas [Sotiria General Hospital for Chest Diseases, Department of Medical Imaging and Interventional Radiology, Athens (Greece); Koutsogiannis, Ioannis [General Military Hospital NIMTS, Department of Medical Imaging, Athens (Greece); Ziakas, Panayiotis D. [Warren Alpert Medical School of Brown University Rhode Island Hospital, Division of Infectious Diseases, Providence, RI (United States); Alexopoulou, Efthimia [Attikon University Hospital, Second Department of Radiology, Athens University School of Medicine, Athens (Greece)

    2014-11-15

    Image-guided radiofrequency ablation is a well-accepted technique of interventional oncology in adults. To evaluate the efficacy and safety of CT-guided radiofrequency ablation as a minimally invasive treatment for metastatic neoplasms in children. A total of 15 radiofrequency ablation sessions were performed in 12 children and young adults (median age 9.5; range 5-18 years) with metastatic malignancies. Seven children and young adults had secondary hepatic lesions, three had pulmonary and two had bone lesions. Radiofrequency ablation was performed under conscious sedation. The median lesion size was 1.7 cm (range 1.3-2.8 cm). The median time for ablation was 8 min (range 7-10 min). Radiofrequency procedures were technically successful in all tumors. Postablation imaging immediately after, and 1 month and 3 months after radiofrequency ablation showed total necrosis in all patients. At 6-month follow-up, three patients (all with lesion size >2 cm) had local recurrence and underwent a second radiofrequency ablation session. At 2-year follow-up no patient had recurrence of the treated tumor. Post-ablation syndrome occurred in four children. No major complication occurred. CT-guided radiofrequency tumor ablation was safe and efficient for palliative treatment in our cohort of patients. (orig.)

  10. Application of Landsat Thematic Mapper data for coastal thermal plume analysis at Diablo Canyon

    Science.gov (United States)

    Gibbons, D. E.; Wukelic, G. E.; Leighton, J. P.; Doyle, M. J.

    1989-01-01

    The possibility of using Landsat Thematic Mapper (TM) thermal data to derive absolute temperature distributions in coastal waters that receive cooling effluent from a power plant is demonstrated. Landsat TM band 6 (thermal) data acquired on June 18, 1986, for the Diablo Canyon power plant in California were compared to ground truth temperatures measured at the same time. Higher-resolution band 5 (reflectance) data were used to locate power plant discharge and intake positions and identify locations of thermal pixels containing only water, no land. Local radiosonde measurements, used in LOWTRAN 6 adjustments for atmospheric effects, produced corrected ocean surface radiances that, when converted to temperatures, gave values within approximately 0.6 C of ground truth. A contour plot was produced that compared power plant plume temperatures with those of the ocean and coastal environment. It is concluded that Landsat can provide good estimates of absolute temperatures of the coastal power plant thermal plume. Moreover, quantitative information on ambient ocean surface temperature conditions (e.g., upwelling) may enhance interpretation of numerical model prediction.

  11. Advances in laser ablation of materials

    International Nuclear Information System (INIS)

    Singh, R.K.; Lowndes, D.H.; Chrisey, D.B.; Fogarassy, E.; Narayan, J.

    1998-01-01

    The symposium, Advances in Laser Ablation of Materials, was held at the 1998 MRS Spring Meeting in San Francisco, California. The papers in this symposium illustrate the advances in pulsed laser ablation for a wide variety of applications involving semiconductors, superconductors, metals, ceramics, and polymers. In particular, advances in the deposition of oxides and related materials are featured. Papers dealing with both fundamentals and the applications of laser ablation are presented. Topical areas include: fundamentals of ablation and growth; in situ diagnostics and nanoscale synthesis advances in laser ablation techniques; laser surface processing; pulsed laser deposition of ferroelectric, magnetic, superconducting and optoelectronic thin films; and pulsed laser deposition of carbon-based and polymeric materials. Sixty papers have been processed separately for inclusion on the data base

  12. Geodynamics of oceanic plateau and plume head accretion and their role in Phanerozoic orogenic systems of China

    Directory of Open Access Journals (Sweden)

    Peter G. Betts

    2015-01-01

    Full Text Available We present three 3D numerical models of deep subduction where buoyant material from an oceanic plateau and a plume interact with the overriding plate to assess the influence on subduction dynamics, trench geometry, and mechanisms for plateau accretion and continental growth. Transient instabilities of the convergent margin are produced, resulting in: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes flat subduction above the plume, resulting in a “bowed” shaped subducting slab. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction is re-established directly behind the trailing edge of the plateau. The plateau shortens and some plateau material subducts. The presence of buoyant plume material beneath the oceanic plateau has a profound influence on the behaviour of the convergent margin. In the plateau + plume model, plateau accretion causes rapid trench advance. Plate convergence is accommodated by shearing at the base of the plateau and shortening in the overriding plate. The trench migrates around the edge of the plateau and subduction is re-established well behind the trailing edge of the plateau, effectively embedding the plateau into the overriding plate. A slab window forms beneath the accreted plateau and plume material is transferred from the subducting plate to the overriding plate through the window. In all of the models, the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The models provide a dynamic context for plateau and plume accretion in Phanerozoic accretionary orogenic systems such as the East China Orogen and the Central Asian

  13. Developing the model of laser ablation by considering the interplay between emission and expansion of aluminum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, F.; Tavassoli, S. H. [Laser and Plasma Research Institute, ShahidBeheshti University, 19396 4716, G. C., Evin, Tehran (Iran, Islamic Republic of)

    2013-01-15

    In the present study, the ablation behavior of aluminum target and its plasma radiation in noble ambient gases by a laser pulse with wavelength of 266 nm and pulse duration of 10 ns are numerically studied. A thermal model of laser ablation considering heat conduction, Euler equations, Saha-Eggert equations, Knudsen layer, mass and energy balance relations and optical shielding effects are used for calculation of plasma parameters. Effects of excitation energy on plasma expansion and its emissivity are investigated. Time and spatial-resolved plasma emission including bremsstrahlung, recombination and spectral emission at early delay times after laser irradiation is obtained. Effects of two ambient gases (He and Ar) as well as different gas pressures of 100, 300, 500, and 760 Torr on plasma expansion and its spectrum are studied. Results illustrate that at initial delay times, especially at high noble gas pressures, ionic lines have the maximum intensities, while at later times neutral lines dominate. When the pressure of ambient gas increases, a confinement of the plasma plume is predicted and the intensity of neutral lines decreases. Continuous emission increases with wavelength in both ambient gases. Spatially resolved analysis shows that an intense continuous emission is predicted next to the sample surface decreasing with distance from the latter.

  14. Efficacy and Safety of Radiofrequency Ablation for Focal Hepatic Lesions Adjacent to Gallbladder: Reconfiguration of the Ablation Zone through Probe Relocation and Ablation Time Reduction.

    Science.gov (United States)

    Choi, In Young; Kim, Pyo Nyun; Lee, Sung Gu; Won, Hyung Jin; Shin, Yong Moon

    2017-10-01

    To evaluate the safety and efficacy of radiofrequency (RF) ablation for treatment of focal hepatic lesions adjacent to the gallbladder with electrode relocation and ablation time reduction. Thirty-nine patients who underwent RF ablation for focal hepatic lesions adjacent to the gallbladder (≤ 10 mm) were evaluated retrospectively from January 2011 to December 2014 (30 men and 9 women; age range, 51-85 y; mean age, 65 y). Of 36 patients with hepatocellular carcinoma, 3 had a second treatment for recurrence (mean tumor size, 15 mm ± 6). Patients were divided into 2 subgroups based on lesion distance from the gallbladder: nonabutting (> 5 mm; n = 19) and abutting (≤ 5 mm; n = 20). Electrodes were inserted parallel to the gallbladder through the center of a tumor in the nonabutting group and through the center of the expected ablation zone between a 5-mm safety zone on the liver side and the gallbladder in the abutting group. Ablation time was decreased in proportion to the transverse diameter of the expected ablation zone. Technical success and technical effectiveness rates were 89.7% and 97.4%, respectively, with no significant differences between groups (P = 1.00). Local tumor progression was observed in 3 patients (1 in the nonabutting group and 2 in the abutting group; P = 1.00). There were no major complications. The gallbladder was thickened in 10 patients, with no significant difference between groups (P = .72). Biloma occurred in 1 patient in the nonabutting group. RF ablation with electrode relocation and reduction of ablation time can be a safe and effective treatment for focal hepatic lesions adjacent to the gallbladder. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  15. Characterization of tracked radiofrequency ablation in phantom

    International Nuclear Information System (INIS)

    Chen, Chun-Cheng R.; Miga, Michael I.; Galloway, Robert L.

    2007-01-01

    In radiofrequency ablation (RFA), successful therapy requires accurate, image-guided placement of the ablation device in a location selected by a predictive treatment plan. Current planning methods rely on geometric models of ablations that are not sensitive to underlying physical processes in RFA. Implementing plans based on computational models of RFA with image-guided techniques, however, has not been well characterized. To study the use of computational models of RFA in planning needle placement, this work compared ablations performed with an optically tracked RFA device with corresponding models of the ablations. The calibration of the tracked device allowed the positions of distal features of the device, particularly the tips of the needle electrodes, to be determined to within 1.4±0.6 mm of uncertainty. Ablations were then performed using the tracked device in a phantom system based on an agarose-albumin mixture. Images of the sliced phantom obtained from the ablation experiments were then compared with the predictions of a bioheat transfer model of RFA, which used the positional data of the tracked device obtained during ablation. The model was demonstrated to predict 90% of imaged pixels classified as being ablated. The discrepancies between model predictions and observations were analyzed and attributed to needle tracking inaccuracy as well as to uncertainties in model parameters. The results suggest the feasibility of using finite element modeling to plan ablations with predictable outcomes when implemented using tracked RFA

  16. Laser ablation of titanium in liquid in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.

  17. Subsurface oil release field experiment - observations and modelling of subsurface plume behaviour

    International Nuclear Information System (INIS)

    Rye, H.; Brandvik, P.J.; Reed, M.

    1996-01-01

    An experiment was conducted at sea, in which oil was released from 107 metres depth, in order to study plume behaviour. The objective of the underwater release was to simulate a pipeline leakage without gas and high pressure and to study the behaviour of the rising plume. A numerical model for the underwater plume behaviour was used for comparison with field data. The expected path of the plume, the time expected for the plume to reach the sea surface and the width of the plume was modelled. Field data and the numerical model were in good agreement. 10 refs., 2 tabs., 9 figs

  18. Mechanism of laser ablation for aqueous media irradiated under confined-stress conditions

    International Nuclear Information System (INIS)

    Oraevsky, A.A.; Jacques, S.L.; Tittel, F.K.

    1995-01-01

    Pulsed laser ablation of aqueous medium irradiated under conditions of temporal confinement of thermal stress is described. Time-resolved measurements of laser-induced transient stress waves with simultaneous imaging of ablation process by laser-flash photography were performed. Stress transients induced in aqueous solution of K 2 CrO 4 by ablative nanosecond laser pulses at 355 nm were studied by a broad-band lithium niobate acoustic transducer. Recoil momentum upon material ejection was measured from the temporal profiles of the acoustic transducer signal as a function of incident laser fluence. Cavitation bubbles produced in the irradiated volume during the tensile phase of thermoelastic stress were shown to drive material ejection at temperatures substantially below 100 degree C. Experimental data are evident that nanosecond-pulse laser ablation of aqueous media (when temporal stress-confinement conditions are satisfied) include the following two main stages of material ejection: (1) ejection of water microdroplets due to expansion and rupture of subsurface cavitation bubbles; (2) ejection of liquid streams with substantial volume upon collapse of initial crater and large cavitation bubbles in the depth of irradiated volume (after coalescence of smaller bubbles). copyright 1995 American Institute of Physics

  19. Observed rise of visible plumes from hyperbolic natural draft cooling towers

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, P T [Smith-Singer Meteorologists, Inc., Amityville, NY; Seymour, D E; Butler, M J; Kramer, M L; Smith, M E; Frankenberg, T T

    1976-01-01

    The behavior of natural draft cooling tower plumes and related meteorological variables have been measured from aircraft near three major plants of the American Electric Power System. The rise of those plumes which persisted long enough to reach a stabilized height depended primarily upon the height of the capping inversion aloft. All such plumes rose to elevations of 425 m or more above grade. No significant relationships between plume rise and wind speed, plant load, or ambient temperature were found. We conclude that simple temperature humidity soundings in the vicinity of the towers would serve as effective predictors of plume rise and persistence.

  20. An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shi-zhen, E-mail: xusz@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yao, Cai-zhen [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Dou, Hong-qiang [Department of Material Science and Engineering, Sichuan Engineering Technical College, Deyang 618000 (China); Liao, Wei, E-mail: liaowei@caep.cn [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Xiao-yang; Ding, Ren-jie [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhang, Li-juan; Liu, Hao; Yuan, Xiao-dong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zu, Xiao-tao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2017-06-01

    Highlights: • The fs laser ablation of borosilicate glass (K9) were investigated under 35 and 500 fs pulses. • At high fluence regime, the ablation rate at 35 fs in air increased to a plateau, and 500 fs in air and vacuum decreased. • The mechanisms of multiple-photon ionization and impact ionization were included. • The ablation morphologies of smooth zone and laser-induced periodic surface structures were presented and illustrated. • The ablation mechanisms of non-thermal and thermal ablation were included. - Abstract: Ablation rates of K9 glass were studied as a function of femtosecond laser fluences. The central wavelength was 800 nm, and pulse durations of 35 fs and 500 fs in air and vacuum were employed. Ablation thresholds of 0.42 J/cm{sup 2} and 2.1 J/cm{sup 2} were obtained at 35 fs and 500 fs, respectively, which were independent with the ambient conditions and depend on the incident pulse numbers due to incubation effects. The ablation rate of 35 fs pulse laser increased with the increasing of laser fluence in vacuum, while in air condition, it slowly increased to a plateau at high fluence. The ablation rate of 500 fs pulse laser showed an increase at low fluence and a slow drop of ablation rate was observed at high fluence in air and vacuum, which may due to the strong defocusing effects associated with the non-equilibrium ionization of air, and/or the shielding effects of conduction band electrons (CBEs) produced by multi-photon ionization and impact ionization in K9 glass surface. The typical ablation morphologies, e.g. smooth zone and laser-induced periodic surface structures (LIPSS) were also presented and illustrated.

  1. Simple spherical ablative-implosion model

    International Nuclear Information System (INIS)

    Mayer, F.J.; Steele, J.T.; Larsen, J.T.

    1980-01-01

    A simple model of the ablative implosion of a high-aspect-ratio (shell radius to shell thickness ratio) spherical shell is described. The model is similar in spirit to Rosenbluth's snowplow model. The scaling of the implosion time was determined in terms of the ablation pressure and the shell parameters such as diameter, wall thickness, and shell density, and compared these to complete hydrodynamic code calculations. The energy transfer efficiency from ablation pressure to shell implosion kinetic energy was examined and found to be very efficient. It may be possible to attach a simple heat-transport calculation to our implosion model to describe the laser-driven ablation-implosion process. The model may be useful for determining other energy driven (e.g., ion beam) implosion scaling

  2. The earliest low and high δ18O caldera-forming eruptions of the Yellowstone plume: Implications for the 30–40 Ma Oregon calderas and speculations on plume-triggered delaminations

    Directory of Open Access Journals (Sweden)

    Angela Nicole Seligman

    2014-11-01

    Full Text Available We present new isotopic and trace element data for four eruptive centers in Oregon: Wildcat Mountain (40 Ma, Crooked River (32–28 Ma, Tower Mountain (32 Ma, and Mohawk River (32 Ma. The first three calderas are located too far east to be sourced through renewed subduction of the Farallon slab following accretion of the Yellowstone-produced Siletzia terrane at ~50 Ma. Basalts of the three eastern eruptive centers yield high Nb/Yb and Th/Yb ratios, indicating an enriched sublithospheric mantle source, while Mohawk River yields trace element and isotopic (δ18O and εHf values that correlate with its location above a subduction zone. The voluminous rhyolitic tuffs and lavas of Crooked River (41 x 27 km have δ18Ozircon values that include seven low δ18Ozircon units (1.8–4.5 ‰, one high δ18Ozircon unit (7.4–8.8 ‰, and two units with heterogeneous zircons (2.0–9.0 ‰, similar to younger Yellowstone-Snake River Plain rhyolites. In order to produce these low δ18O values, a large heat source, widespread hydrothermal circulation, and repeated remelting are all required. In contrast, Wildcat Mountain and Tower Mountain rocks yield high δ18Ozircon values (6.4–7.9 ‰ and normal to low εHfi values (5.2–12.6, indicating crustal melting of high-δ18O supracrustal rocks. We propose that these calderas were produced by the first appearance of the Yellowstone plume east of the Cascadia subduction zone, which is supported by plate reconstructions that put the Yellowstone plume under Crooked River at 32–28 Ma. Given the eastern location of these calderas along the suture of the accreted Siletzia terrane and North America, we suggest that the Yellowstone hotspot is directly responsible for magmatism at Crooked River, and for plume-assisted delamination of portions of the edge of the Blue Mountains that produced the Tower Mountain magmas, while the older Wildcat Mountain magmas are related to suture zone instabilities that were created

  3. Sample and plume luminescence in fast heavy ion induced desorption

    International Nuclear Information System (INIS)

    Tuszynski, W.; Koch, K.; Hilf, E.R.

    1996-01-01

    The luminescence arising in 252 Cf-fission fragment induced desorption events has been measured using the time-correlated single photon counting technique. Photons emitted from the sample have been guided from a plasma desorption ion source to a photodetector by an optical fibre. Spectra and decay functions have been obtained using thin layers of Coronene or POPOP as samples. The results are strongly dependent on the acceleration field applied for ion extraction. Approximately 10 photons per fission fragment have been produced when applying no accelerating voltage. The results clearly show that these photons come from radiative electronic relaxations of molecules in the solid sample. Considerably more photons per fission fragment have been produced when applying a positive acceleration voltage. The intensity increases almost linearly for acceleration fields below 10 kV/cm and saturates at a nearly 10-fold higher value when compared to no acceleration. The intensity is also affected by the homogeneity of the accelerating field. These additional photons are attributed to radiative electronic relaxations of desorbed neutral molecules in the plume excited by inelastic collisions with accelerated positive ions. No additional photons have been observed when extracting negative ions. The negative ions produced do obviously not hit and/or excite desorbed neutral molecules, presumably due to their specific desorption characteristics. The experimental data have been analyzed by comparing with the cw and time-resolved sample luminescence obtained by optical excitation. The findings demonstrate that valuable information on ion-solid interactions, on specific desorption quantities and on processes in the plume can be obtained by measuring and analyzing the luminescence induced by the impact of high energy primary ions. (orig.)

  4. Field enhancement induced laser ablation

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob

    Sub-diffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures....... The accompanying field enhancement substantially lowers the ablation threshold of the polymer film and thus creates local ablation spots and corresponding topographic modifications of the polymer film. Such modifications are quantified straightforwardly via scanning electron and atomic force microscopy. Thickness...

  5. Radiofrequency ablation in dermatology

    Directory of Open Access Journals (Sweden)

    Sachdeva Silonie

    2007-01-01

    Full Text Available Radiofreqeuency ablation is a versatile dermatosurgical procedure used for surgical management of skin lesions by using various forms of alternating current at an ultra high frequency. The major modalities in radiofrequency are electrosection, electrocoagulation, electrodessication and fulguration. The use of radiofrequency ablation in dermatosurgical practice has gained importance in recent years as it can be used to treat most of the skin lesions with ease in less time with clean surgical field due to adequate hemostasis and with minimal side effects and complications. This article focuses on the major tissue effects and factors influencing radiofrequency ablation and its application for various dermatological conditions.

  6. Percutaneous Microwave Ablation of Renal Angiomyolipomas

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, Mircea, E-mail: mcristescu@uwhealth.org [University of Wisconsin, Department of Radiology (United States); Abel, E. Jason, E-mail: abel@urology.wisc.edu [University of Wisconsin, Department of Urology (United States); Wells, Shane, E-mail: swells@uwhealth.org; Ziemlewicz, Timothy J., E-mail: tziemlewicz@uwhealth.org [University of Wisconsin, Department of Radiology (United States); Hedican, Sean P., E-mail: hedican@surgery.wisc.edu [University of Wisconsin, Department of Urology (United States); Lubner, Megan G., E-mail: mlubner@uwhealth.org; Hinshaw, J. Louis, E-mail: jhinshaw@uwhealth.org; Brace, Christopher L., E-mail: cbrace@uwhealth.org; Lee, Fred T., E-mail: flee@uwhealth.org [University of Wisconsin, Department of Radiology (United States)

    2016-03-15

    PurposeTo evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML).Materials and MethodsFrom January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4–4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits.ResultsAll ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60–70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3–8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8 % (3.4–3.3 cm) and 1.7 % (27.5–26.3 cm{sup 3}), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9–47) demonstrated mean tumor diameter and volume decreases of 29 % (3.4–2.4 cm) and 47 % (27.5–12.1 cm{sup 3}), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation.ConclusionOur early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.

  7. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    Science.gov (United States)

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  8. The outcome of I-131 ablation therapy for intermediate and high-risk differentiated thyroid cancer using a strict definition of successful ablation.

    Science.gov (United States)

    Watanabe, Ken; Uchiyama, Mayuki; Fukuda, Kunihiko

    2017-09-01

    This article examines the outcome of radioactive iodine ablation therapy for thyroid cancer in high-risk patients and investigates background factors influencing ablation failure. We included 91 patients in this retrospective analysis and evaluated the ablation success rate. Successful ablation was defined as the absence of visible iodine-131 (I-131) accumulation in the thyroid bed after whole-body scans and thyroglobulin levels sex, I-131 dose, pathology, resection stump findings, tumor T category and thyroglobulin levels, which could affect ablation outcome. Successful ablation was achieved in only 14 patients (15.4%). Pre-ablation serum thyroglobulin levels were significantly higher in the ablation failure group than in the success group (P 10 ng/ml were significantly related to ablation failure after multivariate analysis (odds ratio 27.2; 95% confidence interval 2.469-299.7; P = 0.007). The ablation success rate was very low because of high thyroglobulin levels, even with high-dose I-131. High-risk patients, especially those with high thyroglobulin levels (>10 ng/ml), are unlikely to reach levels low enough to meet successful ablation criteria.

  9. Using TES retrievals to investigate PAN in North American biomass burning plumes

    Directory of Open Access Journals (Sweden)

    E. V. Fischer

    2018-04-01

    Full Text Available Peroxyacyl nitrate (PAN is a critical atmospheric reservoir for nitrogen oxide radicals, and plays a lead role in their redistribution in the troposphere. We analyze new Tropospheric Emission Spectrometer (TES PAN observations over North America from July 2006 to July 2009. Using aircraft observations from the Colorado Front Range, we demonstrate that TES can be sensitive to elevated PAN in the boundary layer (∼ 750 hPa even in the presence of clouds. In situ observations have shown that wildfire emissions can rapidly produce PAN, and PAN decomposition is an important component of ozone production in smoke plumes. We identify smoke-impacted TES PAN retrievals by co-location with NOAA Hazard Mapping System (HMS smoke plumes. Depending on the year, 15–32 % of cases where elevated PAN is identified in TES observations (retrievals with degrees of freedom (DOF > 0.6 overlap smoke plumes during July. Of all the retrievals attempted in the July 2006 to July 2009 study period, 18 % is associated with smoke . A case study of smoke transport in July 2007 illustrates that PAN enhancements associated with HMS smoke plumes can be connected to fire complexes, providing evidence that TES is sufficiently sensitive to measure elevated PAN several days downwind of major fires. Using a subset of retrievals with TES 510 hPa carbon monoxide (CO > 150 ppbv, and multiple estimates of background PAN, we calculate enhancement ratios for tropospheric average PAN relative to CO in smoke-impacted retrievals. Most of the TES-based enhancement ratios fall within the range calculated from in situ measurements.

  10. The effect of laser ablation parameters on optical limiting properties of silver nanoparticles

    Science.gov (United States)

    Gursoy, Irmak; Yaglioglu, Halime Gul

    2017-09-01

    This paper presents the effect of laser ablation parameters on optical limiting properties of silver nanoparticles. The current applications of lasers such as range finding, guidance, detection, illumination and designation have increased the potential of damaging optical imaging systems or eyes temporary or permanently. The applications of lasers introduce risks for sensors or eyes, when laser power is higher than damage threshold of the detection system. There are some ways to protect these systems such as neutral density (nd) filters, shutters, etc. However, these limiters reduce the total amount of light that gets into the system. Also, response time of these limiters may not be fast enough to prevent damage and cause precipitation in performance due to deprivation of transmission or contrast. Therefore, optical limiting filters are needed that is transparent for low laser intensities and limit or block the high laser intensities. Metal nanoparticles are good candidates for such optical limiting filters for ns pulsed lasers or CW lasers due to their high damage thresholds. In this study we investigated the optical limiting performances of silver nanoparticles produced by laser ablation technique. A high purity silver target immersed in pure water was ablated with a Nd:YAG nanosecond laser at 532 nm. The effect of altering laser power and ablation time on laser ablation efficiency of nanoparticles was investigated experimentally and optimum values were specified. Open aperture Zscan experiment was used to investigate the effect of laser ablation parameters on the optical limiting performances of silver nanoparticles in pure water. It was found that longer ablation time decreases the optical limiting threshold. These results are useful for silver nanoparticles solutions to obtain high performance optical limiters.

  11. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    Science.gov (United States)

    Lin, Jun; Pakhomov, Andrew V.

    2005-04-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (˜ 3×10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ˜35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements.

  12. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    International Nuclear Information System (INIS)

    Lin Jun; Pakhomov, Andrew V.

    2005-01-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (∼ 3x10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ∼35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements

  13. Analysis of plume rise data from five TVA steam plants

    International Nuclear Information System (INIS)

    Anfossi, D.

    1985-01-01

    A large data set containing the measurements of the rise of plumes emitted by five TVA steam plants was examined. Particular attention was paid to the problem of the merging of the plumes emitted by adjacent stacks and to the role played by the wind angle in this respect. It was demonstrated that there is a noticeable rise enhancement of merged plumes with respect to single emissions, both in neutral and in stable conditions, as far as transversal and parallel plumes are concerned. For plumes advected normal to the row of the stacks the enhancement is noticeable only in the final stage of rise. The existence of a critical angle for merging suggested enhancement is noticeable only in the final stage of rise. The existence of a critical angle for merging suggested by Briggs was examined. Finally, a formula to describe plume rise in the transitional and in the final phase, both in neutral and stable conditions, is proposed; it was obtained by interpolation of two familiar Brigg's equations

  14. Temperature-controlled irrigated tip radiofrequency catheter ablation

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, Adrian

    1998-01-01

    INTRODUCTION: In patients with ventricular tachycardias due to structural heart disease, catheter ablation cures radiofrequency ablation. Irrigated tip radiofrequency ablation using power control and high infusion rates enlarges lesion......: We conclude that temperature-controlled radiofrequency ablation with irrigated tip catheters using low target temperature and low infusion rate enlarges lesion size without increasing the incidence of cratering and reduces coagulum formation of the tip....

  15. Micrometeoroid ablation simulated in the laboratory

    Science.gov (United States)

    Sternovsky, Zoltan; Thomas, Evan W.; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Munsat, Tobin L.; Plane, John M. C.

    2016-04-01

    A facility is developed to simulate the ablation of micrometeoroids in laboratory conditions, which also allows measuring the ionization probability of the ablated material. An electrostatic dust accelerator is used to generate iron and meteoric analog particles with velocities 10-50 km/s. The particles are then introduced into a cell filled with nitrogen, air or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where the partial or complete ablation of the particle occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path, allowing thus the study of the temporal resolution of the process. A simple ablation model is used to match the observations. For completely ablated particles the total collected charge directly yields the ionization efficiency for. The measurements using iron particles in N2 and air are in relatively good agreement with earlier data. The measurements with CO2 and He gases, however, are significantly different from the expectations.

  16. Radiation effects on the laser ablative shockwaves from aluminum under atmospheric conditions

    International Nuclear Information System (INIS)

    Sai Shiva, S.; Leela, C.H.; Prem Kiran, P.; Sijoy, C.D.; Chaturvedi, Shashank

    2015-01-01

    The evolution of laser ablative shockwaves (LASW) from Aluminum under atmospheric pressures is numerically modeled using a one-dimensional, three-temperature (electron, ion and thermal radiation temperatures), non-equilibrium, radiation hydrodynamic (RHD) model. The governing RHD equations in Lagrangian form are solved by using an implicit scheme. Similarly, the energy relaxation between the electrons and ions and the electrons and thermal radiation are determined implicitly. Apart from these, the energy equation takes into account the flux-limited electron thermal heat flux. The RHD equations are closed by using a two temperature QEOS model for the Al. The MULTI-fs code is modified to incorporate the nanosecond laser absorption model via the photoionization (PI) and the inverse bremsstrahlung (IB) processes. The spatio-temporal evolution of the laser ablative shockwaves generated by focusing a second harmonic (532 nm, 7ns) of Nd:YAG laser on to Aluminum target under atmospheric pressures in air is captured using a shadowgraphy technique. These measurements are made from 200 ns to 10 μs after the laser pulse with a temporal resolution of 1.5 ns. We report the details of the RHD model and compare the simulated and experimental results for input laser energies in the range of 25 - 175 mJ per pulse. The evolution of the plasma parameters like electron density, charge states and the shockwaves launched into the ambient atmosphere due to expanding plasma plume are compared. The role of thermal radiation on the evolution of LASW from Al is discussed. (author)

  17. Synthesis of Mg(OH)2, MgO, and Mg nanoparticles using laser ablation of magnesium in water and solvents

    Energy Technology Data Exchange (ETDEWEB)

    Phuoc, Tran X. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Howard, Bret. H. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Martello, Donald V. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Soong, Yee [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Chyu, Minking K. [Univ. of Pittsburgh, PA (United States)

    2008-11-01

    Laser ablation of magnesium in deionized water (DW), solutions of DW and sodium dodecyl sulfate (SDS) with different concentrations, acetone and 2-propanol has been conducted. The results showed that ablation in acetone and 2-propanol yielded MgO and Mg nanocrystallites as isolated particles and agglomerated chains probably intermixed with organic residues resulting from the alteration/decomposition of the solvents under the high-energy conditions. Brucite-like Mg(OH)2 particles were mainly produced by laser ablation of Mg in either DW or DW-SDS solutions. Ablation in DW yielded particles of fiber-like shapes having a diameter of about 5-10nm and length-as long as 150 nm. Materials produced in DW-SDS solutions were composed of various size and shape particles. Some had rough surfaces with irregular shapes. Small particles were about 20-30 nm and larger particles were about 120 nm. Particles with rodlike, triangular, and plate-like shapes were also observed.

  18. Airborne Gamma-ray Measurements in the Chernobyl Plume

    DEFF Research Database (Denmark)

    Grasty, R. L.; Hovgaard, Jens; Multala, J.

    1997-01-01

    On 29 April 1986, the Geological Survey of Finland (GSF) survey aircraft with a gamma ray spectrometer flew through a radioactive plume from the Chernobyl nuclear accident. The aircraft became contaminated and the gamma spectrometer measured radioactivity in the plume as well as radioactivity...

  19. EM Modelling of RF Propagation Through Plasma Plumes

    Science.gov (United States)

    Pandolfo, L.; Bandinelli, M.; Araque Quijano, J. L.; Vecchi, G.; Pawlak, H.; Marliani, F.

    2012-05-01

    Electric propulsion is a commercially attractive solution for attitude and position control of geostationary satellites. Hall-effect ion thrusters generate a localized plasma flow in the surrounding of the satellite, whose impact on the communication system needs to be qualitatively and quantitatively assessed. An electromagnetic modelling tool has been developed and integrated into the Antenna Design Framework- ElectroMagnetic Satellite (ADF-EMS). The system is able to guide the user from the plume definition phases through plume installation and simulation. A validation activity has been carried out and the system has been applied to the plume modulation analysis of SGEO/Hispasat mission.

  20. Laser beam-plasma plume interaction during laser welding

    Science.gov (United States)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  1. The outcome of I-131 ablation therapy for intermediate and high-risk differentiated thyroid cancer using a strict definition of successful ablation

    International Nuclear Information System (INIS)

    Watanabe, Ken; Uchiyama, Mayuki; Fukuda, Kunihiko

    2017-01-01

    This article examines the outcome of radioactive iodine ablation therapy for thyroid cancer in nigh-risk patients and investigates background factors influencing ablation failure. We included 91 patients in this retrospective analysis and evaluated the ablation success rate. Successful ablation was defined as the absence of visible iodine-131 (I-131) accumulation in the thyroid bed after whole-body scans and thyroglobulin levels <2 ng/ml in a TSH-stimulated state after ablation. We extracted data on patients' age, sex, I-131 dose, pathology, resection stump findings, tumor T category and thyroglobulin levels, which could affect ablation outcome. Successful ablation was achieved in only 14 patients (15.4%). Pre-ablation serum thyroglobulin levels were significantly higher in the ablation failure group than in the success group (P < 0.001), while no significant differences were found for other factors between the groups. Furthermore, thyroglobulin levels >10 ng/ml were significantly related to ablation failure after multivariate analysis (odds ratio 27.2; 95% confidence interval 2.469-299.7; P = 0.007). The ablation success rate was very low because of high thyroglobulin levels, even with high-dose I-131. High-risk patients, especially those with high thyroglobulin levels (>10 ng/ml), are unlikely to reach levels low enough to meet successful ablation criteria. (author)

  2. DeepBlow - a Lagrangian plume model for deep water blowouts

    International Nuclear Information System (INIS)

    Johansen, Oeistein

    2000-01-01

    This paper presents a sub-sea blowout model designed with special emphasis on deep-water conditions. The model is an integral plume model based on a Lagrangian concept. This concept is applied to multiphase discharges in the formation of water, oil and gas in a stratified water column with variable currents. The gas may be converted to hydrate in combination with seawater, dissolved into the plume water, or leaking out of the plume due to the slip between rising gas bubbles and the plume trajectory. Non-ideal behaviour of the gas is accounted for by the introduction of pressure- and temperature-dependent compressibility z-factor in the equation of state. A number of case studies are presented in the paper. One of the cases (blowout from 100 m depth) is compared with observations from a field experiment conducted in Norwegian waters in June 1996. The model results are found to compare favourably with the field observations when dissolution of gas into seawater is accounted in the model. For discharges at intermediate to shallow depths (100-250 m), the two major processes limiting plume rise will be: (a) dissolution of gas into ambient water, or (b) bubbles rising out of the inclined plume. These processes tend to be self-enforcing, i.e., when a gas is lost by either of these processes, plume rise tends to slow down and more time will be available for dissolution. For discharges in deep waters (700-1500 m depth), hydrate formation is found to be a dominating process in limiting plume rise. (Author)

  3. Behaviour of a planar Langmuir probe in a laser ablation plasma

    International Nuclear Information System (INIS)

    Doggett, B.; Budtz-Joergensen, C.; Lunney, J.G.; Sheerin, P.; Turner, M.M.

    2005-01-01

    We have investigated some aspects of the behaviour of planar Langmuir probes in the supersonic plasma flow produced by laser ablation of solid materials in vacuum. The ablation was done using a 26 ns, 248 nm excimer laser, irradiating a silver target at 1 J cm -2 . We have compared the behaviour of the probe when it is orientated perpendicular and parallel to the plasma flow. In particular, we have shown that it is possible to adapt an analytical model, developed for plasma immersion ion implantation, to quantitatively describe the variation of the ion current with probe bias for the case when the plasma flow is along the probe surface. The electron temperature was also measured

  4. Zooplankton From a Reef System Under the Influence of the Amazon River Plume

    Directory of Open Access Journals (Sweden)

    Sigrid Neumann-Leitão

    2018-03-01

    Full Text Available At the mouth of the Amazon River, a widespread carbonate ecosystem exists below the river plume, generating a hard-bottom reef (∼9500 km2 that includes mainly large sponges but also rhodolith beds. The mesozooplankton associated with the pelagic realm over the reef formation was characterized, considering the estuarine plume and oceanic influence. Vertical hauls were carried out using a standard plankton net with 200 μm mesh size during September 2014. An indicator index was applied to express species importance as ecological indicators in community. Information on functional traits was gathered for the most abundant copepod species. Overall, 179 zooplankton taxa were recorded. Copepods were the richest (92 species, most diverse and most abundant group, whereas meroplankton were rare and less abundant. Species diversity (>3.0 bits.ind-1 and evenness (>0.6 were high, indicating a complex community. Small holoplanktonic species dominated the zooplankton, and the total density varied from 107.98 ind. m-3 over the reef area to 2,609.24 ind. m-3 in the estuarine plume, with a significant difference between coastal and oceanic areas. The most abundant copepods were the coastal species ithona plumifera and Clausocalanus furcatus and early stages copepodites of Paracalanidae. The holoplanktonic Oikopleura, an important producer of mucous houses, was very abundant on the reefs. The indicator species index revealed three groups: (1 indicative of coastal waters under the influence of the estuarine plume [Euterpina acutifrons, Parvocalanus crassirostris, Oikopleura (Vexillaria dioica and Hydromedusae]; (2 characterized coastal and oceanic conditions (Clausocalanus; (3 characterized the reef system (O. plumifera. Two major copepods functional groups were identified and sorted according to their trophic strategy and coastal-oceanic distribution. The species that dominated the coastal area and the area over the rhodolith beds are indicators of the estuarine

  5. Cryoballoon Ablation for Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Jason G. Andrade, MD

    2012-03-01

    Full Text Available Focal point-by-point radiofrequency catheter ablation has shown considerable success in the treatment of paroxysmal atrial fibrillation. However, it is not without limitations. Recent clinical and preclinical studies have demonstrated that cryothermal ablation using a balloon catheter (Artic Front©, Medtronic CryoCath LP provides an effective alternative strategy to treating atrial fibrillation. The objective of this article is to review efficacy and safety data surrounding cryoballoon ablation for paroxysmal and persistent atrial fibrillation. In addition, a practical step-by-step approach to cryoballoon ablation is presented, while highlighting relevant literature regarding: 1 the rationale for adjunctive imaging, 2 selection of an appropriate cryoballoon size, 3 predictors of efficacy, 4 advanced trouble-shooting techniques, and 5 strategies to reduce procedural complications, such as phrenic nerve palsy.

  6. Studies of the environmental impact of evaporative cooling tower plumes

    International Nuclear Information System (INIS)

    Thomson, D.W.

    1978-01-01

    This ongoing research program of the environmental impact of natural-draft evaporative cooling tower plumes consists principally of a comprehensive series of airborne measurements of a variety of the physical characteristics of the plumes and, to a lesser extent, of preliminary studies of remote sodar plume probing techniques and the development of simplified dynamical numerical models suitable for use in conducting field measurement programs. The PSU Doppler sodar was used at the Keystone Power Plant in southwestern Pennsylvania for an extended series of remote measurements of the characteristics of plume turbulent temperature and velocity fluctuations and results are discussed

  7. Fractal analysis: A new tool in transient volcanic ash plume characterization.

    Science.gov (United States)

    Tournigand, Pierre-Yves; Peña Fernandez, Juan Jose; Taddeucci, Jacopo; Perugini, Diego; Sesterhenn, Jörn

    2017-04-01

    Transient volcanic plumes are time-dependent features generated by unstable eruptive sources. They represent a threat to human health and infrastructures, and a challenge to characterize due to their intrinsic instability. Plumes have been investigated through physical (e.g. visible, thermal, UV, radar imagery), experimental and numerical studies in order to provide new insights about their dynamics and better anticipate their behavior. It has been shown experimentally that plume dynamics is strongly dependent to source conditions and that plume shape evolution holds key to retrieve these conditions. In this study, a shape evolution analysis is performed on thermal high-speed videos of volcanic plumes from three different volcanoes Sakurajima (Japan), Stromboli (Italy) and Fuego (Guatemala), recorded with a FLIR SC655 thermal camera during several field campaigns between 2012 and 2016. To complete this dataset, three numerical gas-jet simulations at different Reynolds number (2000, 5000 and 10000) have been used in order to set reference values to the natural cases. Turbulent flow shapes are well known to feature scale-invariant structures and a high degree of complexity. For this reason we characterized the bi-dimensional shape of natural and synthetic plumes by using a fractal descriptor. Such method has been applied in other studies on experimental turbulent jets as well as on atmospheric clouds and have shown promising results. At each time-step plume contour has been manually outlined and measured using the box-counting method. This method consists in covering the image with squares of variable sizes and counting the number of squares containing the plume outline. The negative slope of the number of squares in function of their size in a log-log plot gives the fractal dimension of the plume at a given time. Preliminary results show an increase over time of the fractal dimension for natural volcanic plume as well as for the numerically simulated ones, but at

  8. Burn, freeze, or photo-ablate?: comparative symptom profile in Barrett's dysplasia patients undergoing endoscopic ablation

    Science.gov (United States)

    Gill, Kanwar Rupinder S.; Gross, Seth A.; Greenwald, Bruce D.; Hemminger, Lois L.; Wolfsen, Herbert C.

    2009-06-01

    Background: There are few data available comparing endoscopic ablation methods for Barrett's esophagus with high-grade dysplasia (BE-HGD). Objective: To determine differences in symptoms and complications associated with endoscopic ablation. Design: Prospective observational study. Setting: Two tertiary care centers in USA. Patients: Consecutive patients with BE-HGD Interventions: In this pilot study, symptoms profile data were collected for BE-HGD patients among 3 endoscopic ablation methods: porfimer sodium photodynamic therapy, radiofrequency ablation and low-pressure liquid nitrogen spray cryotherapy. Main Outcome Measurements: Symptom profiles and complications from the procedures were assessed 1-8 weeks after treatment. Results: Ten BE-HGD patients were treated with each ablation modality (30 patients total; 25 men, median age: 69 years (range 53-81). All procedures were performed in the clinic setting and none required subsequent hospitalization. The most common symptoms among all therapies were chest pain, dysphagia and odynophagia. More patients (n=8) in the porfimer sodium photodynamic therapy group reported weight loss compared to radio-frequency ablactation (n=2) and cryotherapy (n=0). Four patients in the porfimer sodium photodynamic therapy group developed phototoxicity requiring medical treatment. Strictures, each requiring a single dilation, were found in radiofrequency ablactation (n=1) and porfimer sodium photodynamic therapy (n=2) patients. Limitations: Small sample size, non-randomized study. Conclusions: These three endoscopic therapies are associated with different types and severity of post-ablation symptoms and complications.

  9. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    Science.gov (United States)

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  10. Oceanic magmatic evolution during ocean opening under influence of mantle plume

    Science.gov (United States)

    Sushchevskaya, Nadezhda; Melanholina, Elena; Belyatsky, Boris; Krymsky, Robert; Migdisova, Natalya

    2015-04-01

    Petrology, geochemistry and geophysics as well as numerical simulation of spreading processes in plume impact environments on examples of Atlantic Ocean Iceland and the Central Atlantic plumes and Kerguelen plume in the Indian Ocean reveal: - under interaction of large plume and continental landmass the plume can contribute to splitting off individual lithosphere blocks, and their subsequent movement into the emergent ocean. At the same time enriched plume components often have geochemical characteristics of the intact continental lithosphere by early plume exposure. This is typical for trap magmatism in Antarctica, and for magmatism of North and Central Atlantic margins; - in the course of the geodynamic reconstruction under the whole region of the South Atlantic was formed (not in one step) metasomatized enriched sub-oceanic mantle with pyroxenite mantle geochemical characteristics and isotopic composition of enriched HIMU and EM-2 sources. That is typical for most of the islands in the West Antarctic. This mantle through spreading axes jumping involved in different proportions in the melting under the influence of higher-temperature rising asthenospheric lherzolite mantle; - CAP activity was brief enough (200 ± 2 Ma), but Karoo-Maud plume worked for a longer time and continued from 180 to 170 Ma ago in the main phase. Plume impact within Antarctica distributed to the South and to the East, leading to the formation of extended igneous provinces along the Transantarctic Mountains and along the east coast (Queen Maud Land province and Schirmacher Oasis). Moreover, this plume activity may be continued later on, after about 40 million years cessation, as Kerguelen plume within the newly-formed Indian Ocean, significantly affects the nature of the rift magmatism; - a large extended uplift in the eastern part of the Indian Ocean - Southeastern Indian Ridge (SEIR) was formed on the ancient spreading Wharton ridge near active Kerguelen plume. The strongest plume

  11. Ozone production efficiency of a ship-plume: ITCT 2K2 case study.

    Science.gov (United States)

    Kim, Hyun S; Kim, Yong H; Han, Kyung M; Kim, Jhoon; Song, Chul H

    2016-01-01

    Ozone production efficiency (OPE) of ship plume was first evaluated in this study, based on ship-plume photochemical/dynamic model simulations and the ship-plume composition data measured during the ITCT 2K2 (Intercontinental Transport and Chemical Transformation 2002) aircraft campaign. The averaged instantaneous OPEs (OPE(i)‾) estimated via the ship-plume photochemical/dynamic modeling for the ITCT 2K2 ship-plume ranged between 4.61 and 18.92, showing that the values vary with the extent of chemical evolution (or chemical stage) of the ship plume and the stability classes of the marine boundary layer (MBL). Together with OPE(i)‾, the equivalent OPEs (OPE(e)‾) for the entire ITCT 2K2 ship-plume were also estimated. The OPE(e)‾ values varied between 9.73 (for the stable MBL) and 12.73 (for the moderately stable MBL), which agreed well with the OPE(e)‾ of 12.85 estimated based on the ITCT 2K2 ship-plume observations. It was also found that both the model-simulated and observation-based OPE(e)‾ inside the ship-plume were 0.29-0.38 times smaller than the OPE(e)‾ calculated/measured outside the ITCT 2K2 ship-plume. Such low OPEs insides the ship plume were due to the high levels of NO and non-liner ship-plume photochemistry. Possible implications of this ship-plume OPE study in the global chemistry-transport modeling are also discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids

    International Nuclear Information System (INIS)

    Karavanskii, V A; Krasovskii, V I; Ivanchenko, P V; Simakin, Aleksandr V

    2004-01-01

    The optical and nonlinear optical properties of colloidal solutions of silver obtained by laser ablation in water and ethanol are studied. It is shown that freshly prepared colloids experience a full or partial sedimentation by changing their nonlinear optical properties. Aqueous colloids undergo a partial sedimentation and their nonlinear optical absorption changes to nonlinear optical transmission. The obtained results are interpreted using the Drude model for metal particles taking the particle size into account and can be explained by the sedimentation of larger silver particles accompanied by the formation of a stable colloid containing silver nanoparticles with a tentatively silver oxide shell. The characteristic size of particles forming such a stable colloid is determined and its optical nonlinearity is estimated. (nonlinear optical phenomena)

  13. Prominence Bubbles and Plumes: Thermo-magnetic Buoyancy in Coronal Cavity Systems

    Science.gov (United States)

    Berger, Thomas; Hurlburt, N.

    2009-05-01

    The Hinode/Solar Optical Telescope continues to produce high spatial and temporal resolution images of solar prominences in both the Ca II 396.8 nm H-line and the H-alpha 656.3 nm line. Time series of these images show that many quiescent prominences produce large scale (50 Mm) dark "bubbles" that "inflate" into, and sometimes burst through, the prominence material. In addition, small-scale (2--5 Mm) dark plumes are seen rising into many quiescent prominences. We show typical examples of both phenomena and argue that they originate from the same mechanism: concentrated and heated magnetic flux that rises due to thermal and magnetic buoyancy to equilibrium heights in the prominence/coronal-cavity system. More generally, these bubbles and upflows offer a source of both magnetic flux and mass to the overlying coronal cavity, supporting B.C. Low's theory of CME initiation via steadily increasing magnetic buoyancy breaking through the overlying helmut streamer tension forces. Quiescent prominences are thus seen as the lowermost parts of the larger coronal cavity system, revealing through thermal effects both the cooled downflowing "drainage" from the cavity and the heated upflowing magnetic "plasmoids" supplying the cavity. We compare SOT movies to new 3D compressible MHD simulations that reproduce the dark turbulent plume dynamics to establish the magnetic and thermal character of these buoyancy-driven flows into the corona.

  14. Apollo Video Photogrammetry Estimation Of Plume Impingement Effects

    Science.gov (United States)

    Immer, Christopher; Lane, John; Metzger, Philip T.; Clements, Sandra

    2008-01-01

    The Constellation Project's planned return to the moon requires numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the Lander ejects the granular material at high velocities. Much work is needed to understand the physics of plume impingement during landing in order to protect hardware surrounding the landing sites. While mostly qualitative in nature, the Apollo Lunar Module landing videos can provide a wealth of quantitative information using modem photogrammetry techniques. The authors have used the digitized videos to quantify plume impingement effects of the landing exhaust on the lunar surface. The dust ejection angle from the plume is estimated at 1-3 degrees. The lofted particle density is estimated at 10(exp 8)- 10(exp 13) particles per cubic meter. Additionally, evidence for ejection of large 10-15 cm sized objects and a dependence of ejection angle on thrust are presented. Further work is ongoing to continue quantitative analysis of the landing videos.

  15. High-intensity focused ultrasound ablation around the tubing.

    Science.gov (United States)

    Siu, Jun Yang; Liu, Chenhui; Zhou, Yufeng

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17-339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10-30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography.

  16. Influence of irradiation conditions on polytetrafluoroethylen ablation induced by soft x-rays emitted from laser-produced plasma

    Czech Academy of Sciences Publication Activity Database

    Viskup, Richard; Juha, Libor; Krása, Josef

    2004-01-01

    Roč. 54, č. 3 (2004), s. 277-284 ISSN 0323-0465 R&D Projects: GA MŠk LA 055; GA MŠk 1P04LA235; GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z1010921 Keywords : ablation * X-rays Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.513, year: 2004

  17. Microwave Ablation of Porcine Kidneys in vivo: Effect of two Different Ablation Modes (“Temperature Control” and “Power Control”) on Procedural Outcome

    International Nuclear Information System (INIS)

    Sommer, C. M.; Arnegger, F.; Koch, V.; Pap, B.; Holzschuh, M.; Bellemann, N.; Gehrig, T.; Senft, J.; Nickel, F.; Mogler, C.; Zelzer, S.; Meinzer, H. P.; Stampfl, U.; Kauczor, H. U.; Radeleff, B. A.

    2012-01-01

    Purpose: This study was designed to analyze the effect of two different ablation modes (“temperature control” and “power control”) of a microwave system on procedural outcome in porcine kidneys in vivo. Methods: A commercially available microwave system (Avecure Microwave Generator; MedWaves, San Diego, CA) was used. The system offers the possibility to ablate with two different ablation modes: temperature control and power control. Thirty-two microwave ablations were performed in 16 kidneys of 8 pigs. In each animal, one kidney was ablated twice by applying temperature control (ablation duration set point at 60 s, ablation temperature set point at 96°C, automatic power set point; group I). The other kidney was ablated twice by applying power control (ablation duration set point at 60 s, ablation temperature set point at 96°C, ablation power set point at 24 W; group II). Procedural outcome was analyzed: (1) technical success (e.g., system failures, duration of the ablation cycle), and (2) ablation geometry (e.g., long axis diameter, short axis diameter, and circularity). Results: System failures occurred in 0% in group I and 13% in group II. Duration of the ablation cycle was 60 ± 0 s in group I and 102 ± 21 s in group II. Long axis diameter was 20.3 ± 4.6 mm in group I and 19.8 ± 3.5 mm in group II (not significant (NS)). Short axis diameter was 10.3 ± 2 mm in group I and 10.5 ± 2.4 mm in group II (NS). Circularity was 0.5 ± 0.1 in group I and 0.5 ± 0.1 in group II (NS). Conclusions: Microwave ablations performed with temperature control showed fewer system failures and were finished faster. Both ablation modes demonstrated no significant differences with respect to ablation geometry.

  18. Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity

    Science.gov (United States)

    Pang, Shengyong; Chen, Xin; Shao, Xinyu; Gong, Shuili; Xiao, Jianzhong

    2016-07-01

    In order to better understand the local evaporation phenomena of keyhole wall, vapor plume swing above the keyhole and ambient gas entrapment into the porosity defects, the 3D time-dependent dynamics of the metallic vapor plume in a transient keyhole during fiber laser welding is numerically investigated. The vapor dynamical parameters, including the velocity and pressure, are successfully predicted and obtain good agreements with the experimental and literature data. It is found that the vapor plume flow inside the keyhole has complex multiple directions, and this various directions characteristic of the vapor plume is resulted from the dynamic evaporation phenomena with variable locations and orientations on the keyhole wall. The results also demonstrate that because of this dynamic local evaporation, the ejected vapor plume from the keyhole opening is usually in high frequency swinging. The results further indicate that the oscillation frequency of the plume swing angle is around 2.0-8.0 kHz, which is of the same order of magnitude with that of the keyhole depth (2.0-5.0 kHz). This consistency clearly shows that the swing of the ejected vapor plume is closely associated with the keyhole instability during laser welding. Furthermore, it is learned that there is usually a negative pressure region (several hundred Pa lower than the atmospheric pressure) of the vapor flow around the keyhole opening. This pressure could lead to a strong vortex flow near the rear keyhole wall, especially when the velocity of the ejected metallic vapor from the keyhole opening is high. Under the effect of this flow, the ambient gas is involved into the keyhole, and could finally be entrapped into the bubbles within a very short time (keyhole.

  19. Synthesis of oxidation resistant lead nanoparticle films by modified pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eunsung; Murray, P. Terrence; Subramanyam, Guru; Malik, Hans K.; Schwartz, Kenneth L. [Research Institute, University of Dayton, Dayton, OH 45469-0170 (United States); Research Institute, University of Dayton, Dayton, OH 45469-0170, USA and Graduate Materials Engineering, University of Dayton, Dayton, OH 45469-0240 (United States); Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469-0232 (United States); Northrop Grumman Electronic Systems, Linthicum, MD 21090 (United States)

    2012-07-30

    Thin layers of lead nanoparticles have been produced by a modified pulsed laser ablation (PLA) process in which smaller nanoparticles were swept out of the ablation chamber by a stream of flowing Ar. Large ({mu}m-sized) particles, which are usually deposited during the standard PLA process, were successfully eliminated from the deposit. The nanoparticles deposited on room temperature substrates were well distributed, and the most probable particle diameter was in the order of 30 nm. Since lead is highly reactive, the nanoparticles formed in Ar were quickly oxidized upon exposure to air. A small partial pressure of H{sub 2}S gas was subsequently added to the effluent, downstream from the ablation chamber, and this resulted in the formation of nanoparticle deposits that were surprisingly oxidation resistant. The properties of the nanoparticle films (as determined by transmission electron microscopy, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and conductivity measurements) are reported, and the mechanism of the oxidation retardation process is discussed.

  20. Tracing Mantle Plumes: Quantifying their Morphology and Behavior from Seismic Tomography

    Science.gov (United States)

    O'Farrell, K. A.; Eakin, C. M.; Jones, T. D.; Garcia, E.; Robson, A.; Mittal, T.; Lithgow-Bertelloni, C. R.; Jackson, M. G.; Lekic, V.; Rudolph, M. L.

    2016-12-01

    Hotspot volcanism provides a direct link between the deep mantle and the surface, but the location, depth and source of the mantle plumes that feed hotspots are highly controversial. In order to address this issue it is important to understand the journey along which plumes have travelled through the mantle. The general behavior of plumes in the mantle also has the potential to tell us about the vigor of mantle convection, net rotation of the mantle, the role of thermal versus chemical anomalies, and important bulk physical properties of the mantle such as the viscosity profile. To address these questions we developed an algorithm to trace plume-like features in shear-wave (Vs) seismic tomographic models based on picking local minima in velocity and searching for continuous features with depth. We apply this method to several of the latest tomographic models and can recover 30 or more continuous plume conduits that are >750 km long. Around half of these can be associated with a known hotspot at the surface. We study the morphology of these plume chains and find that the largest lateral deflections occur near the base of the lower mantle and in the upper mantle. We analyze the preferred orientation of the plume deflections and their gradient to infer large scale mantle flow patterns and the depth of viscosity contrasts in the mantle respectively. We also retrieve Vs profiles for our traced plumes and compare with velocity profiles predicted for different mantle adiabat temperatures. We use this to constrain the thermal anomaly associated with these plumes. This thermal anomaly is then converted to a density anomaly and an upwelling velocity is derived. We compare this to buoyancy fluxes calculated at the surface and use this in conjunction with our measured plume tilts/deflections to estimate the strength of the "mantle wind".

  1. Seismic structure of the lithosphere beneath NW Namibia: Impact of the Tristan da Cunha mantle plume

    Science.gov (United States)

    Yuan, Xiaohui; Heit, Benjamin; Brune, Sascha; Steinberger, Bernhard; Geissler, Wolfram H.; Jokat, Wilfried; Weber, Michael

    2017-01-01

    Northwestern Namibia, at the landfall of the Walvis Ridge, was affected by the Tristan da Cunha mantle plume during continental rupture between Africa and South America, as evidenced by the presence of the Etendeka continental flood basalts. Here we use data from a passive-source seismological network to investigate the upper mantle structure and to elucidate the Cretaceous mantle plume-lithosphere interaction. Receiver functions reveal an interface associated with a negative velocity contrast within the lithosphere at an average depth of 80 km. We interpret this interface as the relic of the lithosphere-asthenosphere boundary (LAB) formed during the Mesozoic by interaction of the Tristan da Cunha plume head with the pre-existing lithosphere. The velocity contrast might be explained by stagnated and "frozen" melts beneath an intensively depleted and dehydrated peridotitic mantle. The present-day LAB is poorly visible with converted waves, indicating a gradual impedance contrast. Beneath much of the study area, converted phases of the 410 and 660 km mantle transition zone discontinuities arrive 1.5 s earlier than in the landward plume-unaffected continental interior, suggesting high velocities in the upper mantle caused by a thick lithosphere. This indicates that after lithospheric thinning during continental breakup, the lithosphere has increased in thickness during the last 132 Myr. Thermal cooling of the continental lithosphere alone cannot produce the lithospheric thickness required here. We propose that the remnant plume material, which has a higher seismic velocity than the ambient mantle due to melt depletion and dehydration, significantly contributed to the thickening of the mantle lithosphere.

  2. Attitudes Towards Catheter Ablation for Atrial Fibrillation

    DEFF Research Database (Denmark)

    Vadmann, Henrik; Pedersen, Susanne S; Nielsen, Jens Cosedis

    2015-01-01

    BACKGROUND: Catheter ablation for atrial fibrillation (AF) is an important but expensive procedure that is the subject of some debate. Physicians´ attitudes towards catheter ablation may influence promotion and patient acceptance. This is the first study to examine the attitudes of Danish...... cardiologists towards catheter ablation for AF, using a nationwide survey. METHODS AND RESULTS: We developed a purpose-designed questionnaire to evaluate attitudes towards catheter ablation for AF that was sent to all Danish cardiologists (n = 401; response n = 272 (67.8%)). There was no association between...... attitudes towards ablation and the experience or age of the cardiologist with respect to patients with recurrent AF episodes with a duration of 7 days and/or need for cardioversion. The majority (69%) expected a recurrence of AF after catheter ablation in more than 30% of the cases...

  3. Connecting smoke plumes to sources using Hazard Mapping System (HMS) smoke and fire location data over North America

    Science.gov (United States)

    Brey, Steven J.; Ruminski, Mark; Atwood, Samuel A.; Fischer, Emily V.

    2018-02-01

    Fires represent an air quality challenge because they are large, dynamic and transient sources of particulate matter and ozone precursors. Transported smoke can deteriorate air quality over large regions. Fire severity and frequency are likely to increase in the future, exacerbating an existing problem. Using the National Environmental Satellite, Data, and Information Service (NESDIS) Hazard Mapping System (HMS) smoke data for North America for the period 2007 to 2014, we examine a subset of fires that are confirmed to have produced sufficient smoke to warrant the initiation of a U.S. National Weather Service smoke forecast. We find that gridded HMS-analyzed fires are well correlated (r = 0.84) with emissions from the Global Fire Emissions Inventory Database 4s (GFED4s). We define a new metric, smoke hours, by linking observed smoke plumes to active fires using ensembles of forward trajectories. This work shows that the Southwest, Northwest, and Northwest Territories initiate the most air quality forecasts and produce more smoke than any other North American region by measure of the number of HYSPLIT points analyzed, the duration of those HYSPLIT points, and the total number of smoke hours produced. The average number of days with smoke plumes overhead is largest over the north-central United States. Only Alaska, the Northwest, the Southwest, and Southeast United States regions produce the majority of smoke plumes observed over their own borders. This work moves a new dataset from a daily operational setting to a research context, and it demonstrates how changes to the frequency or intensity of fires in the western United States could impact other regions.

  4. [Successful transcatheter ablation of fascicular potential in pediatric patients with left posterior fascicular tachycardia].

    Science.gov (United States)

    Zeng, Shao-ying; Shi, Ji-jun; Li, Hong; Zhang, Zhi-wei; Li, Yu-fen

    2010-08-01

    mapping, reduce operative difficulty and produce a distinct endpoint for ablation.

  5. Influence of physical properties and chemical composition of sample on formation of aerosol particles generated by nanosecond laser ablation at 213 nm

    Energy Technology Data Exchange (ETDEWEB)

    Hola, Marketa, E-mail: mhola@sci.muni.c [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Konecna, Veronika [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Mikuska, Pavel [Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic v.v.i., Veveri 97, 602 00 Brno (Czech Republic); Kaiser, Jozef [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Kanicky, Viktor [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2010-01-15

    The influence of sample properties and composition on the size and concentration of aerosol particles generated by nanosecond Nd:YAG laser ablation at 213 nm was investigated for three sets of different materials, each containing five specimens with a similar matrix (Co-cemented carbides with a variable content of W and Co, steel samples with minor differences in elemental content and silica glasses with various colors). The concentration of ablated particles (particle number concentration, PNC) was measured in two size ranges (10-250 nm and 0.25-17 mum) using an optical aerosol spectrometer. The shapes and volumes of the ablation craters were obtained by Scanning Electron Microscopy (SEM) and by an optical profilometer, respectively. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using SEM. The results of particle concentration measurements showed a significant dominance of particles smaller than 250 nm in comparison with larger particles, irrespective of the kind of material. Even if the number of particles larger than 0.25 mum is negligible (up to 0.1%), the volume of large particles that left the ablation cell can reach 50% of the whole particle volume depending on the material. Study of the ablation craters and the laser-generated particles showed a various number of particles produced by different ablation mechanisms (particle splashing or condensation), but the similar character of released particles for all materials was observed by SEM after particle collection on the membrane filter. The created aerosol always consisted of two main structures - spherical particles with diameters from tenths to units of micrometers originally ejected from the molten surface layer and mum-sized 'fibres' composed of primary agglomerates with diameters in the range between tens and hundreds of nanometers. The shape and structure of ablation craters were in good agreement with particle concentration

  6. Endometrial ablation by rollerball electrocoagulation compared to uterine balloon thermal ablation. Technical and safety aspects.

    NARCIS (Netherlands)

    Zon-Rabelink, I.A.A. van; Vleugels, M.P.; Merkus, J.M.W.M.; Graaf, R.M. de

    2003-01-01

    OBJECTIVE: To compare two methods of endometrial ablation, hysteroscopic rollerball electrocoagulation (RBE) and non-hysteroscopic uterine balloon thermal (UBT) ablation (Thermachoice), regarding intra- and post-operative technical complications and safety aspects. STUDY DESIGN: A randomised

  7. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    International Nuclear Information System (INIS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-01-01

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F_t_h = 0.087 J/cm"2) than that for the femtosecond laser ablation of ABS (F_t_h = 1.576 J/cm"2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α"−"1 = 223 nm) than that for femtosecond laser ablation (α"−"1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas C=C bond is partially

  8. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    Energy Technology Data Exchange (ETDEWEB)

    See, Tian Long, E-mail: tianlong.see@postgrad.manchester.ac.uk [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Liu, Zhu [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Li, Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Zhong, Xiang Li [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom)

    2016-02-28

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F{sub th} = 0.087 J/cm{sup 2}) than that for the femtosecond laser ablation of ABS (F{sub th} = 1.576 J/cm{sup 2}), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α{sup −1} = 223 nm) than that for femtosecond laser ablation (α{sup −1} = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas

  9. Effect of microbubble contrast agent during high intensity focused ultrasound ablation on rabbit liver in vivo

    International Nuclear Information System (INIS)

    Chung, Dong Jin; Cho, Se Hyun; Lee, Jae Mun; Hahn, Seong-Tae

    2012-01-01

    Objective: To evaluate the effect of a microbubble contrast agent (SonoVue) during HIFU ablation of a rabbit liver. Materials and methods: HIFU ablations (intensity of 400 W/cm 2 for 4 s, six times, with a 5 s interval between exposures) were performed upon 16 in vivo rabbit livers before and after intravenous injection of a microbubble contrast agent (0.8 ml). A Wilcoxon signed rank test was used to compare mean ablation volume and time required to tissue ablation on real-time US. Shape of ablation and pattern of coagulative necrosis were analyzed by Fisher's exact test. Results: The volume of coagulative necrosis was significantly larger in the combination microbubble and HIFU group than in the HIFU alone group (P < 0.05). Also, time to reach ablation was shorter in the combination microbubble and HIFU group than in the HIFU alone group (P < 0.05). When analyzing the shape of tissue ablation, a pyramidal shape was more prevalently in the HIFU alone group compared to the combination microbubble and HIFU group (P < 0.05). Following an analysis of the pattern of coagulative necrosis, non-cavitary necrosis was found in ten and cavitary necrosis in six of the samples in the combination microbubble and HIFU group. Conversely, non-cavitary necrosis occurred in all 16 samples in the HIFU alone group (P < 0.05). Conclusion: HIFU of in vivo rabbit livers with a microbubble contrast agent produced larger zones of ablation and more cavitary tissue necrosis than without the use of a microbubble contrast agent. Microbubble contrast agents may be useful in tissue ablation by enhancing the treatment effect of HIFU.

  10. Clinical effects of non-ablative and ablative fractional lasers on various hair disorders: a case series of 17 patients.

    Science.gov (United States)

    Cho, Suhyun; Choi, Min Ju; Zheng, Zhenlong; Goo, Boncheol; Kim, Do-Young; Cho, Sung Bin

    2013-04-01

    Both ablative and non-ablative fractional lasers have been applied to various uncommon hair disorders. The purpose of this study was to demonstrate the clinical effects of fractional laser therapy on the course of primary follicular and perifollicular pathologies and subsequent hair regrowth. A retrospective review of 17 patients with uncommon hair disorders - including ophiasis, autosomal recessive woolly hair/hypotrichosis, various secondary cicatricial alopecias, pubic hypotrichosis, frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens - was conducted. All patients had been treated with non-ablative and/or ablative fractional laser therapies. The mean clinical improvement score in these 17 patients was 2.2, while the mean patient satisfaction score was 2.5. Of the 17 subjects, 12 (70.6%) demonstrated a clinical response to non-ablative and/or ablative fractional laser treatments, including individuals with ophiasis, autosomal recessive woolly hair/hypotrichosis, secondary cicatricial alopecia (scleroderma and pressure-induced alopecia), frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens. Conversely, patients with long-standing ophiasis, surgical scar-induced secondary cicatricial alopecia, and pubic hypotrichosis did not respond to fractional laser therapy. Our findings demonstrate that the use of non-ablative and/or ablative fractional lasers promoted hair growth in certain cases of uncommon hair disorders without any remarkable side effects.

  11. Dispersal of the Pearl River plume over continental shelf in summer

    Science.gov (United States)

    Chen, Zhaoyun; Gong, Wenping; Cai, Huayang; Chen, Yunzhen; Zhang, Heng

    2017-07-01

    Satellite images of turbidity were used to study the climatological, monthly, and typical snapshot distributions of the Pearl River plume over the shelf in summer from 2003 to 2016. These images show that the plume spreads offshore over the eastern shelf and is trapped near the coast over the western shelf. Eastward extension of the plume retreats from June to August. Monthly spatial variations of the plume are characterized by eastward spreading, westward spreading, or both. Time series of monthly plume area was quantified by applying the K-mean clustering method to identify the turbid plume water. Decomposition of the 14-year monthly turbidity data by the empirical orthogonal function (EOF) analysis isolated the 1st mode in both the eastward and westward spreading pattern as the time series closely related to the Pearl River discharge, and the 2nd mode with out-of-phase turbidity anomalies over the eastern and western shelves that is associated with the prevailing wind direction. Eight typical plume types were detected from the satellite snapshots. They are characterized by coastal jet, eastward offshore spreading, westward spreading, bidirectional spreading, bulge, isolated patch, offshore branch, and offshore filaments, respectively. Their possible mechanisms are discussed.

  12. The atrial fibrillation ablation pilot study

    DEFF Research Database (Denmark)

    Arbelo, Elena; Brugada, Josep; Hindricks, Gerhard

    2014-01-01

    AIMS: The Atrial Fibrillation Ablation Pilot Study is a prospective registry designed to describe the clinical epidemiology of patients undergoing an atrial fibrillation (AFib) ablation, and the diagnostic/therapeutic processes applied across Europe. The aims of the 1-year follow-up were to analyse...... was achieved in 40.7% of patients (43.7% in paroxysmal AF; 30.2% in persistent AF; 36.7% in long-lasting persistent AF). A second ablation was required in 18% of the cases and 43.4% were under antiarrhythmic treatment. Thirty-three patients (2.5%) suffered an adverse event, 272 (21%) experienced a left atrial...... tachycardia, and 4 patients died (1 haemorrhagic stroke, 1 ventricular fibrillation in a patient with ischaemic heart disease, 1 cancer, and 1 of unknown cause). CONCLUSION: The AFib Ablation Pilot Study provided crucial information on the epidemiology, management, and outcomes of catheter ablation of AFib...

  13. Hybrid cooling tower Neckarwestheim 2 cooling function, emission, plume dispersion

    International Nuclear Information System (INIS)

    Braeuning, G.; Ernst, G.; Maeule, R.; Necker, P.

    1990-01-01

    The fan-assisted hybrid cooling tower of the 1300 MW power plant Gemeinschafts-Kernkraftwerk Neckarwestheim 2 was designed and constructed based on results from theoretical and experimental studies and experiences from a smaller prototype. The wet part acts in counterflow. The dry part is arranged above the wet part. Each part contains 44 fans. Special attention was payed to the ducts which mix the dry into the wet plume. The cooling function and state, mass flow and contents of the emission were measured. The dispersion of the plume in the atmosphere was observed. The central results are presented in this paper. The cooling function corresponds to the predictions. The content of drifted cooling water in the plume is extremely low. The high velocity of the plume in the exit causes an undisturbed flow into the atmosphere. The hybrid operation reduces visible plumes strongly, especially in warmer and drier ambient air

  14. Cryoballoon Catheter Ablation in Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Cevher Ozcan

    2011-01-01

    Full Text Available Pulmonary vein isolation with catheter ablation is an effective treatment in patients with symptomatic atrial fibrillation refractory or intolerant to antiarrhythmic medications. The cryoballoon catheter was recently approved for this procedure. In this paper, the basics of cryothermal energy ablation are reviewed including its ability of creating homogenous lesion formation, minimal destruction to surrounding vasculature, preserved tissue integrity, and lower risk of thrombus formation. Also summarized here are the publications describing the clinical experience with the cryoballoon catheter ablation in both paroxysmal and persistent atrial fibrillation, its safety and efficacy, and discussions on the technical aspect of the cryoballoon ablation procedure.

  15. Groundwater contaminant plume ranking

    International Nuclear Information System (INIS)

    1988-08-01

    Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs

  16. Radiofrequency ablation of rabbit liver in vivo: effect of the Pringle maneuver on pathologic changes in liver surrounding the ablation zone

    International Nuclear Information System (INIS)

    Kim, Seung Kwon; Lim, Hyo K; Ryu, Jeong Ah

    2004-01-01

    We wished to evaluate the effect of the Pringle maneuver (occlusion of both the hepatic artery and portal vein) on the pathologic changes in the hepatic vessels, bile ducts and liver parenchyma surrounding the ablation zone in rabbit livers. Radiofrequency (RF) ablation zones were created in the livers of 24 rabbits in vivo by using a 50-W, 480-kHz monopolar RF generator and a 15-gauge expandable electrode with four sharp prongs for 7 mins. The tips of the electrodes were placed in the liver parenchyma near the porta hepatis with the distal 1 cm of their prongs deployed. Radiofrequency ablation was performed in the groups with (n=12 rabbits) and without (n=12 rabbits) the Pringle maneuver. Three animals of each group were sacrificed immediately, three days (the acute phase), seven days (the early subacute phase) and two weeks (the late subacute phase) after RF ablation. The ablation zones were excised and serial pathologic changes in the hepatic vessels, bile ducts and liver parenchyma surrounding the ablation zone were evaluated. With the Pringle maneuver, portal vein thrombosis was found in three cases (in the immediate [n=2] and acute phase [n=1]), bile duct dilatation adjacent to the ablation zone was found in one case (in the late subacute phase [n=1]), infarction adjacent to the ablation zone was found in three cases (in the early subacute [n=2] and late subacute [n=1] phases). None of the above changes was found in the livers ablated without the Pringle maneuver. On the microscopic findings, centrilobular congestion, sinusoidal congestion, sinusoidal platelet and neutrophilic adhesion, and hepatocyte vacuolar and ballooning changes in liver ablated with Pringle maneuver showed more significant changes than in those livers ablated without the Pringle maneuver (ρ < 0.05). Radiofrequency ablation with the Pringle maneuver created more severe pathologic changes in the portal vein, bile ducts and liver parenchyma surrounding the ablation zone compared with RF

  17. Controlling dental enamel-cavity ablation depth with optimized stepping parameters along the focal plane normal using a three axis, numerically controlled picosecond laser.

    Science.gov (United States)

    Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Sun, Yuchun; Wang, Yong

    2015-02-01

    The purpose of this study was to establish a depth-control method in enamel-cavity ablation by optimizing the timing of the focal-plane-normal stepping and the single-step size of a three axis, numerically controlled picosecond laser. Although it has been proposed that picosecond lasers may be used to ablate dental hard tissue, the viability of such a depth-control method in enamel-cavity ablation remains uncertain. Forty-two enamel slices with approximately level surfaces were prepared and subjected to two-dimensional ablation by a picosecond laser. The additive-pulse layer, n, was set to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70. A three-dimensional microscope was then used to measure the ablation depth, d, to obtain a quantitative function relating n and d. Six enamel slices were then subjected to three dimensional ablation to produce 10 cavities, respectively, with additive-pulse layer and single-step size set to corresponding values. The difference between the theoretical and measured values was calculated for both the cavity depth and the ablation depth of a single step. These were used to determine minimum-difference values for both the additive-pulse layer (n) and single-step size (d). When the additive-pulse layer and the single-step size were set 5 and 45, respectively, the depth error had a minimum of 2.25 μm, and 450 μm deep enamel cavities were produced. When performing three-dimensional ablating of enamel with a picosecond laser, adjusting the timing of the focal-plane-normal stepping and the single-step size allows for the control of ablation-depth error to the order of micrometers.

  18. Plume tracer experiments at Hinkley Point 'A' [Nuclear Power Station] during 1987

    International Nuclear Information System (INIS)

    Foster, P.M.

    1988-11-01

    The results of the first part of a programme of plume dispersion measurements at the Hinkley Point Nuclear Power Station are described. Using SF 6 gas and pyrotechnic smoke tracer techniques developed during an earlier study at Oldbury, measurements of ground level plume behaviour out to about 4 km and elevated plume behaviour out to about 1 km have been made in a series of twelve 1 hour trials and one 15 minute trial. Whereas the Oldbury study considered passive emissions, attention in this study has been focussed on the behaviour of the buoyant shield cooling air emission. Data on plume rise and the degree of plume entrainment by the building wake and on the effects of entrainment and wind meander on plume width and concentration, are presented and discussed in relation to current modelling recommendations. A limited number of 10 minute averaged measurements of plume concentration and 41-Ar decay gamma count were also made at 2 km range and their correlation and variability examined. (author)

  19. Replacement of Ablators with Phase-Change Material for Thermal Protection of STS Elements

    Science.gov (United States)

    Kaul, Raj K.; Stuckey, Irvin; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    As part of the research and development program to develop new Thermal Protection System (TPS) materials for aerospace applications at NASA's Marshall Space Flight Center (MSFC), an experimental study was conducted on a new concept for a non-ablative TPS material. Potential loss of TPS material and ablation by-products from the External Tank (ET) or Solid Rocket Booster (SRB) during Shuttle flight with the related Orbiter tile damage necessitates development of a non-ablative thermal protection system. The new Thermal Management Coating (TMC) consists of phase-change material encapsulated in micro spheres and a two-part resin system to adhere the coating to the structure material. The TMC uses a phase-change material to dissipate the heat produced during supersonic flight rather than an ablative material. This new material absorbs energy as it goes through a phase change during the heating portion of the flight profile and then the energy is slowly released as the phase-change material cools and returns to its solid state inside the micro spheres. The coating was subjected to different test conditions simulating design flight environments at the NASA/MSFC Improved Hot Gas Facility (IHGF) to study its performance.

  20. Decomposition of dioxin analogues and ablation study for carbon nanotube

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko

    2002-01-01

    Two application studies associated with the free electron laser are presented separately, which are the titles of 'Decomposition of Dioxin Analogues' and 'Ablation Study for Carbon Nanotube'. The decomposition of dioxin analogues by infrared (IR) laser irradiation includes the thermal destruction and multiple-photon dissociation. It is important for us to choose the highly absorbable laser wavelength for the decomposition. The thermal decomposition takes place by the irradiation of the low IR laser power. Considering the model of thermal decomposition, it is proposed that adjacent water molecules assist the decomposition of dioxin analogues in addition to the thermal decomposition by the direct laser absorption. The laser ablation study is performed for the aim of a carbon nanotube synthesis. The vapor by the ablation is weakly ionized in the power of several-hundred megawatts. The plasma internal energy is kept over an 8.5 times longer than the vacuum. The cluster was produced from the weakly ionized gas in the enclosed gas, which is composed of the rough particles in the low power laser more than the high power which is composed of the fine particles. (J.P.N.)