WorldWideScience

Sample records for ablation multi-collector inductively

  1. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Devulder, Veerle [Department of Analytical Chemistry, Ghent University, Krijgslaan 281-S12, 9000 Ghent (Belgium); Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200 E-box 2408, 3001 Leuven (Belgium); Gerdes, Axel [Institute of Geoscience, Goethe Universität, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Vanhaecke, Frank, E-mail: Frank.Vanhaecke@UGent.be [Department of Analytical Chemistry, Ghent University, Krijgslaan 281-S12, 9000 Ghent (Belgium); Degryse, Patrick [Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200 E-box 2408, 3001 Leuven (Belgium)

    2015-03-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ{sup 11}B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement. - Highlights: • First use of LA-MC-ICP-MS for B isotopic analysis of ancient glass • Careful validation of LA-MC-ICP-MS approach • Similar precision & accuracy via solution MC-ICP-MS after isolation of B • Enhancement of sample throughput & reduction of sample consumption • Improved conditions for archeometric research on (pre-)Roman glass.

  2. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Devulder, Veerle; Gerdes, Axel; Vanhaecke, Frank; Degryse, Patrick

    2015-01-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ 11 B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement. - Highlights: • First use of LA-MC-ICP-MS for B isotopic analysis of ancient glass • Careful validation of LA-MC-ICP-MS approach • Similar precision & accuracy via solution MC-ICP-MS after isolation of B • Enhancement of sample throughput & reduction of sample consumption • Improved conditions for archeometric research on (pre-)Roman glass

  3. Coupling between chip based isotachophoresis and multi-collector inductively coupled plasma mass spectrometry for separation and measurement of lanthanides

    International Nuclear Information System (INIS)

    Vio, Laurent; Cretier, Gerard; Rocca, Jean-Louis; Chartier, Frederic; Geertsen, Valerie; Gourgiotis, Alkiviadis; Isnard, Helene; Morin, Pierre

    2012-01-01

    This paper presents the conception and fabrication of a micro-system for lanthanides separation and its coupling with a multi-collector inductively coupled plasma mass spectrometer for isotope ratio measurements. The lanthanides separation is based on the isotachophoresis technique and the micro-system conception has been adapted in order to fit with glove box limitations in view of future spent nuclear fuels analysis. The micro-device was tested by using a mixture of standard solutions of natural elements and the separation of 13 lanthanides was successfully performed. The micro-device was then coupled to a multi-collector inductively coupled plasma mass spectrometer for the on-line measurements of Nd and Sm isotope ratios. The isotopes of Nd and Sm were acquired online in multi-collection mode after separation of the two elements with an injection amount of 5 ng. Results obtained on the Nd and Sm isotope ratio measurements on transient signals are presented and discussed. (authors)

  4. Measurement of in situ sulfur isotopes by laser ablation multi-collector ICPMS: opening Pandora’s Box

    Science.gov (United States)

    Ridley, William I.; Pribil, Michael; Koenig, Alan E.; Slack, John F.

    2015-01-01

    Laser ablation multi-collector ICPMS is a modern tool for in situ measurement of S isotopes. Advantages of the technique are speed of analysis and relatively minor matrix effects combined with spatial resolution sufficient for many applications. The main disadvantage is a more destructive sampling mechanism relative to the ion microprobe technique. Recent advances in instrumentation allow precise measurement with spatial resolutions down to 25 microns. We describe specific examples from economic geology where increased spatial resolution has greatly expanded insights into the sources and evolution of fluids that cause mineralization and illuminated genetic relations between individual deposits in single mineral districts.

  5. A rapid and reliable method for Pb isotopic analysis of peat and lichens by laser ablation-quadrupole-inductively coupled plasma-mass spectrometry for biomonitoring and sample screening

    International Nuclear Information System (INIS)

    Kylander, M.E.; Weiss, D.J.; Jeffries, T.E.; Kober, B.; Dolgopolova, A.; Garcia-Sanchez, R.; Coles, B.J.

    2007-01-01

    An analytical protocol for rapid and reliable laser ablation-quadrupole (LA-Q)- and multi-collector (MC-) inductively coupled plasma-mass spectrometry (ICP-MS) analysis of Pb isotope ratios ( 207 Pb/ 206 Pb and 208 Pb/ 206 Pb) in peats and lichens is developed. This technique is applicable to source tracing atmospheric Pb deposition in biomonitoring studies and sample screening. Reference materials and environmental samples were dry ashed and pressed into pellets for introduction by laser ablation. No binder was used to reduce contamination. LA-MC-ICP-MS internal and external precisions were 207 Pb/ 206 Pb and 208 Pb/ 206 Pb ratios. LA-Q-ICP-MS internal precisions on 207 Pb/ 206 Pb and 208 Pb/ 206 Pb ratios were lower with values for the different sample sets 208 Pb by Q-ICP-MS are identified as sources of reduced analytical performance

  6. Separation of uranium and plutonium isotopes for measurement by multi collector inductively coupled plasma mass spectroscopy

    International Nuclear Information System (INIS)

    Martinelli, R.E.; Hamilton, T.F.; Kehl, S.R.; Williams, R.W.

    2009-01-01

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with 233 U and 242 Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA R column coupled to a UTEVA R column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of 234 U/ 235 U, 238 U/ 235 U, 236 U/ 235 U, and 240 Pu/ 239 Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment. (author)

  7. Evaluating the accuracy of uranium isotope amount ratio measurements performed by a quadrupole and a multi-collector magnetic sector inductively coupled plasma mass spectrometers for nuclear safeguards

    International Nuclear Information System (INIS)

    Pereira de Oliveira, O. Jr.; Sarkis, J.E.S.; Ponzevera, E.; Alonso, A.; De Bolle, W.; Quetel, C.

    2008-01-01

    The n(U 235 )/n(U 238 ) isotope amount ratio in a set of samples was measured using two modern analytical techniques: quadrupole inductively coupled plasma mass spectrometry (ICP-QMS) and multi-collector magnetic sector inductively coupled plasma mass spectrometry (MC-ICPMS). The measured ratios were compared to the certified ratios provided by the high accuracy gas source mass spectrometry (GSMS). The components of the uncertainty were identified and their contribution to the combined standard uncertainty was estimated using the recommendations of the ISO-GUM guide. The values of the measurement uncertainty and bias were determined and then compared to the International Target Values for Measurement Uncertainties in Safeguarding Nuclear Materials. It appears that only the measurements performed by MC-ICPMS can meet the stringent requirements of international nuclear safeguards. (authors)

  8. Characterisation of nuclear fuel samples by quadrupole and multi-collector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Wernli, Beath; Guenther-Leopold, Ines; Kobler Waldis, Judith; Kopajtic, Zlatan

    2003-01-01

    The characterisation of nuclear fuel cycle materials for trace and minor metallic constituents is of great interest for the nuclear industry and safeguard officials. The main objective of various international programmes dealing with postirradiation examinations is to improve the knowledge of the inventories of actinides, fission and spallation products in spent nuclear fuels. The low detection limits for a large number of elements combined with the ability to analyse the isotopic composition of the elements have established inductively coupled plasma mass spectrometry (ICP-MS) as a powerful multi-element technique in diverse analytical applications for the characterisation of nuclear materials. Because numerous isobaric overlaps restrict the direct determination of many fission products by mass spectrometry, extensive chemical separations are required for these elements. In order to simplify this sample preparation procedure, a high performance liquid chromatography system (HPLC) was online coupled to the mass spectrometer. Since about 10 years a quadrupole based ICP-MS (Q-ICP-MS) combined with an HPLC is used within the Hot Laboratory of the Paul Scherrer Institut for different applications on nuclear fuel samples. Since May 2003 also a new multi-collector ICP-MS (MC-ICP-MS) is used for the mass spectrometric characterisation of nuclear fuel samples, especially for the precise determination of the isotopic vectors of fission products and actinides. Therefore, two complementary analytical systems are now available in the group of 'Isotope and Wet Analytical Chemistry'. A comparison of the analytical performance of both systems (with and without an online coupled HPLC system) for the determination of the isotopic composition and the elemental concentration of different nuclides in nuclear fuel samples, the advantages and limitations of both techniques, the accuracy and precision of the results and typical applications for both methods will be discussed in the

  9. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    Science.gov (United States)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  10. ICP magnetic sector multiple collector mass spectrometry and the precise measurement of isotopic compositions using nebulization of solutions and laser ablation of solids

    International Nuclear Information System (INIS)

    Halliday, A.N.; Lee, D-C.; Christensen, J.N.; Yi, W.; Hall, C.M.; Jones, C.E.; Teagle, D.A.H.; Freedman, P.A.

    1996-01-01

    Inductively-coupled plasma (ICP) sources offer considerable advantages over thermal sources because the high ionization efficiency facilitates measurements of relatively high sensitivity for elements such as Hf or Sn, which can be difficult to measure precisely with thermal ionization mass spectrometry (TIMS). The mass discrimination (bias) is larger than for TIMS, favours the heavier ions, and decreases in magnitude with increasing mass. However, in contrast to TIMS, this discrimination is largely independent of the chemical or physical properties of the element or the duration of the analysis. This has been demonstrated to high precision with a double focussing multiple collector magnetic sector mass spectrometer with an ICP source. The principle of this instrument is briefly described. The potential of the instrument for high precision isotopic measurements of a very broad range of elements, using solution aspiration or laser ablation, is indicated. 15 refs

  11. Single- and multi-pulse femtosecond laser ablation of optical filter materials

    International Nuclear Information System (INIS)

    Krueger, J.; Lenzner, M.; Martin, S.; Lenner, M.; Spielmann, C.; Fiedler, A.; Kautek, W.

    2003-01-01

    Ablation experiments employing Ti:sapphire laser pulses with durations from 30 to 340 fs (centre wavelength 800 nm, repetition rate 1 kHz) were performed in air. Absorbing filters (Schott BG18 and BG36) served as targets. The direct focusing technique was used under single- and multi-pulse irradiation conditions. Ablation threshold fluences were determined from a semi-logarithmic plot of the ablation crater diameter versus laser fluence. The threshold fluence decreases for a shorter pulse duration and an increasing number of pulses. The multi-pulse ablation threshold fluences are similar to those of undoped glass material (∼1 J cm -2 ). That means that the multi-pulse ablation threshold is independent on the doping level of the filters. For more than 100 pulses per spot and all pulse durations applied, the threshold fluence is practically constant. This leads to technically relevant ablation threshold values

  12. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic)], E-mail: kaiser@fme.vutbr.cz; Galiova, M.; Novotny, K.; Cervenka, R. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Reale, L. [Faculty of Sciences, University of L' Aquila, Via Vetoio (Coppito 1), 67010 L' Aquila (Italy); Novotny, J.; Liska, M.; Samek, O. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Kanicky, V.; Hrdlicka, A. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Stejskal, K.; Adam, V.; Kizek, R. [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, 613 00 Brno (Czech Republic)

    2009-01-15

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 {mu}m in a up to cm x cm area of sunflower (Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  13. Development of near-field laser ablation inductively coupled plasma mass spectrometry for sub-micrometric analysis of solid samples

    International Nuclear Information System (INIS)

    Jabbour, Chirelle

    2016-01-01

    A near field laser ablation method was developed for chemical analysis of solid samples at sub-micrometric scale. This analytical technique combines a nanosecond laser Nd:YAG, an atomic Force Microscope (AFM), and an inductively coupled plasma mass spectrometer (ICPMS). In order to improve the spatial resolution of the laser ablation process, the near-field enhancement effect was applied by illuminating, by the laser beam, the apex of the AFM conductive sharp tip maintained at a few nanometers (5 to 30 nm) above the sample surface. The interaction between the illuminated tip and the sample surface enhances locally the incident laser energy and leads to the ablation process. By applying this technique to conducting gold and tantalum samples, and semiconducting silicon sample, a lateral resolution of 100 nm and depths of a few nanometers were demonstrated. Two home-made numerical codes have enabled the study of two phenomena occurring around the tip: the enhancement of the laser electrical field by tip effect, and the induced laser heating at the sample surface. The influence of the main operating parameters on these two phenomena, amplification and heating, was studied. an experimental multi-parametric study was carried out in order to understand the effect of different experimental parameters (laser fluence, laser wavelength, number of laser pulses, tip-to-sample distance, sample and tip nature) on the near-field laser ablation efficiency, crater dimensions and amount of ablated material. (author) [fr

  14. UV and IR laser ablation for inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Smith, M.R.; Koppenaal, D.W.; Farmer, O.T.

    1993-06-01

    Laser ablation particle plume compositions are characterized using inductively coupled plasma mass spectrometry (ICP/MS). This study evaluates the mass response characteristics peculiar to ICP/MS detection as a function of laser fluence and frequency. Evaluation of the ICP/MS mass response allows deductions to be made concerning how representative the laser ablation produced particle plume composition is relative to the targeted sample. Using a black glass standard, elemental fractionation was observed, primarily for alkalis and other volatile elements. The extent of elemental fractionation between the target sample and the sampled plume varied significantly as a function of laser fluences and IR and UV laser frequency

  15. Minimally-invasive Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis of model ancient copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walaszek, Damian [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Senn, Marianne; Wichser, Adrian [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Faller, Markus [Laboratory for Jointing Technology and Corrosion, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Wagner, Barbara; Bulska, Ewa [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Ulrich, Andrea [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2014-09-01

    This work describes an evaluation of a strategy for multi-elemental analysis of typical ancient bronzes (copper, lead bronze and tin bronze) by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).The samples originating from archeological experiments on ancient metal smelting processes using direct reduction in a ‘bloomery’ furnace as well as historical casting techniques were investigated with the use of the previously proposed analytical procedure, including metallurgical observation and preliminary visual estimation of the homogeneity of the samples. The results of LA-ICPMS analysis were compared to the results of bulk composition obtained by X-ray fluorescence spectrometry (XRF) and by inductively coupled plasma mass spectrometry (ICPMS) after acid digestion. These results were coherent for most of the elements confirming the usefulness of the proposed analytical procedure, however the reliability of the quantitative information about the content of the most heterogeneously distributed elements was also discussed in more detail. - Highlights: • The previously proposed procedure was evaluated by analysis of model copper alloys. • The LA-ICPMS results were comparable to the obtained by means of XRF and ICPMS. • LA-ICPMS results indicated the usefulness of the proposed analytical procedure.

  16. An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum

    International Nuclear Information System (INIS)

    Zhang, Jinping; Chen, Yuping; Hu, Mengning; Chen, Xianfeng

    2015-01-01

    In this paper, an improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum was proposed and proved in our experiment. Aiming to achieve hole-drilling with a high ratio of depth/entrance diameter in vacuum, this model can predict the depth and radius of the drilled holes precisely when employing different laser parameters. Additionally, for multi-pulse laser ablation, we found that the laser fluence and number of pulses are the dominant parameters and the multi-pulse ablation threshold is much lower than the single-pulse one, which will help to obtain high-quality holes

  17. An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinping; Chen, Yuping, E-mail: ypchen@sjtu.edu.cn; Hu, Mengning; Chen, Xianfeng [State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-02-14

    In this paper, an improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum was proposed and proved in our experiment. Aiming to achieve hole-drilling with a high ratio of depth/entrance diameter in vacuum, this model can predict the depth and radius of the drilled holes precisely when employing different laser parameters. Additionally, for multi-pulse laser ablation, we found that the laser fluence and number of pulses are the dominant parameters and the multi-pulse ablation threshold is much lower than the single-pulse one, which will help to obtain high-quality holes.

  18. Laser ablation-inductively coupled plasma-dynamic reaction cell-mass spectrometry for the multi-element analysis of polymers

    International Nuclear Information System (INIS)

    Resano, M.; Garcia-Ruiz, E.; Vanhaecke, F.

    2005-01-01

    In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the μg g -1 level in this kind of materials, due to the interference of ArC + ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g -1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g -1 level to tens of thousands of μg g -1 . However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 μg g -1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g -1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due to the

  19. Laser ablation inductively coupled plasma dynamic reaction cell mass spectrometry for the multi-element analysis of polymers

    Science.gov (United States)

    Resano, M.; García-Ruiz, E.; Vanhaecke, F.

    2005-11-01

    In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the μg g - 1 level in this kind of materials, due to the interference of ArC + ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g - 1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g - 1 level to tens of thousands of μg g - 1 . However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 μg g - 1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g - 1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due

  20. A compact E × B filter: A multi-collector cycloidal focusing mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Blase, Ryan C., E-mail: rblase@swri.edu; Miller, Greg; Brockwell, Tim; Waite, J. Hunter [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States); Westlake, Joseph [The Johns Hopkins University Applied Physics Laboratory LLC, 11100 Johns Hopkins Road, Laurel, Maryland 20723 (United States); Ostrom, Nathaniel; Ostrom, Peggy H. [Department of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, Michigan 48824 (United States)

    2015-10-15

    A compact E × B mass spectrometer is presented. The mass spectrometer presented is termed a “perfect focus” mass spectrometer as the resolution of the device is independent of both the initial direction and energy of the ions (spatial and energy independent). The mass spectrometer is small in size (∼10.7 in.{sup 3}) and weight (∼2 kg), making it an attractive candidate for portability when using small, permanent magnets. A multi-collector Faraday cup design allows for the detection of multiple ion beams in discrete collectors simultaneously; providing the opportunity for isotope ratio monitoring. The mass resolution of the device is around 400 through narrow collector slits and the sensitivity of the device follows expected theoretical calculations of the ion current produced in the electron impact ion source. Example mass spectra obtained from the cycloidal focusing mass spectrometer are presented as well as information on mass discrimination based on instrumental parameters and isotope ratio monitoring of certain ion signals in separate Faraday cups.

  1. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    OpenAIRE

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abu...

  2. Effect of inter-tissue inductive coupling on multi-frequency imaging of intracranial hemorrhage by magnetic induction tomography

    Science.gov (United States)

    Xiao, Zhili; Tan, Chao; Dong, Feng

    2017-08-01

    Magnetic induction tomography (MIT) is a promising technique for continuous monitoring of intracranial hemorrhage due to its contactless nature, low cost and capacity to penetrate the high-resistivity skull. The inter-tissue inductive coupling increases with frequency, which may lead to errors in multi-frequency imaging at high frequency. The effect of inter-tissue inductive coupling was investigated to improve the multi-frequency imaging of hemorrhage. An analytical model of inter-tissue inductive coupling based on the equivalent circuit was established. A set of new multi-frequency decomposition equations separating the phase shift of hemorrhage from other brain tissues was derived by employing the coupling information to improve the multi-frequency imaging of intracranial hemorrhage. The decomposition error and imaging error are both decreased after considering the inter-tissue inductive coupling information. The study reveals that the introduction of inter-tissue inductive coupling can reduce the errors of multi-frequency imaging, promoting the development of intracranial hemorrhage monitoring by multi-frequency MIT.

  3. Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: The first 100,000 grains

    Science.gov (United States)

    Holden, Peter; Lanc, Peter; Ireland, Trevor R.; Harrison, T. Mark; Foster, John J.; Bruce, Zane

    2009-09-01

    The identification and retrieval of a large population of ancient zircons (>4 Ga; Hadean) is of utmost priority if models of the early evolution of Earth are to be rigorously tested. We have developed a rapid and accurate U-Pb zircon age determination protocol utilizing a fully automated multi-collector ion microprobe, the ANU SHRIMP II, to screen and date these zircons. Unattended data acquisition relies on the calibration of a digitized sample map to the Sensitive High Resolution Ion MicroProbe (SHRIMP) sample-stage co-ordinate system. High precision positioning of individual grains can be produced through optical image processing of a specified mount location. The focal position of the mount can be optimized through a correlation between secondary-ion steering and the spot position on the target. For the Hadean zircon project, sample mounts are photographed and sample locations (normally grain centers) are determined off-line. The sample is loaded, reference points calibrated, and the target positions are then visited sequentially. In SHRIMP II multiple-collector mode, zircons are initially screened (ca. 5 s data acquisition) through their 204Pb corrected 207Pb/206Pb ratio; suitable candidates are then analyzed in a longer routine to obtain better measurement statistics, U/Pb, and concentration data. In SHRIMP I and SHRIMP RG, we have incorporated the automated analysis protocol to single-collector measurements. These routines have been used to analyze over 100,000 zircons from the Jack Hills quartzite. Of these, ca. 7%, have an age greater than 3.8 Ga, the oldest grain being 4372 +/- 6 Ma (2[sigma]), and this age is part of a group of analyses around 4350 Ma which we interpret as the age when continental crust first began to coalesce in this region. In multi-collector mode, the analytical time taken for a single mount with 400 zircons is approximately 6 h; whereas in single-collector mode, the analytical time is ca. 17 h. With this productivity, we can produce

  4. Ultra-trace determination of plutonium in marine samples using multi-collector inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lindahl, Patric; Keith-Roach, Miranda; Worsfold, Paul; Choi, Min-Seok; Shin, Hyung-Seon; Lee, Sang-Hoon

    2010-06-25

    Sources of plutonium isotopes to the marine environment are well defined, both spatially and temporally, which makes Pu a potential tracer for oceanic processes. This paper presents the selection, optimisation and validation of a sample preparation method for the ultra-trace determination of Pu isotopes ((240)Pu and (239)Pu) in marine samples by multi-collector (MC) ICP-MS. The method was optimised for the removal of the interference from (238)U and the chemical recovery of Pu. Comparison of various separation strategies using AG1-X8, TEVA, TRU, and UTEVA resins to determine Pu in marine calcium carbonate samples is reported. A combination of anion-exchange (AG1-X8) and extraction chromatography (UTEVA/TRU) was the most suitable, with a radiochemical Pu yield of 87+/-5% and a U decontamination factor of 1.2 x 10(4). Validation of the method was accomplished by determining Pu in various IAEA certified marine reference materials. The estimated MC-ICP-MS instrumental limit of detection for (239)Pu and (240)Pu was 0.02 fg mL(-1), with an absolute limit of quantification of 0.11 fg. The proposed method allows the determination of ultra-trace Pu, at femtogram levels, in small size marine samples (e.g., 0.6-2.0 g coral or 15-20 L seawater). Finally, the analytical method was applied to determining historical records of the Pu signature in coral samples from the tropical Northwest Pacific and (239+240)Pu concentrations and (240)Pu/(239)Pu atom ratios in seawater samples as part of the 2008 GEOTRACES intercalibration exercise. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Ultra-trace determination of plutonium in marine samples using multi-collector inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, Patric, E-mail: patriclindahl@yahoo.com [Marine Environment Research Department, Korea Ocean Research and Development Institute, 1270 Sadong, Ansan 426-744 (Korea, Republic of); School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL48AA (United Kingdom); Keith-Roach, Miranda; Worsfold, Paul [School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL48AA (United Kingdom); Choi, Min-Seok; Shin, Hyung-Seon [Division of Earth and Environmental Science, Korea Basic Science Institute, 113 Gwahangno, Yusung-gu, Daejon 305-333 (Korea, Republic of); Lee, Sang-Hoon [Marine Geology and Geophysics Laboratory, Korea Ocean Research and Development Institute, 1270 Sadong, Ansan 426-744 (Korea, Republic of)

    2010-06-25

    Sources of plutonium isotopes to the marine environment are well defined, both spatially and temporally, which makes Pu a potential tracer for oceanic processes. This paper presents the selection, optimisation and validation of a sample preparation method for the ultra-trace determination of Pu isotopes ({sup 240}Pu and {sup 239}Pu) in marine samples by multi-collector (MC) ICP-MS. The method was optimised for the removal of the interference from {sup 238}U and the chemical recovery of Pu. Comparison of various separation strategies using AG1-X8, TEVA, TRU, and UTEVA resins to determine Pu in marine calcium carbonate samples is reported. A combination of anion-exchange (AG1-X8) and extraction chromatography (UTEVA/TRU) was the most suitable, with a radiochemical Pu yield of 87 {+-} 5% and a U decontamination factor of 1.2 x 10{sup 4}. Validation of the method was accomplished by determining Pu in various IAEA certified marine reference materials. The estimated MC-ICP-MS instrumental limit of detection for {sup 239}Pu and {sup 240}Pu was 0.02 fg mL{sup -1}, with an absolute limit of quantification of 0.11 fg. The proposed method allows the determination of ultra-trace Pu, at femtogram levels, in small size marine samples (e.g., 0.6-2.0 g coral or 15-20 L seawater). Finally, the analytical method was applied to determining historical records of the Pu signature in coral samples from the tropical Northwest Pacific and {sup 239+240}Pu concentrations and {sup 240}Pu/{sup 239}Pu atom ratios in seawater samples as part of the 2008 GEOTRACES intercalibration exercise.

  6. Ultra-trace determination of plutonium in marine samples using multi-collector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Lindahl, Patric; Keith-Roach, Miranda; Worsfold, Paul; Choi, Min-Seok; Shin, Hyung-Seon; Lee, Sang-Hoon

    2010-01-01

    Sources of plutonium isotopes to the marine environment are well defined, both spatially and temporally, which makes Pu a potential tracer for oceanic processes. This paper presents the selection, optimisation and validation of a sample preparation method for the ultra-trace determination of Pu isotopes ( 240 Pu and 239 Pu) in marine samples by multi-collector (MC) ICP-MS. The method was optimised for the removal of the interference from 238 U and the chemical recovery of Pu. Comparison of various separation strategies using AG1-X8, TEVA, TRU, and UTEVA resins to determine Pu in marine calcium carbonate samples is reported. A combination of anion-exchange (AG1-X8) and extraction chromatography (UTEVA/TRU) was the most suitable, with a radiochemical Pu yield of 87 ± 5% and a U decontamination factor of 1.2 x 10 4 . Validation of the method was accomplished by determining Pu in various IAEA certified marine reference materials. The estimated MC-ICP-MS instrumental limit of detection for 239 Pu and 240 Pu was 0.02 fg mL -1 , with an absolute limit of quantification of 0.11 fg. The proposed method allows the determination of ultra-trace Pu, at femtogram levels, in small size marine samples (e.g., 0.6-2.0 g coral or 15-20 L seawater). Finally, the analytical method was applied to determining historical records of the Pu signature in coral samples from the tropical Northwest Pacific and 239+240 Pu concentrations and 240 Pu/ 239 Pu atom ratios in seawater samples as part of the 2008 GEOTRACES intercalibration exercise.

  7. Safety of atrial fibrillation ablation with novel multi-electrode array catheters on uninterrupted anticoagulation-a single-center experience.

    LENUS (Irish Health Repository)

    Hayes, Christopher Ruslan

    2012-02-01

    INTRODUCTION: A recent single-center report indicated that the performance of atrial fibrillation ablation in patients on uninterrupted warfarin using a conventional deflectable tip electrode ablation catheter may be as safe as periprocedural discontinuation of warfarin and bridging with heparin. Novel multi-electrode array catheters for atrial fibrillation ablation are currently undergoing clinical evaluation. While offering the possibility of more rapid atrial fibrillation ablation, they are stiffer and necessitate the deployment of larger deflectable transseptal sheaths, and it remains to be determined if they increase the risk of cardiac perforation and vascular injury. Such potential risks would have implications for a strategy of uninterrupted periprocedural anticoagulation. METHOD AND RESULTS: We audited the safety outcomes of our atrial fibrillation ablation procedures using multi-electrode array ablation catheters in patients on uninterrupted warfarin (CHADS2 score>or=2) and in patients not on warfarin (uninterrupted aspirin). Two bleeding complications occurred in 49 patients on uninterrupted warfarin, both of which were managed successfully without longterm sequelae, and no bleeding complication occurred in 32 patients not on warfarin (uninterrupted aspirin). There were no thromboembolic events or other complication with either anticoagulant regimen. CONCLUSION: Despite the larger diameter and increased stiffness of multi-electrode array catheters and their deflectable transseptal sheaths, their use for catheter ablation in patients with atrial fibrillation on uninterrupted warfarin in this single-center experience does not appear to be unsafe, and thus, an adequately powered multicenter prospective randomized controlled trial should be considered.

  8. Fluorescence imaging of ion distributions in an inductively coupled plasma with laser ablation sample introduction

    International Nuclear Information System (INIS)

    Moses, Lance M.; Ellis, Wade C.; Jones, Derick D.; Farnsworth, Paul B.

    2015-01-01

    High-resolution images of the spatial distributions of Sc II, Ca II, and Ba II ion densities in the 10 mm upstream from the sampling cone in a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) were obtained using planar laser induced fluorescence. Images were obtained for each analyte as a function of the carrier gas flow rate with laser ablation (LA) sample introduction and compared to images with solution nebulization (SN) over the same range of flow rates. Additionally, images were obtained using LA at varying fluences and with varying amounts of helium added to a constant flow of argon gas. Ion profiles in SN images followed a pattern consistent with previous work: increasing gas flow caused a downstream shift in the ion profiles. When compared to SN, LA led to ion profiles that were much narrower radially and reached a maximum near the sampling cone at higher flow rates. Increasing the fluence led to ions formed in the ICP over greater axial and radial distances. The addition of He to the carrier gas prior to the ablation cell led to an upstream shift in the position of ionization and lower overall fluorescence intensities. - Highlights: • We map distributions of analytes in the ICP using laser ablation sample introduction. • We compare images from laser ablation with those from a pneumatic nebulizer. • We document the effects of water added to the laser ablation aerosol. • We compare distributions from a metal to those from crystalline solids. • We document the effect of laser fluence on ion distributions

  9. EFFICIENCY OF MULTI-MODULE SOLAR COLLECTORS AS A PREFIX TO A BOILER

    Directory of Open Access Journals (Sweden)

    Denysova A.E.

    2014-12-01

    Full Text Available Influencing factors on thermal and economic efficiency of the combined of heat supply installation are established. Constructive circuits of solar heat supply "prefix" interaction with boiler installation are worked out. Mathematical models of heat exchange processes in elements of combined heat supply system with the account solar engineering characteristics are developed. The techniques of analysis of efficiency of multi-modular system of solar collectors with compulsory circulation for water heating boiler allowing calculating of efficiency factor; heat removal factor and heat transfer factor with the account of construction and operation conditions of alternative heat supply system are presented.

  10. Fit for purpose validated method for the determination of the strontium isotopic signature in mineral water samples by multi-collector inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Brach-Papa, Christophe; Van Bocxstaele, Marleen; Ponzevera, Emmanuel [European Commission - Joint Research Centre - Institute for Reference Materials and Measurements, Retieseweg 111 - 2440 Geel (Belgium); Quetel, Christophe R. [European Commission - Joint Research Centre - Institute for Reference Materials and Measurements, Retieseweg 111 - 2440 Geel (Belgium)], E-mail: christophe.quetel@ec.europa.eu

    2009-03-15

    A robust method allowing the routine determination of n({sup 87}Sr)/n({sup 86}Sr) with at least five significant decimal digits for large sets of mineral water samples is described. It is based on 2 consecutive chromatographic separations of Sr associated to multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) measurements. Separations are performed using commercial pre-packed columns filled with 'Sr resin' to overcome isobaric interferences affecting the determination of strontium isotope ratios. The careful method validation scheme applied is described. It included investigations on all parameters influencing both chromatographic separations and MC-ICPMS measurements, and also the test on a synthetic sample made of an aliquot of the NIST SRM 987 certified reference material dispersed in a saline matrix to mimic complex samples. Correction for mass discrimination was done internally using the n({sup 88}Sr)/n({sup 86}Sr) ratio. For comparing mineral waters originating from different geological backgrounds or identifying counterfeits, calculations involved the well known consensus value (1/0.1194) {+-} 0 as reference. The typical uncertainty budget estimated for these results was 40 'ppm' relative (k = 2). It increased to 150 'ppm' (k = 2) for the establishment of stand alone results, taking into account a relative difference of about 126 'ppm' systematically observed between measured and certified values of the NIST SRM 987. In case there was suspicion of a deviation of the n({sup 88}Sr)/n({sup 86}Sr) ratio (worst case scenario) our proposal was to use the NIST SRM 987 value 8.37861 {+-} 0.00325 (k = 2) as reference, and assign a typical relative uncertainty budget of 300 'ppm' (k = 2). This method is thus fit for purpose and was applied to eleven French samples.

  11. Development of a Polymer-carbon Nanotubes based Economic Solar Collector

    OpenAIRE

    Kim, S. I.; Kissick, John; Spence, Stephen; Boyle, Christine

    2014-01-01

    A low cost solar collector was developed by using polymeric components as opposed to metal and glass components of traditional solar collectors. In order to utilize polymers for the absorber of the solar collector, Carbon Nanotubes (CNT) has been added as a filler to improve the thermal conductivity and the solar absorptivity of polymers. The solar collector was designed as a multi-layer construction with considering the economic manufacturing. Through the mathematical heat transfer analysis,...

  12. Trace Analysis of Irradiated Granite Samples from Hiroshima by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    International Nuclear Information System (INIS)

    Amr, M.A.; Helal, N.F.; Zahran, N.F.; Becker, J.S.; Pickhardt, C.; Dietze, H.J.

    1999-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is widely accepted as a rapid and sensitive technique for trace elemental analysis of solid materials and for local analysis of inhomogeneous materials (such as geological samples). Due to its direct solid sample analysis capability, LA-ICP-MS (using a quadrupole based ICP-MS and at the Research Center Juelich developed laser ablation system: Nd-YAG-laser, 226 nm, 10 Hz and 5 ns) is applied for the analysis of geological (granite) samples from Hiroshima. In order to prepare homogeneous targets, these samples were melted together with a lithium-borate mixture in a muffle furnace at 1050 degree c. Furthermore, for investigating of matrix effects the powder of these samples is mixed with graphite and pressed as targets for laser ablation. The quantification of the analysis results was carried out using granite (GM) as standard reference material. The relative sensitivity coefficients (RSCs) for most elements, which were determined for correction of the measured values, varied between 0.3 and 3

  13. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, R.; Jilbert, T.; de Lange, G.J.; Reichart, G.J.

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (µm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental

  14. Comprehensive preclinical evaluation of a multi-physics model of liver tumor radiofrequency ablation.

    Science.gov (United States)

    Audigier, Chloé; Mansi, Tommaso; Delingette, Hervé; Rapaka, Saikiran; Passerini, Tiziano; Mihalef, Viorel; Jolly, Marie-Pierre; Pop, Raoul; Diana, Michele; Soler, Luc; Kamen, Ali; Comaniciu, Dorin; Ayache, Nicholas

    2017-09-01

    We aim at developing a framework for the validation of a subject-specific multi-physics model of liver tumor radiofrequency ablation (RFA). The RFA computation becomes subject specific after several levels of personalization: geometrical and biophysical (hemodynamics, heat transfer and an extended cellular necrosis model). We present a comprehensive experimental setup combining multimodal, pre- and postoperative anatomical and functional images, as well as the interventional monitoring of intra-operative signals: the temperature and delivered power. To exploit this dataset, an efficient processing pipeline is introduced, which copes with image noise, variable resolution and anisotropy. The validation study includes twelve ablations from five healthy pig livers: a mean point-to-mesh error between predicted and actual ablation extent of 5.3 ± 3.6 mm is achieved. This enables an end-to-end preclinical validation framework that considers the available dataset.

  15. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, Rick; Jilbert, Tom; Mason, Paul R D; de Lange, Gert J.; Reichart, Gert Jan

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (μm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental

  16. Field Experiments of PV-Thermal Collectors for Residential Application in Bangkok

    Directory of Open Access Journals (Sweden)

    Atsushi Akisawa

    2012-04-01

    Full Text Available This study presents experimental results on Photovoltaic-thermal (PVT solar systems, the commercial photovoltaic (PV panels used as solar absorbers in PVT collectors, which are amorphous and multi-crystalline silicon. Testing was done with outdoor experiments in the climate of Bangkok corresponding to energy consumption behavior of medium size Thai families. The experimental results show that the thermal recovery of amorphous silicon PVT collector is almost the same as that of multi-crystalline silicon PVT collectors while electricity generation of multi crystalline silicon PVT is 1.2 times as much as that of amorphous silicon PVT. The maximum of heat gain from the PVT systems were obtained in March in summer. It was found that PVT collectors of unit area annually produced 1.1 × 103 kWh/m2 .year of heat and 55–83 kWh/m2.year of electricity, respectively. The results show that annual average solar factor of hot water supply is 0.45 for unit collector area. Economical evaluation based on energy costs in Thailand was conducted, which estimated the payback time would be 7 and 14 years for a-Si PVT and mc-Si PV, respectively.

  17. Ion extraction from positively biased laser-ablation plasma

    International Nuclear Information System (INIS)

    Isono, Fumika; Nakajima, Mitsuo; Hasegawa, Jun; Horioka, Kazuhiko

    2016-01-01

    Ions were extracted through a grounded grid from a positively biased laser-ablation plasma and the behaviors were investigated. Since the plasma was positively biased against the grounded wall, we could extract the ions without insulated gap. We confirmed formation of a virtual anode when we increased the distance between the grid and the ion collector. Results also indicated that when the ion flux from the ablation plasma exceeded a critical value, the current was strongly suppressed to the space charge limited level due to the formation of virtual anode.

  18. Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietrich, R.C.; Matusch, A.; Pozebon, D.; Dressler, V.L.

    2008-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of toxic and essential elements in thin sections (thickness of 30 or 40 μm) of tobacco plant tissues. Two-dimensional images of Mg, Fe, Mn, Zn, Cu, Cd, Rh, Pt and Pb in leaves, shoots and roots of tobacco were produced. Sections of the plant tissues (fixed onto glass slides) were scanned by a focused beam of a Nd:YAG laser in a laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a quadrupole ICP-MS instrument. Ion intensities of the investigated elements were measured together with 13 C + , 33 S + and 34 S + within the entire plant tissue section. Matrix matching standards (prepared using powder of dried tobacco leaves) were used to constitute calibration curves, whereas the regression coefficient of the attained calibration curves was typically 0.99. The variability of LA-ICP-MS process, sample heterogeneity and water content in the sample were corrected by using 13 C + as internal standard. Quantitative imaging of the selected elements revealed their inhomogeneous distribution in leaves, shoots and roots

  19. Determination of silver in fresh water by atomic absorption spectrometry following flotation preconcentration by iron(III) collectors

    Energy Technology Data Exchange (ETDEWEB)

    Cundeva, K.; Stafilov, T. [Institute of Chemistry, Faculty of Science, St. Cyril and Methodius University, Skopje (Yugoslavia)

    1997-08-01

    Colloid precipitate flotation of silver from fresh water is applied for preconcentration and separation. Optimal conditions using hydrated iron(III) oxide and iron(III) tetramethylenedithiocarbamate as collectors were investigated. Various factors affecting the silver recovery, including collector mass, nature of the supporting electrolyte, pH of the working medium, electrokinetic potential of the collector particle surfaces, type of surfactant, induction time etc., were checked. Within the optimal pH range (5.5-6.5) silver was separated quantitatively (94.9- 100.0%) with 30 mg Fe(III) as collector. The content of silver was determined by electrothermal atomic absorption spectrometry and compared to that from inductively coupled plasma-atomic emission spectrometry. The detection limit of silver by the method described is 0.01 {mu}g/L. (orig.) With 2 figs., 3 tabs.

  20. Application of femtosecond laser ablation inductively coupled plasma mass spectrometry for quantitative analysis of thin Cu(In,Ga)Se{sub 2} solar cell films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seokhee [School of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Gonzalez, Jhanis J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Applied Spectra Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Yoo, Jong H. [Applied Spectra Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Chirinos, Jose R. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041A (Venezuela, Bolivarian Republic of); Russo, Richard E. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Applied Spectra Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Jeong, Sungho, E-mail: shjeong@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2015-02-27

    This work reports that the composition of Cu(In,Ga)Se{sub 2} (CIGS) thin solar cell films can be quantitatively predicted with high accuracy and precision by femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS). It is demonstrated that the results are strongly influenced by sampling conditions during fs-laser beam (λ = 1030 nm, τ = 450 fs) scanning on the CIGS surface. The fs-LA-ICP-MS signals measured at optimal sampling conditions generally provide a straight line calibration with respect to the reference concentrations measured by inductively coupled plasma optical emission spectroscopy (ICP-OES). The concentration ratios predicted by fs-LA-ICP-MS showed high accuracy, to 95–97% of the values measured with ICP-OES, for Cu, In, Ga, and Se elements. - Highlights: • Laser ablation inductively coupled plasma mass spectrometry of thin film is reported. • Concentration ratio prediction with a confidence level of 95–97% is achieved. • Quantitative determination of composition is demonstrated.

  1. Inductively Coupled Plasma: Fundamental Particle Investigations with Laser Ablation and Applications in Magnetic Sector Mass Spectrometry

    International Nuclear Information System (INIS)

    Nathan Joe Saetveit

    2008-01-01

    Particle size effects and elemental fractionation in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are investigated with nanosecond and femtosecond laser ablation, differential mobility analysis, and magnetic sector ICP-MS. Laser pulse width was found to have a significant influence on the LA particle size distribution and the elemental composition of the aerosol and thus fractionation. Emission from individual particles from solution nebulization, glass, and a pressed powder pellet are observed with high speed digital photography. The presence of intact particles in an ICP is shown to be a likely source of fractionation. A technique for the online detection of stimulated elemental release from neural tissue using magnetic sector ICP-MS is described. Detection limits of 1 (micro)g L -1 or better were found for P, Mn, Fe, Cu, and Zn in a 60 (micro)L injection in a physiological saline matrix

  2. Three-dimensional multi-terminal superconductive integrated circuit inductance extraction

    International Nuclear Information System (INIS)

    Fourie, Coenrad J; Wetzstein, Olaf; Kunert, Jürgen; Ortlepp, Thomas

    2011-01-01

    Accurate inductance calculations are critical for the design of both digital and analogue superconductive integrated circuits, and three-dimensional calculations are gaining importance with the advent of inductive biasing, inductive coupling and sky plane shielding for RSFQ cells. InductEx, an extraction programme based on the three-dimensional calculation software FastHenry, was proposed earlier. InductEx uses segmentation techniques designed to accurately model the geometries of superconductive integrated circuit structures. Inductance extraction for complex multi-terminal three-dimensional structures from current distributions calculated by FastHenry is discussed. Results for both a reflection plane modelling an infinite ground plane and a finite segmented ground plane that allows inductive elements to extend over holes in the ground plane are shown. Several SQUIDs were designed for and fabricated with IPHT's 1 kA cm −2 RSFQ1D niobium process. These SQUIDs implement a number of loop structures that span different layers, include vias, inductively coupled control lines and ground plane holes. We measured the loop inductance of these SQUIDs and show how the results are used to calibrate the layer parameters in InductEx and verify the extraction accuracy. We also show that, with proper modelling, FastHenry can be fast enough to be used for the extraction of typical RSFQ cell inductances.

  3. Reduction of determinate errors in mass bias-corrected isotope ratios measured using a multi-collector plasma mass spectrometer

    International Nuclear Information System (INIS)

    Doherty, W.

    2015-01-01

    A nebulizer-centric instrument response function model of the plasma mass spectrometer was combined with a signal drift model, and the result was used to identify the causes of the non-spectroscopic determinate errors remaining in mass bias-corrected Pb isotope ratios (Tl as internal standard) measured using a multi-collector plasma mass spectrometer. Model calculations, confirmed by measurement, show that the detectable time-dependent errors are a result of the combined effect of signal drift and differences in the coordinates of the Pb and Tl response function maxima (horizontal offset effect). If there are no horizontal offsets, then the mass bias-corrected isotope ratios are approximately constant in time. In the absence of signal drift, the response surface curvature and horizontal offset effects are responsible for proportional errors in the mass bias-corrected isotope ratios. The proportional errors will be different for different analyte isotope ratios and different at every instrument operating point. Consequently, mass bias coefficients calculated using different isotope ratios are not necessarily equal. The error analysis based on the combined model provides strong justification for recommending a three step correction procedure (mass bias correction, drift correction and a proportional error correction, in that order) for isotope ratio measurements using a multi-collector plasma mass spectrometer

  4. Multi criteria sizing approach for Photovoltaic Thermal collectors supplying desalination plant

    International Nuclear Information System (INIS)

    Ammous, Mahmoud; Chaabene, Maher

    2015-01-01

    Highlights: • Concept of reverse osmosis desalination plant supplied by hybrid collectors. • Energy consumption optimization. • Plant modeling. • Sizing approach for a desalination plant supplied by hybrid collectors. - Abstract: Reverse osmosis desalination plants require both thermal and electrical energies in order to produce water. As Photovoltaic Thermal panels are able to provide the two energies, they become suitable to supply reverse osmosis plants mainly while installed in remote areas. Autonomous based desalination plants must be optimally sized to meet the criteria related to the reverse osmosis operating temperature, the plant autonomy, the needed water, etc. This paper presents a sizing approach for Photovoltaic Thermal collectors supplying reverse osmosis desalination plant to compute the optimal surface of Photovoltaic Thermal collectors and the tank volume with respect to the operating criteria. The approach is composed of three optimization consideration steps: the monthly average data, the fulfillment of the water need and a three day of autonomy for the water tank volume. The algorithm is tested for a case of study of 10 ha of tomato irrigation. The results converged to 700 m 2 of Photovoltaic Thermal collector’s surface and 3000 m 3 of water tank volume

  5. Multi-element quantification of ancient/historic glasses by laser ablation inductively coupled plasma mass spectrometry using sum normalization calibration

    International Nuclear Information System (INIS)

    Elteren, Johannes T. van; Tennent, Norman H.; Selih, Vid S.

    2009-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for quantitative analysis of ancient/historic glasses is subject to calibration issues which have been addressed in this work. Since ancient/historic glasses have widely ranging matrix compositions, a complementary analysis by an alternative method is generally employed to determine at least one major element which can be used as an internal standard. We demonstrate that such a complementary analysis is unnecessary using a so-called sum normalization calibration technique (mathematically formulated) by simultaneous measurement of 54 elements and normalizing them to 100% [w/w] based on their corresponding oxide concentrations. The crux of this approach is that by assuming a random internal standard concentration of a particular major oxide, e.g. SiO 2 , the normalization algorithm varies the internal standard concentration until the cumulated concentrations of all 54 elemental oxides reach 100% [w/w]. The fact that 54 elements are measured simultaneously predetermines the laser ablation mode to rastering. Nine glass standards, some replicating historic compositions, were used for calibration. The linearity of the calibration graphs (forced through the origin) represented by the relative standard deviations in the slope were between 0.1 and 6.6% using SiO 2 as an internal standard. This allows high-accuracy determination of elemental oxides as confirmed by good agreement between found and reported values for major and minor elemental oxides in some synthetic glasses with typical medieval composition (European Science Foundation 151 and 158). Also for trace elemental concentrations of lanthanides in a reference glass (P and H Developments Ltd. DLH7, a base glass composition with nominally 75 μg g -1 elements added) accurate data were obtained. Interferences from polyatomic species and doubly charged species on the masses of trace elements are possible, depending on the base composition of the

  6. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Vašinová Galiová, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Čopjaková, Renata; Škoda, Radek [Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Štěpánková, Kateřina; Vaňková, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kuta, Jan [Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 126/3, 625 00 Brno (Czech Republic); Prokeš, Lubomír [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kynický, Jindřich [Department of Pedology and Geology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno (Czech Republic); and others

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS. - Highlights: • Elements in phosphate and oxalate urolith phases were quantified by LA-ICP-MS. • SRM NIST 1486 Bone Meal was proved suitable for quantification in uroliths. • Different ablation rates in particular phases were included at quantification. • Oxalate and apatite phases show opposite hardness order to natural minerals. • Uroliths were classified according to elemental association to phases.

  7. High-precision measurements of uranium and thorium isotopic ratios by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS)

    Science.gov (United States)

    Wang, Lisheng; Ma, Zhibang; Duan, Wuhui

    2015-04-01

    Isotopic compositions of U-Th and 230Th dating have been widely used in earth sciences, such as chronology, geochemistry, oceanography and hydrology. In this study, five ages of different carbonate samples were measured using 230Th dating technique with U-Th high-precision isotopic measurements by multi-collector inductively coupled plasma mass spectrometry, in Uranium-series Chronology Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences.In this study, the precision and accuracy of uranium isotopic composition were estimated by measuring the uranium ratios of NBS-CRM 112A, NBS-CRM U500 and HU-1. The mean measured ratios, 234U/238U = 52.86 (±0.04) × 10-6 and δ234U = -38.36 (±0.77) × 10-3 for NBS-CRM 112A, 234U/238U = 10.4184 (±0.0001) × 10-3, 236U/238U = 15.43 (±0.01) × 10-4 and 238U/235U = 1.00021 (±0.00002) for NBS-CRM U500, 234U/238U = 54.911 (±0.007) and δ234U = -1.04 (±0.13) × 10-3 for HU-1 (95% confidence levels). The U isotope data for standard reference materials are in excellent agreement with previous studies, further highlighting the reliability and analytical capabilities of our technique. We measured the thorium isotopic ratios of three different thorium standards by MC-ICPMS. The three standards (Th-1, Th-2 and Th-3) were mixed by HU-1 and NBS 232Th standard, with the 230Th/232Th ratios from 10-4 to 10-6. The mean measured atomic ratios, 230Th/232Th = 2.1227 (±0.0024) × 10-6, 2.7246 (±0.0026) × 10-5, and 2.8358 (±0.0007) × 10-4 for Th-1, Th-2 and Th-3 (95% confidence levels), respectively. Using this technique, the following standard samples were dated by MC-ICPMS. Sample RKM-4, collected from Babardos Kendal Hill terrace, was used during the first stage of the Uranium-Series Intercomparison Project (USIP-I). Samples 76001, RKM-5 and RKM-6 were studied during the second stage of the USIP program (USIP-II). Sample 76001 is a laminated flowstone, collected from Sumidero Terejapa, Chiapas, Mexico, and samples

  8. Acceleration of Vaporization, Atomization, and Ionization Efficiencies in Inductively Coupled Plasma by Merging Laser-Ablated Particles with Hydrochloric Acid Gas.

    Science.gov (United States)

    Nakazawa, Takashi; Izumo, Saori; Furuta, Naoki

    2016-01-01

    To accelerate the vaporization, atomization, and ionization efficiencies in laser ablation inductively coupled plasma mass spectrometry, we merged HCl gas with laser-ablated particles before introduction into the plasma, to convert their surface constituents from oxides to lower-melting chlorides. When particles were merged with HCl gas generated from a HCl solution at 200°C, the measured concentrations of elements in the particles were 135% higher on average than the concentrations in particles merged with ultrapure water vapor. Particle corrosion and surface roughness were observed by scanning electron microscopy, and oxide conversion to chlorides was confirmed by X-ray photoelectron spectroscopy. Under the optimum conditions, the recoveries of measured elements improved by 23% on average, and the recoveries of elements with high-melting oxides (Sr, Zr, and Th) improved by as much as 36%. These results indicate that vaporization, atomization, and ionization in the ICP improved when HCl gas was merged with the ablated particles.

  9. Forward modelling of multi-component induction logging tools in layered anisotropic dipping formations

    International Nuclear Information System (INIS)

    Gao, Jie; Xu, Chenhao; Xiao, Jiaqi

    2013-01-01

    Multi-component induction logging provides great assistance in the exploration of thinly laminated reservoirs. The 1D parametric inversion following an adaptive borehole correction is the key step in the data processing of multi-component induction logging responses. To make the inversion process reasonably fast, an efficient forward modelling method is necessary. In this paper, a modelling method has been developed to simulate the multi-component induction tools in deviated wells drilled in layered anisotropic formations. With the introduction of generalized reflection coefficients, the analytic expressions of magnetic field in the form of a Sommerfeld integral were derived. The fast numerical computation of the integral has been completed by using the fast Fourier–Hankel transform and fast Hankel transform methods. The latter is so time efficient that it is competent enough for real-time multi-parameter inversion. In this paper, some simulated results have been presented and they are in excellent agreement with the finite difference method code's solution. (paper)

  10. [Radiofrequency ablation of hepatocellular carcinoma].

    Science.gov (United States)

    Widmann, Gerlig; Schullian, Peter; Bale, Reto

    2013-03-01

    Percutaneous radiofrequency ablation (RFA) is well established in the treatment of hepatocellular carcinoma (HCC). Due to its curative potential, it is the method of choice for non resectable BCLC (Barcelona Liver Clinic) 0 and A. RFA challenges surgical resection for small HCC and is the method of choice in bridging for transplantation and recurrence after resection or transplantation. The technical feasibility of RFA depends on the size and location of the HCC and the availability of ablation techniques (one needle techniques, multi-needle techniques). More recently, stereotactic multi-needle techniques with 3D trajectory planning and guided needle placement substantially improve the spectrum of treatable lesions including large volume tumors. Treatment success depends on the realization of ablations with large intentional margins of tumor free tissue (A0 ablation in analogy to R0 resection), which has to be documented by fusion of post- with pre-ablation images, and confirmed during follow-up imaging.

  11. The ablated volume and the thermal field distribution in swine vertebral body created by multi-polar radiofrequency ablation: an experiment in vitro

    International Nuclear Information System (INIS)

    Peng Zhaohong; Zhao Wei; Shen Jin; Hu Jihong; Li Zhaopeng; Wang Tao

    2009-01-01

    Objective: To observe the extent of bone coagulation and the thermal field distribution created in ablating the swine vertebral bodies in vitro with multi-polar radiofrequency and to discuss the correlation between the electrode position in the vertebral body and the safety of the spinal cord as well as the soft tissue injury around the vertebral body. Methods: Thirty fresh adult porcine vertebrae were randomly and equally divided into two groups. The depth of the electrode needle was 10 mm or 20 mm.When the ablation process reached to a stable state, the temperature at the scheduled spots was estimated. Twenty minutes after ablation, the vertebral body was cut along the electrode needle plane and also along the plane perpendicular to the electrode needle to observe the extent of bone coagulation. Results: The temperature at the scheduled spots reached to a stable state in 3.5 minutes. The more close to the electrode the spot was, the more quickly the temperature rose. No soft tissue injury around the vertebral body was observed in both groups and no spinal cord injury occurred when the electrode needle was 10 mm or 20 mm deep in the vertebral body. Conclusion: In treating vertebral metastases, the radiofrequency ablation is safe and reliable if the posterior wall of the vertebral body remains intact. (authors)

  12. Application of laser ablation inductively coupled plasma multicollector mass spectometry in determination of lead isotope ratios in common glass for forensic purposes

    International Nuclear Information System (INIS)

    Sjåstad, Knut-Endre; Andersen, Tom; Simonsen, Siri Lene

    2013-01-01

    Samples of glass used as trace evidence in criminal cases are commonly small, with particle sizes below a millimeter. To perform chemical analysis suitable for forensic purposes, methods capable of analyzing such small samples are required. In this paper, analyses of lead isotope ratios by means of laser ablation inductively coupled multicollector mass spectrometry (LA-MC-ICP-MS) are presented. Sampling by use of laser ablation allows fragments down to 0.1 mg to be analyzed with sufficient precision to discriminate between glasses of different origin. In fact, the use of lead isotopes determined by LA-MC-ICP-MS approaches the discrimination attainable by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) analysis of dissolved samples of 5 mg or more. Further, we have obtained a probability distribution by two dimensional kernel density estimates for the collected data set as an alternative presentation method to the well-established bivariate plot. The underlying information available from kernel density estimates is of importance for forensic scientists involved in probabilistic interpretation of physical evidence. - Highlights: • Lead isotope ratios prove suitable to discriminate glass for forensic purposes. • 96% of glass samples from different sources were separated by lead isotopic ratios. • Laser ablation allows fragments of glass with extension of 0.5 mm to be analyzed. • Isotopic ratios of lead are well suited for statistical analysis of evidence

  13. Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities

    Directory of Open Access Journals (Sweden)

    Nigel Cook

    2016-10-01

    Full Text Available Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS has rapidly established itself as the method of choice for generation of multi-element datasets for specific minerals, with broad applications in Earth science. Variation in absolute concentrations of different trace elements within common, widely distributed phases, such as pyrite, iron-oxides (magnetite and hematite, and key accessory minerals, such as apatite and titanite, can be particularly valuable for understanding processes of ore formation, and when trace element distributions vary systematically within a mineral system, for a vector approach in mineral exploration. LA-ICP-MS trace element data can assist in element deportment and geometallurgical studies, providing proof of which minerals host key elements of economic relevance, or elements that are deleterious to various metallurgical processes. This contribution reviews recent advances in LA-ICP-MS methodology, reference standards, the application of the method to new mineral matrices, outstanding analytical uncertainties that impact on the quality and usefulness of trace element data, and future applications of the technique. We illustrate how data interpretation is highly dependent on an adequate understanding of prevailing mineral textures, geological history, and in some cases, crystal structure.

  14. Radiofrequency ablation of chondroblastoma using a multi-tined expandable electrode system: initial results

    International Nuclear Information System (INIS)

    Tins, Bernhard; Cassar-Pullicino, Victor; McCall, Iain; Cool, Paul; Williams, David; Mangham, David

    2006-01-01

    The standard treatment for chondroblastoma is surgery, which can be difficult and disabling due to its apo- or epiphyseal location. Radiofrequency (RF) ablation potentially offers a minimally invasive alternative. The often large size of chondroblastomas can make treatment with plain electrode systems difficult or impossible. This article describes the preliminary experience of RF treatment of chondroblastomas with a multi-tined expandable RF electrode system. Four cases of CT guided RF treatment are described. The tumour was successfully treated in all cases. In two cases, complications occurred; infraction of a subarticular chondroblastoma in one case and cartilage and bone damage in the unaffected compartment of a knee joint in the other. Radiofrequency treatment near a joint surface threatens the integrity of cartilage and therefore long-term joint function. In weight-bearing areas, the lack of bone replacement in successfully treated lesions contributes to the risk of mechanical failure. Multi-tined expandable electrode systems allow the treatment of large chondroblastomas. In weight-bearing joints and lesions near to the articular cartilage, there is a risk of cartilage damage and mechanical weakening of the bone. In lesions without these caveats, RF ablation appears promising. The potential risks and benefits need to be evaluated for each case individually. (orig.)

  15. Radiofrequency ablation of chondroblastoma using a multi-tined expandable electrode system: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Tins, Bernhard; Cassar-Pullicino, Victor; McCall, Iain [RJAH Orthopaedic and District Hospital, Department of Radiology, Oswestry (United Kingdom); Cool, Paul [RJAH Orthopaedic and District Hospital, Musculoskeletal Tumour Unit, Oswestry (United Kingdom); Williams, David [Hereford Hospital, Department of Orthopaedics, Hereford (United Kingdom); Mangham, David [RJAH Orthopaedic and District Hospital, Department of Pathology, Oswestry (United Kingdom)

    2006-04-15

    The standard treatment for chondroblastoma is surgery, which can be difficult and disabling due to its apo- or epiphyseal location. Radiofrequency (RF) ablation potentially offers a minimally invasive alternative. The often large size of chondroblastomas can make treatment with plain electrode systems difficult or impossible. This article describes the preliminary experience of RF treatment of chondroblastomas with a multi-tined expandable RF electrode system. Four cases of CT guided RF treatment are described. The tumour was successfully treated in all cases. In two cases, complications occurred; infraction of a subarticular chondroblastoma in one case and cartilage and bone damage in the unaffected compartment of a knee joint in the other. Radiofrequency treatment near a joint surface threatens the integrity of cartilage and therefore long-term joint function. In weight-bearing areas, the lack of bone replacement in successfully treated lesions contributes to the risk of mechanical failure. Multi-tined expandable electrode systems allow the treatment of large chondroblastomas. In weight-bearing joints and lesions near to the articular cartilage, there is a risk of cartilage damage and mechanical weakening of the bone. In lesions without these caveats, RF ablation appears promising. The potential risks and benefits need to be evaluated for each case individually. (orig.)

  16. Isolation of canine coronary sinus musculature from the atria by radiofrequency catheter ablation prevents induction of atrial fibrillation.

    Science.gov (United States)

    Morita, Hiroshi; Zipes, Douglas P; Morita, Shiho T; Wu, Jiashin

    2014-12-01

    The junction between the coronary sinus (CS) musculature and both atria contributes to initiation of atrial tachyarrhythmias. The current study investigated the effects of CS isolation from the atria by radiofrequency catheter ablation on the induction and maintenance of atrial fibrillation (AF). Using an optical mapping system, we mapped action potentials at 256 surface sites in 17 isolated and arterially perfused canine atrial tissues containing the entire musculature of the CS, right atrial septum, posterior left atrium, left inferior pulmonary vein, and vein of Marshal. Rapid pacing from each site before and after addition of acetylcholine (0.5 μmol/L) was applied to induce AF. Epicardial radiofrequency catheter ablation at CS-atrial junctions isolated the CS from the atria. Rapid pacing induced sustained AF in all tissues after acetylcholine. Microreentry within the CS drove AF in 88% of preparations. Reentries associated with the vein of Marshall (29%), CS-atrial junctions (53%), right atrium (65%), and pulmonary vein (76%) (frequently with 2-4 simultaneous circuits) were additional drivers of AF. Radiofrequency catheter ablation eliminated AF in 13 tissues before acetylcholine (Patrial tissue. The results suggest that CS can be a substrate of recurrent AF in patients after pulmonary vein isolation and that CS isolation might help prevent recurrent AF. © 2014 American Heart Association, Inc.

  17. Detection efficiencies in nano- and femtosecond laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Waelle, M.; Koch, J.; Flamigni, L.; Heiroth, S.; Lippert, T.; Hartung, W.; Guenther, D.

    2009-01-01

    Detection efficiencies of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), defined as the ratio of ions reaching the detector and atoms released by LA were measured. For this purpose, LA of silicate glasses, zircon, and pure silicon was performed using nanosecond (ns) as well as femtosecond (fs) LA. For instance, ns-LA of silicate glass using helium as in-cell carrier gas resulted in detection efficiencies between approximately 1E-7 for low and 3E-5 for high mass range elements which were, in addition, almost independent on the laser wavelength and pulse duration chosen. In contrast, the application of argon as carrier gas was found to suppress the detection efficiencies systematically by a factor of up to 5 mainly due to a less efficient aerosol-to-ion conversion and ion transmission inside the ICP-MS

  18. TEM investigations of laser ablated particles

    International Nuclear Information System (INIS)

    Fliegel, D.; Dundas, S.; Kosler, J.; Klementova, M.

    2009-01-01

    Full text: Laser ablation inductively coupled plasma mass spectrometry suffers from fractionation effects hindering a non matrix matched calibration strategy. Different reasons for elemental fractionation that are related to the laser ablation, the transport and the vaporization in the plasma are discussed. One major question to be addressed linked to the vaporization yield in the ICP is in which of mineralogical phase the different ablated particle sizes enter the plasma. This contribution will investigate particles generated by a 213 nm laser from different samples such as minerals and alloys with respect to their chemical and phase compositions using high resolution TEM. (author)

  19. An analysis of the electromagnetic field in multi-polar linear induction system

    International Nuclear Information System (INIS)

    Chervenkova, Todorka; Chervenkov, Atanas

    2002-01-01

    In this paper a new method for determination of the electromagnetic field vectors in a multi-polar linear induction system (LIS) is described. The analysis of the electromagnetic field has been done by four dimensional electromagnetic potentials in conjunction with theory of the magnetic loops . The electromagnetic field vectors are determined in the Minkovski's space as elements of the Maxwell's tensor. The results obtained are compared with those got from the analysis made by the finite elements method (FEM).With the method represented in this paper one can determine the electromagnetic field vectors in the multi-polar linear induction system using four-dimensional potential. A priority of this method is the obtaining of analytical results for the electromagnetic field vectors. These results are also valid for linear media. The dependencies are valid also at high speeds of movement. The results of the investigated linear induction system are comparable to those got by the finite elements method. The investigations may be continued in the determination of other characteristics such as drag force, levitation force, etc. The method proposed in this paper for an analysis of linear induction system can be used for optimization calculations. (Author)

  20. Performance of evaporator-collector and air collector in solar assisted heat pump dryer

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Rahman, S.M.A.; Jahangeer, K.A.

    2008-01-01

    A solar assisted heat pump dryer has been designed, fabricated and tested. This paper presents the performance of the evaporator-collector and the air collector when operated under the same meteorological conditions. ASHRAE standard procedure for collector testing has been followed. The evaporator-collector of the heat pump is acting directly as the solar collector, and the temperature of the refrigerant at the inlet to the evaporator-collector always remained below the ambient temperature. Because of the rejection of sensible and latent heats of air at the dehumidifier, the temperature at the inlet to the air collector is lower than that of the ambient air. Hence, the thermal efficiency of the air collector also increases due to a reduction of losses from the collector. The efficiencies of the evaporator-collector and the air collector were found to vary between 0.8-0.86 and 0.7-0.75, respectively, when operated under the meteorological conditions of Singapore

  1. Laser ablation inductively coupled plasma mass spectrometry. An alternative technique for monitoring 90Sr

    International Nuclear Information System (INIS)

    TsingHai Wang; Yan-Chen Lai; Yi-Kong Hsieh; Chu-Fang Wang

    2017-01-01

    Developing a rapid detection method for monitoring released 90 Sr remains a challenge to analytical chemists, particularly considering its low concentration and significant interferences in environmental samples. We proposed a concept as an alternative to detect 90 Sr on the surface of fish scales using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The high affinity of fish scales to Sr is capable of preconcentrating 90 Sr that minimizes isobaric interferences from 90 Zr + or 89 YH + , while tailing effect by abundant 88 Sr can be effectively reduced by adjusting the forward power of ICP-MS component. Adopting dried droplets of internal standards further allows a semiquantification of 90 Sr content on the surface of fish scales, which also arises an opportunity to monitoring the bioaccumulation of 90 Sr after Fukushima Daiichi nuclear disaster. (author)

  2. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  3. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken

    1997-01-01

    this kind of collectors. The modified simulation program has been used for the determination of the surplus in performance which solar heating systems with this type of solar collectors for combined preheating of ventilation air and domestic hot water will have. The simulation program and the efficiency......This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...

  4. Induction studies with Escherichia coli expressing recombinant interleukin-13 using multi-parameter flow cytometry

    DEFF Research Database (Denmark)

    Shitu, J. O.; Woodley, John; Wnek, R.

    2009-01-01

    The expression of interleukin-13 (IL13) following induction with IPTG in Escherichia coli results in metabolic changes as indicated by multi-parameter flow cytometry and traditional methods of fermentation profiling (O-2 uptake rate, CO2 evolution rate and optical density measurements). Induction...

  5. Non-linear signal response functions and their effects on the statistical and noise cancellation properties of isotope ratio measurements by multi-collector plasma mass spectrometry

    International Nuclear Information System (INIS)

    Doherty, W.

    2013-01-01

    A nebulizer-centric response function model of the analytical inductively coupled argon plasma ion source was used to investigate the statistical frequency distributions and noise reduction factors of simultaneously measured flicker noise limited isotope ion signals and their ratios. The response function model was extended by assuming i) a single gaussian distributed random noise source (nebulizer gas pressure fluctuations) and ii) the isotope ion signal response is a parabolic function of the nebulizer gas pressure. Model calculations of ion signal and signal ratio histograms were obtained by applying the statistical method of translation to the non-linear response function model of the plasma. Histograms of Ni, Cu, Pr, Tl and Pb isotope ion signals measured using a multi-collector plasma mass spectrometer were, without exception, negative skew. Histograms of the corresponding isotope ratios of Ni, Cu, Tl and Pb were either positive or negative skew. There was a complete agreement between the measured and model calculated histogram skew properties. The nebulizer-centric response function model was also used to investigate the effect of non-linear response functions on the effectiveness of noise cancellation by signal division. An alternative noise correction procedure suitable for parabolic signal response functions was derived and applied to measurements of isotope ratios of Cu, Ni, Pb and Tl. The largest noise reduction factors were always obtained when the non-linearity of the response functions was taken into account by the isotope ratio calculation. Possible applications of the nebulizer-centric response function model to other types of analytical instrumentation, large amplitude signal noise sources (e.g., lasers, pumped nebulizers) and analytical error in isotope ratio measurements by multi-collector plasma mass spectrometry are discussed. - Highlights: ► Isotope ion signal noise is modelled as a parabolic transform of a gaussian variable. ► Flicker

  6. Large-volume multi-tined expandable RF ablation in pig livers: comparison of 2D and volumetric measurements of the ablation zone

    International Nuclear Information System (INIS)

    Bangard, Christopher; Roesgen, Silvia; Lackner, Klaus J.; Wahba, Roger; Stippel, Dirk L.; Wiemker, Rafael; Hellmich, Martin; Reiter, Hannah; Fischer, Juergen H.

    2010-01-01

    To compare two-dimensional (2D) and three-dimensional (3D) computed tomography (CT) measurements of ablation zones (AZs) related to the shaft of two different large-volume monopolar multi-tined expandable electrodes. Percutaneous radiofrequency (RF) ablation was performed in 12 pigs (81.6±7.8 kg) using two electrodes (LeVeen 5 cm, Rita XL 5 cm; n=6 in each group). Contrast-enhanced CT with the electrode shaft in place evaluated the AZ. The largest sphere centred on the electrode shaft within the AZ was calculated (1) based on the 2D axial CT image in the plane of the shaft assuming rotational symmetry of the AZ and (2) using prototype software and the 3D volume data of the AZ measured with CT. The mean largest diameter of a sphere centred on the electrode shaft was always smaller using the 3D data of the AZ than using 2D CT measurements assuming rotational symmetry of the AZ (3D vs 2D): LeVeen 18.2±4.8 mm; 24.5 ±3.1 mm; p=0.001; Rita XL 20.0±3.7 mm; 28.8±4.9 mm; p=0.0002. All AZ showed indentations around the tines. Two-dimensional CT measurements assuming rotational symmetry of the AZ overestimate the largest ablated sphere centred on the electrode shaft compared with 3D CT measurements. (orig.)

  7. Coloured solar collectors. Phase II : from laboratory samples to collector prototypes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A; Roecker, Ch; Chambrier, E de; Munari Probst, M

    2007-07-01

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) deals with the second phase of a project concerning the architectural integration of glazed solar collectors into the facades of buildings for heat production. The factors that limit the integration of photovoltaic panels in facades are discussed. The authors state that, for a convincing demonstration, sufficiently large samples and high quality levels are needed. The sol-gel deposition of the multi-layered coatings on A4-sized glass panes demonstrated in the laboratory by EPFL-LESO are discussed. The coatings produced exhibit a coloured reflection in combination with a high solar transmittance, a homogenous appearance, and are free of visible defects. Film hardening by UV exposure is discussed: This should result in the speeding up of the sol-gel process and thus save energy, thereby significantly reducing costs. Collaboration with industry is discussed in which full-scale glass panes are to be coated with novel multiple layers. The novel glazing is to be integrated into first prototype collectors. The manufacturing and test processes for the prototypes manufactured are discussed in detail.

  8. Garbage collector interface

    OpenAIRE

    Ive, Anders; Blomdell, Anders; Ekman, Torbjörn; Henriksson, Roger; Nilsson, Anders; Nilsson, Klas; Robertz, Sven

    2002-01-01

    The purpose of the presented garbage collector interface is to provide a universal interface for many different implementations of garbage collectors. This is to simplify the integration and exchange of garbage collectors, but also to support incremental, non-conservative, and thread safe implementations. Due to the complexity of the interface, it is aimed at code generators and preprocessors. Experiences from ongoing implementations indicate that the garbage collector interface successfully ...

  9. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-01-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  10. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    Science.gov (United States)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  11. Adsorption of guanidinium collectors on aluminosilicate minerals - a density functional study.

    Science.gov (United States)

    Nulakani, Naga Venkateswara Rao; Baskar, Prathab; Patra, Abhay Shankar; Subramanian, Venkatesan

    2015-10-07

    In this density functional theory based investigation, we have modelled and studied the adsorption behaviour of guanidinium cations and substituted (phenyl, methoxy phenyl, nitro phenyl and di-nitro phenyl) guanidinium cationic collectors on the basal surfaces of kaolinite and goethite. The adsorption behaviour is assessed in three different media, such as gas, explicit water and pH medium, to understand the affinity of GC collectors to the SiO4 tetrahedral and AlO6 octahedral surfaces of kaolinite. The tetrahedral siloxane surface possesses a larger binding affinity to GC collectors than the octahedral sites due to the presence of surface exposed oxygen atoms that are active in the intermolecular interactions. Furthermore, the inductive electronic effects of substituted guanidinium cations also play a key role in the adsorption mechanism. Highly positive cations result in a stronger electrostatic interaction and preferential adsorption with the kaolinite surfaces than low positive cations. Computed interaction energies and electron densities at the bond critical points suggest that the adsorption of guanidinium cations on the surfaces of kaolinite and goethite is due to the formation of intra/inter hydrogen bonding networks. Also, the electrostatic interaction favours the high adsorption ability of GC collectors in the pH medium than gas phase and water medium. The structures and energies of GC collectors pave an intuitive view for future experimental studies on mineral flotation.

  12. Induction of lambda prophage near the site of focused UV laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Matchette, L.S.; Waynant, R.W.; Royston, D.D.; Hitchins, V.M.; Elespuru, R.K.

    1989-02-01

    DNA damage from photon scatter or beam spread during UV excimer laser irradiation was investigated using the induction of bacteriophage lambda in E. coli BR339. Prophage induction in these cells leads to the production of ..beta..-galactosidase which can be detected colorimetrically by the application of appropriate substates. An agar surface overlayed with BR339 cells was placed at various distances from the focal point of a converging lens and exposed to either 193 or 248 nm laser radiation. Energy densities ranging from approximately 5 mJ/cm/sup 2/ to 30 J/cm/sup 2/ were used. Ablation with 193 nm laser radiation produced an 800 ..mu..m wide clear 'trench' surrounded by a 500 ..mu..m zone of cells in which lambda had been induced. Following ablation with 248 nm laser radiation, the zone of induction was several millimeters wide. Exposures to 193 nm radiation at 170 mJ/cm/sup 2//pulse produced visible ablation of the agar surface at 1.7 J/cm/sup 2/. Lambda induction was observed surrounding cleared ablation areas. The presence of induction in this system suggests that both 248 and 193 nm excimer laser radiation delivered at high energy densities has sufficient spread or scatter to damage DNA in cells surrounding areas of ablation.

  13. Investigations on efficiencies of HT solar collectors for different flow rates and collector tilts

    DEFF Research Database (Denmark)

    Chen, Ziqian; Perers, Bengt; Furbo, Simon

    2013-01-01

    Two HT solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one solar collector is equipped with an ETFE foil between the abso......Two HT solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one solar collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates and tilt. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rates are obtained. The calculated efficiencies are in good...

  14. Measurement of intrahepatic pressure during radiofrequency ablation in porcine liver.

    Science.gov (United States)

    Kawamoto, Chiaki; Yamauchi, Atsushi; Baba, Yoko; Kaneko, Keiko; Yakabi, Koji

    2010-04-01

    To identify the most effective procedures to avoid increased intrahepatic pressure during radiofrequency ablation, we evaluated different ablation methods. Laparotomy was performed in 19 pigs. Intrahepatic pressure was monitored using an invasive blood pressure monitor. Radiofrequency ablation was performed as follows: single-step standard ablation; single-step at 30 W; single-step at 70 W; 4-step at 30 W; 8-step at 30 W; 8-step at 70 W; and cooled-tip. The array was fully deployed in single-step methods. In the multi-step methods, the array was gradually deployed in four or eight steps. With the cooled-tip, ablation was performed by increasing output by 10 W/min, starting at 40 W. Intrahepatic pressure was as follows: single-step standard ablation, 154.5 +/- 30.9 mmHg; single-step at 30 W, 34.2 +/- 20.0 mmHg; single-step at 70 W, 46.7 +/- 24.3 mmHg; 4-step at 30 W, 42.3 +/- 17.9 mmHg; 8-step at 30 W, 24.1 +/- 18.2 mmHg; 8-step at 70 W, 47.5 +/- 31.5 mmHg; and cooled-tip, 114.5 +/- 16.6 mmHg. The radiofrequency ablation-induced area was spherical with single-step standard ablation, 4-step at 30 W, and 8-step at 30 W. Conversely, the ablated area was irregular with single-step at 30 W, single-step at 70 W, and 8-step at 70 W. The ablation time was significantly shorter for the multi-step method than for the single-step method. Increased intrahepatic pressure could be controlled using multi-step methods. From the shapes of the ablation area, 30-W 8-step expansions appear to be most suitable for radiofrequency ablation.

  15. Determination of strontium and lead isotope ratios of grains using high resolution inductively coupled plasma mass spectrometer with single collector

    International Nuclear Information System (INIS)

    Shinozaki, Miyuki; Ariyama, Kaoru; Kawasaki, Akira; Hirata, Takafumi

    2010-01-01

    A method for determining strontium and lead isotope ratios of grains was developed. The samples investigated in this study were rice, barley and wheat. The samples were digested with nitric acid and hydrogen peroxide, and heated in a heating block. Strontium and lead were separated from the matrix by adding an acid digested solution into a column packed with Sr resin, which has selectivity for the absorption of strontium and lead. Strontium and lead isotope ratios were determined using a high-resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) with a single collector. The intraday relative standard deviations of 87 Sr/ 86 Sr and lead isotope ratios ( 204 Pb/ 206 Pb, 207 Pb/ 206 Pb, 208 Pb/ 206 Pb) by HR-ICP-MS measurements were < 0.06% and around 0.1%, respectively. This method enabled us to determine strontium and lead isotope ratios in two days. (author)

  16. Analysis of liquid samples using dried-droplet laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Do, Trong-Mui; Hsieh, Hui-Fang; Chang, Wei-Ciang [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan (China); Chang, E.-E. [Department of Biochemistry, Taipei Medical University, Taipei City, 11031 Taiwan (China); Wang, Chu-Fang, E-mail: cfwang@mx.nthu.edu.tw [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan (China); Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2011-08-15

    In this study we developed a dried-droplet method for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method provides accurate and precise results when building calibration curves and determining elements of interest in real liquid samples. After placing just 1 {mu}L of a liquid standard solution or a real sample onto the filter surface and then converting the solution into a very small, thin dry spot, the sample could be applied as an analytical subject for LA. To demonstrate the feasibility of this proposed method, we used LA-ICP-MS and conventional ICP-MS to determine the levels of 13 elements (Li, V, Mn, Co, Ni, Cu, Zn, As, Mo, Cd, Sb, Tl, and Pb) in five water samples. The correlation coefficients obtained from the various calibration curves ranged from 0.9920 ({sup 205}Tl) to 0.9998 ({sup 51}V), sufficient to allow the determination of a wide range of elements in the samples. We also investigated the effects of Methylene Blue (MB) and the NaCl concentration on the elemental analyses. MB could be used as an indicator during the ablation process; its presence in the samples only negligibly influenced the intensities of the signals of most of the tested elements. Notably, high NaCl contents led to signal suppression for some of the elements. In comparison with the established sample introduction by nebulization, our developed technique abrogates the need for time-consuming sample preparation and reduces the possibility of sample contamination.

  17. Segmented motor drive - with multi-phase induction motor

    DEFF Research Database (Denmark)

    Bendixen, Flemming Buus

    of the induction motor is set up. The model is able to calculate dynamical electric, magnetic and mechanic state variables, but initially it is used to calculate static characteristics in motors with different number of phases and different voltage supply shapes. This analysis show i.e. that the efficiency....... The multi-phase motor is selected for further analysis. The project is limited to examine if increasing the number of phases can improve the characteristics for induction motor drives. In the literature it is demonstrated that torque production in a six-phase motor can be increased, if a 3rd harmonic......This PhD project commences in modulation of motor drives, i.e. having the advantage of reducing the number of variants and improves the system reliability at error situations. Four different motor drive topologies with modular construction as common denominator are compared on a general level...

  18. Radiation energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Bei Tse; Rabl, A

    1977-02-10

    The invention deals with a concentrating solar collector. Collectors of this kind often have considerable natural convection losses which are due, among other facts, to the location of the energy absorber at the outlet with the heated surface of the absorber facing the inlet opening of the collector. According to the invention, the collector is designed in such manner that the absorber is located inside a space in such a way that the radiation emitted by the absorber is reflected back to the absorber with the aid of mirror surfaces. Various designs are described.

  19. Laser ablation in analytical chemistry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  20. Laser ablation microprobe inductively coupled plasma mass spectrometry study on diffusion of uranium into cement materials

    International Nuclear Information System (INIS)

    Sugiyama, D.; Chida, T.; Cowper, M.

    2008-01-01

    The diffusion of uranium (U(VI)) in solid cement monoliths of ordinary portland cement (OPC) and low-heat portland cement containing 30 wt.% fly ash (FAC) was measured by an in-diffusion technique. Detailed sharp depth profiles of uranium in the solid cement matrices were successively and quantitatively measured using laser ablation microprobe inductively coupled plasma mass spectrometry (LAMP-ICP-MS), and the apparent (D a ) and effective (D e ) diffusion coefficient of uranium in cement matrix were calculated as: D a =∝ 4 x 10 -16 m 2 s -1 and D e =∝ 3 x 10 -11 m 2 s -1 for OPC, and D a =∝ 2 x 10 -17 m 2 s -1 and D e =∝ 6 x 10 -13 m 2 s -1 for FAC. (orig.)

  1. Direct quantitative comparison of molecular responses in photodamaged human skin to fractionated and fully ablative carbon dioxide laser resurfacing.

    Science.gov (United States)

    Orringer, Jeffrey S; Sachs, Dana L; Shao, Yuan; Hammerberg, Craig; Cui, Yilei; Voorhees, John J; Fisher, Gary J

    2012-10-01

    Fractionated ablative laser resurfacing has become a widely used treatment modality. Its clinical results are often found to approach those of traditional fully ablative laser resurfacing. To directly compare the molecular changes that result from fractionated and fully ablative carbon dioxide (CO(2)) laser resurfacing in photodamaged human skin. Photodamaged skin of 34 adult volunteers was focally treated at distinct sites with a fully ablative CO(2) laser and a fractionated CO(2) laser. Serial skin samples were obtained at baseline and several time points after treatment. Real-time reverse transcriptase polymerase chain reaction technology and immunohistochemistry were used to quantify molecular responses to each type of laser treatment. Fully ablative and fractionated CO(2) laser resurfacing induced significant dermal remodeling and collagen induction. After a single treatment, fractionated ablative laser resurfacing resulted in collagen induction that was approximately 40% to 50% as pronounced as that induced by fully ablative laser resurfacing. The fundamental cutaneous responses that result from fully ablative and fractionated carbon dioxide laser resurfacing are similar but differ in magnitude and duration, with the fully ablative procedure inducing relatively greater changes including more pronounced collagen induction. However, the molecular data reported here provide substantial support for fractionated ablative resurfacing as an effective treatment modality for improving skin texture. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  2. A Multi-Cycle Q-Modulation for Dynamic Optimization of Inductive Links.

    Science.gov (United States)

    Lee, Byunghun; Yeon, Pyungwoo; Ghovanloo, Maysam

    2016-08-01

    This paper presents a new method, called multi-cycle Q-modulation, which can be used in wireless power transmission (WPT) to modulate the quality factor (Q) of the receiver (Rx) coil and dynamically optimize the load impedance to maximize the power transfer efficiency (PTE) in two-coil links. A key advantage of the proposed method is that it can be easily implemented using off-the-shelf components without requiring fast switching at or above the carrier frequency, which is more suitable for integrated circuit design. Moreover, the proposed technique does not need any sophisticated synchronization between the power carrier and Q-modulation switching pulses. The multi-cycle Q-modulation is analyzed theoretically by a lumped circuit model, and verified in simulation and measurement using an off-the-shelf prototype. Automatic resonance tuning (ART) in the Rx, combined with multi-cycle Q-modulation helped maximizing PTE of the inductive link dynamically in the presence of environmental and loading variations, which can otherwise significantly degrade the PTE in multi-coil settings. In the prototype conventional 2-coil link, the proposed method increased the power amplifier (PA) plus inductive link efficiency from 4.8% to 16.5% at ( R L = 1 kΩ, d 23 = 3 cm), and from 23% to 28.2% at ( R L = 100 Ω, d 23 = 3 cm) after 11% change in the resonance capacitance, while delivering 168.1 mW to the load (PDL).

  3. High-precision measurement of mercury isotope ratios in sediments using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Foucher, Delphine; Hintelmann, Holger

    2006-01-01

    An on-line Hg reduction technique using stannous chloride as the reductant was applied for accurate and precise mercury isotope ratio determinations by multi-collector (MC)-ICP/MS. Special attention has been paid to ensure optimal conditions (such as acquisition time and mercury concentration) allowing precision measurements good enough to be able to significantly detect the anticipated small differences in Hg isotope ratios in nature. Typically, internal precision was better than 0.002% (1 RSE) on all Hg ratios investigated as long as approximately 20 ng of Hg was measured with a 10-min acquisition time. Introducing higher amounts of mercury (50 ng Hg) improved the internal precision to 205 Tl/ 203 Tl correction coupled to a standard-sample bracketing approach. The large number of data acquired allowed us to validate the consistency of our measurements over a one-year period. On average, the short-term uncertainty determined by repeated runs of NIST SRM 1641d Hg standard during a single day was 202 Hg/ 198 Hg, 202 Hg/ 199 Hg, 202 Hg/ 200 Hg, and 202 Hg/ 201 Hg). The precision fell to 202 Hg/ 198 Hg expressed as δ values (per mil deviations relative to NIST SRM 1641d Hg standard solution) displayed differences from +0.74 to -4.00 permille. The magnitude of the Hg fractionation per amu was constant within one type of sample and did not exceed 1.00 permille. Considering all results (the reproducibility of Hg standard solutions, reference sediment samples, and the examination of natural samples), the analytical error of our δ values for the overall method was within ±0.28 permille (1 SD), which was an order of magnitude lower than the extent of fractionation (4.74 permille) observed in sediments. This study confirmed that analytical techniques have reached a level of long-term precision and accuracy that is sufficiently sensitive to detect even small differences in Hg isotope ratios that occur within one type of samples (e.g., between different sediments) and so

  4. Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors

    International Nuclear Information System (INIS)

    Chen, Meijie; He, Yurong; Zhu, Jiaqi; Wen, Dongsheng

    2016-01-01

    Highlights: • An analysis coupled with Radiation transfer, Maxwell and Energy equation is developed. • Plasmonic Au and Ag nanofluids show better photo-thermal conversion properties. • Collector height and particle concentration exist optimum solutions for efficiency. - Abstract: A one-dimensional transient heat transfer analysis was carried out to analyze the effects of the Nanoparticle (NP) volume fraction, collector height, irradiation time, solar flux, and NP material on the collector efficiency. The numerical results were compared with the experimental results obtained by silver nanofluids to validate the model, and good agreement was obtained. The numerical results show that the collector efficiency increases as the collector height and NP volume fraction increase and then reaches a maximum value. An optimum collector height (∼10 mm) and particle concentration (∼0.03%) achieving a collector efficiency of 90% of the maximum efficiency can be obtained under the conditions used in the simulation. However, the collector efficiency decreases as the irradiation time increases owing to the increased heat loss. A high solar flux is desirable to maintain a high efficiency over a wide temperature range, which is beneficial for subsequent energy utilization. The modeling results also show silver and gold nanofluids obtain higher photothermal conversion efficiencies than the titanium dioxide nanofluid because their absorption spectra are similar to the solar radiation spectrum.

  5. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    International Nuclear Information System (INIS)

    Lockrem, L.L.; Owens, J.W.; Seidel, C.M.

    2009-01-01

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method

  6. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry. Part 2: Investigation of MO+ ions, effect of sample morphology, transport gas, and binding agents

    International Nuclear Information System (INIS)

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-01-01

    Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO + ions also yield signal spikes, but these MO + spikes generally occur at different times from their atomic ion counterparts.

  7. Tracking system for solar collectors

    Science.gov (United States)

    Butler, B.

    1980-10-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  8. Sulfate and sulfide sulfur isotopes (δ34S and δ33S) measured by solution and laser ablation MC-ICP-MS: An enhanced approach using external correction

    Science.gov (United States)

    Pribil, Michael; Ridley, William I.; Emsbo, Poul

    2015-01-01

    Isotope ratio measurements using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) commonly use standard-sample bracketing with a single isotope standard for mass bias correction for elements with narrow-range isotope systems measured by MC-ICP-MS, e.g. Cu, Fe, Zn, and Hg. However, sulfur (S) isotopic composition (δ34S) in nature can range from at least − 40 to + 40‰, potentially exceeding the ability of standard-sample bracketing using a single sulfur isotope standard to accurately correct for mass bias. Isotopic fractionation via solution and laser ablation introduction was determined during sulfate sulfur (Ssulfate) isotope measurements. An external isotope calibration curve was constructed using in-house and National Institute of Standards and Technology (NIST) Ssulfate isotope reference materials (RM) in an attempt to correct for the difference. The ability of external isotope correction for Ssulfate isotope measurements was evaluated by analyzing NIST and United States Geological Survey (USGS) Ssulfate isotope reference materials as unknowns. Differences in δ34Ssulfate between standard-sample bracketing and standard-sample bracketing with external isotope correction for sulfate samples ranged from 0.72‰ to 2.35‰ over a δ34S range of 1.40‰ to 21.17‰. No isotopic differences were observed when analyzing Ssulfide reference materials over a δ34Ssulfide range of − 32.1‰ to 17.3‰ and a δ33S range of − 16.5‰ to 8.9‰ via laser ablation (LA)-MC-ICP-MS. Here, we identify a possible plasma induced fractionation for Ssulfate and describe a new method using external isotope calibration corrections using solution and LA-MC-ICP-MS.

  9. Multi-Antenna Data Collector for Smart Metering Networks with Integrated Source Separation by Spatial Filtering

    Science.gov (United States)

    Quednau, Philipp; Trommer, Ralph; Schmidt, Lorenz-Peter

    2016-03-01

    Wireless transmission systems in smart metering networks share the advantage of lower installation costs due to the expandability of separate infrastructure but suffer from transmission problems. In this paper the issue of interference of wireless transmitted smart meter data with third party systems and data from other meters is investigated and an approach for solving the problem is presented. A multi-channel wireless m-bus receiver was developed to separate the desired data from unwanted interferers by spatial filtering. The according algorithms are presented and the influence of different antenna types on the spatial filtering is investigated. The performance of the spatial filtering is evaluated by extensive measurements in a realistic surrounding with several hundreds of active wireless m-bus transponders. These measurements correspond to the future environment for data-collectors as they took place in rural and urban areas with smart gas meters equipped with wireless m-bus transponders installed in almost all surrounding buildings.

  10. Fast and accurate inductance and coupling calculation for a multi-layer Nb process

    International Nuclear Information System (INIS)

    Fourie, Coenrad J; Takahashi, Akitomo; Yoshikawa, Nobuyuki

    2015-01-01

    Currently, fabrication processes for superconductive integrated circuits are moving to multiple wiring and shielding layers, some of which are placed below the main ground plane (GP) and device layers. The Advanced Industrial Science and Technology advanced process (ADP2) was the first such multi-layer Nb process with planarized passive transmission line and GP layers below the junction layer, and is at the time of writing still the most developed. This process allows complex circuit designs, and accurate inductance extraction helps to push the boundaries of the layouts possible. We show that the position of ground connections between ground layers influences the inductance of structures for which these GPs act as return path, and that this needs to be accounted for in modelling. However, due to the number of wiring layers and GPs, full layout modelling of large cells causes long calculation times. In this paper we discuss methods with which to reduce model size, and calibrate InductEx calculations using these methods against measured results. We show that model reduction followed by calibration results in fast calculation times while good accuracy is maintained. We also show that InductEx correctly handles coupling between conductors in a multi-layer layout, and how to model layouts to gauge unwanted coupling between power lines and single flux quantum electronics. (paper)

  11. Multiplexed microRNA detection using lanthanide-labeled DNA probes and laser ablation inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    de Bang, Thomas Christian; Shah, Pratik; Cho, Seok Keun

    2014-01-01

    coupled plasma mass spectrometry (LA-ICPMS). Three miRNAs from Arabidopsis thaliana were analyzed simultaneously with high specificity, and the sensitivity of the method was comparable to radioactive detection (low femtomol range). The perspective of the developed method is highly multiplexed......In the past decade, microRNAs (miRNAs) have drawn increasing attention due to their role in regulation of gene expression. Especially, their potential as biomarkers in disease diagnostics has motivated miRNA research, including the development of simple, accurate, and sensitive detection methods....... The narrow size range of miRNAs (20-24 nucleotides) combined with the chemical properties of conventional reporter tags has hampered the development of multiplexed miRNA assays. In this study, we have used lanthanide-labeled DNA probes for the detection of miRNAs on membranes using laser ablation inductively...

  12. More Than Just Tumor Destruction: Immunomodulation by Thermal Ablation of Cancer

    Directory of Open Access Journals (Sweden)

    Sebastian P. Haen

    2011-01-01

    Full Text Available Over the past decades, thermoablative techniques for the therapy of localized tumors have gained importance in the treatment of patients not eligible for surgical resection. Anecdotal reports have described spontaneous distant tumor regression after thermal ablation, indicating a possible involvement of the immune system, hence an induction of antitumor immunity after thermoinduced therapy. In recent years, a growing body of evidence for modulation of both adaptive and innate immunity, as well as for the induction of danger signals through thermoablation, has emerged. Induced immune responses, however, are mostly weak and not sufficient for the complete eradication of established tumors or durable prevention of disease progression, and combination therapies with immunomodulating drugs are being evaluated with promising results. This article aims to summarize published findings on immune modulation through radiofrequency ablation, cryoablation, microwave ablation therapy, high-intensity focused ultrasound, and laser-induced thermotherapy.

  13. Multi-particle Anderson Localisation: Induction on the Number of Particles

    International Nuclear Information System (INIS)

    Chulaevsky, Victor; Suhov, Yuri

    2009-01-01

    This paper is a follow-up of our recent papers Chulaevsky and Suhov (Commun Math Phys 283:479-489, 2008) and Chulaevsky and Suhov (Commun Math Phys in press, 2009) covering the two-particle Anderson model. Here we establish the phenomenon of Anderson localisation for a quantum N-particle system on a lattice with short-range interaction and in presence of an IID external potential with sufficiently regular marginal cumulative distribution function (CDF). Our main method is an adaptation of the multi-scale analysis (MSA; cf. Froehlich and Spencer, Commun Math Phys 88:151-184, 1983; Froehlich et al., Commun Math Phys 101:21-46, 1985; von Dreifus and Klein, Commun Math Phys 124:285-299, 1989) to multi-particle systems, in combination with an induction on the number of particles, as was proposed in our earlier manuscript (Chulaevsky and Suhov 2007). Recently, Aizenman and Warzel (2008) proved spectral and dynamical localisation for N-particle lattice systems with a short-range interaction, using an extension of the Fractional-Moment Method (FMM) developed earlier for single-particle models in Aizenman and Molchanov (Commun Math Phys 157:245-278, 1993) and Aizenman et al. (Commun Math Phys 224:219-253, 2001) (see also references therein) which is also combined with an induction on the number of particles

  14. PV-hybrid and thermoelectric collectors

    Energy Technology Data Exchange (ETDEWEB)

    Rockendorf, G.; Sillmann, R. [Institut fuer Solarenergieforschung GmbH, Emmerthal (Germany); Podlowski, L.; Litzenburger, B. [SolarWerk GmbH, Teltow (Germany)

    1999-07-01

    Two different principles of thermoelectric cogeneration solar collectors have been realized and investigated. Concerning the first principle, the thermoelectric collector (TEC) delivers electricity indirectly by first producing heat and subsequently generating electricity by means of a thermoelectric generator. Concerning the second principle, the photovoltaic-hybrid collector (PVHC) uses photovoltaic cells, which are cooled by a liquid heat-transfer medium. The characteristics of both collector types are described. Simulation modules have been developed and implemented in TRNSYS 14.1 (1994), in order to simulate their behaviour in typical domestic hot-water systems. The discussion of the results shows that the electric output of the PV-hybrid collector is significantly higher than that of the thermoelectric collector. (author)

  15. Architectural integration of energy solar collectors made with ceramic materials and suitable for the Mediterranean climate

    Directory of Open Access Journals (Sweden)

    J. Roviras

    2016-12-01

    Full Text Available The work presented here aims to demonstrate the technical, architectural and energy viability of solar thermal collectors made with ceramic materials and the Mediterranean climate suitable for the production of domestic hot water (DHW and for heating systems in buildings. The design of a ceramic shell formed by panels collectors and panels no sensors, which are part of the same building system that is capable of responding to the basic requirements of a building envelope and capture solar energy is proposed. Ceramics considerably reduced the final cost of the sensor system and offers the new system a variety of compositional and chromatic since, with reduced performance compared to a conventional metallic collector, can occupy the entire surface of front and get a high degree of architectural integration. A tool for assessing the new ceramic solar collector has been defined from a multi-criteria perspective: economic, environmental and social. The tool enables the comparison of the ceramic solar collector with solar collectors on the market under different climatic and demand conditions.

  16. A spectral analysis of ablating meteors

    Science.gov (United States)

    Bloxam, K.; Campbell-Brown, M.

    2017-09-01

    Meteor ablation features in the spectral lines occurring at 394, 436, 520, and 589 nm were observed using a four-camera spectral system between September and December 2015. In conjunction with this multi-camera system the Canadian Automated Meteor Observatory was used to observe the orbital parameters and fragmentation of these meteors. In total, 95 light curves with complete data in the 520 and 589 nm filters were analyzed; some also had partial or complete data in the 394 nm filter, but no usable data was collected with the 436 nm filter. Of the 95 events, 70 exhibited some degree of differential ablation, and in all except 3 of these 70 events the 589 nm filter started or ended sooner compared with the 520 nm filter, indicating early ablation at the 589 nm wavelength. In the majority of cases the meteor showed evidence of fragmentation regardless of the type of ablation (differential or uniform). A surprising result was the lack of correlation found concerning the KB parameter, linked to meteoroid strength, and differential ablation. In addition, 22 shower-associated meteors were observed; Geminids showed mainly slight differential ablation, while Taurids were more likely to ablate uniformly.

  17. Design of Circular, Square, Single, and Multi-layer Induction Coils for Electromagnetic Priming Using Inductance Estimates

    Science.gov (United States)

    Fritzsch, Robert; Kennedy, Mark W.; Aune, Ragnhild E.

    2018-02-01

    Special induction coils used for electro magnetic priming of ceramic foam filters in liquid metal filtration have been designed using a combination of analytical and finite element modeling. Relatively simple empirical equations published by Wheeler in 1928 and 1982 have been used during the design process. The equations were found to accurately predict the z-component of the magnetic flux densities of both single- and multi-layer coils as verified both experimentally and by using COMSOL® 5.1 multiphysics simulations.

  18. Thermal Efficiency of Power Module “Boiler with Solar Collectors as Additional Heat Source” For Combined Heat Supply System

    Directory of Open Access Journals (Sweden)

    Denysova A.E.

    2015-04-01

    Full Text Available The purpose of work is to increase the efficiency of the combined heat supply system with solar collectors as additional thermal generators. In order to optimize the parameters of combined heat supply system the mathematical modeling of thermal processes in multi module solar collectors as additional thermal generators for preheating of the water for boiler have been done. The method of calculation of multi-module solar collectors working with forced circulation for various configurations of hydraulic connection of solar collector modules as the new result of our work have been proposed. The results of numerical simulation of thermal efficiency of solar heat source for boiler of combined heat supply system with the account of design features of the circuit; regime parameters of thermal generators that allow establishing rational conditions of its functioning have been worked out. The conditions of functioning that provide required temperature of heat carrier incoming to boiler and value of flow rate at which the slippage of heat carrier is not possible for different hydraulic circuits of solar modules have been established.

  19. Mars Atmosphere and Regolith COllector/PrOcessor for Lander Ops (MARCO POLO) Atmospheric Processing Module

    Data.gov (United States)

    National Aeronautics and Space Administration — The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a...

  20. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples

    International Nuclear Information System (INIS)

    Boulyga, Sergei F.; Heilmann, Jens; Heumann, Klaus G.; Prohaska, Thomas

    2007-01-01

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for 35 Cl + to more than 6 x 10 5 cps for 238 U + for 1 μg of trace element per gram of coal sample. Detection limits vary from 450 ng g -1 for chlorine and 18 ng g -1 for sulfur to 9.5 pg g -1 for mercury and 0.3 pg g -1 for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis. (orig.)

  1. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples.

    Science.gov (United States)

    Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G

    2007-10-01

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.

  2. Vibrations as a contributor to the cracking of PGV-1000 steam generator cold collector

    International Nuclear Information System (INIS)

    Verezemskij, V.G.

    1997-01-01

    The results of multiple investigations of cold collector ruptures at NPPs with WWER-1000 reactor as a complex and multi-parameter process are generalized. It is shown that the temperature of cold collector operation (280-290 deg C) at which environment corrosion effects are maximum has an important role for revealing the factors causing the damage. When the reactor plant operates under stationary and transient conditions the primary coolant circuit equipment, main circulation pipelines and main steam lines become involved into vibrations with different intensities as a result of pressure pulsations at reverse and multiple frequencies of the main circulation pumps connected with formation of standing pressure waves in the primary circuit and steam lines. The analysis made gives an opportunity to conclude that dynamic loads (vibrations) play the leading part in reaching the limits of cold collector metal cyclic strength and its cracking. It means that the measures for cold collector service life increasing should be directed on vibration amplitude lowering and cyclic stress decreasing

  3. Evaluation of tube to collector connection by hydraulic expansion method in PGV-1000 steam generators

    International Nuclear Information System (INIS)

    Dashti, H.G.; Hashemi, B.; Jahromi, S.A.

    2011-01-01

    Research highlights: → The produced residual stresses in the collector body due to hydraulic expansion method have been compared with explosive method. → The residual stresses were obtained using two methods of FEM and strain gauging tests. → The effect of clearance between tube and collector on the residual stresses was investigated. → The contact stresses between the tube and collector interface were modeled and the required connection strength between tube and collector is estimated based on ASME rules and compared with FE results. - Abstract: Investigations on steam generators failure due to cracking in collector ligaments at perforated parts determined that connection process of the tubes to collector could be one of the main breakdown causes. The stability and strength of tube to collector joint is dependent to the geometry of tube and collector, the joining process and the operational conditions. In this research hydraulic expansion method has been considered as connection method of tube to collector. The Finite Element Method (FEM) was used to simulate the hydraulic expansion process and determine stress condition of the joints. The contact stresses between the tube and collector interface were modeled using contact elements of ANSYS program. Furthermore, the effect of clearance between tube and collector on the residual stresses around of joints was investigated. Some specimens from collector and tube materials were tested at various temperatures and their results were used at rate-independent multi-linear Mises plasticity model for FE analysis. Required connection strength between tube and collector is estimated based on ASME rules and compared with FE results. The results show that the residual tensile stresses could be greatly increased by decreasing of initial clearance. The highest value of residual stresses was observed around of collector holes nevertheless it was considerably lesser than obtained residual stresses in explosive method. The

  4. Radial electromagnetic force calculation of induction motor based on multi-loop theory

    Directory of Open Access Journals (Sweden)

    HE Haibo

    2017-12-01

    Full Text Available [Objectives] In order to study the vibration and noise of induction motors, a method of radial electromagnetic force calculation is established on the basis of the multi-loop model.[Methods] Based on the method of calculating air-gap magneto motive force according to stator and rotor fundamental wave current, the analytic formulas are deduced for calculating the air-gap magneto motive force and radial electromagnetic force generated in accordance with any stator winding and rotor conducting bar current. The multi-loop theory and calculation method for the electromagnetic parameters of a motor are introduced, and a dynamic simulation model of an induction motor built to achieve the current of the stator winding and rotor conducting bars, and obtain the calculation formula of radial electromagnetic force. The radial electromagnetic force and vibration are then estimated.[Results] The experimental results indicate that the vibration acceleration frequency and amplitude of the motor are consistent with the experimental results.[Conclusions] The results and calculation method can support the low noise design of converters.

  5. Rising hopes for vacuum tube collectors

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1982-06-01

    The performance, feasibility and use of vacuum tube solar collectors for domestic hot water (DHW) systems are discussed. An introduction to the design of vacuum tube collectors is presented and comparisons are made with flat plate collectors in terms of effectiveness in DHW applications and cost. The use of vacuum tube collectors is well established for high temperature use such as process heat and absorption cooling applications; there is considerable debate concerning their use in DHW and these arguments are presented. It is pointed out that the accepted standardized comparison test (ASHRAE 93-77) is apparently biased towards the flat plate collectors in direct comparisons of collector efficiencies. Recent developments among manufacturers with regard to vacuum tube collectors and their thinking (pro and con) are discussed in some detail. Breakage and other problems are pointed out although advocates look ahead to lower costs, higher efficiencies, and broader markets (particularly in DHW). It is concluded by some that flat plate collector technology has reached its peak and that vacuum tube collectors will be very prominent in the future. (MJJ)

  6. Comparison of femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McIntosh, Kathryn Gallagher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Judge, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dirmyer, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Campbell, Keri [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Jhanis J. [Applied Spectra Inc., Fremont, CA (United States)

    2016-10-20

    Feasibility tests were conducted using femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for rapid uranium isotopic measurements. The samples used in this study consisted of a range of pg quantities of known 235/238 U solutions as dried spot residues of 300 pL drops on silicon substrates. The samples spanned the following enrichments of 235U: 0.5, 1.5, 2, 3, and 15.1%. In this direct comparison using these particular samples both pulse durations demonstrated near equivalent data can be produced on either system with respect to accuracy and precision. There is no question that either LA-ICP-MS method offers the potential for rapid, accurate and precise isotopic measurements of U10Mo materials whether DU, LEU or HEU. The LA-ICP-MS equipment used for this work is commercially available. The program is in the process of validating this work for large samples using center samples strips from Y-12 MP-1 LEU-Mo Casting #1.

  7. Comparison of femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements

    International Nuclear Information System (INIS)

    Havrilla, George Joseph; McIntosh, Kathryn Gallagher; Judge, Elizabeth; Dirmyer, Matthew R.; Campbell, Keri; Gonzalez, Jhanis J.

    2016-01-01

    Feasibility tests were conducted using femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for rapid uranium isotopic measurements. The samples used in this study consisted of a range of pg quantities of known 235/238 U solutions as dried spot residues of 300 pL drops on silicon substrates. The samples spanned the following enrichments of 235 U: 0.5, 1.5, 2, 3, and 15.1%. In this direct comparison using these particular samples both pulse durations demonstrated near equivalent data can be produced on either system with respect to accuracy and precision. There is no question that either LA-ICP-MS method offers the potential for rapid, accurate and precise isotopic measurements of U10Mo materials whether DU, LEU or HEU. The LA-ICP-MS equipment used for this work is commercially available. The program is in the process of validating this work for large samples using center samples strips from Y-12 MP-1 LEU-Mo Casting #1.

  8. Imaging of Selenium by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in 2-D Electrophoresis Gels and Biological Tissues.

    Science.gov (United States)

    Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra

    2018-01-01

    Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.

  9. Investigations on pulsed laser ablation of Sn at 1064 nm wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L [Dipartimento di Fisica, Universita di Messina, Ctr. Papardo 31, 98166 S. Agata, Messina (Italy); Margarone, D [Dipartimento di Fisica, Universita di Messina, Ctr. Papardo 31, 98166 S. Agata, Messina (Italy)

    2006-11-01

    A Nd:Yag laser operating at 1064 nm, 900 mJ maximum pulse energy and 9 ns pulse duration, is employed to irradiate solid tin targets placed in a high vacuum (10{sup -7} mbar). The Sn plasma produced on the target surface is investigated with different analysis techniques, such as ion collectors, mass quadrupole spectrometry, electron microscopy and surface profilers. Measurements of ablation threshold, ablation yield, atomic and molecular emission, ion and neutral emission are reported. A time-of-flight technique is employed to calculate the velocity and the kinetic energy of the ion emission from the plasma. The angular distributions of the ejected ion species and of their kinetic energy are strongly peaked along the normal to the target surface. A valuation of the electric field generated inside the non-equilibrium plasma is given and discussed.

  10. Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Travis [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

  11. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    International Nuclear Information System (INIS)

    Seidel, C.M.; Jain, J.; Owens, J.W.

    2009-01-01

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method

  12. City sewer collectors biocorrosion

    Science.gov (United States)

    Ksiażek, Mariusz

    2014-12-01

    This paper presents the biocorrosion of city sewer collectors impregnated with special polymer sulphur binders, polymerized sulphur, which is applied as the industrial waste material. The city sewer collectors are settled with a colony of soil bacteria which have corrosive effects on its structure. Chemoautotrophic nitrifying bacteria utilize the residues of halites (carbamide) which migrate in the city sewer collectors, due to the damaged dampproofing of the roadway and produce nitrogen salts. Chemoorganotrophic bacteria utilize the traces of organic substrates and produce a number of organic acids (formic, acetic, propionic, citric, oxalic and other). The activity of microorganisms so enables the origination of primary and secondary salts which affect physical properties of concretes in city sewer collectors unfavourably.

  13. Solar radiation on a catenary collector

    Science.gov (United States)

    Crutchik, M.; Appelbaum, J.

    1992-01-01

    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector produces a shadow on the other side of the collector. This self-shading effect is analyzed. The direct beam, the diffuse, and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on Viking Lander 1 (VL1).

  14. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Hola, Marketa; Otruba, Vitezslav; Kanicky, Viktor

    2006-01-01

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm 3 ) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between ± 3% and ± 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed. The

  15. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hola, Marketa [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Otruba, Vitezslav [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Kanicky, Viktor [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic)]. E-mail: viktork@chemi.muni.cz

    2006-05-15

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm{sup 3}) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between {+-} 3% and {+-} 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed

  16. Solar collector manufacturing activity, 1990

    International Nuclear Information System (INIS)

    1992-01-01

    The Solar Collector Manufacturing Activity 1990 report prepared by the Energy Information Administration (EIA) presents summary and detailed data provided by domestic manufacturers on shipments of solar thermal collectors and photovoltaic cells and modules. Summary data on solar thermal collector shipments are presented for the period 1974 through 1990. Summary data on photovoltaic cell and module shipments are presented for the period 1982 through 1990. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1990

  17. Design package for concentrating solar collector panels

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The Northrup concentrating solar collector is a water/glycol/working fluid type, dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, fiber glass insulation and weighs 98 pounds. The gross collector area is about 29.4/sup 2/ per collector. A collector assembly includes four collector units within a tracking mount array.

  18. Chemically assisted laser ablation ICP mass spectrometry.

    Science.gov (United States)

    Hirata, Takafumi

    2003-01-15

    A new laser ablation technique combined with a chemical evaporation reaction has been developed for elemental ratio analysis of solid samples using an inductively coupled plasma mass spectrometer (ICPMS). Using a chemically assisted laser ablation (CIA) technique developed in this study, analytical repeatability of the elemental ratio measurement was successively improved. To evaluate the reliability of the CLA-ICPMS technique, Pb/U isotopic ratios were determined for zircon samples that have previously been analyzed by other techniques. Conventional laser ablation for Pb/U shows a serious elemental fractionation during ablation mainly due to the large difference in elemental volatility between Pb and U. In the case of Pb/U ratio measurement, a Freon R-134a gas (1,1,1,2-tetrafluoroethane) was introduced into the laser cell as a fluorination reactant. The Freon gas introduced into the laser cell reacts with the ablated sample U, and refractory U compounds are converted to a volatile U fluoride compound (UF6) under the high-temperature condition at the ablation site. This avoids the redeposition of U around the ablation pits. Although not all the U is reacted with Freon, formation of volatile UF compounds improves the transmission efficiency of U. Typical precision of the 206Pb/238U ratio measurement is 3-5% (2sigma) for NIST SRM 610 and Nancy 91500 zircon standard, and the U-Pb age data obtained here show good agreement within analytical uncertainties with the previously reported values. Since the observed Pb/U ratio for solid samples is relatively insensitive to laser power and ablation time, optimization of ablation conditions or acquisition parameters no longer needs to be performed on a sample-to-sample basis.

  19. The performance of single and multi-collector ICP-MS instruments for fast and reliable 34S/32S isotope ratio measurements†

    Science.gov (United States)

    Pröfrock, Daniel; Irrgeher, Johanna; Prohaska, Thomas

    2016-01-01

    The performance and validation characteristics of different single collector inductively coupled plasma mass spectrometers based on different technical principles (ICP-SFMS, ICP-QMS in reaction and collision modes, and ICP-MS/MS) were evaluated in comparison to the performance of MC ICP-MS for fast and reliable S isotope ratio measurements. The validation included the determination of LOD, BEC, measurement repeatability, within-lab reproducibility and deviation from certified values as well as a study on instrumental isotopic fractionation (IIF) and the calculation of the combined standard measurement uncertainty. Different approaches of correction for IIF applying external intra-elemental IIF correction (aka standard-sample bracketing) using certified S reference materials and internal inter-elemental IIF (aka internal standardization) correction using Si isotope ratios in MC ICP-MS are explained and compared. The resulting combined standard uncertainties of examined ICP-QMS systems were not better than 0.3–0.5% (uc,rel), which is in general insufficient to differentiate natural S isotope variations. Although the performance of the single collector ICP-SFMS is better (single measurement uc,rel = 0.08%), the measurement reproducibility (>0.2%) is the major limit of this system and leaves room for improvement. MC ICP-MS operated in the edge mass resolution mode, applying bracketing for correction of IIF, provided isotope ratio values with the highest quality (relative combined measurement uncertainty: 0.02%; deviation from the certified value: <0.002%). PMID:27812369

  20. Dual purpose laser ablation-inductively coupled plasma mass spectrometry for pulsed laser deposition and diagnostics of thin film fabrication: preliminary study.

    Science.gov (United States)

    Azdejković, Mersida Janeva; van Elteren, Johannes Teun; Rozman, Kristina Zuzek; Jaćimović, Radojko; Sarantopoulou, Evangelia; Kobe, Spomenka; Cefalas, Alkiviadis Constantinos

    2009-08-15

    PLD (pulsed laser deposition) is an attractive technique to fabricate thin films with a stoichiometry reflecting that of the target material. Conventional PLD instruments are more or less black boxes in which PLD is performed virtually "blind", i.e. without having great control on the important PLD parameters. In this preliminary study, for the first time, a 213 nm Nd-YAG commercial laser ablation-inductively coupled plasma mass spectrometer (LA-ICPMS) intended for microanalysis work was used for PLD under atmospheric pressure and in and ex situ ICPMS analysis for diagnostics of the thin film fabrication process. A PLD demonstration experiment in a He atmosphere was performed with a Sm(13.8)Fe(82.2)Ta(4.0) target-Ta-coated silicon wafer substrate (contraption with defined geometry in the laser ablation chamber) to transfer the permanent magnetic properties of the target to the film. Although this paper is not dealing with the magnetic properties of the film, elemental analysis was applied as a means of depicting the PLD process. It was shown that in situ ICPMS monitoring of the ablation plume as a function of the laser fluence, beam diameter and repetition rate may be used to ensure the absence of large particles (normally having a stoichiometry somewhat different from the target). Furthermore, ex situ microanalysis of the deposited particles on the substrate, using the LA-ICPMS as an elemental mapping tool, allowed for the investigation of PLD parameters critical in the fabrication of a thin film with appropriate density, homogeneity and stoichiometry.

  1. Trace metal analysis by laser ablation-inductively coupled plasmamass spectrometry and x-ray K-edge densitometry of forensic samples

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Jonna Elizabeth [Iowa State Univ., Ames, IA (United States)

    2016-10-25

    This dissertation describes a variety of studies on the determination of trace elements in samples with forensic importance. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine the trace element composition of numerous lipstick samples. Lipstick samples were determined to be homogeneous. Most lipstick samples of similar colors were readily distinguishable at a 95% confidence interval based on trace element composition. Numerous strands of a multi-strand speaker cable were analyzed by LA-ICP-MS. The strands in this study are spatially heterogeneous in trace element composition. In actual forensic applications, the possibility of spatial heterogeneity must be considered, especially in cases where only small samples (e.g., copper wire fragments after an explosion) are available. The effects of many unpredictable variables, such as weather, temperature, and human activity, on the retention of gunshot residue (GSR) around projectile wounds were assessed with LAICP- MS. Skin samples around gunshot and stab wounds and larvae feeding in and around the wounds on decomposing pig carcasses were analyzed for elements consistent with GSR (Sb, Pb, Ba, and Cu). These elements were detected at higher levels in skin and larvae samples around the gunshot wounds compared to the stab wounds for an extended period of time throughout decomposition in both a winter and summer study. After decomposition, radiographic images of the pig bones containing possible damage from bullets revealed metallic particles embedded within a number of bones. Metallic particles within the bones were analyzed with x-ray, K-edge densitometry and determined to contain lead, indicating that bullet residue can be retained throughout decomposition and detected within bones containing projectile trauma.

  2. Turning collectors for solar radiation

    Science.gov (United States)

    Barak, Amitzur Z.

    1976-01-01

    A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.

  3. Similarities and differences in ablative and non-ablative iron oxide nanoparticle hyperthermia cancer treatment

    Science.gov (United States)

    Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. Jack

    2015-03-01

    The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. It has been demonstrated by many research groups that ablative temperatures and cytotoxicity can be produced with locally NP-based hyperthermia. Such ablative NP techniques have demonstrated the potential for success. Much attention has also been given to the fact that NP may be administered systemically, resulting in a broader cancer therapy approach, a lower level of tumor NP content and a different type of NP cancer therapy (most likely in the adjuvant setting). To use NP based hyperthermia successfully as a cancer treatment, the technique and its goal must be understood and utilized in the appropriate clinical context. The parameters include, but are not limited to, NP access to the tumor (large vs. small quantity), cancer cell-specific targeting, drug carrying capacity, potential as an ionizing radiation sensitizer, and the material properties (magnetic characteristics, size and charge). In addition to their potential for cytotoxicity, the material properties of the NP must also be optimized for imaging, detection and direction. In this paper we will discuss the differences between, and potential applications for, ablative and non-ablative magnetic nanoparticle hyperthermia.

  4. CT-guided radiofrequency ablation of osteoid osteoma using a multi-tined expandable electrode system.

    Science.gov (United States)

    Costanzo, Alessandro; Sandri, Andrea; Regis, Dario; Trivellin, Giacomo; Pierantoni, Silvia; Samaila, Elena; Magnan, Bruno

    2017-10-18

    Radiofrequency ablation (RFA) is the gold standard for the treatment of symptomatic osteoid osteoma (OO) as RFA yields both a high success and low complication rate. It has been widely utilized over the years, but recurrences of OO after this treatment have been documented. These recurrences may be the result of various factors, including incomplete tumor ablation, and are significantly higher in lesions greater than 10 mm. Thus, the need to induce thermal ablation in a wider area led us to use a Multi-Tined Expandable Electrode System (MTEES). In this study we examined the efficacy and safety of RFA using a MTEES in symptomatic OO. Between January 2005 and June 2007, 16 patients with symptomatic OO were treated by CT-guided percutaneous RFA using a MTEES. The diameter of OO ranged from 6 to 15 mm (mean 10±2.6 mm). Patients were evaluated for clinical outcomes, complications and recurrence. Pain evaluation was assessed preoperatively, 2 weeks postoperatively and at last follow-up. Clinical follow-up was available for all patients at a mean of 84.3 months (range 73-96 months). Mean preoperative VAS score was 7.4 (range 5-9), two weeks after the procedure mean VAS score was 0.3 (range 0-1) with a mean change of -7.06 points (p<0.0001). At the last follow-up a complete relief from pain has been observed in all patients. No major and minor complications were observed nor recurrences. RFA using a MTEES has been effective, safe and reliable for the treatment of OOs. This system, by increasing the size of the necrosis, could be a viable alternative to the single needle electrode in lesions larger than 10 mm, reducing the risk of recurrence.

  5. Radiofrequency Ablation Effectively Treated Focal Recurrence of Mesothelioma.

    Science.gov (United States)

    Nakamura, Akifumi; Takuwa, Teruhisa; Hashimoto, Masaki; Kondo, Nobuyuki; Takaki, Haruyuki; Fujiwara, Masayuki; Yamakado, Koichiro; Hasegawa, Seiki

    2018-02-01

    A 55-year-old man with malignant pleural mesothelioma underwent multimodality treatment comprising induction chemotherapy followed by extrapleural pneumonectomy and radiation therapy. After 2.5 years, focal recurrence occurred, with computed tomography revealing a tumor in the left cardiophrenic angle. Surgery was considered a problem for the patient because of the previous extrapleural pneumonectomy and difficult tumor location. Radiofrequency ablation was thus performed; the course was uneventful, and there was no recurrence. Radiofrequency ablation should be considered an option to treat recurrence of malignant pleural mesothelioma. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Bach1 gene ablation reduces steatohepatitis in mouse MCD diet model.

    Science.gov (United States)

    Inoue, Motoki; Tazuma, Susumu; Kanno, Keishi; Hyogo, Hideyuki; Igarashi, Kazuhiko; Chayama, Kazuaki

    2011-03-01

    Bach1 is a transcriptional repressor of heme oxygenase-1 (HO-1, a.k.a. HSP-32), which is an inducible enzyme and has anti-oxidation/anti-inflammatory properties shown in various models of organ injuries. Since oxidative stress plays a pivotal role in the pathogenesis of nonalcoholic steatohepatitis (NASH), HO-1 induction would be expected to prevent the development of NASH. In this study, we investigated the influence of Bach1 ablation in mice on the progression of NASH in methionine-choline deficient (MCD) diet model. Bach1 ablation resulted in significant induction of HO-1 mRNA and its activity in the liver. When fed MCD diet, Bach1(-/-) mice exhibited negligible hepatic steatosis compared to pronounced steatohepatitis in wild type mice with 6-fold increase in hepatic triglyceride content. Whereas feeding of MCD diet decreased mRNA expressions of peroxisome proliferator-activated receptor (PPAR) α and microsomal triglyceride transfer protein (MTP) in wild type mice, there were no change in Bach1(-/-) mice. In addition, hepatic concentration of malondialdehyde (MDA), a biomarker for oxidative stress as well as plasma alanine aminotransferase (ALT) was significantly lower in Bach1(-/-) mice. These findings suggest that Bach1 ablation exerts hepatoprotective effect against steatohepatitis presumably via HO-1 induction and may be a potential therapeutic target.

  7. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Morgan, J.L.L.; Gordon, G.W.; Arrua, R.C.; Skulan, J.L.; Anbar, A.D.; Bullen, T.D.

    2011-01-01

    We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios (44Ca/42Ca and 44Ca/43Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10000; Ca/Ti > 10000000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ44/42Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).

  8. Solar collector overheating protection

    NARCIS (Netherlands)

    Slaman, M.J.; Griessen, R.P.

    Prismatic structures in a thermal solar collector are used as overheating protection. Such structures reflect incoming light efficiently back whenever less thermal power is extracted from the solar collector. Maximum thermal power is generated when the prismatic structure is surrounded by a

  9. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Shaheen, M.E.; Gagnon, J.E.; Fryer, B.J.

    2015-01-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using 66 Zn/ 63 Cu, 208 Pb/ 238 U, 232 Th/ 238 U, 66 Zn/ 232 Th and 66 Zn/ 208 Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%). - Highlights: • Fractionation and ICP-MS signal response were investigated for two different pulse widths using NIST 610 and Naval Brass. • Dependence of fractionation indices on repetition rate and pulse width. • Higher ablation rate was observed in picosecond compared to femtosecond laser ablation of NIST 610 and Brass

  10. Design package for concentrating solar collector panels

    Science.gov (United States)

    1978-01-01

    Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The collector is a water/glycol/working fluid type, with a dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, and fiber glass insulation. It weights 98 pounds. A collector assembly includes four collector units within a tracking mount array.

  11. Simulation of a solar collector array consisting of two types of solar collectors, with and without convection barrier

    DEFF Research Database (Denmark)

    Bava, Federico; Furbo, Simon; Perers, Bengt

    2015-01-01

    The installed area of solar collectors in solar heating fields is rapidly increasing in Denmark. In this scenario even relatively small performance improvements may lead to a large increase in the overall energy production. Both collectors with and without polymer foil, functioning as convection...... barrier, can be found on the Danish market. Depending on the temperature level at which the two types of collectors operate, one can perform better than the other. This project aimed to study the behavior of a 14 solar collector row made of these two different kinds of collectors, in order to optimize...... the composition of the row. Actual solar collectors available on the Danish market (models HT-SA and HT-A 35-10 manufactured by ARCON Solar A/S) were used for this analysis. To perform the study, a simulation model in TRNSYS was developed based on the Danish solar collector field in Braedstrup. A parametric...

  12. Computational modeling of ultra-short-pulse ablation of enamel

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Bailey, D.S.; Young, D.A. [and others

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 sec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  13. Analysis of rare earth elements in coal fly ash using laser ablation inductively coupled plasma mass spectrometry and scanning electron microscopy

    Science.gov (United States)

    Thompson, Robert L.; Bank, Tracy; Montross, Scott; Roth, Elliot; Howard, Bret; Verba, Circe; Granite, Evan

    2018-05-01

    Reference standard NIST SRM 1633b and FA 345, a fly ash sample from an eastern U.S. coal power plant, were analyzed to determine and quantify the mineralogical association of rare earth elements (REE). These analyses were completed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer (SEM-EDS). Internal standardization was avoided by quantifying elemental concentrations by normalizing to 100% oxides. Mineral grains containing elevated REE concentrations were found in diverse chemical environments, but were most commonly found in regions where Al and Si were predominant. Dividing the spot analyses into time segments yielded plots that showed the REE content changing over time as individual mineral grains were being ablated. SEM-EDS images of FA 345 confirmed the trends that were found in the LA-ICP-MS results. Small grains of apatite, monazite, or zircon were frequently observed as free mineral grains or embedded in amorphous aluminosilicate glass and were not associated with ferrous particles. This finding is consistent with previous reports that magnetic enrichment may be an effective way of concentrating non-magnetic REE phases. Furthermore, aggressive mechanical and chemical-based separation schemes will be required to separate and recover REE from aluminosilicate glass.

  14. Four-collector flux sensor

    International Nuclear Information System (INIS)

    Wiegand, W.J. Jr.; Bullis, R.H.; Mongeon, R.J.

    1980-01-01

    A flowmeter based on ion drift techniques was developed for measuring the rate of flow of a fluid through a given cross-section. Ion collectors are positioned on each side of an immediately adjacent to ion source. When air flows axially through the region in which ions are produced and appropriate electric fields are maintained between the collectors, an electric current flows to each collector due to the net motion of the ions. The electric currents and voltages and other parameters which define the flow are combined in an electric circuit so that the flux of the fluid can be determined. (DN)

  15. A distributed garbage collector for active objects

    OpenAIRE

    Puaut , Isabelle

    1993-01-01

    This paper introduces an algorithm that performs garbage collection in distributed systems of active objects (i.e., objects having their own threads of control). The proposed garbage collector is made of a set of local garbage collectors, one per node, loosely coupled to a global garbage collector. The novelties of the proposed garbage collector come from the fact that local garbage collectors need not be synchronized with each other for detecting garbage objects and that faulty communication...

  16. Standardized performance tests of collectors of solar thermal energy: Prototype moderately concentrating grooved collectors

    Science.gov (United States)

    1976-01-01

    Prototypes of moderately concentrating grooved collectors were tested with a solar simulator for varying inlet temperature, flux level, and incident angle. Collector performance is correlated in terms of inlet temperature and flux level.

  17. New collectors from all over the world

    Energy Technology Data Exchange (ETDEWEB)

    Augsten, Eva

    2008-07-01

    Flat-plate collectors are fashionable, even among customers in Shanghai, although China is considered the land of evacuated tubes. Elsewhere, fashion is also a consideration, which partly explains the switch from fin collectors to full-surface collectors. Sun and Wind Energy has put together a list of new collectors from various countries. (orig.)

  18. THERMAL PERFORMANCE OF FLAT PLATE SOLAR COLLECTOR

    Directory of Open Access Journals (Sweden)

    TABET I.

    2017-06-01

    Full Text Available In this paper, a theoretical and experimental studyof flat platesolar water collector with reflectors.A mathematical model based on energy balance equations saw the thermal behavior of the collector is investigated. The experimental test was made at the unit research applies in renewable energy (URAER located in southern Algeria.An increase of 23% for solar radiation incident on the collector surface with the addition of the planers reflectors in the day of May, this increase causes an improvement of the performance of the collector,the fluid temperature increases with an average of 5%. Thetests conducted on the flat plate solar water collector in open circuit enabled the determination of thermal performance of the collector by estimating the daily output The thermal efficiency of the collector ranges from 1% -63% during the day, a mean value of 36%obtained.

  19. Analysis and validation of a quasi-dynamic model for a solar collector field with flat plate collectors and parabolic trough collectors in series for district heating

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2018-01-01

    performance of the hybrid solar district heating plants is also presented. The measured and simulated results show that the integration of parabolic trough collectors in solar district heating plants can guarantee that the system produces hot water with relatively constant outlet temperature. The daily energy......A quasi-dynamic TRNSYS simulation model for a solar collector field with flat plate collectors and parabolic trough collectors in series was described and validated. A simplified method was implemented in TRNSYS in order to carry out long-term energy production analyses of the whole solar heating...... plant. The advantages of the model include faster computation with fewer resources, flexibility of different collector types in solar heating plant configuration and satisfactory accuracy in both dynamic and long-term analyses. In situ measurements were taken from a pilot solar heating plant with 5960 m...

  20. Exergy analysis of photovoltaic solar collector

    International Nuclear Information System (INIS)

    Sopian, K.; Othman, M.Y.Hj.

    1998-01-01

    The exergy analysis (availability or second law analysis) is applied to the photovoltaic thermal solar collector. Photovoltaic thermal collector is a special type of solar collector where electricity and heat are produced simultaneously. The electricity produced from the photovoltaic thermal collector is all converted into useful work. The available quantity of the heat collected can readily be determined by taking into account both the quantity (heat quantity) and quality ( a function of temperature) of the thermal energy. Therefore, using the concept of exergy allows heat produced from the thermal collector and the electricity generated from the photovoltaic cells to be compared or to be evaluated on the basis of a common measure such as the effectiveness on solar energy collection or the total amount of available energy. In this paper, the effectiveness of solar energy collection is called combined photovoltaic thermal exergy efficiency. An experimental setup of a double pas photovoltaic thermal solar collector has been deigned, fabricated and tested. (author)

  1. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, Sergei F. [University of Natural Resources and Applied Life Sciences, Department of Chemistry, Division of Analytical Chemistry-VIRIS Laboratory, Vienna (Austria); Johannes Gutenberg-University, Institute of Inorganic Chemistry and Analytical Chemistry, Mainz (Germany); Heilmann, Jens; Heumann, Klaus G. [Johannes Gutenberg-University, Institute of Inorganic Chemistry and Analytical Chemistry, Mainz (Germany); Prohaska, Thomas [University of Natural Resources and Applied Life Sciences, Department of Chemistry, Division of Analytical Chemistry-VIRIS Laboratory, Vienna (Austria)

    2007-10-15

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for {sup 35}Cl{sup +} to more than 6 x 10{sup 5} cps for {sup 238}U{sup +} for 1 {mu}g of trace element per gram of coal sample. Detection limits vary from 450 ng g{sup -1} for chlorine and 18 ng g{sup -1} for sulfur to 9.5 pg g{sup -1} for mercury and 0.3 pg g{sup -1} for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis. (orig.)

  2. Multi-element RIMS Analysis of Genesis Solar Wind Collectors

    Science.gov (United States)

    Veryovkin, I. V.; Tripa, C. E.; Zinovev, A. V.; King, B. V.; Pellin, M. J.; Burnett, D. S.

    2009-12-01

    The samples of Solar Wind (SW) delivered by the NASA Genesis mission, present significant challenges for surface analytical techniques, in part due to severe terrestrial contamination of the samples on reentry, in part due to the ultra-shallow and diffused ion implants in the SW collector materials. We are performing measurements of metallic elements in the Genesis collectors using Resonance Ionization Mass Spectrometry (RIMS), an ultra-sensitive analytical method capable of detecting SW in samples with lateral dimensions of only a few mm and at concentrations from above one ppm to below one ppt. Since our last report at 2008 AGU Fall Meeting, we have (a) developed and tested new resonance ionization schemes permitting simultaneous measurements of up to three (Ca, Cr, and Mg) elements, and (b) improved reproducibility and accuracy of our RIMS analyses for SW-like samples (i.e. shallow ion implants) by developing and implementing an optimized set of new analytical protocols. This is important since the quality of scientific results from the Genesis mission critically depends on the accuracy of analytical techniques. In this work, we report on simultaneous RIMS measurements of Ca and Cr performed on two silicon SW collector samples, (#60179 and #60476). First, we have conducted test experiments with 3×1013 at/cm2 52Cr and 44Ca implants in silicon to evaluate the accuracy of our quantitative analyses. Implant fluencies were measured by RIMS to be 2.73×1013 and 2.71×1013 at/cm2 for 52Cr and 44Ca, respectively, which corresponds to an accuracy of ≈10%. Using the same implanted wafer as a reference, we conducted RIMS analyses of the Genesis samples: 3 spots on #60179 and 4 spots on #60476. The elemental SW fluencies expected for Cr and Ca are 2.95×1010 and 1.33×1011 at/cm2 , respectively. Our measurements of 52Cr yielded 3.0±0.6×1011 at/cm2 and 5.1±4.1×1010 at/cm2 for #60179 and #60476, respectively. For 40Ca, SW fluencies of 1.39±0.70×1011 at/cm2 in #60179

  3. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A [French Camp, CA

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  4. Femtosecond laser ablation of single-wall carbon nanotube-based material

    International Nuclear Information System (INIS)

    Danilov, Pavel A; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Mel’nik, Nikolay N; Rudenko, Andrey A; Yurovskikh, Vladislav I; Zayarny, Dmitry V; Lednev, Vasily N; Obraztsova, Elena D; Pershin, Sergey M; Bunkin, Alexey F

    2014-01-01

    Single- and multi-shot femtosecond laser surface ablation of a single-wall carbon nanotube-based substrate at 515- and 1030 nm wavelengths was studied by scanning electron microscopy and micro-Raman spectroscopy. The laser ablation proceeds in two ways: as the low-fluence mesoscopic shallow disintegration of the surface nanotube packing, preserving the individual integrity and the semiconducting character of the nanotubes or as the high-fluence deep material removal apparently triggered by the strong intrinsic or impurity-mediated ablation of the individual carbon nanotubes on the substrate surface. (letter)

  5. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, M.E., E-mail: mshaheen73@science.tanta.edu.eg [Department of Physics, Faculty of Sciences, Tanta University, Tanta (Egypt); Gagnon, J.E.; Fryer, B.J. [Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, Ontario N9B 3P4 (Canada); Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2015-05-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using {sup 66}Zn/{sup 63}Cu, {sup 208}Pb/{sup 238}U, {sup 232}Th/{sup 238}U, {sup 66}Zn/{sup 232}Th and {sup 66}Zn/{sup 208}Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%). - Highlights: • Fractionation and ICP-MS signal response were investigated for two different pulse widths using NIST 610 and Naval Brass. • Dependence of fractionation indices on repetition rate and pulse width. • Higher ablation rate was observed in picosecond compared to

  6. Bioinspired plate-based fog collectors.

    Science.gov (United States)

    Heng, Xin; Luo, Cheng

    2014-09-24

    In a recent work, we explored the feeding mechanism of a shorebird to transport liquid drops by repeatedly opening and closing its beak. In this work, we apply the corresponding results to develop a new artificial fog collector. The collector includes two nonparallel plates. It has three advantages in comparison with existing artificial collectors: (i) easy fabrication, (ii) simple design to scale up, and (iii) active transport of condensed water drops. Two collectors have been built. A small one with dimensions of 4.2 × 2.1 × 0.05 cm(3) (length × width × thickness) was first built and tested to examine (i) the time evolution of condensed drop sizes and (ii) the collection processes and efficiencies on the glass, SiO2, and SU-8 plates. Under similar experimental conditions, the amount of water collected per unit area on the small collector is about 9.0, 4.7, and 3.7 times, respectively, as much as the ones reported for beetles, grasses, and metal wires, and the total amount of water collected is around 33, 18, and 15 times. On the basis of the understanding gained from the tests on the small collector, a large collector with dimensions of 26 × 10 × 0.2 cm(3) was further built and tested, which was capable of collecting 15.8 mL of water during a period of 36 min. The amount of water collected, when it is scaled from 36 to 120 min, is about 878, 479, or 405 times more than what was collected by individual beetles, grasses, or metal wires.

  7. Single-stage depressed collectors for gyrotrons

    International Nuclear Information System (INIS)

    Piosczyk, B.; Iatrou, C.T.; Dammertz, G.; Thumm, M.; Univ. Karlsruhe

    1996-01-01

    Two 140 GHz gyrotrons with a single-step depressed collector have been operated. The different position of the isolating collector gap in the stray magnetic field causes the electron motion in the retarding region to be in one case adiabatic and in the other case nonadiabatic. The kind of motion within the retarding field influences strongly the behavior of the gyrotron with a depressed collector. In the case of nonadiabatic motion a significant amount of transverse momentum is given to the electrons reflected at the collector potential. This causes the reflected electrons to be trapped between the magnetic mirror and the collector. The electrons escape from the trap by diffusion across the magnetic field to the body of the tube thus contributing to the body current. Despite the high body current there is no observable influence of the collector voltage on the RF output power. In the case of adiabatic motion the reflected electrons do not gain a sufficient amount of transverse momentum to be trapped by the magnetic mirror. They pass the cavity toward the gun and they are trapped between the negative gun potential and the collector. The interaction with the RF field by electrons traveling through the cavity enhances the diffusion in the velocity space thus enabling the trapped electrons to overcome the potential barrier and escape toward the collector. Therefore the body current stays at low values since in this case the reflected electrons do not contribute to it. However, at higher collector voltages a reduction of RF power occurred and some noise in the electron beam was observed. The main motivation for the development of gyrotrons in the frequency range above 100 GHz with power levels in excess of several hundreds kW per tube, is the application in magnetic fusion devices for plasma heating and for electron current drive

  8. ANALYSIS AND MODELING OF SOLAR EVAPORATOR-COLLECTOR

    Directory of Open Access Journals (Sweden)

    Zakaria Mohd. Amin

    2015-11-01

    Full Text Available Solar energy is considered a sustainable resource that poses little to no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporator-collector (SEC is basically an unglazed flat plate collector where refrigerants, such as R134a is used as the working fluid. As the operating temperature of the SEC is very low, it utilizes both solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. This capability of SECs to utilize ambient energy also enables the system to operate at night. This type of collector can be locally made and is relatively much cheaper than the conventional collector.   At the National University of Singapore, the evaporator-collector was integrated to a heat pump and the performance was investigated for several thermal applications: (i water heating, (ii drying and (iii desalination. A 2-dimensional transient mathematical model of this system was developed and validated by experimental data. The present study provides a comprehensive study of performance. KEYWORDS: heat pump; evaporator-collector.

  9. Performance of an absorbing concentrating solar collectors

    International Nuclear Information System (INIS)

    Imadojemu, H.

    1990-01-01

    This paper reports on a comparison of the efficiency of an absorbing fluid parabolic trough concentrating solar collector and a traditional concentrating collector that was made. In the absorbing fluid collector, black liquid flows through a glass tube absorber while the same black liquid flows through a selective black coated copper tube absorber while the same black fluid flows through a selective black coated copper tube absorber in the traditional collector. After a careful study of the properties of available black liquids, a mixture of water and black ink was chosen as the black absorbing medium or transfer fluid. In the black liquid glass collector there is a slightly improved efficiency based on beam radiation as a result of the direct absorption process and an increase in the effective transmittance absorptance. At worst the efficiency of this collector equals that of the traditional concentrating collector when the efficiency is based on total radiation. The collector's reflecting surfaces were made of aluminum sheet, parabolic line focus and with cylindrical receivers. The ease of manufacture and reduced cost per unit energy collected, in addition to the clean and pollution free mode of energy conversion, makes it very attractive

  10. Soft x-ray driven ablation and its positive use for a new efficient acceleration

    International Nuclear Information System (INIS)

    Yabe, Takashi; Kiyokawa, Shuji; Mochizuki, Takayasu; Sakabe, Shuji; Yamanaka, Chiyoe

    1983-01-01

    The ablation process driven by soft X-ray is investigated by one-dimensional hydrodynamic code coupled with LTE, average ion model and multi-group radiation package. The following two major results are obtained: (1) the ablation pressure and mass ablation rate scalings, and (2) a new acceleration scheme which positively uses the unique property of soft X-ray transport. (author)

  11. Evaluation of Test Method for Solar Collector Efficiency

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximat...... and the sky temperature. Based on the investigations, recommendations for change of the test methods and test conditions are considered. The investigations are carried out within the NEGST (New Generation of Solar Thermal Systems) project financed by EU.......The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximated...... equation where Tin is the inlet temperature to the collector and Tout is the outlet temperature from the collector. The specific heat of the solar collector fluid is in the test method as an approximation determined as a constant equal to the specific heat of the solar collector fluid at the temperature Tm...

  12. Behavior of a solar collector loop during stagnation

    DEFF Research Database (Denmark)

    Chen, Ziqian; Dragsted, Janne; Furbo, Simon

    2015-01-01

    A mathematical model simulating the emptying behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed and validated with measured data. The calculated results are in good agreement with the measured results. The developed simulation model...... is therefore suitable to determine the behavior of a solar collector loop during stagnation. A volume ratio R, which is the ratio of the volume of the vapour in the upper pipes of the solar collector loop during stagnation and the fluid content of solar collectors, is introduced to determine the mass...... of the collector fluid pushed into the expansion vessel during stagnation, Min. A correlation function for the mass Min and the volume ratio R for solar collector loops is obtained. The function can be used to determine a suitable size of expansion vessels for solar collector loops....

  13. Experimental evaluation of flat plate solar collector using nanofluids

    International Nuclear Information System (INIS)

    Verma, Sujit Kumar; Tiwari, Arun Kumar; Chauhan, Durg Singh

    2017-01-01

    Highlights: • Solar collectors are special kind of heat exchangers. • Particle concentration is important parameter for thermal conductivity of nanofluid. • Rise of Bejan number indicates systems qualitative response. • Multi walled carbon nanotube is best performing. - Abstract: The present analysis focuses on a wide variety of nanofluids for evaluating performance of flat plate solar collector in terms of various parameters as well as in respect of energy and exergy efficiency. Also, based on our experimental findings on varying mass flow rate, the present investigation has been conducted with optimum particle volume concentration. Experiments indicate that for ∼0.75% particle volume concentration at a mass flow rate of 0.025 kg/s, exergy efficiency for Multi walled carbon nanotube/water nanofluid is enhanced by 29.32% followed by 21.46%, 16.67%, 10.86%, 6.97% and 5.74%, respectively for Graphene/water, Copper Oxide water, Aluminum Oxide/water, Titanium oxide/water, and Silicon Oxide/water respectively instead of water as the base fluid. Entropy generation, which is a drawback, is also minimum in Multiwalled carbon nanotube/water nanofluids. Under the same thermophysical parameters, the maximum drop in entropy generation can be observed in Multiwalled carbon nanotube/water, which is 65.55%, followed by 57.89%, 48.32%, 36.84%, 24.49% and 10.04%, respectively for graphene/water, copper oxide/water, Aluminum/water, Titanium Oxide /water, and Silicon oxide /water instead of water as the base fluid. Rise of Bejan number towards unity emphasizes improved system performance in terms of efficient conversion of the available energy into useful functions. The highest rise in energy efficiency of a collector has been recorded in Multiwalled carbon nanotube/water, which is 23.47%, followed by 16.97%, 12.64%, 8.28%, 5.09% and 4.08%, respectively for graphene/water, Copper oxide/water, Aluminum oxide/water, Titanium oxide /water, and Silicon oxide/water instead of

  14. Standardized performance tests of collectors of solar thermal energy: A selectively coated, steel collector with one transparent cover

    Science.gov (United States)

    1976-01-01

    Basic test results are presented of a flat-plate solar collector whose performance was determined in solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency was correlated in terms of inlet temperature and flux level.

  15. Emergency bypass post percutaneous atrial ablation: a case report.

    LENUS (Irish Health Repository)

    Hargrove, M

    2010-11-01

    A 34-year-old male undergoing percutaneous atrial ablation procedure for paroxysmal fibrillation required emergency sternotomy for cardiac tamponade. The patient had been anticoagulated and had received plavix and aspirin prior to and during the ablation procedure. Seven units of red cell concentrate had been transfused in the cardiac catherisation laboratory. On arrival in theatre, the patient was hypotensive, but was awake on induction of anaesthesia. No recordable blood pressure with non-invasive monitoring was observed. A sternotomy was immediately performed and, on evacuation of the pericardium, a bleeding site was not visible. The patient was commenced on cardiopulmonary bypass. Bleeding site was identified and the defect closed. The patient was weaned from cardiopulmonary bypass with minimal inotropic support and made an uneventful recovery. Bypass time was 38 minutes. A literature review showed a 1% incidence of post-ablation bleeding(1). The incidence of reverting to bypass for such an event has not been reported previously. During these procedures, it might be wise to have the cardiothoracic team notified while atrial ablation procedures are being performed in the cardiac catheterization laboratory.

  16. Online Monitoring of Nanoparticles Formed during Nanosecond Laser Ablation.

    Czech Academy of Sciences Publication Activity Database

    Nováková, H.; Holá, M.; Vojtíšek-Lomb, M.; Ondráček, Jakub; Kanický, V.

    2016-01-01

    Roč. 125, NOV 1 (2016), s. 52-60 ISSN 0584-8547 R&D Projects: GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:67985858 Keywords : laser ablation * fast mobility particle sizer * inductively coupled plasma mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.241, year: 2016

  17. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    Science.gov (United States)

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  18. Analysis of collector-emitter offset voltage of InGaP/GaAs composite collector double heterojunction bipolar transistor

    Science.gov (United States)

    Lew, K. L.; Yoon, S. F.

    2002-04-01

    The Ebers-Moll-like terminal current expressions of a composite collector double heterojunction bipolar transistor (DHBT), which takes the recombination effect into account, have been formulated and an expression for collector-emitter offset voltage [VCE(offset)] has been derived. Factors affecting the VCE(offset) of a composite collector DHBT are investigated and good agreement between the calculated and reported experimental results is shown. Analytical results showed that the transmission coefficient of the base-collector (B-C) junction does not have a considerable effect on the VCE(offset), provided that the B-C junction is of good quality. Thus, despite its asymmetric structure, the VCE(offset) of an optimally designed composite collector DHBT could be as low as that of a conventional DHBT. Hence a composite collector DHBT with low saturation voltage and negligible VCE(offset) is possible if the two conditions: (i) good quality B-C junction, (ii) base transport factor, α≈1, are fulfilled.

  19. Depressed collectors for millimeter wave gyrotrons

    International Nuclear Information System (INIS)

    Singh, A.; Granatstein, V.L.

    1992-01-01

    The main issues relating to design of depressed collectors for millimeter wave gyrotrons are discussed. A flow diagram is presented and the interlinking steps are outlined. Design studies are given for two kinds of gyrotrons on which severe constraints on the maximum radii of the collectors had been imposed; namely, for a cavity type and a quasi-optical gyrotron. A collector efficiency of the order of 70 percent is shown to be feasible for either case using careful tailoring of magnetic field profiles. A code has been developed to assist in doing this. A general approach toward initial placement of collectors has been indicated

  20. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...... carried out, employing both laboratory test and theoretical calculations. The collectors were tested in a small solar domestic hot water (SDHW) system in a laboratory test facility under realistic conditions. The yearly thermal performance of solar heating systems with these evacuated tubular collectors......, as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat...

  1. Effect of openings collectors and solar irradiance on the thermal efficiency of flat plate-finned collector for indirect-type passive solar dryer

    Science.gov (United States)

    Batubara, Fatimah; Dina, Sari Farah; Klaudia Kathryn Y., M.; Turmuzi, M.; Siregar, Fitri; Panjaitan, Nora

    2017-06-01

    Research on the effect of openings solar collector and solar irradiance to thermal efficiency has been done. Solar collector by flat plate-finned type consists of 3 ply insulator namely wood, Styrofoam and Rockwool with thickness respectively are 10 mm, 25 mm and 50 mm. Absorber plate made of aluminum sheet with thickness of 0.30 mm, painted by black-doff. Installation of 19 units fins (length x height x thickness: 1000x20x10 mm) on the collector will increase surface area of absorber so it can receive much more solar energy. The solar collector cover is made of glass (thickness of 5 mm). During the research, the solar irradiance and temperature of collector are measured and recorded every five minutes. Temperature measurement performed on the surface of the absorber plate, inside of collector, surface cover and the outer side insulator (plywood). This data is used to calculate the heat loss due to conduction, convection and radiation on the collector. Openings of collectors vary as follows: 100%, 75%, 15% and 0% (total enclosed). The data collecting was conducted from 09.00 am to 17.00 pm and triplicates. The collector thermal efficiency calculated based on the ratio of the amount of heat received to the solar irradiance absorbed. The results show that each of openings solar collector has different solar irradiance (because it was done on a different day) which is in units of W/m2: 390 (100% open), 376 (75% open), 429 (15% open), and 359 (totally enclosed). The highest thermal efficiency is in openings variation of 15% opened. These results indicate that the efficiency of the collector is influenced by the solar irradiance received by the collector and the temperature on the collector plate. The highest thermal efficiency is in variation of openings 15%. These indicate that the efficiency of the collector was influenced by solar irradiance received by the collector and openings of the collector plate.

  2. Numerical eduction of active multi-port data for in-duct obstructions

    Science.gov (United States)

    Sack, Stefan; Shur, Michael; Åbom, Mats; Strelets, Michael; Travin, Andrey

    2017-12-01

    A numerical method for aeroacoustic source characterization of in-duct components at frequencies beyond the cut-on frequencies of several acoustic modes is presented. Assuming linearity and time invariance, any ducted component can be fully characterized using a network (multi-port) model including source strength and scattering. A two-step multi-source approach is applied to numerical data in order to educe the multi-port characteristics. First, a scale resolving compressible flow simulation, here the Improved Delayed Detached Eddy Simulation (IDDES), is run to compute the channel flow that also contains the acoustic sources. Second, a linear acoustic computation, here the Linearized Navier Stokes Equations (LNSE), around a mean flow is solved for different acoustic loads to determine the component's scattering. The work uncovers the high potential of two-step numerical multi-port eduction methods. Particularly, it is shown that the acoustic source power spectra can be accurately extracted from IDDES data and the total acoustic power prediction is very good. Furthermore, a good result in the scattering data obtained from a second computationally inexpensive LNSE computation is achieved. The approach is interesting when describing mid-size duct systems, for example ventilation systems in aircraft and buildings, with a moderate number of higher order modes propagating in the considered frequency range. Therefore, the increasing availability of compressible flow data opens a wide field of applications.

  3. Current developments in laser ablation-inductively coupled plasma-mass spectrometry for use in geology, forensics, and nuclear nonproliferation research

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, Joshua D. [Iowa State Univ., Ames, IA (United States)

    2008-08-26

    This dissertation focused on new applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The diverse fields that were investigated show the versatility of the technique. In Chapter 2, LA-ICP-MS was used to investigate the rare earth element (REE) profiles of garnets from the Broken Hill Deposit in New South Wales, Australia. The normalized REE profiles helped to shed new light on the formation of deposits of sulfide ores. This information may be helpful in identifying the location of sulfide ore deposits in other locations. New sources of metals such as Pg, Zn, and Ag, produced from these ores, are needed to sustain our current technological society. The application of LA-ICP-MS presented in Chapter 3 is the forensics analysis of automotive putty and caulking. The elemental analysis of these materials was combined with the use of Principal Components Analysis (PCA). The PCA comparison was able to differentiate the automotive putty samples by manufacturer and lot number. The analysis of caulk was able to show a differentiation based on manufacturer, but no clear differentiation was shown by lot number. This differentiation may allow matching of evidence in the future. This will require many more analyses and the construction of a database made up of many different samples. The 4th chapter was a study of the capabilities of LA-ICP-MS for fast and precise analysis of particle ensembles for nuclear nonproliferation applications. Laser ablation has the ability to spatially resolve particle ensembles which may contain uranium or other actinides from other particles present in a sample. This is of importance in samples obtained from air on filter media. The particle ensembles of interest may be mixed in amongst dust and other particulates. A problem arises when ablating these particle ensembles directly from the filter media. Dust particles other than ones of interest may be accidentally entrained in the aerosol of the ablated particle

  4. COMPARATIVE FIELD EXPERIMENTAL INVESTIGATIONS OF DIFFERENT FLAT PLATE SOLAR COLLECTORS

    Directory of Open Access Journals (Sweden)

    Guangming Chen

    2015-12-01

    Full Text Available Full-scale traditional metal solar collectors and solar collector specimens fabricated from polymeric materials were investigated in the present study. A polymeric collector is 67.8% lighter than a traditional metal solar collector, and a metal solar collector with transparent plastic covering is 40.3% lighter than a traditional metal solar collector. Honeycomb multichannel plates made from polycarbonate were chosen to create a polymeric solar collector. A test rig for the natural circulation of the working fluid in a solar collector was built for a comparative experimental investigation of various solar collectors operating at ambient conditions. It was shown experimentally that the efficiency of a polymeric collector is 8–15% lower than the efficiency of a traditional collector.

  5. Annual measured and simulated thermal performance analysis of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    Flat plate collectors have relatively low efficiency at the typical supply temperatures of district heating networks (70–95 °C). Parabolic trough collectors retain their high efficiency at these temperatures. To maximize the advantages of flat plate collectors and parabolic trough collectors in l...... for this type of hybrid solar district heating plants with flat plate collectors and parabolic trough collectors in the Nordic region, but also introduce a novel design concept of solar district heating plants to other high solar radiation areas....... in large solar heating plants for a district heating network, a hybrid solar collector field with 5960 m2 flat plate collectors and 4039 m2 parabolic trough collectors in series was constructed in Taars, Denmark. The design principle is that the flat plate collectors preheat the return water from...

  6. Comparison of three different collectors for process heat applications

    Science.gov (United States)

    Brunold, Stefan; Frey, R.; Frei, Ulrich

    1994-09-01

    In general vacuum tube collectors are used in solar process heat systems. Another possibility is to use transparent insulated flat plate collectors. A critical point however, is that most of the common transparent insulating materials can not withstand high temperatures because they consist of plastics. Thus, temperature resistive collector covers combining a high tranmisivity with a low U-value are required. One possibility is to use capillaries made of glass instead of plastics. Measurement results of collector efficiency and incident angle modifier will be presented as well as calculated energy gains for three different collectors: a vacuum tube collector (Giordano Ind., France), a CPC vacuum tube collector (microtherm Energietechnik Germany; a new flat plate collector using glass capillary as transparent insulation (SET, Germany).

  7. Modelling of Microclimate in collectors

    DEFF Research Database (Denmark)

    Holck, Ole

    1996-01-01

    Abstract It is important to avoid condensation in solar collectors, most of all because wetness of the absorber can damage the selective surface and cause corrosion on the absorber plate. During night time the cover of collectors will cool below ambient temperature due to thermal radiation...

  8. Hydrodynamic model for ultra-short pulse ablation of hard dental tissue

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Bailey, D.S.; Young, D.A.; Alley, W.E.; Feit, M.D.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Neev, J. [Beckman Laser Inst., Irvine, CA (United States)

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 fsec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  9. Standardized performance tests of collectors of solar thermal energy: An evacuated flatplate copper collector with a serpentine flow distribution

    Science.gov (United States)

    Johnson, S. M.

    1976-01-01

    Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  10. Pellet ablation and ablation model development

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1989-01-01

    A broad survey of pellet ablation is given, based primarily on information presented at this meeting. The implications of various experimental observations for ablation theory are derived from qualitative arguments of the physics involved. The major elements of a more complete ablation theory are then outlined in terms of these observations. This is followed by a few suggestions on improving the connections between theory and experimental results through examination of ablation data. Although this is a rather aggressive undertaking for such a brief (and undoubtedly incomplete) assessment, some of the discussion may help us advance the understanding of pellet ablation. 17 refs

  11. Thermal performance of a transpired solar collector updraft tower

    International Nuclear Information System (INIS)

    Eryener, Dogan; Hollick, John; Kuscu, Hilmi

    2017-01-01

    Highlights: • Transpired solar collector updraft tower has been studied experimentally. • Transpired solar collector updraft tower efficiency ranges from 60 to 80%. • A comparison has been made with other SUT prototypes. • Three times higher efficiency compared to the glazed collectors of conventional solar towers. - Abstract: A novel solar updraft tower prototype, which consists of transpired solar collector, is studied, its function principle is described and its experimental thermal performance is presented for the first time. A test unit of transpired solar collector updraft tower was installed at the campus of Trakya University Engineering Faculty in Edirne-Turkey in 2014. Solar radiation, ambient temperature, collector cavity temperatures, and chimney velocities were monitored during summer and winter period. The results showed that transpired solar collector efficiency ranges from 60% to 80%. The maximum temperature rise in the collector area is found to be 16–18 °C on the typical sunny day. Compared to conventional solar tower glazed collectors, three times higher efficiency is obtained. With increased thermal efficiency, large solar collector areas for solar towers can be reduced in half or less.

  12. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos S. [Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, SP (Brazil); Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Schenk, Emily R. [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Professor Arthur Riedel 275, Diadema, SP (Brazil); Krug, Francisco José [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Almirall, José R., E-mail: almirall@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States)

    2014-04-01

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg{sup −1} for Zn to as high as 94 mg kg{sup −1} for K but were generally below 6 mg kg{sup −1} for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ∼ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ∼ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis. - Highlights: • An evaluation of LA-ICP-OES for the direct analysis of pelleted plant material is reported. • Orange citrus, soy and sugarcane plants were pressed into pellets and sampled directly. • The element menu consisted of Ca, Mg, P, K, Fe, Mn, Zn and B. • LODs for the method ranged from 0.1 mg kg{sup −1} for Zn to 94 mg kg{sup −1} for K. • The precision ranged from 4% RSD for Mn to 17% RSD for Zn (∼ 6.5% RSD average)

  13. Current collectors for improved safety

    Science.gov (United States)

    Abdelmalak, Michael Naguib; Allu, Srikanth; Dudney, Nancy J.; Li, Jianlin; Simunovic, Srdjan; Wang, Hsin

    2017-12-19

    A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, and methods for operating a battery.

  14. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  15. High efficiency inductive output tubes with intense annular electron beams

    Science.gov (United States)

    Appanam Karakkad, J.; Matthew, D.; Ray, R.; Beaudoin, B. L.; Narayan, A.; Nusinovich, G. S.; Ting, A.; Antonsen, T. M.

    2017-10-01

    For mobile ionospheric heaters, it is necessary to develop highly efficient RF sources capable of delivering radiation in the frequency range from 3 to 10 MHz with an average power at a megawatt level. A promising source, which is capable of offering these parameters, is a grid-less version of the inductive output tube (IOT), also known as a klystrode. In this paper, studies analyzing the efficiency of grid-less IOTs are described. The basic trade-offs needed to reach high efficiency are investigated. In particular, the trade-off between the peak current and the duration of the current micro-pulse is analyzed. A particle in the cell code is used to self-consistently calculate the distribution in axial and transverse momentum and in total electron energy from the cathode to the collector. The efficiency of IOTs with collectors of various configurations is examined. It is shown that the efficiency of IOTs can be in the 90% range even without using depressed collectors.

  16. Polytopol computing for multi-core and distributed systems

    Science.gov (United States)

    Spaanenburg, Henk; Spaanenburg, Lambert; Ranefors, Johan

    2009-05-01

    Multi-core computing provides new challenges to software engineering. The paper addresses such issues in the general setting of polytopol computing, that takes multi-core problems in such widely differing areas as ambient intelligence sensor networks and cloud computing into account. It argues that the essence lies in a suitable allocation of free moving tasks. Where hardware is ubiquitous and pervasive, the network is virtualized into a connection of software snippets judiciously injected to such hardware that a system function looks as one again. The concept of polytopol computing provides a further formalization in terms of the partitioning of labor between collector and sensor nodes. Collectors provide functions such as a knowledge integrator, awareness collector, situation displayer/reporter, communicator of clues and an inquiry-interface provider. Sensors provide functions such as anomaly detection (only communicating singularities, not continuous observation), they are generally powered or self-powered, amorphous (not on a grid) with generation-and-attrition, field re-programmable, and sensor plug-and-play-able. Together the collector and the sensor are part of the skeleton injector mechanism, added to every node, and give the network the ability to organize itself into some of many topologies. Finally we will discuss a number of applications and indicate how a multi-core architecture supports the security aspects of the skeleton injector.

  17. Optimal nonimaging integrated evacuated solar collector

    Science.gov (United States)

    Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland

    1993-11-01

    A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.

  18. Silver nanowires as the current collector for a flexible in-plane micro-supercapacitor via a one-step, mask-free patterning strategy

    Science.gov (United States)

    Liu, Lang; Li, Han-Yu; Yu, Yao; Liu, Lin; Wu, Yue

    2018-02-01

    The fabrication of a current collector-contained in-plane micro-supercapacitor (MSC) usually requires the patterning of the current collector first and then subsequent patterning of the active material with the assistance of a photoresist and mask. However, this two-step patterning process is too complicated and the photoresist used is harmful to the properties of nanomaterials. Here, we demonstrate a one-step, mask-free strategy to pattern the current collector and the active material at the same time, for the fabrication of an all-solid-state flexible in-plane MSC. Silver nanowires (AgNWs) are used as the current collector. An atmospheric pressure pulsed cold micro-plasma-jet is used to realize the one-step, mask-free production of interdigitated multi-walled carbon nanotube (MWCNT)/AgNW electrodes. Remarkably, the fabricated MWCNT/AgNW-based MSC shows good flexibility and excellent rate capability. Moreover, the performance of properties including cyclic stability, equivalent series resistance, relaxation time and energy/power densities of the MWCNT/AgNW-based MSC are significantly enhanced by the presence of the AgNW current collector.

  19. The Thermal Collector With Varied Glass Covers

    International Nuclear Information System (INIS)

    Luminosu, I.; Pop, N.

    2010-01-01

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  20. Laser ablation inductively coupled plasma mass spectrometry for the determination of trace elements in soil

    International Nuclear Information System (INIS)

    Lee Yiling; Chang Chaochiang; Jiang Shiuhjen

    2003-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been applied to the determination of Cr, Cu, Zn, Cd and Pb in soil samples. The dried soil powder was pressed into a pellet for LA-ICP-MS analysis. Triton X-100 was added to work as the modifier to enhance the ion signals. The influences of instrument operating conditions (LA and ICP-MS) and pellet preparation on the ion signals were reported. For Cr determination, the ICP-MS was operated under the dynamic reaction cell mode which alleviated the mass overlap interference. Standard addition method and isotope dilution method were used for the quantitation work. The powder sample was spiked with suitable amounts of element standards and/or enriched isotopes, well-mixed, dried and then pressed into a pellet for LA-ICP-MS analysis. This method has been applied to determine Cr, Cu, Zn, Cd and Pb in NIST SRM 2711 Montana soil and NIST SRM 2709 San Joaquin soil reference materials. The analysis results were in agreement with the certified values. The precision between sample replicates was better than 5% with LA-ICP-MS method. Detection limits estimated from standard addition curves were approximately 0.9, 2, 9, 0.7 and 0.3 ng g -1 for Cr, Cu, Zn, Cd and Pb, respectively

  1. Pathways toward a low cost evacuated collector system

    Science.gov (United States)

    Hull, J. R.; Schertz, W. W.; Allen, J. W.; Ogallagher, J. J.; Winston, R.

    The goal of widespread use of solar thermal collectors will only be achieved when they are proven to be economically superior to competing energy sources. Evacuated tubular collectors appear to have the potential to achieve this goal. An advanced evacuated collector using nonimaging concentration under development at the University of Chicago and Argonne can achieve a 50% seasonal efficiency at heat delivery temperatures in excess of 170C. The same collector has an optical efficiency so that low temperature performance is also excellent. In this advanced collector design all of the critical components are enclosed in the vacuum, and the collector has an inherently long lifetime. The current cost of evacuated systems is too high, mainly because the volume of production has been too low to realize economies of mass production. It appears that certain design features of evacuated collectors can be changed (e.g., use of heat pipe absorbers) so as to introduce new system design and market strategy options that can reduce the balance of system cost.

  2. Air solar collectors in building use - A review

    Science.gov (United States)

    Bejan, Andrei-Stelian; Labihi, Abdelouhab; Croitoru, Cristiana; Catalina, Tiberiu

    2018-02-01

    In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  3. Air solar collectors in building use - A review

    Directory of Open Access Journals (Sweden)

    Bejan Andrei-Stelian

    2018-01-01

    Full Text Available In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  4. Solar collector design with respect to moisture problems

    DEFF Research Database (Denmark)

    Holck, Ole; Svendsen, Svend; Brunold, Stefan

    2003-01-01

    more ventilation openings should be made and what influence the insulation material has. Guidelines for collector designers are proposed. The design guidelines provide some suggestions to be considered during the design of solar collectors.The work was carried out within the framework of the working...... group Materials in Solar Thermal Collectors of the International Energy Agency-Solar Heating and Cooling Programme....... the design of the collector, the location and size of ventilation holes, properties of the insulation materials and dimension of the solar collector box are parameters that have to be taken into account for the optimisation in order to achieve the most favourable microclimate to prevent corrosion...

  5. A solar energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' yev, L.L.; Avakyan, Yu.V.; Bogdanov, V.M.; Gagiyan, L.A.; Grakovich, L.P.; Karapetyan, G.S.; Morgun, V.A.

    1984-01-01

    A collector whose primary component is a heating pipe is proposed. The evaporation zone located in the lower half of the heating pipe has an external absorption coating. Chambers that open upward and contain the evaporating fluid are mounted within this region along the top. In order to improve operational reliability of the collector, these chambers are mounted on one coated wall; the area of projection of each of the chambers onto the horizontal plane is greater than the area of the projection of each of the chambers placed above it. The coating may be in the form of photocells; a filter is mounted on the chamber side inside the evaporation zone. The evaporation zone may take the form of a cylinder with a segmented base; the photocells are mounted on a flat section of the lateral surface. The collector may be used to cool the photocells.

  6. High-intensity interstitial ultrasound for thermal ablation of focal cancer targets in prostate

    Science.gov (United States)

    Salgaonkar, Vasant A.; Scott, Serena; Kurhanewicz, John; Diederich, Chris J.

    2017-03-01

    Recent advances in image based techniques such as multi-parametric MRI (MP-MRI) can provide precise targeting of focal disease in the prostate. Thermal ablation of such cancer targets while avoiding rectum, urethra, neurovascular bundles (NVB) and sphincter is clinically challenging. The approach described here employs multi-element ultrasound linear arrays designed for transperineal placement within prostate. They consist of independently powered sectored tubular transducers (6.5 - 8.0 MHz) that provide spatial control of energy deposition in angle and length. Volumetric ablation strategies were investigated through patient-specific biothermal models based on Pennes bioheat transfer equation. The acoustic and heat transfer models used here have been validated in several previous simulation and experimental studies. Focal disease sites in prostate were identified through multi-parametric MR images of representative patient cases (n=3). Focal cancer lesions and critical anatomy (prostate, urethra, rectum, bladder, seminal vesicles) were manually segmented (Mimics, Materialise) and converted to 3D finite element meshes (3-Matic, Materialise). The chosen test cases consisted of patients with medium and large sized glands and models of bulk tissue ablation covered volumes in a single quadrant in posterior prostate, hemi-gland targets and "hockey-stick" targets (lesions in three quadrants). Ultrasound applicator placement was determined such that devices were positioned along the prostate periphery while avoiding surrounding anatomy. Transducer sector angles were chosen based on applicator location within limits of fabrication practicability. Thermal models were numerically solved using finite element methods (FEM) in COMSOL Multiphysics. Temperature and thermal dose distributions were calculated to determine treated volumes (> 240 CEM43C, >52 °C) and safety profiles (<10 CEM43C, <45 °C) for nerve, rectal and urethral sparing. Modeling studies indicated that focal

  7. Protocol of measurement techniques - Project colored solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A.; Chambrier, E. De; Roecker, Ch.; Scartezzini, J.-L.

    2004-08-15

    This illustrated annual report for the Swiss Federal Office of Energy (SFOE) takes a look at work done at the Swiss Federal Institute of Technology in Lausanne, Switzerland, on multi-layer, thin-film interference coatings for solar collector glazing. The correct combinations of refractive indices and film thickness are discussed. The authors state that corresponding multi-layered thin film stacks will have to be realised experimentally in a controlled and reproducible way. New thin film materials are to be tailored to exhibit optimised optical and ageing properties. The development of these coatings is to be based on various measurement techniques, such as spectro-photometry, measurements of total power throughput by means of a solar simulator, spectroscopic ellipsometry, scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The paper provides many examples of typical data and explains which film properties can be inferred from each method and thus describes both the function and purpose of the different measurement techniques.

  8. Flat plate collector. Solarflachkollektor

    Energy Technology Data Exchange (ETDEWEB)

    Raab, N

    1979-03-29

    The invention refers to a flat solar collector with an absorber plate, which is arranged on a support and is covered by a transparent window, between which and the plate there is an air space. The previously known structures of this type had the disadvantage that the thermal expansion of the enclosed air caused considerable difficulties. The purpose of the invention is therefore to create a collector, which can be used on the modular system, retains its properties and is safe in spite of the great temperature variations. According to the invention this problem is solved by providing a compensating space in the collector, which is separated by a diaphragm from the airspace between the plate and the covering window. The airspace therefore remains sealed against the atmosphere, so that no dirt, corrosion of the inside and no condensation can reduce the efficiency of the collector. A rise in pressure due to an increase in temperature is immediately reduced by expansion of the diaphragm, which enters the compensation space. In order to increase the pressure in the airspace above the plate for increases in temperature, the compensation space is connected to the atmosphere. The diaphragm can be mirrored on the side towards the absorber, which makes the diaphragm into an insulating element, as it reflects radiated heat from the absorber.

  9. Advanced Model of Squirrel Cage Induction Machine for Broken Rotor Bars Fault Using Multi Indicators

    Directory of Open Access Journals (Sweden)

    Ilias Ouachtouk

    2016-01-01

    Full Text Available Squirrel cage induction machine are the most commonly used electrical drives, but like any other machine, they are vulnerable to faults. Among the widespread failures of the induction machine there are rotor faults. This paper focuses on the detection of broken rotor bars fault using multi-indicator. However, diagnostics of asynchronous machine rotor faults can be accomplished by analysing the anomalies of machine local variable such as torque, magnetic flux, stator current and neutral voltage signature analysis. The aim of this research is to summarize the existing models and to develop new models of squirrel cage induction motors with consideration of the neutral voltage and to study the effect of broken rotor bars on the different electrical quantities such as the park currents, torque, stator currents and neutral voltage. The performance of the model was assessed by comparing the simulation and experimental results. The obtained results show the effectiveness of the model, and allow detection and diagnosis of these defects.

  10. Standardized performance tests of collectors of solar thermal energy-a flat-plate collector with a single-tube serpentine flow distribution

    Science.gov (United States)

    Johnson, S.

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.

  11. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Perdian, David C. [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  12. Bipolar radiofrequency ablation of liver metastases during laparotomy. First clinical experiences with a new multipolar ablation concept.

    Science.gov (United States)

    Ritz, Joerg-Peter; Lehmann, Kai S; Reissfelder, Christoph; Albrecht, Thomas; Frericks, Bernd; Zurbuchen, Urte; Buhr, Heinz J

    2006-01-01

    radiofrequency using the novel multipolar ablation concept permits a safe and effective therapy for the induction of large volumes of coagulation in the local treatment of liver metastases.

  13. Foldable Frame Supporting Electromagnetic Radiation Collectors

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to flexible frames supporting electromagnetic radiation collectors, such as antennas, antenna reflectors, deflectors or solar collectors, for celestial or terrestrial applications, which can be folded to be stored and/or transported. The method for stowing deforms...

  14. OUT Success Stories: Transpired Solar Collectors

    International Nuclear Information System (INIS)

    Clyne, R.

    2000-01-01

    Transpired solar collectors are a reliable, low-cost technology for preheating building ventilation air. With simple payback periods ranging from 3 to 12 years and an estimated 30-year life span, transpired collector systems offer building owners substantial cost savings

  15. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies.

    Science.gov (United States)

    van den Bijgaart, Renske J E; Eikelenboom, Dylan C; Hoogenboom, Martijn; Fütterer, Jurgen J; den Brok, Martijn H; Adema, Gosse J

    2017-02-01

    Tumor ablation technologies, such as radiofrequency-, cryo- or high-intensity focused ultrasound (HIFU) ablation will destroy tumor tissue in a minimally invasive manner. Ablation generates large volumes of tumor debris in situ, releasing multiple bio-molecules like tumor antigens and damage-associated molecular patterns. To initiate an adaptive antitumor immune response, antigen-presenting cells need to take up tumor antigens and, following activation, present them to immune effector cells. The impact of the type of tumor ablation on the precise nature, availability and suitability of the tumor debris for immune response induction, however, is poorly understood. In this review, we focus on immune effects after HIFU-mediated ablation and compare these to findings using other ablation technologies. HIFU can be used both for thermal and mechanical destruction of tissue, inducing coagulative necrosis or subcellular fragmentation, respectively. Preclinical and clinical results of HIFU tumor ablation show increased infiltration and activation of CD4 + and CD8 + T cells. As previously observed for other types of tumor ablation technologies, however, this ablation-induced enhanced infiltration alone appears insufficient to generate consistent protective antitumor immunity. Therapies combining ablation with immune stimulation are therefore expected to be key to boost HIFU-induced immune effects and to achieve systemic, long-lasting, antitumor immunity.

  16. Efficiency of the Fermilab Electron Cooler's Collector

    CERN Document Server

    Prost, L R

    2005-01-01

    The newly installed high-energy Recycler Electron Cooling system (REC) at Fermilab will work at an electron energy of 4.34 MeV and a DC beam current of 0.5 A in an energy recovery scheme. For reliable operation of the system, the relative beam current loss must be maintained to levels < 3.e-5. Experiments have shown that the loss is determined by the performance of the electron beam collector, which must retain secondary electrons generated by the primary beam hitting its walls. As a part of the Electron cooling project, the efficiency of the collector for the REC was optimized, both with dedicated test bench experiments and on two versions of the cooler prototype. We find that to achieve the required relative current loss, an axially-symmetric collector must be immersed in a transverse magnetic field with certain strength and gradient prescriptions. Collector efficiencies in various magnetic field configurations, including without a transverse field on the collector, are presented and discussed

  17. An improved dynamic test method for solar collectors

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Wang, Zhifeng; Fan, Jianhua

    2012-01-01

    A comprehensive improvement of the mathematical model for the so called transfer function method is presented in this study. This improved transfer function method can estimate the traditional solar collector parameters such as zero loss coefficient and heat loss coefficient. Two new collector...... parameters t and mfCf are obtained. t is a time scale parameter which can indicate the heat transfer ability of the solar collector. mfCf can be used to calculate the fluid volume content in the solar collector or to validate the regression process by comparing it to the physical fluid volume content...... for the second-order differential term with 6–9min as the best averaging time interval. The measured and predicted collector power output of the solar collector are compared during a test of 13days continuously both for the ITF method and the QDT method. The maximum and averaging error is 53.87W/m2 and 5.22W/m2...

  18. Movable air solar collector and its efficiency

    International Nuclear Information System (INIS)

    Lauva, A.; Aboltinš, A.; Palabinskis, J.; Karpova Sadigova, N.

    2008-01-01

    Implementing the guidelines of the Latvian National Programme for Energy in the field of alternative energy, intensive research shall be carried on regarding the use of solar energy, as it can be successfully used not only for the purposes of water heating and production of electrical energy, but also for air warming. The amount of heat necessary for the drying of rough forage and grain drying by active aeration in June, July and August can be obtained using solar radiation. The Latvian Guidelines for the Energy Development 2006-2016 state that the solar radiance in Latvia is of quite low intensity. The total amount of solar energy is 1109 kWh m -2 per year. The period of usage of the solar thermal energy is beginning from the last decade of April, when the intensity of radiation is 120 kWh m -2 , until the first decade of September. Within this period (approximately 1800 hours), it is possible to use the solar thermal energy by placing solar collectors. The usage of solar collectors for in drying of agricultural production is topical from the viewpoint of decreasing the consumption of energy used for the drying, as electrical energy and fossil energy resources become more expensive and tend to run out. In the processes that concern drying of agricultural production, efficiently enough solar radiation energy can be used. Due to this reason researching continues and expands in the field of usage of solar energy for the processes of drying and heating. The efficiency factor of the existing solar collectors is not high, but they are of simple design and cheep for production and exploitation. By improving the design of the solar collectors and choosing modern materials that absorb the solar radiation energy, it is possible the decrease the efficiency factor of solar collectors and decrease the production costs. In the scientific laboratory of grain drying and storage of Latvia University of Agriculture, a pilot device movable folding solar collector pilot device

  19. Thermal analysis of gyrotron traveling-wave tube collector

    International Nuclear Information System (INIS)

    Zheng Zhiqing; Luo Yong; Jiang Wei; Tang Yong

    2013-01-01

    In order to solve cooling problem of the gyrotron traveling-wave tube(TWT) collector and guarantee the gyrotron TWT's reliability and stability, the electron trajectories in the gyrotron TWT are simulated using CST electron simulation software. Thermal analysis of the collector with finite element software ANSYS is performed. The ways of applying boundary that affects the distribution of collector temperature are compared. The influence of the water temperature and flow rate on collector temperature distribution under actual heat fluxes (boundary condition) is researched. The size and number of collector fins are optimized, and a relatively perfect structure is obtained finally. The result estimated by simulation is consistent with the experiment and proves that the model and method employed in this work are suitable. (authors)

  20. Optimal design of orientation of PV/T collector with reflectors

    International Nuclear Information System (INIS)

    Kostic, Lj.T.; Pavlovic, T.M.; Pavlovic, Z.T.

    2010-01-01

    Hybrid conversion of solar radiation implies simultaneous solar radiation conversion into thermal and electrical energy in the PV/Thermal collector. In order to get more thermal and electrical energy, flat solar radiation reflectors have been mounted on PV/T collector. To obtain higher solar radiation intensity on PV/T collector, position of reflectors has been changed and optimal position of reflectors has been determined by both experimental measurements and numerical calculation so as to obtain maximal concentration of solar radiation intensity. The calculated values have been found to be in good agreement with the measured ones, both yielding the optimal position of the flat reflector to be the lowest (5 o ) in December and the highest (38 o ) in June. In this paper, the thermal and electrical efficiency of PV/T collector without reflectors and with reflectors in optimal position have been calculated. Using these results, the total efficiency and energy-saving efficiency of PV/T collector have been determined. Energy-saving efficiency for PV/T collector without reflectors is 60.1%, which is above the conventional solar thermal collector, whereas the energy-saving efficiency for PV/T collector with reflectors in optimal position is 46.7%, which is almost equal to the values for conventional solar thermal collector. Though the energy-saving efficiency of PV/T collector decreases slightly with the solar radiation intensity concentration factor, i.e. the thermal and electrical efficiency of PV/T collector with reflectors are lower than those of PV/T collector without reflectors, the total thermal and electrical energy generated by PV/T collector with reflectors in optimal position are significantly higher than total thermal and electrical energy generated by PV/T collector without reflectors.

  1. Next Generation Solar Collectors for CSP

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, Attila [3M Company, St. Paul, MN (United States); Charles, Ruth [3M Company, St. Paul, MN (United States)

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  2. Molecular design of flotation collectors: A recent progress.

    Science.gov (United States)

    Liu, Guangyi; Yang, Xianglin; Zhong, Hong

    2017-08-01

    The nature of froth flotation is to selectively hydrophobize valuable minerals by collector adsorption so that the hydrophobized mineral particles can attach air bubbles. In recent years, the increasing commercial production of refractory complex ores has been urgent to develop special collectors for enhancing flotation separation efficiency of valuable minerals from these ores. Molecular design methods offer an effective way for understanding the structure-property relationship of flotation collectors and developing new ones. The conditional stability constant (CSC), molecular mechanics (MM), quantitative structure-activity relationship (QSAR), and first-principle theory, especially density functional theory (DFT), have been adopted to build the criteria for designing flotation collectors. Azole-thiones, guanidines, acyl thioureas and thionocarbamates, amide-hydroxamates, and double minerophilic-group surfactants such as Gemini, dithiourea and dithionocarbamate molecules have been recently developed as high-performance collectors. To design hydrophobic groups, the hydrophilic-hydrophobic balance parameters have been extensively used as criteria. The replacement of aryl group with aliphatic group or CC single bond(s) with CC double bond(s), reduction of carbon numbers, introduction of oxygen atom(s) and addition of trisiloxane to the tail terminal have been proved to be useful approaches for adjusting the surface activity of collectors. The role of molecular design of collectors in practical flotation applications was also summarized. Based on the critical review, some comments and prospects for further research on molecular design of flotation collectors were also presented in the paper. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Integrated Design of Undepressed Collector for Low Power Gyrotron

    Science.gov (United States)

    Kumar, Anil; Goswami, Uttam K.; Poonia, Sunita; Singh, Udaybir; Kumar, Nitin; Alaria, M. K.; Bera, A.; Khatun, Hasina; Sinha, A. K.

    2011-06-01

    A 42 GHz, 200 kW continuous wave (CW) gyrotron, operating at TE03 mode is under development for the electron cyclotron resonance plasma heating of the Indian TOKAMAK system. The gyrotron is made up of an undepressed collector. The undepressed collector is simple to design and cost effective. In this paper, a detailed design study of the undepressed collector for the 42 GHz gyrotron is presented. The EGUN code is used to analyze the spent electron beam trajectory for the maximum spread to reduce the power loading on the collector surface. To achieve wall loading ≤1 kW/cm2, a collector with a length of 800 mm and a radius of 42.5 mm is designed. The design also includes the three magnet systems around the collector for maximum and uniform beam spread. The thermal and the structural analyses are done using the ANSYS code to optimize the collector structure and dimensions with tolerance.

  4. Elemental bioimaging of nanosilver-coated prostheses using X-ray fluorescence spectroscopy and laser ablation-inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Blaske, Franziska; Reifschneider, Olga; Gosheger, Georg; Wehe, Christoph A; Sperling, Michael; Karst, Uwe; Hauschild, Gregor; Höll, Steffen

    2014-01-07

    The distribution of different chemical elements from a nanosilver-coated bone implant was visualized, combining the benefits of two complementary methods for elemental bioimaging, the nondestructive micro X-ray fluorescence (μ-XRF), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Challenges caused by the physically inhomogeneous materials including bone and soft tissues were addressed by polymer embedding. With the use of μ-XRF, fast sample mapping was achieved obtaining titanium and vanadium signals from the metal implant as well as phosphorus and calcium signals representing hard bone tissue and sulfur distribution representing soft tissues. Only by the use of LA-ICP-MS, the required high sensitivity and low detection limits for the determination of silver were obtained. Metal distribution within the part of cancellous bone was revealed for silver as well as for the implant constituents titanium, vanadium, and aluminum. Furthermore, the detection of coinciding high local zirconium and aluminum signals at the implant surface indicates remaining blasting abrasive from preoperative surface treatment of the nanosilver-coated device.

  5. Tri-code inductance control rod position indicator with several multi-coding-bars

    International Nuclear Information System (INIS)

    Shi Jibin; Jiang Yueyuan; Wang Wenran

    2004-01-01

    A control rod position indicator named as tri-code inductance control rod position indicator with multi-coding-bars, which possesses simple structure, reliable operation and high precision, is developed. The detector of the indicator is composed of K coils, a compensatory coil and K coding bars. Each coding bar consists of several sections of strong magnetic cores, several sections of weak magnetic cores and several sections of non-magnetic portions. As the control rod is withdrawn, the coding bars move in the center of the coils respectively, while the constant alternating current passes the coils and makes them to create inductance alternating voltage signals. The outputs of the coils are picked and processed, and the tri-codes indicating rod position can be gotten. Moreover, the coding principle of the detector and its related structure are introduced. The analysis shows that the indicator owns more advantage over the coils-coding rod position indicator, so it can meet the demands of the rod position indicating in nuclear heating reactor (NHR). (authors)

  6. Efficiency improvement of flat plate solar collector using reflector

    Directory of Open Access Journals (Sweden)

    Himangshu Bhowmik

    2017-11-01

    Full Text Available Solar collectors are the main components of a solar heating system. The collectors collect the sun’s energy, transform this radiation into heat, and then transfer this heat into a fluid, water or air, which has many household or industrial applications. This paper introduces a new technology to improve the performance of the solar thermal collectors. The solar reflector used here with the solar collector to increase the reflectivity of the collector. Thus, the reflector concentrates both direct and diffuse radiation of the sun toward the collector. To maximize the intensity of incident radiation, the reflector was allowed to change its angle with daytime. The radiations coming from the sun’s energy were converted into heat, and then this heat was transferred to the collector fluid, water. A prototype of a solar water heating system was constructed and obtained the improvement of the collector efficiency around 10% by using the reflector. Thus, the present solar water heating systems having the best thermal performance compared to the available systems.

  7. Study of plasma parameters influencing fractionation in laser ablation-inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Gäckle, M.; Merten, D.

    2010-12-01

    Methods permitting to test the influence of the matrix as well as of its local and temporal distribution on the plasma conditions in laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) are developed. For this purpose, the MS interface is used as plasma probe allowing to investigate the average plasma condition within the ICP zone observed in terms of temporal and spatial distribution of the matrix. Inserted matrix particles, particularly when being atomized and ionized, can cause considerable changes in both electron density and plasma temperature thus influencing the ionization equilibrium of the individual analytes. In this context, the plasma probe covers a region of the plasma for which no local thermodynamic equilibrium can be assumed. The differences in temperature, identified within the region of the plasma observed, amounted up to 3000 K. While in the central region conditions were detected that would not allow efficient atomization and ionization of the matrix, these conditions improve considerably towards the margin of the area observed. Depending on the nature as well as on the temporally and locally variable density of the matrix, this can lead to varying intensity ratios of the analytes and explain fractionation effects. By means of a derived equation it is shown that the deviation of the intensity ratio from the concentration ratio turns out to be more serious the higher the difference of the ionization potential of the analytes observed, the lower the plasma temperature and the higher the matrix concentration within the area observed.

  8. High Performance Flat Plate Solar Thermal Collector Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbaugh, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lovullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barker, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanckock, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  9. Direct-heating solar-collector dump valve

    Science.gov (United States)

    Howikman, T. C.

    1977-01-01

    Five-port ganged valve isolates collector from primary load system pressure and drains collectors, allowing use of direct heating with all its advantages. Valve is opened and closed by same switch that controls pump or by temperature sensor set at O C, while providing direct dump option.

  10. Flat-plate solar collector - installation package

    Science.gov (United States)

    1978-01-01

    Package includes installation, operation and maintenance manual for collector, analysis of safety hazards, special handling instructions, materials list, installation drawings, and warranty and certification statement. Manual includes instructions for roof preparation and for preparing collector for installation. Several pages are devoted to major and minor repairs.

  11. Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice

    Energy Technology Data Exchange (ETDEWEB)

    Mirrione, M.M.; Mirrione, M.M.; Konomosa, D.K.; Ioradanis, G.; Dewey, S.L.; Agzzid, A.; Heppnerd, F.L.; Tsirka, St.E.

    2010-04-01

    Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine-induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 h prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activation in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 h prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation.

  12. Applications of inductively coupled plasma mass spectrometry and laser ablation inductively coupled plasma mass spectrometry in materials science

    International Nuclear Information System (INIS)

    Becker, Johanna Sabine

    2002-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new

  13. Catheter Ablation versus Thoracoscopic Surgical Ablation in Long Standing Persistent Atrial Fibrillation (CASA-AF): study protocol for a randomised controlled trial.

    Science.gov (United States)

    Khan, Habib Rehman; Kralj-Hans, Ines; Haldar, Shouvik; Bahrami, Toufan; Clague, Jonathan; De Souza, Anthony; Francis, Darrel; Hussain, Wajid; Jarman, Julian; Jones, David Gareth; Mediratta, Neeraj; Mohiaddin, Raad; Salukhe, Tushar; Jones, Simon; Lord, Joanne; Murphy, Caroline; Kelly, Joanna; Markides, Vias; Gupta, Dhiraj; Wong, Tom

    2018-02-20

    Atrial fibrillation is the commonest arrhythmia which raises the risk of heart failure, thromboembolic stroke, morbidity and death. Pharmacological treatments of this condition are focused on heart rate control, rhythm control and reduction in risk of stroke. Selective ablation of cardiac tissues resulting in isolation of areas causing atrial fibrillation is another treatment strategy which can be delivered by two minimally invasive interventions: percutaneous catheter ablation and thoracoscopic surgical ablation. The main purpose of this trial is to compare the effectiveness and safety of these two interventions. Catheter Ablation versus Thoracoscopic Surgical Ablation in Long Standing Persistent Atrial Fibrillation (CASA-AF) is a prospective, multi-centre, randomised controlled trial within three NHS tertiary cardiovascular centres specialising in treatment of atrial fibrillation. Eligible adults (n = 120) with symptomatic, long-standing, persistent atrial fibrillation will be randomly allocated to either catheter ablation or thoracoscopic ablation in a 1:1 ratio. Pre-determined lesion sets will be delivered in each treatment arm with confirmation of appropriate conduction block. All patients will have an implantable loop recorder (ILR) inserted subcutaneously immediately following ablation to enable continuous heart rhythm monitoring for at least 12 months. The devices will be programmed to detect episodes of atrial fibrillation and atrial tachycardia ≥ 30 s in duration. The patients will be followed for 12 months, completing appropriate clinical assessments and questionnaires every 3 months. The ILR data will be wirelessly transmitted daily and evaluated every month for the duration of the follow-up. The primary endpoint in the study is freedom from atrial fibrillation and atrial tachycardia at the end of the follow-up period. The CASA-AF Trial is a National Institute for Health Research-funded study that will provide first-class evidence on the

  14. Efficiencies of flat plate solar collectors at different flow rates

    DEFF Research Database (Denmark)

    Chen, Ziqian; Furbo, Simon; Perers, Bengt

    2012-01-01

    Two flat plate solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rate are obtained. The calculated efficiencies are in good agreement...

  15. INDUCTION OF GONADAL MATURATION OF POND CULTURED MALE TIGER SHRIMP, Penaeus monodon WITH DIFFERENT DOSAGES OF GONADOTROPIN RELEASING HORMONE ANALOGUE AGAINST EYE STALK ABLATION

    Directory of Open Access Journals (Sweden)

    Asda Laining

    2016-12-01

    Full Text Available Very low naturally mating rate of pond-reared tiger shrimp broodstock is probably due to the slow maturation of the male stock. The aim of this study was to evaluate the salmon gonadotrophin releasing hormone analoque (sGnRHa in stimulating the gonadal maturation of male stock of pond-reared tiger shrimp. The treatments were three dosages of sGnRHa at 0.1 (OV-1, 0.2 (OV-2, and 0.3 (OV-3 mL/kg of shrimp weight and control was eye stalk ablation (AB. The sGnRHa was administered via injection three times with one week interval. Male stocks with average initial body weight of 82.1 g were randomly distributed into four of 10 m3 concrete tanks, 26 males for each tank. Variables observed were performances of spermatophores and profiles of amino acid and fatty acid of muscle of the male stocks. After induction, number of male maturing indicated by spermatophores releasing from terminal ampullas was higher in shrimp induced with OV-1 (80.8% compared to control which was only 46.1%. Furthermore, shrimp treated OV-2 had the highest spermatophore weight of 0.16 g compared to control (0.11 g and other two groups. Amino acid profiles improved as the dose of sGnRHa increased up to 0.2 mL/kg from 61.23% for ablated male becoming 71.27% for OV-2. Total fatty acid also tended to improve by increasing the dose of hormone injection, however, the ablated male had higher total fatty acid content than that of OV-1. The present finding demonstrated that the dose of sGnRHa to stimulate the gonadal maturation of pond-reared male tiger shrimp could be applied at range between 0.1-0.2 mL/kg of shrimp weight.

  16. Development of multi-frequency array induction logging (MAIL) tool. Part 4; Multi shuhasu array gata induction kenso (MAIL) tool no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T.; Otsuka, K.; Takasugi, S. [GERD Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Uchida, T. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-05-27

    NEDO is now carrying out `the deep-seated geothermal resource survey` with the aim of surveying deep geothermal resource lying 3,000m below sea level. `The development of resistivity use investigation technology` being carried out as element technology for this survey conducts well surveys and earth surface-well surveys using the drilled deep wells. By analyzing these surveys together with electromagnetic method surveys including the MT method carried out on the earth surface, the survey was aimed at grasping in high resolution resistivity structures from the shallow underground to the deep underground. The multi-frequency array induction logging being researched as the well survey is a method to grasp resistivity structures within a radius of several meters of the well using the electromagnetic logging method. The paper reported the field test conducted this time using the improved tool. A comparison of the data obtained in the test with the results of the normal logging showed consistency, and therefore, it showed that the tool itself fully grasped responses from strata. 3 refs., 5 figs., 1 tab.

  17. Experimental study of laser ablation as sample introduction technique for inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Van Winckel, S.

    2001-01-01

    The contribution consists of an abstract of a PhD thesis. In the PhD study, several complementary applications of laser-ablation were investigated in order to characterise experimentally laser ablation (LA) as a sample introduction technique for ICP-MS. Three applications of LA as a sample introduction technique are discussed: (1) the microchemical analysis of the patina of weathered marble; (2) the possibility to measure isotope ratios (in particular Pb isotope ratios in archaeological bronze artefacts); and (3) the determination of Si in Al as part of a dosimetric study of the BR2 reactor vessel

  18. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    Science.gov (United States)

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  19. Quantitative measurement of 222Rn in water by the activated charcoal passive collector method: 1. The effect of water in a collector

    International Nuclear Information System (INIS)

    Yoneda, Minoru; Inoue, Yoriteru; Yoshimoto, Keizo

    1994-01-01

    The activated charcoal passive collector method can be applied to measure the concentration of 222 Rn in river water. The 222 Rn collector is composed of dry activated charcoal sealed in a polyethylene bag. However, we found it very difficult to keep activated charcoal in a collector dry during the period the collector was left in a river. The degree of dampness and the time lapsed when activated charcoal became wet were thought to affect the quantity of 222 Rn collected. First, we studied the effect of some parameters in the activated charcoal passive collector method qualitatively in three experiments. We found that the quantity of 222 Rn collected in a collector was not so sensitive to the quantity of activated charcoal in the collector or the thickness of polyethylene film under the condition of wet activated charcoal, and that wet activated charcoal accumulated less 222 Rn than dry activated charcoal. We present some equations which could explain how much 222 Rn was collected in a collector when activated charcoal was submerged directly in water and when activated charcoal was packed in a polyethylene bag but completely wet. These equations were proved effective by being compared with the results of the other experiments. Finally, we recommended some conditions which proved useful when measuring at an actual river

  20. Dust collector

    Energy Technology Data Exchange (ETDEWEB)

    Sahourin, H.

    1988-03-22

    This invention relates to a dust collector or filter which may be used for large volume cleaning air for gases or for separating out industrial byproducts such as wood chips, sawdust, and shavings. It relies on filtration or separation using only a uniquely configured medium. A primary, but not exclusive, purpose of the invention is to enable very large throughput, capable of separating or filtering of gases containing up to three or more tons of byproduct with a minimum pressure-drop across the device. No preliminary cycloning, to remove major particulates is necessary. The collector generally comprises a continuous and integral filter medium which is suspended from a plurality of downwardly extending frames forming a series of separate elements having a triangular cross-section, each element being relatively wide at the top and narrow at the bottom to define, between adjacent elements, a divergent collecting space which is wide at the bottom. 11 figs.

  1. Two new designs of parabolic solar collectors

    Directory of Open Access Journals (Sweden)

    Karimi Sadaghiyani Omid

    2014-01-01

    Full Text Available In this work, two new compound parabolic trough and dish solar collectors are presented with their working principles. First, the curves of mirrors are defined and the mathematical formulation as one analytical method is used to trace the sun rays and recognize the focus point. As a result of the ray tracing, the distribution of heat flux around the inner wall can be reached. Next, the heat fluxes are calculated versus several absorption coefficients. These heat flux distributions around absorber tube are functions of angle in polar coordinate system. Considering, the achieved heat flux distribution are used as a thermal boundary condition. After that, Finite Volume Methods (FVM are applied for simulation of absorber tube. The validation of solving method is done by comparing with Dudley's results at Sandia National Research Laboratory. Also, in order to have a good comparison between LS-2 and two new designed collectors, some of their parameters are considered equal with together. These parameters are consist of: the aperture area, the measures of tube geometry, the thermal properties of absorber tube, the working fluid, the solar radiation intensity and the mass flow rate of LS-2 collector are applied for simulation of the new presented collectors. After the validation of the used numerical models, this method is applied to simulation of the new designed models. Finally, the outlet results of new designed collector are compared with LS-2 classic collector. Obviously, the obtained results from the comparison show the improving of the new designed parabolic collectors efficiency. In the best case-study, the improving of efficiency are about 10% and 20% for linear and convoluted models respectively.

  2. Performance of non-conventional solar collectors in local market of Nawabshah

    International Nuclear Information System (INIS)

    Memon, M.; Tanwani, N.K.; Memon, A.H.

    1998-01-01

    This paper presents experimental studies concerning the performance of solar collectors using sand-bed as absorbing surface and a collector. These collectors were designed, manufactured locally and tested in meteorological conditions of Nawabshah, Sindh, Pakistan. The ordinary tap water was used as working fluid and tests were carried out in open space during day time. The effect of collector area and tubing diameter on collector performance was investigated. For each test run ambient, inlet and outlet water temperature together with flow rate of collector fluid was recorded. Two collectors connected in series showed an increase of about 20 deg. C in outlet temperature of water. Thus an average increase of 15 deg. C in the temperature was observed for each collector. The temperature was raised to 90 deg. C using the concentrator in combination with the two non-conventional flat collectors. (author)

  3. Performance of solar collectors under low temperature conditions

    DEFF Research Database (Denmark)

    Bunea, Mircea; Eicher, Sara; Hildbrand, Catherine

    The performance of four solar thermal collectors (flat plate, evacuated tube, unglazed with rear insulation and unglazed without rear insulation) was experimentally measured and simulated for temperatures below ambient. The influence of several parameters (e.g. collector inlet temperature, air...... evaluated and results compared to experimental measurements. A mathematical model is also under development to include, in addition to the condensation phenomena, the frost, the rain and the long-wave radiation gains/losses on the rear of the solar collector. While the potential gain from rain was estimated...... to be around 2%, frost heat gains were measured to be up to 40% per day, under specific conditions. Overall, results have shown that unglazed collectors are more efficient than flat plate or evacuated tube collectors at low operation temperatures or for night conditions, making them more suitable for heat pump...

  4. Arrangement, manufacturing process and use of solar heat collectors

    Energy Technology Data Exchange (ETDEWEB)

    Scheel, H W

    1978-03-30

    Solar collectors generally have a timber or metal frame where the transparent front cover, usually of glass, is replaceable. In order to prevent great deformation, such a frame must be relatively stable and of heavy construction, which may lead to difficulties in mounting the collector on the roofs or front walls of houses. The present invention proposes a light but nevertheless rigid collector frame, which consists of plastic material and is constructed so that the installation and replacement of collectors can be realized. Further, collectors are proposed which guarantee a minimum of reflection and are so designed that an optimum architectural effect is produced.

  5. Speed-sensorless control strategy for multi-phase induction generator in wind energy conversion systems

    Directory of Open Access Journals (Sweden)

    Dumnić Boris P.

    2016-01-01

    Full Text Available Renewable energy sources, especially wind energy conversion systems (WECS, exhibit constant growth. Increase in power and installed capacity led to advances in WECS topologies. Multi-phase approach presents a new development direction, with several key advantages over three-phase systems. Paired with a sensorless control strategy, multi-phase machines are expected to take primacy over standard solutions. This paper presents speed sensorless vector control of an asymmetrical six-phase induction generator based on a model reference adaptive system (MRAS. Suggested topology and developed control algorithm show that sensorless control can yield appropriate dynamic characteristics for the use in WECS with increase in reliability and robustness. [Projekat Ministarstva nauke Republike Srbije, br. III 042004: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  6. Effects of radiation transport on mass ablation rate and conversion efficiency in numerical simulations of inertial confinement fusion

    International Nuclear Information System (INIS)

    Gupta, N.K.

    2002-01-01

    The effects of radiation transport on hydrodynamic parameters of laser produced plasmas are studied. LTE and non-LTE atomic models are used to calculate multi group opacities and emissivities. Screened hydrogenic atom model is used to calculate the energy levels. The population densities of neutral to fully ionized ions are obtained by solving the steady state rate equations. Radiation transport is treated in multi-group diffusion or Sn method. A comparison is made between 1 and 100 group radiation transport and LTE and non-LTE models. For aluminium, multi group radiation transport leads to much higher mass ablation as compared to the 1 group and no radiation transport cases. This in turn leads to higher ablation pressures. However, for gold gray approximation gives higher mass ablation as compared to multi group simulations. LTE conversion efficiency of laser light into x-rays is more than the non-LTE estimates. For LTE as well as non-LTE cases, the one group approximation over-predicts the conversion efficiency Multi group non-LTE simulations predict that the conversion efficiency increases with laser intensity up to a maximum and then it decreases. (author)

  7. Cheap effective thermal solar-energy collectors

    Energy Technology Data Exchange (ETDEWEB)

    Highgate, D.J.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). Dept. of Applied Energy

    1996-04-01

    A light-weight flexible solar-collector, with a wavelength-selective absorption surface and an insolation-transparent thermal-insulation protecter for its aperture, was built and tested. Its cheapness and high performance, relative to a conventional flat-plate solar-collector, provide a prima-facie case for the more widespread adoption of its design. (author)

  8. Measurement of the delta34S value in methionine by double spike multi-collector thermal ionization mass spectrometry using Carius tube digestion.

    Science.gov (United States)

    Mann, Jacqueline L; Kelly, W Robert

    2010-09-15

    Methionine is an essential amino acid and is the primary source of sulfur for humans. Using the double spike ((33)S-(36)S) multi-collector thermal ionization mass spectrometry (MC-TIMS) technique, three sample bottles of a methionine material obtained from the Institute for Reference Materials and Measurements have been measured for delta(34)S and sulfur concentration. The mean delta(34)S value, relative to Vienna Canyon Diablo Troilite (VCDT), determined was 10.34 +/- 0.11 per thousand (n = 9) with the uncertainty reported as expanded uncertainties (U). These delta(34)S measurements include a correction for blank which has been previously ignored in studies of sulfur isotopic composition. The sulfur concentrations for the three bottles range from 56 to 88 microg/g. The isotope composition and concentration results demonstrate the high accuracy and precision of the DS-MC-TIMS technique for measuring sulfur in methionine.

  9. INVESTIGATION OF PROPERTIES OF CURRENT COLLECTOR ELEMENTS AND THEIR EFFECT ON THE PERFORMANCE OF TRIBOSYSTEM «CONTACT WIRE - CURRENT COLLECTOR ELEMENT»

    Directory of Open Access Journals (Sweden)

    Yu. L. Bolshakov

    2015-11-01

    Full Text Available Purpose. The paper is devoted to the detailed analysis of interrelations at the contact point of friction pair «contact wire – current collector insert». In the work it is necessary: 1 to examine quality of manufacturing of specimens of current collector elements from different manufacturers; 2 to narrow the range of hardness for carbon inserts; 3 to develop a technique of sorting carbon current collector inserts for the structural parameters. Methodology. The executed work was based on the use of the theory of reliability of technical systems and electromechanical processes. Findings. The paper studies the interrelation at the contact point of friction pair «contact wire – current col lector insert», the connection was established between the hardness and electrical resistivity. It is proposed to narrow the range of carbon inserts hardness. The method of sorting coal collector inserts in hardness was developed, and the research has revealed the discrepancy of current collector inserts with existing regulations. It was proposed to equip the pantographs slide with current collector elements using special scheme and to develop a specialized research facility, which will be possible to conduct studies of the interaction of the friction pair «contact wire – current collector insert». Originality. In the course of the study the current collector inserts the sharp structural heterogeneity and fluctuations of the density of the material along the length of the insert were established. The dependence between hardness of inserts and electrical resistivity was established. It was analyzed and concluded about the need to reduce the values of the normal range of hardness. Based on the results of the research, the experimental dependences were obtained and proposed the method for sorting carbon current collector inserts for the structural parameters. Practical value. The obtained results of coal current collector inserts define the need to use

  10. Engineering design of 500KW CW collector

    International Nuclear Information System (INIS)

    Kumar, Ramesh; Mishra, Deepak; Prasad, M.; Hannuarakar, P.R.

    2006-01-01

    An electron beam collector for 500kW beam power has been designed to test the electron gun. The gun is designed for 250kW, 350MHz CW Klystron with 50% efficiency. This will also help in preliminary studies related to final collector design for Klystron. This paper presents the design parameters, thermal analysis and mechanical features of the design. Electron trajectory on inside wall of the collector is determined with EGUN and computational flow dynamics simulation was done on ANSYS for cooling requirements. (author)

  11. A tool for standardized collector performance calculations including PVT

    DEFF Research Database (Denmark)

    Perers, Bengt; Kovacs, Peter; Olsson, Marcus

    2012-01-01

    A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations...... can be tested and modeled as a thermal collector, when the PV electric part is active with an MPP tracker in operation. The thermal collector parameters from this operation mode are used for the PVT calculations....

  12. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL ABSORBER STRIPS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal strips. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...... (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... collector fluid, and by increased collector tilt and inlet temperature, the flow distribution gets worse resulting in a decreased collector efficiency and an increased risk of boiling in the upper part of the collector panel. Keywords: Solar collector; Flow distribution; Computational Fluid Dynamics (CFD...

  13. Heat Pumps With Direct Expansion Solar Collectors

    Science.gov (United States)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  14. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    OpenAIRE

    M. Norhafana; Ahmad Faris Ismail; Z. A. A. Majid

    2015-01-01

    Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of...

  15. Two-axis movable concentrating solar energy collector

    Science.gov (United States)

    Perkins, G. S.

    1977-01-01

    Proposed solar-tracker collector assembly with boiler in fixed position, allows use of hard line connections, capable of withstanding optimum high temperature fluid flow. System thereby eliminates need for flexible or slip connection previously used with solar collector systems.

  16. Installation package for concentrating solar collector panels

    Science.gov (United States)

    1978-01-01

    The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.

  17. Advances in design of air-heating collectors

    CSIR Research Space (South Africa)

    Johannsen, A

    1982-11-01

    Full Text Available Principles of the operation of air-heating collectors are discussed. The fundamental differences between the design principles of air-heating as opposed to water-heating collectors are highlighted. The main requirement is the transfer of heat from...

  18. Selective flotation of phosphate minerals with hydroxamate collectors

    Science.gov (United States)

    Miller, Jan D.; Wang, Xuming; Li, Minhua

    2002-01-01

    A method is disclosed for separating phosphate minerals from a mineral mixture, particularly from high-dolomite containing phosphate ores. The method involves conditioning the mineral mixture by contacting in an aqueous in environment with a collector in an amount sufficient for promoting flotation of phosphate minerals. The collector is a hydroxamate compound of the formula; ##STR1## wherein R is generally hydrophobic and chosen such that the collector has solubility or dispersion properties it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms. M is a cation, typically hydrogen, an alkali metal or an alkaline earth metal. Preferably, the collector also comprises an alcohol of the formula, R'--OH wherein R' is generally hydrophobic and chosen such that the collector has solubility or dispersion properties so that it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms.

  19. Analysis of a solar collector field water flow network

    Science.gov (United States)

    Rohde, J. E.; Knoll, R. H.

    1976-01-01

    A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.

  20. Flat solar collector an approach to its evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sonino, T [Israel Atomic Energy Commission, Yavne. Soreq Nuclear Research Center

    1977-01-01

    The flat solar collector is the most widely used device for the utilization of solar energy, but its energetic and economic values are still debated. A preliminary energy and economic analysis is presented. The energy analysis indicates that the energy needed to produce one solar collector is equivalent to the electricity consumed by an electric water heater in roughly three months. The economic analysis indicates that the pay-back time for a solar collector varies from 5.5 to 7.7 yr. according to the discount rate. The economic analysis from a national point of view indicates that the use of solar collectors for domestic purposes could only reduce electricity consumption in Israel by 10%.

  1. Performance of jet impingement in unglazed air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Belusko, M.; Saman, W.; Bruno, F. [Institute for Sustainable Systems and Technologies, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia)

    2008-05-15

    Jet impingement is effective at improving the heat transfer between air and a heated surface. Studies have shown that jet impingement can marginally improve the thermal efficiency of a glazed collector. However, little attention has been placed on applying jet impingement to an unglazed solar air collector. This paper presents a theoretical and experimental investigation identifying the performance characteristics of jet impingement. Overall, jet impingement was able to improve the thermal efficiency of the collector by 21%. An increase in the pressure loss was also measured but found to be small. The flow distribution of jets along the collector was the most significant factor in determining the efficiency. Increasing the hole spacing was found to improve the efficiency. (author)

  2. The design evaluation of inductive power-transformer for personal rapid transit by measuring impedance

    International Nuclear Information System (INIS)

    Han, Kyung-Hee; Lee, Byung-Song; Baek, Soo-Hyun

    2008-01-01

    The contact-less inductive power transformer (IPT) uses the principle of electromagnetic induction. The concept of the IPT for vehicles such as the personal rapid transit (PRT) system is proposed and some suggestions for power collector design of IPT to improve power transfer performance are presented in this paper. The aim of this paper is to recommend the concept of IPT for vehicles such as the PRT system and also to present some propositions for the power collector design of the IPT, which is to improve the power transfer performance. Generally, there are diverse methods to evaluate transfer performance of the traditional transformers. Although the principle of IPT is similar to that of the general transformer, it is impossible to apply the methods directly because of large air gap. The system must be compensated by resonant circuit due to the large air gap. Consequently, it is difficult to apply numerical formulas to the magnetic design of IPT systems. This paper investigates the magnetic design of a PRT system using three-dimensional magnetic modeling and measurements of the pick-up coupling coefficient and its impedances. In addition, how the use of Litz wire and leakage inductance is related will be observed through experiment and simulation

  3. Thermal performances of vertical hybrid PV/T air collector

    Science.gov (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  4. Lesion size in relation to ablation site during radiofrequency ablation

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, A

    1998-01-01

    This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation was perfor......This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation...... was performed during two different flow-velocities in a tissue bath, while electrode contact pressure and position were unchanged. Target temperature was 80 degrees C. Obtained tip temperature, power consumption and lesion dimensions were measured. In vivo lesion volume, depth and width were found significantly.......61 in vitro). We conclude that during temperature controlled radiofrequency ablation lesion size differs for septal and apical left ventricular applications. Differences in convective cooling might play an important role in this respect. This is supported by our in vitro experiments, where increased...

  5. A solar collector for air-conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Kose, E. [Microtherm Energietechnik GmbH, 25 - Lods (France)

    1999-03-01

    A high performance Compound Parabolic Concentrator (CPC) collector is presented. It comprises dewar type tubular vacuum tubes with an absorber coating of very low emittance, a moderately concentrating reflector and a simple thermosyphon heat removal system. The reflectors car be designed with respect to the specific needs; reflector material, concentration, truncation and symmetry car be chosen freely. The collector allows the construction of cooling systems with higher COP's without using tracking systems. Land use and costs are greatly reduced. For a certain application (optimum yearly gain in Munich with a constant collector temperature of 180 deg C) the reflector was optimized, it is a fairly asymmetrical design. A symmetrical design with a similar performance has been tested, the results are shown. (author)

  6. Cardiac ablation

    Directory of Open Access Journals (Sweden)

    Kelly Ratheal

    2016-01-01

    Full Text Available Cardiac ablation is a procedure that uses either radiofrequency or cryothermal energy to destroy cells in the heart to terminate and/or prevent arrhythmias. The indications for cardiac catheter ablation include refractory, symptomatic arrhythmias, with more specific guidelines for atrial fibrillation in particular. The ablation procedure itself involves mapping the arrhythmia and destruction of the aberrant pathway in an effort to permanently prevent the arrhythmia. There are many types of arrhythmias, and they require individualized approaches to ablation based on their innately different electrical pathways. Ablation of arrhythmias, such as Wolff-Parkinson-White syndrome, AV nodal reentrant tachycardia, and atrial-fibrillation, is discussed in this review. Ablation has a high success rate overall and minimal complication rates, leading to improved quality of life in many patients.

  7. Daily efficiency of flat-plate solar air collectors for grain drying

    Energy Technology Data Exchange (ETDEWEB)

    Ting, K.C.; Shove, G.C.

    1983-01-01

    Single cover flat-plate solar collectors incorporated into walls and roofs of farm buildings have been used to heat ambient air for low temperature grain drying systems. Large surface area and high airflow rate are common features of these collectors. The drying period may range from several days to several weeks. Therefore, a knowledge of the variations of the collectors' daily efficiencies with respect to their design parameters would be helpful in applying solar collectors to grain drying. The objective of this study was to develop a simpler means of direct calculation of a collector's daily efficiency based on its design parameters. Many factors, such as configuration of the collector, airflow rate, weather conditions, etc. will affect the performance of solar collectors. A large number of varied conditions need to be tested in order to investigate the effect of different parameters on the collector performance. To facilitate this investigation, a computer simulation model developed by Ting was used to calculate the daily efficiencies of collectors under different operating conditions. The computer model was verified by Morrison's experimental data. Based on the simulation results, a functional relationship was developed between the daily efficiencies of collectors and their design parameters.

  8. A randomized prospective long-term (>1 year) clinical trial comparing the efficacy and safety of radiofrequency ablation to 980 nm laser ablation of the great saphenous vein.

    Science.gov (United States)

    Sydnor, Malcolm; Mavropoulos, John; Slobodnik, Natalia; Wolfe, Luke; Strife, Brian; Komorowski, Daniel

    2017-07-01

    Purpose To compare the short- and long-term (>1 year) efficacy and safety of radiofrequency ablation (ClosureFAST™) versus endovenous laser ablation (980 nm diode laser) for the treatment of superficial venous insufficiency of the great saphenous vein. Materials and methods Two hundred patients with superficial venous insufficiency of the great saphenous vein were randomized to receive either radiofrequency ablation or endovenous laser ablation (and simultaneous adjunctive therapies for surface varicosities when appropriate). Post-treatment sonographic and clinical assessment was conducted at one week, six weeks, and six months for closure, complications, and patient satisfaction. Clinical assessment of each patient was conducted at one year and then at yearly intervals for patient satisfaction. Results Post-procedure pain ( p radiofrequency ablation group. Improvements in venous clinical severity score were noted through six months in both groups (endovenous laser ablation 6.6 to 1; radiofrequency ablation 6.2 to 1) with no significant difference in venous clinical severity score ( p = 0.4066) or measured adverse effects; 89 endovenous laser ablation and 87 radiofrequency patients were interviewed at least 12 months out with a mean long-term follow-up of 44 and 42 months ( p = 0.1096), respectively. There were four treatment failures in each group, and every case was correctable with further treatment. Overall, there were no significant differences with regard to patient satisfaction between radiofrequency ablation and endovenous laser ablation ( p = 0.3009). There were no cases of deep venous thrombosis in either group at any time during this study. Conclusions Radiofrequency ablation and endovenous laser ablation are highly effective and safe from both anatomic and clinical standpoints over a multi-year period and neither modality achieved superiority over the other.

  9. Echocardiography-guided Radiofrequency Catheter Ablation of Atrioventricular Node and VVI Pacemaker Implantation

    Directory of Open Access Journals (Sweden)

    T Guo

    2014-05-01

    Full Text Available Objective: This study is to evaluate the feasibility and safety of intracardiac radiofrequency catheter ablation (RFCA of the atrioventricular node (AVN and pacemaker implantation using transthoracic echocardiography. Methods: Eleven patients – six males and five females (mean age 66 years – with persistent or permanent atrial fibrillation/atrial flutter received RFCA of AVN and VVI pacemaker implantation (paces and senses the ventricle and is inhibited if it senses ventricular activity. Under transthoracic echocardiography, the electrode catheters were positioned intracardiac, and target ablation was performed, with the permanent pacemaking catheter in the left subclavian vein and the ablation catheter in the right femoral vein. The multi-view imaging and dynamic observation applied during the stable AV dissociation were successful. Results: Atrioventricular node ablation and permanent pacemaker implantation in 11 patients were completed successfully without X-ray exposure. The operation success rate was 100%. All patients recovered well within the follow-up period. Conclusions: Radiofrequency catheter ablation of AVN and VVI pacemaker implantation under transthoracic echocardiography guidance is a safe, easy and feasible approach. This procedure could be an important supplemental measure to catheter ablation of arrhythmia under routine X-ray fluoroscopy.

  10. Tube collector with integrated tracking parabolic concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Grass, C.; Benz, N.; Hacker, Z.; Timinger, A. [ZAE Bayern, Bavarian Centre for Applied Energy Research, Muenchen (Germany)

    2000-07-01

    Low concentrating CPC collectors usually do not track the sun and are mounted in east-west direction with a latitude dependent slope angle. They are most suitable for maximum working temperatures up to 200 250 deg. C. We present a novel evacuated tube-collector with a trough-like concentrating mirror. Single-axis tracking of the mirror is realized with a magnetic mechanism. The mirror is mounted inside the evacuated tube and hence protected from environmental influences. One axis tracking in combination with a small acceptance angle allows for higher concentration as compared to non-tracking concentrating collectors. Ray-tracing analysis shows a half acceptance angle of about 5 deg. at a geometrical concentration ratio of 3.2. The losses of evacuated tube collectors are dominated by the radiation losses of the absorber. Hence, reducing the absorber size can lead to higher efficiencies at high operating temperature levels. With the presented collector we aim for operating temperatures up to 400 deg. C. At temperatures of 300 deg. C we expect efficiencies of 65 %. This allows for application in industrial process heat generation, high efficient solar cooling and power generation. A first prototype was tested at the ZAE Bayern. The optical efficiency was measured to be 75 %. (au)

  11. Femtosecond pulsed laser ablation of GaAs

    International Nuclear Information System (INIS)

    Trelenberg, T.W.; Dinh, L.N.; Saw, C.K.; Stuart, B.C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed

  12. Dual curvature acoustically damped concentrating collector. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.A.; Rausch, R.A.

    1980-05-01

    A development program was conducted to investigate the design and performance parameters of a novel, dual curvature, concentrating solar collector. The reflector of the solar collector is achieved with a stretched-film reflective surface that approximates a hyperbolic paraboloid and is capable of line-focusing at concentration ratios ranging from 10 to 20X. A prototype collector was designed based on analytical and experimental component trade-off activities as well as economic analyses of solar thermal heating and cooling systems incorporating this type of collector. A prototype collector incorporating six 0.66 x 1.22 m (2 x 4 ft) was fabricated and subjected to a limited thermal efficiency test program. A peak efficiency of 36% at 121/sup 0/C (250/sup 0/F) was achieved based upon the gross aperture area. Commercialization activities were conducted, including estimated production costs of $134.44/m/sup 2/ ($12.49/ft/sup 2/) for the collector assembly (including a local suntracker and controls) and $24.33/m/sup 2/ ($2.26/ft/sup 2/) for the reflector subassembly.

  13. Therapeutic efficacy of percutaneous radiofrequency ablation versus microwave ablation for hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available The aim of this study was to investigate the therapeutic efficacy of percutaneous radiofrequency (RF ablation versus microwave (MW ablation for hepatocellular carcinoma (HCC measuring ≤ 5 cm in greatest diameter. From January 2006 to December 2006, 78 patients had undergone RF ablation whereas 77 had undergone MW ablation. Complete ablation (CA, local tumour progression (LTP and distant recurrence (DR were compared. The overall survival curves were calculated with the Kaplan-Meier technique and compared with the log-rank test. The CA rate was 83.4% (78/93 for RF ablation and 86.7%(91/105 for MW ablation. The LTP rate was 11.8% (11/93 for RF ablation and 10.5% (11/105 for MW ablation. DR was found in 51 (65.4% in the RF ablation and 62 (80.5% in the MW ablation. There was no significant difference in the 1-, 3-, and 5-year overall survival rates (P = 0.780 and the 1-, 3-, and 5-year disease-free survival rates (P = 0.123 between RF and MW ablation. At subgroup analyses, for patients with tumors ≤ 3.0 cm, there was no significant difference in the 1-, 3-, and 5-year overall survival rates (P = 0.067 and the corresponding disease-free survival rates(P = 0.849. For patients with tumor diameters of 3.1-5.0 cm, the 1-, 3-, and 5-year overall survival rates were 87.1%, 61.3%, and 40.1% for RF ablation and 85.4%, 36.6%, and 22% for MW ablation, with no significant difference (P = 0.068. The corresponding disease-free survival rates were 74.2%, 54.8%, and 45.2% for the RF ablation group and 53.3%, 26.8%, and 17.1% for the MW ablation group. The disease-free survival curve for the RF ablation group was significantly better than that for the MW ablation group (P = 0.018. RF ablation and MW ablation are both effective methods in treating hepatocellular carcinomas, with no significant differences in CA, LTP, DR, and overall survival.

  14. Simulation of HPIB propagation in biased charge collector

    International Nuclear Information System (INIS)

    Li Hongyu; Qiu Aici

    2004-01-01

    A 2.5D PIC simulation using KARAT code for inner charge propagation within biased charge collector for measuring HPIB is presented. The simulation results indicate that the charges were neutralized but the current non-neutralized in the biased charge collector. The influence of ions collected vs biased voltage of the collector was also simulated. -800 V biased voltage can meet the measurement of 500 keV HPIB, and this is consistent with the experimental results

  15. Performance analysis of photovoltaic thermal (PVT) water collectors

    International Nuclear Information System (INIS)

    Fudholi, Ahmad; Sopian, Kamaruzzaman; Yazdi, Mohammad H.; Ruslan, Mohd Hafidz; Ibrahim, Adnan; Kazem, Hussein A.

    2014-01-01

    Highlights: • Performances analysis of PVT collector based on energy efficiencies. • New absorber designs of PVT collectors were presented. • Comparison present study with other absorber collector designs was presented. • High efficiencies were obtained for spiral flow absorber. - Abstract: The electrical and thermal performances of photovoltaic thermal (PVT) water collectors were determined under 500–800 W/m 2 solar radiation levels. At each solar radiation level, mass flow rates ranging from 0.011 kg/s to 0.041 kg/s were introduced. The PVT collectors were tested with respect to PV efficiency, thermal efficiency, and a combination of both (PVT efficiency). The results show that the spiral flow absorber exhibited the highest performance at a solar radiation level of 800 W/m 2 and mass flow rate of 0.041 kg/s. This absorber produced a PVT efficiency of 68.4%, a PV efficiency of 13.8%, and a thermal efficiency of 54.6%. It also produced a primary-energy saving efficiency ranging from 79% to 91% at a mass flow rate of 0.011–0.041 kg/s

  16. Integrated collector storage solar water heater: Temperature stratification

    International Nuclear Information System (INIS)

    Garnier, C.; Currie, J.; Muneer, T.

    2009-01-01

    An analysis of the temperature stratification inside an Integrated Collector Storage Solar Water Heater (ICS-SWH) was carried out. The system takes the form of a rectangular-shaped box incorporating the solar collector and storage tank into a single unit and was optimised for simulation in Scottish weather conditions. A 3-month experimental study on the ICS-SWH was undertaken in order to provide empirical data for comparison with the computed results. Using a previously developed macro model; a number of improvements were made. The initial macro model was able to generate corresponding water bulk temperature in the collector with a given hourly incident solar radiation, ambient temperature and inlet water temperature and therefore able to predict ICS-SWH performance. The new model was able to compute the bulk water temperature variation in different SWH collectors for a given aspect ratio and the water temperature along the height of the collector (temperature stratification). Computed longitudinal temperature stratification results obtained were found to be in close agreement with the experimental data.

  17. Colored solar collectors - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A.; Chambrier, E. De; Roecker, Ch.; Scartezzini, J.-L.

    2007-12-15

    The architectural integration of thermal solar collectors into buildings is often limited by their black color, and the visibility of tubes and corrugations of the absorber sheets. A certain freedom in color choice would be desirable, but the colored appearance should not cause an excessive degradation of the collector efficiency. Multilayered thin film interference filters on the collector glazing can produce a colored reflection, hiding the corrugated metal sheet, while transmitting the non-reflected radiation entirely to the absorber. These interference filters are designed and optimized by numerical simulation, and are manufactured by sol-gel dip-coating or magnetron sputtering. The novel colored glazed solar collectors will be ideally suited for architectural integration into buildings, e.g. as solar active glass facades. Due to the tunability of the refractive index, nanostructured materials such as SiO{sub 2}:TiO{sub 2} composites and porous SiO{sub 2} are very useful for application in multilayer interference stacks. Novel quaternary Mg-F-Si-O films exhibit a surprisingly low refractive index and are therefore promising candidates for highly transparent coatings on solar collector glazing. The nanostructure of these thin films is studied by transmission electron microscopy, while the optical constants are measured precisely by ellipsometry. For a convincing demonstration, sufficiently large samples of high quality are imperatively needed. The fabrication of nanocomposite SiO{sub 2}:TiO{sub 2} films has been demonstrated by sol-gel dip-coating of A4-sized glass panes. The produced coatings exhibit a colored reflection in combination with a high solar transmittance, a homogenous appearance, and are free of visible defects. Film hardening by UV exposure will result in speeding up the sol-gel process and saving energy, thereby reducing costs significantly. The infrastructure for UV-curing has been established. A UV C radiation source can now be attached to the

  18. Scanning vs. single spot laser ablation (λ=213 nm) inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Gonzalez, Jhanis J.; Fernandez, Alberto; Mao Xianglei; Russo, Richard E.

    2004-01-01

    Sampling strategy is defined in this work as the interaction of a repetitively pulsed laser beam with a fixed position on a sample (single spot) or with a moving sample (scan). Analytical performance of these sampling strategies was compared by using 213 nm laser ablation ICP-MS. A geological rock (Tuff) was quantitatively analyzed based on NIST series 610-616 glass standard reference materials. Laser ablation data were compared to ICP-MS analysis of the dissolved samples. The scan strategy (50 μm/s) produced a flat, steady temporal ICP-MS response whereas the single spot strategy produced a signal that decayed with time (after 60 s). Single-spot sampling provided better accuracy and precision than the scan strategy when the first 15 s of the sampling time was eliminated from the data analysis. In addition, the single spot strategy showed less matrix dependence among the four NIST glasses

  19. Visualisation during ablation of atrial fibrillation - stimulating the patient's own resources

    DEFF Research Database (Denmark)

    Nørgaard, Marianne W; Pedersen, Preben U; Bjerrum, Merete

    2014-01-01

    management. PURPOSE: The purpose of this study was to investigate patients' experiences with visualisation in relation to pain and anxiety during an intervention consisting of visualisation, when undergoing ablation of atrial fibrillation. METHODS: Qualitative interviews were conducted with 14 patients from...... a study population of a clinical controlled study with 147 patients. The transcribed interviews were analysed according to qualitative methodology of inductive content analysis. FINDINGS: Four categories emerged from the interviews: 'approach to visualisation'; 'strategies of managing pain'; 'strategies...... in managing pain and anxiety. Our findings indicate that visualisation for acute pain during ablation of atrial fibrillation was associated not only with a decrease in experience of pain but also with high levels of treatment satisfaction and other non-pain-related benefits....

  20. Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Wilson, D.J.; Galy, A.; Piotrowski, A.M.; Banakar, V.K.

    composition was analysed on the Nu Plasma multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) in the Department of Earth Sciences at the University of Cambridge, using an exponential mass fractionation correction (to 146Nd/144Nd = 0...

  1. Solar energy captured by a curved collector designed for architectural integration

    International Nuclear Information System (INIS)

    Rodríguez-Sánchez, D.; Belmonte, J.F.; Izquierdo-Barrientos, M.A.; Molina, A.E.; Rosengarten, G.; Almendros-Ibáñez, J.A.

    2014-01-01

    Highlights: • We present a new prototype of solar collector for architectural integration. • Equations of the solar radiation on a curved surface. • We compare the energy intercepted by the prototype with the energy intercepted by conventional collectors. • The prototype can be competitive compared with conventional collectors. - Abstract: In this paper we present a prototype for a new type of solar thermal collector designed for architectural integration. In this proposal, the conventional geometry of a flat solar thermal collector is changed to a curved geometry, to improve its visual impact when mounted on a building facade or roof. The mathematical equations for the beam and diffuse solar radiation received by a collector with this geometry are developed for two different orientations, horizontal and vertical. The performance of this curved prototype, in terms of solar radiation received, is compared with a conventional tilted-surface collector for different orientations in Madrid (Spain). The comparison is made for typical clear-sky days in winter and summer as well as for an entire year. The results demonstrate that the curved collector only receives between 12% and 25% less radiation than the conventional tilted-surface collectors when oriented horizontally, depending on the azimuth of the curved surface, although these percentages are reduced to approximately 50% when the collector is oriented vertically

  2. On the Influence of Collector Size on the Solar Chimneys Performance

    Directory of Open Access Journals (Sweden)

    Al-Azawiey Sundus S.

    2017-01-01

    Full Text Available Performance of solar chimney power plant system is highly influenced by the design geometries. The collector size is logically enhances the solar chimney performance, but the trend of enhancement is not yet investigated. In the present work, experimental and numerical investigations have been carried out to ascertain, in terms of qualitative and quantitative evaluation, the effect of the collector diameter. Daily thermal efficiency has been determined at four different collector diameter. Two different collector diameters, 3.0 and 6.0 m, have been investigated experimentally, and then scaled up, to 9.0 and 12.0 m, by numerical simulation using ANSYS-FLUENT®15 software. Results demonstrated that collector diameter has effectively influenced the system performance. Larger collector diameter imposed increase in the velocity, temperature and the daily average thermal efficiency of the system. From the experimental results, increasing the collector diameter from 3.0 to 6.0 m has increased the daily average thermal efficiency of the collector from 9.81 to 12.8. Simulation results at 800 W/m2 irradiation revealed that the velocity in the chimney have increased from 1.66 m/s at 3.0 m collector diameter to 2.34, 2.47 and 2.63 m/s for 6.0, 9.0 and 12.0 m collector diameters, respectively.

  3. Test results, Industrial Solar Technology parabolic trough solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  4. Results of IEA SHC Task 45: Large Scale Solar Heating and Cooling Systems. Subtask A: “Collectors and Collector Loop”

    DEFF Research Database (Denmark)

    Bava, Federico; Nielsen, Jan Erik; Knabl, Samuel

    2016-01-01

    . Within this project, subtask A had the more specific objectives of investigating ways to evaluate the influence that different operating conditions can have on the collector performance, assure proper and safe installation of large solar collector fields, and guarantee their performance and yearly energy......The IEA SHC Task 45 Large Scale Solar Heating and Cooling Systems, carried out between January 2011 and December 2014, had the main objective to assist in the development of a strong and sustainable market of large solar heating systems by focusing on high performance and reliability of systems...... output. The results of the different investigations are presented, with a particular focus on how different parameters such as tilt, flow rate and fluid type, can affect the collector efficiency. Other presented results include methods to guarantee and check the thermal performance of a solar collector...

  5. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    Directory of Open Access Journals (Sweden)

    M. Norhafana

    2015-11-01

    Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation 

  6. Evaluation of heat transfer enhancement in air-heating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, D. L.

    1979-06-01

    The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.

  7. In situ Sr/Sr investigation of igneous apatites and carbonates using laser-ablation MC-ICP-MS

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Simonetti, A.; Stevenson, R.K.

    2003-01-01

    In situ Sr isotopic compositions of coexisting apatite and carbonate for carbonatites from the Sarfartoq alkaline complex, Greenland, have been determined by laser-ablation multicollector inductively coupled plasma mass spectrometry. This study is the first to examine the extent of Sr isotopic ho...

  8. Evaluation of lead isotope compositions of NIST NBS 981 measured by thermal ionization mass spectrometer and multiple-collector inductively coupled plasma mass spectrometer

    Directory of Open Access Journals (Sweden)

    Honglin Yuan

    2016-09-01

    Full Text Available Because Pb isotopes can be used for tracing, they are widely used in many disciplines. The detection and analysis of Pb isotopes of bulk samples are usually conducted using thermal ionization mass spectrometer (TIMS and multiple-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, both of which need external reference materials with known isotopic compositions to correct for the mass discrimination effect produced during analysis. NIST NBS 981 is the most widely used reference material for Pb isotope analysis; however, the isotopic compositions reported by various analytical laboratories, especially those using TIMS, vary from each other. In this study, we statistically evaluated 229 reported TIMS analysis values collected by GeoReM in the last 30 years, 176 reported MC-ICP-MS analysis values, and 938 MC-ICP-MS analysis results from our laboratory in the last five years. After careful investigation, only 40 TIMS results were found to have double or triple spikes. The ratios of the overall weighted averages, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb, obtained from 40 spiked TIMS reports and 1114 MC-ICP-MS results of NIST NBS 981 isotopes were 16.9406 ± 0.0003 (2s, 15.4957 ± 0.0002 (2s, and 36.7184 ± 0.0007 (2s, respectively.

  9. Radiofrequency thermal ablation of malignant hepatic tumors: post-ablation syndrome

    International Nuclear Information System (INIS)

    Choi, Jung Bin; Rhim, Hyunchul; Kim, Yongsoo; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Lee, Seung Ro

    2000-01-01

    To evaluate post-ablation syndrome after radiofrequency thermal ablation of malignant hepatic tumors. Forty-two patients with primary (n=3D29) or secondary (n=3D13) hepatic tumors underwent radiofrequency thermal ablation. A total of 65 nodules ranging in size from 1.1 to 5.0 (mean, 3.1) cm were treated percutaneously using a 50W RF generator with 15G expandable needle electrodes. We retrospectively evaluated the spectrum of post-ablation syndrome including pain, fever (≥3D 38 deg C), nausea, vomiting, right shoulder pain, and chest discomfort according to frequency, intensity and duration, and the findings were correlated with tumor location and number of ablations. We also evaluated changes in pre-/post-ablation serum aminotransferase (ALT/AST) and prothrombin time, and correlated these findings with the number of ablations. Post-ablation syndrome was noted in 29 of 42 patients (69.0%), and most symptoms improved with conservative treatment. The most important of these were abdominal plan (n=3D20, 47.6%), fever (n=3D8, 19.0%), and nausea (n=3D7, 16.7%), and four of 42 (9.5%) patients complained of severe pain. The abdominal pain lasted from 3 hours to 5.5 days (mean; 20.4 hours), the fever from 6 hours to 5 days (mean; 63.0 hours). And the nausea from 1 hours to 4 days (mean; 21.0 hours). Other symptoms were right shoulder pain (n=3D6, 14.3%), chest discomfort (n=3D3, 7.1%), and headache (n=3D3, 7.1%). Seventeen of 20 patients (85%) with abdominal pain had subcapsular tumor of the liver. There was significant correlation between pain, location of the tumor, and a number of ablations. After ablation, ALT/AST was elevated more than two-fold in 52.6%/73.7% of patients, respectively but there was no significant correlation with the number of ablation. Post-ablation syndrome is a frequent and tolerable post-procedural process after radiofrequency thermal ablation. The spectrum of this syndrome provides a useful guideline for the post-ablation management. (author)

  10. VALIDATION OF SIMULATION MODELS FOR DIFFERENTLY DESIGNED HEAT-PIPE EVACUATED TUBULAR COLLECTORS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Dragsted, Janne; Furbo, Simon

    2007-01-01

    Differently designed heat-pipe evacuated tubular collectors have been investigated theoretically and experimentally. The theoretical work has included development of two TRNSYS [1] simulation models for heat-pipe evacuated tubular collectors utilizing solar radiation from all directions. One model...... coating on both sides. The input to the models is thus not a simple collector efficiency expression but the actual collector geometry. In this study, the TRNSYS models are validated with measurements for four differently designed heat-pipe evacuated tubular collectors. The collectors are produced...

  11. Right atrial volume calculated by multi-detector computed tomography. Useful predictor of atrial fibrillation recurrence after pulmonary vein catheter ablation

    International Nuclear Information System (INIS)

    Kaneko, Kyouichi; Akutsu, Yasushi; Kodama, Yusuke

    2010-01-01

    We investigated whether right atrial (RA) volume could be used to predict the recurrence of atrial fibrillation (AF) after pulmonary vein catheter ablation (CA). We evaluated 65 patients with paroxysmal AF (mean age, 60+10 years, 81.5% male) and normal volunteers (57±14 years, 41.7% male). Sixty-four-slice multi-detector computed tomography was performed for left atrial (LA) and RA volume estimations before CA. The recurrence of AF was assessed for 6 months after the ablation. Both left and right atrial volumes were larger in the AF patients than the normal volunteers (LA: 99.7+33.2 ml vs. 59.7+17.4 ml; RA: 82.9+35.7 ml vs. 43.9+12 ml; P 100 ml) for predicting the recurrence of AF was 81.3% in 13 of 16 patients with AF recurrence, and the specificity was 69.4% in 34 of 49 patients without recurrence. The sensitivity with large RA volumes (>87 ml) was 81.3% in 13 of 16 patients with AF recurrence, and the specificity was 75.5% in 37 of 49 patients without recurrence. RA volume is a useful predictor of the recurrence of AF, similar to LA volume. (author)

  12. Linear induction accelerators

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1986-06-01

    The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs

  13. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  14. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Chen, Ziqian; Furbo, Simon

    2009-01-01

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  15. Contemporary Tools and Techniques for Substrate Ablation of Ventricular Tachycardia in Structural Heart Disease.

    Science.gov (United States)

    Hutchinson, Mathew D; Garza, Hyon-He K

    2018-02-24

    As we have witnessed in other arenas of catheter-based therapeutics, ventricular tachycardia (VT) ablation has become increasingly anatomical in its execution. Multi-modality imaging provides anatomical detail in substrate characterization, which is often complex in nonischemic cardiomyopathy patients. Patients with intramural, intraseptal, and epicardial substrates provide challenges in delivering effective ablation to the critical arrhythmia substrate due to the depth of origin or the presence of adjacent critical structures. Novel ablation techniques such as simultaneous unipolar or bipolar ablation can be useful to achieve greater lesion depth, though at the expense of increasing collateral damage. Disruptive technologies like stereotactic radioablation may provide a tailored approach to these complex patients while minimizing procedural risk. Substrate ablation is a cornerstone of the contemporary VT ablation procedure, and recent data suggest that it is as effective and more efficient that conventional activation guided ablation. A number of specific targets and techniques for substrate ablation have been described, and all have shown a fairly high success in achieving their acute procedural endpoint. Substrate ablation also provides a novel and reproducible procedural endpoint, which may add predictive value for VT recurrence beyond conventional programmed stimulation. Extrapolation of outcome data to nonischemic phenotypes requires caution given both the variability in substrate nonischemic distribution and the underrepresentation of these patients in previous trials.

  16. A stationary evacuated collector with integrated concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Snail, K.A.; O' Gallagher, J.J.; Winston, R.

    1984-01-01

    A comprehensive set of experimental tests and detailed optical and thermal models are presented for a newly developed solar thermal collector. The new collector has an optical efficiency of 65 per cent and achieves thermal efficiencies of better than 50 per cent at fluid temperatures of 200/sup 0/C without tracking the sun. The simultaneous features of high temperature operation and a fully stationary mount are made possible by combining vacuum insulation, spectrally selective coatings, and nonimaging concentration in a novel way. These 3 design elements are ''integrated'' together in a self containe unit by shaping the outer glass envelope of a conventional evacuated tube into the profile of a nonimaging CPC-type concentrator. This permits the use of a first surface mirror and eliminates the need for second cover glazing. The new collector has been given the name ''Integrated Stationary Evacuated Concentrator'', or ISEC collector. Not only is the peak thermal efficiency of the ISEC comparable to that of commercial tracking parabolic troughs, but projections of the average yearly energy delivery also show competitive performance with a net gain for temperatures below 200/sup 0/C. In addition, the ISEC is less subject to exposure induced degradation and could be mass produced with assembly methods similar to those used with fluorescent lamps. Since no tracking or tilt adjustments are ever required and because its sensitive optical surfaces are protected from the environment, the ISEC collector provides a simple, easily maintained solar thermal collector for the range 100-300/sup 0/C which is suitable for most climates and atmospheric conditions. Potential applications include space heating, air conditioning, and industrial process heat.

  17. Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials

    Science.gov (United States)

    Pepin, Robert O.; Schlutter, Dennis J.; Becker, Richard H.; Reisenfeld, Daniel B.

    2012-07-01

    We report compositions and fluxes of light noble gases in the solar wind (SW), extracted by stepped pyrolysis and amalgamation from gold collector materials carried on the Genesis Solar Wind Sample Return Mission. Results are compared with data from other laboratories on SW-He, Ne and Ar distributions implanted in Genesis aluminum, carbon, and silicon collectors and extracted by laser ablation. Corrections for mass-dependent losses (“backscatter”) of impinging SW ions due to scattering from the collector material are substantially larger for gold than for these lower atomic weight targets. We assess such losses by SRIM simulation calculations of SW backscatter from gold which are applied to the measurements to recover the composition of the incident SW. Averaged results of integrated stepped pyrolysis and single-step amalgamation measurements, with 1σ errors, are as follows: for SW-Ne and Ar isotope ratios (3He/4He was not measured), 20Ne/22Ne = 14.001 ± 0.042, 21Ne/22Ne = 0.03361 ± 0.00018, 36Ar/38Ar = 5.501 ± 0.014; for SW element ratios, 4He/20Ne = 641 ± 15, 20Ne/36Ar = 51.6 ± 0.5; and for SW fluxes in atoms cm-2 s-1 at the Genesis L1 station, 4He = 1.14 ± 0.04 × 107, 20Ne = 1.80 ± 0.06 × 104, 36Ar = 3.58 ± 0.11 × 102. Except for the 21Ne/22Ne and 20Ne/36Ar ratios, these values are in reasonable accord (within ∼1-3σ) with measurements on different collector materials reported by one or both of two other Genesis noble gas research groups. We further find, in three stepped pyrolysis experiments on gold foil, that He, Ne and Ar are released at increasing temperatures without elemental fractionation, in contrast to a pyrolytic extraction of a single non-gold collector (Al) where the release patterns point to mass-dependent thermal diffusion. The pyrolyzed gold foils exhibit enhancements, relative to sample totals, in 20Ne/22Ne and 21Ne/22Ne ratios evolved at low temperatures. The absence of elemental fractionation in pyrolytic release from gold

  18. 40Ar/39Ar dating of Quaternary volcanic ashes by multi-collection noble gas mass spectrometry: protocols, precision and intercalibration

    DEFF Research Database (Denmark)

    Storey, Michael; Rivera, Tiffany; Flude, Stephanie

    ) higher mass resolution allows hydrocarbon interferences to be pseudo resolved for the different argon isotopes; and (iv) multi-collection, allowing more data to be gathered in a fixed time in comparison with single-collector peak-switching measurements. We evaluate (i) protocols for detector inter......The recent availability of commercial high-resolution, multi-collector, noble gas mass spectrometers equipped with ion-counting electron multipliers provides new opportunities for improved precision in 40Ar/39Ar dating. This is particularly true for single crystal dating of Quaternary aged samples...... where potassium-bearing phenocrysts may contain relatively small amounts of radiogenic 40Ar. In 2005, the Quaternary Dating Laboratory, Roskilde University, installed a Nu-Instruments multi-collector Noblesse noble gas mass spectrometer, which is configured with a Faraday detector and three ion...

  19. Optimization of the functional domain of flat plate collectors

    Science.gov (United States)

    Ritoux, G.; Irigaray, J.-L.

    1981-12-01

    The variations of the extracted heat flux as function of the temperature of the heat transfer fluid in black and selective surface solar collectors are examined. The heat flux is calculated based on the difference of the initial to the stage of thermal equilibrium of the fluid. A nonlinear system of equations is developed and solved by a fast, iterative method to obtain the equilibrium temperatures. It is found that more flux can be extracted from the solar heat by a collector with only one glass cover than with more than one cover. The captured flux is proportional to the coefficient of transmission of the glass coverings, to the coefficient of absorption of the collector, and to the incident flux. Black painted surfaces were more absorbent than selective surfaces, and highest collection efficiencies were displayed by low temperature collectors. Charts of effective uses of the respective types of collectors for heating swimming pools, hot water, home heat, and for refrigeration and air-conditioning are provided.

  20. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Adnan; Othman, Mohd Yusof; Ruslan, Mohd Hafidz; Mat, Sohif; Sopian, Kamaruzzaman [Solar Energy Research Institute Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-01-15

    Flat plate photovoltaic/thermal (PV/T) solar collector produces both thermal energy and electricity simultaneously. This paper presents the state-of-the-art on flat plate PV/T collector classification, design and performance evaluation of water, air and combination of water and/or air based. This review also covers the future development of flat plate PV/T solar collector on building integrated photovoltaic (BIPV) and building integrated photovoltaic/thermal (BIPVT) applications. Different designs feature and performance of flat plate PV/T solar collectors have been compared and discussed. Future research and development (R and D) works have been elaborated. The tube and sheet design is the simplest and easiest to be manufactured, even though, the efficiency is 2% lower compared to other types of collectors such as, channel, free flow and two-absorber. It is clear from the review that for both air and water based PV/T solar collectors, the important key factors that influenced the efficiency of the system are the area where the collector covered, the number of passes and the gap between the absorber collector and solar cells. From the literature review, it is obvious that the flat plate PV/T solar collector is an alternative promising system for low-energy applications in residential, industrial and commercial buildings. Other possible areas for the future works of BIPVT are also mentioned. (author)

  1. Wind load design methods for ground-based heliostats and parabolic dish collectors

    Energy Technology Data Exchange (ETDEWEB)

    Peterka, J A; Derickson, R G [Colorado State Univ., Fort Collins, CO (United States). Fluid Dynamics and Diffusion Lab.

    1992-09-01

    The purpose of this design method is to define wind loads on flat heliostat and parabolic dish collectors in a simplified form. Wind loads are defined for both mean and peak loads accounting for the protective influence of upwind collectors, wind protective fences, or other wind-blockage elements. The method used to define wind loads was to generalize wind load data obtained during tests on model collectors, heliostats or parabolic dishes, placed in a modeled atmospheric wind in a boundary-layer wind-tunnel at Colorado State University. For both heliostats and parabolic dishes, loads are reported for solitary collectors and for collectors as elements of a field. All collectors were solid with negligible porosity; thus the effects of porosity in the collectors is not addressed.

  2. EFFECT OF BLENDING VARIOUS COLLECTORS AT BULK ...

    African Journals Online (AJOL)

    Nkana Concentrator under the ownership of the then Zambia Consolidated Copper Mines Ltd (ZCCM) had been using Sodium Ethyl Xanthate (SEX) mainly as a collector, but with the coming of new Mopani Copper Mines Plc (M.C.M), it was felt that there was a need to test alternative collectors in an attempt to improve the ...

  3. Physically absorbable reagents-collectors in elementary flotation

    Energy Technology Data Exchange (ETDEWEB)

    S.A. Kondrat' ev; I.G. Bochkarev [Russian Academy of Sciences, Novosibirsk (Russian Federation). Institute of Mining

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  4. The PKI collector

    Science.gov (United States)

    Rice, M. P.

    1982-07-01

    The design and manufacturing of a solar thermal collector is discussed. The collector has three primary subsystems: concentrator, receiver/fluid loop, and controls. Identical curved reflective columns are utilized in a faceted Fresnel design to support 864 one foot square flat inexpensive second-surface, silvered glass mirrors. The columns are ganged together and rotated through their centers of gravity to provide elevation tracking. The concentrator is supported by a lightweight spaceframe structure which distributes all wind and gravity loads to the base supports. The base of the structure is a track which rotates on wheels mounted on concrete piers. A parallel tube steel heat exchanger is mounted at the concentrator focal area in a well insulated, galvanized steel housing. Two rows of vertical close-packed, staggered tubes connect a mud header and a steam header. Automatic two axis tracking and operational control is provided with a microprocessor based package. Concentrator-mounted shadowbands are the basis for active tracking. A software program provides azimuthal tracking during cloudy periods.

  5. Energy Analysis of Solar Collector With perforated Absorber Plate

    Directory of Open Access Journals (Sweden)

    Ammar A. Farhan

    2017-09-01

    Full Text Available The thermal performance of three solar collectors with 3, 6 mm and without perforation absorber plate was assessed experimentally. The experimental tests were implemented in Baghdad during the January and February 2017. Five values of airflow rates range between 0.01 – 0.1 m3/s were used through the test with a constant airflow rate during the test day. The variation of the following parameters air temperature difference, useful energy, absorber plate temperature, and collector efficiency was recorded every 15 minutes. The experimental data reports that the increases the number of absorber plate perforations with a small diameter is more efficient rather than increasing the hole diameter of the absorber plate with decreasing the perforation numbers. Maximum air temperature difference throughout the solar collector with 3, 6 mm perforations and without perforations are 17, 15, and 12 oC, respectively. Also, it can be concluded that the energy gained from the solar collector with 3 mm perforation absorber plate is 28.2 % more than the energy gained from solar collector without holes per day for 0.1 m3/s airflow rate. The maximum values of the thermal performance curves are 0.67, 0.64, and 0.56 for the solar collector with 3, 6 mm, and without perforations, respectively.

  6. Optimum solar collector fluid flow rates

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    1996-01-01

    Experiments showed that by means of a standard electronically controlled pump, type UPE 2000 from Grundfos it is possible to control the flow rate in a solar collector loop in such a way that the flow rate is strongly influenced by the temperature of the solar collector fluid passing the pump....... The flow rate is increasing for increasing temperature.The flow rate at the high temperature level is typically 70 % greater than the flow rate at the low temperature level.Further, the energy consumption for the electronically controlled pump in a solar heating system will be somewhat smaller than...... the energy consumption of a normal ciculation pump in the solar heating system.Calculations showed that the highest thermal performances for small SDHW systems based on mantle tanks with constant volume flow rates in the solar collector loops are achieved if the flow rate is situated in the interval from 0...

  7. Analytical analysis of solar thermal collector with glass and Fresnel lens glazing

    Science.gov (United States)

    Zulkifle, Idris; Ruslan, Mohd Hafidz Hj; Othman, Mohd Yusof Hj; Ibarahim, Zahari

    2018-04-01

    Solar thermal collector is a system that converts solar radiation to heat. The heat will raise the temperature higher than the ambient temperature. Absorber and glazing are two important components in order to increase the temperature of the collector. The thermal absorber will release heat by convection and as radiation to the surrounding. These losses will be reduced by glazing. Other than that, glazing is beneficial for protecting the collector from dust and water. This study discusses about modelling of solar thermal collector effects of different mass flow rates with different glazing for V-groove flat plate solar collectors. The glazing used was the glass and linear Fresnel lens. Concentration ratio in this modelling was 1.3 for 0.1m solar collector thickness. Results show that solar collectors with linear Fresnel lens has the highest efficiency value of 71.18% compared to solar collectors with glass which has efficiency 54.10% with same operation conditions.

  8. Comparison of wet radiofrequency ablation with dry radiofrequency ablation and radiofrequency ablation using hypertonic saline preinjection: ex vivo bovine liver

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Han, Joon Koo; Kim, Se Hyung; Lee, Jae Young; Park, Hee Sun; Hur, Hurn; Choi, Byung Ihn; Shin, Kyung Sook

    2004-01-01

    We wished to compare the in-vitro efficiency of wet radiofrequency (RF) ablation with the efficiency of dry RF ablation and RF ablation with preinjection of NaCl solutions using excised bovine liver. Radiofrequency was applied to excised bovine livers in a monopolar mode for 10 minutes using a 200 W generator and a perfused-cooled electrode with or without injection or slow infusion of NaCl solutions. After placing the perfused-cooled electrode in the explanted liver, 50 ablation zones were created with five different regimens: group A; standard dry RF ablation, group B; RF ablation with 11 mL of 5% NaCl solution preinjection, group C; RF ablation with infusion of 11 mL of 5% NaCl solution at a rate of 1 mL/min, group D; RFA with 6 mL of 36% NaCl solution preinjection, group E; RF ablation with infusion of 6 mL of 36% NaCl solution at a rate of 0.5 mL/min. In groups C and E, infusion of the NaCl solutions was started 1 min before RF ablation and then maintained during RF ablation (wet RF ablation). During RF ablation, we measured the tissue temperature at 15 mm from the electrode. The dimensions of the ablation zones and changes in impedance, current and liver temperature during RF ablation were then compared between the groups. With injection or infusion of NaCl solutions, the mean initial tissue impedance prior to RF ablation was significantly less in groups B, C, D, and E (43-75 Ω) than for group A (80 Ω) (ρ 3 in group A; 12.4 ± 3.8 cm 3 in group B; 80.9 ± 9.9 cm 3 in group C; 45.3 ± 11.3 cm 3 in group D and 81.6 ± 8.6 cm 3 in group E. The tissue temperature measured at 15 mm from the electrode was higher in groups C, D and E than other groups (ρ < 0.05): 53 ± 12 .deg. C in group A, 42 ± 2 .deg. C in group B, 93 ± 8 .deg. C in group C; 79 ± 12 .deg. C in group D and 83 ± 8 .deg.C in group E. Wet RF ablation with 5% or 36% NaCl solutions shows better efficiency in creating a large ablation zone than does dry RF ablation or RF ablation with

  9. Standarized performance tests of collectors of solar thermal energy: A steel flat-plate collector with two transparent covers and a proprietary coating

    Science.gov (United States)

    1976-01-01

    Basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator are given. The collector was tested over ranges of inlet temperature and flux level.

  10. Mathematical modelling of unglazed solar collectors under extreme operating conditions

    DEFF Research Database (Denmark)

    Bunea, M.; Perers, Bengt; Eicher, S.

    2015-01-01

    average temperature levels at the evaporator. Simulation of these systems requires a collector model that can take into account operation at very low temperatures (below freezing) and under various weather conditions, particularly operation without solar irradiation.A solar collector mathematical model......Combined heat pumps and solar collectors got a renewed interest on the heating system market worldwide. Connected to the heat pump evaporator, unglazed solar collectors can considerably increase their efficiency, but they also raise the coefficient of performance of the heat pump with higher...... was found due to the condensation phenomenon and up to 40% due to frost under no solar irradiation. This work also points out the influence of the operating conditions on the collector's characteristics.Based on experiments carried out at a test facility, every heat flux on the absorber was separately...

  11. Application of a particle separation device to reduce inductively coupled plasma-enhanced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Guillong, Marcel; Kuhn, Hans-Rudolf; Guenther, Detlef

    2003-01-01

    The particle size distribution of laser ablation aerosols are a function of the wavelength, the energy density and the pulse duration of the laser, as well as the sample matrix and the gas environment. Further the size of the particles affects the vaporization and ionization efficiency in the inductively coupled plasma (ICP). Some matrices produce large particles, which are not completely vaporized and ionized in the ICP. The previous work has shown that analytical results such as matrix-independent calibration, accuracy and precision can be significantly influenced by the particle sizes of the particles. To minimize the particle size related incomplete conversion of the sample to ions in the ICP a particle separation device was developed, which allows effective particle separation using centrifugal forces in a thin coiled tube. In this device, the particle cut-off size is varied by changing the number of turns in the coil, as well as by changing the gas flow and the tube diameter. The interaction of the laser with the different samples leads to varying particle size distributions. When carrying out quantitative analysis with non-matrix matched calibration reference materials, it was shown that different particle cut-off sizes were required depending on the ICP conditions and the instrument used for analysis. Various sample materials were investigated in this study to demonstrate the applicability of the device. For silicate matrices, the capability of the ICP to produce ions was significantly reduced for particles larger than 0.5 μm, and was dependent on the element monitored. To reduce memory effects caused by the separated particles, a washout procedure was developed, which additionally allowed the analysis of the trapped particles. These results clearly demonstrate the very important particle size dependent ICP-MS signal response and the potential of the described particle size based separator for the reduction of ICP induced elemental fractionation

  12. Combined solar collector and energy storage system

    Science.gov (United States)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  13. Determination of uranium in urine - Measurement of isotope ratios and quantification by use of inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Krystek, Petra; Ritsema, R.

    2002-01-01

    For analysis of uranium in urine determination of the isotope ratio and quantification were investigated by high-resolution inductively coupled plasma mass spectrometry (HR ICP-MS). The instrument used (ThermoFinniganMAT ELEMENT2) is a single-collector MS and, therefore, a stable sample-introduction

  14. Recent progress in terrestrial photovoltaic collector technology

    Science.gov (United States)

    Ferber, R. R.

    1982-01-01

    The U.S. Photovoltaic Research and Development Program has the objective to develop the technology necessary to foster widespread grid-competitive electric power generation by the late 1980s. The flat-plate and the concentrator collector activities form the nucleus of the program. The project is concerned with the refining of silicon, silicon sheet production, solar cell processing and fabrication, encapsulation materials development, and collector design and production. The Large-Area Silicon Sheet Task has the objective to develop and demonstrate the feasibility of several methods for producing large area silicon sheet material suitable for fabricating low-cost, high-efficiency solar cells. It is expected that a variety of economic flat-plate and concentrator collectors will become commercially available for grid-connected applications.

  15. Design of a collector shape for uniform flow distribution in microchannels

    International Nuclear Information System (INIS)

    Siddique, Ayyaz; Agrawal, Amit; Saha, Sandip K; Medhi, Bhaskar J; Singh, Anugrah

    2017-01-01

    The focus of this study is the design of a collector with the objective of achieving uniform flow in multiple parallel microchannels. This objective is achieved by understanding the limitations of current designs and a novel design is proposed, which is further carefully optimized. The existing collector shape considered is U-type, which is investigated numerically. The creation of a stagnation zone, growth of a boundary layer along the collector wall and low/high velocity zones in the collector are identified as the prime causes of flow maldistribution. A novel design, a dumbbell shape collector, is proposed to overcome the limitations of the earlier designs. The dumbbell shape is evaluated quantitatively and is found to perform better than all existing shapes. This dumbbell shape collector provides a uniform flow distribution with less than 0.4% relative difference from the average flow rate in different channels, which is substantially better than existing collectors with 2.3% relative difference from the average flow rate for Re ch   =  32. The uniformity is further confirmed using micro-particle image velocimetry measurements. The dumbbell shape collector is generalized and optimized to cater to heat sinks of different dimensions and to broaden its applicability in both micro and macro dimensions. (paper)

  16. An in-vitro animal experiment on metal implants’ thermal effect on radiofrequency ablation

    Science.gov (United States)

    2013-01-01

    Background To explore metal implants’ thermal effect on radiofrequency ablation (RFA) and ascertain distance-thermal relationship between the metal implants and radiofrequency (RF) electrode. Methods Metal implants models were established in seven in-vitro porcine livers using silver clips or 125I seeds. RFA were conducted centering the RF electrode axis1 cm away from them, with one side containing a metal implants model the test group and the other side the control group. The thermometric needles were used to measure multi-point temperatures in order to compare the time-distance-temperature difference between the two groups. The gross scopes of the ablation of the two groups were measured and the tissues were analyzed for microscopic histology. Results At the ablation times of 8, 12, and 15 min, the average multi-point temperatures of the test group and the control group were 48.2±18.07°C, 51.5±19.57°C, 54.6±19.75°C, and 48.6±17.69°C, 52.2±19.73°C, 54.9±19.24°C, respectively, and the differences were not statistically significant (n=126, P>0.05). At the ablation times of 12 and 15 min, the ablation scopes of the test group and the control group were (horizontal/longitudinal diameter) 1.55/3.48 cm, 1.89/3.72 cm, and 1.56/3.48 cm, 1.89/3.72 cm, respectively, and the differences were not statistically significant (n=14, P>0.05). The two groups had the same manifestations in microscopy. Conclusions Metal implants do not cause significant thermal effect on RFA. PMID:23799942

  17. Ultra-high-precision Nd-isotope measurements of geological materials by MC-ICPMS

    DEFF Research Database (Denmark)

    Saji, Nikitha Susan; Wielandt, Daniel Kim Peel; Paton, Chad

    2016-01-01

    We report novel techniques allowing the measurement of Nd-isotope ratios with unprecedented accuracy and precision by multi-collector inductively coupled plasma mass spectrometry. Using the new protocol, we have measured the Nd-isotopic composition of rock and synthetic Nd standards as well as th...

  18. Influence of laser ablation parameters on trueness of imaging

    International Nuclear Information System (INIS)

    Vaculovič, T.; Warchilová, T.; Čadková, Z.; Száková, J.; Tlustoš, P.; Otruba, V.; Kanický, V.

    2015-01-01

    Highlights: • Laser ablation conditions vs. quality of LA-ICP-MS imaging (resolution, detection). • Increase in laser spot size improves detection limit, while deteriorates resolution. • Decrease in scan speed improves resolution but prolongs time of analysis. • Compromise spot size and scan speed meet required quality of imaging. • Metal-enriched/depleted zones in tapeworm sections were resolved by LA-ICP-MS. - Abstract: Influence of laser ablation conditions on limit of detection, spatial resolution and time of analysis was studied for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) applied to elemental mapping. Laser repetition rate and laser fluence were investigated in tapeworm thin section to attain optimum ablation rate, yielding appropriately low detection limit which complies with elemental contents in the tissue. Effect of combinations of laser spot size and scan speed on relative broadening (Δw rel ) of image of the ablated pattern (line) was investigated with the aim to quantify the trueness of imaging. Ink lines printed on paper were employed for the study of influence of spot size and scan speed on limit of detection, relative broadening of elemental image and duration of elemental mapping. An uneven distribution of copper in a printed line (coffee stain effect) was observed. The Δw rel is strongly reduced (down to 2%) at low scan speed (10 μm s −1 ) and laser spot diameter of 10 μm but resulting in unacceptably long time of mapping (up to 3000 min). Finally, tapeworm thin-section elemental maps (4 mm × 5 mm) were obtained at the laser spot diameter of 65 μm and the scan speed of 65 μm s −1 within 100 min. A dissimilar lateral distribution of Pb was observed in comparison with that of Cu or Zn due to different pathways of element uptake

  19. Influence of laser ablation parameters on trueness of imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vaculovič, T.; Warchilová, T. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); CEITEC, Masaryk University, Kamenice 5, Brno 62500 (Czech Republic); Čadková, Z.; Száková, J.; Tlustoš, P. [Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka 129, Praha 16521 (Czech Republic); Otruba, V. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Kanický, V., E-mail: viktork@chemi.muni.cz [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); CEITEC, Masaryk University, Kamenice 5, Brno 62500 (Czech Republic)

    2015-10-01

    Highlights: • Laser ablation conditions vs. quality of LA-ICP-MS imaging (resolution, detection). • Increase in laser spot size improves detection limit, while deteriorates resolution. • Decrease in scan speed improves resolution but prolongs time of analysis. • Compromise spot size and scan speed meet required quality of imaging. • Metal-enriched/depleted zones in tapeworm sections were resolved by LA-ICP-MS. - Abstract: Influence of laser ablation conditions on limit of detection, spatial resolution and time of analysis was studied for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) applied to elemental mapping. Laser repetition rate and laser fluence were investigated in tapeworm thin section to attain optimum ablation rate, yielding appropriately low detection limit which complies with elemental contents in the tissue. Effect of combinations of laser spot size and scan speed on relative broadening (Δw{sub rel}) of image of the ablated pattern (line) was investigated with the aim to quantify the trueness of imaging. Ink lines printed on paper were employed for the study of influence of spot size and scan speed on limit of detection, relative broadening of elemental image and duration of elemental mapping. An uneven distribution of copper in a printed line (coffee stain effect) was observed. The Δw{sub rel} is strongly reduced (down to 2%) at low scan speed (10 μm s{sup −1}) and laser spot diameter of 10 μm but resulting in unacceptably long time of mapping (up to 3000 min). Finally, tapeworm thin-section elemental maps (4 mm × 5 mm) were obtained at the laser spot diameter of 65 μm and the scan speed of 65 μm s{sup −1} within 100 min. A dissimilar lateral distribution of Pb was observed in comparison with that of Cu or Zn due to different pathways of element uptake.

  20. Kinetic energy of ions produced with first-, second-, and multi-shot femtosecond laser ablation on a solid surface

    International Nuclear Information System (INIS)

    Kobayashi, Tohru; Kato, Toshiyuki; Kurata-Nishimura, Mizuki; Matsuo, Yukari; Kawai, Jun; Motobayashi, Tohru; Hayashizaki, Yoshihide

    2007-01-01

    We report that the kinetic energy of samarium (Sm) atom and Sm + ion produced by femtosecond laser ablation of solid samarium is strongly dependent on the number of ablation laser shots in the range from 1 to 10. By ablating the fresh surface (i.e. 1st shot), we find the kinetic energy of both Sm and Sm + ion to be the largest (24 and 250 eV, respectively). Almost 10 times larger kinetic energy of Sm + ion than that of Sm clearly indicates the contribution of Coulomb explosion in the acceleration process. From the second shot, kinetic energies of Sm and Sm + ion are lower than those of the first shot and almost constant (ca. 12 and 80 eV, respectively). This behaviour suggests the change in the nature of the solid surface after femtosecond laser ablation, which can be explained by the amorphization of ablated sample surface reported in recent studies

  1. Catheter-based renal denervation for resistant hypertension: Twenty-four month results of the EnligHTN I first-in-human study using a multi-electrode ablation system.

    Science.gov (United States)

    Tsioufis, Costas P; Papademetriou, Vasilios; Dimitriadis, Kyriakos S; Kasiakogias, Alexandros; Tsiachris, Dimitrios; Worthley, Matthew I; Sinhal, Ajay R; Chew, Derek P; Meredith, Ian T; Malaiapan, Yuvi; Thomopoulos, Costas; Kallikazaros, Ioannis; Tousoulis, Dimitrios; Worthley, Stephen G

    2015-12-15

    Long term safety and efficacy data of multi-electrode ablation system for renal denervation (RDN) in patients with drug resistant hypertension (dRHT) are limited. We studied 46 patients (age: 60 ± 10 years, 4.7 ± 1.0 antihypertensive drugs) with drug resistant hypertension (dRHT). Reduction in office BP at 24 months from baseline was -29/-13 mmHg, while the reduction in 24-hour ambulatory BP and in home BP at 24 months were -13/-7 mmHg and -11/-6 mmHg respectively (p<0.05 for all). A correlation analysis revealed that baseline office and ambulatory BP were related to the extent of office and ambulatory BP drop. Apart from higher body mass index (33.3 ± 4.7 vs 29.5 ± 6.2 kg/m(2), p<0.05), there were no differences in patients that were RDN responders defined as ≥10 mmHg decrease (74%, n=34) compared to non-responders. Stepwise logistic regression analysis revealed no prognosticators of RDN response (p=NS for all). At 24 months there were no new serious device or procedure related adverse events. The EnligHTN I study shows that the multi-electrode ablation system provides a safe method of RDN in dRHT accompanied by a clinically relevant and sustained BP reduction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Dynamics and control of a solar collector system for near Earth object deflection

    International Nuclear Information System (INIS)

    Gong Shenping; Li Junfeng; Gao Yunfeng

    2011-01-01

    A solar collector system is a possible method using solar energy to deflect Earth-threatening near-Earth objects. We investigate the dynamics and control of a solar collector system including a main collector (MC) and secondary collector (SC). The MC is used to collect the sunlight to its focal point, where the SC is placed and directs the collected light to an asteroid. Both the relative position and attitude of the two collectors should be accurately controlled to achieve the desired optical path. First, the dynamical equation of the relative motion of the two collectors in the vicinity of the asteroid is modeled. Secondly, the nonlinear sliding-mode method is employed to design a control law to achieve the desired configuration of the two collectors. Finally, the deflection capability of this solar collector system is compared with those of the gravitational tractor and solar sail gravitational tractor. The results show that the solar collector is much more efficient with respect to deflection capability.

  3. Thermo-ecological optimization of a solar collector

    International Nuclear Information System (INIS)

    Szargut, J.; Stanek, W.

    2007-01-01

    The depletion of non-renewable natural exergy resources (the thermo-ecological cost) has been accepted as the objective function for thermo-ecological optimization. Its general formulation has been cited. A detailed form of the objective function has been formulated for a solar collector producing hot water for household needs. The following design parameters have been accepted as the decision variables: the collector area per unit of the heat demand, the diameter of collector pipes, the distance of the pipe axes in the collector plate. The design parameters of the internal installation (the pipes, the hot water receiver) have not been taken into account, because they are very individual. The accumulation ability of hot water comprising one day has been assumed. The objective function contains the following components: the thermo-ecological cost of copper plate, copper pipes, glass plate, steel box, thermal insulation, heat transfer liquid, electricity for driving the pump of liquid, fuel for the peak boiler. The duration curves of the flux of solar radiation and absorbed heat have been elaborated according to meteorological data and used in the calculations. The objective function for economic optimization may have a similar form, only the cost values would be different

  4. Solar collector wall with active curtain system; Lasikatteinen massiivienen aurinkokeraeaejaeseinae

    Energy Technology Data Exchange (ETDEWEB)

    Ojanen, T.; Heimonen, I. [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology

    1998-12-01

    Integration of solar collector into the building envelope structure brings many advantages. The disadvantage of a passive solar collector wall is that its thermal performance can not be controlled, which may cause temporary overheating and low thermal efficiency of the collector. The thermal performance of the collector wall can be improved by using controllable, active collector systems. In this paper a solar collector wall with a controllable curtain between the transparent and absorption layers is investigated. The curtain is made of several low-emissivity foil layers, which ensures low radiation heat transfer through the curtain. The curtain decreases the heat losses out from the collector wall and it improves the U-value of the wall. The curtain is used when the solar radiation intensity to the wall is not high enough or when the wall needs protection against overheating during warm weather conditions. The materials and building components used in the collector wall, except those of the curtain, are ordinary in buildings. The transparent layer can be made by using normal glazing technology and the thermal storage layer can be made out of brick or similar material. The solar energy gains through the glazing can be utilised better than in passive systems, because the curtain provides the wall with high thermal resistance outside the solar radiation periods. The thermal performance of the collector wall was studied experimentally using a Hot-Box apparatus equipped with a solar lamp. Numerical simulations were carried out to study the yearly performance of the collector wall under real climate conditions. The objectives were to determine the thermal performance of the collector wall and to study how to optimise the use of solar radiation in this system. When the curtain with high thermal resistance is used actively, the temperature level of the thermal storage layer in the wall is relatively high also during dark periods and the heat losses out from the storage

  5. Investigation of a hybrid PVT air collector system

    Science.gov (United States)

    Haddad, S.; Touafek, K.; Mordjaoui, M.; Khelifa, A.; Tabet, I.

    2017-02-01

    The photovoltaic thermal hybrid (PVT) collectors, which simultaneously produce electricity and heat, are an alternative to photovoltaic modules and thermal collectors installed separately. Indeed, the heat extracted from the solar cell is used to heat water or air, thereby cooling the cell, and thus increasing its energy efficiency. This paper deals with a hybrid PVT air collector in which a new design has been proposed and tested. Its principle is based on the return of the preheating air to a second heating. The air thus passes twice under the solar cells before being evacuated to the outside of the collector (for space heating). The system is modular and expandable to cover large spaces to be heated. The experimental results of this novel design are presented and discussed under both normal and forced circulation. This technique of air return shows favorable results in terms of the quality of the heated air and electric power generation.

  6. An experimental study of simultaneous ablation with dual probes in radiofrequency thermal ablation

    International Nuclear Information System (INIS)

    Jang, Il Soo; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Kim, Yong Soo; Kim, Young Sun; Heo, Jeong Nam

    2003-01-01

    To determine the differences between sequential ablation with a single probe and simultaneous ablation with dual probes. Using two 14-gauge expandable probes (nine internal prongs with 4-cm deployment), radiofrequency was applied sequentially (n=8) or simultaneously (n=8) to ten ex-vivo cow livers. Before starting ablation, two RF probes with an inter-probe space of 2 cm (n=8) or 3 cm (n=8) were inserted. In the sequential group, switching the connecting cable to an RF generator permitted ablation with the second probe just after ablation with the first probe had finished. In the simultaneous group, single ablation was performed only after connecting the shafts of both RF probes using a connection device. Each ablation lasted 7 minutes at a target temperature of 105-110 .deg. C. The size and shape of the ablated area, and total ablation time were then compared between the two groups. With 2-cm spacing, the group, mean length and overlapping width of ablated lesions were, respectively, 5.20 and 5.05 cm in the sequential group (n=4), and 5.81 and 5.65 cm in the simultaneous group (n=4). With 3-cm spacing, the corresponding figures were 4.99 and 5.60 cm in the sequential group (n=4), and 6.04 and 6.78 cm in the simultaneous group (n=4). With 2-cm spacing, the mean depth of the proximal waist was 0.58 cm in the sequential (group and 0.28 cm in the simultaneous group, while with 3-cm spacing, the corresponding figures were 1.65 and 1.48 cm. In neither group was there a distal waist. Mean total ablation time was 23.4 minutes in the sequential group and 14 minutes in the simultaneous group. In terms of ablation size and ablation time, simultaneous radiofrequency ablation with dual probes is superior to sequential ablation with a single probe. A simultaneous approach will enable an operator to overcome difficulty in probe repositioning during overlapping ablation, resulting in complete ablation with a successful safety margin

  7. A comparison of two cloudwater/fogwater collectors: The rotating arm collector and the caltech active strand cloudwater collector

    Science.gov (United States)

    Collett, Jeffrey L.; Daube, Bruce C.; Munger, J. William; Hoffmann, Michael R.

    A side-by-side comparison of the Rotating Arm Collector (RAC) and the Caltech Active Strand Cloudwater Collector (CASCC) was conducted at an elevated coastal site near the eastern end of the Santa Barbara Channel in southern California. The CASCC was observed to collect cloudwater at rates of up to 8.5 ml min -1. The ratio of cloudwater collection rates was found to be close to the theoretical prediction of 4.2:1 (CASCC:RAC) over a wide range of liquid water contents (LWC). At low LWC, however, this ratio climbed rapidly, possibly reflecting a predominance of small droplets under these conditions, coupled with a greater collection efficiency of small droplets by the CASCC. Cloudwater samples collected by the RAC had significantly higher concentrations of Na +, Ca 2+, Mg 2+ and Cl - than those collected by the CASCC. These higher concentrations may be due to differences in the chemical composition of large vs small droplets. No significant differences were observed in concentrations of NO 3-, SO 42- or NH 4+ in samples collected by the two instruments.

  8. Towards the optimization of the thermal–hydraulic performance of gyrotron collectors

    Energy Technology Data Exchange (ETDEWEB)

    Savoldi, Laura; Bertani, Cristina [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy); Cau, Francesca; Cismondi, Fabio [F4E, Barcelona (Spain); Gantenbein, Gerd; Illy, Stefan [Karlsruhe Institute of Technology (KIT), Institute for Pulsed Power and Microwave Technology (IHM), Kaiserstr. 12, 76131 Karlsruhe (Germany); Monni, Grazia [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy); Rozier, Yoann [Thales Electron Devices, 78141 Vélizy-Villacoublay (France); Zanino, Roberto, E-mail: roberto.zanino@polito.it [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy)

    2015-11-15

    Different configurations of water-cooled Cu collector for gyrotrons are investigated using the StarCCM + CFD code, aimed at optimizing its thermal–hydraulic (TH) performance. Although the current collectors show a good performance, the collector can be subjected to transient heat loads, due to the spent electron beam, of up to several tens of MW/m{sup 2}, and there is an interest to increase the gyrotron output power in the future. Furthermore, an optimized cooling will lead to improved reliability and lifetime of the collector. Starting from a hypervapotron (HV)-like collector, characterized by 100+ deep rectangular cavities with aspect ratio (AR) = 3, we present in the first part of the paper a single-cavity steady-state parametric analysis of the effect of AR on the heat exhaust capabilities. The investigation is then extended to other collector designs, including circumferential ribs and dimples, in order to assess the options for further improvements of the TH performance. The peak Cu temperature is computed by the code and its minimization is the target of the present optimization exercise. A self-consistent estimate of the heat transfer coefficient between collector and coolant is also obtained, which could be useful for fatigue and lifetime assessments. In the second part of the paper the most promising collector geometries identified in the first part are analyzed in the case of a transient heat load (vertical sweeping), first at the level of a single spatial period of the collector structure, then at the full-collector level. The results of the TH transient analysis are compared with both the results of the first part and with the transient purely thermal analysis of the full collector, showing for all geometries considered in this study a room for cooling efficiency improvement with respect to the HV-like design with AR = 3, at least in the operating conditions considered for this study (V ∼ 4 m/s, almost 100 °C sub-cooling).

  9. Solar collectors and heat pump: Market review and preliminary simulation results

    International Nuclear Information System (INIS)

    Tepe, Rainer; Roennelid, Mats

    2002-01-01

    Heating systems that combine solar collectors and a heat pump available on the market in Sweden have been studied. A majority of the systems found combine the solar collectors with a ground source heat pump. The technology for combining the collectors and the heat pump does however vary considerably. In the most simple systems, the collectors heat the return water from the heat pump, i.e. the collectors are used for raising the temperature in the boreholes for the heat pump. In the advanced systems, the solar heat is used for tap water, space heating and for raising the temperature of the heat pump's evaporator. There exist only very few comparative evaluations of the contributions from solar collectors in heat pump systems, and there is a need for finding the potential for this technique. In the present study, results are reported from preliminary simulations of solar collectors and ground source heat pumps installed in one-family houses. Simulations are made for two heating loads: 8,650 and 16,500 kWh/year resp., and a hot water load of 3,000 kWh/year. The study shows that: the temperature of the borehole decreases when solar collectors are not used (about 1.2 deg C in three years): 8 m 2 glazed solar collectors used for hot water production can reduce the electricity consumption with up to 13%, with best results in the house with low heating load: 50 m 2 unglazed solar collectors coupled to the evaporator or the borehole can give reductions of up to 14%, largest reduction in the house with high heating load, where the heat extraction from the borehole is large: the unglazed collectors have the highest economic potential, and can be cost effective for houses with high heating load: the simulations do not include a thorough system optimization, better results can be expected from continued optimization work

  10. Inductively coupled plasma mass spectrometry with a twin quadrupole instrument using laser ablation sample introduction and monodisperse dried microparticulate injection

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Lloyd A. [Iowa State Univ., Ames, IA (United States)

    1996-10-17

    The focus of this dissertation is the use of a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for the simultaneous detection of two m/z values. The twin quadrupole ICP-MS is used with laser ablation sample introduction in both the steady state (10 Hz) and single pulse modes. Steady state signals are highly correlated and the majority of flicker noise cancels when the ratio is calculated. Using a copper sample, the isotope ratio 63Cu+/65Cu+ is measured with a relative standard deviation (RSD) of 0.26%. Transient signals for single laser pulses are also obtained. Copper isotope ratio measurements for several laser pulses are measured with an RSD of 0.85%. Laser ablation (LA) is used with steel samples to assess the ability of the twin quadrupole ICP-MS to eliminate flicker noise of minor components of steel samples. Isotopic and internal standard ratios are measured in the first part of this work. The isotope ratio 52Cr+/53Cr+ (Cr present at 1.31 %) can be measured with an RSD of 0.06 % to 0.1 %. For internal standard elements, RSDs improve from 1.9 % in the Cr+ signal to 0.12% for the ratio of 51V+ to 52Cr+. In the second part of this work, one mass spectrometer is scanned while the second channel measures an individual m/z value. When the ratio of these two signals is calculated, the peak shapes in the mass spectrum are improved significantly. Pulses of analyte and matrix ions from individual drops are measured simultaneously using the twin quadrupole ICP-MS with monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li+ signal becomes apparent. Space charge effects are consistent with the disturbances seen.

  11. Low cost bare-plate solar air collector

    Science.gov (United States)

    Maag, W. L.; Wenzler, C. J.; Rom, F. E.; Vanarsdale, D. R.

    1980-09-01

    A low cost, bare plate solar collector for preheating ambient air was developed. This type of solar heating system would be applicable for preheating ventilation air for public buildings or other commercial and industrial ventilation requirements. Two prototype collectors were designed, fabricated and installed into an instrumented test system. Tests were conducted for a period of five months. Results of the tests showed consistent operating efficiencies of 60 percent or greater with air preheat temperature uses up to 20 degrees for one of the prototypes. The economic analyses indicated that this type of solar system was economically viable. For the materials of construction and the type of fabrication and installation perceived, costs for the bare plate solar collector are attainable. Applications for preheating ventilation air for schools were evaluated and judged to be economically viable.

  12. Secondary-electron-emission losses in multistage depressed collectors and traveling-wave-tube efficiency improvements with carbon collector electrode surfaces

    Science.gov (United States)

    Ramins, P.; Ebihara, B. T.

    1986-01-01

    Secondary-electron-emission losses in multistage depressed collectors (MDC's) and their effects on overall traveling-wave-tube (TWT) efficiency were investigated. Two representative TWT's and several computer-modeled MDC's were used. The experimental techniques provide the measurement of both the TWT overall and the collector efficiencies. The TWT-MDC performance was optimized and measured over a wide range of operating conditions, with geometrically identical collectors, which utilized different electrode surface materials. Comparisons of the performance of copper electrodes to that of various forms of carbon, including pyrolytic and iisotropic graphites, were stressed. The results indicate that: (1) a significant improvement in the TWT overall efficiency was obtained in all cases by the use of carbon, rather than copper electrodes, and (2) that the extent of this efficiency enhancement depended on the characteristics of the TWT, the TWT operating point, the MDC design, and collector voltages. Ion textured graphite was found to be particularly effective in minimizing the secondary-electron-emission losses. Experimental and analytical results, however, indicate that it is at least as important to provide a maximum amount of electrostatic suppression of secondary electrons by proper MDC design. Such suppression, which is obtained by ensuring that a substantial suppressing electric field exists over the regions of the electrodes where most of the current is incident, was found to be very effective. Experimental results indicate that, with proper MDC design and the use of electrode surfaces with low secondary-electron yield, degradation of the collector efficiency can be limited to a few percent.

  13. Accurate and precise 40Ar/39Ar dating by high-resolution, multi-collection, mass spectrometry

    DEFF Research Database (Denmark)

    Storey, Michael; Rivera, Tiffany; Flude, Stephanie

    New generation, high resolution, multi-collector noble gas mass spectrometers equipped with ion-counting electron multipliers provide opportunities for improved accuracy and precision in 40Ar/39Ar dating. Here we report analytical protocols and age cross-calibration studies using a NU-Instruments......New generation, high resolution, multi-collector noble gas mass spectrometers equipped with ion-counting electron multipliers provide opportunities for improved accuracy and precision in 40Ar/39Ar dating. Here we report analytical protocols and age cross-calibration studies using a NU......-Instruments multi-collector Noblesse noble gas mass spectrometer configured with a faraday detector and three ion-counting electron multipliers. The instrument has the capability to measure several noble gas isotopes simultaneously and to change measurement configurations instantaneously by the use of QUAD lenses...... (zoom optics). The Noblesse offer several advantages over previous generation noble gas mass spectrometers and is particularly suited for single crystal 40Ar/39Ar dating because of: (i) improved source sensitivity (ii) ion-counting electron multipliers, which have much lower signal to noise ratios than...

  14. Platinum stable isotope ratio measurements by double-spike multiple collector ICPMS

    DEFF Research Database (Denmark)

    Creech, John; Baker, Joel; Handler, Monica

    2013-01-01

    We present a new technique for the precise determination of platinum (Pt) stable isotope ratios by multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) using two different Pt double-spikes ( Pt-Pt and Pt-Pt). Results are expressed relative to the IRMM-010 Pt isotope standard......) can be obtained on Pt stable isotope ratios with either double-spike. Elemental doping tests reveal that double-spike corrected Pt stable isotope ratios are insensitive to the presence of relatively high (up to 10%) levels of matrix elements, although the Pt-Pt double-spike is affected by an isobaric...... = 7.308%) results in a redefined Pt atomic weight of 195.08395 ± 0.00068. Using our technique we have measured small, reproducible and statistically significant offsets in Pt stable isotope ratios between different Pt element standards and the IRMM-010 standard, which potentially indicates...

  15. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    Science.gov (United States)

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  16. Short-Term Solar Collector Power Forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt

    2011-01-01

    This paper describes a new approach to online forecasting of power output from solar thermal collectors. The method is suited for online forecasting in many applications and in this paper it is applied to predict hourly values of power from a standard single glazed large area flat plate collector...... enabling tracking of changes in the system and in the surrounding conditions, such as decreasing performance due to wear and dirt, and seasonal changes such as leaves on trees. This furthermore facilitates remote monitoring and check of the system....

  17. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    Science.gov (United States)

    Boyle, R. J.; Knoll, R. H.; Jensen, R. N.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. An 1180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row are calculated and recorded along with sensor, insolation, and weather data every 5 minutes using a mini-computer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  18. Development of 12.5 m² Solar Collector Panel for Solar Heating Plants

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    and large solar heating systems. Based on the theoretical findings a prototype of an improved HT solar collector was built and tested side-by-side with the original HT solar collector. The improved HT collector makes use of a changed insulation material, an absorber with improved absorptance and emittance......Theoretical and experimental investigations have elucidated how different changes in the design of the 12.5 m(2) HT flat-plate solar collector from the Danish company ARCON Solvarme A/S influence the solar collector efficiency and the yearly thermal performance. The collector is designed for medium...

  19. Theoretical analysis to investigate thermal performance of co-axial heat pipe solar collector

    Science.gov (United States)

    Azad, E.

    2011-12-01

    The thermal performance of co-axial heat pipe solar collector which consist of a collector 15 co-axial heat pipes surrounded by a transparent envelope and which heat a fluid flowing through the condenser tubes have been predicted using heat transfer analytical methods. The analysis considers conductive and convective losses and energy transferred to a fluid flowing through the collector condenser tubes. The thermal performances of co-axial heat pipe solar collector is developed and are used to determine the collector efficiency, which is defined as the ratio of heat taken from the water flowing in the condenser tube and the solar radiation striking the collector absorber. The theoretical water outlet temperature and efficiency are compared with experimental results and it shows good agreement between them. The main advantage of this collector is that inclination of collector does not have influence on performance of co-axial heat pipe solar collector therefore it can be positioned at any angle from horizontal to vertical. In high building where the roof area is not enough the co-axial heat pipe solar collectors can be installed on the roof as well as wall of the building. The other advantage is each heat pipe can be topologically disconnected from the manifold.

  20. Theoretical analysis to investigate thermal performance of co-axial heat pipe solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Azad, E. [Iranian Research Organization for Science and Technology (IROST), Advanced Materials and Renewable Energy Department, Tehran (Iran, Islamic Republic of)

    2011-12-15

    The thermal performance of co-axial heat pipe solar collector which consist of a collector 15 co-axial heat pipes surrounded by a transparent envelope and which heat a fluid flowing through the condenser tubes have been predicted using heat transfer analytical methods. The analysis considers conductive and convective losses and energy transferred to a fluid flowing through the collector condenser tubes. The thermal performances of co-axial heat pipe solar collector is developed and are used to determine the collector efficiency, which is defined as the ratio of heat taken from the water flowing in the condenser tube and the solar radiation striking the collector absorber. The theoretical water outlet temperature and efficiency are compared with experimental results and it shows good agreement between them. The main advantage of this collector is that inclination of collector does not have influence on performance of co-axial heat pipe solar collector therefore it can be positioned at any angle from horizontal to vertical. In high building where the roof area is not enough the co-axial heat pipe solar collectors can be installed on the roof as well as wall of the building. The other advantage is each heat pipe can be topologically disconnected from the manifold. (orig.)

  1. Performance of cylindrical plastic solar collectors for air heating

    International Nuclear Information System (INIS)

    Abdullah, A.S.; Bassiouny, M.K.

    2014-01-01

    Highlights: • The study including the combined convective and radiative heat transfer analysis. • The solar collector is manufactured from LDPE films acting as a black absorber. • Comparisons between the experimental data and the theoretical methods have been made. • The thermal efficiency increases with decreasing the major axes of elliptic shape. • The Nusselt number between the absorber and the heated air is determined. - Abstract: A theoretical and experimental study including the combined convective and radiative heat transfer analysis of a flexible cylindrical type solar air-heater for agriculture crops dehydration as well as heating processes is presented. The solar collector is manufactured from LDPE films acting as a black absorber with a back insulation and double transparent covers sealed together along its edges. The collector is to be blown with a flow of pressurized air. The experiments are carried out with solar collectors of circular shapes having 0.5 m diameter and solar collectors of elliptic shapes having 0.55 m and 0.65 m major axis. Energy balance of the cover, absorber and air yield three simultaneous quadratic algebraic equations in the three unknowns namely, cover, absorber and outlet air temperatures. A computer program is written for calculating the outlet temperature using the Newton–Raphson method and the collector thermal efficiency in terms of its diameter, length, mass flow rate, inlet temperature and solar insolation. Moreover the Nusselt number between the absorber and the heated air is determined experimentally in relation with the Reynolds number. Comparisons between the experimental data and the theoretical methods for the collector efficiency demonstrate a good agreement. In addition of this, the present experimental results of Nusselt number are correlated and compared with a correlation of another authors

  2. Solar energy collector

    Science.gov (United States)

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  3. A solar air collector with integrated latent heat thermal storage

    Directory of Open Access Journals (Sweden)

    Klimes Lubomir

    2012-04-01

    Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.

  4. Photovoltaic-thermal (PV/T) solar collectors: Features and performance modelling

    International Nuclear Information System (INIS)

    Atienza-Márquez, Antonio; Bruno, Joan Carles; Coronas, Alberto; Korolija, Ivan; Greenough, Richard; Wright, Andy

    2017-01-01

    Currently, the electrical efficiency of photovoltaic (PV) solar cells ranges between 5–25%. One of the most important parameters that affects the electrical efficiency of a PV collector is the temperature of its cells: the higher temperature, the lower is the efficiency. Photovoltaic/thermal (PV/T) technology is a potential solution to ensure an acceptable solar energy conversion. The PV/T technology produces both electrical and thermal energy simultaneously. It is suitable for low temperature applications (25–40 o C) and overall efficiency increases compared to individual collectors. This paper describes an installation in a single-family house where PV/T collectors are coupled with a ground heat exchanger and a heat pump for domestic hot water and space heating purposes. The aim of this work is twofold. First, the features of the PV/T technology are analyzed. Second, a model of a flat-plate PV/T water collector was developed in TRNSYS in order to analyze collectors performance. (author)

  5. Radiofrequency Ablation of Lung Tumors

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Radiofrequency Ablation (RFA) / Microwave Ablation (MWA) of Lung Tumors ... and Microwave Ablation of Lung Tumors? What are Radiofrequency and Microwave Ablation of Lung Tumors? Radiofrequency ablation, ...

  6. Truncation of CPC solar collectors and its effect on energy collection

    Science.gov (United States)

    Carvalho, M. J.; Collares-Pereira, M.; Gordon, J. M.; Rabl, A.

    1985-01-01

    Analytic expressions are derived for the angular acceptance function of two-dimensional compound parabolic concentrator solar collectors (CPC's) of arbitrary degree of truncation. Taking into account the effect of truncation on both optical and thermal losses in real collectors, the increase in monthly and yearly collectible energy is also evaluated. Prior analyses that have ignored the correct behavior of the angular acceptance function at large angles for truncated collectors are shown to be in error by 0-2 percent in calculations of yearly collectible energy for stationary collectors.

  7. Prostate-specific membrane antigen-directed nanoparticle targeting for extreme nearfield ablation of prostate cancer cells.

    Science.gov (United States)

    Lee, Seung S; Roche, Philip Jr; Giannopoulos, Paresa N; Mitmaker, Elliot J; Tamilia, Michael; Paliouras, Miltiadis; Trifiro, Mark A

    2017-03-01

    Almost all biological therapeutic interventions cannot overcome neoplastic heterogeneity. Physical ablation therapy is immune to tumor heterogeneity, but nearby tissue damage is the limiting factor in delivering lethal doses. Multi-walled carbon nanotubes offer a number of unique properties: chemical stability, photonic properties including efficient light absorption, thermal conductivity, and extensive surface area availability for covalent chemical ligation. When combined together with a targeting moiety such as an antibody or small molecule, one can deliver highly localized temperature increases and cause extensive cellular damage. We have functionalized multi-walled carbon nanotubes by conjugating an antibody against prostate-specific membrane antigen. In our in vitro studies using prostate-specific membrane antigen-positive LNCaP prostate cancer cells, we have effectively demonstrated cell ablation of >80% with a single 30-s exposure to a 2.7-W, 532-nm laser for the first time without bulk heating. We also confirmed the specificity and selectivity of prostate-specific membrane antigen targeting by assessing prostate-specific membrane antigen-null PC3 cell lines under the same conditions (<10% cell ablation). This suggests that we can achieve an extreme nearfield cell ablation effect, thus restricting potential tissue damage when transferred to in vivo clinical applications. Developing this new platform will introduce novel approaches toward current therapeutic modalities and will usher in a new age of effective cancer treatment squarely addressing tumoral heterogeneity.

  8. Liquid metal current collector applications and material compatibility

    International Nuclear Information System (INIS)

    Carr, S.L.; Stevens, H.O.

    1978-01-01

    The objective of this paper has been to summarize briefly the material considerations involved in the development of liquid metal current collectors for homopolar machinery applications. A significant amount of data in this regard has been obtained over the last several years by individual researchers for NaK exposure conditions. However, NaK material compatibility data over the entire time and temperature range of interest is highly desirable. At DTNSRDC, a 300 kW superconducting homopolar motor and generator are under test, both utilizing free surface tongue-and-groove current collectors with NaK as the working fluid. In addition to demonstrating the feasibility of other aspects of machine design, the intention is to use these machines as vehicles for testing of the several liquid metal current collector concepts which are considered worthwhile candidates for incorporation in future full-scale machines. It is likely that the optimal collector approach for a large low speed motor may be quite different from that for a smaller high speed generator, possibly involving the use of different liquid metals

  9. Nanosecond laser ablation of target Al in a gaseous medium: explosive boiling

    Science.gov (United States)

    Mazhukin, V. I.; Mazhukin, A. V.; Demin, M. M.; Shapranov, A. V.

    2018-03-01

    An approximate mathematical description of the processes of homogeneous nucleation and homogeneous evaporation (explosive boiling) of a metal target (Al) under the influence of ns laser radiation is proposed in the framework of the hydrodynamic model. Within the continuum approach, a multi-phase, multi-front hydrodynamic model and a computational algorithm are designed to simulate nanosecond laser ablation of the metal targets immersed in gaseous media. The proposed approach is intended for modeling and detailed analysis of the mechanisms of heterogeneous and homogeneous evaporation and their interaction with each other. It is shown that the proposed model and computational algorithm allow modeling of interrelated mechanisms of heterogeneous and homogeneous evaporation of metals, manifested in the form of pulsating explosive boiling. Modeling has shown that explosive evaporation in metals is due to the presence of a near-surface temperature maximum. It has been established that in nanosecond pulsed laser ablation, such exposure regimes can be implemented in which phase explosion is the main mechanism of material removal.

  10. Improved Collectors for High Power Gyrotrons

    International Nuclear Information System (INIS)

    Ives, R. Lawrence; Singh, Amarjit; Read, Michael; Borchard, Philipp; Neilson, Jeff

    2009-01-01

    High power gyrotrons are used for electron cyclotron heating, current drive and parasitic mode suppression in tokamaks for fusion energy research. These devices are crucial for successful operation of many research programs around the world, including the ITER program currently being constructed in France. Recent gyrotron failures resulted from cyclic fatigue of the copper material used to fabricated the collectors. The techniques used to collect the spent beam power is common in many gyrotrons produced around the world. There is serious concern that these tubes may also be at risk from cyclic fatigue. This program addresses the cause of the collector failure. The Phase I program successfully demonstrated feasibility of a mode of operation that eliminates the cyclic operation that caused the failure. It also demonstrated that new material can provide increased lifetime under cyclic operation that could increase the lifetime by more than on order of magnitude. The Phase II program will complete that research and develop a collector that eliminates the fatigue failures. Such a design would find application around the world.

  11. Economical judge possibility uses solar collectors to warm service water and heating

    Directory of Open Access Journals (Sweden)

    Lívia Bodonská

    2006-09-01

    Full Text Available The sun-heated water has been used from before fossil fuels started to determine the direction of our power consumption. This article is focused on the assessing of the use of solar energy as one of inexhaustible resources that has multiple uses, including hot water service systems. Heating is rendered through solar collectors that permit to transform solar energy to warm water. We divide solar collectors into various groups but in principle they are medium temperature collectors and low temperature collectors. The work is directed also on the solar collector market. In our case the market is just at its initial stage as this technology is little known and costs of collectors are rather high, compared to our conditions, on average, they may grow up to 100,000 Slovac crowns per a family house. Because it is the only investment and the costs of operation are minimum throughout the entire collectors lifetime, from the economic point of view, it is a rather advantageous investment. Solar collectors are used in heating and also in hot service water systems in family houses, where they permit to lower costs for the consumption of many kinds of energies. In the hot service water system, solar collectors permit to lower the consumption by almost 70 %. This way of using the solar energy is very prospective and in future it will be used in various sectors

  12. Discrimination of side-window glass of Korean autos by laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lee, Sin-Woo; Ryu, Jong-Sik; Min, Ji-Sook; Choi, Man-Yong; Lee, Kwang-Sik; Shin, Woo-Jin

    2016-07-15

    Fragments of glass from cars are often found at crime scenes and can be crucial evidence for solving the crime. The glass fragments are important as trace evidence at crime scenes related to car accidents and burgled homes. By identifying the origin of glass fragments, it is possible to infer the identity of a suspect. Our results represent a promising approach to a thorough forensic investigation of car glass. Thirty-five samples from the side windows of cars produced and used in South Korea were collected from the official agencies of five car manufacturers and from two glassmakers. In addition, 120 samples from side mirrors were collected from the same suppliers as well as from small businesses. Their chemical compositions (including Pb isotopes) were analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and linear discriminant analysis (LDA) was performed. The percentages of major elements (Si, Ca, and Fe) in side-window glass varied within narrow ranges (30.0 ± 2.36%, 5.93 ± 0.52%, and 0.33 ± 0.05%, respectively), while the differences among Pb isotope ratios were not significant. In contrast, light rare earth elements (LREEs) were different from each glassmaker. From the LDA, the types of side-window glass were successfully discriminated according to car manufacturer, glassmaker, and even glass thickness. However, glass from side mirrors cannot be used for good forensic identifiers. Discrimination techniques for side-window glass, although not for side mirrors, using chemical compositions combined with multivariate statistical analyses provide evidence for forensic investigations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Thin Film Energy Storage Device with Spray‐Coated Sliver Paste Current Collector

    Directory of Open Access Journals (Sweden)

    Seong Man Yoon

    2017-12-01

    Full Text Available This paper challenges the fabrication of a thin film energy storage device on a flexible polymer substrate specifically by replacing most commonly used metal foil current collectors with coated current collectors. Mass‐manufacturable spray‐coating technology enables the fabrication of two different half‐cell electric double layer capacitors (EDLC with a spray‐coated silver paste current collector and a Ni foil current collector. The larger specific capacitances of the half‐cell EDLC with the spray‐coated silver current collector are obtained as 103.86 F/g and 76.8 F/g for scan rates of 10 mV/s and 500 mV/s, respectively. Further, even though the half‐cell EDLC with the spray‐coated current collector is heavier than that with the Ni foil current collector, smaller Warburg impedance and contact resistance are characterized from Nyquist plots. For the applied voltages ranging from −0.5 V to 0.5 V, the spray‐coated thin film energy storage device exhibits a better performance.

  14. Flow distribution in a solar collector panel with horizontally inclined absorber strips

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontally inclined strips. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid...... dynamics (CFD) calculations. Further, experimental investigations of a 12.5 m(2) solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... rate, properties of solar collector fluid, solar collector fluid inlet temperature and collector tilt angle are shown. The flow distribution through the absorber fins is uniform if high flow rates are used. By decreased flow rate and decreased content of glycol in the glycol/water mixture used as solar...

  15. Optical performance effects of the misalignment of nonimaging optics solar collectors

    Science.gov (United States)

    Ferry, Jonathan; Ricketts, Melissa; Winston, Roland

    2017-09-01

    The use of non-imaging optics in the application of high temperature solar thermal collectors can be extremely advantageous in eliminating the need to track the sun. The stationary nature of non-imaging optics collectors, commonly called compound parabolic concentrators (CPC's), present a unique design challenge when orienting them to collect sunlight. Many facilities throughout the world that adopt CPCs are not situated to orient the collectors in the ideal angle facing the sun. This East-West misalignment can adversely affect the optical and power performance of the CPC collector. To characterize how this misalignment effects CPCs, reverse raytracing simulations are conducted for varying offset angles of the collectors from solar South. Optical performance is analyzed for an ideal East-West oriented CPC with a 40-degree acceptance angle. Direction cosine plots are used to develop a ratio of annual solar collection by the CPC over the total annual solar input. From these simulations, average annual collector performance is given for offset angles ranging from 0 to 90 degrees for different Earth Latitudes in 10 degree increments.

  16. Preliminary design package for solar collector and solar pump

    Science.gov (United States)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  17. Columbite-Group Minerals from New York Pegmatites: Insights from Isotopic and Geochemical Analyses

    Directory of Open Access Journals (Sweden)

    Marian V. Lupulescu

    2018-05-01

    Full Text Available Columbite crystals from niobium-yttrium-fluorine (NYF pegmatites lacking zircon or containing metamict cyrtolite were analyzed for major and minor elements (Electron Microprobe (EMP, trace elements (Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS, and U-Pb geochronology (Laser AblationMulti-Collector-Inductively Coupled Plasma-Mass Spectrometry (LA-MC-ICP-MS. All four pegmatite localities sampled are hosted by the Proterozoic Fordham gneiss and/or Paleozoic Bedford gneiss (Columbite-(Fe; Kinkel and Baylis localities and the Manhattan Schist of Lower Paleozoic age (Columbite-(Mn; Fort George and Harlem River Drive localities and yield Neoacadian ages. The weighted average U-Pb ages are 372.2 ± 8.2 Ma (Baylis Quarry, 371.3 ± 7.3 and 383.4 ± 8.9 Ma (Kinkel Quarry; 383 ± 15 Ma (185th St. and Harlem River Drive; and 372 ± 10 Ma (Fort George. A partial metamict zircon (“cyrtolite” from the Kinkel Quarry yielded a weighted average U-Pb age of 376.9 ± 4.3 Ma. The Neoacadian ages obtained agree with those determined by thermal ionization mass spectrometry (TIMS for zircon from Lithium-Cesium-Tantalum (LCT pegmatites from Connecticut and Maine. No pegmatites temporally associated with the Taconic orogeny were found. The size, lack of common Pb, uniform U concentrations across crystal cross-sections, sufficient but moderate uranium concentrations, lack of metamictization, and consistency in U-Pb isotopic ratios for columbite samples BCB-COL, NYSM #25232, and NYSM #525.8 suggests they show promise as potential standards for oxide mineral LA-MC-ICP-MS geochronological analyses, however, additional characterization using ID-TIMS would be necessary to develop as such.

  18. Liquid metal current collectors for high-speed rotating machinery

    International Nuclear Information System (INIS)

    Carr, S.L.

    1976-01-01

    Recent interest in superconducting motors and generators has created a renewed interest in homopolar machinery. Homopolar machine designs have always been limited by the need for compact, high-current, low-voltage, sliding electrical curent collectors. Conventional graphite-based solid brushes are inadequate for use in homopolar machines. Liquid metals, under certain conditions of relative sliding velocities, electrical currents, and magnetic fields are known to be capable of performing well in homopolar machines. An effort to explore the capabilities and limits of a tongue-and-groove style current collector, utilizing sodium-potassium eutectic alloy (NaK) as the working fluid in high sliding speed operation is reported here. A double current collector generator model with a 14.5-cm maximum rotor diameter, 20,000 rpm rotational capability, and electrical current carrying ability was constructed and operated successfully at a peripheral velocity of 125 m/s. The limiting factor in these experiments was a high-speed fluid-flow instability resulting in the ejection of the working fluid from the operating portions of the collectors. The effects of collector size and geometry, working fluid (NaK or water), and cover gas pressure are reported. Hydrodynamic frictional torque-speed curves are given for the two fluids and for several geometries. Electrical resistances as a function of peripheral velocity at 60 amperes are reported, and the phenomenology of the high-speed fluid-flow instabilities is discussed. The possibility of long-term high-speed operation of current collectors of the tongue-and-groove type, along with experimental and theoretical hydrodynamic friction losses at high peripheral velocities, is considered

  19. Hybrid Direct Carbon Fuel Cell Performance with Anode Current Collector Material

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2015-01-01

    collectors were studied: Au, Ni, Ag, and Pt. It was shown that the performance of the direct carbon fuel cell (DCFC) is dependent on the current collector materials, Ni and Pt giving the best performance, due to their catalytic activity. Gold is suggested to be the best material as an inert current collector......The influence of the current collector on the performance of a hybrid direct carbon fuel cell (HDCFC), consisting of solid oxide fuel cell (SOFC) with a molten carbonate-carbon slurry in contact with the anode, has been investigated using current-voltage curves. Four different anode current...

  20. The Effect of the Volume Flow rate on the Efficiency of a Solar Collector

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    rates. Theoretically, a simplified model of the solar collector panel is built by means of the CFD (Computational Fluid Dynamics) code Fluent, where the geometry of the collector panel except the casing is fully modeled. Both lateral and longitudinal heat conduction in the absorber fins, the heat...... transfer from the absorber to the solar collector fluid and the heat loss from the absorber are considered. Flow and temperature distribution in the collector panel are investigated with buoyancy effect. Measurements are carried out with the solar collector panel. Collector efficiencies are measured......The flow distribution inside a collector panel with an area of 12.5 m² and with 16 parallel connected horizontal fins and the effect of the flow nonuniformity on the risk of boiling and on the collector efficiency have been theoretically and experimentally investigated for different volume flow...

  1. Synthesis of Fe–Ni bimetallic nanoparticles from pixel target ablation: plume dynamics and surface characterization

    International Nuclear Information System (INIS)

    Niu Xiaoxu; Murray, Paul T.; Sarangan, Andrew

    2012-01-01

    A novel Fe–Ni bimetallic nanoparticle synthesis technique, denoted pixel target ablation, is reported. The technique entails ablating a thin film target consisting of patterned Fe and Ni pixels with a selected ratio using a KrF excimer laser. The laser energy breaks a known amount of target materials into metal atoms, which then form nanoparticles by recombination in the gas phase. Due to the nature of thin-film ablation, splashing of large particles was eliminated with the added benefit of minimizing nanoparticle agglomeration. Plume dynamics and surface characterizations were carried out to exploit the formation of Fe–Ni nanoparticles more fully. The composition was readily controlled by varying the initial relative amount of Fe and Ni target pixels. Synthesis of multi-element nanoparticles by pixel target ablation should be possible with any element combination that can be prepared as a thin-film target.

  2. Fuzzy Approximate Model for Distributed Thermal Solar Collectors Control

    KAUST Repository

    Elmetennani, Shahrazed

    2014-07-01

    This paper deals with the problem of controlling concentrated solar collectors where the objective consists of making the outlet temperature of the collector tracking a desired reference. The performance of the novel approximate model based on fuzzy theory, which has been introduced by the authors in [1], is evaluated comparing to other methods in the literature. The proposed approximation is a low order state representation derived from the physical distributed model. It reproduces the temperature transfer dynamics through the collectors accurately and allows the simplification of the control design. Simulation results show interesting performance of the proposed controller.

  3. Solar collector performance evaluated outdoors at NASA-Lewis Research Center

    Science.gov (United States)

    Vernon, R. W.

    1974-01-01

    The study of solar reflector performance reported is related to a project in which solar collectors are to be provided for the solar heating and cooling system of an office building at NASA's Langley Research Center. The solar collector makes use of a liquid consisting of 50% ethylene glycol and 50% water. A conventional air-liquid heat exchanger is employed. Collector performance and solar insolation data are recorded along with air temperature, wind speed and direction, and relative humidity.

  4. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials.

    Science.gov (United States)

    Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-12-03

    We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Quantifying Local Ablation Rates for the Greenland Ice Sheet Using Terrestrial LIDAR

    Science.gov (United States)

    Kershner, C. M.; Pitcher, L. H.; LeWinter, A.; Finnegan, D. C.; Overstreet, B. T.; Miège, C.; Cooper, M. G.; Smith, L. C.; Rennermalm, A. K.

    2016-12-01

    Quantifying accurate ice surface ablation or melt rates for the Greenland Ice Sheet is important for calibrating and validating surface mass balance models and constraining sea level rise estimates. Common practice is to monitor surface ablation at defined points by manually measuring ice surface lowering in relation to stakes inserted into the ice / snow. However, this method does not account for the effects of local topography, solar zenith angle, and local variations in ice surface albedo/impurities on ablation rates. To directly address these uncertainties, we use a commercially available terrestrial LIDAR scanner (TLS) to monitor daily melt rates in the ablation zone of the Greenland Ice Sheet for 7 consecutive days in July 2016. Each survey is registered to previous scans using retroreflective cylinders and is georeferenced using static GPS measurements. Bulk ablation will be calculated using multi-temporal differential LIDAR techniques, and difficulties in referencing scans and collecting high quality surveys in this dynamic environment will be discussed, as well as areas for future research. We conclude that this novel application of TLS technology provides a spatially accurate, higher fidelity measurements of ablation across a larger area with less interpolation and less time spent than using traditional manual point based methods alone. Furthermore, this sets the stage for direct calibration, validation and cross-comparison with existing airborne (e.g. NASA's Airborne Topographic Mapper - ATM - onboard Operation IceBridge and NASA's Land, Vegetation & Ice Sensor - LVIS) and forthcoming spaceborne sensors (e.g. NASA's ICESat-2).

  6. Diagnostics of defeats of venous collectors of brain

    International Nuclear Information System (INIS)

    Timofeeva, T.V.; Polunina, I.S.; Shcherbakova, E.Ya.; Kuldakova, S.V.

    1997-01-01

    Comparative data of transcranial ultrasonic dopplerography (170 patients) and radionuclidous antroscintigraphy (124), received during diagnostics of defects of venous collectors of brain are analyzed. Five variants of defeats of venous collectors (cross, sigmoid, internal of jugular of jugular vein), but also unpaired sine (direct, confluent) are described. Received results permit to reveal interrelation of infringements of venous outflow and increase of intracranial pressure

  7. Effect of ablatant composition on the ablation of a fuelling pellet

    International Nuclear Information System (INIS)

    Chang, C.T.; Thomsen, K.; Piret, S.

    1988-01-01

    The single species neutral-shielding model for the ablation of a hydrogenic pellet is extended by considering the ablatant as a mixture of four species: molecular and atomic hydrogen, protons and electrons. Compared with the results of the frozen flow, (i.e. the single species molecular hydrogen gas model), results of the analysis showed that the presence of dissociation and ionization effects caused a marked difference of the ablatant state. The attenuations of the incoming electron energy and energy flux, however, are very much similar irrespective of whether the ablated flow is in a frozen or an equilibrium state. The scaling law of the pellet ablation rate with respect to the plasma state of Te, ne and the pellet radius remains the same; the ablation rate is reduced by approximately 15%. To examine the possible existence of a spherical shell around the pellet where most of the incoming electron energy is absorbed, acodmparison is made between the local electron collisional mean free path and the electron Larmor radius. A critical field at the ionization radius is evaluated. An effective spherical energyabsorbing region exists when the local field strength is below the critical value. For a plasma state of low Te and ne, (where the ablatant is hardly ionized), and for one near the thermonuclear condition (where a highly dense ablatant exists near the pellet), the effective energy absorption region is nearly spherical. 20 refs. (author)

  8. Skin pre-ablation and laser assisted microjet injection for deep tissue penetration.

    Science.gov (United States)

    Jang, Hun-Jae; Yeo, Seonggu; Yoh, Jack J

    2017-04-01

    For conventional needless injection, there still remain many unresolved issues such as the potential for cross-contamination, poor reliability of targeted delivery dose, and significantly painstaking procedures. As an alternative, the use of microjets generated with Er:YAG laser for delivering small doses with controlled penetration depths has been reported. In this study, a new system with two stages is evaluated for effective transdermal drug delivery. First, the skin is pre-ablated to eliminate the hard outer layer and second, laser-driven microjet penetrates the relatively weaker and freshly exposed epidermis. Each stage of operation shares a single Er:YAG laser that is suitable for skin ablation as well as for the generation of a microjet. In this study, pig skin is selected for quantification of the injection depth based on the two-stage procedure, namely pre-ablation and microjet injection. The three types of pre-ablation devised here consists of bulk ablation, fractional ablation, and fractional-rotational ablation. The number of laser pulses are 12, 18, and 24 for each ablation type. For fractional-rotational ablation, the fractional beams are rotated by 11.25° at each pulse. The drug permeation in the skin is evaluated using tissue marking dyes. The depth of penetration is quantified by a cross sectional view of the single spot injections. Multi-spot injections are also carried out to control the dose and spread of the drug. The benefits of a pre-ablation procedure prior to the actual microjet injection to the penetration is verified. The four possible combinations of injection are (a) microjet only; (b) bulk ablation and microjet injection; (c) fractional ablation and microjet injection; and (d) fractional-rotational ablation and microjet injection. Accordingly, the total depth increases with injection time for all cases. In particular, the total depth of penetration attained via fractional pre-ablation increased by 8 ∼ 11% and that of fractional

  9. Optical fiber biocompatible sensors for monitoring selective treatment of tumors via thermal ablation

    Science.gov (United States)

    Tosi, Daniele; Poeggel, Sven; Dinesh, Duraibabu B.; Macchi, Edoardo G.; Gallati, Mario; Braschi, Giovanni; Leen, Gabriel; Lewis, Elfed

    2015-09-01

    Thermal ablation (TA) is an interventional procedure for selective treatment of tumors, that results in low-invasive outpatient care. The lack of real-time control of TA is one of its main weaknesses. Miniature and biocompatible optical fiber sensors are applied to achieve a dense, multi-parameter monitoring, that can substantially improve the control of TA. Ex vivo measurements are reported performed on porcine liver tissue, to reproduce radiofrequency ablation of hepatocellular carcinoma. Our measurement campaign has a two-fold focus: (1) dual pressure-temperature measurement with a single probe; (2) distributed thermal measurement to estimate point-by-point cells mortality.

  10. Development of an economic solar heating system with cost efficient flat plate collectors

    Science.gov (United States)

    Eder-Milchgeisser, W.; Burkart, R.

    1980-10-01

    Mass produced flat plate solar collectors were worked into the design of a system for heating a swimming pool and/or providing domestic hot water. The collector characteristics, including physical and mechanical data as well as theoretical energy conversion efficiency, are presented. The collector was tested and service life efficiency was determined. The mounting of the collector, depending on roof type, is explained. Both in service and laboratory test results demonstrate the cost effectiveness of the system. Further improvement of efficiency is envisaged with automatic flow control in the solar collector and hot water circuits.

  11. Efficiency of liquid flat-plate solar energy collector with solar tracking system

    Directory of Open Access Journals (Sweden)

    Chekerovska Marija

    2015-01-01

    Full Text Available An extensive testing programme is performed on a solar collector experimental set-up, installed on a location in Shtip (Republic of Macedonia, latitude 41º 45’ and longitude 22º 12’, in order to investigate the effect of the sun tracking system implementation on the collector efficiency. The set-up consists of two flat plate solar collectors, one with a fixed surface tilted at 30о towards the South, and the other one equipped with dual-axis rotation system. The study includes development of a 3-D mathematical model of the collectors system and a numerical simulation programme, based on the computational fluid dynamics (CFD approach. The main aim of the mathematical modelling is to provide information on conduction, convection and radiation heat transfer, so as to simulate the heat transfer performances and the energy capture capabilities of the fixed and moving collectors in various operating modes. The feasibility of the proposed method was confirmed by experimental verification, showing significant increase of the daily energy capture by the moving collector, compared to the immobile collector unit. The comparative analysis demonstrates a good agreement between the experimental and numerically predicted results at different running conditions, which is a proof that the presented CFD modelling approach can be used for further investigations of different solar collectors configurations and flow schemes.

  12. Two-Step Multi-Physics Analysis of an Annular Linear Induction Pump for Fission Power Systems

    Science.gov (United States)

    Geng, Steven M.; Reid, Terry V.

    2016-01-01

    One of the key technologies associated with fission power systems (FPS) is the annular linear induction pump (ALIP). ALIPs are used to circulate liquid-metal fluid for transporting thermal energy from the nuclear reactor to the power conversion device. ALIPs designed and built to date for FPS project applications have not performed up to expectations. A unique, two-step approach was taken toward the multi-physics examination of an ALIP using ANSYS Maxwell 3D and Fluent. This multi-physics approach was developed so that engineers could investigate design variations that might improve pump performance. Of interest was to determine if simple geometric modifications could be made to the ALIP components with the goal of increasing the Lorentz forces acting on the liquid-metal fluid, which in turn would increase pumping capacity. The multi-physics model first calculates the Lorentz forces acting on the liquid metal fluid in the ALIP annulus. These forces are then used in a computational fluid dynamics simulation as (a) internal boundary conditions and (b) source functions in the momentum equations within the Navier-Stokes equations. The end result of the two-step analysis is a predicted pump pressure rise that can be compared with experimental data.

  13. Optimal tilt-angles for solar collectors used in China

    International Nuclear Information System (INIS)

    Tang Runsheng; Wu Tong

    2004-01-01

    A reasonable estimation of the optimal tilt angle of a fixed collector for maximizing its energy collection must be done based on the monthly global and diffuse radiation on a horizontal surface. However, the monthly diffuse radiation is not always available in many places. In this paper, a simple mathematical procedure for the estimation of the optimal tilt angle of a collector is presented based on the monthly horizontal radiation. A comparison of the optimal tilt angles of collectors obtained from expected monthly diffuse radiation and that from the actual monthly diffuse radiation showed that this method gives a good estimation of the optimal tilt angle, except for places with a considerably lower clearness index. A contour map of the optimal tilt angle of the south-facing collectors used for the entire year in China is also outlined, based on monthly horizontal radiation of 152 places around the country, combing the optimal tilt angle of another 30 cities based on the actual monthly diffuse radiation

  14. Mathematical Modeling of Dual Intake Transparent Transpired Solar Collector

    Directory of Open Access Journals (Sweden)

    Thomas Semenou

    2015-01-01

    Full Text Available Nowadays, in several types of commercial or institutional buildings, a significant rise of transpired solar collectors used to preheat the fresh air of the building can be observed. Nevertheless, when the air mass flow rate is low, the collector efficiency collapses and a large amount of energy remains unused. This paper presents a simple yet effective mathematical model of a transparent transpired solar collector (TTC with dual intake in order to remove stagnation problems in the plenum and ensure a better thermal efficiency and more heat recovery. A thermal model and a pressure loss model were developed. Then, the combined model was validated with experimental data from the Solar Rating and Certification Corporation (SRCC. The results show that the collector efficiency can be up to 70% and even 80% regardless of operating conditions. The temperature gain is able to reach 20°K when the solar irradiation is high.

  15. Electrochemical Properties of Current Collector in the All-vanadium Redox Flow Battery

    International Nuclear Information System (INIS)

    Hwang, Gan-Jin; Oh, Yong-Hwan; Ryu, Cheol-Hwi; Choi, Ho-Sang

    2014-01-01

    Two commercial carbon plates were evaluated as a current collector (bipolar plate) in the all vanadium redox-flow battery (V-RFB). The performance properties of V-RFB were test in the current density of 60 mA/cm 2 . The electromotive forces (OCV at SOC 100%) of V-RFB using A and B current collector were 1.47 V and 1.54 V. The cell resistance of V-RFB using A current collector was 4.44-5.00 Ω·cm 2 and 3.28-3.75 Ω·cm 2 for charge and discharge, respectively. The cell resistance of V-RFB using B current collector was 4.19-4.42Ω·cm 2 and 4.71-5.49Ω·cm 2 for charge and discharge, respectively. The performance of V-RFB using each current collector was evaluated. The performance of V-RFB using A current collector was 93.1%, 76.8% and 71.4% for average current efficiency, average voltage efficiency and average energy efficiency, respectively. The performance of V-RFB using B current collector was 96.4%, 73.6% and 71.0% for average current efficiency, average voltage efficiency and average energy efficiency, respectively

  16. MULTI-FOLD, SEISMIC-STYLE TDEM INDUCTION OFFSET PROFILING AT KENTLAND FARMS, VA

    Science.gov (United States)

    Kazlauskas, E. M.; Weiss, C. J.

    2009-12-01

    An outstanding question in Valley and Ridge geology is the geomorphological history and hydrologic framework of the New River terraces. And while depth to bedrock on the upper terraces remains unknown, knowledge of the bedrock interface is key to addressing two specific issues: What is the geometry and connectivity of karst features such as sinkholes and what is the structure and depositional history of these terraces? To answer these questions, Kentland Farms (located in the Valley and Ridge of Southwest Virginia) has been chosen as the study site for its exceptional development of terrace deposits, nearly unrestricted access to its grounds, sparse vegetation coverage, and numerous sinkholes with a clear topographic expression. The Kentland Farms study area is characterized by heavily weathered, fluvial terrace deposits ranging from a few meters thickness to an estimated 70 m, overlying a karstic, Cambrian aged Elbrook Formation limestone. The terrace deposits consist of weathered clay units of varying composition with interbedded cobble and gravel horizons. The nature of the underlying bedrock coupled with the complex structure of the terrace deposits present difficulties in location of the bedrock interface. Due to complicated geology, a novel, multi-fold, seismic-style, Time Domain Electromagnetic (TDEM) induction survey was conducted in order to provide a more robust data set than a traditional common offset survey as well as to increase lateral resolution. This approach consists of taking multiple transmitter “shots” at a fixed position with a spread of receiver locations at fixed offset intervals (10m in this survey). The procedure is then repeated by moving the transmitter one interval at a time until the line is complete. 1-D inversions generated by using different transmitter-receiver offsets were analyzed to create a set of laterally constrained vertical profiles. In addition, multi-fold, seismic-style TDEM induction offset profiling allowed for

  17. The Experimental Performance of an Unglazed PVT Collector with Two Different Absorber Types

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2012-01-01

    Full Text Available Photovoltaic-thermal collectors combine photovoltaic modules and solar thermal collectors, forming a single device that produces electricity and heat simultaneously. There are two types of liquid-type PVT collectors, depending on the existence or absence of a glass cover over the PV module. The glass-covered (glazed PVT collector produces relatively more thermal energy but has a lower electrical yield, whereas the uncovered (unglazed PVT collector has a relatively low thermal energy and somewhat higher electrical performance. The thermal and electrical performance of liquid-type PVT collectors is related not only to the collector design, such as whether a glass cover is used, but also to the absorber design, that is, whether the absorber is for the sheet-and-tube type or the fully wetted type. The design of the absorber, as it comes into contact with the PV modules and the liquid tubes, is regarded as important, as it is related to the heat transfer from the PV modules to the liquid in the tubes. In this paper, the experimental performance of two liquid-type PVT collectors, a sheet-and-tube type and a fully wetted type, was analyzed.

  18. Laser ablation principles and applications

    CERN Document Server

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  19. Review of state-of-the-art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, J E; Diegle, R B

    1980-04-11

    The state-of-the-art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature has indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices. Sources of limited quantitative data that are reviewed are current solar applications, research programs on collector corrosion, and pertinent experience in related applications of automotive cooling and non-solar heating and cooling. A data bank was developed to catalog corrosion information. Appendix A of this report is a bibliography of the data bank, with abstracts reproduced from presently available literature accessions (about 220). This report is presented as a descriptive summary of information that is contained in the data bank.

  20. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias; Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas; Mahnken, Andreas H.

    2012-01-01

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 ± 0.14, 1.45 ± 0.13, and 1.74 ± 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 ± 0.09 and 1.26 ± 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 ± 0.65, 2.85 ± 0.72, and 4.45 ± 0.47 cm 3 for MW ablation at outputs of 25W, 35W, and 45W and 1.18 ± 0.30 and 2.29 ± 0.55 cm 3 got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  1. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials

    International Nuclear Information System (INIS)

    Su, Di; Jia, Yuting; Alva, Guruprasad; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: • The dynamic model of photovoltaic–thermal collector with phase change material was developed. • The performances of photovoltaic–thermal collector are performed comparative analyses. • The performances of photovoltaic–thermal collector with phase change material were evaluated. • Upper phase change material mode can improve performances of photovoltaic–thermal collector. - Abstract: The operating conditions (especially temperature) of photovoltaic–thermal solar collectors have significant influence on dynamic performance of the hybrid photovoltaic–thermal solar collectors. Only a small percentage of incoming solar radiation can be converted into electricity, and the rest is converted into heat. This heat leads to a decrease in efficiency of the photovoltaic module. In order to improve the performance of the hybrid photovoltaic–thermal solar collector, we performed comparative analyses on a hybrid photovoltaic–thermal solar collector integrated with phase change material. Electrical and thermal parameters like solar cell temperature, outlet temperature of air, electrical power, thermal power, electrical efficiency, thermal efficiency and overall efficiency are simulated and analyzed to evaluate the dynamic performance of the hybrid photovoltaic–thermal collector. It is found that the position of phase change material layer in the photovoltaic–thermal collector has a significant effect on the performance of the photovoltaic–thermal collector. The results indicate that upper phase change material mode in the photovoltaic–thermal collector can significantly improve the thermal and electrical performance of photovoltaic–thermal collector. It is found that overall efficiency of photovoltaic–thermal collector in ‘upper phase change material’ mode is 10.7% higher than that in ‘no phase change material’ mode. Further, for a photovoltaic–thermal collector with upper phase change material, it is verified that 3 cm

  2. Optimization of flat-plate solar energy heat pipe collector parameters

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Garakovich, L P; Khrustalev, D K

    1984-01-01

    Performance characteristics of flat solar energy collectors with heat pipes have been analysed with regard to various parameters. Their advantages are discussed. The use of heat pipes in solar energy collectors is proved to be efficient.

  3. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report.

    Science.gov (United States)

    Oddo, Silvia; Balestra, Margherita; Vera, Lara; Giusti, Massimo

    2018-05-11

    Radiofrequency ablation and laser ablation are safe and effective techniques for reducing thyroid nodule volume, neck symptoms, and cosmetic complaints. Therapeutic success is defined as a nodule reduction > 50% between 6 and 12 months after the procedure, but a percentage of nodules inexplicably do not respond to thermal ablation. We describe the case of a young Caucasian woman with a solid benign thyroid nodule who refused surgery and who had undergone radiofrequency ablation in 2013. The nodule did not respond in terms of either volume reduction or improvement in neck symptoms. After 2 years, given the patient's continued refusal of thyroidectomy, we proposed laser ablation. The nodule displayed a significant volume reduction (- 50% from radiofrequency ablation baseline volume, - 57% from laser ablation baseline), and the patient reported a significant improvement in neck symptoms (from 6/10 to 1/10 on a visual analogue scale). We conjecture that some benign thyroid nodules may be intrinsically resistant to necrosis when one specific ablation technique is used, but may respond to another technique. To the best of our knowledge, this is the first description of the effect of performing a different percutaneous ablation technique in a nodule that does not respond to radiofrequency ablation.

  4. A Novel Approach for Multi Class Fault Diagnosis in Induction Machine Based on Statistical Time Features and Random Forest Classifier

    Science.gov (United States)

    Sonje, M. Deepak; Kundu, P.; Chowdhury, A.

    2017-08-01

    Fault diagnosis and detection is the important area in health monitoring of electrical machines. This paper proposes the recently developed machine learning classifier for multi class fault diagnosis in induction machine. The classification is based on random forest (RF) algorithm. Initially, stator currents are acquired from the induction machine under various conditions. After preprocessing the currents, fourteen statistical time features are estimated for each phase of the current. These parameters are considered as inputs to the classifier. The main scope of the paper is to evaluate effectiveness of RF classifier for individual and mixed fault diagnosis in induction machine. The stator, rotor and mixed faults (stator and rotor faults) are classified using the proposed classifier. The obtained performance measures are compared with the multilayer perceptron neural network (MLPNN) classifier. The results show the much better performance measures and more accurate than MLPNN classifier. For demonstration of planned fault diagnosis algorithm, experimentally obtained results are considered to build the classifier more practical.

  5. Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector

    International Nuclear Information System (INIS)

    Faizal, M.; Saidur, R.; Mekhilef, S.; Alim, M.A.

    2013-01-01

    Highlights: • By using nanofluid, smaller and compact solar collector can be produced. • The average value of 220 MJ embodied energy can be saved. • The payback period of using nanofluid solar collector is around 2.4 years. • Around 170 kg less CO 2 emissions in average for nanofluid solar collector. • Environmental damage cost is lower with the nanofluid based solar collector. - Abstract: For a solar thermal system, increasing the heat transfer area can increase the output temperature of the system. However, this approach leads to a bigger and bulkier collector. It will then increase the cost and energy needed to manufacture the solar collector. This study is carried out to estimate the potential to design a smaller solar collector that can produce the same desired output temperature. This is possible by using nanofluid as working fluid. By using numerical methods and data from literatures, efficiency, size reduction, cost and embodied energy savings are calculated for various nanofluids. From the study, it was estimated that 10,239 kg, 8625 kg, 8857 kg and 8618 kg total weight for 1000 units of solar collectors can be saved for CuO, SiO 2 , TiO 2 and Al 2 O 3 nanofluid respectively. The average value of 220 MJ embodied energy can be saved for each collector, 2.4 years payback period can be achieved and around 170 kg less CO 2 emissions in average can be offset for the nanofluid based solar collector compared to a conventional solar collector. Finally, the environmental damage cost can also be reduced with the nanofluid based solar collector

  6. Increase in Volume of Ablation Zones during Follow-up Is Highly Suggestive of Ablation Site Recurrence in Colorectal Liver Metastases Treated with Radiofrequency Ablation

    NARCIS (Netherlands)

    Kele, Petra G.; de Jong, Koert P.; van der Jagt, Eric J.

    Purpose: To test the hypothesis that volume changes of ablation zones (AZs) on successive computed tomography (CT) scans could predict ablation site recurrences (ASRs) in patients with colorectal liver metastases treated by radiofrequency (RF) ablation. Materials and Methods: RF ablation was

  7. Commissioning a Megawatt-class Gyrotron with Collector Potential Depression

    Science.gov (United States)

    Lohr, J.; Cengher, M.; Gorelov, Y. A.; Ponce, D.; Prater, R.

    2013-10-01

    A 110 GHz depressed collector gyrotron has been installed on the DIII-D tokamak. The commissioning process rapidly achieved operation at full parameters, 45 A and 94 kV total voltage, with 29 kV depression. Although short pulse, 2 ms, factory testing demonstrated 1.2 MW at 41% electrical efficiency, long pulse testing at DIII-D achieved only 33% efficiency at full power parameters, for pulse lengths up to 10 s. Maximum generated power was ~950 kW, considerably below the 1.2 MW target. During attempts to increase the power at 5 s pulse length, it was noted that the collector cooling water was boiling. This led to the discovery that 14 of the 160 cooling channels in the collector had been blocked by braze material during manufacture of the tube. The locations of blocked channels were identified using infrared imaging of the outside of the collector during rapid changes in the cooling water temperature. Despite these difficulties, the rf beam itself was of very high quality and the stray rf found calorimetrically in the Matching Optics Unit, which couples the Gaussian rf beam to the waveguide, was only 2% of the generated power, about half that of our previous best quality high power beam. Details of the power measurements and collector observations will be presented. Work supported by the US DOE under DE-FC02-04ER54698.

  8. Wide bandgap collector III-V double heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Flitcroft, R.M.

    2000-10-01

    This thesis is devoted to the study and development of Heterojunction Bipolar Transistors (HBTs) designed for high voltage operation. The work concentrates on the use of wide bandgap III-V semiconductor materials as the collector material and their associated properties influencing breakdown, such as impact ionisation coefficients. The work deals with issues related to incorporating a wide bandgap collector into double heterojunction structures such as conduction band discontinuities at the base-collector junction and results are presented which detail, a number of methods designed to eliminate the effects of such discontinuities. In particular the use of AlGaAs as the base material has been successful in eliminating the conduction band spike at this interface. A method of electrically injecting electrons into the collector has been employed to investigate impact ionisation in GaAs, GaInP and AlInP which has used the intrinsic gain of the devices to extract impact ionisation coefficients over a range of electric fields beyond the scope of conventional optical injection techniques. This data has enabled the study of ''dead space'' effects in HBT collectors and have been used to develop an analytical model of impact ionisation which has been incorporated into an existing Ebers-Moll HBT simulator. This simulator has been shown to accurately reproduce current-voltage characteristics in both the devices used in this work and for external clients. (author)

  9. Accuracy and efficacy of percutaneous biopsy and ablation using robotic assistance under computed tomography guidance: a phantom study

    International Nuclear Information System (INIS)

    Koethe, Yilun; Xu, Sheng; Velusamy, Gnanasekar; Wood, Bradford J.; Venkatesan, Aradhana M.

    2014-01-01

    To compare the accuracy of a robotic interventional radiologist (IR) assistance platform with a standard freehand technique for computed-tomography (CT)-guided biopsy and simulated radiofrequency ablation (RFA). The accuracy of freehand single-pass needle insertions into abdominal phantoms was compared with insertions facilitated with the use of a robotic assistance platform (n = 20 each). Post-procedural CTs were analysed for needle placement error. Percutaneous RFA was simulated by sequentially placing five 17-gauge needle introducers into 5-cm diameter masses (n = 5) embedded within an abdominal phantom. Simulated ablations were planned based on pre-procedural CT, before multi-probe placement was executed freehand. Multi-probe placement was then performed on the same 5-cm mass using the ablation planning software and robotic assistance. Post-procedural CTs were analysed to determine the percentage of untreated residual target. Mean needle tip-to-target errors were reduced with use of the IR assistance platform (both P < 0.0001). Reduced percentage residual tumour was observed with treatment planning (P = 0.02). Improved needle accuracy and optimised probe geometry are observed during simulated CT-guided biopsy and percutaneous ablation with use of a robotic IR assistance platform. This technology may be useful for clinical CT-guided biopsy and RFA, when accuracy may have an impact on outcome. (orig.)

  10. Accuracy and efficacy of percutaneous biopsy and ablation using robotic assistance under computed tomography guidance: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Koethe, Yilun [National Institutes of Health, Center for Interventional Oncology, NIH Clinical Center, Bethesda, MD (United States); National Institutes of Health, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD (United States); Duke University School of Medicine, Durham, NC (United States); Xu, Sheng [National Institutes of Health, Center for Interventional Oncology, NIH Clinical Center, Bethesda, MD (United States); Velusamy, Gnanasekar [Perfint Healthcare Pvt. Ltd., Chennai (India); Wood, Bradford J. [National Institutes of Health, Center for Interventional Oncology, NIH Clinical Center, Bethesda, MD (United States); National Institutes of Health, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD (United States); Venkatesan, Aradhana M. [National Institutes of Health, Center for Interventional Oncology, NIH Clinical Center, Bethesda, MD (United States); National Institutes of Health, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD (United States); National Institutes of Health, Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD (United States)

    2014-03-15

    To compare the accuracy of a robotic interventional radiologist (IR) assistance platform with a standard freehand technique for computed-tomography (CT)-guided biopsy and simulated radiofrequency ablation (RFA). The accuracy of freehand single-pass needle insertions into abdominal phantoms was compared with insertions facilitated with the use of a robotic assistance platform (n = 20 each). Post-procedural CTs were analysed for needle placement error. Percutaneous RFA was simulated by sequentially placing five 17-gauge needle introducers into 5-cm diameter masses (n = 5) embedded within an abdominal phantom. Simulated ablations were planned based on pre-procedural CT, before multi-probe placement was executed freehand. Multi-probe placement was then performed on the same 5-cm mass using the ablation planning software and robotic assistance. Post-procedural CTs were analysed to determine the percentage of untreated residual target. Mean needle tip-to-target errors were reduced with use of the IR assistance platform (both P < 0.0001). Reduced percentage residual tumour was observed with treatment planning (P = 0.02). Improved needle accuracy and optimised probe geometry are observed during simulated CT-guided biopsy and percutaneous ablation with use of a robotic IR assistance platform. This technology may be useful for clinical CT-guided biopsy and RFA, when accuracy may have an impact on outcome. (orig.)

  11. Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation.

    Science.gov (United States)

    Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed

    2016-07-01

    Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. COMBINED UNCOVERED SHEET-AND-TUBE PVT-COLLECTOR SYSTEM WITH BUILT-IN STORAGE WATER HEATER

    Directory of Open Access Journals (Sweden)

    Muhammad Abid

    2012-02-01

    Full Text Available This work describes the design and investigation of a simple combined uncovered sheet-and-tube photo-voltaic-thermal (PVT collector system. The PVT-collector system consists of a support, standard PV module (1.22x0.305m, area=0.37m2, fill factor=0.75, sheet-and-tube water collector and storage tank-heater. The collector was fixed under PV module. Inclination angle of the PVT-collector to the horizontal plane was 45 degree. The storage tank-heater played double role i.e. for storage of hot water and for water heating. The PVT-collector system could work in the fixed and tracking modes of operation. During investigations of PVT-collector in natural conditions, solar irradiance, voltage and current of PV module, ambient temperature and water temperature in storage tank were measured. Average thermal and electrical powers of the PVT-collector system at the tracking mode of operation observed were 39W and 21W, with efficiencies of 15% and 8% respectively at the input power of 260W. The maximum temperature of the water obtained was 42oC. The system was observed efficient for low-temperature applications. The PVT-collector system may be used as a prototype for design of PVT-collector system for domestic application, teaching aid and for demonstration purposes.

  13. Comparison of Thermal Performances between Low Porosity Perforate Plate and Flat Plate Solar Air Collector

    Science.gov (United States)

    Chan, Hoy-Yen; Vinson, A. A.; Baljit, S. S. S.; Ruslan, M. H.

    2018-04-01

    Flat plate solar air collector is the most common collector design, which is relatively simpler to fabricate and lower cost. In the present study, perforated plate solar collector was developed to improve the system thermal performance. A glazed perforated plate of 6mm holes diameter with square geometry was designed and installed as the absorber of the collector. The influences of solar radiation intensity and mass flow rate on the thermal performance were investigated. The perforated collector was compared with the flat plate solar collector under the same operating conditions. The highest values of thermal efficiency in this study for the perforated plate (PP) and the flat plate (FP) solar collectors were 59% and 36% respectively, at solar radiation intensity of 846 Wm-2 and mass flow rate of 0.02 kgs-1. Furthermore, PP collector gave better thermal performance compared to FP collector; and compared to previous studies, the present perforated design was compatible with the flat plate with double pass designs.

  14. Optimum tilt angle and orientation for solar collectors in Syria

    International Nuclear Information System (INIS)

    Skeiker, Kamal

    2009-01-01

    One of the important parameters that affect the performance of a solar collector is its tilt angle with the horizon. This is because of the variation of tilt angle changes the amount of solar radiation reaching the collector surface. A mathematical model was used for estimating the solar radiation on a tilted surface, and to determine the optimum tilt angle and orientation (surface azimuth angle) for the solar collector in the main Syrian zones, on a daily basis, as well as for a specific period. The optimum angle was computed by searching for the values for which the radiation on the collector surface is a maximum for a particular day or a specific period. The results reveal that changing the tilt angle 12 times in a year (i.e. using the monthly optimum tilt angle) maintains approximately the total amount of solar radiation near the maximum value that is found by changing the tilt angle daily to its optimum value. This achieves a yearly gain in solar radiation of approximately 30% more than the case of a solar collector fixed on a horizontal surface.

  15. Effect of the collector tube profile on Pitot pump performances

    Science.gov (United States)

    Komaki, K.; Kanemoto, T.; Sagara, K.; Umekage, T.

    2013-12-01

    The pitot pump is composed of the rotating casing with the impeller channel and the pitot tube type collector as the discharge line. The radial impeller feeds water to the rotating casing. The water rotating together with the casing is caught by the stationary pitot tube type collector, and then discharges to the outside. This type pump, as the extra high head pump, is provided mainly for boiler feed systems, and has been designed by trial and error. To optimize the pump profiles, it is desirable to investigate not only performances but also internal flow conditions. This paper discusses experimentally and numerically the relation between the pump performances and the flow conditions in the rotating casing. The moderately larger dimensions of the collector make the pump head and the discharge high with the higher hydraulic efficiency. The flow in the casing is almost the forced vortex type whose velocity is in proportion to the radius but the core velocity is affected with the drag force of the stationary collector. Based upon the above results, the profile of the pitot tube type collector was optimized with the numerical simulation.

  16. Effect of the collector tube profile on Pitot pump performances

    International Nuclear Information System (INIS)

    Komaki, K; Sagara, K; Kanemoto, T; Umekage, T

    2013-01-01

    The pitot pump is composed of the rotating casing with the impeller channel and the pitot tube type collector as the discharge line. The radial impeller feeds water to the rotating casing. The water rotating together with the casing is caught by the stationary pitot tube type collector, and then discharges to the outside. This type pump, as the extra high head pump, is provided mainly for boiler feed systems, and has been designed by trial and error. To optimize the pump profiles, it is desirable to investigate not only performances but also internal flow conditions. This paper discusses experimentally and numerically the relation between the pump performances and the flow conditions in the rotating casing. The moderately larger dimensions of the collector make the pump head and the discharge high with the higher hydraulic efficiency. The flow in the casing is almost the forced vortex type whose velocity is in proportion to the radius but the core velocity is affected with the drag force of the stationary collector. Based upon the above results, the profile of the pitot tube type collector was optimized with the numerical simulation

  17. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    Science.gov (United States)

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  18. Laser ablation-inductively coupled plasma mass spectrometry for the characterization of pigments in prehistoric rock art.

    Science.gov (United States)

    Resano, Martin; García-Ruiz, Esperanza; Alloza, Ramiro; Marzo, Maria P; Vandenabeele, Peter; Vanhaecke, Frank

    2007-12-01

    In this work, several red-colored paintings of post-Paleolithic schematic style found in 10 different shelters in the vicinity of the Vero River (Huesca) were sampled and subjected to analysis by means of scanning electron microscopy-energy-dispersive X-ray spectrometry (SEM-EDX), Raman spectroscopy, and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). The goal of this research was to obtain meaningful information on the samples composition, in order to establish differences or similarities among them. The combined use of these techniques proved beneficial, as Raman data permitted structural information on the compounds present (hematite was identified as the main pigment, whereas calcite and gypsum are the main components of the substrate layer, as well as of the accretions that covered the pigments) to be obtained, while the quantitative values obtained by SEM were suitable for the use of Ca as internal reference during LA-ICPMS analysis. However, it was this latter technique that provided the most relevant data for fingerprinting purposes. The potential of this technique for obtaining spatially resolved information allowed the multielement quantitative analysis of the pigment layer, in spite of the presence of superficial accretions. The sensitivity of the technique permitted the determination of more than 40 elements present in a wide concentration range (from microgram per gram to 10% level) with minimum sample consumption (approximately 900 ng for each sample, corresponding to five replicates). Finally, in order to establish significant differences, only those elements showing a high correlation with Fe (As, Co, Mo, Sb, Tl, and Zr, in this case) were selected, as it is expected that these were truly present in the original pigment, while others could have migrated into the pigment layer throughout time. By using this information, it seems feasible to discriminate between various paint pots, as demonstrated for the samples under

  19. A five-collector system for the simultaneous measurement of argon isotope ratios in a static mass spectrometer

    Science.gov (United States)

    Stacey, J.S.; Sherrill, N.D.; Dalrymple, G.B.; Lanphere, M.A.; Carpenter, N.V.

    1981-01-01

    A system is described that utilizes five separate Faraday-cup collector assemblies, aligned along the focal plane of a mass spectrometer, to collect simultaneous argon ion beams at masses 36-40. Each collector has its own electrometer amplifier and analog-to-digital measuring channel, the outputs of which are processed by a minicomputer that also controls the mass spectrometer. The mass spectrometer utilizes a 90?? sector magnetic analyzer with a radius of 23 cm, in which some degree of z-direction focussing is provided for all the ion beams by the fringe field of the magnet. Simultaneous measurement of the ion beams helps to eliminate mass-spectrometer memory as a significant source of measurement error during an analysis. Isotope ratios stabilize between 7 and 9 s after sample admission into the spectrometer, and thereafter changes in the measured ratios are linear, typically to within ??0.02%. Thus the multi-collector arrangement permits very short extrapolation times for computation of initial ratios, and also provides the advantages of simultaneous measurement of the ion currents in that errors due to variations in ion beam intensity are minimized. A complete analysis takes less than 10 min, so that sample throughput can be greatly enhanced. In this instrument, the factor limiting analytical precision now lies in short-term apparent variations in the interchannel calibration factors. ?? 1981.

  20. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL FINS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2005-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal fins. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...... (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...

  1. Theoretical flow investigations of an all glass evacuated tubular collector

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    Heat transfer and flow structures inside all glass evacuated tubular collectors for different operating conditions are investigated by means of computational fluid dynamics. The investigations are based on a collector design with horizontal tubes connected to a vertical 14 manifold channel. Three...... the highest efficiency, the optimal inlet flow rate was around 0.4-1 kg/min, the flow structures in the glass tubes were relatively uninfluenced by the inlet flow rate, Generally, the results showed only small variations in the efficiencies. This indicates that the collector design is well working for most...

  2. Numerical and experimental investigation on a new type of compound parabolic concentrator solar collector

    International Nuclear Information System (INIS)

    Zheng, Wandong; Yang, Lin; Zhang, Huan; You, Shijun; Zhu, Chunguang

    2016-01-01

    Highlights: • A serpentine compound parabolic concentrator solar collector is proposed. • A mathematical model for the new collector is developed and verified by experiments. • The thermal efficiency of the collector can be up to 60.5% during the experiments. • The effects of key parameters on the thermal performance are mathematically studied. - Abstract: In order to improve the thermal efficiency, reduce the heat losses and achieve high freezing resistance of the solar device for space heating in cold regions, a new type of serpentine compound parabolic concentrator solar collector is presented in this paper, which is a combination of a compound parabolic concentrator solar collector and a flat plate solar collector. A detailed mathematical model for the new collector based on the analysis of heat transfer is developed and then solved by the software tool Matlab. The numerical results are compared with the experimental data and the maximum deviation is 8.07%, which shows a good agreement with each other. The experimental results show that the thermal efficiency of the collector can be as high as 60.5%. The model is used to predict the thermal performance of the new collector. The effects of structure and operating parameters on the thermal performance are mathematically discussed. The numerical and experimental results show that the new collector is more suitable to provide low temperature hot water for space heating in cold regions and the mathematical model will be much helpful in the designing and optimizing of the solar collectors.

  3. Modeling Heat Flow In a Calorimeter Equipped With a Textured Solar Collector

    Science.gov (United States)

    Jaworske, Donald A.; Allen, Bradley J.

    2001-01-01

    Heat engines are being considered for generating electric power for minisatellite applications, particularly for those missions in high radiation threat orbits. To achieve this objective, solar energy must be collected and transported to the hot side of the heat engine. A solar collector is needed having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity. To test candidate solar collector concepts, a simple calorimeter was designed, manufactured, and installed in a bench top vacuum chamber to measure heat flow. In addition, a finite element analysis model of the collector/calorimeter combination was made to model this heat flow. The model was tuned based on observations from the as-manufactured collector/calorimeter combination. In addition, the model was exercised to examine other collector concepts, properties, and scale up issues.

  4. Pulmonary ablation: a primer.

    Science.gov (United States)

    Roberton, Benjamin J; Liu, David; Power, Mark; Wan, John M C; Stuart, Sam; Klass, Darren; Yee, John

    2014-05-01

    Percutaneous image-guided thermal ablation is safe and efficacious in achieving local control and improving outcome in the treatment of both early stage non-small-cell lung cancer and pulmonary metastatic disease, in which surgical treatment is precluded by comorbidity, poor cardiorespiratory reserve, or unfavorable disease distribution. Radiofrequency ablation is the most established technology, but new thermal ablation technologies such as microwave ablation and cryoablation may offer some advantages. The use of advanced techniques, such as induced pneumothorax and the popsicle stick technique, or combining thermal ablation with radiotherapy, widens the treatment options available to the multidisciplinary team. The intent of this article is to provide the reader with a practical knowledge base of pulmonary ablation by concentrating on indications, techniques, and follow-up. Copyright © 2014 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  5. The Multi-energy High precision Data Processor Based on AD7606

    Science.gov (United States)

    Zhao, Chen; Zhang, Yanchi; Xie, Da

    2017-11-01

    This paper designs an information collector based on AD7606 to realize the high-precision simultaneous acquisition of multi-source information of multi-energy systems to form the information platform of the energy Internet at Laogang with electricty as its major energy source. Combined with information fusion technologies, this paper analyzes the data to improve the overall energy system scheduling capability and reliability.

  6. Qualification test and analysis report: solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Test results show that the Owens-Illinois Sunpak/sup TM/ Model SEC 601 air-cooled collector meets the national standards and codes as defined in the Subsystem Performance Specification and Verification Plan of NASA/MSFC Contract NAS8-32259, dated October 28, 1976. The architectural and engineering firm of Smith, Hinchman and Grylls, Detroit, Michigan, acted in the capacity of the independent certification agency. The program calls for the development, fabrication, qualification and delivery of an air-liquid solar collector for solar heating, combined heating and cooling, and/or hot water systems.

  7. The Stardust Interstellar Dust Collector and Stardust@home

    Science.gov (United States)

    Westphal, A. J.; Anderson, D.; Bastien, R.; Butterworth, A.; Frank, D.; Gainsforth, Z.; Kelley, N.; Lettieri, R.; Mendez, B.; Prasad, R.; Tsitrin, S.; von Korff, J.; Warren, J.; Wertheimer, D.; Zhang, A.; Zolensky, M.

    2006-12-01

    The Stardust sample return mission is effectively two missions in one. Stardust brought back to earth for analytical study the first solid samples from a known solar system body beyond the moon, comet Wild2. The first results of the analyses of these samples are reported elsewhere in this session. In a separate aerogel collector, Stardust also captured and has returned the first samples of contemporary interstellar dust. Landgraf et al. [1] has estimated that ~ 50 interstellar dust particles in the micron size range have been captured in the Stardust Interstellar Dust Collector. Their state after capture is unknown. Before analysis of these particles can begin, they must be located in the collector. Here we describe the current status of Stardust@home, the massively distributed public search for these tiny interstellar dust particles. So far more than 13,000 volunteers have collectively performed more than 10,000,000 searches in stacks of digital images of ~10% of the collector. We report new estimates of the flux of interplanetary dust at ~2 AU based on the results of this search, and will compare with extant models[2]. References: [1] Landgraf et al., (1999) Planet. Spac. Sci. 47, 1029. [2] Staubach et al. (2001) in Interplanetary Dust, E. Grün, ed., Astron. &Astro. Library, Springer, 2001.

  8. A thin-collector Bayard-Alpert gauge for 10-12 Torr vacuum

    International Nuclear Information System (INIS)

    Hseuh, H.C.; Lanni, C.

    1986-01-01

    The changes in the sensitivity (S) and the equivalent X-ray limit (P/sub x/) of several Bayard-Alpert gauges (BAGs) were studied when the size of the collectors was reduced from 125 μ to 50 μ and when different mounting envelopes were used. Based on this study, 400 custom BAGs with 50 μ collector were purchased from a vendor. The S and the P/sub x/ of these thin-collector BAGs were also measured

  9. Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons.

    Science.gov (United States)

    Weber, Thomas; Namikawa, Kazuhiko; Winter, Barbara; Müller-Brown, Karina; Kühn, Ralf; Wurst, Wolfgang; Köster, Reinhard W

    2016-11-15

    The zebrafish is a well-established model organism in which to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell death-inducing compounds. We have recently established a novel inducible genetic cell ablation system based on tamoxifen-inducible Caspase 8 activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here, we prove its suitability in vivo by monitoring the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish that co-express the inducible caspase and a fluorescent reporter. Incubation of larvae in tamoxifen for 8 h activated endogenous Caspase 3 and cell death, whereas incubation for 16 h led to the near-complete loss of PCs by apoptosis. We observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of apoptosis through targeted activation of caspase by tamoxifen (ATTAC TM ) further expands the repertoire of genetic tools for conditional interrogation of cellular functions. © 2016. Published by The Company of Biologists Ltd.

  10. Low temperature desalination using solar collectors augmented by thermal energy storage

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany; Deng, Shuguang; Maganti, Anand

    2012-01-01

    Highlights: ► A new low temperature desalination process using solar collectors was investigated. ► A thermal energy storage tank (TES) was included for continuous process operation. ► Solar collector area and TES volumes were optimized by theoretical simulations. ► Economic analysis for the entire process was compared with and without TES tank. ► Energy and emission payback periods for the solar collector system were reported. -- Abstract: A low temperature desalination process capable of producing 100 L/d freshwater was designed to utilize solar energy harvested from flat plate solar collectors. Since solar insolation is intermittent, a thermal energy storage system was incorporated to run the desalination process round the clock. The requirements for solar collector area as well as thermal energy storage volume were estimated based on the variations in solar insolation. Results from this theoretical study confirm that thermal energy storage is a useful component of the system for conserving thermal energy to meet the energy demand when direct solar energy resource is not available. Thermodynamic advantages of the low temperature desalination using thermal energy storage, as well as energy and environmental emissions payback period of the system powered by flat plate solar collectors are presented. It has been determined that a solar collector area of 18 m 2 with a thermal energy storage volume of 3 m 3 is adequate to produce 100 L/d of freshwater round the clock considering fluctuations in the weather conditions. An economic analysis on the desalination system with thermal energy storage is also presented.

  11. Effects of picosecond laser repetition rate on ablation of Cr12MoV cold work mold steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Baoye; Deng, Leimin; Liu, Peng; Zhang, Fei; Duan, Jun, E-mail: duans@hust.edu.cn; Zeng, Xiaoyan

    2017-07-01

    In this paper, the effects of pulse repetition rate on ablation efficiency and quality of Cr12MoV cold work mold steel have been studied using a picosecond (ps) pulse Nd:YVO{sub 4} laser system at λ= 1064 nm. The experimental results of area ablation on target surface reveal that laser repetition rate plays a significant role in controlling ablation efficiency and quality. Increasing the laser repetition rate, while keeping a constant mean power improves the ablation efficiency and quality. For each laser mean power, there is an optimal repetition rate to achieve a higher laser ablation efficiency with low surface roughness. A high ablation efficiency of 42.29, 44.11 and 47.52 μm{sup 3}/mJ, with surface roughness of 0.476, 0.463 and 0.706 μm could be achieved at laser repetition rate of 10 MHz, for laser mean power of 15, 17 and 19 W, respectively. Scanning electron microcopy images revels that the surface morphology evolves from rough with numerous craters, to flat without pores when we increased the laser repetition rate. The effects of laser repetition rate on the heat accumulation, plasma shield and ablation threshold were analyzed by numerical simulation, spectral analysis and multi-laser shot, respectively. The synergetic effects of laser repetition rate on laser ablation rate and machining quality were analyzed and discussed systemically in this paper.

  12. Application of laser ablation-ICP-MS to determine high-resolution elemental profiles across the Cretaceous/Paleogene boundary at Agost (Spain)

    NARCIS (Netherlands)

    Sosa-Montes de Oca, Claudia; de Lange, Gert J.|info:eu-repo/dai/nl/073930962; Martínez-Ruiz, Francisca; Rodríguez-Tovar, Francisco J.

    2018-01-01

    A high-resolution analysis of the distribution of major and trace elements across a Cretaceous/Paleogene boundary (KPgB) was done using Laser Ablation-Inductivity Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and was compared with traditional distinct sampling and analysis. At the Agost site (SE

  13. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    Science.gov (United States)

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  14. Real-time monitoring of indium tin oxide laser ablation in liquid crystal display patterning

    International Nuclear Information System (INIS)

    Hong, M.H.; Lu, Y.F.; Meng, M.; Low, T.S.

    1998-01-01

    Audible acoustic wave detection is applied to investigate KrF excimer laser ablation of Indium Tin Oxide (ITO) thin film layer for Liquid Crystal Display (LCD) patterning. It is found that there is no acoustic wave generation if laser fluence is lower than ITO ablation threshold. For laser fluence higher than the threshold, audible acoustic wave will be detected due to shock wave generation during ITO laser ablation. The amplitude of the acoustic wave is closely related to the laser ablation rate. With more laser pulse applied, the amplitude is dropped to zero because the ITO layer is completely removed. However, if laser fluence is increased higher than ablation threshold for glass substrate, the amplitude is also dropped with pulse number but not to zero. It is due to laser ablation of ITO layer and glass substrate at the same time. Since the thickness of ITO layer is in a scale of 100 nm, laser interaction with glass substrate will happen even at the first pulse of higher laser fluence irradiation. Laser ablation induced ITO plasma emission spectrum in visible light region is analyzed by an Optical Multi-channel Analyzer (OMA). Specific spectral lines are In I (325.8, 410.2 and 451.1 nm) and In II 591.1 nm. Spectral intensities of 410.2 and 451.1 nm lines are selected to characterize the evolution of ITO plasma intensity with laser fluence and pulse number. It is found that the spectral intensities are reduced to zero with laser pulse number. It is also found that spectral lines other than ITO plasma will appear for laser fluence higher than ablation threshold for glass substrate. Threshold fluences for glass and ITO ablation are estimated for setting up a parameter window to control LCD patterning in real-time

  15. Ground collectors for heat pumps; Grondcollectoren voor warmtepompen

    Energy Technology Data Exchange (ETDEWEB)

    Van Krevel, A. [Techneco, Leidschendam (Netherlands)

    1999-10-01

    The dimensioning and cost optimisation of a closed vertical ground collector system has been studied. The so-called Earth Energy Designer (EED) computer software, specially developed for the calculations involved in such systems, proved to be a particularly useful tool. The most significant findings from the first part of the study, 'Heat extraction from the ground', are presented and some common misconceptions about ground collector systems are clarified. 2 refs.

  16. A Phase-Adaptive Garbage Collector Using Dynamic Heap Partitioning and Opportunistic Collection

    Science.gov (United States)

    Roh, Yangwoo; Kim, Jaesub; Park, Kyu Ho

    Applications usually have their own phases in heap memory usage. The traditional garbage collector fails to match various application phases because the same heuristic on the object behavior is used throughout the entire execution. This paper introduces a phase-adaptive garbage collector which reorganizes the heap layout and adjusts the invocation time of the garbage collection according to the phases. The proposed collector identifies phases by detecting the application methods strongly related to the phase boundaries. The experimental results show that the proposed phase-adaptive collector successfully recognizes application phases and improves the garbage collection time by as much as 41%.

  17. Buoyancy effects on thermal behavior of a flat-plate solar collector

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2008-01-01

    Theoretical and experimental investigations of the flow and temperature distribution in a 12.53 m(2) solar collector panel with an absorber consisting of two vertical manifolds interconnected by 16 parallel horizontal fins have been carried out. The investigations are focused on overheating...... and the influence of the buoyancy effects are considered in the investigations. Further experimental investigations of the solar collector panel are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the back of the absorber tubes. The measured temperatures....... The CFD calculations elucidate the flow and temperature distribution in the collector panels of different designs. Based on the investigations, recommendations are given in order to avoid overheating or boiling problems in the solar collector panel....

  18. Development of multi-frequency array induction logging (MAIL) tool. 3; Multi shuhasu array gata induction kenso tool (MAIL) no kaihatsu (genchi shiken data no ichijigen kaiseki). 3

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T; Osato, K; Takasugi, S [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Uchida, T [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1996-05-01

    A field test was carried out in 1995 on a deep-seated geothermal investigation and reduction well WDR (in Kakkonda, Shizuku-ishi, Iwate Prefecture) by utilizing a multi-frequency array induction logging tool which is under development by NEDO. This paper reports results of analyzing the acquired data. With the WDR wells, an investigation has been conducted to a drilling depth of 330 m. Three frequencies in a range from 3 to 24 kHz provided relatively good data, but data with 42 kHz had poor quality that cannot be utilized for the analysis. Precise device calibration is difficult on data acquired from three array type vertical component magnetometers (the difficulty may be due to a signal line from a transmitter passing on the magnetometer side). Because of this difficulty, analysis using one-dimensional inversion program was performed by using ratio of the amplitude for each frequency and phase difference as input data. The analysis allowed to have derived a result that corresponds to the ground bed structure. 5 refs., 8 figs., 3 tabs.

  19. Solar collector array

    Science.gov (United States)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  20. Combined treatment of tyrosine kinase inhibitor labeled gold nanorod encapsulated albumin with laser thermal ablation in a renal cell carcinoma model

    Science.gov (United States)

    This manuscript served to characterize and evaluate Human Serum Albumin-encapsulated Nanoparticles (NPs) for drug delivery of a tyrosine kinase inhibitor combined with induction of photothermal ablation (PTA) combination therapy of Renal Cell Carcinoma (RCC). RCC is the most common type of kidney c...

  1. Direct multielement trace analyses of silicon carbide powders by spark ablation simultaneous inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Kiera, Arne F.; Schmidt-Lehr, Sebastian; Song, Ming; Bings, Nicolas H.; Broekaert, Jose A.C.

    2008-01-01

    A procedure for the direct analysis of silicon carbide powders (SiC) by simultaneous detection inductively coupled plasma optical emission spectrometry using a Spectro-CIROS TM spectrometer (CCD-ICP-OES) and a novel spark ablation system Spectro-SASSy (SA) as sample introduction technique is described. The sample preparation procedure for SA of non-conducting material is based on mixing the sample powders with a conducting matrix, in this case copper and briquetting pellets. Pressing time, pressure and mixing ratio are shown to be important parameters of the pelleting technique with respect to their mechanical stability for the reliability of the analysis results. A mixing ratio of 0.2 g +0.6 g for SiC and Cu, a pressure of 10 t cm -2 and a pressing time of 8 min have been found optimum. It has also been shown that the spark parameters selected are crucial for uniform volatilization. Electron probe micrographs of the burning spots and the analytical signal magnitude showed that a rather hard spark at 100 Hz was optimum. The determination of trace elements in silicon carbide powders is demonstrated using a calibration based on the addition of standard solutions. For Al, Ti, V, Mn and Fe detection limits in the lower μg g -1 range can be achieved. Internal standardization with Y in combination with the addition of standard solutions allows relative standard deviations in the range of 4 to 24% for concentration levels of the order of 3 to 350 μg g -1

  2. Direct multielement trace analyses of silicon carbide powders by spark ablation simultaneous inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kiera, Arne F.; Schmidt-Lehr, Sebastian; Song, Ming [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Bings, Nicolas H. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: bings@chemie.uni-hamburg.de; Broekaert, Jose A.C. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)

    2008-02-15

    A procedure for the direct analysis of silicon carbide powders (SiC) by simultaneous detection inductively coupled plasma optical emission spectrometry using a Spectro-CIROS{sup TM} spectrometer (CCD-ICP-OES) and a novel spark ablation system Spectro-SASSy (SA) as sample introduction technique is described. The sample preparation procedure for SA of non-conducting material is based on mixing the sample powders with a conducting matrix, in this case copper and briquetting pellets. Pressing time, pressure and mixing ratio are shown to be important parameters of the pelleting technique with respect to their mechanical stability for the reliability of the analysis results. A mixing ratio of 0.2 g +0.6 g for SiC and Cu, a pressure of 10 t cm{sup -2} and a pressing time of 8 min have been found optimum. It has also been shown that the spark parameters selected are crucial for uniform volatilization. Electron probe micrographs of the burning spots and the analytical signal magnitude showed that a rather hard spark at 100 Hz was optimum. The determination of trace elements in silicon carbide powders is demonstrated using a calibration based on the addition of standard solutions. For Al, Ti, V, Mn and Fe detection limits in the lower {mu}g g{sup -1} range can be achieved. Internal standardization with Y in combination with the addition of standard solutions allows relative standard deviations in the range of 4 to 24% for concentration levels of the order of 3 to 350 {mu}g g{sup -1}.

  3. Inductive energy store (IES) technology for multi-terrawatt generators

    International Nuclear Information System (INIS)

    Sincerny, P.S.; Ashby, S.R.; Childers, F.K.; Deeney, C.; Kortbawi, D.; Goyer, J.R.; Riordan, J.C.; Roth, I.S.; Stallings, C.; Schlitt, L.

    1993-01-01

    An IES pulsed power machine has been built at Physics International Company that serves as a prototype demonstration of IES technology that is scaleable to very large TW generators. The prototype module utilizes inductive store opening switch technology for the final stage of pulse compression and is capable of driving both electron beam Bremsstrahlung loads or imploding plasma loads. Each module consists of a fast discharge Marx driving a water dielectric transfer capacitor which is command triggered to drive the inductive store section of the machine. The inductive store is discharged into the load using a plasma erosion opening switch. Data demonstrating 22% efficient operation into an electron beam diode load are presented. The system issues addressing the combining of these modules into a very large pulsed power machine are discussed

  4. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D. E-mail: lumd@21cn.com; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up.

  5. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    International Nuclear Information System (INIS)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D.; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J.

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up

  6. An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shi-zhen, E-mail: xusz@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yao, Cai-zhen [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Dou, Hong-qiang [Department of Material Science and Engineering, Sichuan Engineering Technical College, Deyang 618000 (China); Liao, Wei, E-mail: liaowei@caep.cn [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Xiao-yang; Ding, Ren-jie [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhang, Li-juan; Liu, Hao; Yuan, Xiao-dong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zu, Xiao-tao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2017-06-01

    Highlights: • The fs laser ablation of borosilicate glass (K9) were investigated under 35 and 500 fs pulses. • At high fluence regime, the ablation rate at 35 fs in air increased to a plateau, and 500 fs in air and vacuum decreased. • The mechanisms of multiple-photon ionization and impact ionization were included. • The ablation morphologies of smooth zone and laser-induced periodic surface structures were presented and illustrated. • The ablation mechanisms of non-thermal and thermal ablation were included. - Abstract: Ablation rates of K9 glass were studied as a function of femtosecond laser fluences. The central wavelength was 800 nm, and pulse durations of 35 fs and 500 fs in air and vacuum were employed. Ablation thresholds of 0.42 J/cm{sup 2} and 2.1 J/cm{sup 2} were obtained at 35 fs and 500 fs, respectively, which were independent with the ambient conditions and depend on the incident pulse numbers due to incubation effects. The ablation rate of 35 fs pulse laser increased with the increasing of laser fluence in vacuum, while in air condition, it slowly increased to a plateau at high fluence. The ablation rate of 500 fs pulse laser showed an increase at low fluence and a slow drop of ablation rate was observed at high fluence in air and vacuum, which may due to the strong defocusing effects associated with the non-equilibrium ionization of air, and/or the shielding effects of conduction band electrons (CBEs) produced by multi-photon ionization and impact ionization in K9 glass surface. The typical ablation morphologies, e.g. smooth zone and laser-induced periodic surface structures (LIPSS) were also presented and illustrated.

  7. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO2 laser.

    Science.gov (United States)

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2016-09-01

    Polyoxymethylene (POM) decomposes gradually as it is heated up by the irradiation of CO2 laser; the long-chain molecules of POM are broken into short chains, which leads to the lowering of the melting point and the critical temperature of the ablation products. When the product temperature is above the melting point, ablation comes up in the way of vaporization; when the product temperature is higher than the critical temperature, all liquid products are transformed into gas instantly and the ablation mechanism is changed. The laser fluence at which significant ablation is observed is defined as the ablation threshold, and the fluence corresponding to the ablation mechanism changing is denoted as the flyover threshold. In this paper, random pyrolysis is adopted to describe the pyrolytic decomposition of POM, and consequently, the components of the pyrolysis products under different pyrolysis rates are acquired. The Group Contribution method is used to count the thermodynamic properties of the pyrolysis products, and the melting point and the critical temperature of the product mixture are obtained by the Mixing Law. The Knudsen layer relationship is employed to evaluate the ablation mass removal when the product temperature is below the critical temperature. The gas dynamics conservation laws associated with the Jouguet condition are used to calculate the mass removal when the product temperature is higher than the critical temperature. Based on the model, a set of simulations for various laser intensities and lengths are carried out to generalize the relationships between the thresholds and the laser parameters. Besides the ablated mass areal density, which fits the experimental data quite well, the ablation temperature, pyrolysis rate, and product components are also discussed for a better understanding of the ablation mechanism of POM.

  8. Low-cost solar collectors using thin-film plastics absorbers and glazings

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, W.G.

    1980-01-01

    The design, fabrication, performance, cost, and marketing of flat plate solar collectors using plastic absorbers and glazings are described. Manufacturing cost breakdowns are given for single-glazed and double-glazed collectors. (WHK)

  9. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    Science.gov (United States)

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  10. The lower limiting values of collector properties based on core data

    Energy Technology Data Exchange (ETDEWEB)

    Mitrofanov, V P; Tul' bovich, B I

    1982-01-01

    There are numerous methods for determining the lower limiting values of collector properties; which is caused by complexity of studying objects, the utilization of different petrophysical parameters and characteristics of formation productiveness. Based on laboratory studies conducted at PermNIPIneft', two methods of determining the limited values of collector properties were examined with consideration of data from existing literature: 1) from the critical water saturation content K /SUB b/ *; 2) using the phase permeability for kerosene or oil K /SUB prk/. In the first case the value of K /SUB b/ * is determined from the presence of filtering of a two-face flow with the oil fraction not less than 2%. Knowing the value of K /SUB b/ *, the limiting values of collector properties are evaluated by using the petrophysical relationships, which reflect the connection between residual water saturation, permeability for a gas, porosity, the complex parameter ..sqrt.. K /SUB prg/ /K /SUB p/, and also by the effective porosity. In the second case determination of the phase permeability K /SUB prk/ for collectors with low permeability allows one to establish limiting values of collector properties of permeability. Transition to the porosity limit is achieved by the relationship of gas permeability to open or effective porosity. The examining methods for determining lower limiting values of collector properties are used in calculating the reserve of 9 deposits in the Permian region.

  11. Effect of Glass Thickness on Performance of Flat Plate Solar Collectors for Fruits Drying

    Directory of Open Access Journals (Sweden)

    Ramadhani Bakari

    2014-01-01

    Full Text Available This study aimed at investigating the effect of thickness of glazing material on the performance of flat plate solar collectors. Performance of solar collector is affected by glaze transmittance, absorptance, and reflectance which results into major heat losses in the system. Four solar collector models with different glass thicknesses were designed, constructed, and experimentally tested for their performances. Collectors were both oriented to northsouth direction and tilted to an angle of 10° with the ground toward north direction. The area of each collector model was 0.72 m2 with a depth of 0.15 m. Low iron (extra clear glass of thicknesses 3 mm, 4 mm, 5 mm, and 6 mm was used as glazing materials. As a control, all collector performances were analysed and compared using a glass of 5 mm thickness and then with glass of different thickness. The results showed that change in glass thickness results into variation in collector efficiency. Collector with 4 mm glass thick gave the best efficiency of 35.4% compared to 27.8% for 6 mm glass thick. However, the use of glass of 4 mm thick needs precautions in handling and during placement to the collector to avoid extra costs due to breakage.

  12. Solar water disinfecting system using compound parabolic concentrating collector

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghetany, H.H.; Saitoh, T.S. [Tohoku Univ., Sendai (Japan)

    2000-05-31

    Solar water disinfection is an alternative technology using solar radiation and thermal treatment to inactivate and destroy pathogenic microorganisms present in water. The Compound Parabolic Concentrating, (CPC) collector can be used as an efficient key component for solar disinfectanting system. Two types of the CPC collectors are studied, namely the transparent-tube and the Copper-tube CPC collector. It is found that after 30 minutes of exposing the water sample to solar radiation or heating it up to 65 degree C for a few minuets all the coliform bacterial present in the contaminated water sample were completely eliminated. In this article, the effect of water temperature on the disinfecting process was presented. Thermal and micro-biological measurements were also made to evaluate the system performance. (author)

  13. 30 CFR 18.21 - Machines equipped with powered dust collectors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Machines equipped with powered dust collectors... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.21 Machines equipped with powered dust collectors. Powered dust...

  14. A Review on Photovoltaic-Thermal (PV-T) Air and Water Collectors

    International Nuclear Information System (INIS)

    Avezov, R.R.; Akhatov, J. S.; Avezova, N. R.

    2011-01-01

    This paper presents the state-of-the-art on photovoltaic-thermal PV-T collectors. There are presented two main classification groups: -Air and -Water PV-Thermal collectors, design and performance evaluation, comparison of the findings obtained by various researchers. The review also covers the description of different designs of air and water PV-T collectors, the results of theoretical and experimental works, focused to optimization of the technical and economical performances in terms of electrical as well as thermal outputs. (authors)

  15. Performance and cost benefits analysis of double-pass solar collector with and without fins

    International Nuclear Information System (INIS)

    Fudholi, Ahmad; Sopian, Kamaruzzaman; Ruslan, Mohd Hafidz; Othman, Mohd Yusof

    2013-01-01

    Highlights: • The thermal performances and cost analysis of the double-pass solar collector with and without fins absorber were discussed. • The theoretical and experimental study on the double-pass solar air collector with and without fins absorber was conducted. • The ratio of AC/AEG or the cost benefit ratio was presented. • The double-pass solar collector with fins absorber is more cost-effective compared to without fins absorber. - Abstract: The performance and cost benefit analysis of double-pass solar collector with and without fins have been conducted. The theoretical model using steady state analysis has been developed and compared with the experimental results. The performance curves of the double-pass solar collector with and without fins, which included the effects of mass flow rate and solar intensity on the thermal efficiency of the solar collector, were obtained. Results indicated that the thermal efficiency is proportional to the solar intensity at a specific mass flow rate. The thermal efficiency increased by 9% at a solar intensity of 425–790 W/m 2 and mass flow rate of 0.09 kg/s. The theoretical and experimental analysis showed a similar trend as well as close agreement. Moreover, a cost-effectiveness model has been developed examine the cost benefit ratio of double-pass solar collector with and without fins. Evaluation of the annual cost (AC) and the annual energy gain (AEG) of the collector were also performed. The results show that the double-pass solar collector with fins is more cost-effective compared to the double-pass solar collector without fins for mass flow rate of 0.01–0.07 kg/s. Also, simulations were obtained for the double-pass solar collector with fins at Nusselt number of 5.42–36.21. The energy efficiency of collector increases with the increase of Nusselt number. The results show that by increasing the Nusselt number simultaneously would drop the outlet temperature at any solar intensity. Increase in Nusselt number

  16. Integrated function nonimaging concentrating collector tubes for solar thermal energy

    Science.gov (United States)

    Winston, R.; Ogallagher, J. J.

    1982-09-01

    A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors has been achieved by integrating the reflector surface into the outer glass envelope. Described are the design fabrication and test results for a prototype collector based on this concept. A comprehensive test program to measure performance and operational characteristics of a 2 sq m panel (45 tubes) has been completed. Efficiencies above 50% relative to beam at 200 C have been repeatedly demonstrated. Both the instantaneous and long term average performance of this totally stationary solar collector are comparable to those for tracking line focus parabolic troughs. The yield, reliability and stability of performance achieved have been excellent. Subcomponent assemblies and fabrication procedures have been used which are expected to be compatible with high volume production. The collector has a wide variety of applications in the 100 to 300 C range including industrial progress heat, air conditioning and Rankine engine operation.

  17. Standard performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 3-7/8 inches

    Science.gov (United States)

    1976-01-01

    Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  18. Radiofrequency ablation of pulmonary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Crocetti, Laura, E-mail: l.crocetti@med.unipi.i [Division of Diagnostic Imaging and Intervention, Department of Liver Transplants, Hepatology and Infectious Diseases, Pisa University School of Medicine (Italy); Lencioni, Riccardo [Division of Diagnostic Imaging and Intervention, Department of Liver Transplants, Hepatology and Infectious Diseases, Pisa University School of Medicine (Italy)

    2010-07-15

    The development of image-guided percutaneous techniques for local tumor ablation has been one of the major advances in the treatment of solid tumors. Among these methods, radiofrequency (RF) ablation is currently established as the primary ablative modality at most institutions. RF ablation is accepted as the best therapeutic choice for patients with early-stage hepatocellular carcinoma when liver transplantation or surgical resection are not suitable options and is considered as a viable alternate to surgery for inoperable patients with limited hepatic metastatic disease, especially from colorectal cancer. Recently, RF ablation has been demonstrated to be a safe and valuable treatment option for patients with unresectable or medically inoperable lung malignancies. Resection should remain the standard therapy for non-small cell lung cancer (NSCLC) but RF ablation may be better than conventional external-beam radiation for the treatment of the high-risk individual with NSCLC. Initial favourable outcomes encourage combining radiotherapy and RF ablation, especially for treating larger tumors. In the setting of colorectal cancer lung metastases, survival rates provided by RF ablation in selected patients, are substantially higher than those obtained with any chemotherapy regimens and provide indirect evidence that RF ablation therapy improves survival in patients with limited lung metastatic disease.

  19. Performance of direct absorption solar collector with nanofluid mixture

    International Nuclear Information System (INIS)

    Turkyilmazoglu, Mustafa

    2016-01-01

    Highlights: • Neat approximations for temperature and solar collector efficiency are presented. • The non-adiabatic and isothermal base mechanisms optimize the surface absorption. • Heat transferring material at the bottom panel enhances the thermal efficiency. • Isothermal base panel leads to maximum thermal efficiency of the solar receiver. - Abstract: The enhancement of performance by increasing the thermal efficiency of a direct absorption solar collector based on an alumina–water nanofluid is the prime target of the present research. The base panel of the collector channel is subject to either a non adiabatic or an isothermal wall condition both of which introduce two new physical parameters. Analytical solutions for the temperature field are worked out in both cases for a two dimensional steady-state model recently outlined in the literature. The desired increase in the temperature of the heat transferring nanofluid is achieved either by slightly rising the heat transfer coefficient of the bottom panel coating or by prescribing a bottom surface temperature. As a consequence of the increase in the final outlet mean temperature, the solar collector thermal efficiency is found to be enhanced via increasing the new physical parameters as compared to the traditional adiabatic wall case. For instance, 85.63% thermal efficiency of solar collector is achievable for non adiabatic bottom panel by adding suspended aluminum nanoparticles into the pure water. Even better than this, considering isothermal base panels, 100% efficiency is attained more rapidly with lesser base temperatures in the presence of higher nanoparticle volume fractions.

  20. Ablative skin resurfacing.

    Science.gov (United States)

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Standardized performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 5 5/8 inches

    Science.gov (United States)

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  2. Experimental Evaluation of a Flat Plate Solar Collector Under Hail City Climate

    Directory of Open Access Journals (Sweden)

    N. Ben Khedher

    2018-04-01

    Full Text Available Flat plate solar water heaters are widely used for water heating in low-temperature residential applications. In this paper the thermal performance of a solar flat plate water heater under Hail weather conditions (latitude 27°52΄N longitude ‎41°69΄E was experimentally investigated. Fluid was circulated through the imbedded copper tubes in the flat plate collector and inlet and outlet temperatures of the fluid were noted at five minute intervals. The experimental-time was between 9:00AM-15:00PM. A study was carried out experimentally to present the efficiency curves of a flat plate solar collector at different flow rates. ASHRAE standard 93-2003 was followed for calculation of instantaneous efficiency of solar collector. Result shows that the flow rate of the circulating fluid highly influence the thermal efficiency of the solar collector. Optimum flow rate of 2.5L/min leads to maximum collector efficiency.

  3. A study of the flat plate solar collector in Guinea

    International Nuclear Information System (INIS)

    Boye Barry, M.

    1990-12-01

    In this paper, we study a collector, made by cheap local materials (wood, aluminium, etc.), and prepared in the carpenteries, and in the mechanic work rooms with a simple technology. The efficiency of our collector is compared with several variants made in other countries. (author). 9 refs, 6 figs, 2 tabs

  4. A numerical model to evaluate the flow distribution in a large solar collector field

    DEFF Research Database (Denmark)

    Bava, Federico; Dragsted, Janne; Furbo, Simon

    2017-01-01

    This study presents a numerical model to evaluate the flow distribution in a large solar collector field, with solar collectors connected both in series and in parallel. The boundary conditions of the systems, such as flow rate, temperature, fluid type and layout of the collector field can...... be easily changed in the model. The model was developed in Matlab and the calculated pressure drop and flow distribution were compared with measurements from a solar collector field. A good agreement between model and measurements was found. The model was then used to study the flow distribution...... in different conditions. Balancing valves proved to be an effective way to achieve uniform flow distribution also in conditions different from those for which the valves were regulated. For small solar collector fields with limited number of collector rows connected in parallel, balancing valves...

  5. Low rate of asymptomatic cerebral embolism and improved procedural efficiency with the novel pulmonary vein ablation catheter GOLD: results of the PRECISION GOLD trial.

    Science.gov (United States)

    De Greef, Yves; Dekker, Lukas; Boersma, Lucas; Murray, Stephen; Wieczorek, Marcus; Spitzer, Stefan G; Davidson, Neil; Furniss, Steve; Hocini, Mélèze; Geller, J Christoph; Csanádi, Zoltan

    2016-05-01

    This prospective, multicentre study (PRECISION GOLD) evaluated the incidence of asymptomatic cerebral embolism (ACE) after pulmonary vein isolation (PVI) using a new gold multi-electrode radiofrequency (RF) ablation catheter, pulmonary vein ablation catheter (PVAC) GOLD. Also, procedural efficiency of PVAC GOLD was compared with ERACE. The ERACE study demonstrated that a low incidence of ACE can be achieved with a platinum multi-electrode RF catheter (PVAC) combined with procedural manoeuvres to reduce emboli. A total of 51 patients with paroxysmal atrial fibrillation (AF) (age 57 ± 9 years, CHA2DS2-VASc score 1.4 ± 1.4) underwent AF ablation with PVAC GOLD. Continuous oral anticoagulation using vitamin K antagonists, submerged catheter introduction, and heparinization (ACT ≥ 350 s prior to ablation) were applied. Cerebral magnetic resonance imaging (MRI) scans were performed within 48 h before and 16-72 h post-ablation. Cognitive function assessed by the Mini-Mental State Exam at baseline and 30 days post-ablation. New post-procedural ACE occurred in only 1 of 48 patients (2.1%) and was not detectable on MRI after 30 days. The average number of RF applications per patient to achieve PVI was lower in PRECISION GOLD (20.3 ± 10.0) than in ERACE (28.8 ± 16.1; P = 0.001). Further, PVAC GOLD ablations resulted in significantly fewer low-power (GOLD in combination with established embolic lowering manoeuvres results in a low incidence of ACE. Pulmonary vein ablation catheter GOLD demonstrates improved biophysical efficiency compared with platinum PVAC. ClinicalTrials.gov NCT01767558. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  6. Change in dust collection efficiency of liquid collectors in conditions of dedusting liquid recirculation

    Directory of Open Access Journals (Sweden)

    Krawczyk Janusz

    2017-12-01

    Full Text Available The high efficiency of industrial wet scrubbers is the result of a simultaneous formation of dust particle collectors. Collectors can be understood as droplets of atomised liquid, bubbles formed in the conditions of intensive barbotage, liquid surface and wet surfaces. All collectors are formed during the operation of a circulating unit. The efficiency of dust collection process also depends on the ability of dust particles to be absorbed by collectors. The study provides an experimental analysis of the effect of the increasing concentration of a dust collection liquid in the conditions of full liquid recirculation on the efficiency of dust collection process in the examined types of collectors.

  7. Investigation of matrix effects in 193 nm laser ablation-inductively coupled plasma-mass spectrometry analysis using reference glasses of different transparencies

    International Nuclear Information System (INIS)

    Czas, J.; Jochum, K.P.; Stoll, B.; Weis, U.; Yang, Q.-C.; Jacob, D.E.; Andreae, M.O.

    2012-01-01

    The degree of transparency of glasses, which depends on the Fe content, may influence the ablation behavior during laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis. To test possible matrix effects when using a 193 nm Nd:YAG laser, we have analyzed transparent and opaque NIST, BAM and USGS reference glasses. These reference materials are ideal for such investigations, because they are well characterized, most elements are homogeneously distributed at the micrometer scale, and their Fe content varies over a very large range, from 16 to 130,000 μg g −1 . Our measurements show that the fractionation factors of refractory and volatile lithophile elements, such as Sr, Ba, and Rb, are 1.00 ± 0.03 and independent of the degree of transparency. However, for volatile chalcophile/siderophile elements (e.g., Zn and Pb) the fractionation factors vary significantly between 0.7 and 1, depending on the spot sizes and the transparency of the material. Mass-load-induced matrix effects may also influence the accuracy of LA-ICP-MS analysis. They are less than 2% for the lithophile and up to 10% for volatile chalcophile/siderophile elements when the mass load varies by a factor 2.4. Relative sensitivity factors used for calibration of lithophile elements agree within uncertainty limits for transparent and opaque glasses when using a 193 nm laser. Even for volatile/chalcophile elements they differ only by 5–10%. The reliability of the LA-ICP-MS analyses is demonstrated by presenting concentration data of 27 trace elements in the NIST, BAM and USGS reference glasses using NIST SRM 612 for calibration, where highly accurate reference values are available. For trace element concentrations in the range between 1 and 500 μg g −1 , the reproducibility and the uncertainties at the 95% confidence level of the measurements vary between 1–4%, and 7–10%, respectively. - Highlights: ► Matrix effects are low for lithophile elements using a 193 nm laser

  8. Forensic investigation of brick stones using instrumental neutron activation analysis (INAA), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and X-ray fluorescence analysis (XRF)

    International Nuclear Information System (INIS)

    Scheid, Nicole; Becker, Stefan; Duecking, Marc; Hampel, Gabriele; Volker Kratz, Jens; Watzke, Peter; Weis, Peter; Zauner, Stephan

    2009-01-01

    Brick stones collected from different production facilities were studied for their elemental compositions under forensic aspects using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF). The aim of these examinations was to assess the potential of these methods in forensic comparison analyses of brick stones. The accuracy of the analysis methods was evaluated using NIST standard reference materials (679, 98b and 97b). In order to compare the stones to each other, multivariate data analysis was used. The evaluation of the INAA results (based on the concentrations of V, Na, K, Sm, U, Sc, Fe, Co, Rb and Cs) using principal component analysis (PCA) and cluster analysis is presented as an example. The results derived from the different analytical methods are consistent. It was shown that elemental analysis using the described methods is a valuable tool for forensic examinations of brick stones.

  9. Solar powered adsorption refrigerator with CPC collection system: Collector design and experimental test

    International Nuclear Information System (INIS)

    Gonzalez, Manuel I.; Rodriguez, Luis R.

    2007-01-01

    Solar adsorption cooling systems are usually based on the flat plate collector, whereas little attention has been paid to concentrating collectors. Compound parabolic concentrators (CPC) are a versatile class of solar collectors that can be adapted to a large variety of applications and geometries. This work presents a CPC collector whose tubular receiver contains the sorption bed and where only a portion of the receiver is exposed to sunlight. Geometric characteristics of the proposed CPC, such as the profile, the length and the height of the reflective sheet are given. A prototype of a solar adsorption chiller using this type of collector and the activated carbon-methanol working pair is described, and typical experimental results are reported. In particular, the measured solar COP ranges from 0.078 to 0.096

  10. Does multifocal papillary micro-carcinoma require radioiodine ablation?

    International Nuclear Information System (INIS)

    Punda, A.; Markovic, V.; Eterovic, D.

    2015-01-01

    Full text of publication follows. Background: the thyroid carcinomas smaller than 1 cm (micro-carcinomas) comprise a significant fraction of papillary carcinomas. Excluding clinical micro-carcinomas, which present as metastatic disease, the micro-carcinomas diagnosed by ultrasound/FNAC or incidentally have very good prognosis. However, whether or not these papillary micro-carcinomas require post-surgical radioiodine ablation remains a matter of debate. Hypothesis: multi-focality is present in majority of clinical papillary micro-carcinomas and this characteristic can be used to identify the subset of non-clinical micro-carcinomas with greater malignant potential. Methods: the data on types of differentiated thyroid carcinomas diagnosed in the period 2008-2011 in the University Hospital Split were collected. Results: there were 359 patients with thyroid carcinoma, 329 (92%) of which had papillary carcinoma. About 61% (202/329) of papillary carcinomas were micro-carcinomas; most of them were diagnosed by ultrasound/FNAC (134/202= 66%), the rest were incidentalomas (48/202=24%) and clinical micro carcinomas (20/202=10%). Sixty percent (12/20) of patients with clinical micro-carcinoma and 23 patients with non-clinical micro-carcinoma (23/182=13%) had multifocal disease. Conclusion: multifocal disease is a frequent characteristic of clinical papillary thyroid micro-carcinomas, suggesting that multi-focality presents an early stage of non-clinical micro-carcinomas with more aggressive behaviour. Thus multifocal, but not uni-focal papillary micro-carcinomas may require radioiodine ablation. (authors)

  11. Alternative energy technologies for private households - diffusion of solar collector systems

    Energy Technology Data Exchange (ETDEWEB)

    Krusche, H

    1979-01-01

    The study gives an estimate of the market potential for solar collectors in the Federal Republic of Germany and reports the results of a survey of first generation private users. It shows that these first users of solar collectors have social and personal charactristics similar to innovators in other areas as described in adoption and diffusion research. Compared with the average houseowner, first users of solar collectors tend to be younger, earn more and be better educated; to be professionally involved with building and heating and have some technical training; to be active information seekers and media users; to be socially active and well-integrated; to actively promote further diffusion of solar collectors. The study also shows that solar collectors are used for the purpose of room heating to an unexpectedly high degree; that the level of satisfaction with appliances and service is unexpectedly high and that the social environment of first users shows very little resistance to the introduction of solar collectors. Finally, it is shown that first users are more ecologically conscious than the average houseowner. The majority of first users attributes their decision to adopt solar technology to a lesser degree or at least not more than equally to economic-technical considerations than to ecological considerations. First users are generally fascinated by technically sweet consumption goods and can be characterized as technical optimists in their outlook on the future. Conclusions for social marketing of solar technology for the private household are drawn.

  12. Optical losses due to tracking on solar thermal collectors

    DEFF Research Database (Denmark)

    Sallaberry, Fabienne; Pujol-Nadal, Ramn; Peres, Bengt

    2017-01-01

    For a wide range of operational temperatures, the solar thermal collectors can use optical concentration systems to optimize their efficiency. However, as optical concentration relies on direct solar radiation, it is necessary to use a solar tracker following the sun direction to maximize...... the amount of useful solar radiation received. The selection of the appropriate tracking systems matching the optical concentration factor is essential to achieve optimal collector efficiency. Otherwise, the concentrator would experience high optical losses due to the inadequate focusing of the direct solar...... radiation onto its receiver, regardless of its quality. This paper gives the state-of-the-art of the methodologies available to characterize the tracking error of a concentrating collector, a summary of different previous studies done in this subject and of the standardization regarding the tracking...

  13. Overall energy, exergy and carbon credit analysis by different type of hybrid photovoltaic thermal air collectors

    International Nuclear Information System (INIS)

    Agrawal, Sanjay; Tiwari, G.N.

    2013-01-01

    Highlights: ► Comparative study of PVT air collectors. ► CO 2 analysis of all type of PVT air collectors. ► Study of thermal energy, exergy gain and exergy efficiency. ► Exergy efficiency of unglazed hybrid PVT tiles air collector is most efficient. - Abstract: In this paper, comparative analysis of different type of photovoltaic thermal (PVT) air collector namely: (i) unglazed hybrid PVT tiles, (ii) glazed hybrid PVT tiles and (iii) conventional hybrid PVT air collectors have been carried out for the composite climate of Srinagar (India). The comparative study has been carried out in terms of overall thermal energy and exergy gain, exergy efficiency and carbon credit earned by different type of hybrid PVT air collectors. It has been observed that overall annual thermal energy and exergy gain of unglazed hybrid PVT tiles air collector is higher by 27% and 29.3% respectively as compared to glazed hybrid PVT tiles air collector and by 61% and 59.8% respectively as compared to conventional hybrid PVT air collector. It has also been observed that overall annual exergy efficiency of unglazed and glazed hybrid PVT tiles air collector is higher by 9.6% and 53.8% respectively as compared to conventional hybrid PVT air collector. On the basis of comparative study, it has been concluded that CO 2 emission reduction per annum on the basis of overall thermal energy gain of unglazed and glazed hybrid PVT tiles air collector is higher by 62.3% and 27.7% respectively as compared to conventional hybrid PVT air collector and on the basis of overall exergy gain it is 59.7% and 22.7%.

  14. Design of a solar-assisted drying system using the double-pass solar collector

    International Nuclear Information System (INIS)

    Sopian, K.; Daud, W.R.; Supranto; Othman, M.Y.; Yatim, B.

    2000-01-01

    A solar-assisted drying system that uses the double-pass solar collector with porous media in the second channel has been designed and constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. The drying system has a total of six double-pass solar collectors. Each collector has a length of 240 cm and a width of 120 cm. The upper channel depth is 3.5 cm and the lower channel depth is 10.5 cm. The lower channel is filled up with steel wool as the porous media. The solar collectors are arranged as 2 banks of 3 collectors each in series. Internal manifold are used to connect the collectors. An auxiliary heater source is installed to supply heat under unfavourable solar radiation conditions. An on/off controller is used to control the startup and shutdown of the auxiliary heater. An outlet temperature of 80-90 0 C can be achieved at a solar radiation range of 800-900 W/m 3 , ambient temperature of 29 degree C and flow rate of O.20 kg/s. (Author)

  15. Theoretical study of fluidized solar collector performance

    Energy Technology Data Exchange (ETDEWEB)

    Adulla, S. H; Kassem, M A; El-Refaie, M. F. [Cairo University, Giza (Egypt)

    2000-07-01

    This work presents a proposed novel design aiming to increasing the absorber-to-fluid heat transfer coefficient. This is accomplished by introducing small solid particles inside the collector tubes. When the collector liquid flows, it causes the particles to be fluidized and spread in the tubes. The particles material, size and total number should be turned together with the fluid mass flow rate to keep the bed, or particle dispersion, length within the physical length of collector tubes. Thus, the particles would be confined in the collector only; and not carried over to other parts of the circulation loop. While moving, the particles erode the thermal boundary layer formed on the tube inner surface, hence increasing the heat transfer coefficient. [Spanish] Este articulo presenta un diseno novedoso destinado a aumentar el coeficiente de trasferencia de calor de absorbedor a fluido. Esto se lleva a cabo mediante la introduccion de particulas solidas dentro de los tubos del colector. Cuando fluye el liquido del colector origina que las particulas se fluidicen y se diseminen en los tubos. El material de las particulas, tamano y numero total debera de ser puesto en movimiento junto con el regimen de flujo de masa de fluido para mantener el lecho o la dispersion de particulas por largo tiempo dentro de la longitud fisica de los tubos de colector. De esta manera las particulas seran confinadas solamente en el colector y no seran arrastradas a otras partes del anillo de circulacion. Al moverse, las particulas erosionan la capa de frontera termica formada en la superficie interior del tubo, aumentando por tanto el coeficiente de transmision de calor.

  16. Assessment of musculoskeletal load in refuse collectors

    Directory of Open Access Journals (Sweden)

    Zbigniew W. Jóźwiak

    2013-08-01

    Full Text Available Background: The aim of this work was to assess the load on the musculoskeletal system and its effects in the collectors of solid refuse. The rationale behind this study was to formulate proposals how to reduce excessive musculoskeletal load in this group of workers. Material and Methods: The study group comprised 15 refuse collectors aged 25 to 50 years. Data about the workplace characteristics and subjective complaints of workers were collected by the free interview and questionnaire. During the survey the photorecording of the workpostures, the distance and velocity by GPS recorders, measurements of forces necessary to move containers, energy expenditure (lung ventilation method, workload estimation using the Firstbeat system and REBA method and stadiometry were done. Results: The distance walked daily by the collectors operating in terms of 2 to 3 in urban areas was about 15 km, and in rural areas about 18 km. The most frequent musculoskeletal complaints concerned the feet (60% subjects, knees, wrists and shoulders (over 40% subjects. After work-shift all examined workers had vertebral column shorter by 10 to 14 mm (11.4 mm mean. Conclusions: The results of our study show that the refuse collectors are subjected to a very high physical load because of the work organization and the way it is performed. To avoid adverse health effects and overload it is necessary to undertake ergonomic interventions, involving training of workers to improve the way of their job performance, active and passive leisure, technical control of the equipment and refuse containers, as well as the renegotiation of contracts with clients, especially those concerning non-standard containers. Med Pr 2013;64(4:507–519

  17. Theory and experimental study of biased charge collector for measuring HPIB

    International Nuclear Information System (INIS)

    He Xiaoping; Wang Haiyang; Sun Jianfeng; Yang Hailiang; Qiu Aici; Tang Junping; Li Jingya; Li Hongyu

    2004-01-01

    Structure of the biased charge collector for measuring HPIB (High-power ion beam) is introduced in this paper. The inner charge propagation process of HPIB in the biased charge collector was simulated with KARAT PIC code. The simulation results indicated that charge was neutralized but current was not neutralized in the biased charge collector. The influence of biased voltage and aperture diameter were also simulated. A -800V biased voltage can meet the requirement for measuring 500 keV HPIB, and this is consistent with the experimental results

  18. Proceedings of the solar thermal concentrating collector technology symposium

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, B.P.; Kreith, F. (eds.)

    1978-08-01

    The purpose of the symposium was to review the current status of the concentrating collector technology, to disseminate the information gained from experience in operating solar systems, and to highlight the significant areas of technology development that must be vigorously pursued to foster early commercialization of concentrating solar collectors. Separate abstracts were prepared for thirteen invited papers and working group summaries. Two papers were previously abstracted for EDB.

  19. Participation in multilateral effort to develop high performance integrated CPC evacuated collectors

    Science.gov (United States)

    Winston, R.; Ogallagher, J. J.

    1992-05-01

    The University of Chicago Solar Energy Group has had a continuing program and commitment to develop an advanced evacuated solar collector integrating nonimaging concentration into its design. During the period from 1985-1987, some of our efforts were directed toward designing and prototyping a manufacturable version of an Integrated Compound Parabolic Concentrator (ICPC) evacuated collector tube as part of an international cooperative effort involving six organizations in four different countries. This 'multilateral' project made considerable progress towards a commercially practical collector. One of two basic designs considered employed a heat pipe and an internal metal reflector CPC. We fabricated and tested two large diameter (125 mm) borosilicate glass collector tubes to explore this concept. The other design also used a large diameter (125 mm) glass tube but with a specially configured internal shaped mirror CPC coupled to a U-tube absorber. Performance projections in a variety of systems applications using the computer design tools developed by the International Energy Agency (IEA) task on evacuated collectors were used to optimize the optical and thermal design. The long-term goal of this work continues to be the development of a high efficiency, low cost solar collector to supply solar thermal energy at temperatures up to 250 C. Some experience and perspectives based on our work are presented and reviewed. Despite substantial progress, the stability of research support and the market for commercial solar thermal collectors were such that the project could not be continued. A cooperative path involving university, government, and industrial collaboration remains the most attractive near term option for developing a commercial ICPC.

  20. Magnetic collectors

    International Nuclear Information System (INIS)

    Frew, J.D.

    1980-01-01

    A collector for use in a magnetic separator is formed by isostatically pressing a metal which is resistant to attack by acid about ferromagnetic bodies whereby to encase the bodies in the metal. In one arrangement, as shown, the bodies are encapsulated between inner and outer cylinders. In other arrangements the encapsulating metal is in the form of a tube or planar sheets. The bodies are of Fe or an oxide thereof and the acid-resistant metal parts may be of stainless steel, Au, Pt, Pa or an alloy. The magnetic separator is intended for use in removing particles from liquids during the reprocessing of nuclear fuel materials. (author)

  1. Direct uranium isotope ratio analysis of single micrometer-sized glass particles.

    Science.gov (United States)

    Kappel, Stefanie; Boulyga, Sergei F; Prohaska, Thomas

    2012-11-01

    We present the application of nanosecond laser ablation (LA) coupled to a 'Nu Plasma HR' multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10-20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant (236)U/(238)U isotope ratios (i.e. 10(-5)). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for (234)U/(238)U and (235)U/(238)U ratios. Experimental results obtained for (236)U/(238)U isotope ratios deviated by less than -2.5% from the certified values. Expanded relative total combined standard uncertainties U(c) (k = 2) of 2.6%, 1.4% and 5.8% were calculated for (234)U/(238)U, (235)U/(238)U and (236)U/(238)U, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Compilation of publication and results from project C2: Modelling of microclimates in collectors

    Energy Technology Data Exchange (ETDEWEB)

    Holck, O. [ed.

    1999-08-01

    It is important to avoid condensation in solar collectors, most of all because wetness of the absorber can damage the selective surface and cause corrosion on the absorber plate. During night time the cover of collectors will cool below ambient temperature due to thermal radiation to the cold sky. In climates where the air during night time becomes saturated with humidity (the relative humidity is 100%), condensation will form on the outside and inside of the collector glazing. If too much condensation takes place on the inside of the glazing, it will start to fall off on to the absorber surface. The intent of the present work is improvement of a existing computer model for calculation of microclimates data in collectors. Calculations with the model give insight in the humidity and temperature for artificial or realistic climatic data. This design tool makes it possible to calculate the effect of ventilation and insulation materials. Results from investigation of ventilation rates together with a model of the moisture inside the collector are built into the computer program. It has been found that modelling of the moisture transfer in backside insulation is essential to determine the humidity in the air gap of the collector. The objective is to develop guidelines for solar collector design to achieve the most favourable microclimates condition for materials. As a tool the computer model will be useful to fulfil this. Guidelines for collectors will be essential for manufactures to improve the long-term durability of solar collectors. (au)

  3. Laser ablation for analytical sampling: what can we learn from modeling?

    International Nuclear Information System (INIS)

    Bogaerts, Annemie; Chen Zhaoyang; Gijbels, Renaat; Vertes, Akos

    2003-01-01

    The paper is built up in two parts. First, a rather comprehensive introduction is given, with a brief overview of the different application fields of laser ablation, focusing mainly on the analytical applications, and an overview of the different modeling approaches available for laser ablation. Further, a discussion is presented here about the laser evaporated plume expansion in vacuum or in a background gas, as well as about the different mechanisms for particle formation in the laser ablation process, which is most relevant for laser ablation as solid sampling technique for inductively coupled plasma (ICP) spectrometry. In the second part, a model is presented that describes the interaction of an ns-pulsed laser with a Cu target, as well as the resulting plume expansion and plasma formation. The results presented here, include the temperature distribution in the target, the melting and evaporation of the target, the vapor density, velocity and temperature distribution in the evaporated plume, the ionization degree and the density profiles of Cu 0 atoms, Cu + and Cu 2+ ions and electrons in the plume (plasma), as well as the resulting plasma shielding of the incoming laser beam. Results are presented as a function of time during and after the laser pulse, and as a function of position in the target or in the plume. The influence of the target reflection coefficient on the above calculation results is investigated. Finally, the effect of the laser pulse fluence on the target heating, melting and vaporization, and on the plume characteristics and plasma formation is studied. Our modeling results are in reasonable agreement with calculated and measured data from literature

  4. Standard test method for isotopic abundance analysis of uranium hexafluoride and uranyl nitrate solutions by multi-collector, inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    1.1 This test method covers the isotopic abundance analysis of 234U, 235U, 236U and 238U in samples of hydrolysed uranium hexafluoride (UF6) by inductively coupled plasma source, multicollector, mass spectrometry (ICP-MC-MS). The method applies to material with 235U abundance in the range of 0.2 to 6 % mass. This test method is also described in ASTM STP 1344. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. Performance Study of Photovoltaic-Thermal (Pv/T) Solar Collector with ·-Grooved Absorber Plate

    International Nuclear Information System (INIS)

    Mohd Yusof Othman; Hafidz Ruslan; Kamaruzzaman Sopian; Jin, G.L.

    2009-01-01

    A hybrid photovoltaic-thermal solar collector has been designed, built and its performance has been studied. The advantage of the collector is that it can generate electricity and heat simultaneously. Photovoltaic module SHARP NE-80E2EA with maximum output power of 80 W was used to generate electricity. The module also acts as heat absorber of the collector. Single pass ·-groove collector made of aluminium sheet with 0.7 mm thickness has been used to collect heat generated. Study was conducted under a designed halogen lamps solar simulator with intensities set at 386 ± 8 Wm -2 and 817 ± 8 Wm -2 . The speed of air passing through the collector was set between (69.6 ± 2.2) x 10 -4 kg/s to (695.8 ± 2.2) x 10 -4 kg/s. The objective of the study is to compare the performance of PV/T collector with and without ·-groove absorber. The study found that the PV/T collector with ·-groove absorber plate has higher efficiency than the PV/T without ·-groove absorber. The electrical and thermal efficiencies are also increased when radiation intensity and speed of air increase. (author)

  6. Opensource Software for MLR-Modelling of Solar Collectors

    DEFF Research Database (Denmark)

    Bacher, Peder; Perers, Bengt

    2011-01-01

    A first research version is now in operation of a software package for multiple linear regression (MLR) modeling and analysis of solar collectors according to ideas originating all the way from Walletun et. al. (1986), Perers, (1987 and 1993). The tool has been implemented in the free and open...... source program R http://www.r-project.org/. Applications of the software package includes: visual validation, resampling and conversion of data, collector performance testing analysis according to the European Standard EN 12975 (Fischer et al., 2004), statistical validation of results...

  7. Tracking local control of a parabolic trough collector

    International Nuclear Information System (INIS)

    Ajona, J.I.; Alberdi, J.; Gamero, E.; Blanco, J.

    1992-01-01

    In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)

  8. Determination of radial profile of ICF hot spot's state by multi-objective parameters optimization

    International Nuclear Information System (INIS)

    Dong Jianjun; Deng Bo; Cao Zhurong; Ding Yongkun; Jiang Shaoen

    2014-01-01

    A method using multi-objective parameters optimization is presented to determine the radial profile of hot spot temperature and density. And a parameter space which contain five variables: the temperatures at center and the interface of fuel and remain ablator, the maximum model density of remain ablator, the mass ratio of remain ablator to initial ablator and the position of interface between fuel and the remain ablator, is used to described the hot spot radial temperature and density. Two objective functions are set as the variances of normalized intensity profile from experiment X-ray images and the theory calculation. Another objective function is set as the variance of experiment average temperature of hot spot and the average temperature calculated by theoretical model. The optimized parameters are obtained by multi-objective genetic algorithm searching for the five dimension parameter space, thereby the optimized radial temperature and density profiles can be determined. The radial temperature and density profiles of hot spot by experiment data measured by KB microscope cooperating with X-ray film are presented. It is observed that the temperature profile is strongly correlated to the objective functions. (authors)

  9. Comparison of thermal solar collector technologies and their applications

    OpenAIRE

    Alarcón Villamil, Alexander; Hortúa, Jairo Eduardo; López, Andrea

    2013-01-01

    This paper presents the operation of different thermal solar collector technologies and their main characteristics. It starts by providing a brief description of the importance of using solar collectors as an alternative to reduce the environmental impact caused by the production of non-renewable sources like coal and oil. Subsequently, it focuses on each solar concentrator technology and finishes with a theoretical analysis hub application in different industrial processes. En este artícu...

  10. Thermal and optical study of parabolic trough collectors of Shiraz solar power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A.; Yaghoubi, M.; Vadiee, A.; Hessami, R. [Shiraz Univ, Shiraz (Iran, Islamic Republic of); Kanan, P. [Renewable Energy Organization of Iran, Tehran (Iran, Islamic Republic of)

    2007-07-01

    The construction of the first 250 KW solar power plant in Shiraz, Iran was discussed. The power plant is comprised of a steam and oil cycle which includes 48 parabolic trough collectors (PTCs). Solar thermal power plants based on PTCs are currently the most successful solar technologies for electricity generation. These power plants are basically composed of a solar collector field and a power block. The solar collector field is designed to collect heat from the sun which it is continuously tracking. The reflecting surface concentrates direct solar radiation in the optical focal line of the collector where the heat collecting element (HCE) is located. The HCE absorbs the reflected energy and transmits it to the heat transfer fluid which is pumped to the conventional power block where electricity is generated. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. However, it is necessary to characterize the optical performance and determine the optical losses of PTCs in order to improve the optical efficiency of these systems and to ensure the desired power quality. In this study, thermocouple sensors were used to record the collector oil inlet and outlet temperature along with the ambient temperature in the PTCs. In addition to measuring the wind speed, the solar beam radiation intensity was measured along with the oil's mass flow rate. All parameters were measured as a function of time. Based on these measurements, the intercept factor value and collector's incidence angle was determined and compared with other large size constructed commercial parabolic collectors. The maximum beam radiation during the experimental period was 735 2mW. The useful heat gain and the collector's instantaneous efficiency as a whole was evaluated on an hourly basis. All these parameters were strongly influenced by the incident beam radiation and found to follow each other. The optical and thermal

  11. Evaluation of a tracking flat-plate solar collector in Brazil

    International Nuclear Information System (INIS)

    Maia, Cristiana B.; Ferreira, André G.; Hanriot, Sérgio M.

    2014-01-01

    The continuing research for an alternative power source due to the perceived scarcity of fuel fossils has, in recent years, given solar energy a remarkable edge. Nevertheless, the Earth's daily and seasonal movement affects the intensity of the incident solar radiation. Devices can track the sun in order to ensure optimum positions with regard to incident solar radiation, maximizing the absorbed solar energy, and the useful energy gain. In this paper, a mathematical model is developed to estimate the solar radiation absorbed, the useful energy gain, and the efficiency of a flat-plate solar collector in Brazil. The results for a sun tracking flat-plate solar collector were compared to fixed devices. The full tracking system with rotation about two axes presented higher absorbed energy, when compared to the rotation about a single axe and to a fixed collector. Also, it was shown that the tilt angle for a fixed solar collector does not cause significant variations in the useful energy gain or in the absorbed solar radiation, for the same azimuth angle. - Highlights: • A model was developed for solar radiation based on experimental data for K T . • Useful energy gain and efficiency of a flat-plate solar collector were evaluated for a one-year period. • Several sun tracking systems were compared to fixed devices. • Tilt angle for a fixed device does not significantly affect the useful energy gain

  12. Development of a composite collector scheme for flotation of chalcopyrite ore

    International Nuclear Information System (INIS)

    Khan, M.M.; Ahmad, I.

    2005-01-01

    Xanthate-type collectors reported for the upgradation of Chalcopyrite ore of North Waziristan area were studied and a new technique was developed, in which -two collectors were used (composite collectors) in the bulk-stage process of froth-flotation to achieve metallurgical grade with maximum recovery. The collectors studied were thiol-type surfactants, such as sodium ethyl xanthate (NaEX), sodium propyl xanthate (NaPX), sodium butyl xanthate (NaBX) and sodium Amyl xanthate (NaAX). Mixed collectors examined were in the varying dosage ratio of (0-100:100-0) through the combination of(i) sodium ethyl xanthate with sodium propyl xanthate, sodium ethyl xanthate with sodium butyl xanthate, sodium ethyl xanthate with sodium amyl xanthate, (ii) sodium propyl xanthate with sodium butyl xanthate, sodium propyl xanthate with sodium amyl xanthate and (iii) sodium butyl xanthate with sodium amyl xanthate. All the remaining flotation parameters were kept constant during the various flotation tests. The results were compared and the conclusions were drawn that the optimum grade in the concentrate was obtained with a mixture having a ratio of 4: 1 with sodium ethyl xanthate and sodium butyl xanthate. Recovery of copper content in the concentrate was achieved with ratio of 2:3 with sodium butyl xanthate and sodium amyl xanthate. (author)

  13. Percutaneous thermal ablation of renal neoplasms

    International Nuclear Information System (INIS)

    Tacke, J.; Mahnken, A.H.; Guenther, R.W.

    2005-01-01

    Due to modern examination techniques such as multidetector computed tomography and high-field magnetic resonance imaging, the detection rate of renal neoplasms is continually increasing. Even though tumors exceeding 4 cm in diameter rarely metastasize, all renal lesions that are possible neoplasms should be treated. Traditional treatment techniques include radical nephrectomy or nephron-sparing resection, which are increasingly performed laparoscopically. Modern thermal ablation techniques such as hyperthermal techniques like radiofrequency ablation RFA, laser induced thermal ablation LITT, focused ultrasound FUS and microwave therapy MW, as well as hypothermal techniques (cryotherapy) may be a useful treatment option for patients who are unfit for or refuse surgical resection. Cryotherapy is the oldest and best known thermal ablation technique and can be performed laparoscopically or percutaneously. Since subzero temperatures have no antistyptic effect, additional maneuvers must be performed to control bleeding. Percutaneous cryotherapy of renal tumors is a new and interesting method, but experience with it is still limited. Radiofrequency ablation is the most frequently used method. Modern probe design allows volumes between 2 and 5 cm in diameter to be ablated. Due to hyperthermal tract ablation, the procedure is deemed to be safe and has a low complication rate. Although there are no randomized comparative studies to open resection, the preliminary results for renal RFA are promising and show RFA to be superior to other thermal ablation techniques. Clinical success rates are over 90% for both, cryo- and radiofrequency ablation. Whereas laser induced thermal therapy is established in hepatic ablation, experience is minimal with respect to renal application. For lesions of more than 2 cm in diameter, additional cooling catheters are required. MR thermometry offers temperature control during ablation. Microwave ablation is characterized by small ablation volumes

  14. Percutaneous radiofrequency ablation of hepatocellular carcinoma: analysis of 80 patients treated with two consecutive sessions

    International Nuclear Information System (INIS)

    Rhim, Hyunchul; Kim, Young-sun; Choi, Dongil; Lim, Hyo K.; Park, KoWoon

    2008-01-01

    This study investigated the reasons for some patients requiring two consecutive sessions of percutaneous radiofrequency (RF) ablation of hepatocellular carcinoma (HCC). We reviewed our database of 1,179 patients (1,624 treatments) with HCCs treated by percutaneous ultrasound (US)-guided RF ablation over 6 years. We retrospectively evaluated 80 patients who required a second session after the first session. The medical records and follow-up CTs were studied. We assessed the reasons for the second session and the patient outcomes. A second session was required in 80 (4.8%) out of 1,642 treatments of percutaneous RF ablation for HCC. The reason for the second session included technical failure related to the patient or the procedure (n=26), technical failure due to residual (n=40), newly detected (n=11) or missed (n=3) tumors found at the immediate follow-up CT. All patients were retreated with a second RFA session the next day. Seventy-five (93%) of 80 patients achieved complete ablation after the second session. The remaining five patients were treated by TACE (n=1), additional RFA (as second treatment at next admission) (n=3), or were lost to follow-up (n=1). After 1 month follow-up, 72 patients (96%) showed complete ablation after the second session. The interventional oncologist should understand the technical reasons for a patient requiring a second session of RF ablation when providing treatment for HCCs and perform careful pre-procedural planning to minimize the need for multi-session procedures. (orig.)

  15. The modelling of solar radiation quantities and intensities in a two dimensional compound parabolic collector

    OpenAIRE

    2010-01-01

    M.Ing. A dissertation presented on the basic solar design principles such as sun-earth geometry, energy wavelengths, optics, incidence angles, parabolic collector configurations and design, materials for solar applications, efficiencies, etc to be considered in Solar Concentrating Collector design. These principles were applied in the design and fabrication of a prototype solar collector. The solar collector was tested to verify and correct mathematical models that were generated from exis...

  16. Converting PETAL, the 25m solar collector, into an astronimcal research facility

    Science.gov (United States)

    Ribak, Erez N.; Laor, Ari; Faiman, David; Biyukov, Sergy; Brosch, Noah

    2003-02-01

    We propose to modify the solar collector PETAL (Photon Energy Transformation &Astrophysics Laboratory) for astronomy. The mirror is a segmented parabolic dish collector, which has a relatively poor imaging quality. The conversion can be done by either of two principal methods: (1) phasing the surface of the collector itself or significant sections thereof; (2) transforming the structure into an optical interferometer by mounting small telescopes around its rim, and using fiber optics to combine the light at a common focus.

  17. Semi-solid electrode cell having a porous current collector and methods of manufacture

    Science.gov (United States)

    Chiang, Yet-Ming; Carter, William Craig; Cross, III, James C.; Bazzarella, Ricardo; Ota, Naoki

    2017-11-21

    An electrochemical cell includes an anode, a semi-solid cathode, and a separator disposed therebetween. The semi-solid cathode includes a porous current collector and a suspension of an active material and a conductive material disposed in a non-aqueous liquid electrolyte. The porous current collector is at least partially disposed within the suspension such that the suspension substantially encapsulates the porous current collector.

  18. Laboratory Simulations of Micrometeoroid Ablation

    Science.gov (United States)

    Thomas, Evan Williamson

    Each day, several tons of meteoric material enters Earth's atmosphere, the majority of which consist of small dust particles (micrometeoroids) that completely ablate at high altitudes. The dust input has been suggested to play a role in a variety of phenomena including: layers of metal atoms and ions, nucleation of noctilucent clouds, effects on stratospheric aerosols and ozone chemistry, and the fertilization of the ocean with bio-available iron. Furthermore, a correct understanding of the dust input to the Earth provides constraints on inner solar system dust models. Various methods are used to measure the dust input to the Earth including satellite detectors, radar, lidar, rocket-borne detectors, ice core and deep-sea sediment analysis. However, the best way to interpret each of these measurements is uncertain, which leads to large uncertainties in the total dust input. To better understand the ablation process, and thereby reduce uncertainties in micrometeoroid ablation measurements, a facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to accelerate iron particles to relevant meteoric velocities (10-70 km/s). The particles are then introduced into a chamber pressurized with a target gas, and they partially or completely ablate over a short distance. An array of diagnostics then measure, with timing and spatial resolution, the charge and light that is generated in the ablation process. In this thesis, we present results from the newly developed ablation facility. The ionization coefficient, an important parameter for interpreting meteor radar measurements, is measured for various target gases. Furthermore, experimental ablation measurements are compared to predictions from commonly used ablation models. In light of these measurements, implications to the broader context of meteor ablation are discussed.

  19. Performance analysis of a heat pipe solar collector having different pitch distance

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, B.; Mohan, N.K. [Annamalai Univ., Tamil Nadu (India). Dept. of Mechanical Engineering

    2006-07-01

    Heat pipe solar collectors are more efficient than conventional solar collectors. This paper provided details of experimental analyses conducted to examine the effect of pitch distance on the heat pipe's performance. Two solar collectors with pitch distances of 7.5 cm and 8.5 cm were used in the study. Copper tubing was used as the container material, and methanol was selected as a working fluid for the experiments, which were conducted during the summer at a collector tilt angle of 11 degrees. Experiments were conducted and the impacts of various parameters were measured. Solar intensity was measured using a pyranometer. Water exit and inlet temperatures were measured using mercury thermometers. Results showed that the heat pipe performed optimally when the pitch distance was 0.085 m. 8 refs., 1 tab., 9 figs.

  20. Style and quality of life of waste collectors

    Directory of Open Access Journals (Sweden)

    Flávia Mendes da Silva

    2017-12-01

    Full Text Available The study aimed to analyze the style and quality of life of waste collectors and, to compare its respective domains. A cross-sectional and analytical study, conducted with 43 waste collectors of an inner city in Minas Gerais state. We used a form containing socio-economical and demographic data, WHOQOL-Bref and the Estilo de Vida Fantástico – EVF (FANTASTIC Lifestyle Assessment - Brazilian version. The results showed that there was a significant association between the results from the WHOQOL-Bref and EVF (p<0.05, indicating that higher quality of life scores are associated with better lifestyles. Despite the adverse conditions inherent from work executed by the collectors and its external causes, like the weather, odor, weight, physical effort, and low salaries, there was a satisfactory assessment for questions composing quality of life and lifestyle. From the exposed, it was evident that the work, health, quality of life and lifestyle are related and determine the worker’s profile in their subjective life, as well as, in their work life.

  1. Biofunctionalized Hybrid Magnetic Gold Nanoparticles as Catalysts for Photothermal Ablation of Colorectal Liver Metastases.

    Science.gov (United States)

    White, Sarah B; Kim, Dong-Hyun; Guo, Yang; Li, Weiguo; Yang, Yihe; Chen, Jeane; Gogineni, Venkateswara R; Larson, Andrew C

    2017-12-01

    Purpose To demonstrate that anti-MG1 conjugated hybrid magnetic gold nanoparticles (HNPs) act as a catalyst during photothermal ablation (PTA) of colorectal liver metastases, and thus increase ablation zones. Materials and Methods All experiments were performed with approval of the institutional animal care and use committee. Therapeutic and diagnostic multifunctional HNPs conjugated with anti-MG1 monoclonal antibodies were synthesized, and the coupling efficiency was determined. Livers of 19 Wistar rats were implanted with 5 × 10 6 rat colorectal liver metastasis cell line cells. The rats were divided into three groups according to injection: anti-MG1-coupled HNPs (n = 6), HNPs only (n = 6), and cells only (control group, n = 7). Voxel-wise R2 and R2* magnetic resonance (MR) imaging measurements were obtained before, immediately after, and 24 hours after injection. PTA was then performed with a fiber-coupled near-infrared (808 nm) diode laser with laser power of 0.56 W/cm 2 for 3 minutes, while temperature changes were measured. Tumors were assessed for necrosis with hematoxylin-eosin staining. Organs were analyzed with inductively coupled plasma mass spectrometry to assess biodistribution. Therapeutic efficacy and tumor necrosis area were compared by using a one-way analysis of variance with post hoc analysis for statistically significant differences. Results The coupling efficiency was 22 μg/mg (55%). Significant differences were found between preinfusion and 24-hour postinfusion measurements of both T2 (repeated measures analysis of variance, P = .025) and T2* (P the anti-MG1 HNP and HNP-only groups (P = .034). Mean temperature ± standard deviation with PTA in the anti-MG1-coated HNP, HNP, and control groups was 50.2°C ± 7.8, 51°C ± 4.4, and 39.5°C ± 2.0, respectively. Inductively coupled plasma mass spectrometry revealed significant tumor targeting and splenic sequestration. Mean percentages of tumor necrosis in the anti-MG1-coated HNP, HNP, and

  2. A finite-volume model of a parabolic trough photovoltaic/thermal collector: Energetic and exergetic analyses

    International Nuclear Information System (INIS)

    Calise, Francesco; Palombo, Adolfo; Vanoli, Laura

    2012-01-01

    This paper presents a detailed finite-volume model of a concentrating photovoltaic/thermal (PVT) solar collector. The PVT solar collector consists in a parabolic trough concentrator and a linear triangular receiver. The bottom surfaces of the triangular receiver are equipped with triple-junction cells whereas the top surface is covered by an absorbing surface. The cooling fluid (water) flows inside a channel along the longitudinal direction of the PVT collector. The system was discretized along its axis and, for each slice of the discretized computational domain, mass and energy balances were considered. The model allows one to evaluate both thermodynamic and electrical parameters along the axis of the PVT collector. Then, for each slice of the computational domain, exergy balances were also considered in order to evaluate the corresponding exergy destruction rate and exergetic efficiency. Therefore, the model also calculates the magnitude of the irreversibilities inside the collector and it allows one to detect where these irreversibilities occur. A sensitivity analysis is also performed with the scope to evaluate the effect of the variation of the main design/environmental parameters on the energetic and exergetic performance of the PVT collector. -- Highlights: ► The paper investigates an innovative concentrating photovoltaic thermal solar collector. ► The collector is equipped with triple-junction photovoltaic layers. ► A local exergetic analysis is performed in order to detect sources of irreversibilities. ► Irreversibilities are mainly due to the heat transfer between sun and PVT collector.

  3. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; hide

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  4. Pulmonary hemorrhage complicating radiofrequency ablation, from mild hemoptysis to life-threatening pattern

    Energy Technology Data Exchange (ETDEWEB)

    Nour-Eldin, Nour-Eldin A.; Naguib, Nagy N.N.; Mack, Martin; Abskharon, John E.; Vogl, Thomas J. [Johann Wolfgang Goethe-University Hospital, Institute for Diagnostic and Interventional Radiology, Frankfurt am Main (Germany)

    2011-01-15

    To assess risk factors and the extent of pulmonary hemorrhage complicating radiofrequency ablation (RFA) of pulmonary neoplasms. This retrospective study involved 248 ablation sessions for lung tumors (20 primary lesions and 228 metastatic lesions) in 164 patients (mean age 59.7 years, SD: 10.2). Both unipolar and bipolar radiofrequency systems were used under CT fluoroscopic guidance. Extent and underlying factors associated with development of pulmonary hemorrhage were analyzed. Incidence of intra-parenchymal pulmonary hemorrhage, pleural effusion, and hemoptysis were 17.7% (44/248 sessions), 4% (8/248 sessions), and 16.1% (40/248 sessions), respectively. Death because of massive bleeding occurred in one session (0.4%). Significant risk factors associated with intra-parenchymal hemorrhage included: lesions of <1.5 cm diameter (P = 0.007); basal and middle lung zone lesions (P = 0.026); increased needle track distance traversing the lung parenchyma >2.5 cm (P = 0.0017); traversing pulmonary vessels in the track of ablation (P < 0.001); and the use of multi-tined electrodes (P = 0.004). Concomitant incidence of pulmonary hemorrhage and pneumothorax was 29.2% (14/48 sessions). While typically safe, RFA of pulmonary neoplasms can result in pulmonary hemorrhage ranging from mild to life-threatening. Management of this complication is mainly preventive through adequate patient selection for ablation therapy and exclusion of technically avoidable risk factors. (orig.)

  5. Interaction of regulation and innovation: Solar air heating collectors

    OpenAIRE

    Kramer, K.

    2012-01-01

    Solar Air Heating Collectors have still a very small share of 0.8% of the nominal installed capacity in the solar heating and cooling market (151.7 GWth) [1]. Although constituting a niche market, the potential of those kind of collectors to provide heat for industrial processes, processing food, room heating, air preheating, drying processes or air conditioning could be significant. However, the technical potentials of the various technological solutions are not easy to compare. Such a compa...

  6. Means of increasing efficiency of CPC solar energy collector

    Science.gov (United States)

    Chao, B.T.; Rabl, A.

    1975-06-27

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  7. Development of routines for simultaneous in situ chemical composition and stable Si isotope ratio analysis by femtosecond laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frick, Daniel A., E-mail: dfrick@gfz-potsdam.de [GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Schuessler, Jan A. [GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Blanckenburg, Friedhelm von [GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Institute of Geological Science, Freie Universität Berlin, 12249 Berlin (Germany)

    2016-09-28

    Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ{sup 30}Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ{sup 30}Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g{sup −1}-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ

  8. Development of routines for simultaneous in situ chemical composition and stable Si isotope ratio analysis by femtosecond laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Frick, Daniel A.; Schuessler, Jan A.; Blanckenburg, Friedhelm von

    2016-01-01

    Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ 30 Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ 30 Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g −1 -range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ

  9. Ventricular fibrillation occurring after atrioventricular node ablation despite minimal difference between pre- and post-ablation heart rates.

    Science.gov (United States)

    Squara, F; Theodore, G; Scarlatti, D; Ferrari, E

    2017-02-01

    We report the case of an 82-year-old man presenting with ventricular fibrillation (VF) occurring acutely after atrioventricular node (AVN) ablation. This patient had severe valvular cardiomyopathy, chronic atrial fibrillation (AF), and underwent prior to the AVN ablation a biventricular implantable cardiac defibrillator positioning. The VF was successfully cardioverted with one external electrical shock. What makes this presentation original is that the pre-ablation spontaneous heart rate in AF was slow (84 bpm), and that VF occurred after ablation despite a minimal heart rate drop of only 14 bpm. VF is the most feared complication of AVN ablation, but it had previously only been described in case of acute heart rate drop after ablation of at least 30 bpm (and more frequently>50 bpm). This case report highlights the fact that VF may occur after AVN ablation regardless of the heart rate drop, rendering temporary fast ventricular pacing mandatory whatever the pre-ablation heart rate. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Development of precise analytical methods for strontium and lanthanide isotopic ratios using multiple collector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Ohno, Takeshi; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2007-01-01

    We have developed precise analytical methods for strontium and lanthanide isotopic ratios using multiple collector-ICP-mass spectrometry (MC-ICP-MS) for experimental and environmental studies of their behavior. In order to obtain precise isotopic data using MC-ICP-MS, the mass discrimination effect was corrected by an exponential law correction method. The resulting isotopic data demonstrated that highly precise isotopic analyses (better than 0.1 per mille as 2SD) could be achieved. We also adopted a de-solvating nebulizer system to improve the sensitivity. This system could minimize the water load into the plasma and provided about five times larger intensity of analyte than a conventional nebulizer system did. (author)

  11. A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector

    International Nuclear Information System (INIS)

    Jafari Mosleh, H.; Jahangiri Mamouri, S.; Shafii, M.B.; Hakim Sima, A.

    2015-01-01

    Highlights: • A new desalination uses a combination of heat pipe and parabolic trough collector. • A twin-glass evacuated tube is used to decrease the thermal losses from heat pipe. • Adding oil into the space between heat pipe and tube collector enhances the yield. • The yield and efficiency reach up to 0.933 kg/(m 2 h) and 65.2%, respectively. - Abstract: The solar collectors have been commonly used in desalination systems. Recent investigations show that the use of a linear parabolic trough collector in solar stills can improve the efficiency of a desalination system. In this work, a combination of a heat pipe and a twin-glass evacuated tube collector is utilized with a parabolic trough collector. Results show that the rate of production and efficiency can reach to 0.27 kg/(m 2 h) and 22.1% when aluminum conducting foils are used in the space between the heat pipe and the twin-glass evacuated tube collector to transfer heat from the tube collector to the heat pipe. When oil is used as a medium for the transfer of heat, filling the space between heat pipe and twin-glass evacuated tube collector, the production and efficiency can increase to 0.933 kg/(m 2 h) and 65.2%, respectively

  12. Effects of grid potentials and geometric dimensions on the multi-electrode probe measurements

    International Nuclear Information System (INIS)

    Elakshar, F.F.; Abdul El-Raoof, W.S.

    1986-01-01

    A hollow anode plasma source is used to produce low temperature plasma which is injected into a magnetic field. The effects of the grid potentials, collector potential and geometric dimensions on multi-electrode probe measurements, in the presence of a magnetic field, are investigated. It is found that the collector potential plays a substantial role in the measurement of temperatures and densities. The finite-size of the geometric dimensions of the probe influences the data and high values of temperature are obtained when a small ratio of the discriminator grid radius to the separation distance is used, providing that the repeller grid potentials is low. Reliable measurements can only be obtained if the multi-electrode probe is used in the presence of a magnetic field strong enough to reduce electron Larmor radii to less than the grid mesh radius. (author)

  13. Thermal Ablation of T1c Renal Cell Carcinoma: A Comparative Assessment of Technical Performance, Procedural Outcome, and Safety of Microwave Ablation, Radiofrequency Ablation, and Cryoablation.

    Science.gov (United States)

    Zhou, Wenhui; Arellano, Ronald S

    2018-04-06

    To evaluate perioperative outcomes of thermal ablation with microwave (MW), radiofrequency (RF), and cryoablation for stage T1c renal cell carcinoma (RCC). A retrospective analysis of 384 patients (mean age, 71 y; range, 22-88 y) was performed between October 2006 and October 2016. Mean radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines; preoperative aspects and dimensions used for anatomic classification; and centrality index scores were 6.3, 7.9, and 2.7, respectively. Assessment of pre- and postablation serum blood urea nitrogen, creatinine, and estimated glomerular filtration rate was performed to assess functional outcomes. Linear regression analyses were performed to compare sedation medication dosages among the three treatment cohorts. Univariable and multivariable logistic regression analyses were performed to compare rates of residual disease and complications among treatment modalities. A total of 437 clinical stage T1N0M0 biopsy-proven RCCs measuring 1.2-6.9 cm were treated with computed tomography (CT)-guided MW ablation (n = 44; 10%), RF ablation (n = 347; 79%), or cryoablation (n = 46; 11%). There were no significant differences in patient demographic or tumor characteristics among cohorts. Complication rates and immediate renal function changes were similar among the three ablation modalities (P = .46 and P = .08, respectively). MW ablation was associated with significantly decreased ablation time (P < .05), procedural time (P < .05), and dosage of sedative medication (P < .05) compared with RF ablation and cryoablation. CT-guided percutaneous MW ablation is comparable to RF ablation or cryoablation for the treatment of stage T1N0M0 RCC with regard to treatment response and is associated with shorter treatment times and less sedation than RF ablation or cryoablation. In addition, the safety profile of CT-guided MW ablation is noninferior to those of RF ablation or

  14. Perioral Rejuvenation With Ablative Erbium Resurfacing.

    Science.gov (United States)

    Cohen, Joel L

    2015-11-01

    Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.

  15. Temperature dependent capacity contribution of thermally treated anode current collectors in lithium ion batteries

    International Nuclear Information System (INIS)

    Kim, Tae Kwon; Li Xifei; Wang Chunlei

    2013-01-01

    Highlights: ► We studied the influence of the thermal treatment of current collectors on the energy capacity. ► Different current collectors show different thermal treatment effect on performance. ► The non-negligible capacity contribution is closely related to the treatment temperatures. ► Our results could be beneficial to designing battery architectures. - Abstract: Metal current collectors, offering a good connection between the active materials and the external circuit, is an important component in a rechargeable lithium ion battery. Some necessary thermal treatment in the battery fabrication and assembly procedure results in current collectors with some non-negligible reversible energy capacities; however, these energy capacities were negligible in the previous references. In this research, for the first time, we investigated the influence of the thermal treatment of current collectors (such as copper foil and stainless steel disk) on energy capacities. Our results indicate that different current collector materials have different thermal treatment effects on their electrochemical performance. The non-negligible capacity contribution is closely related to the treatment temperature.

  16. Lithium and trace-element concentrations in trioctahedral micas from granites of different geochemical types measured via laser ablation ICP-MS

    Czech Academy of Sciences Publication Activity Database

    Breiter, Karel; Vaňková, M.; Vašinová Galiová, M.; Korbelová, Zuzana; Kanický, V.

    2017-01-01

    Roč. 81, č. 1 (2017), s. 15-33 ISSN 0026-461X R&D Projects: GA ČR GA14-13600S Institutional support: RVO:67985831 Keywords : trioctahedral micas * Li-mica * rare-metal granite * Bohemian Massif * laser ablation inductively coupled plasma mass spectrometry Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Mineralogy Impact factor: 1.285, year: 2016

  17. NGRI LAM-MC-ICPMS National Facility: reproducibility of Sr, Nd and Hf isotopic measurements

    International Nuclear Information System (INIS)

    Bhaskar Rao, Y.J.; Vijaya Gopal, B.; Babu, E.V.S.S.K.; Sukumaran, N.P.; Sreenivas, B.; Vijaya Kumar, T.; Krishna, K.V.S.S.; Tomson, J.K.

    2009-01-01

    A laboratory facility was established at the NGRI, primarily to support research in Isotope Geochemistry and Geochronology. Central to this facility are a Multiple Collector-Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS: Nu Plasma HR, Nu Instruments, UK) and a 213 nm Nd-YAG UV Laser Ablation Microprobe (LAM: UP-213, New Wave Research, USA) and a clean chemistry laboratory for dissolution and chromatographic extraction of a range of elements. This article presents a summary of the accuracy and precision of MC-ICPMS Sr, Nd and Hf isotopic measurements (solution mode) on Standard Reference Materials: SRM-987, JNd i and JMC-475 respectively, measured between October 2007 and August 2009

  18. Thermal performance of a double-pass solar collector with porous media

    International Nuclear Information System (INIS)

    Elradi A Musa; Kamaruzzaman Sopian; Shahrir Abdullah

    2006-01-01

    Thermal performance of a double-pass solar collector has been developed for air following through the porous media. The porous media are arranged in different porosities to increase heat transfer, area density and the total heat transfer rate. A test collector was developed and tested indoors by varying the design features and operating conditions using a halogen-lamp simulator as a radiation source. An experimental setup as been designed and constructed. Comparisons of the theoretical and the experimental result have been conducted. This type of collector can be used for drying and heat applications such as solar industrial processes, space and solar drying of agricultural products

  19. Tårs 10000 m2 CSP + Flat Plate Solar Collector Plant - Cost-Performance Optimization of the Design

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Tian, Zhiyong

    2016-01-01

    , was established. The optimization showed that there was a synergy in combining CSP and FP collectors. Even though the present cost per m² of the CSP collectors is high, the total energy cost is minimized by installing a combination of collectors in such solar heating plant. It was also found that the CSP......A novel solar heating plant with Concentrating Solar Power (CSP) collectors and Flat Plate (FP) collectors has been put into operation in Tårs since July 2015. To investigate economic performance of the plant, a TRNSYS-Genopt model, including a solar collector field and thermal storage tank...

  20. A UAV-Based Fog Collector Design for Fine-Scale Aerobiological Sampling

    Science.gov (United States)

    Gentry, Diana; Guarro, Marcello; Demachkie, Isabella Siham; Stumfall, Isabel; Dahlgren, Robert P.

    2017-01-01

    Airborne microbes are found throughout the troposphere and into the stratosphere. Knowing how the activity of airborne microorganisms can alter water, carbon, and other geochemical cycles is vital to a full understanding of local and global ecosystems. Just as on the land or in the ocean, atmospheric regions vary in habitability; the underlying geochemical, climatic, and ecological dynamics must be characterized at different scales to be effectively modeled. Most aerobiological studies have focused on a high level: 'How high are airborne microbes found?' and 'How far can they travel?' Most fog and cloud water studies collect from stationary ground stations (point) or along flight transects (1D). To complement and provide context for this data, we have designed a UAV-based modified fog and cloud water collector to retrieve 4D-resolved samples for biological and chemical analysis.Our design uses a passive impacting collector hanging from a rigid rod suspended between two multi-rotor UAVs. The suspension design reduces the effect of turbulence and potential for contamination from the UAV downwash. The UAVs are currently modeled in a leader-follower configuration, taking advantage of recent advances in modular UAVs, UAV swarming, and flight planning.The collector itself is a hydrophobic mesh. Materials including Tyvek, PTFE, nylon, and polypropylene monofilament fabricated via laser cutting, CNC knife, or 3D printing were characterized for droplet collection efficiency using a benchtop atomizer and particle counter. Because the meshes can be easily and inexpensively fabricated, a set can be pre-sterilized and brought to the field for 'hot swapping' to decrease cross-contamination between flight sessions or use as negative controls.An onboard sensor and logging system records the time and location of each sample; when combined with flight tracking data, the samples can be resolved into a 4D volumetric map of the fog bank. Collected samples can be returned to the lab for

  1. Performance of nanofluids on heat transfer in a wavy solar collector ...

    African Journals Online (AJOL)

    The bottom wavy solid surface is kept at a constant temperature Tc. Numerical analysis is done by this article for the performance of different nanofluids on convective flow and heat transfer phenomena inside a solar collector. The solar collector has the flatplate cover and sinusoidal wavy absorber. Two different nanofluids ...

  2. Quantitative analysis of major and trace elements in NH4HF2-modified silicate rock powders by laser ablation - inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Zhang, Wen; Hu, Zhaochu; Liu, Yongsheng; Yang, Wenwu; Chen, Haihong; Hu, Shenghong; Xiao, Hongyan

    2017-08-29

    In this paper, we described a NH 4 HF 2 digestion method as sample preparation for the rapid determination of major and trace elements in silicate rocks using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). Sample powders digested by NH 4 HF 2 at 230 °C for 3 h form ultrafine powders with a typical grain size d 80  rocks have a consistent grain morphology and size, allowing us to produce pressed powder pellets that have excellent cohesion and homogeneity suitable for laser ablation micro-analysis without the addition of binder. The influences of the digestion parameters were investigated and optimized, including the evaporation stage of removing residual NH 4 HF 2 , sample homogenization, selection of the digestion vessel and calibration strategy of quantitative analysis. The optimized NH 4 HF 2 digestion method was applied to dissolve six silicate rock reference materials (BCR-2, BHVO-2, AGV-2, RGM-2, GSP-2, GSR-1) covering a wide range of rock types. Ten major elements and thirty-five trace elements were simultaneously analyzed by LA-ICP-MS. The analytical results of the six reference materials generally agreed with the recommended values, with discrepancies of less than 10% for most elements. The analytical precision is within 5% for most major elements and within 10% for most trace elements. Compared with previous methods of LA-ICP-MS bulk analysis, our method enables the complete dissolution of refractory minerals, such as zircon, in intermediate-acidic intrusive rocks and limits contamination as well as the loss of volatile elements. Moreover, there are many advantages for the new technique, including reducing matrix effects between reference materials and samples, spiking the internal standard simply and feasibly and sample batch processing. The applicability filed of the new technique in this study was focused on the whole-rock analysis of igneous rock samples, which are from basic rocks to acid rocks (45% rock analysis

  3. CT-guided Bipolar and Multipolar Radiofrequency Ablation (RF Ablation) of Renal Cell Carcinoma: Specific Technical Aspects and Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Lemm, G.; Hohenstein, E. [Minimally Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Clinic for Radiology (Germany); Bellemann, N.; Stampfl, U. [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Goezen, A. S.; Rassweiler, J. [Clinic for Urology, SLK Kliniken Heilbronn GmbH (Germany); Kauczor, H. U.; Radeleff, B. A. [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Pereira, P. L. [Minimally Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Clinic for Radiology (Germany)

    2013-06-15

    Purpose. This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. Methods. We included 22 consecutive patients (3 women; age 74.2 {+-} 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 {+-} 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Results. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 {+-} 13.6 min and 43.7 {+-} 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 {+-} 8.8 months, local recurrence-free survival was 14.4 {+-} 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 {+-} 16.6 ml/min/1.73 m{sup 2} before RF ablation vs. 47.2 {+-} 11.9 ml/min/1.73 m{sup 2} after RF ablation; not significant). Conclusions. CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  4. Influence of nanofluids on the efficiency of Flat-Plate Solar Collectors (FPSC)

    Science.gov (United States)

    Nejad, Marjan B.; Mohammed, H. A.; Sadeghi, O.; Zubeer, Swar A.

    2017-11-01

    A numerical investigation is performed using finite volume method to study the laminar heat transfer in a three-dimensional flat-plate solar collector using different nanofluids as working fluids. Three nanofluids with different types of nanoparticles (Ag, MWCNT and Al2O3 dispersed in water) with 1-2 wt% volume fractions are analyzed. A constant heat flux, equivalent to solar radiation absorbed by the collector, is applied at the top surface of the absorber plate. In this study, several parameters including boundary conditions (different volume flow rates, different fluid inlet temperatures and different solar irradiance at Skudai, Malaysia), different types of nanoparticles, and different solar collector tilt angles are investigated to identify their effects on the heat transfer performance of FPSC. The numerical results reveal that the three types of nanofluid enhance the thermal performance of solar collector compared to pure water and FPSC with Ag nanofluid has the best thermal performance enhancement. For all the cases, the collector efficiency increased with the increase of volume flow rate while fluid outlet temperature decreased. It is found that FPSC with tilt angle of 10° and fluid inlet temperature of 301.15 K has the best thermal performance.

  5. Thermo-economic optimization of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2018-01-01

    heating network in this study. The results also show that parabolic trough collectors are economically feasible for district heating networks in Denmark. The generic and multivariable levelized cost of heat method can guide engineers and designers on the design, construction and control of large...... to optimize the hybrid solar district heating systems based on levelized cost of heat. It is found that the lowest net levelized cost of heat of hybrid solar heating plants could reach about 0.36 DKK/kWh. The system levelized cost of heat can be reduced by 5–9% by use of solar collectors in the district...

  6. Experimental and numerical investigation of a linear Fresnel solar collector with flat plate receiver

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Mathioulakis, Emmanouil; Tzivanidis, Christos; Belessiotis, Vassilis; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • A linear Fresnel solar collector with flat plate receiver is investigated. • The collector is investigated experimentally in energetic and exergetic terms. • The developed numerical model is validated with the experimental results. • The operation with thermal oil is also examined with the developed model. • The final results prove satisfying performance for medium temperature levels. - Abstract: In this study a linear Fresnel solar collector with flat plate receiver is investigated experimentally and numerically with Solidworks Flow Simulation. The developed model combines optical, thermal and flow analysis; something innovative and demanding which leads to accurate results. The main objective of this study is to determine the thermal, the optical and the exergetic performance of this collector in various operating conditions. For these reasons, the developed model is validated with the respective experimental data and after this step, the solar collector model is examined parametrically for various fluid temperature levels and solar incident angles. The use of thermal oil is also analyzed with the simulation tool in order to examine the collector performance in medium temperature levels. The experiments are performed with water as working fluid and for low temperature levels up to 100 °C. The final results proved that this solar collector is able to produce about 8.5 kW useful heat in summer, 5.3 kW in spring and 2.9 kW in winter. Moreover, the operation of this collector with thermal oil can lead to satisfying results up to 250 °C.

  7. Experimental Validation and Model Verification for a Novel Geometry ICPC Solar Collector

    DEFF Research Database (Denmark)

    Perers, Bengt; Duff, William S.; Daosukho, Jirachote

    A novel geometry ICPC solar collector was developed at the University of Chicago and Colorado State University. A ray tracing model has been designed to investigate the optical performance of both the horizontal and vertical fin versions of this collector. Solar radiation is modeled as discrete...... to the desired incident angle of the sun’s rays, performance of the novel ICPC solar collector at various specified angles along the transverse and longitudinal evacuated tube directions were experimentally determined. To validate the ray tracing model, transverse and longitudinal performance predictions...... at the corresponding specified incident angles are compared to the Sandia results. A 100 m2 336 Novel ICPC evacuated tube solar collector array has been in continuous operation at a demonstration project in Sacramento California since 1998. Data from the initial operation of the array are used to further validate...

  8. Energy analysis and improvement potential of finned double-pass solar collector

    International Nuclear Information System (INIS)

    Fudholi, Ahmad; Sopian, Kamaruzzaman; Othman, Mohd Yusof; Ruslan, Mohd Hafidz; Bakhtyar, B.

    2013-01-01

    Highlights: • The developed steady state model predicting the thermal performance of double-pass solar collectors is presented. • The main objective of this paper is to analyze the energy and exergy of finned double-pass solar collector. • A new mathematical model, solution procedure, and test results are presented. • The thermal performances and improvement potential of the double-pass solar collectors are discussed. - Abstract: Steady state energy balance equations for the finned double-pass solar collector have been developed. These equations were solved using the matrix inversion method. The predicted results were in agreement with the results obtained from the experiments. The predictions and experiments were observed at the mass flow rate ranging between 0.03 kg/s and 0.1 kg/s, and solar radiation ranging between 400 W/m 2 and 800 W/m 2 . The effects of mass flow rates and solar radiation levels on energy efficiency, exergy efficiency and the improvement potential have been observed. The optimum energy efficiency is approximately 77%, which was observed at the mass flow rate of 0.09 kg/s. The optical efficiency of the finned double-pass solar collector is approximately 70–80%. The exergy efficiency is approximately 15–28% and improvement potential of 740–1070 W for a solar radiation of 425–790 W/m 2

  9. Water spray assisted ultrashort laser pulse ablation

    International Nuclear Information System (INIS)

    Silvennoinen, M.; Kaakkunen, J.J.J.; Paivasaari, K.; Vahimaa, P.

    2013-01-01

    Highlights: ► We show the novel method to use multibeam processing with ultrashort pulses efficiently. ► Sprayed thin water layer on ablation zone enhances ablation rate and quality. ► In some cases this method also enables ablation of the deeper and straighter holes compared to ones made without the water layer. ► Method also makes possible to directly write features without the self-organizing structures. - Abstract: We have studied femtosecond ablation under sprayed thin water film and its influence and benefits compared with ablation in the air atmosphere. These have been studied in case of the hole and the groove ablation using IR femtosecond laser. Water enhances the ablation rate and in some situations it makes possible to ablate the holes with a higher aspect ratio. While ablating the grooves, the water spray allows using the high fluences without the generation of the self-organized structures.

  10. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  11. The effect of ethanol infusion on the size of the ablated lesion in radiofrequency thermal ablation: A pilot study

    International Nuclear Information System (INIS)

    Kim, Young Sun; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Kim, Yong Soo; Joo, Kyoung Bin

    2001-01-01

    To assess the effect of ethanol infusion on the size of ablated lesion during radiofrequency (RF) thermal ablation. We performed an ex vivo experimental study using a total of 15 pig livers. Three groups were designed: 1)normal control (n=10), 2) saline infusion (n=10) 3) ethanol infusion (n=10). Two radiofrequency ablations were done using a 50 watt RF generator and a 15 guage expandable elections with four prongs in each liver. During ablation for 8 minutes, continuous infusion of fluid at a rate of 0.5 ml/min through the side arm of electrode was performed. We checked the frequency of the 'impeded-out' phenomenon due to abrupt increase of impedance during ablation. Size of ablated lesion was measured according to length, width, height, and subsequently volume after the ablations. The sizes of the ablated lesions were compared between the three groups. 'Impeded-out' phenomenon during ablation was noted 4 times in control group, although that never happened in saline or ethanol infusion groups. There were significant differences in the volumes of ablated lesions between control group (10.62 ± 1.45 cm 3 ) and saline infusion group (15.33 ± 2.47 cm 3 ), and saline infusion group and ethanol infusion group (18.78 ± 3.58 cm 3 ) (p<0.05). Fluid infusion during radiofrequency thermal ablation decrease a chance of charming and increase the volume of the ablated lesion. Ethanol infusion during ablation may induce larger volume of ablated lesion than saline infusion.

  12. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    Science.gov (United States)

    Tecimer, M.; Canter, M.; Efimov, S.; Gover, A.; Sokolowski, J.

    2001-12-01

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 π mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic insulator rings between collector stages and the associated brazing in the manufacturing process. Instead, each copper plate is supported by insulating posts and freely displaceable within the vacuum chamber. We report on the simulation results of the beam transport and recovery systems and on the mechanical aspects of the multistage collector design.

  13. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    Energy Technology Data Exchange (ETDEWEB)

    Tecimer, M. E-mail: tecimer@post.tau.ac.il; Canter, M.; Efimov, S.; Gover, A.; Sokolowski, J

    2001-12-21

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 {pi} mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic insulator rings between collector stages and the associated brazing in the manufacturing process. Instead, each copper plate is supported by insulating posts and freely displaceable within the vacuum chamber. We report on the simulation results of the beam transport and recovery systems and on the mechanical aspects of the multistage collector design.

  14. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    International Nuclear Information System (INIS)

    Tecimer, M.; Canter, M.; Efimov, S.; Gover, A.; Sokolowski, J.

    2001-01-01

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 π mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic insulator rings between collector stages and the associated brazing in the manufacturing process. Instead, each copper plate is supported by insulating posts and freely displaceable within the vacuum chamber. We report on the simulation results of the beam transport and recovery systems and on the mechanical aspects of the multistage collector design

  15. HF electronic tubes. Technologies, grid tubes and klystrons

    International Nuclear Information System (INIS)

    Lemoine, Th.

    2009-01-01

    This article gives an overview of the basic technologies of electronic tubes: cathodes, electronic optics, vacuum and high voltage. Then the grid tubes, klystrons and inductive output tubes (IOT) are introduced. Content: 1 - context and classification; 2 - electronic tube technologies: cathodes, electronic optics, magnetic confinement (linear tubes), periodic permanent magnet (PPM) focussing, collectors, depressed collectors; 3 - vacuum technologies: vacuum quality, surface effects and interaction with electrostatic and RF fields, secondary emission, multipactor effect, thermo-electronic emission; 4 - grid tubes: operation of a triode, tetrodes, dynamic operation and classes of use, 'common grid' and 'common cathode' operation, ranges of utilisation and limitations, operation of a tetrode on unadjusted load, lifetime of a tetrode, uses of grid tubes; 5 - klystrons: operation, impact of space charge, multi-cavity klystrons, interaction efficiency, extended interaction klystrons, relation between interaction efficiency, perveance and efficiency, ranges of utilization and power limitations, multi-beam klystrons and sheet beam klystrons, operation on unadjusted load, klystron band pass and lifetime, uses; 6 - IOT: principle of operation, ranges of utilisation and limitations, interaction efficiency and depressed collector IOT, IOT lifetime and uses. (J.S.)

  16. Effect of the work function and emission of the collector on the parameters of thermionic converters (TC)

    International Nuclear Information System (INIS)

    Kaibyshev, V.Z.

    1986-01-01

    In the optimal, relative to the temperature of the collector, state of modern thermionic converters (TC) the emission of the electrons from it has a substantial effect on the voltage drop in the gap. This paper preents an analysis of the boundary conditions at the collector of the TC. Calculations are presented which show that with a constant current the plasma parameters at the boundary with the collector are virtually independent of the emission from the collector right up to vanishing of the potential jump. The optimal regime with respect to temperatuer and work function of the collector is examined. The collector with a nonuniform work function is discussed

  17. A high-current racetrack induction accelerator

    International Nuclear Information System (INIS)

    Mondelli, A.; Roberson, C.W.

    1983-01-01

    In this paper, the energy and system scaling laws of the Racetrack Induction Accelerator are determined and its operating principles are discussed. This device is a cyclic accelerator that is capable of multi-kiloamp operation. Long pulse induction linac technology is used to obtain short acceleration times. The accelerator consists of a long-pulse linear induction module and a racetrack beam transport system. For detailed studies of the particle dynamics in a racetrack, a numerical model is required to integrate the fully-relativistic single-particle equations of motion in an externally applied magnetic field. The numerical model is a compromise between the need for a large rotational transform and the need for a reasonable volume within the separatrix

  18. Performance Analysis of Fractional-Order PID Controller for a Parabolic Distributed Solar Collector

    KAUST Repository

    Elmetennani, Shahrazed; N'Doye, Ibrahima; Salama, Khaled N.; Laleg-Kirati, Taous-Meriem

    2017-01-01

    This paper studies the performance of a fractional-order proportional integral derivative (FOPID) controller designed for parabolic distributed solar collectors. The control problem addressed in concentrated solar collectors aims at forcing

  19. Ablation of Solid Hydrogen in a Plasma

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment.......Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment....

  20. The capture of submicron particles by collector plates - Wind-tunnel investigations

    International Nuclear Information System (INIS)

    Gauthier, Daniel

    1971-01-01

    The deposition of submicron particles on collector plates parallel to the flow was studied experimentally in a wind-tunnel. The validity of a theoretical model based on brownian diffusion was investigated and its Inadequacies tested. The aerosol sample consisted of uranine particles (mean geometrical radius: about 0. 1 μm). The average flow speeds varied from 1 to 10 m/s and the length of the collector plates between 1 and 10 cm. Results showed that capture was mainly due to diffusion and was in good agreement with the theoretical model; however a noticeable deposit of particles on the front part of the collector edge was observed. Sedimentation was insignificant in almost all the cases. (author) [fr