WorldWideScience

Sample records for ablation laser wavelength

  1. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    Science.gov (United States)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  2. Laser wavelength dependent properties of YBa2Cu3O7-δ thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Koren, G.; Gupta, A.; Baseman, R.J.; Lutwyche, M.I.; Laibowitz, R.B.

    1989-01-01

    YBa 2 Cu 3 O 7-δ thin films were deposited onto (100) SrTiO 3 substrates using 1064, 532, 355, 248, and 193 nm laser ablation. Transport measurements show lower normal-state resistivities and higher critical currents in films deposited by the shorter wavelength lasers. The surface morphology of the films was rough with large particulates when the 1064 nm laser was used whereas much smoother surfaces with fewer and smaller particulates were obtained with the UV lasers. It is suggested that the better film quality obtained when the UV lasers are used is due to a small absorption depth of the UV photons in the ceramic target and to higher absorption by the ablated fragments. This leads to smaller ablated species and further fragmentation in the hotter plume and, therefore, to smoother and denser films

  3. Study on the ablation threshold induced by pulsed lasers at different wavelengths

    International Nuclear Information System (INIS)

    Torrisi, L.; Borrielli, A.; Margarone, D.

    2007-01-01

    A study of the effects induced by pulsed laser ablation on different materials as a function of the laser wavelength is presented. In particular the ablation at low laser fluence, of the order of 10 8 -10 10 W/cm 2 with ns pulse width, is investigated experimentally on different metals, semiconductors and polymers. Two theoretical models, explain the experimental results about the fluence threshold value measurements, as depending on the laser wavelength are discussed. The photothermal process is valid for the estimation of the threshold fluence for IR and visible radiation, both inducing thermal heating in metals and semiconductors through the photon-free electron energy transfer. This model is not valid for polymers. The photochemical process is valid for the estimation of the threshold fluence for UV radiation, which photon energy is higher with respect to the chemical binding energy. This radiation induces chemical bond breaking in insulators and scission and cross linking effects can be produced. This last model is not valid for metals and semiconductors

  4. Wavelength dependence of the single pulse femtosecond laser ablation threshold of indium phosphide in the 400-2050 nm range

    International Nuclear Information System (INIS)

    Borowiec, A.; Tiedje, H.F.; Haugen, H.K.

    2005-01-01

    We present single pulse femtosecond laser ablation threshold measurements of InP obtained by optical, scanning electron, and atomic force microscopy. The experiments were conducted with laser pulses 65-175 fs in duration, in the wavelength range from 400 to 2050 nm, covering the photon energy region above and below the bandgap of InP. The ablation thresholds determined from depth and volume measurements varied from 87 mJ/cm 2 at 400 nm to 250 mJ/cm 2 at 2050 nm. In addition, crater depths and volumes were measured over a range of laser fluences extending well above the ablation threshold

  5. Experimental study of ablation pressures and target velocities obtained in 0. 26. mu. m wavelength laser experiments in planar geometry

    Energy Technology Data Exchange (ETDEWEB)

    Fabbro, R.; Faral, B.; Virmont, J.; Cottet, F.; Romain, J.P.; Pepin, H.

    1985-11-01

    In 0.26 ..mu..m wavelength laser experiments that were performed in planar geometry with irradiances between 10/sup 13/ and 10/sup 15/ W/cm/sup 2/, the ablation pressure and the target velocity have been measured using a shock-velocity measurement and the double foil technique, respectively. The conditions are discussed that must be satisfied if the double-foil technique is to give an accurate measurement of the velocity of the dense part of the target. The rocket model has also been improved using a time-dependent applied pressure pulse, in order to accurately describe the relation between ablation pressure, target velocity, and ablated fraction. Pressures up to 50 Mbar have been easily generated since lateral energy transport is rather low with a 0.26 ..mu..m wavelength laser.

  6. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range.

    Science.gov (United States)

    Sola, Daniel; Peña, Jose I

    2013-11-19

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated.

  7. Growth of GaAs “nano ice cream cones” by dual wavelength pulsed laser ablation

    Science.gov (United States)

    Schamp, C. T.; Jesser, W. A.; Shivaram, B. S.

    2007-05-01

    Harmonic generation crystals inherently offer the possibility of using multiple wavelengths of light in a single laser pulse. In the present experiment, the fundamental (1064 nm) and second harmonic (532 nm) wavelengths from an Nd:YAG laser are focused together on GaAs and GaSb targets for ablation. Incident energy densities up to about 45 J/cm 2 at 10 Hz with substrate temperatures between 25 and 600 °C for durations of about 60 s have been used in an ambient gas pressure of about 10 -6 Torr. The ablated material was collected on electron-transparent amorphous carbon films for TEM analysis. Apart from a high density of isolated nanocrystals, the most common morphology observed consists of a crystalline GaAs cone-like structure in contact with a sphere of liquid Ga, resembling an "ice cream cone", typically 50-100 nm in length. For all of the heterostuctures of this type, the liquid/solid/vacuum triple junction is found to correspond to the widest point on the cone. These heterostructures likely form by preferential evaporation of As from molten GaAs drops ablated from the target. The resulting morphology minimizes the interfacial and surface energies of the liquid Ga and solid GaAs.

  8. Investigations on pulsed laser ablation of Sn at 1064 nm wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L [Dipartimento di Fisica, Universita di Messina, Ctr. Papardo 31, 98166 S. Agata, Messina (Italy); Margarone, D [Dipartimento di Fisica, Universita di Messina, Ctr. Papardo 31, 98166 S. Agata, Messina (Italy)

    2006-11-01

    A Nd:Yag laser operating at 1064 nm, 900 mJ maximum pulse energy and 9 ns pulse duration, is employed to irradiate solid tin targets placed in a high vacuum (10{sup -7} mbar). The Sn plasma produced on the target surface is investigated with different analysis techniques, such as ion collectors, mass quadrupole spectrometry, electron microscopy and surface profilers. Measurements of ablation threshold, ablation yield, atomic and molecular emission, ion and neutral emission are reported. A time-of-flight technique is employed to calculate the velocity and the kinetic energy of the ion emission from the plasma. The angular distributions of the ejected ion species and of their kinetic energy are strongly peaked along the normal to the target surface. A valuation of the electric field generated inside the non-equilibrium plasma is given and discussed.

  9. Coagulation and ablation of biological soft tissue by quantum cascade laser with peak wavelength of 5.7 μm

    Directory of Open Access Journals (Sweden)

    Keisuke Hashimura

    2014-05-01

    Full Text Available Molecules such as water, proteins and lipids that are contained in biological tissue absorb mid-infrared (MIR light, which allows such light to be used in laser surgical treatment. Esters, amides and water exhibit strong absorption bands in the 5–7 μm wavelength range, but at present there are no lasers in clinical use that can emit in this range. Therefore, the present study focused on the quantum cascade laser (QCL, which is a new type of semiconductor laser that can emit at MIR wavelengths and has recently achieved high output power. A high-power QCL with a peak wavelength of 5.7 μm was evaluated for use as a laser scalpel for ablating biological soft tissue. The interaction of the laser beam with chicken breast tissue was compared to a conventional CO2 laser, based on surface and cross-sectional images. The QCL was found to have sufficient power to ablate soft tissue, and its coagulation, carbonization and ablation effects were similar to those for the CO2 laser. The QCL also induced comparable photothermal effects because it acted as a pseudo-continuous wave laser due to its low peak power. A QCL can therefore be used as an effective laser scalpel, and also offers the possibility of less invasive treatment by targeting specific absorption bands in the MIR region.

  10. Investigation of the wavelength dependence of laser stratigraphy on Cu and Ni coatings using LIBS compared to a pure thermal ablation model

    Science.gov (United States)

    Paulis, Evgeniya; Pacher, Ulrich; Weimerskirch, Morris J. J.; Nagy, Tristan O.; Kautek, Wolfgang

    2017-12-01

    In this study, galvanic coatings of Cu and Ni, typically applied in industrial standard routines, were investigated. Ablation experiments were carried out using the first two harmonic wavelengths of a pulsed Nd:YAG laser and the resulting plasma spectra were analysed using a linear Pearson correlation method. For both wavelengths the absorption/ablation behaviour as well as laser-induced breakdown spectroscopy (LIBS) depth profiles were studied varying laser fluences between 4.3-17.2 J/cm^2 at 532 nm and 2.9-11.7 J/cm^2 at 1064 nm. The LIBS-stratigrams were compared with energy-dispersive X-ray spectroscopy of cross-sections. The ablation rates were calculated and compared to theoretical values originating from a thermal ablation model. Generally, higher ablation rates were obtained with 532 nm light for both materials. The light-plasma interaction is suggested as possible cause of the lower ablation rates in the infrared regime. Neither clear evidence of the pure thermal ablation, nor correlation with optical properties of investigated materials was obtained.

  11. Laser ablation principles and applications

    CERN Document Server

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  12. Ultraviolet excimer laser ablation: the effect of wavelength and repetition rate on in vivo guinea pig skin

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, J.; Kibbi, A.G.; Farinelli, W.; Boll, J.; Tan, O.T.

    1987-06-01

    Multiple dermatologic conditions that are currently treated with traditional cold-knife surgery are amenable to laser therapy. The ideal surgical treatment would be precise and total removal of abnormal tissue with maximal sparing of remaining structures. The ultraviolet (UV) excimer laser is capable of such precise tissue removal due to the penetration depth of 193 nm and 248 nm irradiation of 1 micron per pulse. This type of ablative tissue removal requires a high repetition rate for efficient lesional destruction. Excimer laser radiation at 193 nm is capable of high repetition rates, which are necessary while 248 nm radiation causes increasing nonspecific thermal injury as the laser repetition rate is increased.

  13. Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas

    International Nuclear Information System (INIS)

    Ma Qianli; Motto-Ros, Vincent; Laye, Fabrice; Yu Jin; Lei Wenqi; Bai Xueshi; Zheng Lijuan; Zeng Heping

    2012-01-01

    Laser-induced plasma from an aluminum target in one-atmosphere argon background has been investigated with ablation using nanosecond ultraviolet (UV: 355 nm) or infrared (IR: 1064 nm) laser pulses. Time- and space-resolved emission spectroscopy was used as a diagnostics tool to have access to the plasma parameters during its propagation into the background, such as optical emission intensity, electron density, and temperature. The specific feature of nanosecond laser ablation is that the pulse duration is significantly longer than the initiation time of the plasma. Laser-supported absorption wave due to post-ablation absorption of the laser radiation by the vapor plume and the shocked background gas plays a dominant role in the propagation and subsequently the behavior of the plasma. We demonstrate that the difference in absorption rate between UV and IR radiations leads to different propagation behaviors of the plasma produced with these radiations. The consequence is that higher electron density and temperature are observed for UV ablation. While for IR ablation, the plasma is found with lower electron density and temperature in a larger and more homogenous axial profile. The difference is also that for UV ablation, the background gas is principally evacuated by the expansion of the vapor plume as predicted by the standard piston model. While for IR ablation, the background gas is effectively mixed to the ejected vapor at least hundreds of nanoseconds after the initiation of the plasma. Our observations suggest a description by laser-supported combustion wave for the propagation of the plasma produced by UV laser, while that by laser-supported detonation wave for the propagation of the plasma produced by IR laser. Finally, practical consequences of specific expansion behavior for UV or IR ablation are discussed in terms of analytical performance promised by corresponding plasmas for application with laser-induced breakdown spectroscopy.

  14. Evaluation of a Low Energy, Low Density, Non-Ablative Fractional 1927 nm Wavelength Laser for Facial Skin Resurfacing.

    Science.gov (United States)

    Brauer, Jeremy A; Alabdulrazzaq, Hamad; Bae, Yoon-Soo Cindy; Geronemus, Roy G

    2015-11-01

    We investigated the safety, tolerability and efficacy of a low energy low density, non-ablative fractional 1,927-nm laser in the treatment of facial photodamage, melasma, and post inflammatory hyperpigmentation. Prospective non-randomized trial. Single center, private practice with a dedicated research department. Subjects with clinically diagnosed facial photodamage, melasma, or post inflammatory hyperpigmentation. Subjects received four to six treatments at 14-day intervals (+/- 3 days) with a low energy low density non-ablative fractional 1,927-nm laser (Solta Hayward, CA) with an energy level of 5 mJ, and density coverage of either 5%, 7.5%, or 10%, with a total of up to 8 passes. Blinded assessment of clinical photos for overall improvement at one and three months post final treatment. Investigator improvement scores, and subject pain and satisfaction scores for overall improvement were recorded as well. We enrolled 23 subjects, average age 45.0 years (range, 25-64 years), 22 with Fitzpatrick Skin Types I-IV and 1 with Type VI, with facial photodamage, melasma, or post inflammatory hyperpigmentation. Approximately 55% of subjects reported marked to very significant improvement at one and three months post final treatment. Blinded assessment of photography of 20 subjects revealed an average of moderate improvement at one-month follow up and mild to moderate improvement at three months. Average subject pain score was 3.4/10 during treatment. Favorable outcomes were demonstrated using the low energy low density, non-ablative fractional 1,927-nm laser in facial resurfacing for photodamage, melasma, and post inflammatory hyperpigmentation. Results were maintained at the 3-month follow up, as demonstrated by investigator and subject assessments, as well as blinded evaluations by three independent dermatologists utilizing photographs obtained from a standardized facial imaging device.

  15. Wavelength sweepable laser source

    DEFF Research Database (Denmark)

    2014-01-01

    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  16. Femtosecond laser ablation of dentin

    International Nuclear Information System (INIS)

    Alves, S; Vilar, R; Oliveira, V

    2012-01-01

    The surface morphology, structure and composition of human dentin treated with a femtosecond infrared laser (pulse duration 500 fs, wavelength 1030 nm, fluences ranging from 1 to 3 J cm -2 ) was studied by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The average dentin ablation threshold under these conditions was 0.6 ± 0.2 J cm -2 and the ablation rate achieved in the range 1 to 2 µm/pulse for an average fluence of 3 J cm -2 . The ablation surfaces present an irregular and rugged appearance, with no significant traces of melting, deformation, cracking or carbonization. The smear layer was entirely removed by the laser treatment. For fluences only slightly higher than the ablation threshold the morphology of the laser-treated surfaces was very similar to the dentin fracture surfaces and the dentinal tubules remained open. For higher fluences, the surface was more porous and the dentin structure was partially concealed by ablation debris and a few resolidified droplets. Independently on the laser processing parameters and laser processing method used no sub-superficial cracking was observed. The dentin constitution and chemical composition was not significantly modified by the laser treatment in the processing parameter range used. In particular, the organic matter is not preferentially removed from the surface and no traces of high temperature phosphates, such as the β-tricalcium phosphate, were observed. The achieved results are compatible with an electrostatic ablation mechanism. In conclusion, the high beam quality and short pulse duration of the ultrafast laser used should allow the accurate preparation of cavities, with negligible damage of the underlying material. (paper)

  17. Nd:YAG laser double wavelength ablation of pollution encrustation on marble and bonding glues on duplicated painting canvas

    Science.gov (United States)

    Batishche, Sergei; Englezis, Apostolis; Gorovets, Tatiana; Kouzmouk, Andrei; Pilipenka, Uladzimir; Pouli, Paraskevi; Tatur, Hennady; Totou, Garyfallia; Ukhau, Viktar

    2005-07-01

    In the present study, a newly developed one-beam IR-UV laser cleaning system is presented. This system may be used for different applications in diverse fields, such as outdoors stonework conservation and canvas paintings restoration. The simultaneous use of the fundamental radiation of a Q-switched Nd:YAG laser at 1064 nm and its third harmonic at 355 nm was found appropriate to clean pollution crusts, while ensuring that no discoloration ("yellowing") would occur. The optimum ratio of UV to IR wavelengths in the final cleaning beam was investigated. In parallel, the same system was tested in diverse applications, such as the removal of bonding glues from duplicated canvases. The optimum laser parameters were investigated both on technical samples as well as on original paintings.

  18. Power Laser Ablation Symposia

    CERN Document Server

    Phipps, Claude

    2007-01-01

    Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficu...

  19. Parametric investigations on the influence of nano-second Nd{sup 3+}:YAG laser wavelength and fluence in synthesizing NiTi nano-particles using liquid assisted laser ablation technique

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Nandini, E-mail: nandinipatra2007@gmail.com [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Akash, K.; Shiva, S.; Gagrani, Rohit; Rao, H. Sai Pranesh; Anirudh, V.R. [Mechatronics and Instrumentation lab, Discipline of Mechanical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Palani, I.A., E-mail: palaniia@iiti.ac.in [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Mechatronics and Instrumentation lab, Discipline of Mechanical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Singh, Vipul [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India)

    2016-03-15

    Graphical abstract: - Highlights: • Influence of laser wavelengths (1064 nm, 532 nm and 355 nm) and fluences (40 J/cm{sup 2}, 30 J/cm{sup 2} and 20 J/cm{sup 2}) on generation of underwater laser ablated NiTi nanoparticles. • Particle size range of 140–10 nm was generated at varying laser wavelengths. • The alloy formation of NiTi nanoparticles was confirmed from XRD and TEM analysis where the crystalline peaks of NiTi, Ni{sub 4}Ti{sub 3} and Ni{sub 3}Ti were observed from XRD. • Formation efficiency of NiTi nanoparticles was maximum at 1064 nm wavelength and 40 J/cm{sup 2} fluence. - Abstract: This paper investigates the influence of laser wavelengths and laser fluences on the size and quality of the NiTi nanoparticles, generated through underwater solid state Nd:YAG laser ablation technique. The experiments were performed on Ni55%–Ti45% sheet to synthesize NiTi nano-particles at three different wavelengths (1064 nm, 532 nm and 355 nm) with varying laser fluences ranging from 20 to 40 J/cm{sup 2}. Synthesized NiTi nano-particles were characterized through SEM, DLS, XRD, FT-IR, TEM and UV–vis spectrum. It was observed that, maximum particle size of 140 nm and minimum particle size of 10 nm were generated at varying laser wavelengths. The crystallinity and lattice spacing of NiTi alloy nanoparticles were confirmed from the XRD analysis and TEM images, respectively.

  20. Laser Ablation of Biological Tissue Using Pulsed CO2 Laser

    International Nuclear Information System (INIS)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-01-01

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO 2 laser (wavelength: 10.6 μm; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  1. Field enhancement induced laser ablation

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob

    Sub-diffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures....... The accompanying field enhancement substantially lowers the ablation threshold of the polymer film and thus creates local ablation spots and corresponding topographic modifications of the polymer film. Such modifications are quantified straightforwardly via scanning electron and atomic force microscopy. Thickness...

  2. Influence of wavelength and pulse duration on peripheral thermal and mechanical damage to dentin and alveolar bone during IR laser ablation

    Science.gov (United States)

    Lee, C.; Ragadio, Jerome N.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the peripheral thermal damage produced during the laser ablation of alveolar bone and dentin for clinically relevant IR laser systems. Previous studies have demonstrated that a char layer produced around the laser incision site can inhibit the wound healing process. Moreover, in the case of dentin, a char layer is unsightly and is difficult to bond to with restorative materials. Thermal damage was assessed using polarized light microscopy for laser pulse widths from 500 ns to 300 microseconds at 2.94 micrometer and 9.6 micrometer. Water- cooling was not employed to alleviate thermal damage during the laser irradiation. At 9.6 micrometer, minimal thermal damage was observed for pulse widths on the order of the thermal relaxation time of the deposited laser energy in the tissue, 3 - 4 microseconds, and peripheral thermal damage increased with increasing pulse duration. At 2.94 micrometer, thermal damage was minimal for the Q-switched (500 ns) laser system. This study shows that 9.6 micrometer CO2 laser pulses with pulse widths of 5 - 10 microseconds are well suited for the efficient ablation of dentin and bone with minimal peripheral damage. This work was supported by NIH/NIDCR R29DE12091.

  3. Cartilage ablation studies using mid-IR free electron laser

    Science.gov (United States)

    Youn, Jong-In; Peavy, George M.; Venugopalan, Vasan

    2005-04-01

    The ablation rate of articular cartilage and fibrocartilage (meniscus), were quantified to examine wavelength and tissue-composition dependence of ablation efficiency for selected mid-infrared wavelengths. The wavelengths tested were 2.9 um (water dominant absorption), 6.1 (protein and water absorption) and 6.45 um (protein dominant absorption) generated by the Free Electron Laser (FEL) at Vanderbilt University. The measurement of tissue mass removal using a microbalance during laser ablation was conducted to determine the ablation rates of cartilage. The technique can be accurate over methods such as profilometer and histology sectioning where tissue surface and the crater morphology may be affected by tissue processing. The ablation efficiency was found to be dependent upon the wavelength. Both articular cartilage and meniscus (fibrocartilage) ablations at 6.1 um were more efficient than those at the other wavelengths evaluated. We observed the lowest ablation efficiency of both types of cartilage with the 6.45 um wavelength, possibly due to the reduction in water absorption at this wavelength in comparison to the other wavelengths that were evaluated.

  4. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    Science.gov (United States)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  5. Picosecond laser ablation of porcine sclera

    Science.gov (United States)

    Góra, Wojciech S.; Harvey, Eleanor M.; Dhillon, Baljean; Parson, Simon H.; Maier, Robert R. J.; Hand, Duncan P.; Shephard, Jonathan D.

    2013-03-01

    Lasers have been shown to be successful in certain medical procedures and they have been identified as potentially making a major contribution to the development of minimally invasive procedures. However, the uptake is not as widespread and there is scope for many other applications where laser devices may offer a significant advantage in comparison to the traditional surgical tools. The purpose of this research is to assess the potential of using a picosecond laser for minimally invasive laser sclerostomy. Experiments were carried out on porcine scleral samples due to the comparable properties to human tissue. Samples were prepared with a 5mm diameter trephine and were stored in lactated Ringer's solution. After laser machining, the samples were fixed in 3% glutaraldehyde, then dried and investigated under SEM. The laser used in the experiments is an industrial picosecond TRUMPF TruMicro laser operating at a wavelength of 1030nm, pulse length of 6ps, repetition rate of 1 kHz and a focused spot diameter of 30μm. The laser beam was scanned across the samples with the use of a galvanometer scan head and various ablation patterns were investigated. Processing parameters (pulse energy, spot and line separation) which allow for the most efficient laser ablation of scleral tissue without introducing any collateral damage were investigated. The potential to create various shapes, such as linear incisions, square cavities and circular cavities was demonstrated.

  6. Wavelength dependent delay in the onset of FEL tissue ablation

    International Nuclear Information System (INIS)

    Tribble, J.A.; Edwards, G.S.; Lamb, J.A.

    1995-01-01

    We are investigating the wavelength dependence of the onset of laser tissue ablation in the IR Visible and UV ranges. Toward this end, we have made simultaneous measurements of the ejected material (using a HeNe probe beam tangential to the front surface) and the residual stress transient in the tissue (using traditional piezoelectric detection behind the thin samples). For the IR studies we have used the Vanderbilt FEL and for the UV and Vis range we have used a Q-switched ND:Yag with frequency doubling and quadrupling. To satisfy the conditions of the near field limit for the detection of the stress transient, the duration of the IR FEL macropulse must be as short as possible. We have obtained macropulses as short as 100 ns using Pockels Cell technology. The recording of the signals from both the photodiode monitoring the HeNe probe beam and the acoustic detector are synchronized with the arrival of the 100 ns macropulse. With subablative intensities, the resulting stress transient is bipolar with its positive peak separated from its negative peak by 100 ns in agreement with theory. Of particular interest is the comparison of ablative results using 3 μm and 6.45 μm pulses. Both the stress transient and the ejection of material suffer a greater delay (with respect to the arrival of the 100 ns pulse) when the FEL is tuned to 3 μm as compared to 6.45 μm. A comparison of IR Vis and UV data will be discussed in terms of microscopic mechanisms governing the laser ablation process

  7. Laser ablation studies of Deposited Silver Colloids Active in SERS

    International Nuclear Information System (INIS)

    La Porte, R.T.; Moreno, D.S.; Striano, M.C.; Munnoz, M.M.; Garcia-Ramos, J.V.; Cortes, S.S.; Koudoumas, E.

    2002-01-01

    Laser ablation of deposited silver colloids, active in SERS, is carried out at three different laser wavelengths (KrF, XeCl and Nd:YAG at λ = 248, 308 and 532 nm respectively). Emission form excited neutral Ag and Na atoms, present in the ablation plume, is detected with spectral and temporal resolution. The expansion velocity of Ag in the plume is estimated in ∼1x104m s-1, Low-fluence laser ablation of the colloids yields ionized species that are analyzed by time-of-flight mass spectroscopy. Na+ and Agn+(n≤3) are observed. Composition of the mass spectra and widths of the mass peaks are found to be dependent on laser wavelength, suggesting that the dominant ablation mechanisms are different at the different wavelenghts.

  8. Ultraviolet-laser ablation of skin

    Energy Technology Data Exchange (ETDEWEB)

    Lane, R.J.; Linsker, R.; Wynne, J.J.; Torres, A.; Geronemus, R.G.

    1985-05-01

    The authors report on the use of pulsed ultraviolet-laser irradiation at 193 nm from an argon-fluoride laser and at 248 nm from a krypton-fluoride laser to ablate skin. In vitro, both wavelengths performed comparably, removing tissue precisely and cleanly, and leaving minimal thermal damage to the surrounding tissue. In vivo, the 193-nm laser radiation failed to remove tissue after bleeding began. The 248-nm radiation, however, continued to remove tissue despite bleeding and left a clean incision with only minimal thermal damage. The krypton-fluoride excimer laser beam at 248 nm, which should be deliverable through a quartz optical fiber, has great potential as a surgical instrument.

  9. Review of short wavelength lasers

    International Nuclear Information System (INIS)

    Hagelstein, P.L.

    1985-01-01

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references

  10. Review of short wavelength lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hagelstein, P.L.

    1985-03-18

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references.

  11. Femtosecond laser ablation and cutting technology on PMP foam

    International Nuclear Information System (INIS)

    Song Chengwei; Li Guo; Huang Yanhua; Du Kai; Yang Liang

    2013-01-01

    The femtosecond laser ablation results of PMP foam (density of 90 mg/cm 3 ) were analyzed. The laser pulses used for the study were 800 nm in wavelength, 50 fs in pulse duration and the repetition rate was 1000 Hz. The ablation threshold of the foam was 0.91 J/cm 2 when it was shot by 100 laser pulses. The impacts of laser power, the pulse number and the numerical aperture of the focusing objective on the crater diameter were obtained. In the same femtosecond laser machining system, comparing with the ablation shape into copper foil, the important factor causing the irregular shape of the ablation region was verified that there were many different sizes and randomly distributed pores inside PMP foam. The carbonation phenomenon was observed on the edge of the ablated areas when the sample was ablated using high laser power or/and more laser pulses. Thermal effect was considered to be the causes of the carbonation. A new method based on coupling laser beam to cut thickness greater than 1 mm film-foam with femtosecond laser was proposed. Using this method, the femtosecond laser cutting thickness was greater than 1.5 mm, the angle between the cutting side wall and the laser beam optical axis might be less than 5°, and the cutting surface was clean. (authors)

  12. Femtosecond laser ablation of enamel

    Science.gov (United States)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  13. Sub-wavelength plasmon laser

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.

    2016-04-19

    A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.

  14. Laser ablation of lysozyme with UV, visible and infrared femto- and nanosecond pulses

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Matei, Andreea

    Lysozyme is an interesting molecule for laser ablation of organic materials, because the ablation has been comprehensively studied, it is a medium heavy molecule with a mass of 14305 Da, which can be detected by standard techniques, and because it is used as a bactericidal protein in the food...... industry. Lysozyme molecules do not absorb energy for wavelengths above 310 nm, but nevertheless there is a strong mass loss by ablation for laser irradiation in the visible regime. The total ablation yield of lysozyme at 355 nm and at 2 J/cm2 is about 155 µg/pulse, possibly one of the highest ablation...... the ablation process for different wavelengths and time duration. Measurements for 6-7-ns laser ablation were carried out at DTU on Risø Campus, while measurements with pulses of 300 fs were carried out at the University of Naples in a similar setup. For all wavelengths except at nanosecond laser pulses at 355...

  15. Fractional ablative laser skin resurfacing: a review.

    Science.gov (United States)

    Tajirian, Ani L; Tarijian, Ani L; Goldberg, David J

    2011-12-01

    Ablative laser technology has been in use for many years now. The large side effect profile however has limited its use. Fractional ablative technology is a newer development which combines a lesser side effect profile along with similar efficacy. In this paper we review fractional ablative laser skin resurfacing.

  16. Ablation from metals induced by visible and UV laser irradiation

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Schou, Jørgen; Thestrup Nielsen, Birgitte

    1996-01-01

    The deposition rate of laser-ablated silver has been determined for fluences between 0.5 and 15 J/cm2 at the wavelengths 532 and 355 nm for a beam spot area of around 0.01 cm2. The ablated metal was collected on a quartz crystal microbalance. The rate at 5 J/cm2 was about 4 × 1013 Ag/cm2 per pulse...

  17. Parametric study on femtosecond laser pulse ablation of Au films

    International Nuclear Information System (INIS)

    Ni Xiaochang; Wang Chingyue; Yang Li; Li Jianping; Chai Lu; Jia Wei; Zhang Ruobing; Zhang Zhigang

    2006-01-01

    Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N x φ th (N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research

  18. Absorption Enhanced Liquid Ablation with TEA CO2 Laser

    National Research Council Canada - National Science Library

    Sterling, Enrique

    2004-01-01

    ... that strongly absorbs radiation in the 8-11 m wavelength interval. A TEA CO2 laser (λ = 10.6 m), 300 ns pulse width and 8 J pulse energy, was used for ablation of water diluted NaBF4 contained in a conical aluminum nozzle...

  19. Advances in laser ablation of materials

    International Nuclear Information System (INIS)

    Singh, R.K.; Lowndes, D.H.; Chrisey, D.B.; Fogarassy, E.; Narayan, J.

    1998-01-01

    The symposium, Advances in Laser Ablation of Materials, was held at the 1998 MRS Spring Meeting in San Francisco, California. The papers in this symposium illustrate the advances in pulsed laser ablation for a wide variety of applications involving semiconductors, superconductors, metals, ceramics, and polymers. In particular, advances in the deposition of oxides and related materials are featured. Papers dealing with both fundamentals and the applications of laser ablation are presented. Topical areas include: fundamentals of ablation and growth; in situ diagnostics and nanoscale synthesis advances in laser ablation techniques; laser surface processing; pulsed laser deposition of ferroelectric, magnetic, superconducting and optoelectronic thin films; and pulsed laser deposition of carbon-based and polymeric materials. Sixty papers have been processed separately for inclusion on the data base

  20. Choice of the laser wavelength for a herpetic keratitis treatment

    Science.gov (United States)

    Razhev, Alexander M.; Bagayev, Sergei N.; Chernikh, Valery V.; Kargapoltsev, Evgeny S.; Trunov, Alexander; Zhupikov, Andrey A.

    2002-06-01

    For the first time the effect of the UV laser radiation to human eye cornea with herpetic keratitis was experimentally investigated. In experiments the UV radiation of ArF (193 nm), KrCl (223 nm), KrF (248 nm) excimer lasers were used. Optimal laser radiation parameters for the treatment of the herpetic keratitis were determined. The immuno-biochemical investigations were carried out and the results of clinical trials are presented. The maximum ablation rate was obtained for the 248 nm radiation wavelength. The process of healing was successful but in some cases the haze on the surface of the cornea was observed. When used the 193 nm radiation wavelength the corneal surface was clear without any hazes but the epithelization process was slower than for 248 nm wavelength and in some cases the relapse was occurred. The best results for herpetic keratitis treatment have been achieved by utilizing the 223 nm radiation wavelength of the KrCl excimer laser. The use of the 223 nm radiation wavelength allows treating the herpetic keratitis with low traumatic process of ablation and provides high quality of corneal surface.

  1. Pulse laser ablation at water-air interface

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro

    2010-06-01

    We studied a new pulse laser ablation phenomenon on a liquid surface layer, which is caused by the difference between the refractive indices of the two materials involved. The present study was motivated by our previous study, which showed that laser ablation can occur at the interface between a transparent material and a gas or liquid medium when the laser pulse is focused through the transparent material. In this case, the ablation threshold fluence is reduced remarkably. In the present study, experiments were conducted in water and air in order to confirm this phenomenon for a combination of two fluid media with different refractive indices. This phenomenon was observed in detail by pulse laser shadowgraphy. A high-resolution film was used to record the phenomenon with a Nd:YAG pulse laser with 10-ns duration as a light source. The laser ablation phenomenon on the liquid surface layer caused by a focused Nd:YAG laser pulse with 1064-nm wavelength was found to be followed by the splashing of the liquid surface, inducing a liquid jet with many ligaments. The liquid jet extension velocity was around 1000 m/s in a typical case. The liquid jet decelerated drastically due to rapid atomization at the tips of the ligaments. The liquid jet phenomenon was found to depend on the pulse laser parameters such as the laser fluence on the liquid surface, laser energy, and laser beam pattern. The threshold laser fluence for the generation of a liquid jet was 20 J/cm2. By increasing the incident laser energy with a fixed laser fluence, the laser focused area increased, which eventually led to an increase in the size of the plasma column. The larger the laser energy, the larger the jet size and the longer the temporal behavior. The laser beam pattern was found to have significant effects on the liquid jet’s velocity, shape, and history.

  2. Water spray assisted ultrashort laser pulse ablation

    International Nuclear Information System (INIS)

    Silvennoinen, M.; Kaakkunen, J.J.J.; Paivasaari, K.; Vahimaa, P.

    2013-01-01

    Highlights: ► We show the novel method to use multibeam processing with ultrashort pulses efficiently. ► Sprayed thin water layer on ablation zone enhances ablation rate and quality. ► In some cases this method also enables ablation of the deeper and straighter holes compared to ones made without the water layer. ► Method also makes possible to directly write features without the self-organizing structures. - Abstract: We have studied femtosecond ablation under sprayed thin water film and its influence and benefits compared with ablation in the air atmosphere. These have been studied in case of the hole and the groove ablation using IR femtosecond laser. Water enhances the ablation rate and in some situations it makes possible to ablate the holes with a higher aspect ratio. While ablating the grooves, the water spray allows using the high fluences without the generation of the self-organized structures.

  3. Ablative Laser Propulsion: An Update, Part I

    International Nuclear Information System (INIS)

    Pakhomov, Andrew V.; Cohen, Timothy; Lin Jun; Thompson, M. Shane; Herren, Kenneth A.

    2004-01-01

    This paper presents an updated review of studies on Ablative Laser Propulsion conducted by the Laser Propulsion Group (LPG) at the University of Alabama in Huntsville. In particular, we describe the newest results of our experimental study of specific impulses and coupling coefficients achieved by double-pulsed ablation of graphite, aluminum, copper and lead targets

  4. Propagation profile of ablation front driven by a nonuniform UV laser beam

    International Nuclear Information System (INIS)

    Matsushima, I.; Tanimoto, M.; Kasai, T.; Yano, M.

    1985-01-01

    Spatial profile of ablation front is observed under the irradiation of spatially modulated 0.27-μm laser beam. Propagation depth of the ablation front is derived by means of various methods which detect x-ray radiation from aluminum substrates overcoated with polyethylene layers of different thicknesses. A higher mass ablation rate is observed for the UV laser than the longer wavelength lasers. However, observation with an x-ray television camera shows that the spatial nonuniformity in the laser beam is projected on the ablation front surface without substantial smoothing

  5. Synthesis and Properties of Platinum Nanoparticles by Pulsed Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Maria Isabel Mendivil Palma

    2016-01-01

    Full Text Available Platinum (Pt nanoparticles were synthesized by pulsed laser ablation in liquid (PLAL technique in different liquids (acetone, ethanol, and methanol. Ablation was performed using a Q-switched Nd:YAG laser with output energy of 230 mJ/pulse for 532 nm wavelength. Ablation time and laser energy fluence were varied for all the liquids. Effects of laser energy fluence, ablation time, and nature of the liquid were reported. The mean size, size distributions, shape, elemental composition, and optical properties of Pt nanoparticles synthesized by PLAL were examined by transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and UV-Visible absorption spectroscopy.

  6. Multi-wavelength lasers using AWGs

    NARCIS (Netherlands)

    Besten, den J.H.

    2003-01-01

    Multiwavelength lasers using AWGs can be used as digitally tunable lasers with simple channel selection, and for generating multiple wavelengths simultanously. In this paper a number of different configurations is reviewed.

  7. Fractional ablative erbium YAG laser

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth H; Haak, Christina S; Erlendsson, Andrés M

    2014-01-01

    laser parameters with tissue effects. MATERIALS AND METHODS: Ex vivo pig skin was exposed to a miniaturized 2,940 nm AFXL, spot size 225 µm, density 5%, power levels 1.15-2.22 W, pulse durations 50-225 microseconds, pulse repetition rates 100-500 Hz, and 2, 20, or 50 stacked pulses, resulting in pulse......BACKGROUND AND OBJECTIVES: Treatment of a variety of skin disorders with ablative fractional lasers (AFXL) is driving the development of portable AFXLs. This study measures micropore dimensions produced by a small 2,940 nm AFXL using a variety of stacked pulses, and determines a model correlating...... 190 to 347 µm. CONCLUSIONS: Pulse stacking with a small, low power 2,940 nm AFXL created reproducible shallow to deep micropores, and influenced micropore configuration. Mathematical modeling established relations between laser settings and micropore dimensions, which assists in choosing laser...

  8. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon [Manufacturing Processes Department, Fundacion TEKNIKER, Av. Otaola 20, 20600, Eibar, Guipuzcoa (Spain); Lejardi, Ainhoa; Sarasua, Jose-Ramon [Department of Mining and Metallurgy Engineering and Materials Science, School of Engineering, University of the Basque Country (EHU-UPV), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  9. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    International Nuclear Information System (INIS)

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-01-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  10. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    International Nuclear Information System (INIS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-01-01

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F_t_h = 0.087 J/cm"2) than that for the femtosecond laser ablation of ABS (F_t_h = 1.576 J/cm"2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α"−"1 = 223 nm) than that for femtosecond laser ablation (α"−"1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas C=C bond is partially

  11. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    Energy Technology Data Exchange (ETDEWEB)

    See, Tian Long, E-mail: tianlong.see@postgrad.manchester.ac.uk [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Liu, Zhu [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Li, Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Zhong, Xiang Li [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom)

    2016-02-28

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F{sub th} = 0.087 J/cm{sup 2}) than that for the femtosecond laser ablation of ABS (F{sub th} = 1.576 J/cm{sup 2}), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α{sup −1} = 223 nm) than that for femtosecond laser ablation (α{sup −1} = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas

  12. Diagnostics of laser ablated plasma plumes

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2004-01-01

    The effect of an ambient gas on the expansion dynamics of laser ablated plasmas has been studied for two systems by exploiting different diagnostic techniques. First, the dynamics of a MgB2 laser produced plasma plume in an Ar atmosphere has been investigated by space-and time-resolved optical...... of the laser ablated plasma plume propagation in a background gas. (C) 2003 Elsevier B.V All rights reserved....

  13. Laser surface modification of polyethersulfone films: effect of laser wavelength on biocompatibility

    International Nuclear Information System (INIS)

    Pazokian, H; Jelvani, S; Mollabashi, M; Barzin, J

    2013-01-01

    In this paper laser ablation of polyethersulfone (PES) films regarding to the change in biocompatibility of the surface is investigated at 3 different wavelengths of 193nm (ArF), 248 nm (KrF) and 308 nm (XeCl). The optimum laser fluence and number of pulses for the improvement of the surface biocompatibility is found by examination of the surface behavior in contact with platelets and fibroblasts cells at 3 wavelengths. These biological modifications are explained by alteration of the surface morphology and chemistry following irradiation. The results show that the KrF laser is the best choice for treatment of PES in biological applications.

  14. Performance of Er:YAG laser ablation of hard bone under different irrigation water cooling conditions

    Science.gov (United States)

    Beltrán Bernal, Lina M.; Shayeganrad, Gholamreza; Kosa, Gabor; Zelechowski, Marek; Rauter, Georg; Friederich, Niklaus; Cattin, Philippe C.; Zam, Azhar

    2018-02-01

    The biological applicability of the Erbium-doped Yttrium Aluminum Garnet (Er:YAG) laser in surgical processes is so far limited to hard dental tissues. Using the Er:YAG laser for bone ablation is being studied since it has shown good performance for ablating dental hard tissues at the wavelength 2.94 μm, which coincides with the absorption peak of water, one of the main components of hard tissue, like teeth and bone. To obtain a decent performance of the laser in the cutting process, we aim at examining the influence of sequenced water jet irrigation on both, the ablation rate and the prevention of carbonization while performing laser ablation of bone with fixed laser parameters. An Er:YAG laser at 2.94 μm wavelength, 940 mJ energy per pulse, 400 μs pulse width, and 10 Hz repetition rate is used for the ablation of a porcine femur bone under different pulsed water jet irrigation conditions. We used micro-computed tomography (micro-CT) scans to determine the geometry of the ablated areas. In addition, scanning electron microscopy (SEM) is used for qualitative observations for the presence of carbonization and micro-fractures on the ablated surfaces. We evaluate the performance of the laser ablation process for the different water jet conditions in terms of the ablation rate, quantified by the ablated volume per second and the ablation efficiency, calculated as the ablated volume per pulse energy. We provide an optimized system for laser ablation which delivers the appropriate amount of water to the bone and consequently, the bone is ablated in the most efficient way possible without carbonization.

  15. Laser ablation in analytical chemistry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  16. TEM investigations of laser ablated particles

    International Nuclear Information System (INIS)

    Fliegel, D.; Dundas, S.; Kosler, J.; Klementova, M.

    2009-01-01

    Full text: Laser ablation inductively coupled plasma mass spectrometry suffers from fractionation effects hindering a non matrix matched calibration strategy. Different reasons for elemental fractionation that are related to the laser ablation, the transport and the vaporization in the plasma are discussed. One major question to be addressed linked to the vaporization yield in the ICP is in which of mineralogical phase the different ablated particle sizes enter the plasma. This contribution will investigate particles generated by a 213 nm laser from different samples such as minerals and alloys with respect to their chemical and phase compositions using high resolution TEM. (author)

  17. Plasma dynamics from laser ablated solid lithium

    Indian Academy of Sciences (India)

    b; 52.25.-b; 52.70.-m. 1. Introduction. Pulsed laser ablation of a solid sample generates a dense plasma emission in the shape of ... The multichannel analyser plate of the ICCD was gated for as less as 4 ns using ... to explain the atomic collision processes [4]. .... Within duration of laser pulse, there occurs laser-solid interac-.

  18. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    Science.gov (United States)

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to

  19. Selective Laser Ablation and Melting, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project Advratech will develop a new additive manufacturing (AM) process called Selective Laser Ablation and Melting (SLAM). The key innovation in this...

  20. Chemically assisted laser ablation ICP mass spectrometry.

    Science.gov (United States)

    Hirata, Takafumi

    2003-01-15

    A new laser ablation technique combined with a chemical evaporation reaction has been developed for elemental ratio analysis of solid samples using an inductively coupled plasma mass spectrometer (ICPMS). Using a chemically assisted laser ablation (CIA) technique developed in this study, analytical repeatability of the elemental ratio measurement was successively improved. To evaluate the reliability of the CLA-ICPMS technique, Pb/U isotopic ratios were determined for zircon samples that have previously been analyzed by other techniques. Conventional laser ablation for Pb/U shows a serious elemental fractionation during ablation mainly due to the large difference in elemental volatility between Pb and U. In the case of Pb/U ratio measurement, a Freon R-134a gas (1,1,1,2-tetrafluoroethane) was introduced into the laser cell as a fluorination reactant. The Freon gas introduced into the laser cell reacts with the ablated sample U, and refractory U compounds are converted to a volatile U fluoride compound (UF6) under the high-temperature condition at the ablation site. This avoids the redeposition of U around the ablation pits. Although not all the U is reacted with Freon, formation of volatile UF compounds improves the transmission efficiency of U. Typical precision of the 206Pb/238U ratio measurement is 3-5% (2sigma) for NIST SRM 610 and Nancy 91500 zircon standard, and the U-Pb age data obtained here show good agreement within analytical uncertainties with the previously reported values. Since the observed Pb/U ratio for solid samples is relatively insensitive to laser power and ablation time, optimization of ablation conditions or acquisition parameters no longer needs to be performed on a sample-to-sample basis.

  1. Wavelength scaling of laser plasma coupling

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1983-01-01

    The use of shorter wavelength laser light both enhances collisional absorption and reduces deleterious collective plasma effects. Coupling processes which can be important in reactor-size targets are briefly reviewed. Simple estimates are presented for the intensity-wavelength regime in which collisional absorption is high and collective effects are minimized

  2. Sub-micron-scale femtosecond laser ablation using a digital micromirror device

    International Nuclear Information System (INIS)

    Mills, B; Feinaeugle, M; Sones, C L; Eason, R W; Rizvi, N

    2013-01-01

    Commercial digital multimirror devices offer a cheap and effective alternative to more expensive spatial light modulators for ablation via beam shaping. Here we present femtosecond laser ablation using the digital multimirror device from an Acer C20 Pico Digital Light Projector and show ablation of complex features with feature sizes ranging from sub-wavelength (400 nm) up to ∼30 µm. Simulations are presented that have been used to optimize and understand the experimentally observed resolution. (paper)

  3. Optical properties of tin oxide nanoparticles prepared by laser ablation in water: Influence of laser ablation time duration and laser fluence

    International Nuclear Information System (INIS)

    Desarkar, Himadri Sankar; Kumbhakar, P.; Mitra, A.K.

    2012-01-01

    Colloidal tin oxide nanoparticles are prepared by laser (having a wavelength of 1064 nm) ablation of tin metallic target immersed in pure deionized water. The influences of laser ablation time and laser fluence on the size and optical properties of the synthesized nanoparticles are studied. Prepared tin oxide nanoparticles are characterized by transmission electron microscope, selected area electron diffraction and UV–Visible absorption spectroscopy. The morphology of prepared tin oxide nanoparticles is found to be mostly spherical and with sizes in the nanometric range (mean radius of 3.2 to 7.3 nm). The measured UV–Visible absorption spectra show the presence of absorption peaks in the ultraviolet region. The band gap energy of samples prepared with different laser ablation time duration is calculated and is found to be increased with decrease in size (radius) of the prepared nanoparticles. Photoluminescence emission measurements at room temperature show that all the samples exhibit photoluminescence in the visible region. The peak photoluminescence emission intensity in the sample prepared with 50 min of laser ablation time is 3.5 times larger than that obtained in the sample prepared with 10 min of laser ablation time. - Highlights: ► SnO 2 nanoparticles (6.4–14.6 nm) are prepared by laser ablation in liquid technique. ► The influences of laser ablation time and laser fluence are studied. ► Samples are characterized by TEM and UV–Visible absorption spectroscopy. ► UV–Visible absorption spectra exhibit quantum confinement effect. ► Samples exhibit enhanced photoluminescence emissions in the visible region.

  4. Ablation of silicon with bursts of femtosecond laser pulses

    Science.gov (United States)

    Gaudiuso, Caterina; Kämmer, Helena; Dreisow, Felix; Ancona, Antonio; Tünnermann, Andreas; Nolte, Stefan

    2016-03-01

    We report on an experimental investigation of ultrafast laser ablation of silicon with bursts of pulses. The pristine 1030nm-wavelength 200-fs pulses were split into bursts of up to 16 sub-pulses with time separation ranging from 0.5ps to 4080ps. The total ablation threshold fluence was measured depending on the burst features, finding that it strongly increases with the number of sub-pulses for longer sub-pulse delays, while a slowly increasing trend is observed for shorter separation time. The ablation depth per burst follows two different trends according to the time separation between the sub-pulses, as well as the total threshold fluence. For delays shorter than 4ps it decreases with the number of pulses, while for time separations longer than 510ps, deeper craters were achieved by increasing the number of subpulses in the burst, probably due to a change of the effective penetration depth.

  5. Laser ablation deposition measurements from silver and nickel

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Ellegaard, Ole; Schou, Jørgen

    1996-01-01

    The deposition rate for laser ablated metals has been studied in a standard geometry for fluences up to 20 J/cm(2). The rate for silver and nickel is a few percent of a monolayer per pulse at the laser wavelengths 532 nm and 355 nm. The rate for nickel is significantly higher than that for silver...... at 532 nm, whereas the rate for the two metals is similar at 355 nm. This behaviour disagrees with calculations based on the thermal properties at low intensities as well as predictions based on formation of an absorbing plasma at high intensities. The deposition rate falls strongly with increasing...

  6. Infrared laser ablation atmospheric pressure photoionization mass spectrometry.

    Science.gov (United States)

    Vaikkinen, Anu; Shrestha, Bindesh; Kauppila, Tiina J; Vertes, Akos; Kostiainen, Risto

    2012-02-07

    In this paper we introduce laser ablation atmospheric pressure photoionization (LAAPPI), a novel atmospheric pressure ion source for mass spectrometry. In LAAPPI the analytes are ablated from water-rich solid samples or from aqueous solutions with an infrared (IR) laser running at 2.94 μm wavelength. Approximately 12 mm above the sample surface, the ablation plume is intercepted with an orthogonal hot solvent (e.g., toluene or anisole) jet, which is generated by a heated nebulizer microchip and directed toward the mass spectrometer inlet. The ablated analytes are desolvated and ionized in the gas-phase by atmospheric pressure photoionization using a 10 eV vacuum ultraviolet krypton discharge lamp. The effect of operational parameters and spray solvent on the performance of LAAPPI is studied. LAAPPI offers ~300 μm lateral resolution comparable to, e.g., matrix-assisted laser desorption ionization. In addition to polar compounds, LAAPPI efficiently ionizes neutral and nonpolar compounds. The bioanalytical application of the method is demonstrated by the direct LAAPPI analysis of rat brain tissue sections and sour orange (Citrus aurantium) leaves. © 2012 American Chemical Society

  7. Laser ablation studies in southern Africa

    Science.gov (United States)

    McKenzie, Edric; Forbes, A.; Turner, G. R.; Michaelis, Max M.

    2000-08-01

    With the launch of the South African National Laser Centre, new programs will need to be defined. Medical, environmental and industrial laser applications must obviously take top priority -- as opposed to the uranium isotope separation and military applications of the past. We argue however, that a small effort in laser ablation for space propulsion is justifiable, since a few very large CO2 lasers are available and since two tentative propulsion experiments have already been conducted in South Africa. We attempt to give LISP (Laser Impulse Space Propulsion) an equatorial and a Southern dimension.

  8. Dynamic behaviors of laser ablated Si particles

    International Nuclear Information System (INIS)

    Ohyanagi, T.; Murakami, K.; Miyashita, A.; Yoda, O.

    1995-01-01

    The dynamics of laser-ablated Si particles produced by laser ablation have been investigated by time-and-space resolved X-ray absorption spectroscopy in a time scale ranging from 0 ns to 120 ns with a time resolution of 10 ns. Neutral and charged particles are observed through all X-ray absorption spectra. Assignments of transitions from 2s and 2p initial states to higher Rydberg states of Si atom and ions are achieved, and we experimentally determine the L II,III absorption edges of neutral Si atom (Si 0 ) and Si + , Si 2+ , Si 3+ and Si 4+ ions. The main ablated particles are found to be Si atom and Si ions in the initial stage of 0 ns to 120 ns. The relative amounts depend strongly on times and laser energy densities. We find that the spatial distributions of particles produced by laser ablation are changed with supersonic helium gas bombardment, but no cluster formation takes place. This suggests that a higher-density region of helium gas is formed at the top of the plume of ablated particles, and free expansion of particles is restrained by this helium cloud, and that it takes more than 120 ns to form Si clusters. (author)

  9. Femtosecond laser ablation of bovine cortical bone

    Science.gov (United States)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  10. Laser ablation of microparticles for nanostructure generation

    International Nuclear Information System (INIS)

    Waraich, Palneet Singh; Tan, Bo; Venkatakrishnan, Krishnan

    2011-01-01

    The process of laser ablation of microparticles has been shown to generate nanoparticles from microparticles; but the generation of nanoparticle networks from microparticles has never been reported before. We report a unique approach for the generation of nanoparticle networks through ablation of microparticles. Using this approach, two samples containing microparticles of lead oxide (Pb 3 O 4 ) and nickel oxide (NiO), respectively, were ablated under ambient conditions using a femtosecond laser operating in the MHz repetition rate regime. Nanoparticle networks with particle diameter ranging from 60 to 90 nm were obtained by ablation of microparticles without use of any specialized equipment, catalysts or external stimulants. The formation of finer nanoparticle networks has been explained by considering the low pressure region created by the shockwave, causing rapid condensation of microparticles into finer nanoparticles. A comparison between the nanostructures generated by ablating microparticle and those by ablating bulk substrate was carried out; and a considerable reduction in size and narrowed size distribution was observed. Our nanostructure fabrication technique will be a unique process for nanoparticle network generation from a vast array of materials.

  11. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  12. Bone Ablation at 2.94 mm Using the Free-Electron Laser and Er:YAG Laser

    Science.gov (United States)

    Ivanov, Borislav; Hakimian, Arman; Peavy, G. M.; Haglund, Richard

    2002-03-01

    Bone Ablation at 2.94 microns Using the Free-Electron Laser and Er:YAG Laser in Perfluorocarbon Compounds B. Ivanov^1, A. M. Hakimian^1, G. M. Peavy^2, R. F. Haglund, Jr.1 1Department of Physics and Astronomy, W. M. Keck Foundation Free-Electron Laser Center, Vanderbilt University, Nashville, TN 37235 2Beckman Laser Institute and Medical Clinic, College of Medicine, University of California, Irvine, CA 92612 We report studies on the efficiency of mid-IR laser ablation of cow cortical bone using the Vanderbilt free-electron laser (FEL), when irrigating the ablation zone with an inert and biocompatible perfluorocarbon compounds (PFC). At 2.94 microns, the bone matrix (mainly by water) absorbs the radiation while the PFCs transmit this wavelength, dissipate heat and acoustical stress, and prevent carbonization of the bone sample. The ablation rate, as a function of laser fluence, scanning speed and the type of PFC, was investigated. The laser fluence was estimated to be 5 J/cm^2 - 100 J/cm^2 with a laser focal spot diameter of 160 microns 500 microns and a scanning speed of 40 microns/s 2960 microns/s. The ablation rate was estimated from scanning electron microscopy to be 0.5 mm/s 2.4 mm/s. Comparisons of ablation rates with the FEL and a Er:YAG laser at 2.94 microns are being evaluated.

  13. Excimer laser ablation of the cornea

    Science.gov (United States)

    Pettit, George H.; Ediger, Marwood N.; Weiblinger, Richard P.

    1995-03-01

    Pulsed ultraviolet laser ablation is being extensively investigated clinically to reshape the optical surface of the eye and correct vision defects. Current knowledge of the laser/tissue interaction and the present state of the clinical evaluation are reviewed. In addition, the principal findings of internal Food and Drug Administration research are described in some detail, including a risk assessment of the laser-induced-fluorescence and measurement of the nonlinear optical properties of cornea during the intense UV irradiation. Finally, a survey is presented of the alternative laser technologies being explored for this ophthalmic application.

  14. Single- and multi-pulse femtosecond laser ablation of optical filter materials

    International Nuclear Information System (INIS)

    Krueger, J.; Lenzner, M.; Martin, S.; Lenner, M.; Spielmann, C.; Fiedler, A.; Kautek, W.

    2003-01-01

    Ablation experiments employing Ti:sapphire laser pulses with durations from 30 to 340 fs (centre wavelength 800 nm, repetition rate 1 kHz) were performed in air. Absorbing filters (Schott BG18 and BG36) served as targets. The direct focusing technique was used under single- and multi-pulse irradiation conditions. Ablation threshold fluences were determined from a semi-logarithmic plot of the ablation crater diameter versus laser fluence. The threshold fluence decreases for a shorter pulse duration and an increasing number of pulses. The multi-pulse ablation threshold fluences are similar to those of undoped glass material (∼1 J cm -2 ). That means that the multi-pulse ablation threshold is independent on the doping level of the filters. For more than 100 pulses per spot and all pulse durations applied, the threshold fluence is practically constant. This leads to technically relevant ablation threshold values

  15. Femtosecond laser ablation of carbon reinforced polymers

    International Nuclear Information System (INIS)

    Moreno, P.; Mendez, C.; Garcia, A.; Arias, I.; Roso, L.

    2006-01-01

    Interaction of intense ultrashort laser pulses (120 fs at 795 nm) with polymer based composites has been investigated. We have found that carbon filled polymers exhibit different ultrafast ablation behaviour depending on whether the filling material is carbon black or carbon fiber and on the polymer matrix itself. The shape and dimensions of the filling material are responsible for some geometrical bad quality effects in the entrance and inner surfaces of drilled microholes. We give an explanation for these non-quality effects in terms of fundamentals of ultrafast ablation process, specifically threshold laser fluences and material removal paths. Since carbon fiber reinforced polymers seemed particularly concerned, this could prevent the use of ultrafast ablation for microprocessing purposes of some of these materials

  16. Polymers designed for laser ablation-influence of photochemical properties

    International Nuclear Information System (INIS)

    Lippert, T.; Dickinson, J.T.; Hauer, M.; Kopitkovas, G.; Langford, S.C.; Masuhara, H.; Nuyken, O.; Robert, J.; Salmio, H.; Tada, T.; Tomita, K.; Wokaun, A.

    2002-01-01

    The ablation characteristics of various polymers were studied at low and high fluences. The polymers can be divided into three groups, i.e. polymers containing triazene and ester groups, the same polymers without the triazene group, and polyimide as reference polymer. At high fluences similar ablation parameters, i.e. etch rates and effective absorption coefficients, were obtained for all polymers. The main difference is the absence of carbon deposits for the designed polymers. At low fluences (at 308 nm) very pronounced differences are detected. The polymers containing the photochemically most active group (triazene) exhibit the lowest threshold of ablation (as low as 25 mJ cm -2 ) and the highest etch rates (up to 3 μm/pulse), followed by the designed polyesters and then polyimide. The laser-induced decomposition of the designed polymers was studied by nanosecond-interferometry. Only the triazene-polymer reveals etching without any sign of surface swelling, which is observed for all other polymers. The etching of the triazene-polymer starts and ends with the laser pulse, clearly indicating photochemical etching. The triazene-polymer was also studied by time-of-flight mass spectrometry (TOF-MS). The intensities of the ablation fragments show pronounced differences between irradiation at the absorption band of the triazene group (308 nm) and irradiation at a shorter wavelength (248 nm)

  17. Bending diamonds by femtosecond laser ablation

    DEFF Research Database (Denmark)

    Balling, Peter; Esberg, Jakob; Kirsebom, Kim

    2009-01-01

    We present a new method based on femtosecond laser ablation for the fabrication of statically bent diamond crystals. Using this method, curvature radii of 1 m can easily be achieved, and the curvature obtained is very uniform. Since diamond is extremely tolerant to high radiation doses, partly due...

  18. Fractional versus ablative erbium:yttrium-aluminum-garnet laser resurfacing for facial rejuvenation: an objective evaluation.

    Science.gov (United States)

    El-Domyati, Moetaz; Abd-El-Raheem, Talal; Abdel-Wahab, Hossam; Medhat, Walid; Hosam, Wael; El-Fakahany, Hasan; Al Anwer, Mustafa

    2013-01-01

    Laser is one of the main tools for skin resurfacing. Erbium:yttrium-aluminum-garnet (Er:YAG) was the second ablative laser, after carbon dioxide, emitting wavelength of 2940 nm. Fractional laser resurfacing has been developed to overcome the drawbacks of ablative lasers. We aimed to objectively evaluate the histopathological and immunohistochemical effects of Er:YAG 2940-nm laser for facial rejuvenation (multiple sessions of fractional vs single session of ablative Er:YAG laser). Facial resurfacing with single-session ablative Er:YAG laser was performed on 6 volunteers. Another 6 were resurfaced using fractional Er:YAG laser (4 sessions). Histopathological (hematoxylin-eosin, orcein, Masson trichrome, and picrosirius red stains) and immunohistochemical assessment for skin biopsy specimens were done before laser resurfacing and after 1 and 6 months. Histometry for epidermal thickness and quantitative assessment for neocollagen formation; collagen I, III, and VII; elastin; and tropoelastin were done for all skin biopsy specimens. Both lasers resulted in increased epidermal thickness. Dermal collagen showed increased neocollagen formation with increased concentration of collagen types I, III, and VII. Dermal elastic tissue studies revealed decreased elastin whereas tropoelastin concentration increased after laser resurfacing. Neither laser showed significant difference between their effects clinically and on dermal collagen. Changes in epidermal thickness, elastin, and tropoelastin were significantly more marked after ablative laser. The small number of patients is a limitation, yet the results show significant improvement. Multiple sessions of fractional laser have comparable effects to a single session of ablative Er:YAG laser on dermal collagen but ablative laser has more effect on elastic tissue and epidermis. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  19. A Review of Laser Ablation Propulsion

    International Nuclear Information System (INIS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-01-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  20. Femtosecond laser ablation of single-wall carbon nanotube-based material

    International Nuclear Information System (INIS)

    Danilov, Pavel A; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Mel’nik, Nikolay N; Rudenko, Andrey A; Yurovskikh, Vladislav I; Zayarny, Dmitry V; Lednev, Vasily N; Obraztsova, Elena D; Pershin, Sergey M; Bunkin, Alexey F

    2014-01-01

    Single- and multi-shot femtosecond laser surface ablation of a single-wall carbon nanotube-based substrate at 515- and 1030 nm wavelengths was studied by scanning electron microscopy and micro-Raman spectroscopy. The laser ablation proceeds in two ways: as the low-fluence mesoscopic shallow disintegration of the surface nanotube packing, preserving the individual integrity and the semiconducting character of the nanotubes or as the high-fluence deep material removal apparently triggered by the strong intrinsic or impurity-mediated ablation of the individual carbon nanotubes on the substrate surface. (letter)

  1. Short-wavelength ablation of polymers in the high-fluence regime

    International Nuclear Information System (INIS)

    Liberatore, Chiara; Juha, Libor; Vyšín, Ludek; Endo, Akira; Mocek, Tomas; Mann, Klaus; Müller, Matthias; Pina, Ladislav; Rocca, Jorge J

    2014-01-01

    Short-wavelength ablation of poly(1,4-phenylene ether-ether-sulfone) (PPEES) and poly(methyl methacrylate) (PMMA) was investigated using extreme ultraviolet (XUV) and soft x-ray (SXR) radiation from plasma-based sources. The initial experiment was performed with a 10 Hz desktop capillary-discharge XUV laser lasing at 46.9 nm. The XUV laser beam was focused onto the sample by a spherical mirror coated with a Si/Sc multilayer. The same materials were irradiated with 13.5 nm radiation emitted by plasmas produced by focusing an optical laser beam onto a xenon gas-puff target. A Schwarzschild focusing optics coated with a Mo/Si multilayer was installed at the source to achieve energy densities exceeding 0.1 J cm −2 in the tight focus. The existing experimental system at the Laser Laboratorium Göttingen was upgraded by implementing a 1.2 J driving laser. An increase of the SXR fluence was secured by improving the alignment technique. (paper)

  2. An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shi-zhen, E-mail: xusz@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yao, Cai-zhen [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Dou, Hong-qiang [Department of Material Science and Engineering, Sichuan Engineering Technical College, Deyang 618000 (China); Liao, Wei, E-mail: liaowei@caep.cn [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Xiao-yang; Ding, Ren-jie [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhang, Li-juan; Liu, Hao; Yuan, Xiao-dong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zu, Xiao-tao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2017-06-01

    Highlights: • The fs laser ablation of borosilicate glass (K9) were investigated under 35 and 500 fs pulses. • At high fluence regime, the ablation rate at 35 fs in air increased to a plateau, and 500 fs in air and vacuum decreased. • The mechanisms of multiple-photon ionization and impact ionization were included. • The ablation morphologies of smooth zone and laser-induced periodic surface structures were presented and illustrated. • The ablation mechanisms of non-thermal and thermal ablation were included. - Abstract: Ablation rates of K9 glass were studied as a function of femtosecond laser fluences. The central wavelength was 800 nm, and pulse durations of 35 fs and 500 fs in air and vacuum were employed. Ablation thresholds of 0.42 J/cm{sup 2} and 2.1 J/cm{sup 2} were obtained at 35 fs and 500 fs, respectively, which were independent with the ambient conditions and depend on the incident pulse numbers due to incubation effects. The ablation rate of 35 fs pulse laser increased with the increasing of laser fluence in vacuum, while in air condition, it slowly increased to a plateau at high fluence. The ablation rate of 500 fs pulse laser showed an increase at low fluence and a slow drop of ablation rate was observed at high fluence in air and vacuum, which may due to the strong defocusing effects associated with the non-equilibrium ionization of air, and/or the shielding effects of conduction band electrons (CBEs) produced by multi-photon ionization and impact ionization in K9 glass surface. The typical ablation morphologies, e.g. smooth zone and laser-induced periodic surface structures (LIPSS) were also presented and illustrated.

  3. Laser systems for ablative fractional resurfacing

    DEFF Research Database (Denmark)

    Paasch, Uwe; Haedersdal, Merete

    2011-01-01

    of a variety of skin conditions, primarily chronically photodamaged skin, but also acne and burn scars. In addition, it is anticipated that AFR can be utilized in the laser-assisted delivery of topical drugs. Clinical efficacy coupled with minimal downtime has driven the development of various fractional...... ablative laser systems. Fractionated CO(2) (10,600-nm), erbium yttrium aluminum garnet, 2940-nm and yttrium scandium gallium garnet, 2790-nm lasers are available. In this article, we present an overview of AFR technology, devices and histopathology, and we summarize the current clinical possibilities...

  4. Laser systems for ablative fractional resurfacing

    DEFF Research Database (Denmark)

    Paasch, Uwe; Haedersdal, Merete

    2011-01-01

    ablative laser systems. Fractionated CO(2) (10,600-nm), erbium yttrium aluminum garnet, 2940-nm and yttrium scandium gallium garnet, 2790-nm lasers are available. In this article, we present an overview of AFR technology, devices and histopathology, and we summarize the current clinical possibilities...... of a variety of skin conditions, primarily chronically photodamaged skin, but also acne and burn scars. In addition, it is anticipated that AFR can be utilized in the laser-assisted delivery of topical drugs. Clinical efficacy coupled with minimal downtime has driven the development of various fractional...

  5. On the angular dependence of focused laser ablation by nanosecond pulses in solgel and polymer materials

    Science.gov (United States)

    George, D. S.; Onischenko, A.; Holmes, A. S.

    2004-03-01

    Focused laser ablation by single laser pulses at varying angles of incidence is studied in two materials of interest: a solgel (Ormocer 4) and a polymer (SU8). For a range of angles (up to 70° from normal), and for low-energy (<20 μJ), 40 ns pulses at 266 nm wavelength, the ablation depth along the direction of the incident laser beam is found to be independent of the angle of incidence. This allows the crater profiles at oblique incidence to be generated directly from the crater profiles at normal incidence by a simple coordinate transformation. This result is of use in the development of simulation tools for direct-write laser ablation. A simple model based on the moving ablation front approach is shown to be consistent with the observed behavior.

  6. Laser ablation comparison by picosecond pulses train and nanosecond pulse

    Science.gov (United States)

    Lednev, V. N.; Filippov, M. N.; Bunkin, A. F.; Pershin, S. M.

    2015-12-01

    A comparison of laser ablation by a train of picosecond pulses and nanosecond pulses revealed a difference in laser craters, ablation thresholds, plasma sizes and spectral line intensities. Laser ablation with a train of picosecond pulses resulted in improved crater quality while ablated mass decreased up to 30%. A reduction in laser plasma dimensions for picosecond train ablation was observed while the intensity of atomic/ionic lines in the plasma spectra was greater by a factor of 2-4 indicating an improved excitation and atomization in the plasma.

  7. Laser ablation of UHMWPE-polyethylene by 438 nm high energy pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L.; Gammino, S.; Mezzasalma, A.M.; Visco, A.M.; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Krasa, J.; Laska, L.; Pfeifer, M.; Rohlena, K.; Boody, F.P

    2004-04-15

    Pulsed laser ablation of ultra-high-molecular-weight-polyethylene (UHMWPE) is investigated at Prague Asterix Laser System (PALS) Laboratory. The high ablation yield as a function of laser energy is presented at 438 nm laser wavelength. The mechanisms of the polymer ablation are studied on the base of ''in situ'' analysis, such as mass quadrupole spectrometry and time-of-flight measurements, and ''ex situ'' analysis, such as SEM investigations and Raman spectroscopy. Results show that the laser irradiation induces a strong polymer dehydrogenation and molecular emission due to different C{sub x}H{sub y} groups having high kinetic energy and high charge state. At a laser pulse energy of 150 J the H{sup +}, C{sup n+} ions (n=1 to 6) are emitted from the plasma with velocities of the order of 10{sup 8} cm/s, while the C{sub x}H{sub y} groups and the carbon clusters, detected up to C{sub 16}, have a velocity about one or two order magnitude lower. The laser ablation process produces a deep crater in the polymer, which depth depends on the laser pulse energy and it is of the order of 500 {mu}m. The crater volume increases with the laser pulse energy. Results demonstrated that the laser radiation modifies the polymer chains because dehydrogenated material and carbon-like structures are detected in the crater walls and in the bottom of the crater, respectively. A comparison of the experimental results with the data available in literature is presented and discussed.

  8. Wavelength selectivity of on-axis surface plasmon laser filters

    International Nuclear Information System (INIS)

    Harmer, S W; Townsend, P D

    2002-01-01

    Excitation of surface plasmons on a metal substrate, via the attenuated total reflection method can theoretically offer preferential absorption of light at one particular wavelength, whilst reflecting the nearby spectrum. Normally this 'filtering' action is limited to removal of p-polarized light, and the acceptance angle of such a filtering device is very narrow, which limits practical applications, such as separation of fundamental and laser harmonics. The possibility of avoiding this angular precision is explored by considering the complex permittivity of metal composites. By using a two or more layer structure, as opposed to a single metal substrate, the acceptance angle of the device can be broadened, by a factor of about 15 times. An example is discussed for separation of the fundamental and harmonics from a Nd : YAG laser. Variants of the structure allow the design of an in-line transmission filter for the various wavelengths with sufficient angular tolerance to include focusing lenses. Avoidance of laser ablation of the metal is discussed

  9. Selective ablation of photovoltaic materials with UV laser sources for monolithic interconnection of devices based on a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Molpeceres, C. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain)], E-mail: carlos.molpeceres@upm.es; Lauzurica, S.; Garcia-Ballesteros, J.J.; Morales, M.; Guadano, G.; Ocana, J.L. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain); Fernandez, S.; Gandia, J.J. [Dept. de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda, Complutense 22, 28040 Madrid (Spain); Villar, F.; Nos, O.; Bertomeu, J. [CeRMAE Dept. Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)

    2009-03-15

    Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.

  10. Selective ablation of photovoltaic materials with UV laser sources for monolithic interconnection of devices based on a-Si:H

    International Nuclear Information System (INIS)

    Molpeceres, C.; Lauzurica, S.; Garcia-Ballesteros, J.J.; Morales, M.; Guadano, G.; Ocana, J.L.; Fernandez, S.; Gandia, J.J.; Villar, F.; Nos, O.; Bertomeu, J.

    2009-01-01

    Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.

  11. Modeling CO2 Laser Ablative Impulse with Polymers

    International Nuclear Information System (INIS)

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-01-01

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO 2 laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO 2 laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  12. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  13. Inertial effects in laser-driven ablation

    International Nuclear Information System (INIS)

    Harrach, R.J.; Szeoke, A.; Howard, W.M.

    1983-01-01

    The gasdynamic partial differential equations (PDE's) governing the motion of an ablatively accelerated target (rocket) contain an inertial force term that arises from acceleration of the reference frame in which the PDE's are written. We give a simple, intuitive description of this effect, and estimate its magnitude and parametric dependences by means of approximate analytical formulas inferred from our computer hydrocode calculations. Often this inertial term is negligible, but for problems in the areas of laser fusion and laser equation of state studies we find that it can substantially reduce the attainable hydrodynamic efficiency of acceleration and implosion

  14. Resonant laser ablation: mechanisms and applications

    International Nuclear Information System (INIS)

    Anderson, J.E.; Bodla, R.; Eiden, G.C.; Nogar, N.S.; Smith, C.H.

    1996-01-01

    Resonant laser ablation (RLA) typically relies on irradiation of a sample in a mass spectrometer with modest intensity laser pulses tuned to a one or two photon resonant transition in the analyte of interest. This paper shows that RLA is well suited for highly sensitive analyses of complex samples. The examples actually studied are trace components in rhenium and technetium in nickel. The authors also studied the 2+1 multiphoton ionization spectrum of iron-56 detected by RLA of Re containing 70 ppm iron. Two-photon transition rates for Fe transitions were calculated perturbatively and found to agree semi-quantitatively with experimentally observed intensities. 17 refs., 3 figs

  15. Ablation of polymers by ultraviolet pulsed laser

    International Nuclear Information System (INIS)

    Brezini, A.; Benharrats, N.

    1993-08-01

    The surface modifications of different polymers treated by far UV-Excimer laser (λ = 193mn, 248, 308nm) are analysed by X-Ray Photoelectrons Spectroscopy. The main feature observed depends strongly on the absorption coefficients. For the high absorbing polymers such (PVC, PS, PI,...) the mechanism of the UV-Excimer Laser interaction appears to be governed by an ablative photodecomposition process (APD) with an APD threshold. In the other limit, i.e. low absorbing polymer the interaction leads to a photothermal process. (author). 51 refs, 24 figs, 7 tabs

  16. Recolonization of laser-ablated bacterial biofilm.

    Science.gov (United States)

    Nandakumar, Kanavillil; Obika, Hideki; Utsumi, Akihiro; Toshihiko, Ooie; Yano, Tetsuo

    2004-01-20

    The recolonization of laser-ablated bacterial monoculture biofilm was studied in the laboratory by using a flow-cytometer system. The marine biofilm-forming bacterium Pseudoalteromonas carrageenovora was used to develop biofilms on titanium coupons. Upon exposure to a low-power pulsed irradiation from an Nd:YAG laser, the coupons with biofilm were significantly reduced both in terms of total viable count (TVC) and area cover. The energy density used for a pulse of 5 ns was 0.1 J/cm(2) and the durations of irradiation exposure were 5 and 10 min. When placed in a flow of dilute ZoBell marine broth medium (10%) the laser-destructed bacterial film in a flow-cytometer showed significant recovery over a period of time. The flow of medium was regulated at 3.2 ml/min. The increase in area cover and TVC, however, was significantly less than that observed for nonirradiated control (t-test, Precolonization compared to control was thought be due to the lethal and sublethal impacts of laser irradiation on bacteria. This observation thus provided data on the online recolonization speed of biofilm, which is important when considering pulsed laser irradiation as an ablating technique of biofilm formation and removal in natural systems. Copyright 2003 Wiley Periodicals, Inc.

  17. Laser ablation characteristics of metallic materials: Role of Debye-Waller thermal parameter

    International Nuclear Information System (INIS)

    Butt, M Z

    2014-01-01

    The interaction of a high intensity laser pulse with a solid target results in the formation of a crater and a plasma plume. The characteristics of both depend on physical properties of target material, environmental conditions, and laser parameters (e.g. wavelength, pulse duration, energy, beam diameter) etc. It has been shown for numerous metals and their alloys that plasma threshold fluence, plasma threshold energy, ablation efficiency, ablation yield, angular distribution of laser produced plasma (LPP) ions, etc. are a unique function of the Debye-Waller thermal parameter B or the mean-square amplitude of atomic vibration of the target material for given experimental conditions. The FWHM of the angular distribution of LPP ions, ablation yield, and ablation efficiency increase whereas plasma threshold fluence and plasma threshold energy decrease as B-factor of the target material increases

  18. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

    International Nuclear Information System (INIS)

    Babushok, V.I.; DeLucia, F.C.; Gottfried, J.L.; Munson, C.A.; Miziolek, A.W.

    2006-01-01

    A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations have been suggested for the realization of the double pulse laser induced breakdown spectroscopy technique: collinear, orthogonal pre-spark, orthogonal pre-heating and dual pulse crossed beam modes. In addition, combinations of laser pulses with different wavelengths, different energies and durations were studied, thus providing flexibility in the choice of wavelength, pulse width, energy and pulse sequence. The double pulse laser induced breakdown spectroscopy approach provides a significant enhancement in the intensity of laser induced breakdown spectroscopy emission lines up to two orders of magnitude greater than a conventional single pulse laser induced breakdown spectroscopy. The double pulse technique leads to a better coupling of the laser beam with the plasma plume and target material, thus providing a more temporally effective energy delivery to the plasma and target. The experimental results demonstrate that the maximum effect is obtained at some optimum separation delay time between pulses. The optimum value of the interpulse delay depends on several factors, such as the target material, the energy level of excited states responsible for the emission, and the type of enhancement process considered. Depending on the specified parameter, the enhancement effects were observed on different time scales ranging from the picosecond time level (e.g., ion yield, ablation mass) up to the hundred microsecond level (e.g., increased emission intensity for laser induced breakdown spectroscopy of submerged metal target in water). Several suggestions have been proposed to explain

  19. Improvement of the surface finish obtained by laser ablation with a Nd: YAG laser on pre-ablated tool steel

    CSIR Research Space (South Africa)

    Steyn, J

    2007-01-01

    Full Text Available . In recent years, these lasers have been used in other fields, such as laser ablation of small tools for plastics injection moulding. Laser ablation is a technology that is investigated as a method to improve the surface finish in tool steel. Different...

  20. Visualization of nanosecond laser-induced dewetting, ablation and crystallization processes in thin silicon films

    Science.gov (United States)

    Qi, Dongfeng; Zhang, Zifeng; Yu, Xiaohan; Zhang, Yawen

    2018-06-01

    In the present work, nanosecond pulsed laser crystallization, dewetting and ablation of thin amorphous silicon films are investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 7 ns temporal width are irradiated on silicon film. Below the dewetting threshold, crystallization process happens after 400 ns laser irradiation in the spot central region. With the increasing of laser fluence, it is observed that the dewetting process does not conclude until 300 ns after the laser irradiation, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to solidification of transported matter at about 500 ns following the laser pulse exposure.

  1. Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets

    Science.gov (United States)

    Shigemori, Keisuke; Sakaiya, Tatsuhiko; Otani, Kazuto; Fujioka, Shinsuke; Nakai, Mitsuo; Azechi, Hiroshi; Shiraga, Hiroyuki; Tamari, Yohei; Okuno, Kazuki; Sunahara, Atsushi; Nagatomo, Hideo; Murakami, Masakatsu; Nishihara, Katsunobu; Izawa, Yasukazu

    2004-09-01

    Hydrodynamic instabilities are key issues of the physics of inertial confinement fusion (ICF) targets. Among the instabilities, Rayleigh-Taylor (RT) instability is the most important because it gives the largest growth factor in the ICF targets. Perturbations on the laser irradiated surface grow exponentially, but the growth rate is reduced by ablation flow. The growth rate γ is written as Takabe-Betti formula: γ = [kg/(1+kL)]1/2-βkm/pa, where k is wave number of the perturbation, g is acceleration, L is density scale-length, β is a coefficient, m is mass ablation rate per unit surface, and ρa is density at the ablation front. We experimentally measured all the parameters in the formula for polystyrene (CH) targets. Experiments were done on the HIPER laser facility at Institute of Laser Engineering, Osaka University. We found that the β value in the formula is ~ 1.7, which is in good agreements with the theoretical prediction, whereas the β for certain perturbation wavelengths are larger than the prediction. This disagreement between the experiment and the theory is mainly due to the deformation of the cutoff surface, which is created by non-uniform ablation flow from the ablation surface. We also found that high-Z doped plastic targets have multiablation structure, which can reduce the RT growth rate. When a low-Z target with high-Z dopant is irradiated by laser, radiation due to the high-Z dopant creates secondary ablation front deep inside the target. Since, the secondary ablation front is ablated by x-rays, the mass ablation rate is larger than the laser-irradiated ablation surface, that is, further reduction of the RT growth is expected. We measured the RT growth rate of Br-doped polystyrene targets. The experimental results indicate that of the CHBr targets show significantly small growth rate, which is very good news for the design of the ICF targets.

  2. Spectrum diagnoses of laser plasma in 'ablation mode' laser propulsion

    International Nuclear Information System (INIS)

    Zhang Ling; Tang Zhiping; Tong Huifeng; Su Maogen; Xue Simin

    2007-01-01

    The propellant materials (LY12 aluminium, No.45 steel, H62 brass, graphite, polyvinyl chloride, polyoxymethylene) in laser propulsion are ablated by a Nd: YAG laser (1.06 μm, 10 ns). The space-resolved and the power density-depended emission spectrums of aluminum and copper plasma are recorded and analyzed. Under the local thermo equilibrium assumption, the electronic temperature and density as well as the average intensity of ionization from the relative intensity of characteristic spectrum for aluminum are obtained. Their dependence on laser power-density and spatial variation are also investigated. The ablation imagines (the ejected plumes) of the six materials in vacuum are obtained and discussed by using a B shutter camera. (authors)

  3. Effects of pressure rise on cw laser ablation of tissue

    Science.gov (United States)

    LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.

    1991-06-01

    The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.

  4. Nd:YAG 1.44 laser ablation of human cartilage

    Science.gov (United States)

    Cummings, Robert S.; Prodoehl, John A.; Rhodes, Anthony L.; Black, Johnathan D.; Sherk, Henry H.

    1993-07-01

    This study determined the effectiveness of a Neodymium:YAG 1.44 micrometers wavelength laser on human cartilage. This wavelength is strongly absorbed by water. Cadaveric meniscal fibrocartilage and articular hyaline cartilage were harvested and placed in normal saline during the study. A 600 micrometers quartz fiber was applied perpendicularly to the tissues with a force of 0.098 N. Quantitative measurements were then made of the ablation rate as a function of fluence. The laser energy was delivered at a constant repetition rate of 5 Hz., 650 microsecond(s) pulsewidth, and energy levels ranging from 0.5 joules to 2.0 joules. Following the ablation of the tissue, the specimens were fixed in formalin for histologic evaluation. The results of the study indicate that the ablation rate is 0.03 mm/mj/mm2 for hyaline cartilage and fibrocartilage. Fibrocartilage was cut at approximately the same rate as hyaline cartilage. There was a threshold fluence projected to be 987 mj/mm2 for hyaline cartilage and fibrocartilage. Our results indicate that the pulsed Nd:YAG laser operating at 1.44 micrometers has a threshold fluence above which it will ablate human cartilage, and that its ablation rate is directly proportional to fluence over the range of parameters tested. Fibrocartilage and hyaline cartilage demonstrated similar threshold fluence and ablation rates which is related to the high water content of these tissues.

  5. Synthesis by picosecond laser ablation of ligand-free Ag and Au nanoparticles for SERS applications

    Science.gov (United States)

    Fazio, Enza; Spadaro, Salvatore; Santoro, Marco; Trusso, Sebastiano; Lucotti, Andrea.; Tommasini, Matteo.; Neri, Fortunato; Maria Ossi, Paolo

    2018-01-01

    The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS) measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  6. Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jung Hwan; Lee, Jeong Hyun [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Valcavi, Roberto [Endocrinology Division and Thyroid Disease Center, Arcispedale Santa Maria Nuova, Reggio Emilia (Italy); Pacella, Claudio M. [Diagnostic Imaging and Interventional Radiology Department, Ospedale Regina Apostolorum, Albano Laziale-Rome (IT); Rhim, Hyun Chul [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Na, Dong Kyu [Human Medical Imaging and Intervention Center, Seoul (Korea, Republic of)

    2011-10-15

    Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation.

  7. Obtention of Ti nanoparticles by laser ablation

    International Nuclear Information System (INIS)

    Diaz E, J.R.; Escobar A, L.; Camps, E.; Santiago, P.; Ascencio, J.

    2002-01-01

    The obtention of Ti nanoparticles around 5-30 nm diameter through the laser ablation technique is reported. The formation of nanoparticles is carried out in He atmosphere to different pressures, placing directly in Si substrates (100) and in Cu grids. The results show that the work pressure is an important parameter that allows to control the nanoparticles size. Also the plasma characterization results are presented where the Ti II is the predominant specie with an average kinetic energy of 1824 eV. (Author)

  8. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    Science.gov (United States)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  9. A thermal model for nanosecond pulsed laser ablation of aluminum

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-07-01

    Full Text Available In order to simulate the nanosecond pulsed laser ablation of aluminum, a novel model was presented for the target ablation and plume expansion. The simulation of the target ablation was based on one-dimensional heat conduction, taking into account temperature dependent material properties, phase transition, dielectric transition and phase explosion. While the simulation of the plume expansion was based on one-dimensional gas-dynamical equation, taking into account ionization, plume absorption and shielding. By coupling the calculations of the target ablation and plume expansion, the characteristics of the target and plume were obtained. And the calculated results were in good agreement with the experimental data, in terms of ablation threshold and depth within the fluence range of the tested laser. Subsequently, investigations were carried out to analyze the mechanisms of nanosecond pulsed laser ablation. The calculated results showed that the maximum surface temperature remained at about 90% of the critical temperature (0.9Tc due to phase explosion. Moreover, the plume shielding has significant effects on the laser ablation, and the plume shielding proportion increase as the laser fluence increasing. The ambient pressure belows 100 Pa is more suitable for laser ablation, which can obtained larger ablation depth.

  10. Cutting thin glass by femtosecond laser ablation

    Science.gov (United States)

    Shin, Hyesung; Kim, Dongsik

    2018-06-01

    The femtosecond laser ablation process for cutting thin aluminoborosilicate glass sheets of thickness 100 μm was investigated with emphasis on effective cutting speed (Veff) and mechanical strength of diced samples. The process parameters including the laser fluence (F), overlap ratio (r) of the laser beam and polarization direction were varied at a fixed pulse repetition rate f = 1 kHz to find the optimal process condition that maximizes Veff and edge strength. A three-point bending test was performed to evaluate the front-side and back-side bending (edge) strength of the laser-cut samples. Veff was proportional to F unless r exceeded a critical value, at which excessive energy began to be delivered at the same spot. The front-side edge strength was bigger than the back-side strength because of the back-side damages such as chipping. Good edge strength, as high as ∼280 MPa (front-side) and ∼230 MPa (back-side), was obtained at F = 19 J/m2, r = 0.99, with laser polarization vertical to the cutting path.

  11. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    International Nuclear Information System (INIS)

    Canteli, D.; Fernandez, S.; Molpeceres, C.; Torres, I.; Gandía, J.J.

    2012-01-01

    Highlights: ► A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. ► The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. ► A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 °C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  12. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Canteli, D., E-mail: david.canteli@ciemat.es [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Fernandez, S. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Molpeceres, C. [Centro Laser, Universidad Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain); Torres, I.; Gandia, J.J. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. Black-Right-Pointing-Pointer The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. Black-Right-Pointing-Pointer A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 Degree-Sign C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  13. Laser Ablation for Cancer: Past, Present and Future

    Science.gov (United States)

    Schena, Emiliano; Saccomandi, Paola; Fong, Yuman

    2017-01-01

    Laser ablation (LA) is gaining acceptance for the treatment of tumors as an alternative to surgical resection. This paper reviews the use of lasers for ablative and surgical applications. Also reviewed are solutions aimed at improving LA outcomes: hyperthermal treatment planning tools and thermometric techniques during LA, used to guide the surgeon in the choice and adjustment of the optimal laser settings, and the potential use of nanoparticles to allow biologic selectivity of ablative treatments. Promising technical solutions and a better knowledge of laser-tissue interaction should allow LA to be used in a safe and effective manner as a cancer treatment. PMID:28613248

  14. Laser Ablation for Cancer: Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Emiliano Schena

    2017-06-01

    Full Text Available Laser ablation (LA is gaining acceptance for the treatment of tumors as an alternative to surgical resection. This paper reviews the use of lasers for ablative and surgical applications. Also reviewed are solutions aimed at improving LA outcomes: hyperthermal treatment planning tools and thermometric techniques during LA, used to guide the surgeon in the choice and adjustment of the optimal laser settings, and the potential use of nanoparticles to allow biologic selectivity of ablative treatments. Promising technical solutions and a better knowledge of laser-tissue interaction should allow LA to be used in a safe and effective manner as a cancer treatment.

  15. Synthesis of higher diamondoids by pulsed laser ablation plasmas in supercritical CO2

    International Nuclear Information System (INIS)

    Nakahara, Sho; Stauss, Sven; Kato, Toru; Terashima, Kazuo; Sasaki, Takehiko

    2011-01-01

    Pulsed laser ablation (wavelength 532 nm; fluence 18 J/cm 2 ; pulse width 7 ns; repetition rate 10 Hz) of highly oriented pyrolytic graphite was conducted in adamantane-dissolved supercritical CO 2 with and without cyclohexane as a cosolvent. Micro-Raman spectroscopy of the products revealed the presence of hydrocarbons possessing sp 3 -hybridized carbons similar to diamond structures. The synthesis of diamantane and other possible diamondoids consisting of up to 12 cages was confirmed by gas chromatography-mass spectrometry. Furthermore, gas chromatography-mass spectrometry measurements of samples before and after pyrolysis treatment indicate the synthesis of the most compact decamantane, namely, superadamantane. It is thought that oxidant species originating from CO 2 during pulsed laser ablation might lead to the selective dissociation of C-H bonds, enabling the synthesis of low H/C ratio molecules. Therefore, laser ablation in supercritical CO 2 is proposed as a practical method for synthesizing diamondoids.

  16. Single- and dual-wavelength laser pulses induced modification in 10×(Al/Ti)/Si multilayer system

    Energy Technology Data Exchange (ETDEWEB)

    Salatić, B. [University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Petrović, S., E-mail: spetro@vinca.rs [University of Belgrade, Institute of Nuclear Science-Vinča, POB 522, 11001 Belgrade (Serbia); Peruško, D. [University of Belgrade, Institute of Nuclear Science-Vinča, POB 522, 11001 Belgrade (Serbia); Čekada, M.; Panjan, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Pantelić, D.; Jelenković, B. [University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)

    2016-01-01

    Graphical abstract: - Highlights: • Experimental and numerical study of laser-induced ablation and micro-sized crater formation. • Dual-wavelength pulses induce creation of wider and deeper craters due to synergies of two processes. • Sunflower-like structure formed by dual-wavelength pulses at low irradiance. • Numerical model of nanosecond pulsed laser ablation for complex (Al/Ti)/Si system has been developed. - Abstract: The surface morphology of the ablation craters created in the multilayer 10×(Al/Ti)/Si system by nanosecond laser pulses at single- and dual wavelength has been studied experimentally and numerically. A complex multilayer thin film including ten (Al/Ti) bilayers deposited by ion sputtering on Si(1 0 0) substrate to a total thickness of 260 nm were illuminated at different laser irradiance in the range 0.25–3.5 × 10{sup 9} W cm{sup −2}. Single pulse laser irradiation was done at normal incidence in air, with the single wavelength, either at 532 nm or 1064 nm or with both laser light simultaneously in the ratio of 1:10 for energy per pulse between second harmonic and 1064 nm. Most of the absorbed laser energy was rapidly transformed into heat, producing intensive modifications of composition and morphology on the sample surface. The results show an increase in surface roughness, formation of specific nanostructures, appearance of hydrodynamic features and ablation of surface material with crater formation. Applying a small fraction (10%) of the second harmonic in dual-wavelength pulses, a modification of the 10×(Al/Ti)/Si system by a single laser pulse was reflected in the formation of wider and/or deeper craters. Numerical calculations show that the main physical mechanism in ablation process is normal evaporation without phase explosion. The calculated and experimental results agree relatively well for the whole irradiance range, what makes the model applicable to complex Al/Ti multilayer systems.

  17. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report.

    Science.gov (United States)

    Oddo, Silvia; Balestra, Margherita; Vera, Lara; Giusti, Massimo

    2018-05-11

    Radiofrequency ablation and laser ablation are safe and effective techniques for reducing thyroid nodule volume, neck symptoms, and cosmetic complaints. Therapeutic success is defined as a nodule reduction > 50% between 6 and 12 months after the procedure, but a percentage of nodules inexplicably do not respond to thermal ablation. We describe the case of a young Caucasian woman with a solid benign thyroid nodule who refused surgery and who had undergone radiofrequency ablation in 2013. The nodule did not respond in terms of either volume reduction or improvement in neck symptoms. After 2 years, given the patient's continued refusal of thyroidectomy, we proposed laser ablation. The nodule displayed a significant volume reduction (- 50% from radiofrequency ablation baseline volume, - 57% from laser ablation baseline), and the patient reported a significant improvement in neck symptoms (from 6/10 to 1/10 on a visual analogue scale). We conjecture that some benign thyroid nodules may be intrinsically resistant to necrosis when one specific ablation technique is used, but may respond to another technique. To the best of our knowledge, this is the first description of the effect of performing a different percutaneous ablation technique in a nodule that does not respond to radiofrequency ablation.

  18. CuInGaSe{sub 2} nanoparticles by pulsed laser ablation in liquid medium

    Energy Technology Data Exchange (ETDEWEB)

    Mendivil, M.I.; García, L.V. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); Krishnan, B. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); CIIDIT—Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); Avellaneda, D. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); and others

    2015-12-15

    Highlights: • CIGS nanocolloids were synthesized using PLAL technique. • Characterized their morphology, structure, composition and optical properties. • Morphologies were dependent on ablation wavelength and liquid medium. • Optical absorption and bandgap of these nanocolloids were tunable. - Abstract: Pulsed laser ablation in liquid medium (PLALM) is a nanofabrication technique to produce complex nanostructures. CuInGaSe{sub 2} (CIGS) is an alloy with applications in photovoltaic industry. In this work, we studied the effects of laser ablation wavelength, energy fluence and liquid medium on the properties of the CIGS nanoparticles synthesized by PLALM. The nanoparticles obtained were analyzed by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. XPS results confirmed the chemical states and composition of the ablated products. TEM analysis showed different morphologies for the nanomaterials obtained in different liquid media and ablation wavelengths. The optical properties for these CIGS nanocolloids were analyzed using UV–vis absorption spectroscopy. The results demonstrated the use of PLALM as a useful synthesis technique for nanoparticles of quaternary photovoltaic materials.

  19. Corneal tissue ablation using 6.1 μm quantum cascade laser

    Science.gov (United States)

    Huang, Yong; Kang, Jin U.

    2012-03-01

    High absorption property of tissues in the IR range (λ> 2 μm) results in effective tissue ablation, especially near 3 μm. In the mid-infrared range, wavelengths of 6.1 μm and 6.45 μm fall into the absorption bands of the amide protein groups Amide-I and Amide-II, respectively. They also coincide with the deformation mode of water, which has an absorption peak at 6.1 μm. This coincidence makes 6.1 μm laser a better ablation tool that has promising effectiveness and minimum collateral damages than 3 μm lasers. In this work, we performed bovine corneal ablation test in-vitro using high-power 6.1μm quantum cascade laser (QCL) operated at pulse mode. Quantum cascade laser has the advantages of low cost, compact size and tunable wavelength, which makes it great alternative Mid-IR light source to conventional tunable free-electron lasers (FEL) for medical applications. Preliminary results show that effective corneal stroma craters were achieved with much less collateral damage in corneal tissue that contains less water. Future study will focus on optimizing the control parameters of QCL to attain neat and precise ablation of corneal tissue and development of high peak power QCL.

  20. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, M.E., E-mail: mshaheen73@science.tanta.edu.eg [Department of Physics, Faculty of Sciences, Tanta University, Tanta (Egypt); Gagnon, J.E.; Fryer, B.J. [Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, Ontario N9B 3P4 (Canada); Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2015-05-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using {sup 66}Zn/{sup 63}Cu, {sup 208}Pb/{sup 238}U, {sup 232}Th/{sup 238}U, {sup 66}Zn/{sup 232}Th and {sup 66}Zn/{sup 208}Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%). - Highlights: • Fractionation and ICP-MS signal response were investigated for two different pulse widths using NIST 610 and Naval Brass. • Dependence of fractionation indices on repetition rate and pulse width. • Higher ablation rate was observed in picosecond compared to

  1. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Shaheen, M.E.; Gagnon, J.E.; Fryer, B.J.

    2015-01-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using 66 Zn/ 63 Cu, 208 Pb/ 238 U, 232 Th/ 238 U, 66 Zn/ 232 Th and 66 Zn/ 208 Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%). - Highlights: • Fractionation and ICP-MS signal response were investigated for two different pulse widths using NIST 610 and Naval Brass. • Dependence of fractionation indices on repetition rate and pulse width. • Higher ablation rate was observed in picosecond compared to femtosecond laser ablation of NIST 610 and Brass

  2. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  3. Effect of laser absorption on picosecond laser ablation of Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide

    Science.gov (United States)

    Wu, Baoye; Liu, Peng; Wang, Xizhao; Zhang, Fei; Deng, Leimin; Duan, Jun; Zeng, Xiaoyan

    2018-05-01

    Due to excellent properties, Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide are widely used in industry. In this paper, the effect of absorption of laser light on ablation efficiency and roughness have been studied using a picosecond pulse Nd:YVO4 laser. The experimental results reveal that laser wavelength, original surface roughness and chemical composition play an important role in controlling ablation efficiency and roughness. Firstly, higher ablation efficiency with lower surface roughness is achieved on the ablation of 9Cr18 at 532, comparing with 1064 nm. Secondly, the ablation efficiency increases while the Ra of the ablated region decreases with the decrease of original surface roughness on ablation of Cr12MoV mold steel at 532 nm. Thirdly, the ablation efficiency of H13A cemented carbide is much higher than 9Cr18 stainless steel and Cr12MoV mold steel at 1064 nm. Scanning electron microscopy images reveals the formation of pores on the surface of 9Cr18 stainless steel and Cr12MoV mold steel at 532 nm while no pores are formed at 1064 nm. As to H13A cemented carbide, worm-like structure is formed at 1064 nm. The synergetic effects of the heat accumulation, plasma shielding and ablation threshold on laser ablation efficiency and machining quality were analyzed and discussed systematically in this paper.

  4. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    International Nuclear Information System (INIS)

    Baladi, Arash; Sarraf Mamoory, Rasoul

    2010-01-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  5. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Baladi, Arash [Materials Engineering Department, Tarbiat Modares University, Jalal Al Ahmad, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Sarraf Mamoory, Rasoul, E-mail: rsarrafm@modares.ac.ir [Materials Engineering Department, Tarbiat Modares University, Jalal Al Ahmad, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2010-10-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  6. Processing of Dielectric Optical Coatings by Nanosecond and Femtosecond UV Laser Ablation

    International Nuclear Information System (INIS)

    Ihlemann, J.; Bekesi, J.; Klein-Wiele, J.H.; Simon, P.

    2008-01-01

    Micro processing of dielectric optical coatings by UV laser ablation is demonstrated. Excimer laser ablation at deep UV wavelengths (248 nm, 193 nm) is used for the patterning of thin oxide films or layer stacks. The layer removal over extended areas as well as sub-μm-structuring is possible. The ablation of SiO2, Al2O3, HfO2, and Ta2O5 layers and layer systems has been investigated. Due to their optical, chemical, and thermal stability, these inorganic film materials are well suited for optical applications, even if UV-transparency is required. Transparent patterned films of SiO2 are produced by patterning a UV-absorbing precursor SiOx suboxide layer and oxidizing it afterwards to SiO2. In contrast to laser ablation of bulk material, in the case of thin films, the layer-layer or layer-substrate boundaries act as predetermined end points, so that precise depth control and a very smooth surface can be achieved. For large area ablation, nanosecond lasers are well suited; for patterning with submicron resolution, femtosecond excimer lasers are applied. Thus the fabrication of optical elements like dielectric masks, pixelated diffractive elements, and gratings can be accomplished.

  7. Laser-induced shockwave propagation from ablation in a cavity

    International Nuclear Information System (INIS)

    Zeng Xianzhong; Mao Xianglei; Mao, Samuel S.; Wen, S.-B.; Greif, Ralph; Russo, Richard E.

    2006-01-01

    The propagation of laser-induced shockwaves from ablation inside of cavities was determined from time-resolved shadowgraph images. The temperature and electron number density of the laser-induced plasma was determined from spectroscopic measurements. These properties were compared to those for laser ablation on the flat surface under the same energy and background gas condition. A theoretical model was proposed to determine the amount of energy and vaporized mass stored in the vapor plume based on these measurements

  8. Near-field mapping by laser ablation of PMMA coatings

    DEFF Research Database (Denmark)

    Fiutowski, J.; Maibohm, C.; Kostiucenko, O.

    2011-01-01

    The optical near-field of lithography-defined gold nanostructures, arranged into regular arrays on a gold film, is characterized via ablation of a polymer coating by laser illumination. The method utilizes femto-second laser pulses from a laser scanning microscope which induces electrical field...... that the different stages in the ablation process can be controlled and characterized making the technique suitable for characterizing optical near-fields of metal nanostructures....

  9. Vertical integration of dual wavelength index guided lasers

    NARCIS (Netherlands)

    Karouta, F.; Tan, H.H.; Jagadish, C.; Roy, van B.H.

    1999-01-01

    The vertical integration of two GaAs-based lasers operating at different wavelengths has been achieved with the use of re-growth technology. A V-channel substrate inner stripe structure was used for the bottom laser and a ridge waveguide for the top laser. Both lasers shared a common electrode and

  10. Recent advances in long wavelength quantum dot lasers and amplifiers

    NARCIS (Netherlands)

    Nötzel, R.; Bente, E.A.J.M.; Smit, M.K.; Dorren, H.J.S.

    2009-01-01

    We demonstrate 1.55-µm InAs/InGaAsP/InP (100) quantum dot (QD) shallow and deep etched Fabry-Pérot and ring lasers, micro-ring lasers, mode-locked lasers, Butt-joint integrated lasers, polarization control of gain, and wavelength conversion in QD amplifiers.

  11. Comparison of the laser ablation process on Zn and Ti using pulsed digital holographic interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Amer, E., E-mail: eynas.amer@ltu.se [Department of Applied Physics and Mechanical Engineering, Lulea University of Technology, SE-971 87 Lulea (Sweden); Gren, P.; Kaplan, A.F.H.; Sjoedahl, M. [Department of Applied Physics and Mechanical Engineering, Lulea University of Technology, SE-971 87 Lulea (Sweden); El Shaer, M. [Department of Engineering Physics and Mathematics, Faculty of Engineering, Zagazig University, Zagazig (Egypt)

    2010-05-01

    Pulsed digital holographic interferometry has been used to compare the laser ablation process of a Q-switched Nd-YAG laser pulse (wavelength 1064 nm, pulse duration 12 ns) on two different metals (Zn and Ti) under atmospheric air pressure. Digital holograms were recorded for different time delays using collimated laser light (532 nm) passed through the volume along the target. Numerical data of the integrated refractive index field were calculated and presented as phase maps. Intensity maps were calculated from the recorded digital holograms and are used to calculate the attenuation of the probing laser beam by the ablated plume. The different structures of the plume, namely streaks normal to the surface for Zn in contrast to absorbing regions for Ti, indicates that different mechanisms of laser ablation could happen for different metals for the same laser settings and surrounding gas. At a laser fluence of 5 J/cm{sup 2}, phase explosion appears to be the ablation mechanism in case of Zn, while for Ti normal vaporization seems to be the dominant mechanism.

  12. Ultra-fast Movies Resolve Ultra-short Pulse Laser Ablation and Bump Formation on Thin Molybdenum Films

    Science.gov (United States)

    Domke, Matthias; Rapp, Stephan; Huber, Heinz

    For the monolithic serial interconnection of CIS thin film solar cells, 470 nm molybdenum films on glass substrates must be separated galvanically. The single pulse ablation with a 660 fs laser at a wavelength of 1053 nm is investigated in a fluence regime from 0.5 to 5.0 J/cm2. At fluences above 2.0 J/cm2 bump and jet formation can be observed that could be used for creating microstructures. For the investigation of the underlying mechanisms of the laser ablation process itself as well as of the bump or jet formation, pump probe microscopy is utilized to resolve the transient ablation behavior.

  13. Gravimetric and profilometric measurements of the ablation rates of photosensitive polymers at different wavelengths

    International Nuclear Information System (INIS)

    Dumont, Th.; Bischofberger, R.; Lippert, T.; Wokaun, A.

    2005-01-01

    The ablation rates of two polyimides (PMDA and DurimidTM) and one triazene polymer were studied by gravimetric (quartz microbalance) and profilometric (profilometer) methods at irradiation wavelengths of 193, 248 and 308 nm. The ablation rates determined by the two methods are discussed in the context of the absorption behavior of the materials. Furthermore, the consistence of the two experimental methods is discussed for the ablation rates of DurimidTM and the triazene polymer. The gravimetric measurements revealed a good correlation between the ablation rate and the absorption properties of the examined materials. The comparison of the gravimetric and the profilometric measurements suggest a significant mass removal, e.g. by formation of gaseous products, prior to the detection of changes in the surface morphology

  14. Laser ablation surface-enhanced Raman microspectroscopy.

    Science.gov (United States)

    Londero, Pablo S; Lombardi, John R; Leona, Marco

    2013-06-04

    Improved identification of trace organic compounds in complex matrixes is critical for a variety of fields such as material science, heritage science, and forensics. Surface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique that can attain single-molecule sensitivity and has been shown to complement mass spectrometry, but lacks widespread application without a robust method that utilizes the effect. We demonstrate a new, highly sensitive, and widely applicable approach to SERS analysis based on laser ablation in the presence of a tailored plasmonic substrate. We analyze several challenging compounds, including non-water-soluble pigments and dyed leather from an ancient Egyptian chariot, achieving sensitivity as high as 120 amol for a 1:1 signal-to-noise ratio and 5 μm spatial resolution. This represents orders of magnitude improvement in spatial resolution and sensitivity compared to those of other SERS approaches intended for widespread application, greatly increasing the applicability of SERS.

  15. Development of near-field laser ablation inductively coupled plasma mass spectrometry for sub-micrometric analysis of solid samples

    International Nuclear Information System (INIS)

    Jabbour, Chirelle

    2016-01-01

    A near field laser ablation method was developed for chemical analysis of solid samples at sub-micrometric scale. This analytical technique combines a nanosecond laser Nd:YAG, an atomic Force Microscope (AFM), and an inductively coupled plasma mass spectrometer (ICPMS). In order to improve the spatial resolution of the laser ablation process, the near-field enhancement effect was applied by illuminating, by the laser beam, the apex of the AFM conductive sharp tip maintained at a few nanometers (5 to 30 nm) above the sample surface. The interaction between the illuminated tip and the sample surface enhances locally the incident laser energy and leads to the ablation process. By applying this technique to conducting gold and tantalum samples, and semiconducting silicon sample, a lateral resolution of 100 nm and depths of a few nanometers were demonstrated. Two home-made numerical codes have enabled the study of two phenomena occurring around the tip: the enhancement of the laser electrical field by tip effect, and the induced laser heating at the sample surface. The influence of the main operating parameters on these two phenomena, amplification and heating, was studied. an experimental multi-parametric study was carried out in order to understand the effect of different experimental parameters (laser fluence, laser wavelength, number of laser pulses, tip-to-sample distance, sample and tip nature) on the near-field laser ablation efficiency, crater dimensions and amount of ablated material. (author) [fr

  16. Laser ablation of tumors: current concepts and recent developments

    International Nuclear Information System (INIS)

    Stroszczynski, C.; Gaffke, G.; Gnauck, M.; Ricke, J.; Felix, R.; Puls, R.; Speck, U.; Hosten, N.; Oettle, H.; Hohenberger, P.

    2004-01-01

    Purpose. The purpose of this paper is to present technical innovations and clinical results of percutaneous interventional laser ablation of tumors using new techniques. Methods. Laser ablation was performed in 182 patients (liver tumors: 131, non hepatic tumors - bone, lung, others: 51) after interdisciplinary consensus was obtained. The procedure was done using a combination of imaging modalities (CT/MRI, CT/US) or only closed high field MRI (1.5 T). All patients received an MRI-scan immediately after laser ablation. Results. In 90.9% of the patients with liver tumors, a complete ablation was achieved. Major events occurred in 5.4%. The technical success rate of laser ablation in non-hepatic tumors was high, clinical results differed depending on the treated organ. Conclusions. The treatment of tumors of the liver and other organs up to 5 cm by laser ablation was a safe procedure with a low rate of complications and side effects. Image guidance by MRI is advantageous for precise tumor visualization in all dimensions, therapy monitoring, and control of laser ablation results. (orig.) [de

  17. Percutaneous laser ablation of benign and malignant thyroid nodules.

    Science.gov (United States)

    Papini, Enrico; Bizzarri, Giancarlo; Pacella, Claudio M

    2008-10-01

    Percutaneous image-guided procedures, largely based on thermal ablation, are at present under investigation for achieving a nonsurgical targeted cytoreduction in benign and malignant thyroid lesions. In several uncontrolled clinical trials and in two randomized clinical trials, laser ablation has demonstrated a good efficacy and safety for the shrinkage of benign cold thyroid nodules. In hyperfunctioning nodules, laser ablation induced a nearly 50% volume reduction with a variable frequency of normalization of thyroid-stimulating hormone levels. Laser ablation has been tested for the palliative treatment of poorly differentiated thyroid carcinomas, local recurrences or distant metastases. Laser ablation therapy is indicated for the shrinkage of benign cold nodules in patients with local pressure symptoms who are at high surgical risk. The treatment should be performed only by well trained operators and after a careful cytological evaluation. Laser ablation does not seem to be consistently effective in the long-term control of hyperfunctioning thyroid nodules and is not an alternative treatment to 131I therapy. Laser ablation may be considered for the cytoreduction of tumor tissue prior to external radiation therapy or chemotherapy of local or distant recurrences of thyroid malignancy that are not amenable to surgical or radioiodine treatment.

  18. Pulsed Tm:YAG laser ablation of knee joint tissues

    Science.gov (United States)

    Shi, Wei-Qiang; Vari, Sandor G.; Duffy, J. T.; Miller, J. M.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1992-06-01

    We investigated the effect of a free-running 2.01 micron pulsed Tm:YAG laser on bovine knee joint tissues. Ablation rates of fresh fibrocartilage, hyaline cartilage, and bone were measured in saline as a function of laser fluence (160 - 640 J/cm2) and fiber core size (400 and 600 microns). All tissues could be effectively ablated and the ablation rate increased linearly with the increasing fluence. Use of fibers of different core sizes, while maintaining constant energy fluence, did not result in significant difference in ablation rate. Histology analyses of the ablated tissue samples reveal average Tm:YAG radiation induced thermal damage (denatunalization) zones ranging between 130 and 540 microns, depending on the laser parameters and the tissue type.

  19. Nanoparticle fabrication of hydroxyapatite by laser ablation in water

    International Nuclear Information System (INIS)

    Musaev, O. R.; Wieliczka, D. M.; Wrobel, J. M.; Kruger, M. B.; Dusevich, V.

    2008-01-01

    Synthetic polycrystalline hydroxyapatite was ablated in water with 337 nm radiation from a UV nitrogen pulsed laser. According to transmission electron microscopy micrographs, the ablated particles were approximately spherical and had a size of ∼80 nm. Raman spectroscopic analysis demonstrated that particles had the same structure as the original crystal. X-ray photoelectron spectroscopy showed that the surface chemical composition was close to that of the original material. The characteristics of the ablated particles and estimations of the temperature rise of the hydroxyapatite surface under laser irradiation are consistent with the mechanism of explosive boiling being responsible for ablation. The experimental observations offer the basis for preparation of hydroxyapatite nanoparticles by laser ablation in water

  20. Studies on perovskite film ablation and scribing with ns-, ps- and fs-laser pulses

    Science.gov (United States)

    Bayer, Lukas; Ye, Xinyuan; Lorenz, Pierre; Zimmer, Klaus

    2017-10-01

    Hybrid organic-inorganic perovskites attract much attention due to their exceptional optoelectronic properties, in particular for photovoltaic (PV) applications. The accurate, high-speed and reliable patterning of the PV films is required for perovskite solar modules fabrication. Laser scribing provides these characteristics needed for industrial fabrication processes. In this work, the laser ablation and scribing of perovskite layers (CH3NH3PbI3: MAPbI3) with different laser sources (ns-, ps-, fs-laser pulses with wavelengths of 248 nm to 2.5 µm) were systematically investigated. The perovskite material was irradiated from both the film side and the substrate (rear side) side to study and compare the particular processes. The patterning results of the perovskite film can be classified into (1) regular laser ablation, (2) thin-film delamination lift-off process, and (3) lift-off with thermal modifications. A particular process, the localised lift-off of single grains from the perovskite film, has been observed and is discussed in relation to the thin-film lift-off process. Ablation and ablation-related mechanisms provide good conditions for laser scribing of the perovskite layer required for module interconnection via P2.

  1. Pulsed laser ablation of silicon with low laser fluence in a low-pressure of ammonia ambient

    International Nuclear Information System (INIS)

    Choo, Cheow-Keong; Tohara, Makoto; Enomoto, Kazuhiro; Tanaka, Katsumi

    2004-01-01

    Silicon was ablated by 532 nm wavelength of Nd:YAG laser in ammonia gas ambient. The influence of laser fluence and gas ambient pressures between 1.33x10 1 to 1.33x10 -5 Pa on the deposited compound was studied by in situ X-ray photoelectron spectroscopy and transmission Fourier transform infrared spectroscopy techniques. The results indicate that the deposited compound is composed of nonstoichiometric silicon nitride (SiN x , x=0-0.84). It has been shown that the composition of nitrogen to silicon is sensitive to the laser fluence; it increases with decreasing laser fluence. However, the ammonia gas ambient in these low pressures range had no influence on the composition of the deposited compound. The reaction of the ablated silicon with low-pressure ambient ammonia is proposed to be occurred on the substrate

  2. Effect of absorbing coating on ablation of diamond by IR laser pulses

    Science.gov (United States)

    Kononenko, T. V.; Pivovarov, P. A.; Khomich, A. A.; Khmel'nitskii, R. A.; Konov, V. I.

    2018-03-01

    We study the possibility of increasing the efficiency and quality of laser ablation microprocessing of diamond by preliminary forming an absorbing layer on its surface. The laser pulses having a duration of 1 ps and 10 ns at a wavelength of 1030 nm irradiate the polycrystalline diamond surface coated by a thin layer of titanium or graphite. We analyse the dynamics of the growth of the crater depth as a function of the number of pulses and the change in optical transmission of the ablated surface. It is found that under irradiation by picosecond pulses the preliminary graphitisation allows one to avoid the laser-induced damage of the internal diamond volume until the appearance of a self-maintained graphitised layer. The absorbing coating (both graphite and titanium) much stronger affects ablation by nanosecond pulses, since it reduces the ablation threshold by more than an order of magnitude and allows full elimination of a laser-induced damage of deep regions of diamond and uncontrolled explosive ablation in the nearsurface layer.

  3. Keratin film ablation for the fabrication of brick and mortar skin structure using femtosecond laser pulses

    Science.gov (United States)

    Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam

    2015-09-01

    The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.

  4. Osteoid Osteoma: Experience with Laser- and Radiofrequency-Induced Ablation

    International Nuclear Information System (INIS)

    Gebauer, Bernhard; Tunn, Per-Ulf; Gaffke, Gunnar; Melcher, Ingo; Felix, Roland; Stroszczynski, Christian

    2006-01-01

    The purpose of this study was to analyze the clinical outcome of osteoid osteoma treated by thermal ablation after drill opening. A total of 17 patients and 20 procedures were included. All patients had typical clinical features (age, pain) and a typical radiograph showing a nidus. In 5 cases, additional histological specimens were acquired. After drill opening of the osteoid osteoma nidus, 12 thermal ablations were induced by laser interstitial thermal therapy (LITT) (9F Power-Laser-Set; Somatex, Germany) and 8 ablations by radiofrequency ablation (RFA) (RITA; StarBurst, USA). Initial clinical success with pain relief has been achieved in all patients after the first ablation. Three patients had an osteoid osteoma recurrence after 3, 9, and 10 months and were successfully re-treated by thermal ablation. No major complication and one minor complication (sensible defect) were recorded. Thermal ablation is a safe and minimally invasive therapy option for osteoid osteoma. Although the groups are too small for a comparative analysis, we determined no difference between laser- and radiofrequency-induced ablation in clinical outcome after ablation

  5. Cutting and skin-ablative properties of pulsed mid-infrared laser surgery.

    Science.gov (United States)

    Kaufmann, R; Hartmann, A; Hibst, R

    1994-02-01

    Pulsed mid-infrared lasers allow a precise removal of soft tissues with only minimal thermal damage. To study the potential dermatosurgical usefulness of currently available systems at different wavelengths (2010-nm Thulium:YAG laser, 2100-nm Holmium:YAG laser, 2790-nm Erbium:YSGG laser, and 2940-nm Erbium:YAG laser) in vivo on pig skin. Immediate effects and wound healing of superficial laser-abrasions and incisions were compared with those of identical control lesions produced by dermabrasion, scalpel incisions, or laser surgery performed by a 1060-nm Nd:YAG and a 1060-nm CO2 laser (continuous and superpulsed mode). Best efficiency and least thermal injury was found for the pulsed Erbium:YAG laser, leading to ablative and incisional lesions comparable to those obtained by dermabrasion or superficial scalpel incisions, respectively. In contrast to other mid-infrared lasers tested, the 2940-nm Erbium:YAG laser thus provides a potential instrument for future applications in skin surgery, especially when aiming at a careful ablative removal of delicate superficial lesions with maximum sparing of adjacent tissue structures. However, in the purely incisional application mode pulsed mid-infrared lasers, though of potential usefulness in microsurgical indications (eg, surgery of the cornea), do not offer a suggestive alternative to simple scalpel surgery of the skin.

  6. One-step synthesis of Zn/ZnO hollow nanoparticles by the laser ablation in liquid technique

    International Nuclear Information System (INIS)

    Desarkar, H S; Kumbhakar, P; Mitra, A K

    2013-01-01

    Here, one-step synthesis of Zn/ZnO hollow nanoparticles along with solid nanoparticles is reported using the laser ablation in liquid (LAL) technique. Laser radiation of the 1064 nm wavelength is emitted from a Q-switched Nd:YAG laser and is incident on a solid zinc target kept in a water medium. The as-obtained hollow and solid particles are characterized by transmission electron microscopy (TEM) and UV–visible absorption spectroscopy. Hollow nanoparticles are produced by the laser generated bubbles produced in water. The surface of a hollow nanoparticle is assembled from smaller solid nanoparticles. A strong laser–particle interaction is also observed when laser ablation is carried out for a longer time duration. Photoluminescence (PL) emission measurements at room temperature show that all samples exhibit PL emission in the UV–visible region. A reduction in size and an increase in concentration of the synthesized nanoparticles is observed with increasing laser ablation time. (letter)

  7. Identification of photoacoustic transients during pulsed laser ablation of the human temporal bone: an experimental model.

    Science.gov (United States)

    Wong, B J; Dickinson, M R; Berns, M W; Neev, J

    1996-12-01

    Laser ablation of hard tissues during neurotologic operations has been accomplished with continuous-wave (CW) lasers in the visible and midinfrared spectrum. The mechanism of ablation at these wavelengths is secondary to photothermal-induced tissue destruction. As a result, significant thermal damage to surrounding tissue may occur. Pulsed ultraviolet (UV) lasers have been suggested as an alternative to the argon, KTP-532, and CO2 lasers currently used in clinical practice. The pulse length of Excimer lasers are considerably shorter than the thermal diffusion time of bone tissue, and as a consequence thermal injury is minimal. This makes pulsed lasers an attractive tool for tissue ablation in the ear: in essence a "cold knife." However, the short pulse width of Excimer lasers (typically 10-150 ns) can create large thermoelastic stresses in the ablation specimen. This study identifies the presence of these photoacoustic waves during the Excimer laser treatment of the cadaveric human temporal bone. A XeCl (lambda = 308 nm, tau p = 12 ns) excimer laser was used to ablate hard tissue surrounding the oval window and facial ridge with energies of 75, 45, 25, and 12 mJ/pulse. Spot size was estimated to be 0.5 mm2. Custom high-frequency polyvinyldifluoride (PVDF) piezoelectric film transducers were fabricated and attached to the promontory, round window niche, and facial ridges. The signals were amplified using a low-noise preamplifier and recorded on a digitizing oscilloscope. Photoacoustic waves were clearly identified. Notably, large acoustic waves were measured on the promontory and on both sides of the facial ridge. The implications and clinical relevance of these findings is discussed and compared to findings obtained from a model system.

  8. Laser tattoo removal with preceding ablative fractional treatment

    Science.gov (United States)

    Cencič, Boris; Možina, Janez; Jezeršek, Matija

    2013-06-01

    A combined laser tattoo removal treatment, first the ablative fractional resurfacing (AFR) with an Er:YAG laser and then the q-switched (QSW) Nd:YAG laser treatment, was studied. Experiments show that significantly higher fluences can be used for the same tissue damage levels.

  9. Energy distribution of ions produced by laser ablation of silver in vacuum

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen; Canulescu, Stela

    2013-01-01

    the ablation process. A silver target in vacuum was irradiated with a Nd:YAG laser at a wavelength of 355nm and detailed measurements of the time-resolved angular distribution of plume ions were made. In contrast to earlier work, the beam spot was circular such that any flip-over effect of the plume is avoided......The ion energy in a silver ablation plume for fluence in the range of 0.6–2.4Jcm−2, typical for a pulsed laser deposition (PLD) experiment has been investigated. In this fluence range the ion fraction of the ablated particles becomes gradually dominant and can be utilized to characterize...

  10. Unscheduled DNA synthesis in human skin after in vitro ultraviolet-excimer laser ablation

    International Nuclear Information System (INIS)

    Green, H.A.; Margolis, R.; Boll, J.; Kochevar, I.E.; Parrish, J.A.; Oseroff, A.R.

    1987-01-01

    DNA damage repaired by the excision repair system and measured as unscheduled DNA synthesis (UDS) was assessed in freshly excised human skin after 193 and 248 nm ultraviolet (UV)-excimer laser ablative incisions. Laser irradiation at 248 nm induced DNA damage throughout a zone of cells surrounding the ablated and heat-damaged area. In contrast, with 193 nm irradiation UDS was not detected in cells adjacent to the ablated area, even though DNA strongly absorbs this wavelength. Our results suggest that the lack of UDS after 193 nm irradiation is due to: ''shielding'' of DNA by the cellular interstitium, membrane, and cytoplasm, DNA damage that is not repaired by excision repair, or thermal effects that either temporarily or permanently inhibit the excision repair processes

  11. Unscheduled DNA synthesis in human skin after in vitro ultraviolet-excimer laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Green, H.A.; Margolis, R.; Boll, J.; Kochevar, I.E.; Parrish, J.A.; Oseroff, A.R.

    1987-08-01

    DNA damage repaired by the excision repair system and measured as unscheduled DNA synthesis (UDS) was assessed in freshly excised human skin after 193 and 248 nm ultraviolet (UV)-excimer laser ablative incisions. Laser irradiation at 248 nm induced DNA damage throughout a zone of cells surrounding the ablated and heat-damaged area. In contrast, with 193 nm irradiation UDS was not detected in cells adjacent to the ablated area, even though DNA strongly absorbs this wavelength. Our results suggest that the lack of UDS after 193 nm irradiation is due to: ''shielding'' of DNA by the cellular interstitium, membrane, and cytoplasm, DNA damage that is not repaired by excision repair, or thermal effects that either temporarily or permanently inhibit the excision repair processes.

  12. Nanosecond laser ablation and deposition of silver, copper, zinc and tin

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Ettlinger, Rebecca Bolt; Canulescu, Stela

    2014-01-01

    Nanosecond pulsed laser deposition of different metals (Ag, Cu, Sn, Zn) has been studied in high vacuum at a laser wavelength of 355 nm and pulse length of 6 ns. The deposition rate is roughly similar for Sn, Cu and Ag, which have comparable cohesive energies, and much higher for the deposition...... of Zn which has a low cohesive energy. The deposition rate for all metals is strongly correlated with the total ablation yield, i.e., the total mass ablated per pulse, reported in the literature except for Sn, for which the deposition rate is low, but the total ablation yield is high. This may...... be explained by the continuous erosion by nanoparticles during deposition of the Sn films which appear to have a much rougher surface than those of the other metals studied in the present work....

  13. Use of laser ablation in nuclear decontamination

    International Nuclear Information System (INIS)

    Moggia, Fabrice; Lecardonnel, Xavier; Damerval, Frederique

    2012-09-01

    The development and the use of clean decontamination process appear to be one of the main priorities for industries especially for nuclear industries. This is especially due to the fact of wastes minimization which is one of the principal commitments. One answer would be to use a photonic process such as the LASER process. The principle of this process is based on the absorption, by the contaminant, of the photon's energy. This energy then will propagate into the material and create some mechanical waves responsible of the interfaces embrittlement and de-cohesion. As we can see, this process so called LASER ablation does not use any chemicals and allows us to avoid any production of liquid waste. Since now a couple of years, the Clean-Up Business Unit of AREVA group (BE/CL) investigates this new decontamination technology. Many tests have been done in inactive conditions on various simulants such as paints, inks, resins, metallic oxides firstly in order to estimate its efficiency but also to fully qualify it. After that, we decided to move on hot tests to fully validate this new process and to show its interest for the nuclear industry. Those hot tests have been done on two kinds of contaminated material (on tank pieces covered with a thick metallic oxide layer and on metallic pieces covered with grease). Some information such as Scanning Electron Microscopy (SEM), X-Ray scattering spectroscopy and decontamination factors (DF) will be provided in this paper. (authors)

  14. Tactile Sensing From Laser-Ablated Metallized PET Films

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas Chandra; Kosel, Jü rgen

    2016-01-01

    This paper reports the design, fabrication, and implementation of a novel sensor patch developed from commercial polyethylene terephthalate films metallized with aluminum on one side. The aluminum was ablated with laser to form interdigitated

  15. Micro Sampling System for Highly Radioactive Specimen by Laser Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sun Ho; Ha, Yeong Keong; Han, Ki Chul; Park, Yang Soon; Jee, Kwang Yong; Kim, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-03-15

    Shielded laser ablation system composed of laser system, image analyser, XYZ translator with motion controller, ablation chamber, manipulator and various optics was designed. Nd:YAG laser which can be tunable from 1064 nm to 266 nm was selected as light source. CCD camera(< x 200) was chosen to analyze a crater less than 50 un in diameter. XYZ translator was composed of three linear stage which can travel 50 w with a minimum movement of 1 {mu}m and motion controller. Before the performance test, each part of system was optically aligned. To perform the ablation test, the specimen was ablated by 50 {mu}m interval and observed by image analyser The shape of crater was almost round, indicating laser beam has homogeneous energy distribution. The resolution and magnification of image system were compatible with the design.

  16. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO2 laser.

    Science.gov (United States)

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2016-09-01

    Polyoxymethylene (POM) decomposes gradually as it is heated up by the irradiation of CO2 laser; the long-chain molecules of POM are broken into short chains, which leads to the lowering of the melting point and the critical temperature of the ablation products. When the product temperature is above the melting point, ablation comes up in the way of vaporization; when the product temperature is higher than the critical temperature, all liquid products are transformed into gas instantly and the ablation mechanism is changed. The laser fluence at which significant ablation is observed is defined as the ablation threshold, and the fluence corresponding to the ablation mechanism changing is denoted as the flyover threshold. In this paper, random pyrolysis is adopted to describe the pyrolytic decomposition of POM, and consequently, the components of the pyrolysis products under different pyrolysis rates are acquired. The Group Contribution method is used to count the thermodynamic properties of the pyrolysis products, and the melting point and the critical temperature of the product mixture are obtained by the Mixing Law. The Knudsen layer relationship is employed to evaluate the ablation mass removal when the product temperature is below the critical temperature. The gas dynamics conservation laws associated with the Jouguet condition are used to calculate the mass removal when the product temperature is higher than the critical temperature. Based on the model, a set of simulations for various laser intensities and lengths are carried out to generalize the relationships between the thresholds and the laser parameters. Besides the ablated mass areal density, which fits the experimental data quite well, the ablation temperature, pyrolysis rate, and product components are also discussed for a better understanding of the ablation mechanism of POM.

  17. Laser ablation for the synthesis of carbon nanotubes

    Science.gov (United States)

    Holloway, Brian C.; Eklund, Peter C.; Smith, Michael W.; Jordan, Kevin C.; Shinn, Michelle

    2010-04-06

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  18. Laser ablation for the synthesis of carbon nanotubes

    Science.gov (United States)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2012-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  19. Metallic nano-cavity lasers at near infrared wavelengths

    NARCIS (Netherlands)

    Hill, M.T.; Stockman, M.I.

    2009-01-01

    There has been considerable interest in nano-cavity lasers, both from a scientific perspective for investigating fundamental properties of lasers and cavities, and also to produce smaller and better lasers for low-power applications. Light confinement on a wavelength scale has been reported in

  20. A Multi-Wavelength IR Laser for Space Applications

    Science.gov (United States)

    Li, Steven X.; Yu, Anthony W.; Sun, Xiaoli; Fahey, Molly E.; Numata, Kenji; Krainak, Michael A.

    2017-01-01

    We present a laser technology development with space flight heritage to generate laser wavelengths in the near- to mid-infrared (NIR to MIR) for space lidar applications. Integrating an optical parametric crystal to the LOLA (Lunar Orbiter Laser Altimeter) laser transmitter design affords selective laser wavelengths from NIR to MIR that are not easily obtainable from traditional diode pumped solid-state lasers. By replacing the output coupler of the LOLA laser with a properly designed parametric crystal, we successfully demonstrated a monolithic intra-cavity optical parametric oscillator (iOPO) laser based on all high technology readiness level (TRL) subsystems and components. Several desired wavelengths have been generated including 2.1 microns, 2.7 microns and 3.4 microns. This laser can also be used in trace-gas remote sensing, as many molecules possess their unique vibrational transitions in NIR to MIR wavelength region, as well as in time-of-flight mass spectrometer where desorption of samples using MIR laser wavelengths have been successfully demonstrated.

  1. Enthalpy model for heating, melting, and vaporization in laser ablation

    OpenAIRE

    Vasilios Alexiades; David Autrique

    2010-01-01

    Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu) target in a helium (He) background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model th...

  2. Physics of short-wavelength-laser design

    Energy Technology Data Exchange (ETDEWEB)

    Hagelstein, P.L.

    1981-01-01

    The physics and design of vuv and soft x-ray lasers pumped by ICF class high intensity infrared laser drivers are described (for example, the SHIVA laser facility at LLNL). Laser design and physics issues are discussed in the case of a photoionization pumping scheme involving Ne II and line pumping schemes involving H-like and He-like neon.

  3. Wavelength influence on nitrogen insertion into titanium by nanosecond pulsed laser irradiation in air

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, F.; Lavisse, L. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Berger, P. [CEA/DSM/IRAMIS/SIS2M, CEA-Saclay, F-91191 Gif sur Yvette (France); SIS2M, UMR CEA-CNRS 3299, CEA-Saclay, F-91191 Gif sur Yvette (France); Jouvard, J.-M.; Andrzejewski, H.; Pillon, G.; Bourgeois, S.; Marco de Lucas, M.C. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France)

    2013-08-01

    We studied in this work the influence of the wavelength (532 vs. 1064 nm) on the insertion of nitrogen in titanium targets by surface laser treatments in air. The laser pulses were of 5 ns and the irradiance was lower than 25 × 10{sup 12} W/m{sup 2}. Results obtained using a frequency-doubled Nd:YAG laser at 532 nm were compared with those previously reported for laser treatments at 1064 nm. Nuclear reaction analysis and micro-Raman spectroscopy were used for determining the composition and the structure of the surface layers, respectively. Results showed the lower efficiency of irradiation at 532 nm for nitrogen insertion, which is possible only above threshold conditions depending on both the laser irradiance and the number of cumulated impacts per point. This was explained as being due to a higher ablative effect in the visible range. The insertion of oxygen giving rise to the growth of titanium oxynitrides was also discussed.

  4. Development of laser ablation plasma by anisotropic self-radiation

    Directory of Open Access Journals (Sweden)

    Ohnishi Naofumi

    2013-11-01

    Full Text Available We have proposed a method for reproducing an accurate solution of low-density ablation plasma by properly treating anisotropic radiation. Monte-Carlo method is employed for estimating Eddington tensor with limited number of photon samples in each fluid time step. Radiation field from ablation plasma is significantly affected by the anisotropic Eddington tensor. Electron temperature around the ablation surface changes with the radiation field and is responsible for the observed emission. An accurate prediction of the light emission from the laser ablation plasma requires a careful estimation of the anisotropic radiation field.

  5. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    Science.gov (United States)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  6. Assessment of laser ablation techniques in a-si technologies for position-sensor development

    Science.gov (United States)

    Molpeceres, C.; Lauzurica, S.; Ocana, J. L.; Gandia, J. J.; Urbina, L.; Carabe, J.

    2005-07-01

    Laser micromachining of semiconductor and Transparent Conductive Oxides (TCO) materials is very important for the practical applications in photovoltaic industry. In particular, a problem of controlled ablation of those materials with minimum of debris and small heat affected zone is one of the most vital for the successful implementation of laser micromachining. In particular, selective ablation of thin films for the development of new photovoltaic panels and sensoring devices based on amorphous silicon (a-Si) is an emerging field, in which laser micromachining systems appear as appropriate tools for process development and device fabrication. In particular, a promising application is the development of purely photovoltaic position sensors. Standard p-i-n or Schottky configurations using Transparent Conductive Oxides (TCO), a-Si and metals are especially well suited for these applications, appearing selective laser ablation as an ideal process for controlled material patterning and isolation. In this work a detailed study of laser ablation of a widely used TCO, Indium-tin-oxide (ITO), and a-Si thin films of different thicknesses is presented, with special emphasis on the morphological analysis of the generated grooves. The profiles of ablated grooves have been studied in order to determine the best processing conditions, i.e. laser pulse energy and wavelength, and to asses this technology as potentially competitive to standard photolithographic processes. The encouraging results obtained, with well defined ablation grooves having thicknesses in the order of 10 μm both in ITO and a-Si, open up the possibility of developing a high-performance double Schottky photovoltaic matrix position sensor.

  7. Experimental study of laser acceleration of planar targets at the wavelength 0. 26. mu. m

    Energy Technology Data Exchange (ETDEWEB)

    Fabbro, R.; Faral, B.; Cottet, F.; Romain, J.P.

    1984-12-01

    The main characteristics of accelerated aluminum targets, which are the target velocity, the uniformity of the acceleration and the backside temperature have been studied in laser experiments performed at wavelength 0.26 ..mu..m with an absorbed flux of a few 10/sup 13/ W/cm/sup 2/, in 400-ps pulse duration by using the double-foil technique and an optical pyrometry diagnostic: The ablation pressure was inferred from the velocity measurements. The uniformity of the acceleration was shown to be controlled by the hot spots in the focal spot, and the importance of studying the smoothing of laser inhomogeneities for accelerated targets with large ablated fractions was emphasized. The observed dependence of the backside temperature as a function of the initial foil thickness is discussed in the light of shock wave heating and radiative heating.

  8. Method of stabilizing a laser apparatus with wavelength converter

    DEFF Research Database (Denmark)

    2013-01-01

    and to output the frequency-converted radiation (213), the frequency-converted radiation having at least a second wavelength different from the first wavelength, the diode laser (10) comprising at least a first and a second section (222,223), a first contact (220) for injecting a first current (I1......) into the first section (222), a second contact (221) for injecting a second current (I2) into the second section (223), and means for controlling a temperature of the diode laser; wherein the method comprises monitoring a first parameter indicative of the power content of a dominant lobe of the first radiation......A method of controlling beam quality and stability of a laser apparatus, the laser apparatus comprising, a diode laser (10) providing first radiation of at least a first wavelength, and a frequency conversion unit (12) configured to frequency-convert the first radiation from the diode laser...

  9. Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation

    International Nuclear Information System (INIS)

    Qi, Dongfeng; Paeng, Dongwoo; Yeo, Junyeob; Kim, Eunpa; Wang, Letian; Grigoropoulos, Costas P.; Chen, Songyan

    2016-01-01

    Nanosecond pulsed laser dewetting and ablation of thin silver films is investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 5 ns temporal width are irradiated on silver films of different thicknesses (50 nm, 80 nm, and 350 nm). Below the ablation threshold, it is observed that the dewetting process does not conclude until 630 ns after the laser irradiation for all samples, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to the solidification of transported matter at about 700 ns following the laser pulse exposure. In addition to these features, droplet fingers are superposed upon irradiation of 350-nm thick silver films with higher intensity.

  10. Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Dongfeng [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740 (United States); Semiconductor Photonics Research Center, Department of Physics, Xiamen University, Xiamen 361005 (China); Paeng, Dongwoo; Yeo, Junyeob; Kim, Eunpa; Wang, Letian; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740 (United States); Chen, Songyan [Semiconductor Photonics Research Center, Department of Physics, Xiamen University, Xiamen 361005 (China)

    2016-05-23

    Nanosecond pulsed laser dewetting and ablation of thin silver films is investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 5 ns temporal width are irradiated on silver films of different thicknesses (50 nm, 80 nm, and 350 nm). Below the ablation threshold, it is observed that the dewetting process does not conclude until 630 ns after the laser irradiation for all samples, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to the solidification of transported matter at about 700 ns following the laser pulse exposure. In addition to these features, droplet fingers are superposed upon irradiation of 350-nm thick silver films with higher intensity.

  11. Porous nanoparticles of Al and Ti generated by laser ablation in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, P.G. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991, Moscow (Russian Federation); Shafeev, G.A., E-mail: shafeev@kapella.gpi.ru [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991, Moscow (Russian Federation); Viau, G. [Universite de Toulouse, INSA, LPCNO, 135 avenue de Rangueil, 31077 Toulouse Cedex 4 (France); Warot-Fonrose, B. [CEMES, UPR CNRS 8011, 29, rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex4 (France); Barberoglou, M.; Stratakis, E.; Fotakis, C. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Nanoparticles of either Al or Ti are generated by laser ablation in hydrogen-saturated liquids. Black-Right-Pointing-Pointer Nanoparticles contain cavities. Black-Right-Pointing-Pointer The morphology of generated particles depends on the laser pulse duration. - Abstract: Experimental results are presented on the generation of porous nanoparticles of either Al or Ti by laser ablation of solid targets in ethanol, water, and n-propanol saturated with hydrogen. The nanoparticles are characterized by high resolution transmission electron microscopy (HR TEM) and optical absorption spectroscopy. Saturation of the liquid with gaseous hydrogen leads to the formation of internal cavities in nanoparticles. In the case of short laser pulses (180 fs, Ti:sapphire laser at 800 nm wavelength), the nanoparticles are mostly spherical with the size of 30-50 nm at concentration about 10{sup 15} cm{sup -3}. The cavity occupies from 20 to 50% of the particle volume. Longer laser pulses (70 ns, Nd:YAG laser at 1064 nm wavelength) generate facetted nanoparticles with facetted cavities inside. The mechanism of formation of cavities is discussed on the basis of temperature-dependent solubility of hydrogen in metals.

  12. Infrared presensitization photography at deuterium fluoride laser wavelengths

    International Nuclear Information System (INIS)

    Geary, J.M.; Ross, K.; Suter, K.

    1989-01-01

    Near-field irradiance distributions of a deuterium flouride laser system are obtained using infrared presensitization photography. This represents the shortest wavelength region to employ this technique thus far

  13. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates

    Directory of Open Access Journals (Sweden)

    M. Vinod

    2014-12-01

    Full Text Available Chemically pure colloidal suspensions of gold and silver nanoparticles were synthesized using pulsed laser ablation. The dependence of laser fluence on the surface plasmon characteristics of the nanoparticles was investigated. Au:Ag colloidal suspensions were prepared by mixing highly monodisperse Au and Ag nanocolloids. The plasmon band of these mixtures was found to be highly sensitive to Au:Ag concentration ratio and wavelength of the laser beam used in the ablation process. The Au:Ag mixture consists of almost spherical shaped nanostructures with a tendency to join with adjacent ones. The surface enhanced Raman scattering activity of the Au, Ag and Au:Ag colloidal suspensions was tested using crystal violet as probe molecules. Enhancement in Raman signal obtained with Au:Ag substrates was found to be promising and strongly depends on its plasmon characteristics.

  14. Wavelength stabilized multi-kW diode laser systems

    Science.gov (United States)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  15. Emission wavelength of multilayer distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Smith, Cameron L. C.; Brøkner Christiansen, Mads

    2012-01-01

    Precise emission wavelength modeling is essential for understanding and optimization of distributed feedback (DFB) lasers. An analytical approach for determining the emission wavelength based on setting the propagation constant of the Bragg condition and solving for the resulting slab waveguide m...

  16. Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air

    International Nuclear Information System (INIS)

    Wang, Z.B.; Hong, M.H.; Lu, Y.F.; Wu, D.J.; Lan, B.; Chong, T.C.

    2003-01-01

    Teflon, polytetrafluorethylene (PTFE), is an important material in bioscience and medical application due to its special characteristics (bio-compatible, nonflammable, antiadhesive, and heat resistant). The advantages of ultrashort laser processing of Teflon include a minimal thermal penetration region and low processing temperatures, precision removal of material, and good-quality feature definition. In this paper, laser processing of PTFE in ambient air by a Ti:sapphire femtosecond laser (780 nm, 110 fs) is investigated. It is found that the pulse number on each irradiated surface area must be large enough for a clear edge definition and the ablated depth increases with the pulse number. The air ionization effect at high laser fluences not only degrades the ablated structures quality but also reduces the ablation efficiency. High quality microstructures are demonstrated with controlling laser fluence below a critical fluence to exclude the air ionization effect. The ablated microstructures show strong adhesion property to liquids and clear edges that are suitable for bio-implantation applications. Theoretical calculation is used to analyze the evolution of the ablated width and depth at various laser fluences

  17. Endoluminal laser delivery mode and wavelength effects on varicose veins in an ex vivo model.

    Science.gov (United States)

    Massaki, Ane B M N; Kiripolsky, Monika G; Detwiler, Susan P; Goldman, Mitchel P

    2013-02-01

    Endovenous laser ablation (EVLA) has been shown to be effective for the elimination of saphenous veins and associated reflux. Mechanism is known to be heat related, but precise way in which heat causes vein ablation is not completely known. This study aimed to determine the effects of various endovenous laser wavelengths and delivery modes on ex vivo human vein both macroscopically and microscopically. We also evaluated whether protected-tip fibers, consisting of prototype silica fibers with a metal tube over the distal end, reduced vein wall perforations compared with non-protected-tip fibers. An ex vivo EVLA model with human veins harvested during ambulatory phlebectomy procedures was used. Six laser fiber combinations were tested: 810 nm continuous wave (CW) diode laser with a flat tip fiber, 810 CW diode laser with a protected tip fiber, 1,320 nm pulsed Nd:YAG laser, 1,310 nm CW diode laser, 1,470 nm CW diode laser, and 2,100 nm pulsed Ho:YAG laser. Perforation or full thickness necrosis of a portion of the vein wall was observed in 5/11 (45%), 0/11 (0%), 3/22 (14%), 7/11 (64%), 4/6 (67%), and 5/10 (50%) of cross-sections of veins treated with the 810 nm CW diode laser with a flat tip fiber, the 810 CW diode laser with a protected tip fiber, the 1,320 nm pulsed Nd:YAG laser, the 1,310 nm CW diode laser, the 1,470 nm CW diode laser, and the 2,100 nm pulsed Ho:YAG laser, respectively. Our results have shown that the delivery mode, pulsed Nd:YAG versus CW, may be just as important as the wavelength. Therefore, the 1,310 nm CW laser may not be equivalent to the 1,320 nm pulsed laser. In addition, protected 810 nm fibers may be less likely to yield wall perforations than their non-protected counterparts. Copyright © 2012 Wiley Periodicals, Inc.

  18. Ins and outs of endovenous laser ablation: afterthoughts

    NARCIS (Netherlands)

    Neumann, H. A. Martino; van Gemert, Martin J. C.

    2014-01-01

    Physicists and medical doctors "speak" different languages. Endovenous laser ablation (EVLA) is a good example in which technology is essential to guide the doctor to the final result: optimal treatment. However, for the doctor, it is by far insufficient just to turn on the knobs of the laser. He

  19. Laser ablation/ionization studies in a glow discharge

    International Nuclear Information System (INIS)

    Hess, K.R.; Harrison, W.W.

    1985-01-01

    The pin cathode glow discharge is used in the laboratory as an atomization/ionization source for a variety of applications, including solids mass spectrometry. Coupled with a tunable dye laser, the glow discharge may also serve as an atom reservoir for resonance ionization mass spectrometry in which the laser ionizes the discharge sputtered atoms. By tightly focusing the laser onto solid samples, various ablation effects may also be investigated. The laser may be used to generate an ionized plasma which may be directly analyzed by mass spectrometry. Alternatively, the ablated neutral atoms may be used in post-ablation excitation/ionization processes, in this case the glow discharge. The results of these investigations are the basis of this paper

  20. Wavelength and ambient luminance dependence of laser eye dazzle.

    Science.gov (United States)

    Williamson, Craig A; McLin, Leon N; Rickman, J Michael; Manka, Michael A; Garcia, Paul V; Kinerk, Wesley T; Smith, Peter A

    2017-10-10

    A series of experiments has been conducted to quantify the effects of laser wavelength and ambient luminance on the severity of laser eye dazzle experienced by human subjects. Eight laser wavelengths in the visible spectrum were used (458-647 nm) across a wide range of ambient luminance conditions (0.1-10,000  cd·m -2 ). Subjects were exposed to laser irradiance levels up to 600  μW·cm -2 and were asked to recognize the orientation of optotypes at varying eccentricities up to 31.6 deg of visual angle from the laser axis. More than 40,000 data points were collected from 14 subjects (ages 23-64), and these were consolidated into a series of obscuration angles for comparison to a theoretical model of laser eye dazzle. Scaling functions were derived to allow the model to predict the effects of laser dazzle on vision more accurately by including the effects of ambient luminance and laser wavelength. The updated model provides an improved match to observed laser eye dazzle effects across the full range of conditions assessed. The resulting model will find use in a variety of laser safety applications, including the estimation of maximum dazzle exposure and nominal ocular dazzle distance values.

  1. Reaction between laser ablation plume and ambient gas studied by laser-induced fluorescence imaging spectroscopy

    International Nuclear Information System (INIS)

    Sasaki, K; Watarai, H

    2007-01-01

    We visualized the density distributions of C 2 (plume), NO (ambient gas), and CN (reaction product) when a graphite target was ablated by irradiating YAG laser pulses at wavelengths of 1064 and 355 nm in ambient gas mixture of NO and He. It has been shown by the density distributions of C 2 and NO that the expansion of the plume removes the ambient gas and the plume and the ambient gas locate exclusively in both the cases at 1064 and 355 nm. A high CN density was observed at the interface between the plume and the ambient gas at 1064 nm, which is reasonable since chemical reactions between the plume and the ambient gas may occur only at their interface. On the other hand, in the case at 355 nm, we observed considerable CN inside the plume, indicating that the chemical reaction processes in the laser ablation at 355 nm is different from that expected from the density distributions of the plume and the ambient gas

  2. Effect of dry and wet ambient environment on the pulsed laser ablation of titanium

    International Nuclear Information System (INIS)

    Ali, Nisar; Bashir, Shazia; Umm-i-Kalsoom,; Akram, Mahreen; Mahmood, Khaliq

    2013-01-01

    Surface and structural properties of the laser irradiated titanium targets have been investigated under dry and wet ambient environments. For this purpose KrF Excimer laser of wavelength 248 nm, pulse duration of 20 ns and repetition rate of 20 Hz has been employed. The targets were exposed for various number of laser pulses ranging from 500 to 2000 in the ambient environment of air, de-ionized water and propanol at a fluence of 3.6 J/cm 2 . The surface morphology, chemical composition and crystallographical analysis were performed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD), respectively. For both central and peripheral ablated areas, significant difference in surface morphology has been observed in case of dry and wet ambient conditions. Large sized and diffused grains are observed in case of dry ablation. Whereas, in case of wet ablation, small sized, and well defined grains with distinct grain boundaries and significantly enhanced density are revealed. This difference is ascribed to the confinement effects of the liquid. The peripheral ablated area shows redeposition in case of dry ablation whereas small sized grain like structures are formed in case of wet ablation. EDS analysis exhibits variation in chemical composition under both ambient conditions. When the targets are treated in air environment, enhancement of the oxygen as well as nitrogen content is observed while in case of de-ionized water and propanol only increase in content of oxygen is observed. X-ray diffraction analysis exhibits formation of oxides and nitrides in case of air, whereas, in case of de-ionized water and propanol only oxides along with hydrides are formed. For various number of laser pulses the variation in the peak intensity, crystallinity and d-spacing is observed under both ambient conditions.

  3. Langmuir probe study of plasma expansion in pulsed laser ablation

    DEFF Research Database (Denmark)

    Hansen, T.N.; Schou, Jørgen; Lunney, J.G.

    1999-01-01

    Langmuir probes were used to monitor the asymptotic expansion of the plasma produced by the laser ablation of a silver target in a vacuum. The measured angular and temporal distributions of the ion flux and electron temperature were found to be in good agreement with the self-similar isentropic...... and adiabatic solution of the gas dynamics equations describing the expansion. The value of the adiabatic index gamma was about 1.25, consistent with the ablation plume being a low temperature plasma....

  4. Experimental tests of induced spatial incoherence using short laser wavelength

    International Nuclear Information System (INIS)

    Obenschain, S.P.; Grun, J.; Herbst, M.J.

    1986-01-01

    The authors have developed a laser beam smoothing technique called induced spatial incoherence (ISI), which can produce the highly uniform focal profiles required for direct-drive laser fusion. Uniform well-controlled focal profiles are required to obtain the highly symmetric pellet implosions needed for high-energy gain. In recent experiments, the authors' tested the effects of ISI on high-power laser-target interaction. With short laser wavelength, the coupling physics dramatically improved over that obtained with an ordinary laser beam

  5. Cluster dynamics at different cluster size and incident laser wavelengths

    International Nuclear Information System (INIS)

    Desai, Tara; Bernardinello, Andrea

    2002-01-01

    X-ray emission spectra from aluminum clusters of diameter -0.4 μm and gold clusters of dia. ∼1.25 μm are experimentally studied by irradiating the cluster foil targets with 1.06 μm laser, 10 ns (FWHM) at an intensity ∼10 12 W/cm 2 . Aluminum clusters show a different spectra compared to bulk material whereas gold cluster evolve towards bulk gold. Experimental data are analyzed on the basis of cluster dimension, laser wavelength and pulse duration. PIC simulations are performed to study the behavior of clusters at higher intensity I≥10 17 W/cm 2 for different size of the clusters irradiated at different laser wavelengths. Results indicate the dependence of cluster dynamics on cluster size and incident laser wavelength

  6. Influence of laser ablation parameters on trueness of imaging

    International Nuclear Information System (INIS)

    Vaculovič, T.; Warchilová, T.; Čadková, Z.; Száková, J.; Tlustoš, P.; Otruba, V.; Kanický, V.

    2015-01-01

    Highlights: • Laser ablation conditions vs. quality of LA-ICP-MS imaging (resolution, detection). • Increase in laser spot size improves detection limit, while deteriorates resolution. • Decrease in scan speed improves resolution but prolongs time of analysis. • Compromise spot size and scan speed meet required quality of imaging. • Metal-enriched/depleted zones in tapeworm sections were resolved by LA-ICP-MS. - Abstract: Influence of laser ablation conditions on limit of detection, spatial resolution and time of analysis was studied for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) applied to elemental mapping. Laser repetition rate and laser fluence were investigated in tapeworm thin section to attain optimum ablation rate, yielding appropriately low detection limit which complies with elemental contents in the tissue. Effect of combinations of laser spot size and scan speed on relative broadening (Δw rel ) of image of the ablated pattern (line) was investigated with the aim to quantify the trueness of imaging. Ink lines printed on paper were employed for the study of influence of spot size and scan speed on limit of detection, relative broadening of elemental image and duration of elemental mapping. An uneven distribution of copper in a printed line (coffee stain effect) was observed. The Δw rel is strongly reduced (down to 2%) at low scan speed (10 μm s −1 ) and laser spot diameter of 10 μm but resulting in unacceptably long time of mapping (up to 3000 min). Finally, tapeworm thin-section elemental maps (4 mm × 5 mm) were obtained at the laser spot diameter of 65 μm and the scan speed of 65 μm s −1 within 100 min. A dissimilar lateral distribution of Pb was observed in comparison with that of Cu or Zn due to different pathways of element uptake

  7. Influence of laser ablation parameters on trueness of imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vaculovič, T.; Warchilová, T. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); CEITEC, Masaryk University, Kamenice 5, Brno 62500 (Czech Republic); Čadková, Z.; Száková, J.; Tlustoš, P. [Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka 129, Praha 16521 (Czech Republic); Otruba, V. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Kanický, V., E-mail: viktork@chemi.muni.cz [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); CEITEC, Masaryk University, Kamenice 5, Brno 62500 (Czech Republic)

    2015-10-01

    Highlights: • Laser ablation conditions vs. quality of LA-ICP-MS imaging (resolution, detection). • Increase in laser spot size improves detection limit, while deteriorates resolution. • Decrease in scan speed improves resolution but prolongs time of analysis. • Compromise spot size and scan speed meet required quality of imaging. • Metal-enriched/depleted zones in tapeworm sections were resolved by LA-ICP-MS. - Abstract: Influence of laser ablation conditions on limit of detection, spatial resolution and time of analysis was studied for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) applied to elemental mapping. Laser repetition rate and laser fluence were investigated in tapeworm thin section to attain optimum ablation rate, yielding appropriately low detection limit which complies with elemental contents in the tissue. Effect of combinations of laser spot size and scan speed on relative broadening (Δw{sub rel}) of image of the ablated pattern (line) was investigated with the aim to quantify the trueness of imaging. Ink lines printed on paper were employed for the study of influence of spot size and scan speed on limit of detection, relative broadening of elemental image and duration of elemental mapping. An uneven distribution of copper in a printed line (coffee stain effect) was observed. The Δw{sub rel} is strongly reduced (down to 2%) at low scan speed (10 μm s{sup −1}) and laser spot diameter of 10 μm but resulting in unacceptably long time of mapping (up to 3000 min). Finally, tapeworm thin-section elemental maps (4 mm × 5 mm) were obtained at the laser spot diameter of 65 μm and the scan speed of 65 μm s{sup −1} within 100 min. A dissimilar lateral distribution of Pb was observed in comparison with that of Cu or Zn due to different pathways of element uptake.

  8. Microsecond enamel ablation with 10.6μm CO2 laser radiation

    Science.gov (United States)

    Góra, W. S.; McDonald, A.; Hand, D. P.; Shephard, J. D.

    2016-02-01

    Lasers have been previously been used for dental applications, however there remain issues with thermally-induced cracking. In this paper we investigate the impact of pulse length on CO2 laser ablation of human dental enamel. Experiments were carried in vitro on molar teeth without any modification to the enamel surface, such as grinding or polishing. In addition to varying the pulse length, we also varied pulse energy and focal position, to determine the most efficient ablation of dental hard tissue and more importantly to minimize or eradicate cracking. The maximum temperature rise during the multi pulse ablation process was monitored using a set of thermocouples embedded into the pulpal chamber. The application of a laser device in dental surgery allows removal of tissue with higher precision, which results in minimal loss of healthy dental tissue. In this study we use an RF discharge excited CO2 laser operating at 10.6μm. The wavelength of 10.6 μm overlaps with a phosphate band (PO3-4) absorption in dental hard tissue hence the CO2 laser radiation has been selected as a potential source for modification of the tissue. This research describes an in-depth analysis of single pulse laser ablation. To determine the parameters that are best suited for the ablation of hard dental tissue without thermal cracking, a range of pulse lengths (10-200 μs), and fluences (0-100 J/cm2) are tested. In addition, different laser focusing approaches are investigated to select the most beneficial way of delivering laser radiation to the surface (divergent/convergent beam). To ensure that these processes do not increase the temperature above the critical threshold and cause the necrosis of the tissue a set of thermocouples was placed into the pulpal chambers. Intermittent laser radiation was investigated with and without application of a water spray to cool down the ablation site and the adjacent area. Results show that the temperature can be kept below the critical threshold

  9. Effect analysis of material properties of picosecond laser ablation for ABS/PVC

    Science.gov (United States)

    Tsai, Y. H.; Ho, C. Y.; Chiou, Y. J.

    2017-06-01

    This paper analytically investigates the picosecond laser ablation of ABS/PVC. Laser-pulsed ablation is a wellestablished tool for polymer. However the ablation mechanism of laser processing for polymer has not been thoroughly understood yet. This study utilized a thermal transport model to analyze the relationship between the ablation rate and laser fluences. This model considered the energy balance at the decomposition interface and Arrhenius law as the ablation mechanisms. The calculated variation of the ablation rate with the logarithm of the laser fluence agrees with the measured data. It is also validated in this work that the variation of the ablation rate with the logarithm of the laser fluence obeys Beer's law for low laser fluences. The effects of material properties and processing parameters on the ablation depth per pulse are also discussed for picosecond laser processing of ABS/PVC.

  10. Analysis of excimer laser radiant exposure effect toward corneal ablation volume at LASIK procedure

    Science.gov (United States)

    Adiati, Rima Fitria; Rini Rizki, Artha Bona; Kusumawardhani, Apriani; Setijono, Heru; Rahmadiansah, Andi

    2016-11-01

    LASIK (Laser Asissted In Situ Interlamelar Keratomilieusis) is a technique for correcting refractive disorders of the eye such as myopia and astigmatism using an excimer laser. This procedure use photoablation technique to decompose corneal tissues. Although preferred due to its efficiency, permanency, and accuracy, the inappropriate amount radiant exposure often cause side effects like under-over correction, irregular astigmatism and problems on surrounding tissues. In this study, the radiant exposure effect toward corneal ablation volume has been modelled through several processes. Data collecting results is laser data specifications with 193 nm wavelength, beam diameter of 0.065 - 0.65 cm, and fluence of 160 mJ/cm2. For the medical data, the myopia-astigmatism value, cornea size, corneal ablation thickness, and flap data are taken. The first modelling step is determining the laser diameter between 0.065 - 0.65 cm with 0.45 cm increment. The energy, power, and intensity of laser determined from laser beam area. Number of pulse and total energy is calculated before the radiant exposure of laser is obtained. Next is to determine the parameters influence the ablation volume. Regression method used to create the equation, and then the spot size is substituted to the model. The validation used is statistic correlation method to both experimental data and theory. By the model created, it is expected that any potential complications can be prevented during LASIK procedures. The recommendations can give the users clearer picture to determine the appropriate amount of radiant exposure with the corneal ablation volume necessary.

  11. Infrared Laser Ablation with Vacuum Capture for Fingermark Sampling

    Science.gov (United States)

    Donnarumma, Fabrizio; Camp, Eden E.; Cao, Fan; Murray, Kermit K.

    2017-09-01

    Infrared laser ablation coupled to vacuum capture was employed to collect material from fingermarks deposited on surfaces of different porosity and roughness. Laser ablation at 3 μm was performed in reflection mode with subsequent capture of the ejecta with a filter connected to vacuum. Ablation and capture of standards from fingermarks was demonstrated on glass, plastic, aluminum, and cardboard surfaces. Using matrix assisted laser desorption ionization (MALDI), it was possible to detect caffeine after spiking with amounts as low as 1 ng. MALDI detection of condom lubricants and detection of antibacterial peptides from an antiseptic cream was demonstrated. Detection of explosives from fingermarks left on plastic surfaces as well as from direct deposition on the same surface using gas chromatography mass spectrometry (GC-MS) was shown. [Figure not available: see fulltext.

  12. Glass particles produced by laser ablation for ICP-MSmeasurements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50 J cm{sup -2}. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloys samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns and fs-laser ablation than for metals alloys.

  13. Short wavelength laser-plasma interaction experiments in a spherical geometry

    International Nuclear Information System (INIS)

    Keck, R.L.

    1984-01-01

    Short wavelength (250 to 500 nm) lasers should provide reduced fast electron preheat and increased laser-pellet coupling efficiency when used as laser fusion drivers. As part of an ongoing effort to study short wavelength laser plasm interaction, six beams of the 24 beam OMEGA Nd-glass laser system have been converted to operation at the third harmonic. This system is capable of providing in excess of 250 Joules of 351 nm light on spherical targets at intensities up to 2 x 10/sup 15/ W/cm/sup 2/. To date, experiments have been performed to study the uniformity of irradiation, laser absorption, fast electron production and preheat, energy transport within the target and underdense plasma instabilities. Both x-ray continuum measurements and Kα line measurements indicate that the absorption is dominated by inverse bremsstrahlung. Electron energy transport has been studied using x-ray burn-through and charge collector measurements. The results show that with 351 nm irradiation ablation pressures of order 100 Mbars are generated at intensities of 10/sup 15/ W/cm/sup 2/

  14. Selective laser etching or ablation for fabrication of devices

    KAUST Repository

    Buttner, Ulrich; Salama, Khaled N.; Sapsanis, Christos

    2017-01-01

    Methods of fabricating devices vial selective laser etching are provided. The methods can include selective laser etching of a portion of a metal layer, e.g. using a laser light source having a wavelength of 1,000 nm to 1,500 nm. The methods can

  15. Femtosecond pulsed laser ablation of GaAs

    International Nuclear Information System (INIS)

    Trelenberg, T.W.; Dinh, L.N.; Saw, C.K.; Stuart, B.C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed

  16. Laser ablation of dental calculus at 400 nm using a Ti:sapphire laser

    Science.gov (United States)

    Schoenly, Joshua E.; Seka, Wolf; Rechmann, Peter

    2009-02-01

    A Nd:YAG laser-pumped, frequency-doubled Ti:sapphire laser is used for selective ablation of calculus. The laser provides calculus removal. This is in stark contrast with tightly focused Gaussian beams that are energetically inefficient and lead to irreproducible results. Calculus is well ablated at high fluences >=2J/cm2 stalling occurs below this fluence because of photobleaching. Healthy hard tissue is not removed at fluences <=3 J/cm2.

  17. Enthalpy model for heating, melting, and vaporization in laser ablation

    Directory of Open Access Journals (Sweden)

    Vasilios Alexiades

    2010-09-01

    Full Text Available Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu target in a helium (He background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model that connects the thermodynamics and underlying kinetics of this challenging phase change problem in a self-consistent way.

  18. Differences in Nanosecond Laser Ablation and Deposition of Tungsten, Boron, and WB2/B Composite due to Optical Properties

    Directory of Open Access Journals (Sweden)

    Tomasz Moscicki

    2016-01-01

    Full Text Available The first attempt to the deposition of WB3 films using nanosecond Nd:YAG laser demonstrated that deposited coatings are superhard. However, they have very high roughness. The deposited films consisted mainly of droplets. Therefore, in the present work, the explanation of this phenomenon is conducted. The interaction of Nd:YAG nanosecond laser pulse with tungsten, boron, and WB2/B target during ablation is investigated. The studies show the fundamental differences in ablation of those materials. The ablation of tungsten is thermal and occurs due to only evaporation. In the same conditions, during ablation of boron, the phase explosion and/or fragmentation due to recoil pressure is observed. The deposited films have a significant contribution of big debris with irregular shape. In the case of WB2/B composite, ablation is significantly different. The ablation seems to be the detonation in the liquid phase. The deposition mechanism is related mainly to the mechanical transport of the target material in the form of droplets, while the gaseous phase plays marginal role. The main origin of differences is optical properties of studied materials. A method estimating phase explosion occurrence based on material data such as critical temperature, thermal diffusivity, and optical properties is shown. Moreover, the effect of laser wavelength on the ablation process and the quality of the deposited films is discussed.

  19. Spin-offs from laser ablation in art conservation

    Science.gov (United States)

    Asmus, J.; Elford, J.; Parfenov, V.

    2013-05-01

    In 1973 The Center for Art Conservation Studies (CASS) was established at the University of California, San Diego (UCSD). This was in response to demonstrations that were conducted during January-March 1972 in Venice for UNESCO, Venice in Peril, International Fund for Monuments, and the Italian Petroleum Institute (ENI). The feasibility investigation explored in-situ pulsed holography, holographic interferometry, and laser ablation divestment for applications in art conservation practice. During subsequent decades scores of UCSD graduate and undergraduate students as well as conservators, conservation scientists, academics, and engineers who resided in CASS as "Visiting Scholars" contributed to advancing the understanding and performance of radiation technologies in the arts. Several technologies in addition to those involving optical wavelengths were also investigated to aid in art conservation and conservation science. Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance (NMR) were employed to detect and map moisture within masonry. Lead isotopic analyses revealed authenticity and provenance of Benin bronzes. Inside-out x-ray radiography facilitated the detection of defects in stone. Ultrasonic imaging was introduced for the mapping of fresco strata. Photoacoustic Spectroscopy (PAS) was used to characterize varnish layers on paintings. Digital image processing was introduced in order to detect and visualize pentimenti within paintings as well as to perform virtual restoration and provide interactive museum displays. Holographic images were employed as imaginary theater sets. In the years that followed the graduation of students and the visits of professional collaborators, numerous other applications of radiation ablation began appearing in a wide variety of other fields such as aircraft maintenance, ship maintenance, toxic chemical remediation, biological sterilization, food processing, industrial fabrication, industrial maintenance, nuclear

  20. Observation of the initial stage of the laser ablation

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Ohyanagi, Takasumi; Murakami, Kouichi.

    1994-01-01

    The time and space resolved properties of laser ablated carbon particles were measured by X-ray absorption spectroscopy using Laser Plasma X-ray (LPX) as an X-ray source. The energy density of the irradiation laser on the sample was in the range of 0.5-20 J/cm 2 and the time delay was varied between 0 and 120ns. The absorption spectra exhibits several peaks originated from level to level transitions and an intense broad absorption in the energy range of C-K edge. At a delay time of 120ns, the absorption peak of 1s → 2p transition of neutral carbon atom (C 0 ), C - , C + and C 2+ ions were observed. The absorption peak from C 0 is stronger as the probing position is closer to the sample surface and its intensity decreases rapidly with distance from the sample surface. The absorption peak C 2+ ion was observed only at comparatively distant positions from surface. The maximum speed of highly charged ions are faster than that of neutral atoms and negative charged ions. The neutral atom and lower charged ions are emitted from the sample surface even after laser irradiation. The spatial distribution of the laser ablated particles in the localized helium gas environment were measured. In the helium gas environment, the ablation plume is depressed by the helium cloud generated on the top of ablation plume. (author)

  1. Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths

    Science.gov (United States)

    Wang, Jenny; Schuele, Georg; Palanker, Daniel

    2015-12-01

    Transparent ocular tissues, such as the cornea and crystalline lens, can be ablated or dissected using short-pulse lasers. In refractive and cataract surgeries, the cornea, lens, and lens capsule can be cut by producing dielectric breakdown in the focus of a near-infrared (IR) femtosecond laser, which results in explosive vaporization of the interstitial water, causing mechanical rupture of the surrounding tissue. Here, we compare the texture of edges of lens capsule cut by femtosecond lasers with IR and ultraviolet (UV) wavelengths and explore differences in interactions of these lasers with biological molecules. Scanning electron microscopy indicates that a 400-nm laser is capable of producing very smooth cut edges compared to 800 or 1030 nm at a similar focusing angle. Using gel electrophoresis and liquid chromatography/mass spectrometry, we observe laser-induced nonlinear breakdown of proteins and polypeptides by 400-nm femtosecond pulses above and below the dielectric breakdown threshold. On the other hand, 800-nm femtosecond lasers do not produce significant dissociation even above the threshold of dielectric breakdown. However, despite this additional interaction of UV femtosecond laser with proteins, we determine that efficient cutting requires plasma-mediated bubble formation and that remarkably smooth edges are the result of reduced thresholds and smaller focal volume.

  2. Ablation of polytetrafluoroethylene using a continuous CO2 laser beam

    International Nuclear Information System (INIS)

    Tolstopyatov, E M

    2005-01-01

    The ablation of polytetrafluoroethylene (PTFE) is studied using a continuous CO 2 laser beam of 30-50 W at a mean intensity of 0.05-50 MW m -2 . The ablation products and changes in the target layer are examined using infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction and electron microscopy. The main experiments were conducted with an unfocused beam of intensity 0.9-1.2 MW m -2 . The radiation-polymer interaction characteristics were found to change appreciably as the ablation conditions are approached. Within the polymer layer, light scattering diminishes and true resonant light absorption increases. Two distinct polymer components, which differ primarily in their resistance to CO 2 laser radiation, were found to exist under ablation conditions. The less stable component depolymerizes intensively, while the more resistant component is blown up into fibres by intense gas flow. The reasons behind this behaviour are discussed. Preliminary gamma irradiation of PTFE is found to have a significant influence on the laser ablation process

  3. Characterization of superconducting thin films deposited by laser ablation. Caracterisation de films minces supraconducteurs deposes par ablation laser

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, M; Delaporte, P [I.M.F.M., 13 - Marseille (FR); Gerri, M; Marine, W [Aix-Marseille-2 Univ., 13-Marseille (FR). Centre Universitaire de Luminy

    1991-05-01

    Thin films of YBa{sub 2}Cu{sub 3}O{sub 7} are deposited by laser ablation on MgO and YSZ substrates. Deposits by infrared (I.R.) Nd: YAG are non stoechiometric. The films having the best superconductor qualities are deposited by ablation with an excimer U.V. laser ({lambda} = 308 nm). These films are epitaxiated with the c axis perpendicular to the substrate. The film quality depends on the substrate temperature, oxygen pressure and cooling speed.

  4. OMEGA: a short-wavelength laser for fusion experiments

    International Nuclear Information System (INIS)

    Soures, J.M.; Hutchison, R.J.; Jacobs, S.D.; Lund, L.D.; McCrory, R.L.; Richardson, M.C.

    1983-01-01

    The OMEGA, Nd:glass laser facility was constructed for the purpose of investigating the feasibility of direct-drive laser fusion. With 24 beams producing a total energy of 4 kJ or a peak power of 12 TW, OMEGA is capable of nearly uniform illumination of spherical targets. Six of the OMEGA beams have recently been converted to short-wavelength operation (351 nm). In this paper, we discuss details of the system design and performance, with particular emphasis on the frequency-conversion system and multi-wavelength diagnostic system

  5. Selective treatment of carious dentin using a mid-infrared tunable pulsed laser at 6 μm wavelength range

    Science.gov (United States)

    Saiki, Masayuki; Ishii, Katsunori; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2011-03-01

    Optical technologies have good potential for caries detection, prevention, excavation, and the realization of minimal intervention dentistry. This study aimed to develop a selective excavation technique of carious tissue using the specific absorption in 6 μm wavelength range. Bovine dentin demineralized with lactic acid solution was used as a carious dentin model. A mid-infrared tunable pulsed laser was obtained by difference-frequency generation technique. The wavelength was tuned to 6.02 and 6.42 μm which correspond to absorption bands called amide I and amide II, respectively. The laser delivers 5 ns pulse width at a repetition rate of 10 Hz. The morphological change after irradiation was observed with a scanning electron microscope, and the measurement of ablation depth was performed with a confocal laser microscope. At λ = 6.02 μm and the average power density of 15 W/cm2, demineralized dentin was removed selectively with less-invasive effect on sound dentin. The wavelength of 6.42 μm also showed the possibility of selective removal. High ablation efficiency and low thermal side effect were observed using the nanosecond pulsed laser with λ = 6.02 μm. In the near future, development of compact laser device will open the minimal invasive laser treatment to the dental clinic.

  6. High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films

    International Nuclear Information System (INIS)

    Ko, Seung H.; Pan Heng; Hwang, David J.; Chung, Jaewon; Ryu, Sangil; Grigoropoulos, Costas P.; Poulikakos, Dimos

    2007-01-01

    Ablation of gold nanoparticle films on polymer was explored using a nanosecond pulsed laser, with the goal to achieve feature size reduction and functionality not amenable with inkjet printing. The ablation threshold fluence for the unsintered nanoparticle deposit was at least ten times lower than the reported threshold for the bulk film. This could be explained by the combined effects of melting temperature depression, lower conductive heat transfer loss, strong absorption of the incident laser beam, and the relatively weak bonding between nanoparticles. The ablation physics were verified by the nanoparticle sintering characterization, ablation threshold measurement, time resolved ablation plume shadowgraphs, analysis of ablation ejecta, and the measurement and calculation of optical properties. High resolution and clean feature fabrication with small energy and selective multilayer processing are demonstrated

  7. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Science.gov (United States)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  8. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Diaz, M; Ponce, L; Arronte, M; Flores, T [Laboratorio TecnologIa Laser, CICATA-IPN, Unidad Altamira, Carretera Tampico-Puerto Ind. Altamira, 89600, TAMPS (Mexico)

    2007-04-15

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  9. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    International Nuclear Information System (INIS)

    Pena-Diaz, M; Ponce, L; Arronte, M; Flores, T

    2007-01-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained

  10. Optical wave microphone measurement during laser ablation of Si

    Energy Technology Data Exchange (ETDEWEB)

    Mitsugi, Fumiaki, E-mail: mitsugi@cs.kumamoto-u.ac.jp [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555 (Japan); Ide, Ryota; Ikegami, Tomoaki [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555 (Japan); Nakamiya, Toshiyuki; Sonoda, Yoshito [Graduate School of Industrial Engineering, Tokai University, 9-1-1 Toroku, Kumamoto, 862-8652 (Japan)

    2012-10-30

    Pulsed laser irradiation is used for surface treatment of a solid and ablation for particle formation in gas, liquid or supercritical phase media. When a pulsed laser is used to irradiate a solid, spatial refractive index variations (including photothermal expansion, shockwaves and particles) occur, which vary depending on the energy density of the pulsed laser. We focused on this phenomenon and applied an unique method for detection of refractive index variation using an optical wave microphone based on Fraunhofer diffraction. In this research, we analyzed the waveforms and frequencies of refractive index variations caused by pulsed laser irradiation of silicon in air and measured with an optical wave microphone.

  11. Measurement of ablation threshold of oxide-film-coated aluminium nanoparticles irradiated by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Chefonov, O V; Ovchinnikov, A V; Il'ina, I V; Agranat, M B

    2016-01-01

    We report the results of experiments on estimation of femtosecond laser threshold intensity at which nanoparticles are removed from the substrate surface. The studies are performed with nanoparticles obtained by femtosecond laser ablation of pure aluminium in distilled water. The attenuation (or extinction, i.e. absorption and scattering) spectra of nanoparticles are measured at room temperature in the UV and optical wavelength ranges. The size of nanoparticles is determined using atomic force microscopy. A new method of scanning photoluminescence is proposed to evaluate the threshold of nanoparticle removal from the surface of a glass substrate exposed to IR femtosecond laser pulses with intensities 10 11 – 10 13 W cm -2 . (interaction of laser radiation with matter)

  12. Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm.

    Science.gov (United States)

    Fried, D; Ragadio, J; Champion, A

    2001-01-01

    The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth. Excessive heat deposition or accumulation may result in unacceptable damage to the pulp. The objective of this study was to measure the residual heat deposition during the laser ablation of dental enamel at those IR laser wavelengths well suited for the removal of dental caries. Optimal laser ablation systems minimize the residual heat deposition in the tooth by efficiently transferring the deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in dental enamel was measured at laser wavelengths of 2.79, 2.94, 9.6, and 10.6 microm and pulse widths of 150 nsec -150 microsec using bovine block "calorimeters." Water droplets were applied to the surface before ablation with 150 microsec Er:YAG laser pulses to determine the influence of an optically thick water layer on reducing heat deposition. The residual heat was at a minimum for fluences well above the ablation threshold where measured values ranged from 25-70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual heat were measured for short (heat deposition during ablation with 150 microsec Er:YAG laser pulses. Residual heat deposition can be markedly reduced by using CO(2) laser pulses of less than 20 microsec duration and shorter Q-switched Er:YAG and Er:YSGG laser pulses for enamel ablation. Copyright 2001 Wiley-Liss, Inc.

  13. Excision of oral mucocele by different wavelength lasers

    Directory of Open Access Journals (Sweden)

    Umberto Romeo

    2013-01-01

    Full Text Available Background: Mucocele is a common benign neoplasm of oral soft tissues and the most common after fibroma. It generally occurs in the lower lip and its treatment includes excision of cyst and the responsible salivary gland, in order to prevent recurrences. Aims: To evaluate the capability of three different lasers in performing the excision of labial mucocele with two different techniques. Materials and Methods: In the presented cases, excision was performed using two different techniques (circumferential incision technique and mucosal preservation technique and three different laser wavelengths (Er,Cr:YSGG 2780 nm, diode 808 nm, and KTP 532 nm. Results: All the tested lasers, regardless of wavelength, showed many advantages (bloodless surgical field, no postoperative pain, relative speed, and easy execution. The most useful surgical technique depends on clinical features of the lesion. Conclusion: Tested lasers, with both techniques, are helpful in the management of labial mucocele.

  14. Angular distributions and total yield of laser ablated silver

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Nordskov, A.; Schou, Jørgen

    1997-01-01

    The angular distribution of laser ablated silver has been measured in situ with a newly constructed setup with an array of microbalances. The distribution is strongly peaked in the forward direction corresponding to cospθ, where p varies between 5 and 9 for laser fluences from 2 to 7 J/cm2 at 355...... nm for a beam spot of 0.015 cm2. The total deposited yield is of the order 1015 Ag-atoms per pulse....

  15. Three wavelength optical alignment of the Nova laser

    International Nuclear Information System (INIS)

    Swift, C.D.; Bliss, E.S.; Jones, W.A.; Seppala, L.G.

    1983-01-01

    The Nova laser, presently under construction at Lawrence Livermore National Laboratory, will be capable of delivering more than 100 kJ of focused energy to an Inertial Confinement Fusion (ICF) target. Operation at the fundamental wavelength of the laser (1.05 μm) and at the second and third harmonic will be possible. This paper will discuss the optical alignment systems and techniques being implemented to align the laser output to the target at these wavelengths prior to each target irradiation. When experiments require conversion of the laser light to wavelengths of 0.53 μm and 0.35 μm prior to target irradiation, this will be accomplished in harmonic conversion crystals located at the beam entrances to the target chamber. The harmonic alignment system will be capable of introducing colinear alignment beams of all three wavelengths into the laser chains at the final spatial filter. The alignment beam at 1.05 μm will be about three cm in diameter and intense enough to align the conversion crystals. Beams at 0.53 μm and 0.35 μm will be expanded by the spatial filter to full aperture (74 cm) and used to illuminate the target and other alignment aids at the target chamber focus. This harmonic illumination system will include viewing capability as well. A final alignment sensor will be located at the target chamber. It will view images of the chamber focal plane at all three wavelengths. In this way, each beam can be aligned at the desired wavelength to produce the focal pattern required for each target irradiation. The design of the major components in the harmonic alignment system will be described, and a typical alignment sequence for alignment to a target will be presented

  16. Ins and outs of endovenous laser ablation: Afterthoughts

    NARCIS (Netherlands)

    H.A.M. Neumann (Martino); M.J.C. van Gemert (Martin)

    2014-01-01

    textabstractPhysicists and medical doctors "speak" different languages. Endovenous laser ablation (EVLA) is a good example in which technology is essential to guide the doctor to the final result: optimal treatment. However, for the doctor, it is by far insufficient just to turn on the knobs of the

  17. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    Science.gov (United States)

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  18. Online Monitoring of Nanoparticles Formed during Nanosecond Laser Ablation.

    Czech Academy of Sciences Publication Activity Database

    Nováková, H.; Holá, M.; Vojtíšek-Lomb, M.; Ondráček, Jakub; Kanický, V.

    2016-01-01

    Roč. 125, NOV 1 (2016), s. 52-60 ISSN 0584-8547 R&D Projects: GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:67985858 Keywords : laser ablation * fast mobility particle sizer * inductively coupled plasma mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.241, year: 2016

  19. Interferometric laser detection of nanomechanical perturbations in biological media under ablation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Bonilla, S; Torres-Torres, C; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H; Urriolagoitia-Calderon, G, E-mail: crstorres@yahoo.com.mx [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion Escuela Superior de Ingenieria Mecanica y Electrica Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, CP 07738, Mexico, D. F. (Mexico)

    2011-07-19

    This article has to do with the development of a reliable and sensitive non-invasive laser technique for assessing damage of structures and systems involved in laser ablation processes. The optical response of a Michelson Interferometer in combination with a Measuring Reflectance System has been analyzed in order to identify the stability of the mechanical properties of the sample, the physical perturbations associated with the systems and the environment where the target is contained. This test includes the use of a cyan laser system with 10 mW at 488 nm wavelength as optical source. We found out that with the inclusion of an optical feedback in a sensing system it is possible to determine the modification of the physical properties exhibited by a biological medium under sharp ablation conditions with a high accuracy degree. The results reported in this research have potential applications related to the amount of light intensity that can be tolerated by human tissue. A wide array of disciplines, such as medicine, mechanical industry and optical instrumentation can benefit from this ultrafast optical feedback for controlling high intensity laser signals. Collateral damage of tissue around the laser irradiated zones can be reduced by using intelligent lasers systems with ultra-short temporal response.

  20. Interferometric laser detection of nanomechanical perturbations in biological media under ablation conditions

    International Nuclear Information System (INIS)

    Morales-Bonilla, S; Torres-Torres, C; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H; Urriolagoitia-Calderon, G

    2011-01-01

    This article has to do with the development of a reliable and sensitive non-invasive laser technique for assessing damage of structures and systems involved in laser ablation processes. The optical response of a Michelson Interferometer in combination with a Measuring Reflectance System has been analyzed in order to identify the stability of the mechanical properties of the sample, the physical perturbations associated with the systems and the environment where the target is contained. This test includes the use of a cyan laser system with 10 mW at 488 nm wavelength as optical source. We found out that with the inclusion of an optical feedback in a sensing system it is possible to determine the modification of the physical properties exhibited by a biological medium under sharp ablation conditions with a high accuracy degree. The results reported in this research have potential applications related to the amount of light intensity that can be tolerated by human tissue. A wide array of disciplines, such as medicine, mechanical industry and optical instrumentation can benefit from this ultrafast optical feedback for controlling high intensity laser signals. Collateral damage of tissue around the laser irradiated zones can be reduced by using intelligent lasers systems with ultra-short temporal response.

  1. Interferometric laser detection of nanomechanical perturbations in biological media under ablation conditions

    Science.gov (United States)

    Morales-Bonilla, S.; Torres-Torres, C.; Urriolagoitia-Sosa, G.; Hernández-Gómez, L. H.; Urriolagoitia-Calderón, G.

    2011-07-01

    This article has to do with the development of a reliable and sensitive non-invasive laser technique for assessing damage of structures and systems involved in laser ablation processes. The optical response of a Michelson Interferometer in combination with a Measuring Reflectance System has been analyzed in order to identify the stability of the mechanical properties of the sample, the physical perturbations associated with the systems and the environment where the target is contained. This test includes the use of a cyan laser system with 10 mW at 488 nm wavelength as optical source. We found out that with the inclusion of an optical feedback in a sensing system it is possible to determine the modification of the physical properties exhibited by a biological medium under sharp ablation conditions with a high accuracy degree. The results reported in this research have potential applications related to the amount of light intensity that can be tolerated by human tissue. A wide array of disciplines, such as medicine, mechanical industry and optical instrumentation can benefit from this ultrafast optical feedback for controlling high intensity laser signals. Collateral damage of tissue around the laser irradiated zones can be reduced by using intelligent lasers systems with ultra-short temporal response.

  2. Residual energy deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm

    Science.gov (United States)

    Ragadio, Jerome N.; Lee, Christian K.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the residual heat deposition during laser ablation at those IR laser wavelengths best suited for the removal of dental caries. The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth, which has the potential for causing damage to the pulp. Optimal laser ablation systems minimize the residual energy deposition in the tooth by transferring deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in the tooth was measured at laser wavelengths of 2.79, 2.94, 9.6 and 10.6 micrometer and pulse widths of 150 ns - 150 microsecond(s) . The residual energy was at a minimum for fluences well above the ablation threshold where it saturates at values from 25 - 70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual energy were measured for short (less than 20 microseconds) CO2 laser pulses at 9.6 micrometer and for Q-switched erbium laser pulses. This work was supported by NIH/NIDCR R29DE12091 and the Center for Laser Applications in Medicine, DOE DEFG0398ER62576.

  3. Research with high-power short-wavelength lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.; Campbell, E.M.; Lindl, J.D.; Storm, E.

    1985-01-01

    Three important high-temperature, high-density experiments were conducted recently using the 10-TW, short-wavelength Novette laser system at the Lawrence Livermore National Laboratory. These experiments demonstrated successful solutions to problems that arose during previous experiments with long wavelength lasers (lambda greater than or equal to 1μm) in which inertial confinement fusion (ICF), x-ray laser, and other high-temperature physics concepts were being tested. The demonstrations were: (1) large-scale plasmas (typical dimensions of up to 1000 laser wavelengths) were produced in which potentially deleterious laser-plasma instabilities were collisionally damped. (2) Deuterium-tritium fuel was imploded to a density of 20 g/cm 3 and a pressure of 10 10 atm. (3) A 700-fold amplification of soft x rays by stimulated emission at 206 and 209 A (62 eV) from Se +24 ions was observed in a laser-generated plasma. Isoelectronic scaling to 155 A (87 eV) in Y +29 was also demonstrated

  4. Superhydrophobic/superoleophilic magnetic elastomers by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Milionis, Athanasios, E-mail: am2vy@virginia.edu [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Fragouli, Despina; Brandi, Fernando; Liakos, Ioannis; Barroso, Suset [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Athanassiou, Athanassia, E-mail: athanassia.athanassiou@iit.it [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy)

    2015-10-01

    Highlights: • We report the development of magnetic nanocomposite sheets. • Laser irradiation of the nanocomposites induces chemical and structural changes to the surface. • The laser-patterned surfaces exhibit superhydrophobicity and superoleophilicity. • The particle contribution in altering the surface and bulk properties of the material is studied. - Abstract: We report the development of magnetic nanocomposite sheets with superhydrophobic and supeoleophilic surfaces generated by laser ablation. Polydimethylsiloxane elastomer free-standing films, loaded homogeneously with 2% wt. carbon coated iron nanoparticles, were ablated by UV (248 nm), nanosecond laser pulses. The laser irradiation induces chemical and structural changes (both in micro- and nano-scale) to the surfaces of the nanocomposites rendering them superhydrophobic. The use of nanoparticles increases the UV light absorption efficiency of the nanocomposite samples, and thus facilitates the ablation process, since the number of pulses and the laser fluence required are greatly reduced compared to the bare polymer. Additionally the magnetic nanoparticles enhance significantly the superhydrophobic and oleophilic properties of the PDMS sheets, and provide to PDMS magnetic properties making possible its actuation by a weak external magnetic field. These nanocomposite elastomers can be considered for applications requiring magnetic MEMS for the controlled separation of liquids.

  5. Wavelength dependency in high power laser cutting and welding

    Science.gov (United States)

    Havrilla, David; Ziermann, Stephan; Holzer, Marco

    2012-03-01

    Laser cutting and welding have been around for more than 30 years. Within those three decades there has never been a greater variety of high power laser types and wavelengths to choose from than there is today. There are many considerations when choosing the right laser for any given application - capital investment, cost of ownership, footprint, serviceability, along with a myriad of other commercial & economic considerations. However, one of the most fundamental questions that must be asked and answered is this - "what type of laser is best suited for the application?". Manufacturers and users alike are realizing what, in retrospect, may seem obvious - there is no such thing as a universal laser. In many cases there is one laser type and wavelength that clearly provides the highest quality application results. This paper will examine the application fields of high power, high brightness 10.6 & 1 micron laser welding & cutting and will provide guidelines for selecting the laser that is best suited for the application. Processing speed & edge quality serve as key criteria for cutting. Whereas speed, seam quality & spatter ejection provide the paradigm for welding.

  6. Expansion dynamics and equilibrium conditions in a laser ablation plume of lithium: Modeling and experiment

    International Nuclear Information System (INIS)

    Stapleton, M.W.; McKiernan, A.P.; Mosnier, J.-P.

    2005-01-01

    The gas dynamics and atomic kinetics of a laser ablation plume of lithium, expanding adiabatically in vacuum, are included in a numerical model, using isothermal and isentropic self-similar analytical solutions and steady-state collisional radiative equations, respectively. Measurements of plume expansion dynamics using ultrafast imaging for various laser wavelengths (266-1064 nm), fluences (2-6.5 J cm -2 ), and spot sizes (50-1000 μm) are performed to provide input parameters for the model and, thereby, study the influence of laser spot size, wavelength, and fluence, respectively, on both the plume expansion dynamics and atomic kinetics. Target recoil pressure, which clearly affects plume dynamics, is included in the model. The effects of laser wavelength and spot size on plume dynamics are discussed in terms of plasma absorption of laser light. A transition from isothermal to isentropic behavior for spot sizes greater than 50 μm is clearly evidenced. Equilibrium conditions are found to exist only up to 300 ns after the plume creation, while complete local thermodynamic equilibrium is found to be confined to the very early parts of the expansion

  7. Resonant ablation of single-wall carbon nanotubes by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Arutyunyan, N R; Komlenok, M S; Kononenko, V V; Pashinin, V P; Pozharov, A S; Konov, V I; Obraztsova, E D

    2015-01-01

    The thin 50 nm film of bundled arc-discharge single-wall carbon nanotubes was irradiated by femtosecond laser pulses with wavelengths 675, 1350 and 1745 nm corresponding to the absorption band of metallic nanotubes E 11 M , to the background absorption and to the absorption band of semiconducting nanotubes E 11 S , respectively. The aim was to induce a selective removal of nanotubes of specific type from the bundled material. Similar to conducted thermal heating experiments, the effect of laser irradiation results in suppression of all radial breathing modes in the Raman spectra, with preferential destruction of the metallic nanotubes with diameters less than 1.26 nm and of the semiconducting nanotubes with diameters 1.36 nm. However, the etching rate of different nanotubes depends on the wavelength of the laser irradiation. It is demonstrated that the relative content of nanotubes of different chiralities can be tuned by a resonant laser ablation of undesired nanotube fraction. The preferential etching of the resonant nanotubes has been shown for laser wavelengths 675 nm (E 11 M ) and 1745 nm (E 11 S ). (paper)

  8. Plasmonic distributed feedback lasers at telecommunications wavelengths.

    Science.gov (United States)

    Marell, Milan J H; Smalbrugge, Barry; Geluk, Erik Jan; van Veldhoven, Peter J; Barcones, Beatrix; Koopmans, Bert; Nötzel, Richard; Smit, Meint K; Hill, Martin T

    2011-08-01

    We investigate electrically pumped, distributed feedback (DFB) lasers, based on gap-plasmon mode metallic waveguides. The waveguides have nano-scale widths below the diffraction limit and incorporate vertical groove Bragg gratings. These metallic Bragg gratings provide a broad bandwidth stop band (~500 nm) with grating coupling coefficients of over 5000/cm. A strong suppression of spontaneous emission occurs in these Bragg grating cavities, over the stop band frequencies. This strong suppression manifests itself in our experimental results as a near absence of spontaneous emission and significantly reduced lasing thresholds when compared to similar length Fabry-Pérot waveguide cavities. Furthermore, the reduced threshold pumping requirements permits us to show strong line narrowing and super linear light current curves for these plasmon mode devices even at room temperature.

  9. Laser warning receiver to identify the wavelength and angle of arrival of incident laser light

    Science.gov (United States)

    Sinclair; Michael B.; Sweatt, William C.

    2010-03-23

    A laser warning receiver is disclosed which has up to hundreds of individual optical channels each optically oriented to receive laser light from a different angle of arrival. Each optical channel has an optical wedge to define the angle of arrival, and a lens to focus the laser light onto a multi-wavelength photodetector for that channel. Each multi-wavelength photodetector has a number of semiconductor layers which are located in a multi-dielectric stack that concentrates the laser light into one of the semiconductor layers according to wavelength. An electrical signal from the multi-wavelength photodetector can be processed to determine both the angle of arrival and the wavelength of the laser light.

  10. Effect of ablation photon energy on the distribution of molecular species in laser-induced plasma from polymer in air

    Energy Technology Data Exchange (ETDEWEB)

    Lei, W.Q. [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai (China); Universite de Lyon, F-69622, Lyon, France, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Ma, Q.L.; Motto-Ros, V.; Bai, X.S. [Universite de Lyon, F-69622, Lyon, France, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Zheng, L.J. [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai (China); Zeng, H.P., E-mail: hpzeng@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai (China); Yu, J., E-mail: Jin.Yu@lasim.univ-lyon1.fr [Universite de Lyon, F-69622, Lyon, France, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France)

    2012-07-15

    Distribution of molecular species, C{sub 2} and CN, in laser-induced plasma from a polymer target (polyvinyl chloride: PVC) was observed for ablation with 266 nm and 355 nm pulses. The influence of ablation photon energy on the distribution of molecular species in the plasma has been thus studied. Time- and space-resolved emission spectroscopy was used for the observation which led to the determination of emission intensity profiles of C{sub 2} molecule and CN radical for different delays after the impact of the laser pulse on the target. The profiles of related elements, C, N, and excitation temperature in the plasma were further determined to correlate with those of molecular emission intensity. Different behaviors were clearly observed between plasmas induced by pulses with the two different wavelengths chosen to be close each other in the near ultraviolet (UV). A closer analysis shows the photon energy corresponding to 266 nm pulse of 4.66 eV is larger than bond energies of all the chemical bonds in the studied polymer, while that of 355 nm radiation of 3.49 eV is smaller than or in the same range of the involved bond energies. Observed different behaviors suggest therefore different ablation mechanisms of polymer by laser radiation, and consequently different channels of molecule formation in the plasma. Observation of the morphology of the craters on the target surface left by laser ablation confirmed further different ablation mechanisms with the two used wavelengths. - Highlights: Black-Right-Pointing-Pointer The profiles of C{sub 2} and CN in a plasma induced from a PVC target were determined. Black-Right-Pointing-Pointer Different behaviors were observed for ablation with 266 nm and 355 nm pulses. Black-Right-Pointing-Pointer Different molecule formation channels were used to interpret such behaviors. Black-Right-Pointing-Pointer The morphology of the craters confirmed further the different ablation mechanisms.

  11. Ablation spot area and impulse characteristics of polymers induced by burst irradiation of 1 μm laser pulses

    Science.gov (United States)

    Tsuruta, Hisashi; Dondelewski, Oskar; Katagiri, Yusuke; Wang, Bin; Sasoh, Akihiro

    2017-07-01

    The ablation spot area and impulse characteristics of various polymers were experimentally investigated against burst irradiation of Nd: YLF laser pulses with a pulse repetition frequency of 1 kHz, wavelength of 1047 nm, temporal pulse width of 10 ns, and single-pulse fluence of 6.1 J/cm2 to 17.1 J/cm2. The dependences of ablation area on the pulse energy from 0.72 to 7.48 mJ and the number of pulses from 10 pulses to 1000 pulses were investigated. In order to characterize their impulse performance as a function of fluence, which should not depend on ablation material, an effective ablation spot area was defined as that obtained against aluminum, 1050 A, as the reference material. An impulse that resulted from a single burst of 200 pulses was measured with a torsion-type impulse stand. Various impulse dependences on the fluence, which were not readily predicted from the optical properties of the material without ablation, were obtained. By fitting the experimentally measured impulse performance to Phipps and Sinko's model in the vapor regime, the effective absorption coefficient with laser ablation was evaluated, thereby resulting in three to six orders of magnitude larger than that without ablation. Among the polymers examined using polytetrafluoroethylene (PTFE) as the best volume absorbers, the highest momentum coupling coefficient of 66 μNs/J was obtained with an effective absorption coefficient more than six times smaller than that of the other polymers.

  12. Ablation of Liquids for Laser Propulsion With TEA CO2 Laser

    National Research Council Canada - National Science Library

    Sinko, John; Kodgis, Lisa; Porter, Simon; Sterling, Enrique; Lin, Jun; Pakhomov, Andrew V; Larson, C. W; Mead, Jr., Franklin B

    2005-01-01

    .... A Transversely Excited at Atmospheric pressure (TEA) CO2 laser operated at 10.6 um, 300 ns pulse width, and 9 J pulse energy was used to ablate liquids contained in various aluminum and glass vessels...

  13. Ablation of Liquids for Laser Propulsion with TEA CO2 Laser

    National Research Council Canada - National Science Library

    Sinko, John; Kodgis, Lisa; Porter, Simon; Sterling, Enrique; Lin, Jun; Pakhomov, Andrew V; Larson, C. W; Mead, Jr, Franklin B

    2005-01-01

    .... A Transversely Excited at Atmospheric pressure (TEA) CO2 laser operated at 10.6 micro-m, 300 ns pulse width, and 9 J pulse energy was used to ablate liquids contained in various aluminum and glass vessels...

  14. Investigation of damage threshold to TiO2 coatings at different laser wavelength and pulse duration

    International Nuclear Information System (INIS)

    Yao Jianke; Fan Zhengxiu; Jin Yunxia; Zhao Yuanan; He Hongbo; Shao Jianda

    2008-01-01

    Laser-induced damages to TiO 2 single layers and TiO 2 /SiO 2 high reflectors at laser wavelength of 1064 nm, 800 nm, 532 nm, and pulse width of 12 ns, 220 ps, 50 fs, 8 ns are investigated. All films are prepared by electron beam evaporation. The relations among microstructure, chemical composition, optical properties and laser-induced damage threshold (LIDT), have been researched. The dependence of damage mechanism on laser wavelength and pulse width is discussed. It is found that from 1064 nm to 532 nm, LIDT is mainly absorption related, which is determined by film's extinction coefficient and stoichiometric defects. The rapid decrease of LIDT at 800 nm is due to the pulse width factor. TiO 2 coatings are mainly thermally by damaged at long pulse (τ ≥ 220 ps). The damage shows ablation feature at 50 fs

  15. 308-nm excimer laser ablation of human cartilage

    Science.gov (United States)

    Prodoehl, John A.; Rhodes, Anthony L.; Meller, Menachem M.; Sherk, Henry H.

    1993-07-01

    The XeCl excimer laser was investigated as an ablating tool for human fibrocartilage and hyaline cartilage. Quantitative measurements were made of tissue ablation rates as a function of fluence in meniscal fibrocartilage and articular hyaline cartilage. A force of 1.47 Newtons was applied to an 800 micrometers fiber with the laser delivering a range of fluences (40 to 190 mj/mm2) firing at a frequency of 5 Hz. To assess the effect of repetition rate on ablation rate, a set of measurements was made at a constant fluence of 60 mj/mm2, with the repetition rate varying from 10 to 40 Hz. Histologic and morphometric analysis was performed using light microscopy. The results of these studies revealed that the ablation rate was directly proportional to fluence over the range tested. Fibrocartilage was ablated at a rate 2.56 times faster than hyaline cartilage at the maximum fluence tested. Repetition rate had no effect on the penetration per pulse. Adjacent tissue damage was noted to be minimal (10 - 70 micrometers ).

  16. Percutaneous laser ablation of unresectable primary and metastatic adrenocortical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Pacella, Claudio M. [Regina Apostolorum Hospital, Department of Diagnostic Imaging and Interventional Radiology, Via San Francesco 50, Albano Laziale, Rome 00041 (Italy)], E-mail: claudiomaurizio.pacella@fastwebnet.it; Stasi, Roberto; Bizzarri, Giancarlo; Pacella, Sara; Graziano, Filomena Maria; Guglielmi, Rinaldo; Papini, Enrico [Regina Apostolorum Hospital, Department of Diagnostic Imaging and Interventional Radiology, Via San Francesco 50, Albano Laziale, Rome 00041 (Italy)

    2008-04-15

    Purpose: To evaluate the feasibility, safety, and clinical benefits of percutaneous laser ablation (PLA) in patients with unresectable primary and metastatic adrenocortical carcinoma (ACC). Patients and methods: Four patients with hepatic metastases from ACC and a Cushing's syndrome underwent ultrasound-guided PLA. In one case the procedure was performed also on the primary tumor. Results: After three sessions of PLA, the primary tumor of 15 cm was ablated by 75%. After 1-4 (median 1) sessions of PLA, five liver metastases ranging from 2 to 5 cm were completely ablated, while the sixth tumor of 12 cm was ablated by 75%. There were no major complications. Treatment resulted in an improvement of performance status and a reduction of the daily dosage of mitotane in all patients. The three patients with liver metastases presented a marked decrease of 24-h urine cortisol levels, an improved control of hypertension and a mean weight loss of 2.8 kg. After a median follow-up after PLA of 27.0 months (range, 9-48 months), two patients have died of tumor progression, while two other patients remain alive and free of disease. Conclusions: Percutaneous laser ablation is a feasible, safe and well tolerated procedure for the palliative treatment of unresectable primary and metastatic ACC. Further study is required to evaluate the impact of PLA on survival.

  17. Percutaneous laser ablation of unresectable primary and metastatic adrenocortical carcinoma

    International Nuclear Information System (INIS)

    Pacella, Claudio M.; Stasi, Roberto; Bizzarri, Giancarlo; Pacella, Sara; Graziano, Filomena Maria; Guglielmi, Rinaldo; Papini, Enrico

    2008-01-01

    Purpose: To evaluate the feasibility, safety, and clinical benefits of percutaneous laser ablation (PLA) in patients with unresectable primary and metastatic adrenocortical carcinoma (ACC). Patients and methods: Four patients with hepatic metastases from ACC and a Cushing's syndrome underwent ultrasound-guided PLA. In one case the procedure was performed also on the primary tumor. Results: After three sessions of PLA, the primary tumor of 15 cm was ablated by 75%. After 1-4 (median 1) sessions of PLA, five liver metastases ranging from 2 to 5 cm were completely ablated, while the sixth tumor of 12 cm was ablated by 75%. There were no major complications. Treatment resulted in an improvement of performance status and a reduction of the daily dosage of mitotane in all patients. The three patients with liver metastases presented a marked decrease of 24-h urine cortisol levels, an improved control of hypertension and a mean weight loss of 2.8 kg. After a median follow-up after PLA of 27.0 months (range, 9-48 months), two patients have died of tumor progression, while two other patients remain alive and free of disease. Conclusions: Percutaneous laser ablation is a feasible, safe and well tolerated procedure for the palliative treatment of unresectable primary and metastatic ACC. Further study is required to evaluate the impact of PLA on survival

  18. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    Science.gov (United States)

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-08

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  19. Clinical effects of non-ablative and ablative fractional lasers on various hair disorders: a case series of 17 patients.

    Science.gov (United States)

    Cho, Suhyun; Choi, Min Ju; Zheng, Zhenlong; Goo, Boncheol; Kim, Do-Young; Cho, Sung Bin

    2013-04-01

    Both ablative and non-ablative fractional lasers have been applied to various uncommon hair disorders. The purpose of this study was to demonstrate the clinical effects of fractional laser therapy on the course of primary follicular and perifollicular pathologies and subsequent hair regrowth. A retrospective review of 17 patients with uncommon hair disorders - including ophiasis, autosomal recessive woolly hair/hypotrichosis, various secondary cicatricial alopecias, pubic hypotrichosis, frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens - was conducted. All patients had been treated with non-ablative and/or ablative fractional laser therapies. The mean clinical improvement score in these 17 patients was 2.2, while the mean patient satisfaction score was 2.5. Of the 17 subjects, 12 (70.6%) demonstrated a clinical response to non-ablative and/or ablative fractional laser treatments, including individuals with ophiasis, autosomal recessive woolly hair/hypotrichosis, secondary cicatricial alopecia (scleroderma and pressure-induced alopecia), frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens. Conversely, patients with long-standing ophiasis, surgical scar-induced secondary cicatricial alopecia, and pubic hypotrichosis did not respond to fractional laser therapy. Our findings demonstrate that the use of non-ablative and/or ablative fractional lasers promoted hair growth in certain cases of uncommon hair disorders without any remarkable side effects.

  20. Ablation in teeth with the free-electron laser around the absorption peak of hydroxyapatite (9.5 μm) and between 6.0 and 7.5 μm

    Science.gov (United States)

    Ostertag, Manfred; Walker, Rudolf; Weber, Heiner; van der Meer, Lex; McKinley, Jim T.; Tolk, Norman H.; Jean, Benedikt J.

    1996-04-01

    Pulsed IR laser ablation on dental hard substances was studied in the wavelength range between 9.5 and 11.5 micrometers with the Free-Electron Laser (FEL) in Nieuwegein/NL and between 6.0 and 7.5 micrometers with the FEL at Vanderbilt University in Nashville/TN. Depth, diameter and volume of the ablation crater were determined with a special silicon replica method and subsequent confocal laser topometry. The irradiated surfaces and the ejected debris were examined with an SEM 9.5 - 11.5 micrometers : depth, diameter and volume of the ablation crater are greater and the ablation threshold is lower for ablation with a wavelength corresponding to the absorption max. of hydroxyapatite (9.5 micrometers ), compared to ablation at wavelengths with lower absorption (10.5 - 11.5 micrometers ). For all wavelengths, no thermal cracking can be observed after ablation in dentine, however a small amount of thermal cracking can be observed after ablation in enamel. After ablation at 9.5 micrometers , a few droplets of solidified melt were seen on the irradiated areas, whereas the debris consisted only of solidified melt. In contrast, the surface and the debris obtained from ablation using the other wavelengths showed the natural structure of dentine 6.0 - 7.5 micrometers : the depth of the ablation crater increases and the ablation threshold decreases for an increasing absorption coefficient of the target material. Different tissue components absorbed the laser radiation of different wavelengths (around 6.0 micrometers water and collagen, 6.5 micrometers collagen and water, 7.0 micrometers carbonated hydroxyapatite). Nevertheless the results have shown no major influence on the primary tissue absorber.

  1. Influence of laser wavelength on the laser induced breakdown spectroscopy measurement of thin CuIn1−xGaxSe2 solar cell films

    International Nuclear Information System (INIS)

    Kim, Chan Kyu; In, Jung Hwan; Lee, Seok Hee; Jeong, Sungho

    2013-01-01

    Laser induced breakdown spectroscopy (LIBS) measurement of thin CuIn x Ga 1−x Se 2 (CIGS) films (1.2–1.9 μm) with varying Ga to In ratios was carried out using the fundamental (1064 nm) and second harmonic (532 nm) wavelength Nd:YAG lasers (τ = 5 ns, spot diameter = 150 μm, top-hat profile) in air. The concentration ratios of Ga to In, x Ga ≡ Ga/(Ga + In), of the CIGS samples ranged from 0.027 to 0.74 for which the band gap varied nearly proportionally to x Ga from 0.96 to 1.42. It was found that the LIBS signal of 1064 nm (1.17 eV) wavelength laser was significantly influenced by x Ga , whereas that of the 532 nm (2.34 eV) laser was consistent for all values of x Ga . The observed dependency of the LIBS signal intensity on the laser wavelength was attributed to the large difference of photon energy of the two wavelengths that changed the absorption of incident laser energy by the film. The 532 nm wavelength was found to be advantageous for multi-shot analysis that enabled depth profile analysis of the thin CIGS films and for improving measurement precision by averaging the multi-shot LIBS spectra. - Highlights: • The ablation characteristics of CIGS solar cell films change drastically with laser wavelength. • The LIBS signal intensity of 1064 nm wavelength laser depends strongly on Ga concentration. • Multi-shot LIBS analysis using a 532 nm laser is more advantageous for accuracy and consistency

  2. Frequency mixing in boron carbide laser ablation plasmas

    Science.gov (United States)

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; de Nalda, R.; Castillejo, M.

    2015-05-01

    Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B4C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  3. Solid material evaporation into an ECR source by laser ablation

    International Nuclear Information System (INIS)

    Harkewicz, R.; Stacy, J.; Greene, J.; Pardo, R.C.

    1993-01-01

    In an effort to explore new methods of producing ion beams from solid materials, we are attempting to develop a laser-ablation technique for evaporating materials directly into an ECR ion source plasma. A pulsed NdYaG laser with approximately 25 watts average power and peak power density on the order of 10 7 W/cm 2 has been used off-line to measure ablation rates of various materials as a function of peak laser power. The benefits anticipated from the successful demonstration of this technique include the ability to use very small quantities of materials efficiently, improved material efficiency of incorporation into the ECR plasma, and decoupling of the material evaporation process from the ECR source tuning operation. Here we report on the results of these tests and describe the design for incorporating such a system directly with the ATLAS PII-ECR ion source

  4. Optogalvanic wavelength calibration for laser monitoring of reactive atmospheric species

    Science.gov (United States)

    Webster, C. R.

    1982-01-01

    Laser-based techniques have been successfully employed for monitoring atmospheric species of importance to stratospheric ozone chemistry or tropospheric air quality control. When spectroscopic methods using tunable lasers are used, a simultaneously recorded reference spectrum is required for wavelength calibration. For stable species this is readily achieved by incorporating into the sensing instrument a reference cell containing the species to be monitored. However, when the species of interest is short-lived, this approach is unsuitable. It is proposed that wavelength calibration for short-lived species may be achieved by generating the species of interest in an electrical or RF discharge and using optogalvanic detection as a simple, sensitive, and reliable means of recording calibration spectra. The wide applicability of this method is emphasized. Ultraviolet, visible, or infrared lasers, either CW or pulsed, may be used in aircraft, balloon, or shuttle experiments for sensing atoms, molecules, radicals, or ions.

  5. Effect of liquid film on near-threshold laser ablation of a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongsik; Oh, Bukuk; Lee, Ho

    2004-01-30

    Enhancement of material ablation and photoacoustic excitation by an artificially deposited liquid film in the process of pulsed-laser ablation (PLA) is investigated in this paper. Ablation threshold, ablation rate, surface topography, and acoustic-transient emission are also measured for dry and liquid film-coated surfaces. The physical mechanisms of enhanced ablation in the liquid-assisted process are analyzed at relatively low laser fluences with negligible effect of laser-produced plasma. Particularly, correlation between material ablation and acoustic-transient generation is examined. In the experiment, aluminum thin-films and bulk foils are ablated by Q-switched Nd:YAG laser pulses. The dependence of ablation rate and laser-induced topography on liquid film thickness and chemical composition is also examined. Photoacoustic emission is measured by the probe beam deflection method utilizing a CW HeNe laser and a microphone. In comparison with a dry ablation process, the liquid-assisted ablation process results in substantially augmented ablation efficiency and reduced ablation threshold. The results indicate that both increased laser-energy coupling, i.e., lowered reflectance, and amplified photoacoustic excitation in explosive vaporization of liquid are responsible for the enhanced material ablation.

  6. Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold

    International Nuclear Information System (INIS)

    Upadhyay, Arun K.; Inogamov, Nail A.; Rethfeld, Baerbel; Urbassek, Herbert M.

    2008-01-01

    Ultrafast laser irradiation of solids may ablate material off the surface. We study this process for thin films using molecular-dynamics simulation and thermodynamic analysis. Both metals and Lennard-Jones (LJ) materials are studied. We find that despite the large difference in thermodynamical properties between these two classes of materials--e.g., for aluminum versus LJ the ratio T c /T tr of critical to triple-point temperature differs by more than a factor of 4--the values of the ablation threshold energy E abl normalized to the cohesion energy, ε abl =E abl /E coh , are surprisingly universal: all are near 0.3 with ±30% scattering. The difference in the ratio T c /T tr means that for metals the melting threshold ε m is low, ε m abl , while for LJ it is high, ε m >ε abl . This thermodynamical consideration gives a simple explanation for the difference between metals and LJ. It explains why despite the universality in ε abl , metals thermomechanically ablate always from the liquid state. This is opposite to LJ materials, which (near threshold) ablate from the solid state. Furthermore, we find that immediately below the ablation threshold, the formation of large voids (cavitation) in the irradiated material leads to a strong temporary expansion on a very slow time scale. This feature is easily distinguished from the acoustic oscillations governing the material response at smaller intensities, on the one hand, and the ablation occurring at larger intensities, on the other hand. This finding allows us to explain the puzzle of huge surface excursions found in experiments at near-threshold laser irradiation

  7. Laser ablation of titanium in liquid in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.

  8. Laser frequency stabilization using a commercial wavelength meter

    Science.gov (United States)

    Couturier, Luc; Nosske, Ingo; Hu, Fachao; Tan, Canzhu; Qiao, Chang; Jiang, Y. H.; Chen, Peng; Weidemüller, Matthias

    2018-04-01

    We present the characterization of a laser frequency stabilization scheme using a state-of-the-art wavelength meter based on solid Fizeau interferometers. For a frequency-doubled Ti-sapphire laser operated at 461 nm, an absolute Allan deviation below 10-9 with a standard deviation of 1 MHz over 10 h is achieved. Using this laser for cooling and trapping of strontium atoms, the wavemeter scheme provides excellent stability in single-channel operation. Multi-channel operation with a multimode fiber switch results in fluctuations of the atomic fluorescence correlated to residual frequency excursions of the laser. The wavemeter-based frequency stabilization scheme can be applied to a wide range of atoms and molecules for laser spectroscopy, cooling, and trapping.

  9. Angular distribution of laser ablation plasma

    International Nuclear Information System (INIS)

    Kondo, K.; Kanesue, T.; Dabrowski, R.; Okamura, M.

    2010-01-01

    An expansion of a laser induced plasma is fundamental and important phenomena in a laser ion source. To understand the expanding direction, an array of Langmuir probes were employed. The chosen ion for the experiment was Ag 1+ which was created by a second harmonics of a Nd-YAG laser. The obtained angular distribution was about ±10 degree. This result also indicates a proper positioning of a solenoid magnet which enhances ion beam current.

  10. Ion extraction from positively biased laser-ablation plasma

    International Nuclear Information System (INIS)

    Isono, Fumika; Nakajima, Mitsuo; Hasegawa, Jun; Horioka, Kazuhiko

    2016-01-01

    Ions were extracted through a grounded grid from a positively biased laser-ablation plasma and the behaviors were investigated. Since the plasma was positively biased against the grounded wall, we could extract the ions without insulated gap. We confirmed formation of a virtual anode when we increased the distance between the grid and the ion collector. Results also indicated that when the ion flux from the ablation plasma exceeded a critical value, the current was strongly suppressed to the space charge limited level due to the formation of virtual anode.

  11. In-vivo optical imaging of hsp70 expression to assess collateral tissue damage associated with infrared laser ablation of skin

    Science.gov (United States)

    Wilmink, Gerald J.; Opalenik, Susan R.; Beckham, Joshua T.; Mackanos, Mark A.; Nanney, Lillian B.; Contag, Christopher H.; Davidson, Jeffrey M.; Jansen, E. Duco

    2013-01-01

    Laser surgical ablation is achieved by selecting laser parameters that remove confined volumes of target tissue and cause minimal collateral damage. Previous studies have measured the effects of wavelength on ablation, but neglected to measure the cellular impact of ablation on cells outside the lethal zone. In this study, we use optical imaging in addition to conventional assessment techniques to evaluate lethal and sublethal collateral damage after ablative surgery with a free-electron laser (FEL). Heat shock protein (HSP) expression is used as a sensitive quantitative marker of sublethal damage in a transgenic mouse strain, with the hsp70 promoter driving luciferase and green fluorescent protein (GFP) expression (hsp70A1-L2G). To examine the wavelength dependence in the mid-IR, laser surgery is conducted on the hsp70A1-L2G mouse using wavelengths targeting water (OH stretch mode, 2.94 μm), protein (amide-II band, 6.45 μm), and both water and protein (amide-I band, 6.10 μm). For all wavelengths tested, the magnitude of hsp70 expression is dose-dependent and maximal 5 to 12 h after surgery. Tissues treated at 6.45 μm have approximately 4× higher hsp70 expression than 6.10 μm. Histology shows that under comparable fluences, tissue injury at the 2.94-μm wavelength was 2× and 3× deeper than 6.45 and 6.10 μm, respectively. The 6.10-μm wavelength generates the least amount of epidermal hyperplasia. Taken together, this data suggests that the 6.10-μm wavelength is a superior wavelength for laser ablation of skin. PMID:19021444

  12. Time resolved measurement of laser-ablated particles by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy)

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Murakami, Kouichi

    1999-01-01

    The time- and spatially-resolved properties of laser ablated carbon, boron and silicon particles were measured by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy). The maximum speed of positively charged ions is higher than those of neutral atoms and negatively charged ions. The spatial distributions of the laser-ablated particles in the localized rare gas environment were measured. In helium gas environment, by the helium cloud generated on the top of ablation plume depressed the ablation plume. There is no formation of silicon clusters till 15 μs after laser ablation in the argon gas environment. (author)

  13. Reduction of secondary electron yield for E-cloud mitigation by laser ablation surface engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valizadeh, R., E-mail: reza.valizadeh@stfc.ac.uk [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Malyshev, O.B. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Wang, S. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Sian, T. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); The Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); Cropper, M.D. [Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Sykes, N. [Micronanics Ltd., Didcot, Oxon OX11 0QX (United Kingdom)

    2017-05-15

    Highlights: • SEY below 1 can be achieved with Laser ablation surface engineering. • SEY <1 surface can be produced with different types of nanosecond lasers. • Both microstructure (groves) and nano-structures are playing a role in reducing SEY. - Abstract: Developing a surface with low Secondary Electron Yield (SEY) is one of the main ways of mitigating electron cloud and beam-induced electron multipacting in high-energy charged particle accelerators. In our previous publications, a low SEY < 0.9 for as-received metal surfaces modified by a nanosecond pulsed laser was reported. In this paper, the SEY of laser-treated blackened copper has been investigated as a function of different laser irradiation parameters. We explore and study the influence of micro- and nano-structures induced by laser surface treatment in air of copper samples as a function of various laser irradiation parameters such as peak power, laser wavelength (λ = 355 nm and 1064 nm), number of pulses per point (scan speed and repetition rate) and fluence, on the SEY. The surface chemical composition was determined by x-ray photoelectron spectroscopy (XPS) which revealed that heating resulted in diffusion of oxygen into the bulk and induced the transformation of CuO to sub-stoichiometric oxide. The surface topography was examined with high resolution scanning electron microscopy (HRSEM) which showed that the laser-treated surfaces are dominated by microstructure grooves and nanostructure features.

  14. Next generation Er:YAG fractional ablative laser

    Science.gov (United States)

    Heinrich, A.; Vizhanyo, A.; Krammer, P.; Summer, S.; Gross, S.; Bragagna, T.; Böhler, C.

    2011-03-01

    Pantec Biosolutions AG presents a portable fractional ablative laser system based on a miniaturized diode pumped Er:YAG laser. The system can operate at repetition rates up to 500 Hz and has an incorporated beam deflection unit. It is smaller, lighter and cost efficient compared to systems based on lamp pumped Er:YAG lasers and incorporates a skin layer detection to guarantee precise control of the microporation process. The pulse parameters enable a variety of applications in dermatology and in general medicine, as demonstrated by first results on transdermal drug delivery of FSH (follicle stimulating hormone).

  15. Selective ablation of dental enamel and dentin using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Lizarelli, R F Z; Costa, M M; Carvalho-Filho, E; Bagnato, V S; Nunes, F D

    2008-01-01

    The study of the interaction of intense laser light with matter, as well as transient response of atoms and molecules is very appropriated because of the laser energy concentration in a femtosecond optical pulses. The fundamental problem to be solved is to find tools and techniques which allow us to observe and manipulate on a femtosecond time scale the photonics events on and into the matter. Six third human extracted molars were exposed to a femtosecond Ti:Sapphire Q-switched and mode locked laser (Libra-S, Coherent, Palo Alto, CA, USA), emitting pulses with 70 fs width, radiation wavelength of 801 nm, at a constant pulse repetition rate of 1 KHz. The laser was operated at different power levels (70 to 400 mW) with constant exposition time of 10 seconds, at focused and defocused mode. Enamel and dentin surfaces were evaluated concerned ablation rate and morphological aspects under scanning electron microscopic. The results in this present experiment suggest that at the focused mode and under higher average power, enamel tissues present microcavities with higher depth and very precise edges, but, while dentin shows a larger melt-flushing, lower depth and melting and solidification aspect. In conclusion, it is possible to choose hard or soft ablation, under lower and higher average power, respectively, revealing different aspects of dental enamel and dentin, depending on the average power, fluence and distance from the focal point of the ultra-short pulse laser on the tooth surface

  16. PREFACE AND CONFERENCE INFORMATION: Eighth International Conference on Laser Ablation

    Science.gov (United States)

    Hess, Wayne P.; Herman, Peter R.; Bäuerle, Dieter; Koinuma, Hideomi

    2007-04-01

    Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11-16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in a unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications. Laser ablation continues to grow and evolve, touching forefront areas in science and driving new technological trends in laser processing applications. Please

  17. Broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity

    Science.gov (United States)

    Li, Q.; Jia, Z. X.; Weng, H. Z.; Li, Z. R.; Yang, Y. D.; Xiao, J. L.; Chen, S. W.; Huang, Y. Z.; Qin, W. P.; Qin, G. S.

    2018-05-01

    We demonstrate broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm and a frequency separation of ~9.28 GHz generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity. By using one continuous-wave laser as the pump source, multi-wavelength Brillouin lasers with an operating wavelength range of 1554–1574 nm were generated via cascaded Brillouin scattering and four-wave mixing. Interestingly, when pumped by two continuous-wave lasers with an appropriate frequency separation, the operating wavelength range of the multi-wavelength Brillouin lasers was increased to 1500–1600 nm due to cavity-enhanced cascaded four-wave mixing among the frequency components generated by two pump lasers in the dual wavelength Brillouin laser cavity.

  18. Laser writing of nanostructures on bulk Al via its ablation in liquids

    International Nuclear Information System (INIS)

    Stratakis, E; Zorba, V; Barberoglou, M; Fotakis, C; Shafeev, G A

    2009-01-01

    Experimental results are presented on the formation of self-organized nanostructures (NSs) on a bulk Al target under its ablation in liquids-water and ethanol-with short laser pulses from 180 femtoseconds (fs) through 350 picoseconds (ps). NSs are characterized by atomic force microscopy, field emission scanning electron microscopy, optical absorption spectroscopy and x-ray diffraction. The period of NSs does not depend on the laser wavelength used from 248 through 800 nm and is approximately 200 nm. NSs on Al show the characteristic absorption peak in the near UV which has been attributed to plasmon oscillation of electrons. The wings of this peak, extending to the visible, lead to a distinct yellow coloration of the processed Al surface. Ultrafast laser structuring of bulk aluminum in liquids may be potentially a promising technique for efficient production of nanosized aluminum.

  19. Nanosecond pulsed laser ablation of brass in a dry and liquid-confined environment

    Science.gov (United States)

    Bashir, Shazia; Vaheed, Hamza; Mahmood, Khaliq

    2013-02-01

    The effect of ambient environment (dry or wet) and overlapping laser pulses on the laser ablation performance of brass has been investigated. For this purpose, a Q-switched, frequency doubled Nd:YAG laser with a wavelength of 532 nm, pulse energy of 150 mJ, pulse width of 6 ns and repetition rate of 10 Hz is employed. In order to explore the effect of ambient environments, brass targets have been exposed in deionized water, methanol and air. The targets are exposed for 1000, 2000, 3000 and 4000 succeeding pulses in each atmosphere. The surface morphology and chemical composition of ablated targets have been characterized by using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM) and Attenuated Total Reflection (ATR) techniques. In case of liquid environment, various features like nano- and micro-scale laser-induced periodic surface structures with periodicity 500 nm-1 μm, cavities of size few micrometers with multiple ablative layers and phenomenon of thermal stress cracking are observed. These features are originated by various chemical and thermal phenomena induced by laser heating at the liquid-solid interfaces. The convective bubble motion, explosive boiling, pressure gradients, cluster and colloid formation due to confinement effects of liquids are possible cause for such kind of features. The metal oxides and alcohol formed on irradiated surface are also playing the significant role for the formation of these kinds of structure. In case of air one huge crater is formed along with the redeposition of sputtered material and is ascribed to laser-induced evaporation and oxide formation.

  20. Near-IR imaging of thermal changes in enamel during laser ablation

    Science.gov (United States)

    Maung, Linn H.; Lee, Chulsung; Fried, Daniel

    2010-02-01

    The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO2 laser operating at a wavelength of 9.3-μm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10-20 μs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO2 laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO2 laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase lightscattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 +/- 0.82 to 5.08 +/- 0.98 with loss of mobile water due to heating.

  1. Laser ablated copper plasmas in liquid and gas ambient

    Science.gov (United States)

    Kumar, Bhupesh; Thareja, Raj K.

    2013-05-01

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (ne) determined using Stark broadening of the Cu I (3d104d1 2D3/2-3d104p1 2P3/2 at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (Te) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ˜590 nm.

  2. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    Science.gov (United States)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  3. Pulsed laser ablation of Germanium under vacuum and hydrogen environments at various fluences

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Hassan [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Dawood, Asadullah; Akram, Mahreen; Mahmood, Khaliq; Hayat, Asma; Ahmad, Riaz; Hussain, Tousif [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Mahmood, Arshad [National Institute of Laser and Optronics (NILOP), Islamabad (Pakistan)

    2015-07-30

    Highlights: • Germanium targets were exposed under vacuum and H{sub 2} environment by nanosecond laser pulses. • The effect of laser fluence and ambient environment has been investigated. • The surface morphology is investigated by SEM analysis. • Raman and FTIR Spectroscopy are performed to reveal structural modification. • Electrical conductivity is probed by four probe method. - Abstract: Laser fluence and ambient environment play a significant role for the formation and development of the micro/nano-structures on the laser irradiated targets. Single crystal (1 0 0) Germanium (Ge) has been ablated under two environments of vacuum (10{sup −3} Torr) and hydrogen (100 Torr) at various fluences ranging from 4.5 J cm{sup −2} to 6 J cm{sup −2}. For this purpose KrF Excimer laser with wavelength of 248 nm, pulse duration of 18 ns and repetition rate of 20 Hz has been employed. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets was explored by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy. Electrical conductivity of the irradiated Ge is measured by four probe method. SEM analysis exhibits the formation of laser-induced periodic surface structures (LIPSS), cones and micro-bumps in both ambient environments (vacuum and hydrogen). The formation as well as development of these structures is strongly dependent upon the laser fluence and environmental conditions. The periodicity of LIPSS or ripples varies from 38 μm to 60 μm in case of vacuum whereas in case of hydrogen environment, the periodicity varies from 20 μm to 45 μm. The difference in number of ripples and periodicity as well as in shape and size of cones and bumps in vacuum and hydrogen is explained on the basis of confinement and shielding effect of plasma. FTIR spectroscopy reveals that no new bands are formed for laser ablated Ge under vacuum, whereas C−H stretching vibration band is

  4. Histological evaluation of vertical laser channels from ablative fractional resurfacing

    DEFF Research Database (Denmark)

    Skovbølling Haak, Christina; Illes, Monica; Paasch, Uwe

    2011-01-01

    Ablative fractional resurfacing (AFR) represents a new treatment potential for various skin conditions and new laser devices are being introduced. It is important to gain information about the impact of laser settings on the dimensions of the created laser channels for obtaining a safe...... and efficient treatment outcome. The aim of this study was to establish a standard model to document the histological tissue damage profiles after AFR and to test a new laser device at diverse settings. Ex vivo abdominal pig skin was treated with a MedArt 620, prototype fractional carbon dioxide (CO(2)) laser...... (Medart, Hvidovre, Denmark) delivering single microbeams (MB) with a spot size of 165 µm. By using a constant pulse duration of 2 ms, intensities of 1-18 W, single and 2-4 stacked pulses, energies were delivered in a range from 2-144 mJ/MB. Histological evaluations included 3-4 high-quality histological...

  5. Histological evaluation of vertical laser channels from ablative fractional resurfacing

    DEFF Research Database (Denmark)

    Skovbølling Haak, Christina; Illes, Monica; Paasch, Uwe

    2011-01-01

    Ablative fractional resurfacing (AFR) represents a new treatment potential for various skin conditions and new laser devices are being introduced. It is important to gain information about the impact of laser settings on the dimensions of the created laser channels for obtaining a safe...... and efficient treatment outcome. The aim of this study was to establish a standard model to document the histological tissue damage profiles after AFR and to test a new laser device at diverse settings. Ex vivo abdominal pig skin was treated with a MedArt 620, prototype fractional carbon dioxide (CO(2)) laser...... (Medart, Hvidovre, Denmark) delivering single microbeams (MB) with a spot size of 165 μm. By using a constant pulse duration of 2 ms, intensities of 1-18 W, single and 2-4 stacked pulses, energies were delivered in a range from 2-144 mJ/MB. Histological evaluations included 3-4 high-quality histological...

  6. Ablative skin resurfacing with a novel microablative CO2 laser.

    Science.gov (United States)

    Gotkin, Robert H; Sarnoff, Deborah S; Cannarozzo, Giovanni; Sadick, Neil S; Alexiades-Armenakas, Macrene

    2009-02-01

    Carbon dioxide (CO2) laser skin resurfacing has been a mainstay of facial rejuvenation since its introduction in the mid 1990s. Recently, a new generation of fractional or microablative CO2 lasers has been introduced to the marketplace. According to the concept of fractional photothermolysis, these lasers ablate only a fraction of the epidermal and dermal architecture in the treatment area. An array of microscopic thermal wounds is created that ablates the epidermis and dermis within very tiny zones; adjacent to these areas, the epidermis and dermis are spared. This microablative process of laser skin resurfacing has proven safe and effective not only for facial rejuvenation, but elsewhere on the body as well. It is capable of improving wrinkles, acne scars, and other types of atrophic scars and benign pigmented lesions associated with elastotic, sun-damaged skin. Because of the areas of spared epidermis and dermis inherent in a procedure that employs fractional photothermolysis, healing is more rapid compared to fully ablative CO2 laser skin resurfacing and downtime is proportionately reduced. A series of 32 consecutive patients underwent a single laser resurfacing procedure with the a new microablative CO2 laser. All patients were followed for a minimum of 6 months and were asked to complete patient satisfaction questionnaires; a 6 month postoperative photographic evaluation by an independent physician, not involved in the treatment, was also performed. Both sets of data were graded and reported on a quartile scale. Results demonstrated greater than 50% improvement in almost all patients with those undergoing treatment for wrinkles, epidermal pigment or solar elastosis deriving the greatest change for the better (>75%).

  7. Investigation of laser ablation of CVD diamond film

    Science.gov (United States)

    Chao, Choung-Lii; Chou, W. C.; Ma, Kung-Jen; Chen, Ta-Tung; Liu, Y. M.; Kuo, Y. S.; Chen, Ying-Tung

    2005-04-01

    Diamond, having many advanced physical and mechanical properties, is one of the most important materials used in the mechanical, telecommunication and optoelectronic industry. However, high hardness value and extreme brittleness have made diamond extremely difficult to be machined by conventional mechanical grinding and polishing. In the present study, the microwave CVD method was employed to produce epitaxial diamond films on silicon single crystal. Laser ablation experiments were then conducted on the obtained diamond films. The underlying material removal mechanisms, microstructure of the machined surface and related machining conditions were also investigated. It was found that during the laser ablation, peaks of the diamond grains were removed mainly by the photo-thermal effects introduced by excimer laser. The diamond structures of the protruded diamond grains were transformed by the laser photonic energy into graphite, amorphous diamond and amorphous carbon which were removed by the subsequent laser shots. As the protruding peaks gradually removed from the surface the removal rate decreased. Surface roughness (Ra) was improved from above 1μm to around 0.1μm in few minutes time in this study. However, a scanning technique would be required if a large area was to be polished by laser and, as a consequence, it could be very time consuming.

  8. Formation of silicon carbide by laser ablation in graphene oxide-N-methyl-2-pyrrolidone suspension on silicon surface

    Science.gov (United States)

    Jaleh, Babak; Ghasemi, Samaneh; Torkamany, Mohammad Javad; Salehzadeh, Sadegh; Maleki, Farahnaz

    2018-01-01

    Laser ablation of a silicon wafer in graphene oxide-N-methyl-2-pyrrolidone (GO-NMP) suspension was carried out with a pulsed Nd:YAG laser (pulse duration = 250 ns, wavelength = 1064 nm). The surface of silicon wafer before and after laser ablation was studied using optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the ablation of silicon surface in liquid by pulsed laser was done by the process of melt expulsion under the influence of the confined plasma-induced pressure or shock wave trapped between the silicon wafer and the liquid. The X-ray diffraction‌ (XRD) pattern of Si wafer after laser ablation showed that 4H-SiC layer is formed on its surface. The formation of the above layer was also confirmed by Raman spectroscopy, and X-ray photoelectron spectroscopy‌ (XPS), as well as EDX was utilized. The reflectance of samples decreased with increasing pulse energy. Therefore, the morphological alteration and the formation of SiC layer at high energy increase absorption intensity in the UV‌-vis regions. Theoretical calculations confirm that the formation of silicon carbide from graphene oxide and silicon wafer is considerably endothermic. Development of new methods for increasing the reflectance without causing harmful effects is still an important issue for crystalline Si solar cells. By using the method described in this paper, the optical properties of solar cells can be improved.

  9. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    International Nuclear Information System (INIS)

    Seto, Takafumi; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto

    2006-01-01

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism

  10. Nanostructured films of metal particles obtained by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Muniz-Miranda, M., E-mail: muniz@unifi.it [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Gellini, C. [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Giorgetti, E.; Margheri, G.; Marsili, P. [Istituto Sistemi Complessi (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Lascialfari, L.; Becucci, L. [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Trigari, S. [Istituto Sistemi Complessi (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Giammanco, F. [Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)

    2013-09-30

    Colloidal dispersions of silver and gold nanoparticles were obtained in pure water by ablation with nanosecond pulsed laser. Then, by filtration of the metal particles on alumina, we fabricated nanostructured films, whose surface morphology was examined by atomic force microscopy (AFM) and related to surface-enhanced Raman scattering (SERS) after adsorption of adenine. - Highlights: • Ag and Au colloidal nanoparticles were obtained by laser ablation. • Nanostructured Ag and Au films were fabricated by filtration of metal nanoparticles. • Surface morphology of metal films was investigated by atomic force microscopy. • Surface-enhanced Raman spectra (SERS) of adenine on metal films were obtained. • SERS enhancements were related to the surface roughness of the metal films.

  11. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Takafumi, E-mail: t.seto@aist.go.jp; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto [National Institute of Advanced Industrial Science and Technology (AIST), Research Consortium for Synthetic Nano-Function Materials Project (SYNAF) (Japan)

    2006-08-15

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism.

  12. Laser Ablation Experiments on the Tamdakht H5 Chondrite

    Science.gov (United States)

    White, Susan M.; Stern, Eric

    2017-01-01

    High-powered lasers were used to induce ablation and to form fusion crusts in the lab on Tamdakht H5 chondrites and basalt. These ground tests were undertaken to improve our understanding, and ultimately improve our abilty to model and predict, meteoroid ablation during atmospheric entry. The infrared fiber laser at the LHMEL facilty, operated in the continuous wave (i.e. non-pulsed) mode, provided radiation surface heat flux at levels similar to meteor entry for these tests. Results are presented from the first round of testing on samples of Tamdakht H5 ordinary chondrite which were ex-posed to entry-relevant heating rates between 2 and 10 kWcm2.

  13. Precise femtosecond laser ablation of dental hard tissue: preliminary investigation on adequate laser parameters

    International Nuclear Information System (INIS)

    Hikov, Todor; Pecheva, Emilia; Petrov, Todor; Montgomery, Paul; Antoni, Frederic; Leong-Hoi, Audrey

    2017-01-01

    This work aims at evaluating the possibility of introducing state-of-the-art commercial femtosecond laser system in restorative dentistry by maintaining well-known benefits of lasers for caries removal, but also in overcoming disadvantages such as thermal damage of irradiated substrate. Femtosecond ablation of dental hard tissue is investigated by changing the irradiation parameters (pulsed laser energy, scanning speed and pulse repetition rate), assessed for enamel and dentin. The femtosecond laser system used in this work may be suitable for cavity preparation in dentin and enamel, due to the expected effective ablation and low temperature increase when using ultra short laser pulses. If adequate laser parameters are selected, this system seems to be promising for promoting a laser-assisted, minimally invasive approach in restorative dentistry. (paper)

  14. Dual-wavelength laser transmission photoscanner for breast cancer detection

    International Nuclear Information System (INIS)

    Kaneko, M.; He, P.; Tanaka, H.; Takahashi, M.; Takai, M.; Baba, K.; Yamashita, Y.; Ohta, K.

    1989-01-01

    This paper reports on the prototype of a laser transmission photoscanner (LTPS) constructed and used for the detection of breast cancer and compared with x-ray mammography. LTPS has been improved to enable spectroanalysis and application in breast cancer screening. The new type is introduced. In order to obtain higher sensitivity, the output of lasers was increased in intensity. The signal integration time was increased 10-fold, and the width of the detector area was doubled. The gated operation of the detector enables the good throughput. Simultaneous scanning in the dual wavelengths of 630 and 830 nm makes it possible to differentiate hemoglobin (Hb) and oxyhemoglobin (HbO 2 ) in spectroanalysis by means of Lambert--Beer's law. Clinical application of dual-wavelength LTPS shows good correlation with pathology

  15. Laser ablation of the protein lysozyme

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Amoruso, Salvatore

    produced thin films of average thickness up to 300 nm, which not only contained a significant amount of intact molecules, but also maintained the bioactivity. These films were produced by a nanosecond laser in the UV regime at 355 nm with 2 J/cm2. The surprising fact that these molecules can be transferred......Lysozyme is a well-known protein, which is used in food processing because of its bactericidal properties. The mass (14307 amu) is in the range in which it easily can be monitored by mass spectrometric methods, for example by MALDI (Matrix assisted laser desorption ionization). We have recently...... to a substrate as intact molecules by the violent laser impact ( up to 50 mJ/pulse) has not yet been understood. One issue is that up to 150 ng/pulse is removed by the laser, and much of the material is ejected from the target in relatively large chunks. We have explored as well the excitation mechanics by laser...

  16. Growth of epitaxial thin films by pulsed laser ablation

    International Nuclear Information System (INIS)

    Lowndes, D.H.

    1992-01-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs

  17. Laser ablation of Bi-substituted gadolinium iron garnet films

    International Nuclear Information System (INIS)

    Watanabe, N.; Hayashida, K.; Kawano, K.; Higuchi, K.; Ohkoshi, M.; Tsushima, K.

    1995-01-01

    Bi-substituted gadolinium iron garnet films were deposited by laser ablation. The composition, the structure and the magnetic properties of the films were found to be strongly dependent both on the compositions of the targets and on the pressure of oxygen. The highest values of Bi-substitution up to x=1.44 with uniform composition were obtained, after annealing in air. ((orig.))

  18. Characterization of Aerosols Generated by nano-second Laser Ablation of an Acrylic Paint

    International Nuclear Information System (INIS)

    Dewalle, P.; Vendel, J.; Dewalle, P.; Weulersse, J.M.; Dewalle, P.; Herve, Ph.; Dewalle, P.; Decobert, G.

    2010-01-01

    This study focuses on particles produced during laser ablation of a green colored acrylic wall paint, which is frequently used in industrial buildings and in particular in nuclear installations. Ablation is carried out with a Nd:YAG laser at a wavelength of 532 nm and a pulse duration of 5 ns, in a cell at ambient pressure and temperature, which is ventilated by filtered air. The number of particles emitted was measured with a Condensation Particle Counter (CPC) and their size with an Engine Exhaust Particle Sizer (or EEPS) for the nano-metric range, and an AEROSIZER (for the micrometric range). The mass and shape of particles were determined by sampling on filters as well as on the different impaction plates of a Low-Pressure Impactor (LPI). Two particle populations were detected: a population of aggregates of primary nano-particles with an electrical mobility diameter ranging from 30 to 150 nm, and a population of spherical submicron particles with an aerodynamic diameter ranging from 400 to 1000 nm. The spherical particles are mainly composed of titanium dioxide, and the aggregates most likely of carbon. The presence of two types of particles with different size distributions, shapes, and chemical compositions, implies that particles originating from the ablation of paint are formed by two different mechanisms: agglomeration in the case of the nano-metric aggregates, which is preceded by steps of nucleation, condensation, and coagulation of the primary particles, while the submicron spheres result from a direct ejection mechanism. (authors)

  19. Energy distribution of ions produced by laser ablation of silver in vacuum

    International Nuclear Information System (INIS)

    Toftmann, B.; Schou, J.; Canulescu, S.

    2013-01-01

    The ion energy in a silver ablation plume for fluence in the range of 0.6–2.4 J cm −2 , typical for a pulsed laser deposition (PLD) experiment has been investigated. In this fluence range the ion fraction of the ablated particles becomes gradually dominant and can be utilized to characterize the ablation process. A silver target in vacuum was irradiated with a Nd:YAG laser at a wavelength of 355 nm and detailed measurements of the time-resolved angular distribution of plume ions were made. In contrast to earlier work, the beam spot was circular such that any flip-over effect of the plume is avoided. The angular energy distribution of ions in forward direction exceeds values of 500 eV, while at large angles the ion energy tail is below 100 eV. The maximum for the time-of-flight distributions agrees consistently with the prediction of Anisimov's model in the low fluence range, in which hydrodynamic motion prevails.

  20. Laser ablation of molecular carbon nitride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D., E-mail: d.fischer@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Schwinghammer, K. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany); Sondermann, C. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Lau, V.W.; Mannhart, J. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Lotsch, B.V. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany)

    2015-09-15

    We present a method for the preparation of thin films on sapphire substrates of the carbon nitride precursors dicyandiamide (C{sub 2}N{sub 4}H{sub 4}), melamine (C{sub 3}N{sub 6}H{sub 6}), and melem (C{sub 6}N{sub 10}H{sub 6}), using the femtosecond-pulsed laser deposition technique (femto-PLD) at different temperatures. The depositions were carried out under high vacuum with a femtosecond-pulsed laser. The focused laser beam is scanned on the surface of a rotating target consisting of the pelletized compounds. The resulting polycrystalline, opaque films were characterized by X-ray powder diffraction, infrared, Raman, and X-ray photoelectron spectroscopy, photoluminescence, SEM, and MALDI-TOF mass spectrometry measurements. The crystal structures and optical/spectroscopic results of the obtained rough films largely match those of the bulk materials.

  1. Negative ion production by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Motoi [Doshisha Univ., Tanabe, Kyoto (Japan). Faculty of Engineering; Sasao, Mamiko

    1997-02-01

    The status of the development of Li{sup -} production by generating a neutral Li flux with an intense radiation of a laser beam onto the surface of Li metal has been reported. The experimental apparatus was arranged to detect a mass separated Li{sup +} and Li{sup -} ion beams. A Li sputtering probe, immersed in the extraction region of a compact (6cm diam. 7cm long) magnetic multipole ion source was irradiated with a Nd-YAG laser of 0.4 J/pulse. The production of mass-separated positive ions of Li by laser irradiation has been confirmed, but the production of Li{sup -} has not been confirmed yet due to the noise caused by a temporal discharge. (author)

  2. Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion

    International Nuclear Information System (INIS)

    Zheng Zhiyuan; Gao Hua; Fan Zhenjun; Xing Jie

    2014-01-01

    The angular distribution and pressure force of droplets ejected from liquid water and glycerol ablated by nanosecond laser pulses are investigated under different viscosities in laser plasma propulsion. It is shown that with increasing viscosity, the distribution angles present a decrease tendency for two liquids, and the angular distribution of glycerol is smaller than that of water. A smaller distribution leads to a higher pressure force generation. The results indicate that ablation can be controlled by varying the viscosity of liquid propellant in laser plasma propulsion

  3. Characteristics of target polarization by laser ablation

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Delle Side, D.; Giuffreda, E.; Nassisi, V.

    2015-01-01

    Roč. 33, č. 4 (2015), 601-605 ISSN 0263-0346 R&D Projects: GA ČR GAP205/12/0454; GA MŠk EE2.3.20.0279 Grant - others:LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : Target current in laser-produced plasmas * positive and negative target polarization * space structure of ion front Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.649, year: 2015

  4. Factors affecting optimal linear endovenous energy density for endovenous laser ablation in incompetent lower limb truncal veins - A review of the clinical evidence.

    Science.gov (United States)

    Cowpland, Christine A; Cleese, Amy L; Whiteley, Mark S

    2017-06-01

    Objectives The objective is to identify the factors that affect the optimal linear endovenous energy density (LEED) to ablate incompetent truncal veins. Methods We performed a literature review of clinical studies, which reported truncal vein ablation rates and LEED. A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) flow diagram documents the search strategy. We analysed 13 clinical papers which fulfilled the criteria to be able to compare results of great saphenous vein occlusion as defined by venous duplex ultrasound, with the LEED used in the treatment. Results Evidence suggests that the optimal LEED for endovenous laser ablation of the great saphenous vein is >80 J/cm and water might have a lower optimal LEED. A LEED 80 J/cm and <95 J/cm based on current evidence for shorter wavelength lasers. There is evidence that longer wavelength lasers may be effective at LEEDs of <85 J/cm.

  5. Comparison of soft and hard tissue ablation with sub-ps and ns pulse lasers

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L.B.; Stuart, B.C.; Celliers, P.M.; Feit, M.D.; Glinsky, M.E.; Heredia, N.J.; Herman, S.; Lane, S.M.; London, R.A.; Matthews, D.L.; Perry, M.D.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Chang, T.D. [Veterans Administration Hospital, Martinez, CA (United States); Neev, J. [Beckman Laser Inst. and Medical Clinic, Irvine, CA (United States)

    1996-05-01

    Tissue ablation with ultrashort laser pulses offers several unique advantages. The nonlinear energy deposition is insensitive to tissue type, allowing this tool to be used for soft and hard tissue ablation. The localized energy deposition lead to precise ablation depth and minimal collateral damage. This paper reports on efforts to study and demonstrate tissue ablation using an ultrashort pulse laser. Ablation efficiency and extent of collateral damage for 0.3 ps and 1000 ps duration laser pulses are compared. Temperature measurements of the rear surface of a tooth section is also presented.

  6. Reassembling Solid Materials by Femtosecond Laser Ablation: Case of Aluminum Nitride

    Science.gov (United States)

    Kobayashi, Tohru; Matsuo, Yukari

    2013-06-01

    Through atomization and ionization, we could completely alter the composition of a nonconductive material, aluminum nitride, by femtosecond laser ablation. Preferential production of pure aluminum cluster cations Aln+ (n≤32) reflects not only their higher energetic stability compared with mixed clusters AlnNm+ but also completion of thermal relaxation in ablation plasma. Observation of metastable dissociation of Aln+ indicates that cluster cations have still enough internal energy for dissociation to occur, although the process is much slower than the cluster formation. Almost no cluster formation has been observed after nanosecond laser ablation of aluminum nitride, which highlights the distinct nature of ablation plasma produced by femtosecond laser ablation.

  7. Dynamic Sensor Interrogation Using Wavelength-Swept Laser with a Polygon-Scanner-Based Wavelength Filter

    Science.gov (United States)

    Kwon, Yong Seok; Ko, Myeong Ock; Jung, Mi Sun; Park, Ik Gon; Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Park, Kyung Hyun; Jeon, Min Yong

    2013-01-01

    We report a high-speed (∼2 kHz) dynamic multiplexed fiber Bragg grating (FBG) sensor interrogation using a wavelength-swept laser (WSL) with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs. The reflected Bragg wavelengths of the FBGs are 1,532.02 nm, 1,537.84 nm, 1,543.48 nm, 1,547.98 nm, and 1,553.06 nm, respectively. A dynamic periodic strain ranging from 500 Hz to 2 kHz is applied to one of the multiplexed FBGs, which is fixed on the stage of the piezoelectric transducer stack. Good dynamic performance of the FBGs and recording of their fast Fourier transform spectra have been successfully achieved with a measuring speed of 18 kHz. The signal-to-noise ratio and the bandwidth over the whole frequency span are determined to be more than 30 dB and around 10 Hz, respectively. We successfully obtained a real-time measurement of the abrupt change of the periodic strain. The dynamic FBG sensor interrogation system can be read out with a WSL for high-speed and high-sensitivity real-time measurement. PMID:23899934

  8. Laser ablation and deposition of wide bandgap semiconductors: plasma and nanostructure of deposits diagnosis

    Science.gov (United States)

    Sanz, M.; López-Arias, M.; Rebollar, E.; de Nalda, R.; Castillejo, M.

    2011-12-01

    Nanostructured CdS and ZnS films on Si (100) substrates were obtained by nanosecond pulsed laser deposition at the wavelengths of 266 and 532 nm. The effect of laser irradiation wavelength on the surface structure and crystallinity of deposits was characterized, together with the composition, expansion dynamics and thermodynamic parameters of the ablation plume. Deposits were analyzed by environmental scanning electron microscopy, atomic force microscopy and X-ray diffraction, while in situ monitoring of the plume was carried out with spectral, temporal and spatial resolution by optical emission spectroscopy. The deposits consist of 25-50 nm nanoparticle assembled films but ablation in the visible results in larger aggregates (150 nm) over imposed on the film surface. The aggregate free films grown at 266 nm on heated substrates are thicker than those grown at room temperature and in the former case they reveal a crystalline structure congruent with that of the initial target material. The observed trends are discussed in reference to the light absorption step, the plasma composition and the nucleation processes occurring on the substrate.

  9. Tactile Sensing From Laser-Ablated Metallized PET Films

    KAUST Repository

    Nag, Anindya

    2016-10-17

    This paper reports the design, fabrication, and implementation of a novel sensor patch developed from commercial polyethylene terephthalate films metallized with aluminum on one side. The aluminum was ablated with laser to form interdigitated electrodes to make sensor prototypes. The interdigitated electrodes were patterned on the substrate with a laser cutter. Characterization of the prototypes was done to determine their operating frequency followed by experimentation. The prototypes have been used as a tactile sensor showing promising results for using these patches in applications with contact pressures considerably lesser than normal human contact pressure.

  10. Spectroscopic analysis of coal plasma emission produced by laser ablation

    OpenAIRE

    Vera-Londoño, Liliana Patricia; Pérez-Taborda, Jaime Andrés; Riascos-Landázuri, Henry

    2016-01-01

    An analysis of plasma produced by laser ablation using 1,064 nm of laser radiation from a Q-switched Nd:YAG on coal mineral samples under air ambient, was performed. The emission of molecular band systems such as C2 Swan System , the First Negative System N2 (Band head at 501.53 nm) and different emission lines were investigated using the optical emission spectroscopy technique. The C2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0.62 eV). The density and ...

  11. Preparation of Ta Te2 thin films by laser ablation

    International Nuclear Information System (INIS)

    Zidan, M.D.; Alkhwam, M.; Alkhasm, M.

    2006-03-01

    The laser ablation system consisting of a vacuum chamber and Nd-YAG laser has been built for deposition TaTe 2 on three different substrates (Silicon, glass, and Aluminium). The surface topography of the prepared thin films has been studied by atomic force microscopy (AFM). TaTe 2 powder was characterized by using x-ray diffraction. The crystallinity of the thin films was examined by x-ray diffraction (XRD). The results show no peaks corresponding TaTe 2 , but there are some indications to the Ta 3 N 5 . (author)

  12. Optical Thomson scatter from laser-ablated plumes

    International Nuclear Information System (INIS)

    Delserieys, A.; Khattak, F. Y.; Lewis, C. L. S.; Riley, D.; Pedregosa Gutierrez, J.

    2008-01-01

    We have obtained density and temperature informations on an expanding KrF laser-ablated magnesium plume via optical Thomson scatter with a frequency doubled Nd:YAG laser. The electron temperature was found to decay with the expected T e ∝t -1 dependence. However, we have found the electron density to have a time dependence n e ∝t -4.95 which can be explained by strong recombination processes. We also observed atomic Raman satellites originating from transitions between the different angular momentum levels of the metastable 3 P 0 term in Mg I

  13. Surface wettability of silicon substrates enhanced by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Shih-Feng [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China); Hsiao, Wen-Tse; Huang, Kuo-Cheng; Hsiao, Sheng-Yi [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); Chen, Ming-Fei [National Changhua University of Education, Department of Mechatronics Engineering, Changhua (China); Lin, Yung-Sheng [Hungkuang University, Department of Applied Cosmetology and Graduate Institute of Cosmetic Science, Taichung (China); Chou, Chang-Pin [National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China)

    2010-11-15

    Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9 on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light. (orig.)

  14. Macroparticle acceleration by laser induced ablation pressure

    International Nuclear Information System (INIS)

    Burgess, M.D.J.; Motz, H.; Rumsby, P.T.

    1976-01-01

    In this paper it is shown that the theoretical scaling of plasma pressure is very closely obeyed using ordinary Q-switched laser pulses, resulting in velocities of over 2 x 10 4 cm s -1 . The problems associated with increasing this velocity whilst still not rupturing the pellet have also been examined and an experiment to determine the results described. (orig.) [de

  15. Polarization of plastic targets by laser ablation

    Czech Academy of Sciences Publication Activity Database

    Giuffreda, E.; Delle Side, D.; Krása, Josef; Nassisi, V.

    2016-01-01

    Roč. 11, May (2016), s. 1-6, č. článku C05004. ISSN 1748-0221 Institutional support: RVO:68378271 Keywords : lasers * ion sources * wake-field acceleration Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.220, year: 2016

  16. Laser ablation of hard tissue: correlation between the laser beam parameters and the post-ablative tissue characteristics

    Science.gov (United States)

    Serafetinides, Alexandros A.; Makropoulou, Mersini I.; Khabbaz, Maruan

    2003-11-01

    Hard dental tissue laser applications, such as preventive treatment, laser diagnosis of caries, laser etching of enamel, laser decay removal and cavity preparation, and more recently use of the laser light to enlarge the root canal during the endodontic therapy, have been investigated for in vitro and in vivo applications. Post-ablative surface characteristics, e.g. degree of charring, cracks and other surface deformation, can be evaluated using scanning electron microscopy. The experimental data are discussed in relevance with the laser beam characteristics, e.g. pulse duration, beam profile, and the beam delivery systems employed. Techniques based on the laser illumination of the dental tissues and the subsequent evaluation of the scattered fluorescent light will be a valuable tool in early diagnosis of tooth diseases, as carious dentin or enamel. The laser induced autofluorescence signal of healthy dentin is much stronger than that of the carious dentin. However, a better understanding of the transmission patterns of laser light in teeth, for both diagnosis and therapy is needed, before the laser procedures can be used in a clinical environment.

  17. Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization

    DEFF Research Database (Denmark)

    Mackenzie, David; Buron, Jonas Christian Due; Whelan, Patrick Rebsdorf

    2015-01-01

    Selective laser ablation of a wafer-scale graphene film is shown to provide flexible, high speed (1 wafer/hour) device fabrication while avoiding the degradation of electrical properties associated with traditional lithographic methods. Picosecond laser pulses with single pulse peak fluences of 140......-effect mobility, doping level, on–off ratio, and conductance minimum before and after laser ablation fabrication....

  18. Periodic patterning of silicon by direct nanosecond laser interference ablation

    International Nuclear Information System (INIS)

    Tavera, T.; Pérez, N.; Rodríguez, A.; Yurrita, P.; Olaizola, S.M.; Castaño, E.

    2011-01-01

    The production of periodic structures in silicon wafers by four-beam is presented. Because laser interference ablation is a single-step and cost-effective process, there is a great technological interest in the fabrication of these structures for their use as antireflection surfaces. Three different laser fluences are used to modify the silicon surface (0.8 J cm -2 , 1.3 J cm -2 , 2.0 J cm -2 ) creating bumps in the rim of the irradiated area. Laser induced periodic surface structures (LIPSS), in particular micro and nano-ripples, are also observed. Measurements of the reflectivity show a decrease in the reflectance for the samples processed with a laser fluence of 2.0 J cm -2 , probably caused by the appearance of the nano-ripples in the structured area, while bumps start to deteriorate.

  19. Doping of silicon by carbon during laser ablation process

    Science.gov (United States)

    Raciukaitis, G.; Brikas, M.; Kazlauskiene, V.; Miskinis, J.

    2007-04-01

    Effect of laser ablation on properties of remaining material was investigated in silicon. It was established that laser cutting of wafers in air induced doping of silicon by carbon. The effect was found to be more distinct by the use of higher laser power or UV radiation. Carbon ions created bonds with silicon in the depth of silicon. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion was performed to clarify its depth profile in silicon. Photo-chemical reactions of such type changed the structure of material and could be a reason for the reduced quality of machining. A controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.

  20. Doping of silicon by carbon during laser ablation process

    International Nuclear Information System (INIS)

    Raciukaitis, G; Brikas, M; Kazlauskiene, V; Miskinis, J

    2007-01-01

    Effect of laser ablation on properties of remaining material was investigated in silicon. It was established that laser cutting of wafers in air induced doping of silicon by carbon. The effect was found to be more distinct by the use of higher laser power or UV radiation. Carbon ions created bonds with silicon in the depth of silicon. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion was performed to clarify its depth profile in silicon. Photo-chemical reactions of such type changed the structure of material and could be a reason for the reduced quality of machining. A controlled atmosphere was applied to prevent carbonization of silicon during laser cutting

  1. Doping of silicon with carbon during laser ablation process

    Science.gov (United States)

    Račiukaitis, G.; Brikas, M.; Kazlauskienė, V.; Miškinis, J.

    2006-12-01

    The effect of laser ablation on properties of remaining material in silicon was investigated. It was found that laser cutting of wafers in the air induced the doping of silicon with carbon. The effect was more distinct when using higher laser power or UV radiation. Carbon ions created bonds with silicon atoms in the depth of the material. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion to clarify its depth profile in silicon was performed. Photochemical reactions of such type changed the structure of material and could be the reason of the reduced machining quality. The controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.

  2. Ablation of biological tissues by radiation of strontium vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Soldatov, A. N., E-mail: general@tic.tsu.ru; Vasilieva, A. V., E-mail: anita-tomsk@mail.ru [National Research Tomsk State University, Lenin ave., 36, 634050, Tomsk (Russian Federation)

    2015-11-17

    A two-stage laser system consisting of a master oscillator and a power amplifier based on sources of self- contained transitions in pairs SrI and SrII has been developed. The radiation spectrum contains 8 laser lines generating in the range of 1 – 6.45 μm, with a generation pulse length of 50 – 150 ns, and pulse energy of ∼ 2.5 mJ. The divergence of the output beam was close to the diffraction and did not exceed 0.5 mrad. The control range of the laser pulse repetition rate varied from 10 to 15 000 Hz. The given laser system has allowed to perform ablation of bone tissue samples without visible thermal damage.

  3. Experimental study of laser acceleration of planar targets at the wavelength 0.26 μm

    International Nuclear Information System (INIS)

    Fabbro, R.; Faral, B.; Cottet, F.; Romain, J.P.

    1984-01-01

    The main characteristics of accelerated aluminum targets, which are the target velocity, the uniformity of the acceleration and the backside temperature have been studied in laser experiments performed at wavelength 0.26 μm with an absorbed flux of a few 10 13 W/cm 2 , in 400-ps pulse duration by using the double-foil technique and an optical pyrometry diagnostic: The ablation pressure was inferred from the velocity measurements. The uniformity of the acceleration was shown to be controlled by the hot spots in the focal spot, and the importance of studying the smoothing of laser inhomogeneities for accelerated targets with large ablated fractions was emphasized. The observed dependence of the backside temperature as a function of the initial foil thickness is discussed in the light of shock wave heating and radiative heating

  4. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tong Huifeng; Yuan Hong [Institute of Fluid Physics, Chinese Academy of Engineering Physics, P.O. Box 919-101, Mianyang, Sichuan 621900 (China); Tang Zhiping [CAS Key Laboratory for Mechanical Behavior and Design of Materials, Department of Mechanics and Mechanical Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2013-01-28

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  5. Ablative Fractional 10 600 nm Carbon Dioxide Laser Versus Non-ablative Fractional 1540 nm Erbium-Glass Laser in Egyptian Post-acne Scar patients.

    Science.gov (United States)

    Elsaie, Mohamed L; Ibrahim, Shady M; Saudi, Wael

    2018-01-01

    Introduction: Non-ablative fractional erbium-doped glass 1540 nm and fractional ablative 10600 nm carbon dioxide lasers are regarded as effective modalities for treating acne atrophic scars. In this study, we aimed to compare the effectiveness of fractional CO 2 laser and fractional nonablative 1540 nm erbium doped glass laser in treating post acne atrophic scars in Egyptian patients. Methods: Fifty-eight patients complaining of moderate and severe acne atrophic scars were randomly divided into 2 groups of 29 patients each. Both groups were subjected to 4 treatment sessions with 3 weeks interval and were followed up for 3 months. In group A, enrolled patient sreceived C2 laser, while in group B, patients were treated with 1540 nm erbium glass fractional laser. Results: Clinical assessment revealed that the mean grades of progress and improvement were higher with fractional 10600 nm CO2 laser but with non-significant difference between both treatments ( P = 0.1). The overall patients' satisfaction with both lasers were not significantly different ( P = 0.44). Conclusion: Both fractional ablative CO2 and fractional non-ablative erbium glass lasers are good modalities for treating acne scars with a high efficacy and safety profile and good patient satisfaction. The fractional ablative laser showed higher efficacy while non-ablative laser offered less pain and shorter downtime.

  6. SYNTHESIS OF 2,6-DIAMINOPYRIDINE-4-NITROPHENOL (2,6DAP4N COCRYSTAL NANOPARTICLES BY LASER ABLATION METHOD

    Directory of Open Access Journals (Sweden)

    N. A. Zulina

    2015-11-01

    Full Text Available We propose findings for laser ablation of organic materials in liquids as one of the perspective methods of nanoparticles synthesis on their basis. We describe nanoparticles synthesis for 2,6-diaminopyridine-4-nitrophenol (2,6DAP4N cocrystal by the method of material laser ablation at nanoparticles condensation in liquid (dodecane and polyphenyleneoxide. Laser radiation with wavelength equal to 355 nm, pulse duration - 10 ns, pulse repetition rate - 3.8 kHz, and pulse power density equal to 170 kW/cm2 has been used in the study. Nanoparticles in the form of colloids have been obtained and studied by visible range spectroscopy and optical microscopy. Obtained particles size is around 0.5 μm.

  7. New application of the long-pulsed Nd-YAG laser as an ablative resurfacing tool for skin rejuvenation: a 7-year study.

    Science.gov (United States)

    Alshami, Mohammad Ali

    2013-09-01

    Carbon dioxide (CO2 ) and erbium-yttrium aluminum garnet (Er-YAG) lasers are the gold standards in ablative skin resurfacing. Neodymium-doped yttrium aluminum garnet (Nd-YAG) laser is considered a nonablative skin resurfacing laser whose usage is limited due to its high cost. To assess the efficacy and safety of Nd-YAG as an ablative resurfacing laser and to compare the results with those previously published for CO2 and Erbium-YAG lasers. A total of 296 patients (251 female and 45 male) with Fitzpatrick skin types III-IV and dermatological conditions amenable to ablative skin resurfacing participated in this study. Nd-YAG laser parameters assessed were wavelength (1064 nm), pulse duration (5 ms), fluence (10 J/cm(2) ), and spot size (8-10 mm). Efficacy of Nd-YAG laser was assessed by comparing pre- and posttreatment photographs. An improvement of 30-80% was observed in treated patients. The degree of improvement correlated positively with the number of laser sessions. The most common side effect was hyperpigmentation. Other side effects were less common and mild in intensity compared with published results for gold standard ablative lasers. Not only was the Nd-YAG laser found to be as effective as Er-YAG and CO2 lasers, but treated patients also had shorter recovery and treatment times, and at lower cost. © 2013 Wiley Periodicals, Inc.

  8. Formation of plasmonic colloidal silver for flexible and printed electronics using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S., E-mail: skasa@physics.auth.gr [University of Ioannina, Department of Materials Science and Engineering, 45110 Ioannina (Greece); Kaziannis, S. [University of Ioannina, Department of Physics, 45110 Ioannina (Greece); Pliatsikas, N. [University of Ioannina, Department of Materials Science and Engineering, 45110 Ioannina (Greece); Aristotle University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Avgeropoulos, A.; Karantzalis, A.E. [University of Ioannina, Department of Materials Science and Engineering, 45110 Ioannina (Greece); Kosmidis, C. [University of Ioannina, Department of Physics, 45110 Ioannina (Greece); Lidorikis, E. [University of Ioannina, Department of Materials Science and Engineering, 45110 Ioannina (Greece); Patsalas, P. [Aristotle University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece)

    2015-05-01

    Highlights: • Silver plasmonic colloidal in organic solvents by ps laser ablation process. • Ag NPs that meet size requirements of the printed organic electronics technology. • Ag NPs size refinement by secondary process using the 355 nm beam of a ns laser. - Abstract: Laser ablation (LA) in liquids has been used for the development of various nanoparticles (NPs); among them, Ag NPs in aqueous solutions (usually produced by nanosecond (ns) LA) have attracted exceptional interest due to its strong plasmonic response. In this work, we present a comprehensive study of the LA of Ag in water, chloroform and toluene, with and without PVP, using a picosecond (ps) Nd:YAG laser and we consider a wide range of LA parameters such as the laser wavelength (1064, 532, 355 nm), the pulse energy (0.3–17 mJ) and the number of pulses. In addition, we consider the use of a secondary nanosecond laser beam for the refinement of the NPs size distribution. The optical properties of the NPs were evaluated by in situ optical transmittance measurements in the UV–vis spectral ranges. The morphology of the NPs and the formation of aggregates were investigated by Scanning Electron Microscopy and High-Resolution Transmission Electron Microscopy. The ps LA process resulted in the development of bigger Ag NPs, compared to the ns LA, compatible with the size requirements of the printed organic electronics technology. The optimum conditions for the ps LA of Ag in organic solvents include the use of the 355 nm beam at low pulse energy (<1 mJ); these conditions rendered isolated Ag nanoparticles manifesting strong and well defined surface plasmon resonance peak. The use of the secondary ns laser beam was proven to be able to refine the nanoparticles to intermediate size between those produced by the single ns or ps LA.

  9. Filamented plasmas in laser ablation of solids

    Czech Academy of Sciences Publication Activity Database

    Davies, J.R.; Fajardo, M.; Kozlová, Michaela; Mocek, Tomáš; Polan, Jiří; Rus, Bedřich

    2009-01-01

    Roč. 51, č. 3 (2009), 035013/1-035013/12 ISSN 0741-3335 EU Projects: European Commission(XE) 12843 - TUIXS Grant - others:FCT(PT) POCI/FIS/59563/2004 Institutional research plan: CEZ:AV0Z10100523 Keywords : magneto-hydrodynamic modelling * perturbation * filaments * x-ray * plasma Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.409, year: 2009

  10. Wavelength-tunable laser based on nonlinear dispersive-wave generation in a tapered optical waveguide

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a method and a wavelength tunable laser comprising a first laser source configured to emit a first optical pulse having a pump wavelength, the first optical pulse being emitted in a first longitudinal direction. Furthermore, the wavelength tunable laser comprises...... a waveguide extending in the first longitudinal direction, the waveguide having longitudinally varying phase matching conditions, the waveguide being configured to generate a second optical pulse with a centre wavelength upon receiving the first optical pulse, wherein the wavelength tunable laser...... is configured to tune the centre wavelength of the second optical pulse by varying at least one pulse property of the first optical pulse....

  11. Detection efficiencies in nano- and femtosecond laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Waelle, M.; Koch, J.; Flamigni, L.; Heiroth, S.; Lippert, T.; Hartung, W.; Guenther, D.

    2009-01-01

    Detection efficiencies of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), defined as the ratio of ions reaching the detector and atoms released by LA were measured. For this purpose, LA of silicate glasses, zircon, and pure silicon was performed using nanosecond (ns) as well as femtosecond (fs) LA. For instance, ns-LA of silicate glass using helium as in-cell carrier gas resulted in detection efficiencies between approximately 1E-7 for low and 3E-5 for high mass range elements which were, in addition, almost independent on the laser wavelength and pulse duration chosen. In contrast, the application of argon as carrier gas was found to suppress the detection efficiencies systematically by a factor of up to 5 mainly due to a less efficient aerosol-to-ion conversion and ion transmission inside the ICP-MS

  12. Low-threshold ablation of enamel and dentin using Nd:YAG laser assisted with chromophore with different pulse shapes

    Science.gov (United States)

    Bonora, Stefano; Benazzato, Paolo; Stefani, Alessandro; Villoresi, Paolo

    2004-05-01

    Neodimium laser treatment has several drawbacks when used in the hard tissue cutting, because of the low absorption of the dental tissues at its wavelength. This investigation proved that the Nd:YAG radiation is a powerful ablation tool if it is used with the dye assisted method. Several in vitro tests on enamel and dentin were accomplished changing some laser parameters to have different pulse shapes and durations from 125μs up to 1.4ms. The importance of short time high power peaks, typical of crystal lasers, in the ablation process was investigated. The pulse shapes were analyzed by their intensity in space and time profiles. A first set of results found the optimum dye concentration be used in all the following tests. Furthermore the ablation threshold for this technique was found for each different pulse shapes and durations. A low energy ablation method was found to avoid temperature increase and surface cracks formation. In vitro temperature analysis was reported comparing the differences between no dye application laser treatment and with a dye spray applied. A strong reduction of the temperature increase was found in the dye assisted method. A discussion on the general findings and their possible clinical applications is presented.

  13. A study of particle generation during laser ablation with applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunyi [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    A study has been made of the generation of particles during laser ablation and has included size distribution measurements and observation of the formation processes. The particle size distribution with respect to different laser parameters was obtained in-line using a differential mobility analyzer (DMA) and a particle counter. The experimental results show that the particle size varies with laser energy, laser pulsewidth, ambient gas flow rate and sample properties. The results serve as a basis for controlling the size of nanoparticles generated by laser ablation. Laser shadowgraph imaging was used to study mass ejection processes and mechanisms. At higher laser irradiance, some particles were ejected in the liquid and even in the solid phase. Time-resolved images show the propagation of the shockwaves: external shockwaves propagate outward and decelerate, and internal shockwaves reflect back and forth between the gas contact surface and the sample surface. The internal shockwave is proposed to cause the ejection of liquid particles when the internal shockwave strikes the liquid molten layer. A simulation based on vapor plume expansion was carried out and provides satisfactory agreement with experimental results. Different material properties result in different particle ejection behavior:particle ejection for most materials including metals result in a conically shaped envelope for the ejected material while ejection for silicon resembles a liquid jet. The difference in density change when the materials melt was proposed to be an important factor in the different ejection behavior. The characteristics of particles generated by laser ablation have a strong influence on the chemical analysis of the irradiated sample. Large particles are more difficult to completely vaporize and ionize, and induced preferential vaporization causes fractionation (i.e. a detected chemical composition that differs from the sample material). Large particles also result in spikes in

  14. Scaling model for high-aspect-ratio microballoon direct-drive implosions at short laser wavelengths

    International Nuclear Information System (INIS)

    Schirmann, D.; Juraszek, D.; Lane, S.M.; Campbell, E.M.

    1992-01-01

    A scaling model for hot spherical ablative implosions in direct-drive mode is presented. The model results have been compared with experiments from LLE, ILE, and LLNL. Reduction of the neutron yield due to illumination nonuniformities is taken into account by the assumption that the neutron emission is cut off when the gas shock wave reflected off the center meets the incoming pusher, i.e., at a time when the probability of shell breakup is greatly enhanced. The main advantage of this semiempirical scaling model is that it elucidates the principal features of these simple implosions and permits one to estimate very quickly the performance of a high-aspect-ratio direct-drive target illuminated by short-wavelength laser light. (Author)

  15. Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser

    NARCIS (Netherlands)

    Bernhardi, Edward H.; van der Werf, Kees O; Hollink, Anton J F; Wörhoff, Kerstin; de Ridder, René M; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped amorphous aluminum oxide on a silicon substrate is demonstrated. Real-time detection and accurate size measurement of single micro-particles with diameters

  16. Laser ablative synthesis of carbon nanotubes

    Science.gov (United States)

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2010-03-02

    An improved method for the production of single walled carbon nanotubes that utilizes an RF-induction heated side-pumped synthesis chamber for the production of such. Such a method, while capable of producing large volumes of carbon nanotubes, concurrently permits the use of a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization. The method of the present invention utilizes a free electron laser operating at high average and peak fluence to illuminate a rotating and translating graphite/catalyst target to obtain high yields of SWNTs without the use of a vacuum chamber.

  17. Ablation of selected conducting layers by fiber laser

    Science.gov (United States)

    Pawlak, Ryszard; Tomczyk, Mariusz; Walczak, Maria

    2014-08-01

    Laser Direct Writing (LDW) are used in the manufacture of electronic circuits, pads, and paths in sub millimeter scale. They can also be used in the sensors systems. Ablative laser writing in a thin functional layer of material deposited on the dielectric substrate is one of the LDW methods. Nowadays functional conductive layers are composed from graphene paint or nanosilver paint, indium tin oxide (ITO), AgHTTM and layers containing carbon nanotubes. Creating conducting structures in transparent layers (ITO, AgHT and carbon nanotubes layers) may have special importance e.g. for flexi electronics. The paper presents research on the fabrication of systems of paths and appropriate pattern systems of paths and selected electronic circuits in AgHTTM and ITO layers deposited on glass and polymer substrates. An influence of parameters of ablative fiber laser treatment in nanosecond regime as well as an influence of scanning mode of laser beam on the pattern fidelity and on electrical parameters of a generated circuit was investigated.

  18. Evolution of plasma double layers in laser-ablation plumes

    International Nuclear Information System (INIS)

    Gurlui, S.; Sanduloviciu, M.; Mihesan, C.; Ziskind, M.; Focsa, C.

    2005-01-01

    The double layers (DLs) are one of the most complex problems of the plasma physics. These layers are apparently important not only in laboratory plasmas and laser-ablation plasma plumes but also in natural phenomena, e.g. the aurora and fire balls.This work studies the dynamics of the double layers in a laser ablation plume from different targets irradiated by a Nd: YAG 10 ns pulsed laser. The plasma formation was studied by means of both Langmuir probe and mass spectrometry methods using an experimental set-up developed for the study of environmental or technological interest samples. The ionic current distribution in plasma plume formation was recorded in different experimental conditions. We have found that it depends on the laser energy, the pressure of the buffer gas and the probe position. The periodical oscillations recorded in different experimental conditions prove that these plasma formations (DLs) are local physical systems able to accumulate and release energy. Acting as storing and releasing energy elements, the DLs can sustain periodical or non-periodical variations of the current or of the other global parameters of the plasma. (author)

  19. Dynamics of laser ablative shock waves from one dimensional periodic structured surfaces

    Science.gov (United States)

    Paturi, Prem Kiran; Chelikani, Leela; Pinnoju, Venkateshwarlu; Acrhem Team

    2015-06-01

    Spatio-temporal evolution of Laser ablative shock waves (LASWs) from one dimensional periodic structured surfaces (1D-PSS) of Aluminum is studied using time resolved defocused shadowgraphy technique. LASWs are generated by focusing 7 ns pulses from second harmonic of Nd:YAG (532 nm, 10 Hz) laser on to 1D-PSS with sinusoidal and triangular modulations of varying periodicity. An expanded He-Ne laser (632.8 nm) is used as probe beam for shadowgraphy. Evolution of ablative shock front (SF) with 1.5 ns temporal resolution is used to measure position of the SF, its nature, density and pressure behind the SF. The effect of surface modulation on the LASW and contact front dynamics was compared to those from a flat surface (FS) of Aluminum. SWs from FS and PSS obeyed Taylor's solution for spherical and planar nature, respectively. The velocity of SF from 1D PSS had a twofold increase compared to the FS. This was further enhanced for structures whose periodicity is of the order of excitation wavelength. Variation of SF properties with varying periodicity over a range of 3.3 μm to 0.55 μm has the potential to tailor shockwaves of required parameters. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program. The periodic surfaces were procured with financial support from BRFST project No. NFP-MAT-A12-04.

  20. Investigation of excimer laser ablation threshold of polymers using a microphone

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Joerg; Niino, Hiroyuki; Yabe, Akira

    2002-09-30

    KrF excimer laser ablation of polyethylene terephthalate (PET), polyimide (PI) and polycarbonate (PC) in air was studied by an in situ monitoring technique using a microphone. The microphone signal generated by a short acoustic pulse represented the etch rate of laser ablation depending on the laser fluence, i.e., the ablation 'strength'. From a linear relationship between the microphone output voltage and the laser fluence, the single-pulse ablation thresholds were found to be 30 mJ cm{sup -2} for PET, 37 mJ cm{sup -2} for PI and 51 mJ cm{sup -2} for PC (20-pulses threshold). The ablation thresholds of PET and PI were not influenced by the number of pulses per spot, while PC showed an incubation phenomenon. A microphone technique provides a simple method to determine the excimer laser ablation threshold of polymer films.

  1. The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing.

    Science.gov (United States)

    Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A

    2008-05-01

    The drive to attain cosmetic facial enhancement with minimal risk and rapid recovery has inspired the field of nonsurgical skin rejuvenation. Laser resurfacing was introduced in the 1980s with continuous wave carbon dioxide (CO(2)) lasers; however, because of a high rate of side effects, including scarring, short-pulse, high-peak power, and rapidly scanned, focused-beam CO(2) lasers and normal-mode erbium-doped yttrium aluminium garnet lasers were developed, which remove skin in a precisely controlled manner. The prolonged 2-week recovery time and small but significant complication risk prompted the development of non-ablative and, more recently, fractional resurfacing in order to minimize risk and shorten recovery times. Nonablative resurfacing produces dermal thermal injury to improve rhytides and photodamage while preserving the epidermis. Fractional resurfacing thermally ablates microscopic columns of epidermal and dermal tissue in regularly spaced arrays over a fraction of the skin surface. This intermediate approach increases efficacy as compared to nonablative resurfacing, but with faster recovery as compared to ablative resurfacing. Neither nonablative nor fractional resurfacing produces results comparable to ablative laser skin resurfacing, but both have become much more popular than the latter because the risks of treatment are limited in the face of acceptable improvement. At the completion of this learning activity, participants should be familiar with the spectrum of lasers and light technologies available for skin resurfacing, published studies of safety and efficacy, indications, methodologies, side effects, complications, and management.

  2. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  3. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    International Nuclear Information System (INIS)

    Geohegan, D.B.

    1994-01-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume

  4. Investigation of ultrashort pulse laser ablation of solid targets by measuring the ablation-generated momentum using a torsion pendulum.

    Science.gov (United States)

    Zhang, Nan; Wang, Wentao; Zhu, Xiaonong; Liu, Jiansheng; Xu, Kuanhong; Huang, Peng; Zhao, Jiefeng; Li, Ruxin; Wang, Mingwei

    2011-04-25

    50 fs - 12 ps laser pulses are employed to ablate aluminum, copper, iron, and graphite targets. The ablation-generated momentum is measured with a torsion pendulum. Corresponding time-resolved shadowgraphic measurements show that the ablation process at the optimal laser fluence achieving the maximal momentum is primarily dominated by the photomechanical mechanism. When laser pulses with specific laser fluence are used and the pulse duration is tuned from 50 fs to 12 ps, the generated momentum firstly increases and then remains almost constant, which could be attributed to the change of the ablation mechanism involved from atomization to phase explosion. The investigation of the ablation-generated momentum also reveals a nonlinear momentum-energy conversion scaling law, namely, as the pulse energy increases, the momentum obtained by the target increases nonlinearly. This may be caused by the effective reduction of the dissipated energy into the surrounding of the ablation zone as the pulse energy increases, which indicates that for femtosecond laser the dissipated energy into the surrounding target is still significant.

  5. Spectroscopic studies on diamond like carbon films synthesized by pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Madhusmita; Krishnan, R., E-mail: krish@igcar.gov.in; Ravindran, T. R.; Das, Arindam; Mangamma, G.; Dash, S.; Tyagi, A. K. [Material Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102, Tamil Nadu (India)

    2016-05-23

    Hydrogen free Diamond like Carbon (DLC) thin films enriched with C-C sp{sup 3} bonding were grown on Si (111) substrates at laser pulse energies varying from 100 to 400 mJ (DLC-100, DLC-200, DLC-300, DLC-400), by Pulsed Laser Ablation (PLA) utilizing an Nd:YAG laser operating at fundamental wavelength. Structural, optical and morphological evolutions as a function of laser pulse energy were studied by micro Raman, UV-Vis spectroscopic studies and Atomic Force Microscopy (AFM), respectively. Raman spectra analysis provided critical clues for the variation in sp{sup 3} content and optical energy gap. The sp{sup 3} content was estimated using the FWHM of the G peak and found to be in the range of 62-69%. The trend of evolution of sp{sup 3} content matches well with the evolution of I{sub D}/I{sub G} ratio with pulse energy. UV-Vis absorption study of DLC films revealed the variation of optical energy gap with laser pulse energy (1.88 – 2.23 eV), which matches well with the evolution of G-Peak position of the Raman spectra. AFM study revealed that roughness, size and density of particulate in DLC films increase with laser pulse energy.

  6. Measurement of ventilation- and perfusion-mediated cooling during laser ablation in ex vivo human lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Vietze, Andrea, E-mail: anvie@gmx.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Koch, Franziska, E-mail: franzi_koch@hotmail.com [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Laskowski, Ulrich, E-mail: ulrich.laskowski@klinikum-luedenscheid.de [Department of Vascular and Thoracic Surgery, Klinikum Luedenscheid, Paulmannshoeher Strasse 14, 58515 Luedenscheid (Germany); Linder, Albert, E-mail: albert.linder@klinikum-bremen-ost.de [Department of Thoracic Surgery, Klinikum Bremen-Ost, Zuericher Strasse 40, 28325 Bremen (Germany); Hosten, Norbert, E-mail: hosten@uni-greifswald.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany)

    2011-11-15

    Purpose: Perfusion-mediated tissue cooling has often been described in the literature for thermal ablation therapies of liver tumors. The objective of this study was to investigate the cooling effects of both perfusion and ventilation during laser ablation of lung malignancies. Materials and methods: An ex vivo lung model was used to maintain near physiological conditions for the specimens. Fourteen human lung lobes containing only primary lung tumors (non-small cell lung cancer) were used. Laser ablation was carried out using a Nd:YAG laser with a wavelength of 1064 nm and laser fibers with 30 mm diffusing tips. Continuous invasive temperature measurement in 10 mm distance from the laser fiber was performed. Laser power was increased at 2 W increments starting at 10 W up to a maximum power of 12-20 W until a temperature plateau around 60 deg. C was reached at one sensor. Ventilation and perfusion were discontinued for 6 min each to assess their effects on temperature development. Results: The experiments lead to 25 usable temperature profiles. A significant temperature increase was observed for both discontinued ventilation and perfusion. In 6 min without perfusion, the temperature rose about 5.5 deg. C (mean value, P < 0.05); without ventilation it increased about 7.0 deg. C (mean value, P < 0.05). Conclusion: Ventilation- and perfusion-mediated tissue cooling are significant influencing factors on temperature development during thermal ablation. They should be taken into account during the planning and preparation of minimally invasive lung tumor treatment in order to achieve complete ablation.

  7. Wavelength comparison for laser induced breakdown spectroscopy caries detection

    Science.gov (United States)

    Amaral, Marcello M.; Raele, Marcus P.; Ana, Patrícia A.; Núñez, Sílvia C.; Zamataro, Claudia B.; Zezell, Denise M.

    2018-02-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a technique capable to perform elemental analyses of a variety of samples, independent of matter state. Other spectroscopy techniques may require a destructive and time-consuming sample preparation. On the other hand, LIBS is a less destructive technique with no (or considerably less) sample preparation, using a relatively simple experimental setup. LIBS also provides a multielement analysis into one single spectrum acquisition, applying a Nd:YAG short-pulsed laser to ensure the stoichiometry between the sample and the generated plasma. LIBS have been applied on the study of carious lesions using a Nd:YAG into its fundamental emission at 1064 nm. It was shown that ratio of P/Ca and Zn/Ca can be used to monitor the cariogenic process. Another minor elements, e.g. C and Cu, associated with bacteria biofilm were also measured with the Nd:YAG laser. The fundamental wavelength emission (1064 nm) of Nd:YAG is coincident with a hydroxyapatite transmission window and it may affect the result. In order to address this issue a study used the second harmonic of the Nd:YAG laser at 532 nm. It was show that it is also possible perform LIBS on carious lesion using the Nd:YAG at 532 nm. However, there is not a work direct comparing the LIBS at 532 nm and 1064 nm for carious lesion detection. So, the aim of this work was to investigate the influence of laser wavelength on the LIBS performance for carious lesion detection. In both cases the carious lesion was detected with the advantage of no interference with hydroxyapatite at 532 nm.

  8. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-01-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  9. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    Science.gov (United States)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  10. Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography

    International Nuclear Information System (INIS)

    Makarov, G N

    2013-01-01

    The fact that nanoparticles and nanomaterials have fundamental properties different both from their constituent atoms or molecules and from their bulk counterparts has stimulated great interest, both theoretical and practical, in nanoparticles and nanoparticle-based assemblies (functional materials), with the result that these structures have become the subject of explosive research over the last twenty years or so. A great deal of progress in this field has relied on the use of lasers. In this paper, the directions followed and results obtained in laser nanotechnology research are reviewed. The parameters, properties, and applications of nanoparticles are discussed, along with the physical and chemical methods for their fabrication and investigation. Nanofabrication applications of and fundamental physical principles behind laser ablation and laser nanolithography are discussed in detail. The applications of laser radiation are shown to range from fabricating, melting, and evaporating nanoparticles to changing their shape, structure, size, and size distribution, through studying their dynamics and forming them into periodic arrays and various structures and assemblies. The historical development of research on nanoparticles and nanomaterials and the application of laser nanotechnology in various fields are briefly reviewed. (reviews of topical problems)

  11. Laser-assisted decontamination—A wavelength dependent study

    Science.gov (United States)

    Nilaya, J. Padma; Raote, Pallavi; Kumar, Aniruddha; Biswas, Dhruba J.

    2008-09-01

    We present here the experimental results on cleaning of radioactive dielectric particulates, loosely deposited on stainless steel, by coherent light of 1064 nm wavelength and its three harmonics occurring at 532 nm, 355 nm and 266 nm, derived from an Nd-YAG laser. For the initial few exposures, the decontamination factor has been found to be highest when exposed to 1064 nm radiation. With increasing number of exposures, however, the radiation with reducing wavelength assumes a more important role as a cleaning agent. The observation of almost no cleaning with 1064 nm and much reduced cleaning with its harmonics when the contamination is deposited on a transparent substrate confirms the dominant role played by metal substrate towards expelling the loose particulates from its surface.

  12. Micro-scale novel stable isotope fractionation during weathering disclosed by femtosecond laser ablation

    Science.gov (United States)

    Schuessler, J. A.; von Blanckenburg, F.

    2012-12-01

    The stable isotope fractionation of metals and metalloids during chemical weathering and alteration of rocks at low temperature is a topic receiving increasing scientific attention. For these systems, weathering of primary minerals leads to selective partitioning of isotopes between the secondary minerals formed from them, and the dissolved phase of soil or river water. While the isotopic signatures of these processes have been mapped-out at the catchment or the soil scale, the actual isotopic fractionation is occurring at the mineral scale. To identify the processes underlying such micro-scale fractionation, the development of micro-analytical tools allows to investigate mechanisms of isotope fractionation in-situ, in combination with textural information of weathering reactions. We have developed a second-generation UV femtosecond (fs) laser system at GFZ Potsdam. The advantage of UV-fs laser ablation is the reduction of laser-induced isotopic and elemental fractionation by avoiding 'thermal effects' during ablation, such that accurate isotope ratios can be measured by standard-sample-standard bracketing using laser ablation multicollector ICP-MS; where the matrix of the bracketing standard does not need to match that of the sample [1]. Our system consists of the latest generation femtosecond solid-state laser (Newport Spectra Physics Solstice), producing an ultra short pulse width of about 100 femtoseconds at a wavelength of 196 nm. The system is combined with a custom-build computer-controlled sample stage and allows fully automated isotope analyses through synchronised operation of the laser with the Neptune MC-ICP-MS. To assess precision and accuracy of our laser ablation method, we analysed various geological reference materials. We obtained δ30Si values of -0.31 ± 0.23 (2SD, n = 13) for basalt glass BHVO-2G, and -1.25 ± 0.21 (2SD, n = 27) for pure Si IRMM17 when bracketed against NBS-28 quartz. δ56Fe and δ26Mg values obtained from non-matrix matched

  13. Modeling the DBR laser used as wavelength conversion device

    DEFF Research Database (Denmark)

    Braagaard, Carsten; Mikkelsen, Benny; Durhuus, Terji

    1994-01-01

    In this paper, a novel and efficient way to model the dynamic field in optical DBR-type semiconductor devices is presented. The model accounts for the longitudinal carrier, photon, and refractive index distribution. Furthermore, the model handles both active and passive sections that may include...... gratings. Thus, simulations of components containing, e.g., gain sections, absorptive sections, phase sections, and gratings, placed arbitrarily along the longitudinal direction of the cavity, are possible. Here, the model has been used for studying the DBR laser as a wavelength converter. Particularly...

  14. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jong Hyun [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    mechanism for high irradiance laser ablation. Laser processing parameters were also investigated for nanosecond laser ablation of silicon. Longer incident wavelengths and larger laser beam sizes were associated with higher values of a threshold irradiance.

  15. All-fiber femtosecond Cherenkov laser at visible wavelengths

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe Visbech

    2013-01-01

    -matching condition [1]. The resonant ultrafast wave conversion via the fiber-optic CR mechanism is instrumental for applications in biophotonics such as bio-imaging and microscopy [2]. In this work, we demonstrate a highly-stable all-fiber, fully monolithic CR system based on an Yb-fiber femtosecond laser, producing...... to be as low as -103 dBc/Hz. This is 2 orders of magnitudes lower noise as compared to spectrally-sliced supercontinuum, which is the current standard of ultrafast fiber-optic generation at visible wavelength. The layout of the laser system is shown in Fig. 1(a). The system consists of two parts: an all-fiber......Fiber-optic Cherenkov radiation (CR), also known as dispersive wave generation or non-solitonic radiation, is produced in small-core photonic crystal fibers (PCF) when a soliton perturbed by fiber higher-order dispersion co-propagates with a dispersive wave fulfilling a certain phase...

  16. UV and IR laser induced ablation of Al2O3/SiN:H and a-Si:H/SiN:H

    Directory of Open Access Journals (Sweden)

    Schutz-Kuchly T.

    2014-01-01

    Full Text Available Experimental work on laser induced ablation of thin Al2O3(20 nm/SiN:H (70 nm and a-Si:H (20 nm/SiN:H (70 nm stacks acting, respectively, as p-type and n-type silicon surface passivation layers is reported. Results obtained using two different laser sources are compared. The stacks are efficiently removed using a femtosecond infra-red laser (1030 nm wavelength, 300 fs pulse duration but the underlying silicon surface is highly damaged in a ripple-like pattern. This collateral effect is almost completely avoided using a nanosecond ultra-violet laser (248 nm wavelength, 50 ns pulse duration, however a-Si:H flakes and Al2O3 lace remain after ablation process.

  17. Production of silver nanoparticles by laser ablation in open air

    International Nuclear Information System (INIS)

    Boutinguiza, M.; Comesaña, R.; Lusquiños, F.; Riveiro, A.; Val, J. del; Pou, J.

    2015-01-01

    Highlights: • Silver nanoparticles have been obtained by laser ablation of metallic Ag in open air using nanosecond laser. • The continuous process enables increasing the production yield. • The obtained particles are rounded shape with narrow size distribution. - Abstract: Silver nanoparticles have attracted much attention as a subject of investigation due to their well-known properties, such as good conductivity, antibacterial and catalytic effects, etc. They are used in many different areas, such as medicine, industrial applications, scientific investigation, etc. There are different techniques for producing Ag nanoparticles, chemical, electrochemical, sonochemical, etc. These methods often lead to impurities together with nanoparticles or colloidal solutions. In this work, laser ablation of solids in open air conditions (LASOA) is used to produce silver nanoparticles and collect them on glass substrates. Production and deposition of silver nanoparticles are integrated in the same step to reduce the process. The obtained particles are analysed and the nanoparticles formation mechanism is discussed. The obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV/VIS absorption spectroscopy. The obtained nanoparticles consisted of Ag nanoparticles showing rounded shape with diameters ranging from few to 50 nm

  18. Laser ablation of posterior urethral valves by fetal cystoscopy.

    Science.gov (United States)

    Martínez, José María; Masoller, Narcis; Devlieger, Roland; Passchyn, Esther; Gómez, Olga; Rodo, Joan; Deprest, Jan A; Gratacós, Eduard

    2015-01-01

    To report the results of fetal cystoscopic laser ablation of posterior urethral valves (PUV) in a consecutive series in two referral centers. Twenty pregnant women with a presumptive isolated PUV were treated with fetal cystoscopy under local anesthesia. Identification and fulguration of the PUV by one or several firing-contacts with diode laser were attempted. Perinatal and long-term outcomes were prospectively recorded. The median gestational age at procedure was 18.1 weeks (range 15.0-25.6), and median operation time was 24 min (range 15-40). Access to the urethra was achieved in 19/20 (95%) cases, and postoperative, normalization of bladder size and amniotic fluid was observed in 16/20 (80%). Overall, there were 9 (45%) terminations of pregnancy and 11 women (55%) delivered a liveborn baby at a mean gestational age of 37.3 (29.1-40.2) weeks. No infants developed pulmonary hypoplasia and all were alive at 15-110 months. Eight (40% of all fetuses, 72.7% of newborns) had normal renal function and 3 (27.3%) had renal failure awaiting renal transplantation. Fetoscopic laser ablation for PUV can achieve bladder decompression and amniotic fluid normalization with a single procedure in selected cases with anyhydramnios. There is still a significant risk of progression to renal failure pre or postnatally. © 2014 S. Karger AG, Basel.

  19. Production of silver nanoparticles by laser ablation in open air

    Energy Technology Data Exchange (ETDEWEB)

    Boutinguiza, M., E-mail: mohamed@uvigo.es [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9. Vigo, 36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo, 36310 (Spain); Lusquiños, F.; Riveiro, A.; Val, J. del; Pou, J. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9. Vigo, 36310 (Spain)

    2015-05-01

    Highlights: • Silver nanoparticles have been obtained by laser ablation of metallic Ag in open air using nanosecond laser. • The continuous process enables increasing the production yield. • The obtained particles are rounded shape with narrow size distribution. - Abstract: Silver nanoparticles have attracted much attention as a subject of investigation due to their well-known properties, such as good conductivity, antibacterial and catalytic effects, etc. They are used in many different areas, such as medicine, industrial applications, scientific investigation, etc. There are different techniques for producing Ag nanoparticles, chemical, electrochemical, sonochemical, etc. These methods often lead to impurities together with nanoparticles or colloidal solutions. In this work, laser ablation of solids in open air conditions (LASOA) is used to produce silver nanoparticles and collect them on glass substrates. Production and deposition of silver nanoparticles are integrated in the same step to reduce the process. The obtained particles are analysed and the nanoparticles formation mechanism is discussed. The obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV/VIS absorption spectroscopy. The obtained nanoparticles consisted of Ag nanoparticles showing rounded shape with diameters ranging from few to 50 nm.

  20. Laser ablation of nanoscale particles with 193 nm light

    International Nuclear Information System (INIS)

    Choi, J H; Lucas, D; Koshland, C P

    2007-01-01

    Laser interaction with nanoscale particles is distinct and different from laser-bulk material interaction, where a hot plasma is normally created. Here, we review our studies on 193 nm laser ablation of various nanoscale particles including NaCl, soot, polystyrene, and gold. The 20 ns laser beam with fluences up to 0.3 J/cm 2 irradiates nanoparticles in a gas stream at laser repetition rates from 10 to 100 Hz. The particle size distributions before and after irradiation are measured with a scanning mobility particle sizer (SMPS), and particle morphology is examined with electron microscopy. All the nanomaterials studied exhibit a similar disintegration pattern and similar particle formation characteristics. No broadband emission associated with particle heating or optical breakdown is observed. The nanoparticles formed after irradiation have a smaller mean diameter and an order of magnitude higher number concentration with a more spherical shape compared to the original particles. We use the photon-atom ratio (PAR) to interpret the laser-particle interaction energetics

  1. Determination of the Isotope Ratio for Metal Samples Using a Laser Ablation/Ionization Time-of-flight Mass Spectrometry

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Cha, Hyung Ki; Kim, Duk Hyeon; Min, Ki Hyun

    2004-01-01

    The laser ablation/ionization time-of-flight mass spectrometry is applied to the isotopic analysis of solid samples using a home-made instrument. The technique is convenient for solid sample analysis due to the onestep process of vaporization and ionization of the samples. The analyzed samples were lead, cadmium, molybdenum, and ytterbium. To optimize the analytical conditions of the technique, several parameters, such as laser energy, laser wavelength, size of the laser beam on the samples surface, and high voltages applied on the ion source electrodes were varied. Low energy of laser light was necessary to obtain the optimal mass resolution of spectra. The 532 nm light generated mass spectra with the higher signal-to-noise ratio compared with the 355 nm light. The best mass resolution obtained in the present study is ∼1,500 for the ytterbium

  2. Effects of laser fluence and liquid media on preparation of small Ag nanoparticles by laser ablation in liquid

    Science.gov (United States)

    Moura, Caroline Gomes; Pereira, Rafael Santiago Floriani; Andritschky, Martin; Lopes, Augusto Luís Barros; Grilo, João Paulo de Freitas; Nascimento, Rubens Maribondo do; Silva, Filipe Samuel

    2017-12-01

    This study aims to assess a method for preparation of small and highly stable Ag nanoparticles by nanosecond laser ablation in liquid. Effect of liquid medium and laser fluence on the size, morphology and structure of produced nanoparticles has been studied experimentally. Pulses of a Nd:YAG laser of 1064 nm wavelength at 35 ns pulse width at different fluences were employed to irradiate the silver target in different environments (water, ethanol and acetone). The UV-Visible absorption spectra of nanoparticles exhibit surface plasmon resonance absorption peak in the UV region. STEM and TEM micrographs were used to evaluate the size and shape of nanoparticles. The stability of silver colloids in terms of oxidation at different liquid media was analyzed by SAED patterns. The results showed that characteristics of Ag nanoparticles and their production rate were strongly influenced by varying laser fluence and liquid medium. Particles from 2 to 80 nm of diameter were produced using different conditions and no oxidation was found in ethanol and acetone media. This work puts in evidence a promising approach to produce small nanoparticles by using high laser fluence energy.

  3. Real-time monitoring of indium tin oxide laser ablation in liquid crystal display patterning

    International Nuclear Information System (INIS)

    Hong, M.H.; Lu, Y.F.; Meng, M.; Low, T.S.

    1998-01-01

    Audible acoustic wave detection is applied to investigate KrF excimer laser ablation of Indium Tin Oxide (ITO) thin film layer for Liquid Crystal Display (LCD) patterning. It is found that there is no acoustic wave generation if laser fluence is lower than ITO ablation threshold. For laser fluence higher than the threshold, audible acoustic wave will be detected due to shock wave generation during ITO laser ablation. The amplitude of the acoustic wave is closely related to the laser ablation rate. With more laser pulse applied, the amplitude is dropped to zero because the ITO layer is completely removed. However, if laser fluence is increased higher than ablation threshold for glass substrate, the amplitude is also dropped with pulse number but not to zero. It is due to laser ablation of ITO layer and glass substrate at the same time. Since the thickness of ITO layer is in a scale of 100 nm, laser interaction with glass substrate will happen even at the first pulse of higher laser fluence irradiation. Laser ablation induced ITO plasma emission spectrum in visible light region is analyzed by an Optical Multi-channel Analyzer (OMA). Specific spectral lines are In I (325.8, 410.2 and 451.1 nm) and In II 591.1 nm. Spectral intensities of 410.2 and 451.1 nm lines are selected to characterize the evolution of ITO plasma intensity with laser fluence and pulse number. It is found that the spectral intensities are reduced to zero with laser pulse number. It is also found that spectral lines other than ITO plasma will appear for laser fluence higher than ablation threshold for glass substrate. Threshold fluences for glass and ITO ablation are estimated for setting up a parameter window to control LCD patterning in real-time

  4. Thin solid films deposited by pulsed laser ablating spray

    International Nuclear Information System (INIS)

    Song Guangle

    2002-01-01

    The fabricating technique of thin solid films deposited by pulsed laser ablating spray is a new technique. The background from which it came into being and the process of its evolution were briefly described. According to relative documents, basic principle of the technique was dwelt on. Based on the latest documents, the status quo, including the studying abroad and home, was discussed in detail. The advantages, shortcomings, prospect of its utility, the significance of studying as well as critic problems were summarized. Some proposal was suggested

  5. Time-resolved emission from laser-ablated uranium

    International Nuclear Information System (INIS)

    Stoffels, E.; Mullen, J. van der; Weijer, P. van de

    1991-01-01

    Time-resolved emission spectra from the plasma, induced by laser ablation of uranium samples have been studied. The dependence of the emission intensity on time is strongly affected by the nature and pressure of the buffer gas. Air and argon have been used in the pressure range 0.002 to 5 mbar. The emission intensity as a function of time displays three maxima, indicating that three different processes within the expanding plasma plume are involved. On basis of the time-resolved spectra we propose a model that explains qualitatively the phenomena that are responsible for this time behaviour. (author)

  6. Ultra-fast movies of thin-film laser ablation

    Science.gov (United States)

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2012-11-01

    Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.

  7. Process and structures for fabrication of solar cells with laser ablation steps to form contact holes

    Science.gov (United States)

    Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

    2013-11-19

    Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.

  8. Laser ablation of polymer coatings allows for electromagnetic field enhancement mapping around nanostructures

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob

    2011-01-01

    Subdiffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures....... The accompanying field enhancement substantially lowers the ablation threshold of the polymer film and thus creates local ablation spots and corresponding topographic modifications of the polymer film. Such modifications are quantified straightforwardly via scanning electron microscopy and atomic force microscopy...

  9. Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation

    International Nuclear Information System (INIS)

    Liu, C Y; Mao, X L; Greif, R; Russo, R E

    2007-01-01

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume

  10. Time Resolved Shadowgraph Images of Silicon during Laser Ablation:Shockwaves and Particle Generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.Y.; Mao, X.L.; Greif, R.; Russo, R.E.

    2006-05-06

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume.

  11. Improvement of a triple-wavelength erbium-doped fiber laser using a Fabry–Perot laser diode

    International Nuclear Information System (INIS)

    Peng, P C; Hu, H L; Wang, J B

    2013-01-01

    This work demonstrates the feasibility of a simple construct of a tunable triple-wavelength fiber ring laser using a Fabry–Perot laser diode (FP-LD) and an optical tunable bandpass filter. An optical tunable bandpass filter is used within the cavity of an erbium-doped fiber laser to select the lasing wavelength. Because the Fabry–Perot laser diode is in combination with the tunable bandpass filter, the erbium-doped fiber laser can stably lase three wavelengths simultaneously. Moreover, this laser is easily tuned dynamically. This triple-wavelength output performs satisfactorily, with its optical side-mode-suppression-ratio (SMSR) exceeding 40 dB. Furthermore, the wavelength tuning range of this triple-wavelength erbium-doped fiber laser is greater than 27 nm. (paper)

  12. Laser ablated copper plasmas in liquid and gas ambient

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Bhupesh; Thareja, Raj K. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2013-05-15

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (n{sub e}) determined using Stark broadening of the Cu I (3d{sup 10}4d{sup 1} {sup 2}D{sub 3/2}-3d{sup 10}4p{sup 1} {sup 2}P{sub 3/2} at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (T{sub e}) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ∼590 nm.

  13. Widely tunable asymmetric long-period fiber grating with high sensitivity using optical polymer on laser-ablated cladding.

    Science.gov (United States)

    Chen, Nan-Kuang; Hsu, Der-Yi; Chi, Sien

    2007-08-01

    We demonstrate high-efficiency, wideband-tunable, laser-ablated long-period fiber gratings that use an optical polymer overlay. Portions of the fiber cladding are periodically removed by CO(2) laser pulses to induce periodic index changes for coupling the core mode into cladding modes. An optical polymer with a high thermo-optic coefficient with a dispersion distinct from that of silica is used on a deep-ablated cladding structure so that the effective indices of cladding modes become dispersive and the resonant wavelengths can be efficiently tuned. The tuning efficiency can be as high as 15.8 nm/ degrees C, and the tuning range can be wider than 105 nm (1545-1650 nm).

  14. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    International Nuclear Information System (INIS)

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.

    1991-05-01

    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  15. MR guided percutaneous laser lumbar disk hernia ablation

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Takuo; Terao, Tohru; Ishibashi, Toshihiro; Yuhki, Ichiro; Harada, Junta; Tashima, Michiko [Jikei Univ., Chiba (Japan). Kashiwa Hospital; Abe, Toshiaki

    1998-03-01

    An MRI unit for interventional procedure is very useful for minimally invasive surgery of the brain and spine. Percutaneous laser disc decompression (PLDD) utilizing X-ray fluoroscopy is a relatively new less invasive procedure for treatment of lumbar disc herniation. MR guided laser surgery is applied to patients with disc herniation at our department. Approaching the target of the disc protrusion was easily conducted and vaporizing the disc hernia directly using a laser was possible under MR fluoroscopy. The purpose of the present study is to evaluate the usefulness of MR guided percutaneous laser disc hernia ablation (MR-guided PLDHA). As subjects, 36 patients with lumbar disc herniation, including 23 cases with L4/5 involvement and 13 cases with L5/S1 involvement were studied. Among these, 26 were males and 10 were females, age ranging from 24 to 62. We used an open type MR system (Hitachi, Airis 0.3T), a permanent, open configuration MR system. A YAG laser (LaserScope, USA) was used for PLDHA. An MR compatible 18G titanium needle 15 cm in length was used to puncture the herniated discs. The MR compatible needle was clearly visualized, and used to safely and accurately puncture the target herniated disc in each case with multidimensional guidance. Application of the laser was performed with MR guidance. The energy dose from the laser ranged from 800 to 2100 joules. In most cases, signs and symptoms improved in the patients immediately after disc vaporization. The overall success rate was 88.9%. The complication rate was 2.8%, including one case of discitis after PLDHA. MR fluoroscopy sequence permits near real time imaging and provides an easy approach to the therapeutic target of disc herniation. MR guided PLDHA is a minimally invasive procedure and is very useful for the treatment of lumbar disc protrusion. (author)

  16. MR guided percutaneous laser lumbar disk hernia ablation

    International Nuclear Information System (INIS)

    Hashimoto, Takuo; Terao, Tohru; Ishibashi, Toshihiro; Yuhki, Ichiro; Harada, Junta; Tashima, Michiko; Abe, Toshiaki.

    1998-01-01

    An MRI unit for interventional procedure is very useful for minimally invasive surgery of the brain and spine. Percutaneous laser disc decompression (PLDD) utilizing X-ray fluoroscopy is a relatively new less invasive procedure for treatment of lumbar disc herniation. MR guided laser surgery is applied to patients with disc herniation at our department. Approaching the target of the disc protrusion was easily conducted and vaporizing the disc hernia directly using a laser was possible under MR fluoroscopy. The purpose of the present study is to evaluate the usefulness of MR guided percutaneous laser disc hernia ablation (MR-guided PLDHA). As subjects, 36 patients with lumbar disc herniation, including 23 cases with L4/5 involvement and 13 cases with L5/S1 involvement were studied. Among these, 26 were males and 10 were females, age ranging from 24 to 62. We used an open type MR system (Hitachi, Airis 0.3T), a permanent, open configuration MR system. A YAG laser (LaserScope, USA) was used for PLDHA. An MR compatible 18G titanium needle 15 cm in length was used to puncture the herniated discs. The MR compatible needle was clearly visualized, and used to safely and accurately puncture the target herniated disc in each case with multidimensional guidance. Application of the laser was performed with MR guidance. The energy dose from the laser ranged from 800 to 2100 joules. In most cases, signs and symptoms improved in the patients immediately after disc vaporization. The overall success rate was 88.9%. The complication rate was 2.8%, including one case of discitis after PLDHA. MR fluoroscopy sequence permits near real time imaging and provides an easy approach to the therapeutic target of disc herniation. MR guided PLDHA is a minimally invasive procedure and is very useful for the treatment of lumbar disc protrusion. (author)

  17. Pulsed-laser ablation of co-deposits on JT-60 graphite tile

    International Nuclear Information System (INIS)

    Sakawa, Youichi; Watanabe, Daisuke; Shibahara, Takahiro; Sugiyama, Kazuyoshi; Tanabe, Tetsuo

    2007-01-01

    Pulsed laser ablation of the co-deposits on a JT-60 open-divertor tile using the fourth harmonic of a 20 ps-Nd: YAG laser has been investigated. With increasing the laser intensity, three regions, non-ablation region (NAR), weak-ablation region (WAR), and strong-ablation region (SAR) were distinguished. Transition from NAR to WAR and WAR to SAR occurred at the threshold laser intensity for laser ablation and that for strong ionization of carbon atoms, respectively. The ablation accompanied desorption of H 2 and C 2 H 2 , with minor contribution of other hydrocarbons, while production of H 2 O was small. In NAR and WAR the number of the hydrogen desorbed by the laser irradiation was less than that of hydrogen retained in the ablated volume, while in SAR it was much larger, owing to thermal desorption of hydrogen gas from the region surrounding the ablated volume. For the ablative removal of hydrogen isotopes, SAR is more desirable because of higher removal efficiency and less production of hydrocarbons

  18. Pulsed-laser ablation of co-deposits on JT-60 graphite tile

    Energy Technology Data Exchange (ETDEWEB)

    Sakawa, Youichi [Institute of Laser Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan)]. E-mail: sakawa-y@ile.osaka-u.ac.jp; Watanabe, Daisuke [Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Shibahara, Takahiro [Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Sugiyama, Kazuyoshi [Interdisciplinary School of Engineering Science, Kyushu University, Fukuoka, Fukuoka 812-8581 (Japan); Tanabe, Tetsuo [Interdisciplinary School of Engineering Science, Kyushu University, Fukuoka, Fukuoka 812-8581 (Japan)

    2007-08-01

    Pulsed laser ablation of the co-deposits on a JT-60 open-divertor tile using the fourth harmonic of a 20 ps-Nd: YAG laser has been investigated. With increasing the laser intensity, three regions, non-ablation region (NAR), weak-ablation region (WAR), and strong-ablation region (SAR) were distinguished. Transition from NAR to WAR and WAR to SAR occurred at the threshold laser intensity for laser ablation and that for strong ionization of carbon atoms, respectively. The ablation accompanied desorption of H{sub 2} and C{sub 2}H{sub 2}, with minor contribution of other hydrocarbons, while production of H{sub 2}O was small. In NAR and WAR the number of the hydrogen desorbed by the laser irradiation was less than that of hydrogen retained in the ablated volume, while in SAR it was much larger, owing to thermal desorption of hydrogen gas from the region surrounding the ablated volume. For the ablative removal of hydrogen isotopes, SAR is more desirable because of higher removal efficiency and less production of hydrocarbons.

  19. Fabrication and characterization of a cell electrostimulator device combining physical vapor deposition and laser ablation

    Science.gov (United States)

    Aragón, Angel L.; Pérez, Eliseo; Pazos, Antonio; Bao-Varela, Carmen; Nieto, Daniel

    2017-08-01

    In this work we present the process of fabrication and optimization of a prototype of a cell electrostimulator device for medical application combining physical vapor deposition and laser ablation. The fabrication of the first prototype begins with a deposition of a thin layer of 200 nm of aluminium on a borosilicate glass substrate using physical vapor deposition (PVD). In the second stage the geometry design of the electrostimulator is made in a CAD-like software available in a Nd:YVO4 Rofin Power line 20E, operating at the fundamental wavelength of 1064 nm and 20 ns pulse width. Choosing the proper laser parameters the negative of the electrostimulator desing is ablated. After that the glass is assembled between two polycarbonate sheets and a thick sheet of polydimethylsiloxane (PDMS). The PDMS sheet has a round hole in where cells are placed. There is also included a thin soda-lime silicate glass (100 μm) between the electrostimulator and the PMDS to prevent the cells for being in contact with the electric circuit. In order to control the electrical signal applied to the electrostimulator is used a digital I/O device from National Instruments (USB-6501) which provides 5 V at the output monitored by a software programmed in LabVIEW. Finally, the optical and electrical characterization of the cell electrostimulator device is presented.

  20. Pulsed laser ablation and deposition of niobium carbide

    International Nuclear Information System (INIS)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J.V.; Galasso, A.; Teghil, R.

    2016-01-01

    Highlights: • We have deposited in vacuum niobium carbide films by fs and ns PLD. • We have compared PLD performed by ultra-short and short laser pulses. • The films deposited by fs PLD of NbC are formed by nanoparticles. • The structure of the films produced by fs PLD at 500 °C corresponds to NbC. - Abstract: NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation–deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  1. Three dimensional characterization of laser ablation craters using high resolution X-ray computed tomography

    Science.gov (United States)

    Galmed, A. H.; du Plessis, A.; le Roux, S. G.; Hartnick, E.; Von Bergmann, H.; Maaza, M.

    2018-01-01

    Laboratory X-ray computed tomography is an emerging technology for the 3D characterization and dimensional analysis of many types of materials. In this work we demonstrate the usefulness of this characterization method for the full three dimensional analysis of laser ablation craters, in the context of a laser induced breakdown spectroscopy setup. Laser induced breakdown spectroscopy relies on laser ablation for sampling the material of interest. We demonstrate here qualitatively (in images) and quantitatively (in terms of crater cone angles, depths, diameters and volume) laser ablation crater analysis in 3D for metal (aluminum) and rock (false gold ore). We show the effect of a Gaussian beam profile on the resulting crater geometry, as well as the first visual evidence of undercutting in the rock sample, most likely due to ejection of relatively large grains. The method holds promise for optimization of laser ablation setups especially for laser induced breakdown spectroscopy.

  2. Noncontact Er:YAG laser ablation: clinical evaluation.

    Science.gov (United States)

    Dostálová, T; Jelínková, H; Kucerová, H; Krejsa, O; Hamal, K; Kubelka, J; Procházka, S

    1998-10-01

    The aim of this study is to evaluate the quality of laser ablation in comparison with the classical drilling preparation. For the experiment, the Er:YAG laser drilling machine was used. The system had a laser head, water cooler, and power supply with automatic control. Spot size of 300-350 microns was used for the preparation. Repetition rate of 1-4 Hz, and pulse energies of 100-400 mJ with water spray were chosen. Cavity shape in comparison with classical drill, time of preparation, and influence of cavity shape on filling materials retention in accordance with the U.S. Public Health Service System were used. The evaluation criteria for noncontact Er:YAG ablation were done. The cavity shape is irregular, but spot surface has larger area and microretentive appearance. Caries of enamel and dentin were treated with a noncontact preparation. It was possible to remove the old insufficient fillings, except for amalgam or metal alloys. The average number of pulses was 111.22 (SE 67.57). Vibrations of microexplosions during preparation were felt by patients on 14 cavities; however, nobody felt unpleasant pain. The qualities of filling materials in laser cavities were very stable; however, cavo surface margin discoloration of 82-86% of Alfa rating could be a problem. Changes of the color and anatomic form of the tooth were observed in 4-8%. In comparison with the classical treatment, it could be said that the retention and quality of filling materials is the same or very similar.

  3. Highly accurate Michelson type wavelength meter that uses a rubidium stabilized 1560 nm diode laser as a wavelength reference

    International Nuclear Information System (INIS)

    Masuda, Shin; Kanoh, Eiji; Irisawa, Akiyoshi; Niki, Shoji

    2009-01-01

    We investigated the accuracy limitation of a wavelength meter installed in a vacuum chamber to enable us to develop a highly accurate meter based on a Michelson interferometer in 1550 nm optical communication bands. We found that an error of parts per million order could not be avoided using famous wavelength compensation equations. Chromatic dispersion of the refractive index in air can almost be disregarded when a 1560 nm wavelength produced by a rubidium (Rb) stabilized distributed feedback (DFB) diode laser is used as a reference wavelength. We describe a novel dual-wavelength self-calibration scheme that maintains high accuracy of the wavelength meter. The method uses the fundamental and second-harmonic wavelengths of an Rb-stabilized DFB diode laser. Consequently, a highly accurate Michelson type wavelength meter with an absolute accuracy of 5x10 -8 (10 MHz, 0.08 pm) over a wide wavelength range including optical communication bands was achieved without the need for a vacuum chamber.

  4. Equation of state study of Laser Megajoule capsules ablator materials

    International Nuclear Information System (INIS)

    Colin-Lalu, Pierre

    2016-01-01

    This PhD thesis enters the field of inertial confinement fusion studies. In particular, it focuses on the equation of state tables of ablator materials synthesized on LMJ capsules. This work is indeed aims at improving the theoretical models introduced into the equation of state tables. We focused in the Mbar-eV pressure-temperature range because it can be access on kJ-scale laser facilities.In order to achieve this, we used the QEOS model, which is simple to use, configurable, and easily modifiable.First, quantum molecular dynamics (QMD) simulations were performed to generate cold compression curve as well as shock compression curves along the principal Hugoniot. Simulations were compared to QEOS model and showed that atomic bond dissociation has an effect on the compressibility. Results from these simulations are then used to parametrize the Grueneisen parameter in order to generate a tabulated equation of state that includes dissociation. It allowed us to show its influence on shock timing in a hydrodynamic simulation.Second, thermodynamic states along the Hugoniot were measured during three experimental campaigns upon the LULI2000 and GEKKO XII laser facilities. Experimental data confirm QMD simulations.This study was performed on two ablator materials which are an undoped polymer CHO, and a silicon-doped polymer CHOSi. Results showed universal shock compression properties. (author) [fr

  5. Obtention of high hardness multilayer systems by laser ablation

    International Nuclear Information System (INIS)

    Mejia T, I.S.

    2007-01-01

    In this thesis work the synthesis of thin films of titanium nitride (TiN), amorphous carbon nitride (CN x ) amorphous carbon (a-C) and Ti/TiN/CNx multilayers and Ti/TiN/a-C by means of the laser ablation technique, with the objective of obtaining films of high hardness is studied, as well as to produce multilayer coatings with superior properties to the individual layers. The effect that has the laser fluence used for ablationing the targets in the structure and mechanical properties of the films deposited of TiN was investigated. It was found that the hardness is increased in lineal way approximately with the fluence increment up to 19 J/cm 2 . Thin films of a-C with hardness of the order of 12 GPa. likewise CN x films with high hardness (18.4 GPa) were obtained. The hardness of the deposited films was analyzed and it was related with its microstructure and deposit conditions. It was concluded that the Ti/TiN/CNx and Ti/TiN/a-C systems presented bigger hardness that of its individual components. (Author)

  6. Experimental study on 800 nm femtosecond laser ablation of fused silica in air and vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shi-zhen, E-mail: xusz@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yao, Cai-zhen; Liao, Wei [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yuan, Xiao-dong, E-mail: yxd66my@163.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, Tao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zu, Xiao-tao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-10-15

    Ablation rates of fused silica were studied as a function of femtosecond laser pulse fluences (0.7–41 J/cm{sup 2}) in air and vacuum. The experiment was conducted by using a Ti:sapphire laser that emits radiation at 800 nm with a pulse width of 35 fs and a repetition rate of 10 Hz. The morphology and ablation depth of laser-induced damage crater were evaluated by using optical microscopy and scanning electron microscopy (SEM). Ablation rates were calculated from the depth of craters induced by multiple laser pulses. Results showed that two ablation regimes, i.e. non-thermal and thermal ablation co-existed in air and vacuum at low and moderate fluences. A drop of ablation rate was observed at high fluence (higher than 9.5 J/cm{sup 2}) in air. While in vacuum, the ablation rate increased continuously with the increasing of laser fluence and much higher than that in air. The drop of ablation rate observed at high fluence in air was due to the strong defocusing effects associated with the non-equilibrium ionization of air. Furthermore, the laser-induced damage threshold (LIDT), which was determined from the relationship between crater area and the logarithm of laser energy, was found to depend on the number of incident pulses on the same spot, and similar phenomenon was observed in air and vacuum.

  7. Hard tissue ablation with a spray-assisted mid-IR laser

    International Nuclear Information System (INIS)

    Kang, H W; Rizoiu, I; Welch, A J

    2007-01-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment

  8. Hard tissue ablation with a spray-assisted mid-IR laser

    Science.gov (United States)

    Kang, H. W.; Rizoiu, I.; Welch, A. J.

    2007-12-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  9. Laser Ablation Increases PEM/Catalyst Interfacial Area

    Science.gov (United States)

    Whitacre, Jay; Yalisove, Steve

    2009-01-01

    An investigational method of improving the performance of a fuel cell that contains a polymer-electrolyte membrane (PEM) is based on the concept of roughening the surface of the PEM, prior to deposition of a thin layer of catalyst, in order to increase the PEM/catalyst interfacial area and thereby increase the degree of utilization of the catalyst. The roughening is done by means of laser ablation under carefully controlled conditions. Next, the roughened membrane surface is coated with the thin layer of catalyst (which is typically platinum), then sandwiched between two electrode/catalyst structures to form a membrane/ele c t - rode assembly. The feasibility of the roughening technique was demonstrated in experiments in which proton-conducting membranes made of a perfluorosulfonic acid-based hydrophilic, protonconducting polymer were ablated by use of femtosecond laser pulses. It was found that when proper combinations of the pulse intensity, pulse-repetition rate, and number of repetitions was chosen, the initially flat, smooth membrane surfaces became roughened to such an extent as to be converted to networks of nodules interconnected by filaments (see Figure 1). In further experiments, electrochemical impedance spectroscopy (EIS) was performed on a pristine (smooth) membrane and on two laser-roughened membranes after the membranes were coated with platinum on both sides. Some preliminary EIS data were interpreted as showing that notwithstanding the potential for laser-induced damage, the bulk conductivities of the membranes were not diminished in the roughening process. Other preliminary EIS data (see Figure 2) were interpreted as signifying that the surface areas of the laser-roughened membranes were significantly greater than those of the smooth membrane. Moreover, elemental analyses showed that the sulfur-containing molecular groups necessary for proton conduction remained intact, even near the laser-roughened surfaces. These preliminary results can be taken

  10. Laser-Bioplasma Interaction: The Blood Type Transmutation Induced by Multiple Ultrashort Wavelength Laser Beams

    Science.gov (United States)

    Stefan, V. Alexander

    2015-11-01

    The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.

  11. Diagnostics of Carbon Nanotube Formation in a Laser Produced Plume: An Investigation of the Metal Catalyst by Laser Ablation Atomic Fluorescence Spectroscopy

    Science.gov (United States)

    deBoer, Gary; Scott, Carl

    2003-01-01

    Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal

  12. Free-space QKD system hacking by wavelength control using an external laser.

    Science.gov (United States)

    Lee, Min Soo; Woo, Min Ki; Jung, Jisung; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2017-05-15

    We develop a way to hack free-space quantum key distribution (QKD) systems by changing the wavelength of the quantum signal laser using an external laser. Most free-space QKD systems use four distinct lasers for each polarization, thereby making the characteristics of each laser indistinguishable. We also discover a side-channel that can distinguish the lasers by using an external laser. Our hacking scheme identifies the lasers by automatically applying the external laser to each signal laser at different intensities and detecting the wavelength variation according to the amount of incident external laser power. We conduct a proof-of-principle experiment to verify the proposed hacking structure and confirm that the wavelength varies by several gigahertzes to several nanometers, depending on the intensity of the external laser. The risk of hacking is successfully proven through the experimental results. Methods for prevention are also suggested.

  13. Effect of liquid properties on laser ablation of aluminum and titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Peixuan, E-mail: oypx12@mails.tsinghua.edu.cn [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); Li, Peijie [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Leksina, E.G.; Michurin, S.V. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992 (Russian Federation); He, Liangju [School of Aerospace, Tsinghua University, Beijing 100084 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Porous surfaces are formed in Al alloy after wet ablation due to phase explosion. • A higher ablation rate is produced in glycerin than that in water and isopropanol. • Effect of liquid properties on mass-removal mechanisms was discussed. • Phase explosion and plasma-induced pressure contribute greatly to mass removal. • Density, heat conductivity and shock impendence of liquid affect ablation rates. - Abstract: In order to study the effect of liquid properties on laser ablation in liquids, aluminum 5A06 and titanium TB5 targets were irradiated by single-pulse infrared laser in isopropanol, distilled water, glycerin and as a comparison, in air, respectively. Craters induced by laser ablation were characterized using scanning electron and white-light interferometric microscopies. The results show that for liquid-mediated ablation, craters with porous surface structures were formed in aluminum target through phase explosion, while no micro-cavities were formed in titanium target owing to high critical temperature of titanium. In addition, ablation rates of aluminum and titanium targets vary with types of ambient media in accordance with such sequence: air < isopropanol < water < glycerin. Further, the influence of liquid properties on material-removal mechanisms for laser ablation in liquid is discussed. It is concluded that the density, thermal conductivity and acoustical impedance of liquid play a dominant role in laser ablation efficiency.

  14. Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers

    Science.gov (United States)

    Sun, K.; Chao, X.; Sur, R.; Goldenstein, C. S.; Jeffries, J. B.; Hanson, R. K.

    2013-12-01

    A novel strategy has been developed for analysis of wavelength-scanned, wavelength modulation spectroscopy (WMS) with tunable diode lasers (TDLs). The method simulates WMS signals to compare with measurements to determine gas properties (e.g., temperature, pressure and concentration of the absorbing species). Injection-current-tuned TDLs have simultaneous wavelength and intensity variation, which severely complicates the Fourier expansion of the simulated WMS signal into harmonics of the modulation frequency (fm). The new method differs from previous WMS analysis strategies in two significant ways: (1) the measured laser intensity is used to simulate the transmitted laser intensity and (2) digital lock-in and low-pass filter software is used to expand both simulated and measured transmitted laser intensities into harmonics of the modulation frequency, WMS-nfm (n = 1, 2, 3,…), avoiding the need for an analytic model of intensity modulation or Fourier expansion of the simulated WMS harmonics. This analysis scheme is valid at any optical depth, modulation index, and at all values of scanned-laser wavelength. The method is demonstrated and validated with WMS of H2O dilute in air (1 atm, 296 K, near 1392 nm). WMS-nfm harmonics for n = 1 to 6 are extracted and the simulation and measurements are found in good agreement for the entire WMS lineshape. The use of 1f-normalization strategies to realize calibration-free wavelength-scanned WMS is also discussed.

  15. Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation

    International Nuclear Information System (INIS)

    Zamiri, Reza; Zakaria, Azmi; Ahangar, Hossein Abbastabar; Darroudi, Majid; Zak, Ali Khorsand; Drummen, Gregor P.C.

    2012-01-01

    Highlights: ► Zinc oxide nanoparticles were synthesized via LASiS in aqueous starch solution. ► Nanoparticles of ±15 nm are produced with a narrow size distribution. ► Starch can be used as a template to control nanoparticle size. ► Starch stabilizes zinc oxide nanoparticles in solution through steric hindrance. - Abstract: Zinc oxide is a semiconductor with exceptional thermal, luminescent and electrical properties, even compared with other semiconducting nanoparticles. Its potential for advanced applications in lasers and light emitting diodes, as bio-imaging agent, in biosensors and as drug delivery vehicles, in ointments, coatings and pigments has pulled zinc oxide into the focus of various scientific and engineering research fields. Recently we started investigating if nanoparticle synthesis via laser ablation in the presence of natural stabilizers allows control over size and shape and constitutes a useful, uncomplicated alternative over conventional synthesis methods. In the current paper, we determined the ability of natural starch to act as a size controller and stabilizer in the preparation of zinc oxide nanoparticles via ablation of a ZnO plate in a starch solution with a nanosecond Q-Switched Nd:YAG pulsed laser at its original wavelength (λ = 1064 nm). Our results show that the particle diameter decreases with increasing laser irradiation time to a mean nanoparticle size of approximately 15 nm with a narrow size distribution. Furthermore, the obtained particle size in starch solution is considerably smaller compared with analogous ZnO nanoparticle synthesis in distilled water. The synthesized and capped nanoparticles retained their photoluminescent properties, but showed blue emission rather than the often reported green luminescence. Evaluation of old preparations compared with freshly made samples showed no agglomeration or flocculation, which was reflected in no significant change in the ZnO nanoparticle size and size distribution. Overall

  16. Nanocrystalline Sr2CeO4 thin films grown on silicon by laser ablation

    International Nuclear Information System (INIS)

    Perea, Nestor; Hirata, G.A.

    2006-01-01

    Blue-white luminescent Sr 2 CeO 4 thin films were deposited by using pulsed laser ablation (λ = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr 2 CeO 4 grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr 2 CeO 4 however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems

  17. Morphological and spectroscopic characterization of laser-ablated tungsten at various laser irradiances

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Mahreen; Bashir, Shazia; Hayat, Asma; Mahmood, Khaliq; Dawood, Asadullah [Government College University, Centre for Advanced Studies in Physics, Lahore (Pakistan); Rafique, Muhammad Shahid [University of Engineering and Technology, Department of Physics, Lahore (Pakistan); Bashir, M.F. [COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan)

    2015-06-15

    The variation in surface morphology and plasma parameters of laser irradiated tungsten has been investigated as a function of irradiance. For this purpose, Nd:YAG laser (1064 nm, 10 ns, 10 Hz) is employed. Tungsten targets were exposed to various laser irradiances ranging from 6 to 50 GW/cm{sup 2} under ambient environment of argon at a pressure of 20 Torr. Scanning electron microscope analysis has been performed to analyze the surface modification of irradiated tungsten. It revealed the formation of micro- and nanoscale surface structures. In central ablated area, distinct grains and crack formation are observed, whereas peripheral ablated areas are dominated by cones and pinhole formation. It was observed that at irradiances exceeding a value of 13 GW/cm{sup 2}, the morphological trend of the observed structures has been changed from erosion to melting and re-deposition dominant phase. Ablation efficiency as a function of laser irradiance has also been investigated by measuring the crater depth using surface profilometry analysis. It is found to be maximum at an irradiance of 13 GW/cm{sup 2} and decreases at high laser irradiances. In order to correlate the accumulated effects of plasma parameters with the surface modification, laser-induced breakdown spectroscopy analysis has been performed. The electron temperature and number density of tungsten plasma have been evaluated at various laser irradiances. Initially with the increase of the laser irradiance up to 13 GW/cm{sup 2}, an increasing trend is observed for both plasma parameters due to enhanced energy deposition. Afterward, a decreasing trend is achieved which is attributed to the shielding effect. With further increase in irradiance, a saturation stage comes and insignificant changes are observed in plasma parameters. This saturation is explainable on the basis of the formation of a self-regulating regime near the target surface. Surface modifications of laser irradiated tungsten have been correlated with

  18. Thermal effect of laser ablation on the surface of carbon fiber reinforced plastic during laser processing

    Science.gov (United States)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2018-02-01

    Although laser processing is widely used for many applications, the cutting quality of carbon fiber reinforced plastic (CFRP) decreases around the heat-affected zone (HAZ) during laser processing. Carbon fibers are exposed around the HAZ, and tensile strength decreases with increasing length of the HAZ. Some theoretical studies of thermal conductions that do not consider fluid dynamics have been performed; however, theoretical considerations that include the dynamics of laser ablation are scarce. Using removed mass and depth observed from experiments, the dynamics of laser ablation of CFRP with high-temperature and high-pressure of compressive gas is simulated herein. In this calculation, the mushroom-like shape of laser ablation is qualitatively simulated compared with experiments using a high-speed camera. Considering the removal temperature of the resin and the temperature distribution at each point on the surface, the simulation results suggest that a wide area of the resin is removed when the processing depth is shallow, and a rounded kerf is generated as the processing depth increases.

  19. SERS activity of silver and gold nanostructured thin films deposited by pulsed laser ablation

    Science.gov (United States)

    Agarwal, N. R.; Tommasini, M.; Fazio, E.; Neri, F.; Ponterio, R. C.; Trusso, S.; Ossi, P. M.

    2014-10-01

    Nanostructured Au and Ag thin films were obtained by nanosecond pulsed laser ablation in presence of a controlled Ar atmosphere. Keeping constant other deposition parameters such as target-to-substrate distance, incidence angle, laser wavelength and laser fluence, the film morphology, revealed by SEM, ranges from isolated NPs to island structures and sensibly depends on gas pressure (10-100 Pa) and on the laser pulse number (500-3 × 10). The control of these two parameters allows tailoring the morphology and correspondingly the optical properties of the films. The position and width of the surface plasmon resonance peak, in fact, can be varied with continuity. The films showed remarkable surface-enhanced Raman activity (SERS) that depends on the adopted deposition conditions. Raman maps were acquired on micrometer-sized areas of both silver and gold substrates selected among those with the strongest SERS activity. Organic dyes of interest in cultural heritage studies (alizarin, purpurin) have been also considered for bench marking the substrates produced in this work. Also the ability to detect the presence of biomolecules was tested using lysozyme in a label free configuration.

  20. Matrix effects in laser ablation molecular isotopic spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Staci, E-mail: staci.brown@cepast.famu.edu [Department of Physics, Florida A and M University, 2077 E. Paul Dirac Drive, Tallahassee, FL 32310 (United States); Ford, Alan, E-mail: alan.ford@alakaidefense.com [Alakai Defense Systems, 197 Replacement Ave, Suite 102, Fort Leonard Wood, MO 65473 (United States); Akpovo, Charlemagne C., E-mail: charlemagne.akpovo@cepast.famu.edu [Department of Physics, Florida A and M University, 2077 E. Paul Dirac Drive, Tallahassee, FL 32310 (United States); Martinez, Jorge, E-mail: jmartinez@cepast.famu.edu [Department of Physics, Florida A and M University, 2077 E. Paul Dirac Drive, Tallahassee, FL 32310 (United States); Johnson, Lewis, E-mail: lewis@cepast.famu.edu [Department of Physics, Florida A and M University, 2077 E. Paul Dirac Drive, Tallahassee, FL 32310 (United States)

    2014-11-01

    Recently, it has been shown that laser-induced breakdown spectroscopy (LIBS) can be used for the detection of isotopes of elements via isotopic shifts in diatomic species in a technique known as laser ablation molecular isotopic spectrometry (LAMIS). While LAMIS works quite well for isotopic analysis of pure compounds under optimal conditions, it is desirable for it to be applicable for a variety of compounds and matrices. However, the LIBS plasma emission associated with LAMIS depends on several parameters, including the applied electric field of the laser pulse, the physical properties of the material being investigated, and the presence of additional elements other than the element of interest. In this paper, we address some of the pitfalls arising from these dependencies when using LAMIS for the determination of the relative isotopic abundance of boron-containing materials with varying chemical matrices. - Highlights: • LAMIS usually determines isotopic composition of boron compounds within 3 percent. • LaBO{sub 3} and some boron-containing mixtures yield inaccurate LAMIS results. • Higher laser energy reduces variability but does not remedy poor LAMIS outcomes.

  1. Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, David J., E-mail: davidjjorgensen@engr.ucsb.edu; Titus, Michael S.; Pollock, Tresa M.

    2015-10-30

    Highlights: • The single-pulse fs laser ablation threshold of NiAl is 83 mJ/cm{sup 2}. • The transition between low- and high-fluence ablation regimes is 2.8 J/cm{sup 2}. • A bimodal size distribution of nanoparticles is formed with fs laser ablation. • Smaller nanoparticles are enriched in Al during pulsed fs laser ablation. • The target surface is depleted in Al during pulsed fs laser ablation. - Abstract: The ablation behavior of a stoichiometric intermetallic compound β-NiAl subjected to femtosecond laser pulsing in air has been investigated. The single-pulse ablation threshold for NiAl was determined to be 83 ± 4 mJ/cm{sup 2} and the transition to the high-fluence ablation regime occurred at 2.8 ± 0.3 J/cm{sup 2}. Two sizes of nanoparticles consisting of Al, NiAl, Ni{sub 3}Al and NiO were formed and ejected from the target during high-fluence ablation. Chemical analysis revealed that smaller nanoparticles (1–30 nm) tended to be rich in Al while larger nanoparticles (>100 nm) were lean in Al. Ablation in the low-fluence regime maintained this trend. Redeposited material and nanoparticles remaining on the surface after a single 3.7 J/cm{sup 2} pulse, one hundred 1.7 J/cm{sup 2} pulses, or one thousand 250 mJ/cm{sup 2} pulses were enriched in Al relative to the bulk target composition. Further, the surface of the irradiated high-fluence region was depleted in Al indicating that the fs laser ablation removal rate of the intermetallic constituents in this regime does not scale with the individual pure element ablation thresholds.

  2. Properties of the ablation process for excimer laser ablation of Y1Ba2Cu3O7

    International Nuclear Information System (INIS)

    Neifeld, R.A.; Potenziani, E.; Sinclair, W.R.; Hill III, W.T.; Turner, B.; Pinkas, A.

    1991-01-01

    The process of excimer laser ablation has been studied while varying the laser fluence from 0.237 to 19.1 J/cm 2 . Ion time-of-flight, total charge, target etch depth per pulse, and etch volume per pulse have been measured. Results indicate a maximum ablation volume and minimum ionization fraction occur near 5 J/cm 2 . Several of the parameters measured vary rapidly in the 1--5 J/cm 2 range. Variation in these parameters strongly influences the properties of films grown by this technique

  3. Selective laser etching or ablation for fabrication of devices

    KAUST Repository

    Buttner, Ulrich

    2017-01-12

    Methods of fabricating devices vial selective laser etching are provided. The methods can include selective laser etching of a portion of a metal layer, e.g. using a laser light source having a wavelength of 1,000 nm to 1,500 nm. The methods can be used to fabricate a variety of features, including an electrode, an interconnect, a channel, a reservoir, a contact hole, a trench, a pad, or a combination thereof. A variety of devices fabricated according to the methods are also provided. In some aspects, capacitive humidity sensors are provided that can be fabricated according to the provided methods. The capacitive humidity sensors can be fabricated with intricate electrodes, e.g. having a fractal pattern such as a Peano curve, a Hilbert curve, a Moore curve, or a combination thereof.

  4. Characterization of laser ablation of copper in the irradiance regime of laser-induced breakdown spectroscopy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Picard, J., E-mail: jessica.picard@cea.fr [Commissariat à l' Energie Atomique, DAM, Valduc, F-21120 Is-sur-Tille (France); Sirven, J.-B.; Lacour, J.-L. [Commissariat à l' Energie Atomique, DEN/DANS/DPC/SEARS/LANIE, Saclay, F-91191 Gif-sur-Yvette (France); Musset, O. [Université de Bourgogne, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 5209, F-21000 Dijon (France); Cardona, D.; Hubinois, J.-C. [Commissariat à l' Energie Atomique, DAM, Valduc, F-21120 Is-sur-Tille (France); Mauchien, P. [Commissariat à l' Energie Atomique, DEN/DANS/DPC/SEARS/LANIE, Saclay, F-91191 Gif-sur-Yvette (France)

    2014-11-01

    The LIBS signal depends both on the ablated mass and on the plasma excitation temperature. These fundamental parameters depend in a complex manner on laser ablation and on laser–plasma coupling. As several works in the literature suggest that laser ablation processes play a predominant role compared to plasma heating phenomena in the LIBS signal variations, this paper focuses on the study of laser ablation. The objective was to determine an interaction regime enabling to maximally control the laser ablation. Nanosecond laser ablation of copper at 266 nm was characterized by scanning electron microscopy and optical profilometry analysis, in air at 1 bar and in the vacuum. The laser beam spatial profile at the sample surface was characterized in order to give realistic values of the irradiance. The effect of the number of accumulated laser shots on the crater volume was studied. Then, the ablation crater morphology, volume, depth and diameter were measured as a function of irradiance between 0.35 and 96 GW/cm². Results show that in the vacuum, a regular trend is observed over the whole irradiance range. In air at 1 bar, below a certain irradiance, laser ablation is very similar to the vacuum case, and the ablation efficiency of copper was estimated at 0.15 ± 0.03 atom/photon. Beyond this irradiance, the laser beam propagation is strongly disrupted by the expansion of the dense plasma, and plasma shielding appears. The fraction of laser energy used for laser ablation and for plasma heating is estimated in the different irradiance regimes. - Highlights: • The morphology of copper's craters was studied as a function of the pulse energy. • Correlation at low energy and two pressures between crater volume and pulse energy • The ablation efficiency of copper at 1 bar is equal to 0.15 atom/photon. • Ablation efficiency in the vacuum is not limited by laser–plasma interaction. • Physical mechanisms of laser ablation at both pressures are discussed.

  5. CBET Experiments with Wavelength Shifting at the Nike Laser

    Science.gov (United States)

    Weaver, James; McKenty, P.; Bates, J.; Myatt, J.; Shaw, J.; Obenschain, K.; Oh, J.; Kehne, D.; Obenschain, S.; Lehmberg, R. H.; Tsung, F.; Schmitt, A. J.; Serlin, V.

    2016-10-01

    Studies conducted at NRL during 2015 searched for cross-beam energy transport (CBET) in small-scale plastic targets with strong gradients in planar, cylindrical, and spherical geometries. The targets were irradiated by two widely separated beam arrays in a geometry similar to polar direct drive. Data from these shots will be presented that show a lack of a clear CBET signature even with wavelength shifting of one set of beams. This poster will discuss the next campaign being planned, in part, with modelling codes developed at LLE. The next experiments will use a target configuration optimized to create stronger SBS growth. The primary path under consideration is to increase scale lengths 5-10x over the previous study by using exploding foils or low density foams. In addition to simulations, the presentation will also discuss improvements to the diagnostic suite and laser operations; for example, a new set of etalons will be available for the next campaign that should double the range of wavelength shifting between the two beam arrays. Work supported by DoE/NNSA.

  6. Modification of polyimide wetting properties by laser ablated conical microstructures

    International Nuclear Information System (INIS)

    Least, Brandon T.; Willis, David A.

    2013-01-01

    Laser texturing of Kapton ® HN polyimide was performed by low-fluence ablation using a pulsed, frequency tripled (349 nm) Nd:YLF laser. The laser was scanned in two dimensions in order to generate texture over a large area. The laser overlap percentage and fluence were varied and the resulting texture was studied. The texture features were inspected by electron microscopy and energy dispersive X-Ray spectroscopy (EDS), while the static contact angle of de-ionized water was measured by a contact angle goniometer. Rounded bump features were formed at all fluences, which decreased in areal density with fluence and number of laser pulses. Conical microstructures or “cones” were also formed at most fluences. Cones were larger than the bumps and thus had lower areal density, which increased as a function of the number of laser pulses. The polyimide was hydrophilic before texturing, with a contact angle of approximately 76°. For most of the experimental conditions the contact angle increased as a result of texturing, with the contact angle exceeding 90° for some textured surfaces, and reaching values as high as 118°. In general, the surfaces with significant increases in contact angle had high density of texture features, either bumps or cones. The surfaces that experienced a decrease in contact angle generally had low density of texture features. The increase in contact angle from a wetting (θ 90°) cannot be explained by texturing alone. EDS measurements indicate that textured regions had higher carbon content than the untextured regions due to depletion of oxygen species. The increase in carbon content relative to the oxygen content increased the native contact angle of the surface, causing the transition from hydrophilic to hydrophobic behavior. The contact angle of a textured surface increased as the relative spacing of features (diameter to spacing) decreased.

  7. Stability of contamination-free gold and silver nanoparticles produced by nanosecond laser ablation of solid targets in water

    International Nuclear Information System (INIS)

    Nikov, R.G.; Nikolov, A.S.; Nedyalkov, N.N.; Dimitrov, I.G.; Atanasov, P.A.; Alexandrov, M.T.

    2012-01-01

    Highlights: ► Au and Ag colloids were prepared by nanosecond laser ablation of solids in water. ► The alteration of the produced colloids during one month was investigated. ► Optical transmission spectra of the samples were measured from 350 to 800 nm. ► TEM measurements were made of as-prepared colloids and on the 30-th day. ► Zeta potential measurements were performed of as-prepared samples. - Abstract: Preparation of noble metal nanoparticle (NPs) colloids using pulsed laser ablation in water has an inherent advantage compared to the different chemical methods used, especially when biological applications of the colloids are considered. The fabrication method is simple and the NPs prepared in this way are contamination free. The method of laser ablation of a solid target in water is applied in the present work in order to obtain gold and silver NP colloids. The experiment was preformed by using the fundamental wavelength (1064 nm) of a Nd:YAG laser system. The target immersed in double distilled water was irradiated for 20 min by laser pulses with duration of 15 ns and repetition rate of 10 Hz. The sedimentation and aggregation of NPs in the colloids, stored at constant temperature, as a function of the time after preparation were investigated. The analyses are based on optical transmission spectroscopy in UV and vis regions. The change of the plasmon resonance wavelength as a function of time was studied. Zeta potential measurement was also utilized to measure the charge of the NPs in the colloids. The size distribution of the NPs and its change in time was determined by transmission electron microscopy (TEM). On the basis of the results obtained, the optimal conditions of post fabrication manipulation with gold and silver colloids are defined in view of producing stable NPs with a narrow size distribution.

  8. Physical mechanisms of SiNx layer structuring with ultrafast lasers by direct and confined laser ablation

    International Nuclear Information System (INIS)

    Rapp, S.; Heinrich, G.; Wollgarten, M.; Huber, H. P.; Schmidt, M.

    2015-01-01

    In the production process of silicon microelectronic devices and high efficiency silicon solar cells, local contact openings in thin dielectric layers are required. Instead of photolithography, these openings can be selectively structured with ultra-short laser pulses by confined laser ablation in a fast and efficient lift off production step. Thereby, the ultrafast laser pulse is transmitted by the dielectric layer and absorbed at the substrate surface leading to a selective layer removal in the nanosecond time domain. Thermal damage in the substrate due to absorption is an unwanted side effect. The aim of this work is to obtain a deeper understanding of the physical laser-material interaction with the goal of finding a damage-free ablation mechanism. For this, thin silicon nitride (SiN x ) layers on planar silicon (Si) wafers are processed with infrared fs-laser pulses. Two ablation types can be distinguished: The known confined ablation at fluences below 300 mJ/cm 2 and a combined partial confined and partial direct ablation at higher fluences. The partial direct ablation process is caused by nonlinear absorption in the SiN x layer in the center of the applied Gaussian shaped laser pulses. Pump-probe investigations of the central area show ultra-fast reflectivity changes typical for direct laser ablation. Transmission electron microscopy results demonstrate that the Si surface under the remaining SiN x island is not damaged by the laser ablation process. At optimized process parameters, the method of direct laser ablation could be a good candidate for damage-free selective structuring of dielectric layers on absorbing substrates

  9. Multi-wavelength study of PPDs using an OPO tunable pulse laser microscope system

    International Nuclear Information System (INIS)

    Yoshimura, Koji; Nakamura, Isamu

    2012-01-01

    We have developed a new pulsed laser microscope system whose wavelength is continuously tunable from 410 nm to 2200 nm by using an optical parametric oscillator (OPO) laser system. The laser spot can be focused to ∼2μm diameter, small enough to measure pixel-by-pixel performance of PPDs (pixelated photon detectors). Using multi-wavelength laser light, we plan to probe PPDs at various depths, thanks to their different penetration lengths in the silicon layer. In this paper, details of the commissioning of the laser microscope system and pilot measurements on a PPD at several wavelengths will be presented.

  10. Multi-wavelength study of PPDs using an OPO tunable pulse laser microscope system

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Koji, E-mail: koji.yoshimura@kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nakamura, Isamu [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2012-12-11

    We have developed a new pulsed laser microscope system whose wavelength is continuously tunable from 410 nm to 2200 nm by using an optical parametric oscillator (OPO) laser system. The laser spot can be focused to {approx}2{mu}m diameter, small enough to measure pixel-by-pixel performance of PPDs (pixelated photon detectors). Using multi-wavelength laser light, we plan to probe PPDs at various depths, thanks to their different penetration lengths in the silicon layer. In this paper, details of the commissioning of the laser microscope system and pilot measurements on a PPD at several wavelengths will be presented.

  11. Effects of Laser Energy Density on Size and Morphology of NiO Nanoparticles Prepared by Pulsed Laser Ablation in Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Rory; Reddy, M. Amaranatha; Kim, Tae Kyu [Pusan National University, Busan (Korea, Republic of)

    2015-01-15

    Metaloxide nanoparticles are of great importance to a large variety of chemical and material applications ranging from catalysts to electronic devices. Among the metal-oxide nanoparticles, NiO is one of the technologically versatile and important semiconducting materials. It has been extensively investigated because of its myriad applications in catalysts, gas sensors, Li-ion battery materials, electrochromic coatings, active optical fibers, fuel cell electrodes, and so on. The effect of laser ablation at various laser energy densities was investigated. At low energy densities, the produced nanoparticles were of irregular morphology with an average size of 2.4 nm. At higher laser energy densities, the produced nanoparticles were spherical, with a polycrystalline structure and their average size was around 10 nm. More detailed investigations on effects of laser wavelength and energy density as well as the particle size effect on the catalytic activity of synthesized NiO nanoparticles will be investigated in future works.

  12. Laser-solid interaction and dynamics of the laser-ablated materials

    International Nuclear Information System (INIS)

    Chen, K.R.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-01-01

    Rapid transformations through the liquid and vapor phases induced by laser-solid interactions are described by the authors' thermal model with the Clausius-Clapeyron equation to determine the vaporization temperature under different surface pressure condition. Hydrodynamic behavior of the vapor during and after ablation is described by gas dynamic equations. These two models are coupled. Modeling results show that lower background pressure results lower laser energy density threshold for vaporization. The ablation rate and the amount of materials removed are proportional to the laser energy density above its threshold. The authors also demonstrate a dynamic source effect that accelerates the unsteady expansion of laser-ablated material in the direction perpendicular to the solid. A dynamic partial ionization effect is studied as well. A self-similar theory shows that the maximum expansion velocity is proportional to c s α, where 1 - α is the slope of the velocity profile. Numerical hydrodynamic modeling is in good agreement with the theory. With these effects, α is reduced. Therefore, the expansion front velocity is significantly higher than that from conventional models. The results are consistent with experiments. They further study how the plume propagates in high background gas condition. Under appropriate conditions, the plume is slowed down, separates with the background, is backward moving, and hits the solid surface. Then, it splits into two parts when it rebounds from the surface. The results from the modeling will be compared with experimental observations where possible

  13. Upconversion Properties of the Er-Doped Y2O3, Bi2O3 and Sb2O3 Nanoparticles Fabricated by Pulsed Laser Ablation in Liquid Media

    International Nuclear Information System (INIS)

    Zamiri Reza; Bahari-Poor Hamid-Reza; Zakaria Azmi; Jorfi Raheleh; Zamiri Golnoush; Rebelo Avito; Omar Akrajas Ali

    2013-01-01

    Er-doped Y 2 O 3 , Bi 2 O 3 and Sb 2 O 3 nanoparticles are synthesized using pulsed laser ablation in a liquid. Ceramic targets of Y 2 O 3 :Er 3+ , Bi 2 O 3 :Er 3+ and Sb 2 O 3 :Er 3+ for ablation process are prepared by standard solid-state reaction technique and ablation is carried out in 5-ml distilled water using nanosecond Q-switched Nd:YAG laser. The morphology and size of the fabricated nanoparticles are evaluated by transmission electron microscopy and the luminescence emission properties of the prepared samples are investigated under different excitation wavelengths

  14. Laser ablation of silicate glasses doped with transuranic actinides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1998-01-01

    Direct sampling laser ablation plasma mass spectrometry (DS-LAMS) was applied to silica glasses doped with 237 Np, 242 Pu or 241 Am using a unique instrument recently installed into a transuranic glovebox. The primary goal was to assess the utility of mass spectrometry of directly ablated ions for facile evaluation of actinide (An) constituents of silicate glass immobilization matrices used for encapsulation of radionuclides. The instrument and general procedures have been described elsewhere. Three high-purity silicate glasses prepared by a sol-gel process (SG) and one conventional high-temperature (HT; melting point ∼ 1,450 C) borosilicate glass were studied. These glasses comprised the following constituents, with compositions expressed in mass percentages: Np-HT ∼ 30% SiO 2 + 6% B 2 O 3 + 3% BaO + 13% Al 2 O 3 + 10% PbO + 30% La 2 O 3 + 8% 237 NpO 2 ; Np-SG ∼ 70% SiO 2 + 30% 237 NpO 2 ; Pu-SG ∼ 70% SiO 2 + 30% 242 PuO 2 ; Am-SG ∼ 85% SiO 2 + 15% 241 AmO 2

  15. Plume dynamics in TiC laser ablation

    International Nuclear Information System (INIS)

    D'Alessio, L.; Galasso, A.; Santagata, A.; Teghil, R.; Villani, A.R.; Villani, P.; Zaccagnino, M.

    2003-01-01

    In this work, the analysis of the gaseous phase, produced by pulsed laser ablation of a TiC target and performed by emission spectroscopy and intensified charge coupled device (ICCD) imaging is reported. In the case of laser fluence higher than 3 J/cm 2 , the front of the emitting plume is identified with the presence of Ti 2+ ions, while the presence of a double maximum is due to the neutral and ionized titanium particles traveling with different velocities. At a laser fluence lower than 3 J/cm 2 , the front is marked by C + emission and only one maximum is present. The results, compared with those obtained for other carbides of group 4, evidence that only in the plume produced from TiC targets there is the presence of a large amount of ions with high kinetic energy. In particular, the highly energetic M 2+ ions (M=Ti, Zr, Hf) are present only in the TiC plume. The different energy and concentration of ions in the different carbide plumes confirm the importance of the ionized part of the gaseous phase in the film growth mechanism. In fact only in the TiC films, we find a layered structure in contrast with the columnar structure found in the other carbides of the same group

  16. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.

    Science.gov (United States)

    Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook

    2015-01-01

    Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391  mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.

  17. The effect of laser ablation parameters on optical limiting properties of silver nanoparticles

    Science.gov (United States)

    Gursoy, Irmak; Yaglioglu, Halime Gul

    2017-09-01

    This paper presents the effect of laser ablation parameters on optical limiting properties of silver nanoparticles. The current applications of lasers such as range finding, guidance, detection, illumination and designation have increased the potential of damaging optical imaging systems or eyes temporary or permanently. The applications of lasers introduce risks for sensors or eyes, when laser power is higher than damage threshold of the detection system. There are some ways to protect these systems such as neutral density (nd) filters, shutters, etc. However, these limiters reduce the total amount of light that gets into the system. Also, response time of these limiters may not be fast enough to prevent damage and cause precipitation in performance due to deprivation of transmission or contrast. Therefore, optical limiting filters are needed that is transparent for low laser intensities and limit or block the high laser intensities. Metal nanoparticles are good candidates for such optical limiting filters for ns pulsed lasers or CW lasers due to their high damage thresholds. In this study we investigated the optical limiting performances of silver nanoparticles produced by laser ablation technique. A high purity silver target immersed in pure water was ablated with a Nd:YAG nanosecond laser at 532 nm. The effect of altering laser power and ablation time on laser ablation efficiency of nanoparticles was investigated experimentally and optimum values were specified. Open aperture Zscan experiment was used to investigate the effect of laser ablation parameters on the optical limiting performances of silver nanoparticles in pure water. It was found that longer ablation time decreases the optical limiting threshold. These results are useful for silver nanoparticles solutions to obtain high performance optical limiters.

  18. Ablation of CdTe with 100 μs Nd:YAG laser pulses: dependence on target preparation method

    International Nuclear Information System (INIS)

    Rzeszutek, J.; Savchuk, V.; Oszwaldowski, M.

    2008-01-01

    The results of experimental studies of the ablation of CdTe with a pulsed Nd:YAG laser (wavelength 1064 nm) performed with 100 μs pulses and repetition time of 35 Hz are presented for the pulse energy range from 0.13 to 0.25 J. The main goal is to elucidate the dependence of the ablation process on the target preparation method. The investigation of the vapour stream intensity and chemical composition and their evolution with time are performed with a quadrupole mass spectrometer synchronized with the laser pulses. These studies are performed for three kinds of targets: a target made of CdTe bulk crystal (BC target), a target made of CdTe fine powder pressed under the pressure of 700 atm (PP target), and a target made of loose CdTe powder (N-PP target). The applicability of these targets for obtaining high quality CdTe thin films is determined. The best chemical composition of the vapour stream can be obtained with the BC target. A major drawback of this target is the energetic threshold for ablation with Nd:YAG laser and resulting delay in the ablation process above the threshold. The advantage of powder targets over BC target is the lack of any ablation threshold or delay. Weaker angular dependence of the particle emission (associated with the surface roughness), if confirmed in further experiments, can be the most important advantage of PP and N-PP targets. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Comparison of the Effectiveness of Ablative and Non-Ablative Fractional Laser Treatments for Early Stage Thyroidectomy Scars

    Directory of Open Access Journals (Sweden)

    Jin-Uk Jang

    2016-11-01

    Full Text Available BackgroundOpen thyroidectomy is conventionally performed at the anterior side of neck, which is a body part with a comparatively great degree of open exposure; due to this, postoperative scarring may cause distress in patients. We aimed to compare the effects of ablative and nonablative fractional laser treatments on thyroidectomy scars. We examined medical records in a retrospective manner and analyzed scars based on their digital images by using the modified Manchester Scar Scale (mMSS.MethodsBetween February 2012 and May 2013, 55 patients with thyroidectomy scars were treated with ablative (34 patients or nonablative (21 patients fractional laser. Each patient underwent 4 laser treatment sessions in 3–4 week intervals, 1–2 months postoperatively. Scar improvement was assessed using patient images and the mMSS scale.ResultsThe mean decrease in scar score was 3.91 and 3.47 in the ablative and nonablative groups, respectively; the reduction between 2 groups did not exhibit any significant difference (P=0.16. We used the scale once again to individually evaluate scar attributes. The nonablative group accounted for a considerably higher color score value (P=0.03; the ablative group accounted for a considerably higher contour score value (P<0.01. Patient satisfaction was high and no complications occurred.ConclusionsBoth types of fractional laser treatments can be used successfully for thyroidectomy scar treatment with minimal complications; however, results indicate that higher effectiveness may be obtained from the use of ablative and nonablative lasers for hypertrophic scars and early erythematous scars, respectively. Therefore, the appropriate laser for scar treatment should be selected according to its specific characteristics.

  20. Study on the lithium compound clusters using laser ablation

    International Nuclear Information System (INIS)

    Yokoyama, Keiichi

    2001-01-01

    Lithium-rich nonstoichiometric binary clusters including hyperlithiated molecules were found to be produced by a nanosecond laser ablation of lithium metal or compound target. Structural information on Li 3 O was obtained for the first time from experiments by measuring and analyzing photoionization efficiency curves of mass-selected ions. For example, the structure of Li 3 O was concluded to have both D 3h and C 2v symmetry. In other words, the vibrational wavefunction even at the ground state spreads over the C 2v and D 3h minima, which has been predicted as the global minimum in the latest theoretical calculations. Also, this is the first experimental evidence for electronomers'. (author)

  1. A laser ablation ion source for the FRS ion catcher

    Energy Technology Data Exchange (ETDEWEB)

    Rink, Ann-Kathrin; Ebert, Jens; Petrick, Martin; Reiter, Pascal [Justus Liebig Universitaet Giessen (Germany); Dickel, Timo; Geissel, Hans; Plass, Wolfgang; Scheidenberger, Christoph [Justus Liebig Universitaet Giessen (Germany); GSI, Darmstadt (Germany); Purushothamen, Sivaji [GSI, Darmstadt (Germany)

    2013-07-01

    The FRS Ion Catcher was developed to serve as test bench for the low energy branch of the Super FRS to slow down exotic nuclei and prepare them for further measurements/ experiments. It consists of a cryogenic stopping cell to thermalise the ions, a diagnostic unit for stopping cell characterisation and various radiofrequency quadrupole structures to guide the ions to the Multiple-Reflection Time-of-Flight Mass Spectrometer for mass measurements, α spectroscopy and isobar separation. To characterise the extraction times of the stopping cell, which is one of the main performance parameters of such a cell, a laser ablation ion source has been develped and tested. This ion source provides a sharply defined starting point of the ions for the extraction time measurement. In the future this source will provide reference ions to calibrate the mass spectrometer for accurate mass measurements.

  2. Stress assisted selective ablation of ITO thin film by picosecond laser

    Science.gov (United States)

    Farid, Nazar; Chan, Helios; Milne, David; Brunton, Adam; M. O'Connor, Gerard

    2018-01-01

    Fast selective pattering with high precession on 175 nm ITO thin film with IR ps lasers is investigated. Ablation parameters are optimized with detailed studies on the scribed depth, topography, and particle generation using AFM and SEM. A comparison of 10 and 150 ps laser revealed that the shorter pulse (10 ps) laser is more appropriate in selective and partial ablation; up to 20 nm resolution for controlled depth with multipulses having energy below the damage threshold is demonstrated. The experimental results are interpreted to involve stress assisted ablation mechanism for the 10 ps laser while thermal ablation along with intense melting occurs for 150 ps laser. The transition between these regimes is estimated to occur at approximately 30 ps.

  3. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  4. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Science.gov (United States)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  5. Signal intensity enhancement of laser ablated volume holograms

    Science.gov (United States)

    Versnel, J. M.; Williams, C.; Davidson, C. A. B.; Wilkinson, T. D.; Lowe, C. R.

    2017-11-01

    Conventional volume holographic gratings (VHGs) fabricated in photosensitive emulsions such as gelatin containing silver salts enable the facile visualization of the holographic image in ambient lighting. However, for the fabrication of holographic sensors, which require more defined and chemically-functionalised polymer matrices, laser ablation has been introduced to create the VHGs and thereby broaden their applications, although the replay signal can be challenging to detect in ambient lighting. When traditional photochemical bleaching solutions used to reduce light scattering and modulate refractive index within the VHG are applied to laser ablated volume holographic gratings, these procedures decrease the holographic peak intensity. This is postulated to occur because both light and dark fringes contain a proportion of metal particles, which upon solubilisation are converted immediately to silver iodide, yielding no net refractive index modulation. This research advances a hypothesis that the reduced intensity of holographic replay signals is linked to a gradient of different sized metal particles within the emulsion, which reduces the holographic signal and may explain why traditional bleaching processes result in a reduction in intensity. In this report, a novel experimental protocol is provided, along with simulations based on an effective medium periodic 1D stack, that offers a solution to increase peak signal intensity of holographic sensors by greater than 200%. Nitric acid is used to etch the silver nanoparticles within the polymer matrix and is thought to remove the smaller particles to generate more defined metal fringes containing a soluble metal salt. Once the grating efficiency has been increased, this salt can be converted to a silver halide, to modulate the refractive index and increase the intensity of the holographic signal. This new protocol has been tested in a range of polymer chemistries; those containing functional groups that help to

  6. Laser ablation: Laser parameters: Frequency, pulse length, power, and beam charter play significant roles with regard to sampling complex samples for ICP/MS analysis

    International Nuclear Information System (INIS)

    Smith, M.R.; Alexander, M.L.; Hartman, J.S.; Koppenaal, D.W.

    1996-01-01

    Inductively coupled plasma mass spectrometry is used to investigate the influence of laser parameters with regard to sampling complex matrices ranging from relatively homogenous glasses to multi-phase sludge/slurry materials including radioactive Hanford tank waste. The resulting plume composition caused by the pulsed laser is evaluated as a function of wavelength, pulse energy, pulse length, focus, and beam power profiles. The author's studies indicate that these parameters play varying and often synergistic roles regarding quantitative results. (In a companion paper, particle transport and size distribution studies are presented.) The work described here will illustrate other laser parameters such as focusing and consequently power density and beam power profiles which are shown to influence precision and accuracy. Representative sampling by the LA approach is largely dependent on the sample's optical properties as well as laser parameters. Experimental results indicate that optimal laser parameters; short wavelength (UV), relatively low power (300 mJ), low-to-sub ns pulse lengths, and laser beams with reasonable power distributions (i.e., Gaussian or top-hat beam profiles) provide superior precision and accuracy. Remote LA-ICP/MS analyses of radioactive sludges are used to illustrate these optimal conditions laser ablation sampling

  7. Atomistic simulations of ultra-short pulse laser ablation of aluminum: validity of the Lambert-Beer law

    Science.gov (United States)

    Eisfeld, Eugen; Roth, Johannes

    2018-05-01

    Based on hybrid molecular dynamics/two-temperature simulations, we study the validity of the application of Lambert-Beer's law, which is conveniently used in various modeling approaches of ultra-short pulse laser ablation of metals. The method is compared to a more rigorous treatment, which involves solving the Helmholtz wave equation for different pulse durations ranging from 100 fs to 5 ps and a wavelength of 800 nm. Our simulations show a growing agreement with increasing pulse durations, and we provide appropriate optical parameters for all investigated pulse durations.

  8. Laser spectroscopy of the products of photoevaporation with a short-wavelength (λ = 193 nm) excimer laser

    International Nuclear Information System (INIS)

    Gochelashvili, K S; Zemskov, M E; Evdokimova, O N; Mikhkel'soo, V T; Prokhorov, A M

    1999-01-01

    An excimer laser spectrometer was designed and constructed. It consists of a high-vacuum interaction chamber, a short-wavelength (λ = 193 nm) excimer ArF laser used for evaporation, a probe dye laser pumped by an XeCl excimer laser, and a system for recording a laser-induced fluorescence signal. This spectrometer was used to investigate nonthermal mechanisms of photoevaporation of a number of wide-gap dielectrics. (laser applications and other topics in quantum electronics)

  9. Percutaneous laser ablation of hepatocellular carcinoma in patients with liver cirrhosis awaiting liver transplantation

    International Nuclear Information System (INIS)

    Pompili, Maurizio; Pacella, Claudio Maurizio; Francica, Giampiero; Angelico, Mario; Tisone, Giuseppe; Craboledda, Paolo; Nicolardi, Erica; Rapaccini, Gian Ludovico; Gasbarrini, Giovanni

    2010-01-01

    Objective: The aim of this study was to determine the effectiveness and safety of percutaneous laser ablation for the treatment of cirrhotic patients with hepatocellular carcinoma awaiting liver transplantation. Materials and methods: The data of 9 male cirrhotic patients (mean age 50 years, range 45-60 years) with 12 biopsy proven nodules of hepatocellular carcinoma (mean diameter 2.0 cm, range 1.0-3.0 cm) treated by laser ablation before liver transplantation between June 2000 and January 2006 were retrospectively reviewed. Laser ablation was carried out by inserting 300 nm optical fibers through 21-Gauge needles (from two to four) positioned under ultrasound guidance into the target lesions. A continuous wave Neodymium:Yttrium Aluminium Garnet laser was used. Transarterial chemoembolization prior to liver transplantation was performed in two incompletely ablated tumors. Results: No procedure-related major complications were recorded. During the waiting time to liver transplantation local tumor progression after ablation occurred in 3 nodules (25%). At histological examination of the explanted livers complete necrosis was found in 8 nodules (66.7%, all treated exclusively with laser ablation), partial necrosis >50% in 3 nodules (25%), and partial necrosis <50% in 1 nodule. Conclusion: In patients with cirrhotic livers awaiting liver transplantation, percutaneous laser ablation is safe and effective for the management of small hepatocellular carcinoma.

  10. Developing laser ablation in an electron cyclotron resonance ion source for actinide detection with AMS

    Energy Technology Data Exchange (ETDEWEB)

    Bauder, W. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Pardo, R.C.; Kondev, F.G.; Kondrashev, S.; Nair, C.; Nusair, O. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Palchan, T. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel); Scott, R.; Seweryniak, D.; Vondrasek, R. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Collon, P. [University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Paul, M. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel)

    2015-10-15

    A laser ablation material injection system has been developed at the ATLAS electron cyclotron resonance (ECR) ion source for use in accelerator mass spectrometry experiments. Beam production with laser ablation initially suffered from instabilities due to fluctuations in laser energy and cratering on the sample surface by the laser. However, these instabilities were rectified by applying feedback correction for the laser energy and rastering the laser across the sample surface. An initial experiment successfully produced and accelerated low intensity actinide beams with up to 1000 counts per second. With continued development, laser ablation shows promise as an alternative material injection scheme for ECR ion sources and may help substantially reduce cross talk in the source.

  11. Improved model for the angular dependence of excimer laser ablation rates in polymer materials

    Science.gov (United States)

    Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.

    2009-10-01

    Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.

  12. Developing the model of laser ablation by considering the interplay between emission and expansion of aluminum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, F.; Tavassoli, S. H. [Laser and Plasma Research Institute, ShahidBeheshti University, 19396 4716, G. C., Evin, Tehran (Iran, Islamic Republic of)

    2013-01-15

    In the present study, the ablation behavior of aluminum target and its plasma radiation in noble ambient gases by a laser pulse with wavelength of 266 nm and pulse duration of 10 ns are numerically studied. A thermal model of laser ablation considering heat conduction, Euler equations, Saha-Eggert equations, Knudsen layer, mass and energy balance relations and optical shielding effects are used for calculation of plasma parameters. Effects of excitation energy on plasma expansion and its emissivity are investigated. Time and spatial-resolved plasma emission including bremsstrahlung, recombination and spectral emission at early delay times after laser irradiation is obtained. Effects of two ambient gases (He and Ar) as well as different gas pressures of 100, 300, 500, and 760 Torr on plasma expansion and its spectrum are studied. Results illustrate that at initial delay times, especially at high noble gas pressures, ionic lines have the maximum intensities, while at later times neutral lines dominate. When the pressure of ambient gas increases, a confinement of the plasma plume is predicted and the intensity of neutral lines decreases. Continuous emission increases with wavelength in both ambient gases. Spatially resolved analysis shows that an intense continuous emission is predicted next to the sample surface decreasing with distance from the latter.

  13. Femtosecond laser ablation of transparent microphotonic devices and computer-generated holograms.

    Science.gov (United States)

    Alqurashi, Tawfiq; Montelongo, Yunuen; Penchev, Pavel; Yetisen, Ali K; Dimov, Stefan; Butt, Haider

    2017-09-21

    Femtosecond laser ablation allows direct patterning of engineering materials in industrial settings without requiring multistage processes such as photolithography or electron beam lithography. However, femtosecond lasers have not been widely used to construct volumetric microphotonic devices and holograms with high reliability and cost efficiency. Here, a direct femtosecond laser writing process is developed to rapidly produce transmission 1D/2D gratings, Fresnel Zone Plate lenses, and computer-generated holograms. The optical properties including light transmission, angle-dependent resolution, and light polarization effects for the microphotonic devices have been characterized. Varying the depth of the microgratings from 400 nm to 1.5 μm allowed the control over their transmission intensity profile. The optical properties of the 1D/2D gratings were validated through a geometrical theory of diffraction model involving 2D phase modulation. The produced Fresnel lenses had transmission efficiency of ∼60% at normal incidence and they preserved the polarization of incident light. The computer-generated holograms had an average transmission efficiency of 35% over the visible spectrum. These microphotonic devices had wettability resistance of contact angle ranging from 44° to 125°. These devices can be used in a variety of applications including wavelength-selective filters, dynamic displays, fiber optics, and biomedical devices.

  14. Effect of norbornene content on laser ablation of cyclic olefin copolymers

    International Nuclear Information System (INIS)

    Leech, Patrick W.

    2010-01-01

    The ablation of cyclic olefin copolymers (COC) by 5 ns/248 nm laser has been examined as a function of norbornene content (61-82 wt.%). The dependence of ablation rate on laser fluence, repetition rate and pulse number has been determined over the range of composition of the copolymers. The ablation rate has increased logarithmically with laser fluence in accordance with the Beer-Lambert relationship. An increase in norbornene content has resulted in an increase in ablation rate and a decrease in threshold fluence. These trends have been attributed to a higher intramolecular rigidity of the chain structure in COC with increasing norbornene content. The morphology of the ablated surfaces was characterised by the formation of voids at high norbornene contents.

  15. UV and IR laser ablation for inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Smith, M.R.; Koppenaal, D.W.; Farmer, O.T.

    1993-06-01

    Laser ablation particle plume compositions are characterized using inductively coupled plasma mass spectrometry (ICP/MS). This study evaluates the mass response characteristics peculiar to ICP/MS detection as a function of laser fluence and frequency. Evaluation of the ICP/MS mass response allows deductions to be made concerning how representative the laser ablation produced particle plume composition is relative to the targeted sample. Using a black glass standard, elemental fractionation was observed, primarily for alkalis and other volatile elements. The extent of elemental fractionation between the target sample and the sampled plume varied significantly as a function of laser fluences and IR and UV laser frequency

  16. Controlling the emission wavelength in group III-V semiconductor laser diodes

    KAUST Repository

    Ooi, Boon S.; Majid, Mohammed Abdul; Afandy, Rami; Aljabr, Ahmad

    2016-01-01

    Methods are provided for modifying the emission wavelength of a semiconductor quantum well laser diode, e.g. by blue shifting the emission wavelength. The methods can be applied to a variety of semiconductor quantum well laser diodes, e.g. group III

  17. Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation.

    Science.gov (United States)

    Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2016-01-28

    During the last few years, laser-induced breakdown spectroscopy (LIBS) has evolved significantly in the molecular sensing area through the optical monitoring of emissions from organic plasmas. Large efforts have been made to study the formation pathways of diatomic radicals as well as their connections with the bonding framework of molecular solids. Together with the structural and chemical-physical properties of molecules, laser ablation parameters seem to be closely tied to the observed spectral signatures. This research focuses on evaluating the impact of laser pulse duration on the production of diatomic species that populate plasmas of organic materials. Differences in relative intensities of spectral signatures from the plasmas of several organic molecules induced in femtosecond (fs) and nanosecond (ns) ablation regimes have been studied. Beyond the abundance and origin of diatomic radicals that seed the plasma, findings reveal the crucial role of the ablation regime in the breakage pattern of the molecule. The laser pulse duration dictates the fragments and atoms resulting from the vaporized molecules, promoting some formation routes at the expense of other paths. The larger amount of fragments formed by fs pulses advocates a direct release of native bonds and a subsequent seeding of the plasma with diatomic species. In contrast, in the ns ablation regime, the atomic recombinations and single displacement processes dominate the contribution to diatomic radicals, as long as atomization of molecules prevails over their progressive decomposition. Consequently, fs-LIBS better reflects correlations between strengths of emissions from diatomic species and molecular structure as compared to ns-LIBS. These new results entail a further step towards the specificity in the analysis of molecular solids by fs-LIBS.

  18. MoS2-wrapped microfiber-based multi-wavelength soliton fiber laser

    Science.gov (United States)

    Lu, Feifei

    2017-11-01

    The single-, dual- and triple-wavelength passively mode-locked erbium-doped fiber lasers are demonstrated with MoS2 and polarization-dependent isolator (PD-ISO). The saturable absorber is fabricated by wrapping an MoS2 around a microfiber. The intracavity PD-ISO acts as a wavelength-tunable filter with a polarization controller (PC) by adjusting the linear birefringence. Single-wavelength mode-locked fiber laser can self-start with suitable pump power. With appropriate PC state, dual- and triple-wavelength operations can be observed when gains at different wavelengths reach a balance. It is noteworthy that dual-wavelength pulses exhibiting peak and dip sidebands, respectively, are demonstrated in the experiment. The proposed simple and multi-wavelength all-fiber conventional soliton lasers could possess potential applications in numerous fields, such as sensors, THz generations and optical communications.

  19. Ablative fractional laser alters biodistribution of ingenol mebutate in the skin

    DEFF Research Database (Denmark)

    Erlendsson, A M; Taudorf, E H; Eriksson, A. H.

    2015-01-01

    Topically applied ingenol mebutate (IngMeb) is approved for field-treatment of actinic keratosis and is currently being investigated for treatment of non-melanoma skin cancer (NMSC). Ablative fractional lasers (AFXLs) generate microscopic ablation zones (MAZs) in the skin, which may help induce...

  20. Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes

    International Nuclear Information System (INIS)

    Sinko, John E.; Phipps, Claude R.

    2009-01-01

    An improved model for CO 2 laser ablation impulse in polyoxymethylene and similar polymers is presented that describes the transition effects from the onset of vaporization to the plasma regime in a continuous fashion. Several predictions are made for ablation behavior.

  1. Plasma luminescence feedback control system for precise ultrashort pulse laser tissue ablation

    Science.gov (United States)

    Kim, Beop-Min; Feit, Michael D.; Rubenchik, Alexander M.; Gold, David M.; Darrow, Christopher B.; Marion, John E., II; Da Silva, Luiz B.

    1998-05-01

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue without damaging nearby soft tissue using an ultrashort pulse laser. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so bone tissue is selectively ablated while preserving the spinal cord.

  2. High-Resolution Spectroscopy of Laser Ablation Plumes Using Laser-Induced Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2017-02-06

    We used a CW laser as a narrow-band (~50kHz) tunable LIF excitation source to probe absorption from selected atomic transitions (Al, U etc. ) in a ns laser ablation plume. A comparison of fluorescence signal with respect to emission spectroscopy show significant increase in the magnitude and persistence from selected Al and U transitions in a LIBS plume. The high spectral resolution provided by the LIF measurement allows peaks to be easily separated even if they overlap in the emission spectra.

  3. Time resolved optical emission spectroscopy of cross-beam pulsed laser ablation on graphite targets

    International Nuclear Information System (INIS)

    Sangines, R.; Sanchez Ake, C.; Sobral, H.; Villagran-Muniz, M.

    2007-01-01

    Cross-beam pulsed laser ablation with two delayed lasers is performed on two perpendicular graphite targets. The time delay between lasers is varied by up to 5 μs, and physical changes on the second plasma, due to the interaction with the first generated one, are determined by time resolved optical emission spectroscopy

  4. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    Science.gov (United States)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  5. Scaling of laser-plasma interactions with laser wavelength and plasma size

    International Nuclear Information System (INIS)

    Max, C.E.; Campbell, E.M.; Mead, W.C.; Kruer, W.L.; Phillion, D.W.; Turner, R.E.; Lasinski, B.F.; Estabrook, K.G.

    1983-01-01

    Plasma size is an important parameter in wavelength-scaling experiments because it determines both the threshold and potential gain for a variety of laser-plasma instabilities. Most experiments to date have of necessity produced relatively small plasmas, due to laser energy and pulse-length limitations. We have discussed in detail three recent Livermore experiments which had large enough plasmas that some instability thresholds were exceeded or approached. Our evidence for Raman scatter, filamentation, and the two-plasmon decay instability needs to be confirmed in experiments which measure several instability signatures simultaneously, and which produce more quantitative information about the local density and temperature profiles than we have today

  6. Scaling of laser-plasma interactions with laser wavelength and plasma size

    Energy Technology Data Exchange (ETDEWEB)

    Max, C.E.; Campbell, E.M.; Mead, W.C.; Kruer, W.L.; Phillion, D.W.; Turner, R.E.; Lasinski, B.F.; Estabrook, K.G.

    1983-01-25

    Plasma size is an important parameter in wavelength-scaling experiments because it determines both the threshold and potential gain for a variety of laser-plasma instabilities. Most experiments to date have of necessity produced relatively small plasmas, due to laser energy and pulse-length limitations. We have discussed in detail three recent Livermore experiments which had large enough plasmas that some instability thresholds were exceeded or approached. Our evidence for Raman scatter, filamentation, and the two-plasmon decay instability needs to be confirmed in experiments which measure several instability signatures simultaneously, and which produce more quantitative information about the local density and temperature profiles than we have today.

  7. Femtosecond laser ablation profile near an interface: Analysis based on the correlation with superficial properties of individual materials

    Energy Technology Data Exchange (ETDEWEB)

    Nicolodelli, Gustavo, E-mail: nicolodelli@ursa.ifsc.usp.br [Instituto de Fisica de Sao Carlos, University of Sao Paulo, Grupo de Optica, Av. Trabalhador Sancarlense 400, P.O. Box 369, CEP 13560-970, Sao Carlos, SP (Brazil); Kurachi, Cristina; Bagnato, Vanderlei Salvador [Instituto de Fisica de Sao Carlos, University of Sao Paulo, Grupo de Optica, Av. Trabalhador Sancarlense 400, P.O. Box 369, CEP 13560-970, Sao Carlos, SP (Brazil)

    2011-01-15

    Femtosecond laser ablation of materials is turning to be an important tool for micromachining as well as for selective removal of biological tissues. In a great number of applications, laser ablation has to process through interfaces separating media of different properties. The investigation of the ablation behavior within materials and passing through interfaces is the main aim of this study. Especially, the analysis of the discontinuity in the ablation profile close to interfaces between distinct materials can reveal some of the phenomena involved in the formation of an ablated microcavity geometry. We have used a method that correlates the ablation cross sectional area with the local laser intensity. The effective intensity ablation properties were obtained from surface ablation data of distinct materials. The application of this method allows the prediction of the occurrence of a size discontinuity in the ablation geometry at the interface of distinct media, a fact which becomes important when planning applications in different media.

  8. Laser ablation under different electron heat conduction models in inertial confinement fusion

    Science.gov (United States)

    Li, Shuanggui; Ren, Guoli; Huo, Wen Yi

    2018-06-01

    In this paper, we study the influence of three different electron heat conduction models on the laser ablation of gold plane target. Different from previous studies, we concentrate on the plasma conditions, the conversion efficiency from laser into soft x rays and the scaling relation of mass ablation, which are relevant to hohlraum physics study in indirect drive inertial confinement fusion. We find that the simulated electron temperature in corona region is sensitive to the electron heat conduction models. For different electron heat conduction models, there are obvious differences in magnitude and spatial profile of electron temperature. For the flux limit model, the calculated conversion efficiency is sensitive to flux limiters. In the laser ablation of gold, most of the laser energies are converted into x rays. So the scaling relation of mass ablation rate is quite different from that of low Z materials.

  9. Spatial distribution of carbon species in laser ablation of graphite target

    International Nuclear Information System (INIS)

    Ikegami, T.; Ishibashi, S.; Yamagata, Y.; Ebihara, K.; Thareja, R.K.; Narayan, J.

    2001-01-01

    We report on the temporal evolution and spatial distribution of C 2 and C 3 molecules produced by KrF laser ablation of a graphite target using laser induced fluorescence imaging and optical emission spectroscopy. Spatial density profiles of C 2 were measured using two-dimensional fluorescence in various pressures of different ambient (vacuum, nitrogen, oxygen, hydrogen, helium, and argon) gases at various ablation laser fluences and ablation area. A large yield of C 2 is observed in the central part of the plume and near the target surface and its density and distribution was affected by the laser fluence and ambient gas. Fluorescent C 3 was studied in Ar gas and the yield of C 3 is enhanced at higher gas pressure and longer delay times after ablation

  10. Synthesis and characterization of a novel laser ablation sensitive triazene incorporated epoxy resin

    KAUST Repository

    Patole, Archana S.; Hyeon, Jeong min; Hyun, Jung Mn; Kim, Tae Ho; Patole, Shashikant P.; Hong, Dae Jo; Lee, Chang Bo; Choi, Cheol Ho

    2014-01-01

    . Thermogravimetrical investigations indicate the loss of nitrogen being the initial thermal decomposition step and exhibit sufficient stabilities for the requirements for laser ablation application. Fourier transform infra-red, nuclear magnetic resonance, and gas

  11. Reactive Laser-induced Ablation as Approach to Titanium Oxycarbide Films

    Czech Academy of Sciences Publication Activity Database

    Jandová, Věra; Fajgar, Radek; Dytrych, Pavel; Koštejn, Martin; Dřínek, Vladislav; Kupčík, Jaroslav

    2015-01-01

    Roč. 590, SEP 1 (2015), s. 270-275 ISSN 0040-6090 Institutional support: RVO:67985858 Keywords : IR laser * reactive ablation * titanium ethoxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.761, year: 2015

  12. X-ray emission, ablation pressure, and preheating for foils irradiated at 0. 26. mu. m wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Pepin, H.; Fabbro, R.; Faral, B.; Amiranoff, F.; Virmont, J.; Cottet, F.; Romain, J.P.

    1985-11-01

    The x-ray emission, ablation pressure, and preheating for foils irradiated with a 0.26 ..mu..m laser at intensities approx.10/sup 15/ W cm/sup -2/ are studied. The foils are Al with various thicknesses, coated or uncoated with CH or Au. The x-ray emission and conversion efficiency are obtained with a multichannel x-ray diode spectrometer, the ablation pressures are deduced from shock transit times, and the rear temperatures are inferred from x-ray pyrometry. For thin foils (<<12 ..mu..m), the rear temperatures can be predicted reasonably well with the use of the front x-ray spectra. For thick foils shock preheating is dominant.

  13. X-ray emission, ablation pressure, and preheating for foils irradiated at 0.26 μm wavelength

    International Nuclear Information System (INIS)

    Pepin, H.; Fabbro, R.; Faral, B.; Amiranoff, F.; Virmont, J.; Cottet, F.; Romain, J.P.

    1985-01-01

    The x-ray emission, ablation pressure, and preheating for foils irradiated with a 0.26 μm laser at intensities approx.10 15 W cm -2 are studied. The foils are Al with various thicknesses, coated or uncoated with CH or Au. The x-ray emission and conversion efficiency are obtained with a multichannel x-ray diode spectrometer, the ablation pressures are deduced from shock transit times, and the rear temperatures are inferred from x-ray pyrometry. For thin foils (<<12 μm), the rear temperatures can be predicted reasonably well with the use of the front x-ray spectra. For thick foils shock preheating is dominant

  14. Synthesis and properties of palladium nanoparticles by pulsed laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Mendivil, M.I. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Krishnan, B. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); CIIDIT – Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); Castillo, G.A. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); CIIDIT – Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico)

    2015-09-01

    Highlights: • Pd nanoparticle colloids were synthesized using PLAL technique. • Characterized by TEM, XPS and UV–vis spectroscopy. • Average size distribution was affected by different liquid media. • Laser post-irradiation was effective to regain optical properties. • Ultrasonic treatment helped to regain the optical properties. - Abstract: Pulsed laser ablation in liquid (PLAL) as a prominent technique for nanofabrication was employed to synthesize palladium (Pd) nanoparticles in different liquids. The synthesis of Pd nanoparticles was developed using a pulsed Nd:YAG laser with its fundamental wavelength output of 1064 nm (10 Hz, 10 ns) in a range of energy fluence (40.5–8 J/cm{sup 2}). Pure Pd metal target was immersed in distilled water, methanol–water mixture (1:1) and sodium dodecyl sulfate (SDS) to study the effect of the nature of the liquid media. Laser post-irradiation and ultrasonic treatments were applied to the precipitated colloidal solution to investigate their effects on the re-dispersion and stability. The mean size, size distributions, shape, elemental composition, optical properties and stability of nanoparticles synthesized by PLAL were examined by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. TEM characterizations showed smaller nanoparticles in methanol–water mixture in comparison with the other liquids. Spherical morphology was observed for Pd nanoparticles synthesized in distilled water and methanol–water mixture. In the case of SDS, spherical nanoparticles embedded on the surfactant were observed. The effect of energy fluence was different for each liquid media. Laser post-irradiation and ultrasonic agitation worked as efficient methods to re-disperse the precipitates of NPs and to recover their optical properties.

  15. Direct quantitative comparison of molecular responses in photodamaged human skin to fractionated and fully ablative carbon dioxide laser resurfacing.

    Science.gov (United States)

    Orringer, Jeffrey S; Sachs, Dana L; Shao, Yuan; Hammerberg, Craig; Cui, Yilei; Voorhees, John J; Fisher, Gary J

    2012-10-01

    Fractionated ablative laser resurfacing has become a widely used treatment modality. Its clinical results are often found to approach those of traditional fully ablative laser resurfacing. To directly compare the molecular changes that result from fractionated and fully ablative carbon dioxide (CO(2)) laser resurfacing in photodamaged human skin. Photodamaged skin of 34 adult volunteers was focally treated at distinct sites with a fully ablative CO(2) laser and a fractionated CO(2) laser. Serial skin samples were obtained at baseline and several time points after treatment. Real-time reverse transcriptase polymerase chain reaction technology and immunohistochemistry were used to quantify molecular responses to each type of laser treatment. Fully ablative and fractionated CO(2) laser resurfacing induced significant dermal remodeling and collagen induction. After a single treatment, fractionated ablative laser resurfacing resulted in collagen induction that was approximately 40% to 50% as pronounced as that induced by fully ablative laser resurfacing. The fundamental cutaneous responses that result from fully ablative and fractionated carbon dioxide laser resurfacing are similar but differ in magnitude and duration, with the fully ablative procedure inducing relatively greater changes including more pronounced collagen induction. However, the molecular data reported here provide substantial support for fractionated ablative resurfacing as an effective treatment modality for improving skin texture. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  16. Passively synchronized dual-wavelength Q-switched lasers

    DEFF Research Database (Denmark)

    Janousek, Jiri; Tidemand-Lichtenberg, Peter; Mortensen, Jesper Liltorp

    We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG.......We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG....

  17. Conductors, semiconductors and insulators irradiated with short-wavelength free-electron laser

    Czech Academy of Sciences Publication Activity Database

    Krzywinski, J.; Sobierajski, R.; Jurek, M.; Nietubyc, R.; Pelka, J. B.; Juha, Libor; Bittner, Michal; Létal, V.; Vorlíček, Vladimír; Andrejczuk, A.; Feldhaus, J.; Keitel, B.; Saldin, E.; Schneidmiller, E.A.; Treusch, R.; Yurkov, M. V.

    2007-01-01

    Roč. 101, č. 4 (2007), 043107/1-043107/4 ISSN 0021-8979 R&D Projects: GA MŠk 1P04LA235; GA MŠk LC510; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : free-electron laser * extreme ultraviolet * ablation * laser-matter interaction Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.171, year: 2007

  18. Emission characteristics of laser ablation-hollow cathode glow discharge spectral source

    Directory of Open Access Journals (Sweden)

    Karatodorov Stefan

    2014-11-01

    Full Text Available The emission characteristics of a scheme combining laser ablation as sample introduction source and hollow cathode discharge as excitation source are presented. The spatial separation of the sample material introduction by laser ablation and hollow cathode excitation is achieved by optimizing the gas pressure and the sample-cathode gap length. At these conditions the discharge current is maximized to enhance the analytical lines intensity.

  19. Particle size determination of silver nanoparticles generated by plasma laser ablation using a deconvolution method

    Czech Academy of Sciences Publication Activity Database

    Picciotto, A.; Torrisi, L.; Margarone, Daniele; Bellutti, P.

    2010-01-01

    Roč. 165, 6-10 (2010), s. 706-712 ISSN 1042-0150. [International Workshop on Pulsed Plasma Laser Ablation (PPLA)/4./. Monte Pieta, Messina, 18.06.2009-20.06.2009] Institutional research plan: CEZ:AV0Z10100522 Keywords : nanoparticles * plasma * laser ablation * surface plasmon resonance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.660, year: 2010

  20. Thin film growing by the laser ablation technique: possibilities for growing of dosimetric materials

    International Nuclear Information System (INIS)

    Rojas R, E.M.; Melo M, M.; Enriquez Z, E.; Fernandez G, M.; Haro P, E.; Hernandez P, J.L.

    2005-01-01

    In this talk we will present the basics about the laser ablation technique and how it is used for thin film growing, either as a single film or a stack of thin films, as well as some methods to characterize in real time the film thickness. Finally, we will discuss the possibilities of using laser ablation for growing thin films with applications to dosimetry. (Author)

  1. Evaluation of the cavity margins after Er:YAG laser ablation of the enamel and dentin

    Science.gov (United States)

    Dostalova, Tatjana; Krejsa, Otakar; Jelinkova, Helena; Hamal, Karel

    1994-12-01

    This study investigates the checks of cavity margin after enamel and dentin ablation. The Er:YAG laser enamel and dentin ablation can be directly connected with the danger of cracks originating in the enamel near the cavity. This study evaluates the quality of the enamel edges after Er:YAG laser preparation. The enamel and dentin of buccal surfaces were ablated by the Er:YAG laser radiation. An Erbium:YAG laser system with the energy of 200 mJ was used to generate 200 microsecond(s) long pulses of mid-infrared 2.94 micrometers light in multimode configuration. The laser was operating in a free running mode, the repetition rate being 0.5 Hz with average laser power of 100 mW. Laser radiation was focused on the tooth tissue. Water cooling was used during the procedure in order to prevent tooth tissue destruction. The time of laser preparation was 5 minutes. A cavity of class V was prepared. The teeth were immersed into 0.5% basic fuchsin and then centrifuged at 6000 rev/min for 20 minutes. The microphotographs of the margins stained with 0.5% basic fuchsin were made and then the longitudinal section of the teeth were evaluated. The micrographs of the longitudinal section were checked and measured afterwards. The effect of the investigated laser irradiation on the origin of cracks was analyzed in the scanning electron microscope. Micrographs of each tooth before and after the laser ablation were compared. Micrographs of the intact teeth after extraction present the cracks of the enamel. They depend on the pressure exerted during extraction. The influence of the laser ablation proper is it bears no signs of new cracks. The conclusions of this study demonstrate the non-invasive nature of the Er:YAG laser ablation of the hard dental tissues.

  2. Onset and evolution of laser induced periodic surface structures on indium tin oxide thin films for clean ablation using a repetitively pulsed picosecond laser at low fluence

    Science.gov (United States)

    Farid, N.; Dasgupta, P.; O’Connor, G. M.

    2018-04-01

    The onset and evolution of laser induced periodic surface structures (LIPSS) is of key importance to obtain clean ablated features on indium tin oxide (ITO) thin films at low fluences. The evolution of subwavelength periodic nanostructures on a 175 nm thick ITO film, using 10 ps laser pulses at a wavelength of 1032 nm, operating at 400 kHz, is investigated. Initially nanoblisters are observed when a single pulse is applied below the damage threshold fluence (0.45 J cm‑2) the size and distribution of nanoblisters are found to depend on fluence. Finite difference time domain (FDTD) simulations support the hypothesis that conductive nanoblisters can enhance the local intensity of the applied electromagnetic field. The LIPSS are observed to evolve from regions where the electric field enhancement has occurred; LIPSS has a perpendicular orientation relative to the laser polarization for a small number (5) pulses, the orientation of the periodic structures appears to rotate and evolve to become aligned in parallel with the laser polarization at approximately the same periodicity. These orientation effects are not observed at higher fluence—due to the absence of the nanoblister-like structures; this apparent rotation is interpreted to be due to stress-induced fragmentation of the LIPSS structure. The application of subsequent pulses leads to clean ablation. LIPSS are further modified into features of a shorter period when laser scanning is used. Results provide evidence that the formation of conductive nanoblisters leads to the enhancement of the applied electromagnetic field and thereby can be used to precisely control laser ablation on ITO thin films.

  3. Laser pulse guiding and electron acceleration in the ablative capillary discharge plasma

    International Nuclear Information System (INIS)

    Kameshima, T.; Kotaki, H.; Kando, M.; Daito, I.; Kawase, K.; Fukuda, Y.; Homma, T.; Esirkepov, T. Zh.; Chen, L. M.; Kondo, S.; Bobrova, N. A.; Sasorov, P. V.; Bulanov, S. V.

    2009-01-01

    The results of experiments are presented for the laser electron acceleration in the ablative capillary discharge plasma. The plasma channel is formed by the discharge inside the ablative capillary. The intense short laser pulse is guided over a 4 cm length. The generated relativistic electrons show both the quasimonoenergetic and quasi-Maxwellian energy spectra, depending on laser and plasma parameters. The analysis of the inner walls of the capillaries that underwent several tens of shots shows that the wall deformation and blistering resulted from the discharge and laser pulse effects.

  4. Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration

    Science.gov (United States)

    Sommer, P.; Metzkes-Ng, J.; Brack, F.-E.; Cowan, T. E.; Kraft, S. D.; Obst, L.; Rehwald, M.; Schlenvoigt, H.-P.; Schramm, U.; Zeil, K.

    2018-05-01

    For laser-driven ion acceleration from thin foils (∼10 μm–100 nm) in the target normal sheath acceleration regime, the hydro-carbon contaminant layer at the target surface generally serves as the ion source and hence determines the accelerated ion species, i.e. mainly protons, carbon and oxygen ions. The specific characteristics of the source layer—thickness and relevant lateral extent—as well as its manipulation have both been investigated since the first experiments on laser-driven ion acceleration using a variety of techniques from direct source imaging to knife-edge or mesh imaging. In this publication, we present an experimental study in which laser ablation in two fluence regimes (low: F ∼ 0.6 J cm‑2, high: F ∼ 4 J cm‑2) was applied to characterize and manipulate the hydro-carbon source layer. The high-fluence ablation in combination with a timed laser pulse for particle acceleration allowed for an estimation of the relevant source layer thickness for proton acceleration. Moreover, from these data and independently from the low-fluence regime, the lateral extent of the ion source layer became accessible.

  5. Heating effect of substrate of pulsed laser ablation deposition technique towards the orientation of carbon microstructure

    International Nuclear Information System (INIS)

    Choy, L.S.; Irmawati Ramli; Noorhana Yahya; Abdul Halim Shaari

    2009-01-01

    Full text: Carbon thin film has been successfully deposited by second harmonic Nd:YAG pulsed laser ablation deposition, PLAD. The topology and morphology of the deposited layers was studied by scanning electron microscopy (SEM) whereas emission dispersion X-ray (EDX) was used to determine the existence of elements that constitutes the microstructure. Substrate heated at 500 degree Celsius during the laser ablation showed the most homogenous lollipop microstructure as compared to mainly pillars of microstructure ablated at lower substrate temperature. It is found that this also avoid further diffusion of carbon into catalyst in forming iron carbide. (author)

  6. Molybdenum oxide nanocolloids prepared by an external field-assisted laser ablation in water

    Directory of Open Access Journals (Sweden)

    Spadaro Salvatore

    2018-01-01

    Full Text Available he synthesis of extremely stable molybdenum oxide nanocolloids by pulsed laser ablation was studied. This green technique ensures the formation of contaminant-free nanostructures and the absence of by-products. A focused picosecond pulsed laser beam was used to ablate a solid molybdenum target immersed in deionized water. Molybdenum oxide nearly spherical nanoparticles with dimensions within few nanometers (20-100 nm are synthesized when the ablation processes were carried out, in water, at room temperature and 80°C. The application of an external electric field during the ablation process induces a nanostructures reorganization, as indicated by Scanning-Transmission Electron Microscopy images analysis. The ablation products were also characterized by some spectroscopic techniques: conventional UV-vis optical absorption, atomic absorption, dynamic light scattering, micro-Raman and X-ray photoelectron spectroscopies. Finally, NIH/3T3 mouse fibroblasts were used to evaluate cell viability by the sulforhodamine B assay

  7. Formation of polymer nanoparticles by UV pulsed laser ablation of poly (bisphenol A carbonate) in liquid environment

    Science.gov (United States)

    Martínez-Tong, Daniel E.; Sanz, Mikel; Ezquerra, Tiberio A.; Nogales, Aurora; Marco, José F.; Castillejo, Marta; Rebollar, Esther

    2017-10-01

    Suspensions of poly(bisphenol A carbonate) (PBAC) nanoparticles of varying size and shape have been produced by ablation of a PBAC target in liquid media with the fourth harmonic of a Q-switched Nd:YAG laser (wavelength 266 nm, full width at half maximum 4 ns, repetition rate 10 Hz). The polymer target was placed at the bottom of a rotating glass vessel filled with around a 10 mm column of liquid. Laser ablation in water leads to spherical nanoparticles with diameters of several tens of nanometers for fluences close to 1 J/cm2. Ablation at lower fluences, around 0.1 J/cm2, results in the production of nanoparticles of smaller diameters and also of non-spherical nanoparticles. Additional irradiations at the fluence of 0.1 J/cm2 were performed in several liquid media with different properties, in terms of density, viscosity, thermal conductivity, boiling temperature, isothermal compressibility and polarity. The different size distributions observed were related to the thermal conductivity of the systems, while their viscosity seems to be responsible for the development of nanostructures with different morphologies.

  8. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    Science.gov (United States)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  9. Five Wavelength DFB Fibre Laser Source for WDM Systems

    DEFF Research Database (Denmark)

    Hübner, Jörg; Varming, Poul; Kristensen, Martin

    1997-01-01

    Singlemode UV-induced distributed feedback (DFB) fibre lasers with a linewidth of lasers is verified by a 10 Gbit/s transmission experiment. Five DFB fibre lasers are cascaded and pumped by a single...... semiconductor laser, thereby forming a multiwavelength source for WDM systems...

  10. Fractional ablative erbium YAG laser: histological characterization of relationships between laser settings and micropore dimensions.

    Science.gov (United States)

    Taudorf, Elisabeth H; Haak, Christina S; Erlendsson, Andrés M; Philipsen, Peter A; Anderson, R Rox; Paasch, Uwe; Haedersdal, Merete

    2014-04-01

    Treatment of a variety of skin disorders with ablative fractional lasers (AFXL) is driving the development of portable AFXLs. This study measures micropore dimensions produced by a small 2,940 nm AFXL using a variety of stacked pulses, and determines a model correlating laser parameters with tissue effects. Ex vivo pig skin was exposed to a miniaturized 2,940 nm AFXL, spot size 225 µm, density 5%, power levels 1.15-2.22 W, pulse durations 50-225 microseconds, pulse repetition rates 100-500 Hz, and 2, 20, or 50 stacked pulses, resulting in pulse energies of 2.3-12.8 mJ/microbeam and total energy levels of 4.6-640 mJ/microchannel. Histological endpoints were ablation depth (AD), coagulation zone (CZ) and ablation width (AW). Data were logarithmically transformed if required prior to linear regression analyses. Results for histological endpoints were combined in a mathematical model. In 138 sections from 91 biopsies, AD ranged from 16 to a maximum of 1,348 µm and increased linearly with the logarithm of total energy delivered by stacked pulses, but also depended on variations in power, pulse duration, pulse repetition rate, and pulse energy (r(2)  = 0.54-0.85, P micropores of specific ADs with an associated range of CZs and AWs, for example, 300 µm ADs were associated with CZs from 27 to 73 µm and AWs from 190 to 347 µm. Pulse stacking with a small, low power 2,940 nm AFXL created reproducible shallow to deep micropores, and influenced micropore configuration. Mathematical modeling established relations between laser settings and micropore dimensions, which assists in choosing laser settings for desired tissue effects. © 2014 Wiley Periodicals, Inc.

  11. Ablation of film stacks in solar cell fabrication processes

    Science.gov (United States)

    Harley, Gabriel; Kim, Taeseok; Cousins, Peter John

    2013-04-02

    A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.

  12. Treatment planning for prostate focal laser ablation in the face of needle placement uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Cepek, Jeremy, E-mail: jcepek@robarts.ca; Fenster, Aaron [Robarts Research Institute, London, Ontario N6A 5K8, Canada and Biomedical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Lindner, Uri; Trachtenberg, John [Department of Surgical Oncology, Division of Urology, University Health Network, Toronto, Ontario M5G 2C4 (Canada); Davidson, Sean R. H. [Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9 (Canada); Haider, Masoom A. [Department of Medical Imaging, Sunnybrook Health Sciences Center, Toronto, Ontario M4N 3M5, Canada and Department of Medical Imaging, University of Toronto, Toronto, Ontario M5S 2J7 (Canada); Ghai, Sangeet [Department of Medical Imaging, University Health Network, Toronto, Ontario M5G 2M9 (Canada)

    2014-01-15

    Purpose: To study the effect of needle placement uncertainty on the expected probability of achieving complete focal target destruction in focal laser ablation (FLA) of prostate cancer. Methods: Using a simplified model of prostate cancer focal target, and focal laser ablation region shapes, Monte Carlo simulations of needle placement error were performed to estimate the probability of completely ablating a region of target tissue. Results: Graphs of the probability of complete focal target ablation are presented over clinically relevant ranges of focal target sizes and shapes, ablation region sizes, and levels of needle placement uncertainty. In addition, a table is provided for estimating the maximum target size that is treatable. The results predict that targets whose length is at least 5 mm smaller than the diameter of each ablation region can be confidently ablated using, at most, four laser fibers if the standard deviation in each component of needle placement error is less than 3 mm. However, targets larger than this (i.e., near to or exceeding the diameter of each ablation region) require more careful planning. This process is facilitated by using the table provided. Conclusions: The probability of completely ablating a focal target using FLA is sensitive to the level of needle placement uncertainty, especially as the target length approaches and becomes greater than the diameter of ablated tissue that each individual laser fiber can achieve. The results of this work can be used to help determine individual patient eligibility for prostate FLA, to guide the planning of prostate FLA, and to quantify the clinical benefit of using advanced systems for accurate needle delivery for this treatment modality.

  13. Laser-ablated silicon nanoparticles: optical properties and perspectives in optical coherence tomography

    International Nuclear Information System (INIS)

    Kirillin, M Yu; Sergeeva, E A; Agrba, P D; Krainov, A D; Ezhov, A A; Shuleiko, D V; Kashkarov, P K; Zabotnov, S V

    2015-01-01

    Due to their biocompatibility silicon nanoparticles have high potential in biomedical applications, especially in optical diagnostics. In this paper we analyze properties of the silicon nanoparticles formed via laser ablation in water and study the possibility of their application as contrasting agents in optical coherence tomography (OCT). The nanoparticles suspension was produced by picosecond laser irradiation of monocrystalline silicon wafers in water. According to transmission electron microcopy analysis the silicon nanoparticles in the obtained suspension vary in size from 2 to 200 nm while concentration of the particles is estimated as 10 13 cm −3 . The optical properties of the suspension in the range from 400 to 1000 nm were studied by spectrophotometry measurements revealing a scattering coefficient of about 0.1 mm −1 and a scattering anisotropy factor in the range of 0.2–0.4. In OCT study a system with a central wavelength of 910 nm was employed. Potential of the silicon nanoparticles as a contrasting agent for OCT is studied in experiments with agarose gel phantoms. Topical application of the nanoparticles suspension allowed the obtaining of the contrast of structural features of phantom up to 14 dB in the OCT image. (paper)

  14. Angular distribution of atoms ejected by laser ablation of different metals

    International Nuclear Information System (INIS)

    Konomi, I.; Motohiro, T.; Asaoka, T.

    2009-01-01

    Angular distributions of 13 different metals ejected by laser ablation using fourth harmonics (wavelength=266 nm) of neodymium doped yttrium aluminum garnet laser and a fluence close to near-threshold value (2.3 J/cm 2 ) have been investigated with a high angular resolution. The angular distribution which is characterized by the exponent n of cos n θ distribution showed very broad range of values between 3 and 24 for different metals. A simple relation that the exponent n is proportional to the square root of particle atomic weight as reported previously has not been observed. Instead, a general trend has been found that the metals with higher sublimation energy such as Ta and Zr show narrower angular distribution than those with lower sublimation energy such as Sn and In. While the sublimation energy of metals has a great influence on the angular distribution of ejected atoms, a simple consideration suggests that their thermal conductivity and specific heat have little effect on it.

  15. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser

    Science.gov (United States)

    Jung, Eun Joo; Kim, Chang-Seok; Jeong, Myung Yung; Kim, Moon Ki; Jeon, Min Yong; Jung, Woonggyu; Chen, Zhongping

    2012-01-01

    In this study, we develop an ultra-fast fiber Bragg grating sensor system that is based on the Fourier domain mode-locked (FDML) swept laser. A FDML wavelength swept laser has many advantages compared to the conventional wavelength swept laser source, such as high-speed interrogation, narrow spectral sensitivity, and high phase stability. The newly developed FDML wavelength swept laser shows a superior performance of a high scan rate of 31.3 kHz and a broad scan range of over 70 nm simultaneously. The performance of the grating sensor interrogating system using a FDML wavelength swept laser is characterized in both static and dynamic strain responses. PMID:18852764

  16. Digitally tunable dual wavelength emission from semiconductor ring lasers with filtered optical feedback

    International Nuclear Information System (INIS)

    Khoder, Mulham; Verschaffelt, Guy; Nguimdo, Romain Modeste; Danckaert, Jan; Leijtens, Xaveer; Bolk, Jeroen

    2013-01-01

    We report on a novel integrated approach to obtain dual wavelength emission from a semiconductor laser based on on-chip filtered optical feedback. Using this approach, we show experiments and numerical simulations of dual wavelength emission of a semiconductor ring laser. The filtered optical feedback is realized on-chip by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback strength of each wavelength channel independently. By tuning the current injected into each of the amplifiers, we can effectively cancel the gain difference between the wavelength channels due to fabrication and material dichroism, thus resulting in stable dual wavelength emission. We also explore the accuracy needed in the operational parameters to maintain this dual wavelength emission. (letter)

  17. Comparison of the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation.

    Science.gov (United States)

    Yin, Jian; Han, Zhengfeng; Guo, Baofeng; Guo, Han; Zhang, Tongtong; Zeng, Yanjun; Ren, Longxi

    2015-07-01

    To compare the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation. Goat spine specimen (GSS) was radiated using Nd:YAG laser and 980 nm diode laser and then divided into five groups based on the final energy--200, 400, 600, 800 and 1,000 J groups. The ablation quality of nucleus pulposus after radiation was recorded. The ablation quality of GSS was greater at higher radiation energies in both lasers. When compared at the same energy level, the ablation quality of GSS was greater in 980 nm diode laser than in 1,064 nm Nd:YAG laser. Statistical significance was observed in 200 and 400 J groups (P diode laser showed better ablation ability than 1,064 nm Nd:YAG laser.

  18. Laboratory experiments on the formation and recoil jet transport of aerosol by laser ablation

    Science.gov (United States)

    Hirooka, Yoshi; Tanaka, Kazuo A.; Imamura, Keisuke; Okazaki, Katsuya

    2016-05-01

    In a high-repetition rate inertial fusion reactor, the first wall will be subjected to repeated ablation along with pellet implosions, which then leads to the formation of aerosol to scatter and/or deflect laser beams for the subsequent implosion, affecting the overall reactor performance. Proposed in the present work is a method of in-situ directed transport of aerosol particles by the use of laser ablation-induced jet recoil momenta. Lithium and carbon are used as the primary ablation targets, the former of which is known to form aerosol in the form of droplet, and the latter of which tends to form carbon nanotubes. Laboratory-scale experiments have been conducted to irradiate airborne aerosol particles with high-intensity laser to produce ablation-induced jet. Data have indicated a change in aerosol flow direction, but only in the case of lithium.

  19. Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel.

    Science.gov (United States)

    Darling, Cynthia L; Fried, Daniel

    2008-02-18

    The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a lambda=9.3-microm CO(2) laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal and mechanical damage.

  20. Effects of picosecond laser repetition rate on ablation of Cr12MoV cold work mold steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Baoye; Deng, Leimin; Liu, Peng; Zhang, Fei; Duan, Jun, E-mail: duans@hust.edu.cn; Zeng, Xiaoyan

    2017-07-01

    In this paper, the effects of pulse repetition rate on ablation efficiency and quality of Cr12MoV cold work mold steel have been studied using a picosecond (ps) pulse Nd:YVO{sub 4} laser system at λ= 1064 nm. The experimental results of area ablation on target surface reveal that laser repetition rate plays a significant role in controlling ablation efficiency and quality. Increasing the laser repetition rate, while keeping a constant mean power improves the ablation efficiency and quality. For each laser mean power, there is an optimal repetition rate to achieve a higher laser ablation efficiency with low surface roughness. A high ablation efficiency of 42.29, 44.11 and 47.52 μm{sup 3}/mJ, with surface roughness of 0.476, 0.463 and 0.706 μm could be achieved at laser repetition rate of 10 MHz, for laser mean power of 15, 17 and 19 W, respectively. Scanning electron microcopy images revels that the surface morphology evolves from rough with numerous craters, to flat without pores when we increased the laser repetition rate. The effects of laser repetition rate on the heat accumulation, plasma shield and ablation threshold were analyzed by numerical simulation, spectral analysis and multi-laser shot, respectively. The synergetic effects of laser repetition rate on laser ablation rate and machining quality were analyzed and discussed systemically in this paper.

  1. Fully Automated Laser Ablation Liquid Capture Sample Analysis using NanoElectrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Matthias [ORNL; Ovchinnikova, Olga S [ORNL; Van Berkel, Gary J [ORNL

    2014-01-01

    RATIONALE: Laser ablation provides for the possibility of sampling a large variety of surfaces with high spatial resolution. This type of sampling when employed in conjunction with liquid capture followed by nanoelectrospray ionization provides the opportunity for sensitive and prolonged interrogation of samples by mass spectrometry as well as the ability to analyze surfaces not amenable to direct liquid extraction. METHODS: A fully automated, reflection geometry, laser ablation liquid capture spot sampling system was achieved by incorporating appropriate laser fiber optics and a focusing lens into a commercially available, liquid extraction surface analysis (LESA ) ready Advion TriVersa NanoMate system. RESULTS: Under optimized conditions about 10% of laser ablated material could be captured in a droplet positioned vertically over the ablation region using the NanoMate robot controlled pipette. The sampling spot size area with this laser ablation liquid capture surface analysis (LA/LCSA) mode of operation (typically about 120 m x 160 m) was approximately 50 times smaller than that achievable by direct liquid extraction using LESA (ca. 1 mm diameter liquid extraction spot). The set-up was successfully applied for the analysis of ink on glass and paper as well as the endogenous components in Alstroemeria Yellow King flower petals. In a second mode of operation with a comparable sampling spot size, termed laser ablation/LESA , the laser system was used to drill through, penetrate, or otherwise expose material beneath a solvent resistant surface. Once drilled, LESA was effective in sampling soluble material exposed at that location on the surface. CONCLUSIONS: Incorporating the capability for different laser ablation liquid capture spot sampling modes of operation into a LESA ready Advion TriVersa NanoMate enhanced the spot sampling spatial resolution of this device and broadened the surface types amenable to analysis to include absorbent and solvent resistant

  2. Effect of the wavelength on laser induced breakdown spectrometric analysis of archaeological bone

    Energy Technology Data Exchange (ETDEWEB)

    Kasem, M.A. [National Institute of Laser Enhanced Science (NILES), Cairo University, Giza (Egypt); Gonzalez, J.J.; Russo, R.E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Harith, M.A., E-mail: mharithm@niles.edu.eg [National Institute of Laser Enhanced Science (NILES), Cairo University, Giza (Egypt)

    2014-11-01

    The analytical exploitation of the laser induced plasma suffers from its transient behavior due to some nonlinear effects. These phenomena are matrix-dependent and limit the use of LIBS to mostly semi-quantitative precision. The plasma parameters have to be kept as constant as possible during LIBS measurements. Studying archaeological bone samples using LIBS technique could be more difficult since these samples are less tough in their texture than many other solid samples. Thus, the ablation process could change the sample morphological features rapidly resulting in poor reproducibility and statistics. Furthermore archaeological bones are subjected to diagenesis effects due to burial environment and postmortem effects. In the present work comparative analytical study of UV (266 nm) and IR (1064 nm) LIBS for archaeological bone samples belonging to four ancient Egyptian dynasties representing the middle kingdom (1980–1630 BC), 2nd intermediate period (1630–1539/23 BC), Roman–Greek period (30 BC–A.D. 395) and the late period (664–332 BC). Measurements have been performed under identical experimental conditions except the laser wavelength to examine its effects. Elemental fluctuations within the same dynasty were studied for reliable information about each dynasty. The analytical results demonstrated that UV-LIBS gives a more realistic picture for bone elemental composition within the same dynasty, and bone ash could be more suitable as a reference material for bone calibration in the case of UV-LIBS. - Highlights: • UV and IR LIBS for archaeological bone samples have been performed. • Elemental fluctuations within the same dynasty were studied. • UV-LIBS gave realistic picture for bone elemental composition for the same dynasty. • Depth profile for Sr/Ca concentration was an indicator for the diagenesis effect. • Bone ash is the most suitable for calcified tissue calibration for UV-LIBS.

  3. Effect of the wavelength on laser induced breakdown spectrometric analysis of archaeological bone

    International Nuclear Information System (INIS)

    Kasem, M.A.; Gonzalez, J.J.; Russo, R.E.; Harith, M.A.

    2014-01-01

    The analytical exploitation of the laser induced plasma suffers from its transient behavior due to some nonlinear effects. These phenomena are matrix-dependent and limit the use of LIBS to mostly semi-quantitative precision. The plasma parameters have to be kept as constant as possible during LIBS measurements. Studying archaeological bone samples using LIBS technique could be more difficult since these samples are less tough in their texture than many other solid samples. Thus, the ablation process could change the sample morphological features rapidly resulting in poor reproducibility and statistics. Furthermore archaeological bones are subjected to diagenesis effects due to burial environment and postmortem effects. In the present work comparative analytical study of UV (266 nm) and IR (1064 nm) LIBS for archaeological bone samples belonging to four ancient Egyptian dynasties representing the middle kingdom (1980–1630 BC), 2nd intermediate period (1630–1539/23 BC), Roman–Greek period (30 BC–A.D. 395) and the late period (664–332 BC). Measurements have been performed under identical experimental conditions except the laser wavelength to examine its effects. Elemental fluctuations within the same dynasty were studied for reliable information about each dynasty. The analytical results demonstrated that UV-LIBS gives a more realistic picture for bone elemental composition within the same dynasty, and bone ash could be more suitable as a reference material for bone calibration in the case of UV-LIBS. - Highlights: • UV and IR LIBS for archaeological bone samples have been performed. • Elemental fluctuations within the same dynasty were studied. • UV-LIBS gave realistic picture for bone elemental composition for the same dynasty. • Depth profile for Sr/Ca concentration was an indicator for the diagenesis effect. • Bone ash is the most suitable for calcified tissue calibration for UV-LIBS

  4. Thyroid tissue: US-guided percutaneous laser thermal ablation.

    Science.gov (United States)

    Pacella, Claudio Maurizio; Bizzarri, Giancarlo; Spiezia, Stefano; Bianchini, Antonio; Guglielmi, Rinaldo; Crescenzi, Anna; Pacella, Sara; Toscano, Vincenzo; Papini, Enrico

    2004-07-01

    To evaluate in vivo the safety and effectiveness of percutaneous laser thermal ablation (LTA) in the debulking of thyroid lesions. Twenty-five adult patients at poor surgical risk with cold nodules (n = 8), autonomously hyperfunctioning thyroid nodules (n = 16), or anaplastic carcinoma (n = 1) underwent LTA. One to four 21-gauge spinal needles were inserted with ultrasonographic (US) guidance into the thyroid lesions. A 300-microm-diameter quartz optical fiber was advanced through the sheath of the needle. Nd:YAG laser was used with output power of 3-5 W. Side effects, complications, and clinical and hormonal changes were evaluated at the end of LTA and during follow-up. Linear regression analysis was used to investigate the correlation between energy delivered and reduction in nodule volume. Volume of induced necrosis and reduction in nodule volume were assessed with US or computed tomography. LTA was performed without difficulties in 76 LTA sessions. After treatment with 5 W, two patients experienced mild dysphonia, which resolved after 48 hours and 2 months. Improvement of local compression symptoms was experienced by 12 of 14 (86%) patients. Thyroid-stimulating hormone (TSH) was detectable in five of 16 (31%) patients with hyperfunctioning nodules at 6 months after LTA. Volume of induced necrosis ranged from 0.8 to 3.9 mL per session. Anaplastic carcinoma treated with four fibers yielded 32.0 mL of necrosis. Echo structure and baseline volume did not influence response. Energy load and reduction in nodule volume were significantly correlated (r(2) =.75, P nodule volume reduction at 6 months in hyperfunctioning nodules was 3.3 mL +/- 2.8 (62% +/- 21.4 [SD]) and in cold nodules was 7.7 mL +/- 7.5 (63% +/- 13.8). LTA may be a therapeutic tool for highly selected problems in the treatment of thyroid lesions. Copyright RSNA, 2004

  5. Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water

    Directory of Open Access Journals (Sweden)

    Chen Shuei-Yuan

    2010-01-01

    Full Text Available Abstract Titanium oxide compounds TiO,Ti2O3, and TiO2 with a considerable extent of nonstoichiometry were fabricated by pulsed laser ablation in water and characterized by X-ray/electron diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. The titanium oxides were found to occur as nanoparticle aggregates with a predominant 3+ charge and amorphous microtubes when fabricated under an average power density of ca. 1 × 108W/cm2 and 1011W/cm2, respectively followed by dwelling in water. The crystalline colloidal particles have a relatively high content of Ti2+ and hence a lower minimum band gap of 3.4 eV in comparison with 5.2 eV for the amorphous state. The protonation on both crystalline and amorphous phase caused defects, mainly titanium rather than oxygen vacancies and charge and/or volume-compensating defects. The hydrophilic nature and presumably varied extent of undercoordination at the free surface of the amorphous lamellae accounts for their rolling as tubes at water/air and water/glass interfaces. The nonstoichiometric titania thus fabricated have potential optoelectronic and catalytic applications in UV–visible range and shed light on the Ti charge and phase behavior of titania-water binary in natural shock occurrence.

  6. Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation

    International Nuclear Information System (INIS)

    Flores-Castañeda, Mariela; Vega-Jiménez, Alejandro L.; Almaguer-Flores, Argelia; Camps, Enrique; Pérez, Mario; Silva-Bermudez, Phaedra; Berea, Edgardo; Rodil, Sandra E.

    2015-01-01

    The antimicrobial properties of bismuth subsalicylate (BSS) nanoparticles against four opportunistic pathogens; E. coli, P. aeruginosa, S. aureus, and S. epidermidis were determined. BSS nanoparticles were synthesized by pulse laser ablation of a solid target in distilled water under different conditions. The nanoparticles were characterized using high-resolution transmission electron microscopy and absorption spectra and small angle X-ray scattering. The analysis shows that the colloids maintained the BSS structure and presented average particle size between 20 and 60 nm, while the concentration ranges from 95 to 195 mg/L. The antibacterial effect was reported as the inhibition ratio of the bacterial growth after 24 h and the cell viability was measured using the XTT assay. The results showed that the inhibition ratio of E. coli and S. epidermidis was dependant on the NPs size and/or concentration, meanwhile P. aeruginosa and S. aureus were more sensitive to the BSS nanoparticles independently of both the size and the concentration. In general, the BSS colloids with average particle size of 20 nm were the most effective, attaining inhibition ratios >80 %, similar or larger than those obtained with the antibiotic used as control. The results suggest that the BSS colloids could be used as effective antibacterial agents with potential applications in the medical area

  7. Characterization of ablated species in laser-induced plasma plume

    International Nuclear Information System (INIS)

    Furusawa, Hideki; Sakka, Tetsuo; Ogata, Yukio H.

    2004-01-01

    Plasma electron density and atomic population densities in the plasma plume produced by a laser ablation of aluminum metal were determined in various ambient gases at relatively high pressures. The method is based on the fit of a spectral line profile of Al(I) 2 P (convolutionsign) - 2 S emission to the theoretical spectrum obtained by one-dimensional radiative transfer calculation. The electron density was higher for a higher ambient gas pressure, suggesting the confinement of the plume by an ambient gas. The electron density also depends on the type of ambient gases, i.e., it increased in the order He 4 2 4 , while the atomic population density is almost independent of the type of ambient species and pressure. The population densities of the upper and lower levels of the transition were compared, and the ratio between their spatial distribution widths was calculated. These results provide valuable information regarding the confinement of the plume by the ambient gas and give insight into the time evolution of the plume

  8. Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation

    Science.gov (United States)

    Flores-Castañeda, Mariela; Vega-Jiménez, Alejandro L.; Almaguer-Flores, Argelia; Camps, Enrique; Pérez, Mario; Silva-Bermudez, Phaedra; Berea, Edgardo; Rodil, Sandra E.

    2015-11-01

    The antimicrobial properties of bismuth subsalicylate (BSS) nanoparticles against four opportunistic pathogens; E. coli, P. aeruginosa, S. aureus, and S. epidermidis were determined. BSS nanoparticles were synthesized by pulse laser ablation of a solid target in distilled water under different conditions. The nanoparticles were characterized using high-resolution transmission electron microscopy and absorption spectra and small angle X-ray scattering. The analysis shows that the colloids maintained the BSS structure and presented average particle size between 20 and 60 nm, while the concentration ranges from 95 to 195 mg/L. The antibacterial effect was reported as the inhibition ratio of the bacterial growth after 24 h and the cell viability was measured using the XTT assay. The results showed that the inhibition ratio of E. coli and S. epidermidis was dependant on the NPs size and/or concentration, meanwhile P. aeruginosa and S. aureus were more sensitive to the BSS nanoparticles independently of both the size and the concentration. In general, the BSS colloids with average particle size of 20 nm were the most effective, attaining inhibition ratios >80 %, similar or larger than those obtained with the antibiotic used as control. The results suggest that the BSS colloids could be used as effective antibacterial agents with potential applications in the medical area.

  9. Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Castañeda, Mariela [Instituto Nacional de Investigaciones Nucleares (Mexico); Vega-Jiménez, Alejandro L., E-mail: argelia.almaguer@mac.com; Almaguer-Flores, Argelia [Universidad Nacional Autónoma de México, Facultad de Odontología, DEPeI, I (Mexico); Camps, Enrique; Pérez, Mario [Instituto Nacional de Investigaciones Nucleares (Mexico); Silva-Bermudez, Phaedra [Instituto Nacional de Rehabilitación, Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa (Mexico); Berea, Edgardo [FarmaQuimia SA de CV. (Mexico); Rodil, Sandra E. [Universidad Nacional Autónoma de México, Instituto de Investigaciones en Materiales (Mexico)

    2015-11-15

    The antimicrobial properties of bismuth subsalicylate (BSS) nanoparticles against four opportunistic pathogens; E. coli, P. aeruginosa, S. aureus, and S. epidermidis were determined. BSS nanoparticles were synthesized by pulse laser ablation of a solid target in distilled water under different conditions. The nanoparticles were characterized using high-resolution transmission electron microscopy and absorption spectra and small angle X-ray scattering. The analysis shows that the colloids maintained the BSS structure and presented average particle size between 20 and 60 nm, while the concentration ranges from 95 to 195 mg/L. The antibacterial effect was reported as the inhibition ratio of the bacterial growth after 24 h and the cell viability was measured using the XTT assay. The results showed that the inhibition ratio of E. coli and S. epidermidis was dependant on the NPs size and/or concentration, meanwhile P. aeruginosa and S. aureus were more sensitive to the BSS nanoparticles independently of both the size and the concentration. In general, the BSS colloids with average particle size of 20 nm were the most effective, attaining inhibition ratios >80 %, similar or larger than those obtained with the antibiotic used as control. The results suggest that the BSS colloids could be used as effective antibacterial agents with potential applications in the medical area.

  10. Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Zamiri, Reza; Zakaria, Azmi [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Ahangar, Hossein Abbastabar [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Darroudi, Majid [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Zak, Ali Khorsand [Low Dimensional Material Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); Drummen, Gregor P.C., E-mail: gpcdrummen@bionano-solutions.de [Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio and Nano-Solutions, D-40472 Duesseldorf (Germany)

    2012-03-05

    Highlights: Black-Right-Pointing-Pointer Zinc oxide nanoparticles were synthesized via LASiS in aqueous starch solution. Black-Right-Pointing-Pointer Nanoparticles of {+-}15 nm are produced with a narrow size distribution. Black-Right-Pointing-Pointer Starch can be used as a template to control nanoparticle size. Black-Right-Pointing-Pointer Starch stabilizes zinc oxide nanoparticles in solution through steric hindrance. - Abstract: Zinc oxide is a semiconductor with exceptional thermal, luminescent and electrical properties, even compared with other semiconducting nanoparticles. Its potential for advanced applications in lasers and light emitting diodes, as bio-imaging agent, in biosensors and as drug delivery vehicles, in ointments, coatings and pigments has pulled zinc oxide into the focus of various scientific and engineering research fields. Recently we started investigating if nanoparticle synthesis via laser ablation in the presence of natural stabilizers allows control over size and shape and constitutes a useful, uncomplicated alternative over conventional synthesis methods. In the current paper, we determined the ability of natural starch to act as a size controller and stabilizer in the preparation of zinc oxide nanoparticles via ablation of a ZnO plate in a starch solution with a nanosecond Q-Switched Nd:YAG pulsed laser at its original wavelength ({lambda} = 1064 nm). Our results show that the particle diameter decreases with increasing laser irradiation time to a mean nanoparticle size of approximately 15 nm with a narrow size distribution. Furthermore, the obtained particle size in starch solution is considerably smaller compared with analogous ZnO nanoparticle synthesis in distilled water. The synthesized and capped nanoparticles retained their photoluminescent properties, but showed blue emission rather than the often reported green luminescence. Evaluation of old preparations compared with freshly made samples showed no agglomeration or

  11. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    Science.gov (United States)

    Lin, Jun; Pakhomov, Andrew V.

    2005-04-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (˜ 3×10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ˜35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements.

  12. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    International Nuclear Information System (INIS)

    Lin Jun; Pakhomov, Andrew V.

    2005-01-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (∼ 3x10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ∼35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements

  13. Reactive laser-induced ablation as approach to titanium oxycarbide films

    International Nuclear Information System (INIS)

    Jandova, V.; Fajgar, R.; Dytrych, P.; Kostejn, M.; Drinek, V.; Kupcik, J.

    2015-01-01

    The IR laser-induced reactive ablation of frozen titanium ethoxide target was studied. The method involves the laser ablation of titanium ethoxide at − 140 °C in gaseous methane (4–50 Pa) atmosphere. This process leads to reactions of the ablative species with hydrocarbon in the gaseous phase. During the ablation of the frozen target excited species interact with methane molecules. The reactive ablation process leads to the formation of a smooth thin film. The thickness of prepared films depends on the number of IR pulses and their composition depends on the pressure of gaseous methane. This reactive IR ablation proceeds as a carbidation process providing nanostructured films with good adhesion to various substrates (glass, metals, KBr) depending on the carbon content in prepared films. Particles are also stabilized by layer preventing their surface oxidation in the atmosphere. The described results are important in the general context for the synthesis of reactive particles in the gas phase. The final products are characterized by spectroscopic, microscopic and diffraction techniques: SEM/EDX, HRTEM, electron diffraction, Raman spectroscopy and XPS. - Highlights: • IR laser ablation of frozen target of titanium ethoxide leads to a reduction in the gaseous methane (4-50 Pa). • Films deposited in methane have Ti/O/C stoichiometry and are oxidized in the atmosphere. • Layers deposited in methane are reduced and have less O in the topmost layers

  14. Reactive laser-induced ablation as approach to titanium oxycarbide films

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, V., E-mail: jandova@icpf.cas.cz; Fajgar, R.; Dytrych, P.; Kostejn, M.; Drinek, V.; Kupcik, J.

    2015-09-01

    The IR laser-induced reactive ablation of frozen titanium ethoxide target was studied. The method involves the laser ablation of titanium ethoxide at − 140 °C in gaseous methane (4–50 Pa) atmosphere. This process leads to reactions of the ablative species with hydrocarbon in the gaseous phase. During the ablation of the frozen target excited species interact with methane molecules. The reactive ablation process leads to the formation of a smooth thin film. The thickness of prepared films depends on the number of IR pulses and their composition depends on the pressure of gaseous methane. This reactive IR ablation proceeds as a carbidation process providing nanostructured films with good adhesion to various substrates (glass, metals, KBr) depending on the carbon content in prepared films. Particles are also stabilized by layer preventing their surface oxidation in the atmosphere. The described results are important in the general context for the synthesis of reactive particles in the gas phase. The final products are characterized by spectroscopic, microscopic and diffraction techniques: SEM/EDX, HRTEM, electron diffraction, Raman spectroscopy and XPS. - Highlights: • IR laser ablation of frozen target of titanium ethoxide leads to a reduction in the gaseous methane (4-50 Pa). • Films deposited in methane have Ti/O/C stoichiometry and are oxidized in the atmosphere. • Layers deposited in methane are reduced and have less O in the topmost layers.

  15. Real time determination of the laser ablated mass by means of electric field-perturbation measurement

    Science.gov (United States)

    Pacheco, P.; Álvarez, J.; Sarmiento, R.; Bredice, F.; Sánchez-Aké, C.; Villagrán-Muniz, M.; Palleschi, V.

    2018-04-01

    A Nd:YAG ns-pulsed laser was used to ablate Al, Cd and Zn targets, which were placed between the plates of a planar charged capacitor. The plasma generates a transient redistribution of the electrical charges on the plates that can be measured as a voltage drop across a resistor connected to the ground plate. This signal is proportional to the capacitor applied voltage, the distance between the plates and the total number of ions produced in the ablation process which in turn is related to the laser energy and the ablated mass. After a series of pulses, the targets were weighed on a thermogravimetric balance to measure the ablated mass. Our results show that the electrical signal measured on the resistor is univocally related to the ablated mass from the target. Therefore, after a proper calibration depending on the material and the experimental geometry, the electrical signal can be used for real time quantitative measurement of the ablated mass in pulsed laser generated plasma experiments. The experiments were repeated on an aluminum target, with and without the presence of the external electric field in order to determine the possible influence of the applied electric field on the ablated mass.

  16. Fullerene-reduced graphene oxide composites obtained by ultrashort laser ablation of fullerite in water

    Energy Technology Data Exchange (ETDEWEB)

    De Bonis, A., E-mail: angela.debonis@unibas.it [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy); Curcio, M. [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy); Santagata, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050, Tito Scalo (PZ) (Italy); Rau, J.V. [CNR-ISM, Via del Fosso del Cavaliere, 100-00133, Rome (Italy); Galasso, A.; Teghil, R. [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy)

    2015-05-01

    Highlights: • Laser ablation of a fullerite target in water performed by an ultra-short laser source has been reported. • The formation of reduced graphene oxide has been described considering the laser ablation in liquid mechanism. • Fullerene-reduced graphene oxide composite, in the form of self assembled microtubes, has been described. - Abstract: The laser ablation in liquid of carbon-based solid targets is of particular interest thanks to the possibility of obtaining different carbon allotropes by varying the experimental parameters employed. The ablation of a fullerite target in water using a frequency-doubled Nd:glass laser source with a pulse duration of 250 fs and a frequency repetition rate of 10 Hz is presented. The obtained products have been characterized by transmission electron and atomic force microscopies and by X-ray photoelectron and micro-Raman spectroscopies. During the femtosecond laser ablation, the collapse of fullerene cages has been considered with the consequent formation of graphene oxide (GO) and its successive hydrogenation. The process of self-assembling in microtube structures of the formed reduced graphene oxide-fullerene composites has then been reported.

  17. Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol

    Science.gov (United States)

    Kudryashov, S. I.; Saraeva, I. N.; Lednev, V. N.; Pershin, S. M.; Rudenko, A. A.; Ionin, A. A.

    2018-05-01

    Single-shot IR femtosecond-laser ablation of gold surfaces in ambient air and liquid isopropyl alcohol was studied by scanning electron microscopy characterization of crater topographies and time-resolved optical emission spectroscopy of ablative plumes in regimes, typical for non-filamentary and non-fragmentation laser production of nanoparticle sols. Despite one order of magnitude shorter (few nanoseconds) lifetimes and almost two orders of magnitude lower intensities of the quenched ablative plume emission in the alcohol ambient at the same peak laser fluence, craters for the dry and wet conditions appeared with rather similar nanofoam-like spallative topographies and the same thresholds. These facts envision the underlying surface spallation as one of the basic ablation mechanisms relevant for both dry and wet advanced femtosecond laser surface nano/micro-machining and texturing, as well as for high-throughput femtosecond laser ablative production of colloidal nanoparticles by MHz laser-pulse trains via their direct nanoscale jetting from the nanofoam in air and fluid environments.

  18. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    International Nuclear Information System (INIS)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein

    2017-01-01

    Highlights: • Laser ablation of aluminum target by single and double pulse (∼ 5 ns delay) in ambient air and distilled water • Comparing with air, in ambient water, plasma confinement results in higher crater depth. • In comparison with single pulse laser ablation, the absorption of the laser pulse energy is higher for double pulse regime. • As a result of ablated material expansion, the crater depth is decreased if the target is placed at lower depth. - Abstract: In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  19. Stabilization in laser wavelength semiconductor with fiber optical amplifier application doped with erbium

    International Nuclear Information System (INIS)

    Camas, J.; Anzueto, G.; Mendoza, S.; Hernandez, H.; Garcia, C.; Vazquez, R.

    2009-01-01

    In this work, we present a novel electronic design of a DC source, which automatically controls the temperature of a tunable laser. The temperature change in the laser is carried out by the control of DC that circulates through a cooling stage where the laser is set. The laser can be tuned in a wavelength around 1550 nm. Its application is in Erbium Doped Fiber Amplifier (EDFA) in reflective configuration. (Author)

  20. Wavelength stabilisation during current pulsing of tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2009-01-01

    The use of external feedback to stabilise the frequency of a tapered laser during current pulsing is reported. Using this technique more than 20 W of peak power in 60 ns pulses from the tapered laser is obtained and owing to the external feedback, the laser is tunable in the 778-808 nm range...

  1. Skin pre-ablation and laser assisted microjet injection for deep tissue penetration.

    Science.gov (United States)

    Jang, Hun-Jae; Yeo, Seonggu; Yoh, Jack J

    2017-04-01

    For conventional needless injection, there still remain many unresolved issues such as the potential for cross-contamination, poor reliability of targeted delivery dose, and significantly painstaking procedures. As an alternative, the use of microjets generated with Er:YAG laser for delivering small doses with controlled penetration depths has been reported. In this study, a new system with two stages is evaluated for effective transdermal drug delivery. First, the skin is pre-ablated to eliminate the hard outer layer and second, laser-driven microjet penetrates the relatively weaker and freshly exposed epidermis. Each stage of operation shares a single Er:YAG laser that is suitable for skin ablation as well as for the generation of a microjet. In this study, pig skin is selected for quantification of the injection depth based on the two-stage procedure, namely pre-ablation and microjet injection. The three types of pre-ablation devised here consists of bulk ablation, fractional ablation, and fractional-rotational ablation. The number of laser pulses are 12, 18, and 24 for each ablation type. For fractional-rotational ablation, the fractional beams are rotated by 11.25° at each pulse. The drug permeation in the skin is evaluated using tissue marking dyes. The depth of penetration is quantified by a cross sectional view of the single spot injections. Multi-spot injections are also carried out to control the dose and spread of the drug. The benefits of a pre-ablation procedure prior to the actual microjet injection to the penetration is verified. The four possible combinations of injection are (a) microjet only; (b) bulk ablation and microjet injection; (c) fractional ablation and microjet injection; and (d) fractional-rotational ablation and microjet injection. Accordingly, the total depth increases with injection time for all cases. In particular, the total depth of penetration attained via fractional pre-ablation increased by 8 ∼ 11% and that of fractional

  2. Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation

    NARCIS (Netherlands)

    Brugmans, M. J.; Kemper, J.; Gijsbers, G. H.; van der Meulen, F. W.; van Gemert, M. J.

    1991-01-01

    This paper presents surface temperature responses of various tissue phantoms and in vitro and in vivo biological materials in air to non-ablative pulsed CO2 laser irradiation, measured with a thermocamera. We studied cooling off behavior of the materials after a laser pulse, to come to an

  3. Effects of laser wavelength and density scale length on absorption of ultrashort intense lasers on solid-density targets

    Energy Technology Data Exchange (ETDEWEB)

    Susumu, Kato; Eiichi, Takahashi; Tatsuya, Aota; Yuji, Matsumoto; Isao, Okuda; Yoshiro, Owadano [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan)

    2004-07-01

    The interaction of intense laser pulses with overdense plasmas has attracted much interest for the fast igniter concept in inertial fusion energy. Hot electron temperatures and electron energy spectra in the course of interaction between intense laser pulse and overdense plasmas are reexamined from a viewpoint of the difference in laser wavelength. The hot electron temperature measured by a particle-in-cell simulation is scaled by I rather than I{lambda}{sup 2} at the interaction with overdense plasmas with fixed ions, where I and {lambda} are the laser intensity and wavelength, respectively. (authors)

  4. Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass

    Energy Technology Data Exchange (ETDEWEB)

    Foucher, C.; Guilhabert, B.; Laurand, N.; Dawson, M. D. [Institute of Photonics, SUPA, University of Strathclyde, Glasgow (United Kingdom)

    2014-04-07

    A mechanically flexible and wavelength-tunable laser with an ultra-thin glass membrane as substrate is demonstrated. The optically pumped hybrid device has a distributed feedback cavity that combines a colloidal quantum dot gain film with a grating-patterned polymeric underlayer, all on a 30-μm thick glass sheet. The total thickness of the structure is only 75 μm. The hybrid laser has an average threshold fluence of 450 ± 80 μJ/cm{sup 2} (for 5-ns excitation pulses) at an emitting wavelength of 607 nm. Mechanically bending the thin-glass substrate enables continuous tuning of the laser emission wavelength over an 18-nm range, from 600 nm to 618 nm. The correlation between the wavelength tunability and the mechanical properties of the thin laser structure is verified theoretically and experimentally.

  5. Short-wavelength ablation of polymers in the high-fluence regime

    Czech Academy of Sciences Publication Activity Database

    Liberatore, Chiara; Mann, K.; Müller, M.; Pina, L.; Juha, Libor; Vyšín, Luděk; Rocca, J.J.; Endo, Akira; Mocek, Tomáš

    T161, MAY (2014), "014066-1"-"014066-4" ISSN 0031-8949 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : extreme ultraviolet * soft x-ray * ablation * polymers Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.126, year: 2014

  6. Direct writing of sub-wavelength ripples on silicon using femtosecond laser at high repetition rate

    International Nuclear Information System (INIS)

    Xie, Changxin; Li, Xiaohong; Liu, Kaijun; Zhu, Min; Qiu, Rong; Zhou, Qiang

    2016-01-01

    Graphical abstract: - Highlights: • The NSRs and DSRs are obtained on silicon surface. • With increasing direct writing speed, the NSRs suddenly changes and becomes the DSRs. • We develop a Sipe–Drude interference theory by considering the thermal excitation. - Abstract: The near sub-wavelength and deep sub-wavelength ripples on monocrystalline silicon were formed in air by using linearly polarized and high repetition rate femtosecond laser pulses (f = 76 MHz, λ = 800 nm, τ = 50 fs). The effects of laser pulse energy, direct writing speed and laser polarization on silicon surface morphology are studied. When the laser pulse energy is 2 nJ/pulse and the direct writing speed varies from 10 to 25 mm/s, the near sub-wavelength ripples (NSRs) with orientation perpendicular to the laser polarization are generated. While the direct writing speed reaches 30 mm/s, the direction of the obtained deep sub-wavelength ripples (DSRs) suddenly changes and becomes parallel to the laser polarization, rarely reported so far for femtosecond laser irradiation of silicon. Meanwhile, we extend the Sipe–Drude interference theory by considering the thermal excitation, and numerically calculate the efficacy factor for silicon irradiated by femtosecond laser pulses. The revised Sipe–Drude interference theoretical results show good agreement with the periods and orientations of sub-wavelength ripples.

  7. Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses

    International Nuclear Information System (INIS)

    Freitas, A Z; Samad, R E; Zezell, D M; Vieira Jr, N D; Freschi, L R; Gouw-Soares, S C

    2010-01-01

    The use of laser for caries removal and cavity preparation is already a reality in the dental clinic. The objective of the present study was to consider the viability of ultrashort laser pulses for restorative material selective removal, by determining the ablation threshold fluence for composite resins and amalgam irradiated with femtosecond laser pulses. Lasers pulses centered at 830 nm with 50 fs of duration and 1 kHz of repetition rate, with energies in the range of 300 to 770 μJ were used to irradiate the samples. The samples were irradiated using two different geometrical methods for ablation threshold fluence determinations and the volume ablation was measured by optical coherence tomography. The shape of the ablated surfaces were analyzed by optical microscopy and scanning electron microscopy. The determined ablation threshold fluence is 0.35 J/cm 2 for the composite resins Z-100 and Z-350, and 0.25 J/cm 2 for the amalgam. These values are half of the value for enamel in this temporal regime. Thermal damages were not observed in the samples. Using the OCT technique (optical coherence tomography) was possible to determine the ablated volume and the total mass removed

  8. Non-ablative fractional laser provides long-term improvement of mature burn scars

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth H; Danielsen, Patricia L; Paulsen, Ida F

    2015-01-01

    BACKGROUND AND OBJECTIVES: Non-ablative fractional laser-treatment is evolving for burn scars. The objective of this study was to evaluate clinical and histological long-term outcome of 1,540 nm fractional Erbium: Glass laser, targeting superficial, and deep components of mature burn scars....... MATERIALS & METHODS: Side-by-side scar-areas were randomized to untreated control or three monthly non-ablative fractional laser-treatments using superficial and extra-deep handpieces. Patient follow-up were at 1, 3, and 6 months. Primary outcome was improvement in overall scar-appearance on a modified...... of scar-appearance. CONCLUSIONS: Combined superficial and deep non-ablative fractional laser-treatments induce long-term clinical and histological improvement of mature burn scars....

  9. Laser optogalvanic wavelength calibration with a commercial hollow cathode iron - neon discharge lamp

    Science.gov (United States)

    Zhu, Xinming; Nur, Abdullahi H.; Misra, Prabhakar

    1994-01-01

    351 optogalvanic transitions have been observed in the 337 - 598 nm wavelength region using an iron - neon hollow cathode discharge lamp and a pulsed tunable dye laser. 223 of these have been identified as transitions associated with neon energy levels. These optogalvanic transitions have allowed, in conjunction with interference fringes recorded concomitantly with an etalon, the calibration of the dye laser wavelength with 0.3/cm accuracy.

  10. Comparative study of excimer and erbium:YAG lasers for ablation of structural components of the knee

    Science.gov (United States)

    Vari, Sandor G.; Shi, Wei-Qiang; van der Veen, Maurits J.; Fishbein, Michael C.; Miller, J. M.; Papaioannou, Thanassis; Grundfest, Warren S.

    1991-05-01

    This study was designed to compare the efficiency and thermal effect of a 135 ns pulsed-stretched XeCl excimer laser (308 nm) and a free-running Erbium:YAG laser (2940 nm) with 200 microsecond(s) pulse duration for ablation of knee joint structures (hyaline and fibrous cartilage, tendon and bone). The radiant exposure used for tissue ablation ranged from 2 to 15 J/cm2 for the XeCl excimer and from 33 to 120 J/cm2 for Er:YAG. The excimer and Er:YAG lasers were operated at 4 and 5 Hz respectively. The ablative laser energy was delivered to tissue through fibers. Ablation rates of soft tissues (hyaline and fibrous cartilage, tendon) varied from 8.5 to 203 micrometers /pulse for excimer and from 8.2 to 273 micrometers /pulse for Er:YAG lasers. Ablation rates of soft tissues are linearly dependent on the radiant exposure. Within the range of parameters tested all the tissues except the bone could be rapidly ablated by both lasers. Bone ablation was much less efficient, requiring 15 J/cm2 and 110 J/cm2 radiant exposure for excimer and Er:YAG lasers to ablate 9.5 and 8.2 micrometers tissue per pulse. However, excimer laser ablation produced less thermal damage in the tissues studied compared to Er:YAG at the same laser parameters. The authors conclude that both lasers are capable of efficient knee joint tissue ablation. XeCl excimer laser requires an order of magnitude less energy than Er:YAG laser for comparable tissue ablation.

  11. Laser ablation in CdZnTe crystal due to thermal self-focusing: Secondary phase hydrodynamic expansion

    Energy Technology Data Exchange (ETDEWEB)

    Medvid’, A., E-mail: mychko@latnet.lv [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia); Mychko, A.; Dauksta, E. [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia); Kosyak, V. [Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy (Ukraine); Grase, L. [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia)

    2016-06-30

    Highlights: • We found two laser induced threshold intensity for CdZnTe crystal. • The laser beam self-focusing lead to increase of intensity of laser radiation at exit surface. • Laser ablation is a result of Te inclusion hydrodynamic expansion. - Abstract: The present paper deals with the laser ablation in CdZnTe crystal irradiated by pulsed infrared laser. Two values of threshold intensities of the laser ablation were determined, namely of about 8.5 and 6.2 MW/cm{sup 2} for the incident and the rear surfaces, correspondingly. Lower intensity of the laser ablation for the rear surface is explained by thermal self-focusing of the laser beam in the CdZnTe crystal due to heating of Te inclusions with a following hydrodynamic expansion.

  12. Isotope analysis of micro metal particles by adopting laser-ablation mass spectrometry

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Ha, Young Kyung; Han, Sun Ho; Park, Yong Joon; Kim, Won Ho

    2005-01-01

    The isotope analysis of microparticles in environmental samples as well as laboratory samples is an important task. A special concern is necessary in particle analysis of swipe samples. Micro particles are normally analyzed either by dissolving particles in the solvents and adopting conventional analytical methods or direct analysis method such as a laser-ablation ICP mass spectrometry (LA-ICP-MS), SIMS, and SNMS (sputtered neutral mass spectrometry). But the LA-ICPMS uses large amount of samples because normally laser beam is tightly focused on the target particle for the complete ablation. The SIMS and SNMS utilize ion beams for the generation of sample ions from the particle. But the number of ions generated by an ion beam is less than 5% of the total generated particles in SIMS. The SNMS is also an excellent analytical technique for particle analysis, however, ion beam and frequency tunable laser system are required for the analysis. Recently a direct analysis of elements as well as isotopes by using laser-ablation is recognized one of the most efficient detection technology for particle samples. The laser-ablation mass spectrometry requires only one laser source without frequency tuneability with no sample pretreatment. Therefore this technique is one of the simplest analysis techniques for solid samples as well as particles. In this study as a part of the development of the new isotope analysis techniques for particles samples, a direct laser-ablation is adopted with mass spectrometry. Zinc and gadolinium were chosen as target samples, since these elements have isotopes with minor abundance (0.62% for Zn, and 0.2% for Gd). The preliminary result indicates that isotopes of these two elements are analyzed within 10% of natural abundance with good mass resolution by using direct laser-ablation mass spectrometry

  13. Comparison of SHG Power Modulation by Wavelength Detuning of DFB- and DBR-Tapered Laser Diodes

    DEFF Research Database (Denmark)

    Christensen, Mathias; Hansen, Anders Kragh; Noordegraaf, Danny

    2016-01-01

    of the response of the second harmonic light to perturbations of the infrared laser diode and compare how the response differs for DFB- and DBR-Tapered laser diodes. We show that the visible light can be modulated from CW to kHz with modulation depths above 90% by wavelength detuning the laser diode.......Pulsed visible lasers are used for a number of applications such as laser displays and medical treatments. Generating this visible light by direct frequency doubling of high power diode lasers opens new p