WorldWideScience

Sample records for ablation laser wavelength

  1. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    Science.gov (United States)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  2. Investigations of morphological features of picosecond dual-wavelength laser ablation of stainless steel

    Science.gov (United States)

    Zhao, Wanqin; Wang, Wenjun; Mei, Xuesong; Jiang, Gedong; Liu, Bin

    2014-06-01

    Investigations on the morphological features of holes and grooves ablated on the surface of stainless steel using the picosecond dual-wavelength laser system with different powers combinations are presented based on the scarce researches on morphology of dual-wavelength laser ablation. The experimental results show the profiles of holes ablated by the visible beam appear V-shaped while those for the near-infrared have large openings and display U-shaped, which are independent of the ablation mechanism of ultrafast laser. For the dual-wavelength beam (a combination of visible beam and near-infrared), the holes resemble sunflower-like structures and have smoother ring patterns on the bottom. In general, the holes ablated by the dual-wavelength beam appear to have much flatter bottoms, linearly sloped side-walls and spinodal structures between the bottoms of the holes and the side-walls. Furthermore, through judiciously combining the powers of the dual-wavelength beam, high-quality grooves could be obtained with a flat worm-like structure at the bottom surface and less resolidified melt ejection edges. This study provides insight into optimizing ultrafast laser micromachining in order to obtain desired morphology.

  3. Laser wavelength dependent properties of YBa2Cu3O7-δ thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Koren, G.; Gupta, A.; Baseman, R.J.; Lutwyche, M.I.; Laibowitz, R.B.

    1989-01-01

    YBa 2 Cu 3 O 7-δ thin films were deposited onto (100) SrTiO 3 substrates using 1064, 532, 355, 248, and 193 nm laser ablation. Transport measurements show lower normal-state resistivities and higher critical currents in films deposited by the shorter wavelength lasers. The surface morphology of the films was rough with large particulates when the 1064 nm laser was used whereas much smoother surfaces with fewer and smaller particulates were obtained with the UV lasers. It is suggested that the better film quality obtained when the UV lasers are used is due to a small absorption depth of the UV photons in the ceramic target and to higher absorption by the ablated fragments. This leads to smaller ablated species and further fragmentation in the hotter plume and, therefore, to smoother and denser films

  4. Influence of consecutive picosecond pulses at 532 nm wavelength on laser ablation of human teeth

    Science.gov (United States)

    Mirdan, Balsam M.; Antonelli, Luca; Batani, Dimitri; Jafer, Rashida; Jakubowska, Katarzyna; Tarazi, Saad al; Villa, Anna Maria; Vodopivec, Bruno; Volpe, Luca

    2014-07-01

    The interaction of 40 ps pulse duration laser emitting at 532 nm wavelength with human dental tissue (enamel, dentin, and dentin-enamel junction) has been investigated. The crater profile and the surface morphology have been studied by using a confocal auto-fluorescence microscope (working in reflection mode) and a scanning electron microscope. Crater profile and crater morphology were studied after applying consecutive laser pulses and it was found that the ablation depth increases with the number of consecutive pulses, leaving the crater diameter unchanged. We found that the thermal damage is reduced by using short duration laser pulses, which implies an increased retention of restorative material. We observe carbonization of the irradiated samples, which does not imply changes in the chemical composition. Finally, the use of 40 ps pulse duration laser may become a state of art in conservative dentistry.

  5. [Delivery of megawatts high energy laser pulse with large core diameter silica fiber and its application in dual-wavelength laser-ablation laser-induced breakdown spectroscopy].

    Science.gov (United States)

    Zhou, Qi; Peng, Fei-Fei; Li, Run-Hua; Chen, Yu-Qi; Yang, Xue-Jiao

    2013-12-01

    To resolve the contradiction between spatial resolution and analysis sensitivity in single pulse laser-induced breakdown spectroscopy (LIBS), a study on dual-wavelength laser-ablation laser-induced breakdown spectroscopy (LA-LIBS) was carried out by using one Nd : YAG laser which was capable of two laser beam outputs with different wavelengths, where, the second harmonic output, 532 nm laser beam, was used as laser-ablation source, and the fundamental output, 1064 nm laser beam, was delivered with a large core diameter silica fiber to realize nanoseconds time-delay and then used to breakdown the ablated samples. Two laser beams were orthogonally arranged to realize element analysis with high spatial resolution and high sensitivity. Some key techniques on the coupling of 1064 nm laser beam into fiber, the collimation of laser at the fiber end and re-focusing of the laser beam were studied. The energy delivery capabilities of four fibers of different types were studied and the maximum values were determined experimentally. A Q-switched laser pulse with 15 mJ pulse energy was successfully delivered by selecting a 50 meter long silica fiber with 800 microm core diameter and 0. 39 numerical aperture. And 250 ns time-delay was realized. A copper alloy was analyzed by spectra with current established LA-LIBS system and the possibility of realizing dual-wavelength LA-LIBS analysis based on one Nd : YAG laser was demonstrated experimentally. In this technique, only one Nd: YAG laser was required to carry out spectral analysis. It has a few advantages, such as simple equipment structure, and being convenient to miniaturize the whole system etc. This dual-wavelength LA-LIBS technique was suitable for in-situ elements microanalysis for different samples with both high spatial resolution and high sensitivity.

  6. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range.

    Science.gov (United States)

    Sola, Daniel; Peña, Jose I

    2013-11-19

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated.

  7. Characterization and surface-enhanced Raman spectral probing of silver hydrosols prepared by two-wavelength laser ablation and fragmentation

    Czech Academy of Sciences Publication Activity Database

    Šmejkal, P.; Šišková, K.; Vlčková, B.; Pfleger, Jiří; Šloufová, Ivana; Šlouf, Miroslav; Mojzeš, P.

    2003-01-01

    Roč. 59, č. 10 (2003), s. 2321-2329 ISSN 1386-1425. [International Conference on Raman Spectroscopy Applied to the Earth Sciences /5./. Prague, 12.06.2002-15.06.2002] R&D Projects: GA ČR GA203/01/1013 Institutional research plan: CEZ:AV0Z4050913 Keywords : surface-enhanced Raman spectroscopy * silver hydrosols * two-wavelength laser ablation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.315, year: 2003

  8. Growth of GaAs “nano ice cream cones” by dual wavelength pulsed laser ablation

    Science.gov (United States)

    Schamp, C. T.; Jesser, W. A.; Shivaram, B. S.

    2007-05-01

    Harmonic generation crystals inherently offer the possibility of using multiple wavelengths of light in a single laser pulse. In the present experiment, the fundamental (1064 nm) and second harmonic (532 nm) wavelengths from an Nd:YAG laser are focused together on GaAs and GaSb targets for ablation. Incident energy densities up to about 45 J/cm 2 at 10 Hz with substrate temperatures between 25 and 600 °C for durations of about 60 s have been used in an ambient gas pressure of about 10 -6 Torr. The ablated material was collected on electron-transparent amorphous carbon films for TEM analysis. Apart from a high density of isolated nanocrystals, the most common morphology observed consists of a crystalline GaAs cone-like structure in contact with a sphere of liquid Ga, resembling an "ice cream cone", typically 50-100 nm in length. For all of the heterostuctures of this type, the liquid/solid/vacuum triple junction is found to correspond to the widest point on the cone. These heterostructures likely form by preferential evaporation of As from molten GaAs drops ablated from the target. The resulting morphology minimizes the interfacial and surface energies of the liquid Ga and solid GaAs.

  9. Coagulation and ablation of biological soft tissue by quantum cascade laser with peak wavelength of 5.7 μm

    Directory of Open Access Journals (Sweden)

    Keisuke Hashimura

    2014-05-01

    Full Text Available Molecules such as water, proteins and lipids that are contained in biological tissue absorb mid-infrared (MIR light, which allows such light to be used in laser surgical treatment. Esters, amides and water exhibit strong absorption bands in the 5–7 μm wavelength range, but at present there are no lasers in clinical use that can emit in this range. Therefore, the present study focused on the quantum cascade laser (QCL, which is a new type of semiconductor laser that can emit at MIR wavelengths and has recently achieved high output power. A high-power QCL with a peak wavelength of 5.7 μm was evaluated for use as a laser scalpel for ablating biological soft tissue. The interaction of the laser beam with chicken breast tissue was compared to a conventional CO2 laser, based on surface and cross-sectional images. The QCL was found to have sufficient power to ablate soft tissue, and its coagulation, carbonization and ablation effects were similar to those for the CO2 laser. The QCL also induced comparable photothermal effects because it acted as a pseudo-continuous wave laser due to its low peak power. A QCL can therefore be used as an effective laser scalpel, and also offers the possibility of less invasive treatment by targeting specific absorption bands in the MIR region.

  10. Investigation of the wavelength dependence of laser stratigraphy on Cu and Ni coatings using LIBS compared to a pure thermal ablation model

    Science.gov (United States)

    Paulis, Evgeniya; Pacher, Ulrich; Weimerskirch, Morris J. J.; Nagy, Tristan O.; Kautek, Wolfgang

    2017-12-01

    In this study, galvanic coatings of Cu and Ni, typically applied in industrial standard routines, were investigated. Ablation experiments were carried out using the first two harmonic wavelengths of a pulsed Nd:YAG laser and the resulting plasma spectra were analysed using a linear Pearson correlation method. For both wavelengths the absorption/ablation behaviour as well as laser-induced breakdown spectroscopy (LIBS) depth profiles were studied varying laser fluences between 4.3-17.2 J/cm^2 at 532 nm and 2.9-11.7 J/cm^2 at 1064 nm. The LIBS-stratigrams were compared with energy-dispersive X-ray spectroscopy of cross-sections. The ablation rates were calculated and compared to theoretical values originating from a thermal ablation model. Generally, higher ablation rates were obtained with 532 nm light for both materials. The light-plasma interaction is suggested as possible cause of the lower ablation rates in the infrared regime. Neither clear evidence of the pure thermal ablation, nor correlation with optical properties of investigated materials was obtained.

  11. Laser ablation principles and applications

    CERN Document Server

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  12. Femtosecond laser ablation of dentin

    Science.gov (United States)

    Alves, S.; Oliveira, V.; Vilar, R.

    2012-06-01

    The surface morphology, structure and composition of human dentin treated with a femtosecond infrared laser (pulse duration 500 fs, wavelength 1030 nm, fluences ranging from 1 to 3 J cm-2) was studied by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The average dentin ablation threshold under these conditions was 0.6 ± 0.2 J cm-2 and the ablation rate achieved in the range 1 to 2 µm/pulse for an average fluence of 3 J cm-2. The ablation surfaces present an irregular and rugged appearance, with no significant traces of melting, deformation, cracking or carbonization. The smear layer was entirely removed by the laser treatment. For fluences only slightly higher than the ablation threshold the morphology of the laser-treated surfaces was very similar to the dentin fracture surfaces and the dentinal tubules remained open. For higher fluences, the surface was more porous and the dentin structure was partially concealed by ablation debris and a few resolidified droplets. Independently on the laser processing parameters and laser processing method used no sub-superficial cracking was observed. The dentin constitution and chemical composition was not significantly modified by the laser treatment in the processing parameter range used. In particular, the organic matter is not preferentially removed from the surface and no traces of high temperature phosphates, such as the β-tricalcium phosphate, were observed. The achieved results are compatible with an electrostatic ablation mechanism. In conclusion, the high beam quality and short pulse duration of the ultrafast laser used should allow the accurate preparation of cavities, with negligible damage of the underlying material.

  13. Femtosecond laser ablation of dentin

    International Nuclear Information System (INIS)

    Alves, S; Vilar, R; Oliveira, V

    2012-01-01

    The surface morphology, structure and composition of human dentin treated with a femtosecond infrared laser (pulse duration 500 fs, wavelength 1030 nm, fluences ranging from 1 to 3 J cm -2 ) was studied by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The average dentin ablation threshold under these conditions was 0.6 ± 0.2 J cm -2 and the ablation rate achieved in the range 1 to 2 µm/pulse for an average fluence of 3 J cm -2 . The ablation surfaces present an irregular and rugged appearance, with no significant traces of melting, deformation, cracking or carbonization. The smear layer was entirely removed by the laser treatment. For fluences only slightly higher than the ablation threshold the morphology of the laser-treated surfaces was very similar to the dentin fracture surfaces and the dentinal tubules remained open. For higher fluences, the surface was more porous and the dentin structure was partially concealed by ablation debris and a few resolidified droplets. Independently on the laser processing parameters and laser processing method used no sub-superficial cracking was observed. The dentin constitution and chemical composition was not significantly modified by the laser treatment in the processing parameter range used. In particular, the organic matter is not preferentially removed from the surface and no traces of high temperature phosphates, such as the β-tricalcium phosphate, were observed. The achieved results are compatible with an electrostatic ablation mechanism. In conclusion, the high beam quality and short pulse duration of the ultrafast laser used should allow the accurate preparation of cavities, with negligible damage of the underlying material. (paper)

  14. Power Laser Ablation Symposia

    CERN Document Server

    Phipps, Claude

    2007-01-01

    Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficu...

  15. Wavelength sweepable laser source

    DEFF Research Database (Denmark)

    2014-01-01

    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  16. Parametric investigations on the influence of nano-second Nd{sup 3+}:YAG laser wavelength and fluence in synthesizing NiTi nano-particles using liquid assisted laser ablation technique

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Nandini, E-mail: nandinipatra2007@gmail.com [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Akash, K.; Shiva, S.; Gagrani, Rohit; Rao, H. Sai Pranesh; Anirudh, V.R. [Mechatronics and Instrumentation lab, Discipline of Mechanical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Palani, I.A., E-mail: palaniia@iiti.ac.in [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Mechatronics and Instrumentation lab, Discipline of Mechanical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Singh, Vipul [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India)

    2016-03-15

    Graphical abstract: - Highlights: • Influence of laser wavelengths (1064 nm, 532 nm and 355 nm) and fluences (40 J/cm{sup 2}, 30 J/cm{sup 2} and 20 J/cm{sup 2}) on generation of underwater laser ablated NiTi nanoparticles. • Particle size range of 140–10 nm was generated at varying laser wavelengths. • The alloy formation of NiTi nanoparticles was confirmed from XRD and TEM analysis where the crystalline peaks of NiTi, Ni{sub 4}Ti{sub 3} and Ni{sub 3}Ti were observed from XRD. • Formation efficiency of NiTi nanoparticles was maximum at 1064 nm wavelength and 40 J/cm{sup 2} fluence. - Abstract: This paper investigates the influence of laser wavelengths and laser fluences on the size and quality of the NiTi nanoparticles, generated through underwater solid state Nd:YAG laser ablation technique. The experiments were performed on Ni55%–Ti45% sheet to synthesize NiTi nano-particles at three different wavelengths (1064 nm, 532 nm and 355 nm) with varying laser fluences ranging from 20 to 40 J/cm{sup 2}. Synthesized NiTi nano-particles were characterized through SEM, DLS, XRD, FT-IR, TEM and UV–vis spectrum. It was observed that, maximum particle size of 140 nm and minimum particle size of 10 nm were generated at varying laser wavelengths. The crystallinity and lattice spacing of NiTi alloy nanoparticles were confirmed from the XRD analysis and TEM images, respectively.

  17. Parametric investigations on the influence of nano-second Nd3+:YAG laser wavelength and fluence in synthesizing NiTi nano-particles using liquid assisted laser ablation technique

    International Nuclear Information System (INIS)

    Patra, Nandini; Akash, K.; Shiva, S.; Gagrani, Rohit; Rao, H. Sai Pranesh; Anirudh, V.R.; Palani, I.A.; Singh, Vipul

    2016-01-01

    Graphical abstract: - Highlights: • Influence of laser wavelengths (1064 nm, 532 nm and 355 nm) and fluences (40 J/cm 2 , 30 J/cm 2 and 20 J/cm 2 ) on generation of underwater laser ablated NiTi nanoparticles. • Particle size range of 140–10 nm was generated at varying laser wavelengths. • The alloy formation of NiTi nanoparticles was confirmed from XRD and TEM analysis where the crystalline peaks of NiTi, Ni 4 Ti 3 and Ni 3 Ti were observed from XRD. • Formation efficiency of NiTi nanoparticles was maximum at 1064 nm wavelength and 40 J/cm 2 fluence. - Abstract: This paper investigates the influence of laser wavelengths and laser fluences on the size and quality of the NiTi nanoparticles, generated through underwater solid state Nd:YAG laser ablation technique. The experiments were performed on Ni55%–Ti45% sheet to synthesize NiTi nano-particles at three different wavelengths (1064 nm, 532 nm and 355 nm) with varying laser fluences ranging from 20 to 40 J/cm 2 . Synthesized NiTi nano-particles were characterized through SEM, DLS, XRD, FT-IR, TEM and UV–vis spectrum. It was observed that, maximum particle size of 140 nm and minimum particle size of 10 nm were generated at varying laser wavelengths. The crystallinity and lattice spacing of NiTi alloy nanoparticles were confirmed from the XRD analysis and TEM images, respectively.

  18. Local cooling effect on perforation rates comparing the 980-1470 nm laser wavelengths used with endovenous laser ablation: double blind in vitro experimental study.

    Science.gov (United States)

    Tarhan, I A; Dumantepe, M; Yurdakul, I; Kehlibar, T; Ozler, A

    2014-03-01

    Endovenous laser treatment (EVLA) is fast gaining acceptance as an alternative to open surgery for the treatment of saphenous vein incompetence. The method of action of these techniques is based on heat, making tumescence anaesthesia necessity. Heat-induced complications may occur with inadequate application of tumescent anaesthesia. Our hypothesis was, local cooling effect of tumescent anaesthesia on tunica adventitia might be kept undamaged from disruption due to the thermal injury. We experimented with two popular laser wavelengths (980 and 1470 nm) and with two different thermal media (+4 and +24) in vitro for perforation. Twenty different 12 cm length vein pieces were numbered randomly to set up four groups of the experiment. Endovenous laser procedures were applied in same manner in a unique design test tube with same energy density per pieces on same duration (10 W/second) (linear endovenous energy density 60 J/cm). Procedure video was recorded for macroscopic perforations. All postprocedure vein segments were examined microscopically. Activities of both wavelengths were much better in cold medium (P laser was better than that of 980 nm in cold environment (P = 0.0136). It can be commented that reducing the ambient temperature is more beneficial than modifying the laser wavelength on perforation rates. Therefore we suppose tumescent anaesthesia temperature is effective on perforation independently from the wavelengths or type of the laser fibre.

  19. Laser Ablation of Biological Tissue Using Pulsed CO2 Laser

    International Nuclear Information System (INIS)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-01-01

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO 2 laser (wavelength: 10.6 μm; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  20. Paint ablation process vs. different laser wavelengths for 18 diverse spray paints used for graffiti on the monuments and historical mansions

    Science.gov (United States)

    Daurelio, G.; Comparelli, R.; Catalano, I. M.; Andriani, S. E.

    2010-09-01

    Some diverse spray paints, used for graffiti on the monuments and historical mansions, were selected and chosen. These paints are ones common used by some uncivil young peoples to produce graffiti on many monuments and historical mansions. These paints were sprayed on a stainless steel square plate substrate (30x30mm) and left to dry outdoors for 3 days. Then thickness measurements of each painting on these samples were carried out. Moreover each of the 18 paintings was subjected to reflectivity (absorption) measures by using a reflectance spectra in the range from 2500 to 300 nm. So many plots were recorded by an UV-VIS-NIR Cary 5 (Varian) spectrophotometer using a scanning rate of 600.00 nm / min, a data interval of 1,000 nm and average time of 0.1 s. By using the same technique the restricted range from 300 to 1200nm were investigated for a close, interesting and precise scanning. All this results much more useful and interesting as it can furnish many experimental information on the per cent absorption of a data laser wavelength for a specific spray paint , identified by a RAL (Reichsausschuss für Lieferbedingungen) Code for a normalized colour scales (RAL 840 HR for opaque colours and RAL 841 GL for brilliant colours). This information were not possible to obtain on the scientific literature as well as by some paint manufacturers, so it was necessary and useful to test for a better comprehension of the laser ablation process as well as for the possible chance of success. The works are still in progress.

  1. Field enhancement induced laser ablation

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob

    Sub-diffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures....... The accompanying field enhancement substantially lowers the ablation threshold of the polymer film and thus creates local ablation spots and corresponding topographic modifications of the polymer film. Such modifications are quantified straightforwardly via scanning electron and atomic force microscopy. Thickness...

  2. Influence of wavelength and pulse duration on peripheral thermal and mechanical damage to dentin and alveolar bone during IR laser ablation

    Science.gov (United States)

    Lee, C.; Ragadio, Jerome N.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the peripheral thermal damage produced during the laser ablation of alveolar bone and dentin for clinically relevant IR laser systems. Previous studies have demonstrated that a char layer produced around the laser incision site can inhibit the wound healing process. Moreover, in the case of dentin, a char layer is unsightly and is difficult to bond to with restorative materials. Thermal damage was assessed using polarized light microscopy for laser pulse widths from 500 ns to 300 microseconds at 2.94 micrometer and 9.6 micrometer. Water- cooling was not employed to alleviate thermal damage during the laser irradiation. At 9.6 micrometer, minimal thermal damage was observed for pulse widths on the order of the thermal relaxation time of the deposited laser energy in the tissue, 3 - 4 microseconds, and peripheral thermal damage increased with increasing pulse duration. At 2.94 micrometer, thermal damage was minimal for the Q-switched (500 ns) laser system. This study shows that 9.6 micrometer CO2 laser pulses with pulse widths of 5 - 10 microseconds are well suited for the efficient ablation of dentin and bone with minimal peripheral damage. This work was supported by NIH/NIDCR R29DE12091.

  3. Pulsed laser ablation of solids basics, theory and applications

    CERN Document Server

    Stafe, Mihai; Puscas, Niculae N

    2014-01-01

    The book introduces ‘the state of the art' of pulsed laser ablation and its applications. It is based on recent theoretical and experimental studies. The book reaches from the basics to advanced topics of pulsed laser ablation. Theoretical and experimental fundamental phenomena involved in pulsed laser ablation are discussed with respect to material properties, laser wavelength, fluence and intensity regime of the light absorbed linearly or non-linearly in the target material. The energy absorbed by the electrons leads to atom/molecule excitation, ionization and/or direct chemical bond breaking and is also transferred to the lattice leading to material heating and phase transitions. Experimental  non-invasive optical methods for analyzing these phenomena in real time are described. Theoretical models for pulsed laser ablation and phase transitions induced by laser beams and laser-vapour/plasma interaction during the plume expansion above the target are also presented. Calculations of the ablation speed and...

  4. Laser Ablation for Medical Applications

    Science.gov (United States)

    Hayashi, Ken-Ichi

    Medical applications of laser are measurement, laser surgery, in-situ monitoring, and processing of medical devices. In this paper, author briefly reviews the trends of medical applications, describes some new applications, and then discuss about the future trends and problems of medical applications. At present, the domestic market of laser equipment for medical applications is nearly 1/10 of that for industrial applications, which has registered significant growth continuously. Laser surgery as a minimum invasive surgery under arthroscope is expected to decrease the pain of patients. Precise processing such as cutting and welding is suitable for manufacturing medical devices. Pulsed laser deposition has been successfully applied to the thin film coating. The corneal refractive surgery by ArF excimer laser has been widely accepted for its highly safe operation. Laser ablation for retinal implant in the visual prosthesis is one of the promising applications of laser ablation in medicine. New applications with femtosecond laser are expected in the near future.

  5. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    Science.gov (United States)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  6. Picosecond laser ablation of porcine sclera

    Science.gov (United States)

    Góra, Wojciech S.; Harvey, Eleanor M.; Dhillon, Baljean; Parson, Simon H.; Maier, Robert R. J.; Hand, Duncan P.; Shephard, Jonathan D.

    2013-03-01

    Lasers have been shown to be successful in certain medical procedures and they have been identified as potentially making a major contribution to the development of minimally invasive procedures. However, the uptake is not as widespread and there is scope for many other applications where laser devices may offer a significant advantage in comparison to the traditional surgical tools. The purpose of this research is to assess the potential of using a picosecond laser for minimally invasive laser sclerostomy. Experiments were carried out on porcine scleral samples due to the comparable properties to human tissue. Samples were prepared with a 5mm diameter trephine and were stored in lactated Ringer's solution. After laser machining, the samples were fixed in 3% glutaraldehyde, then dried and investigated under SEM. The laser used in the experiments is an industrial picosecond TRUMPF TruMicro laser operating at a wavelength of 1030nm, pulse length of 6ps, repetition rate of 1 kHz and a focused spot diameter of 30μm. The laser beam was scanned across the samples with the use of a galvanometer scan head and various ablation patterns were investigated. Processing parameters (pulse energy, spot and line separation) which allow for the most efficient laser ablation of scleral tissue without introducing any collateral damage were investigated. The potential to create various shapes, such as linear incisions, square cavities and circular cavities was demonstrated.

  7. Fractional ablative erbium YAG laser

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth H; Haak, Christina S; Erlendsson, Andrés M

    2014-01-01

    BACKGROUND AND OBJECTIVES: Treatment of a variety of skin disorders with ablative fractional lasers (AFXL) is driving the development of portable AFXLs. This study measures micropore dimensions produced by a small 2,940 nm AFXL using a variety of stacked pulses, and determines a model correlating...... energies of 2.3-12.8 mJ/microbeam and total energy levels of 4.6-640 mJ/microchannel. Histological endpoints were ablation depth (AD), coagulation zone (CZ) and ablation width (AW). Data were logarithmically transformed if required prior to linear regression analyses. Results for histological endpoints...

  8. Study of Laser Ablation Efficiency for an Acrylic-Based Photopolymerizing Composition

    Science.gov (United States)

    Loktionov, E. Yu.

    2014-05-01

    Results are presented from study of the effi ciency (ablated mass per unit energy, mechanical recoil momentum per unit energy) of laser ablation for a light-curable polymer. A substantial difference is seen between the thresholds and indicated criteria for laser ablation effi ciency in the liquid and cured phases. The highest energy effi ciency for laser ablation (~22.6 %) is achieved when the initially liquid polymer is exposed to radiation with the wavelength optimal for photopolymerization (365 ± 15 nm).

  9. Review of short wavelength lasers

    International Nuclear Information System (INIS)

    Hagelstein, P.L.

    1985-01-01

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references

  10. Review of short wavelength lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hagelstein, P.L.

    1985-03-18

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references.

  11. Laser ablation of lysozyme with UV, visible and infrared femto- and nanosecond pulses

    OpenAIRE

    Schou, Jørgen; Canulescu, Stela; Matei, Andreea; Cazzaniga, Andrea Carlo; Constantinescu, Catalin; Amoruso, S.; Wang, X.; Bruzzese, R.; Dinescu, M.

    2013-01-01

    Lysozyme is an interesting molecule for laser ablation of organic materials, because the ablation has been comprehensively studied, it is a medium heavy molecule with a mass of 14305 Da, which can be detected by standard techniques, and because it is used as a bactericidal protein in the food industry. Lysozyme molecules do not absorb energy for wavelengths above 310 nm, but nevertheless there is a strong mass loss by ablation for laser irradiation in the visible regime. The total ablation yi...

  12. Ablation from metals induced by visible and UV laser irradiation

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Schou, Jørgen; Thestrup Nielsen, Birgitte

    1996-01-01

    The deposition rate of laser-ablated silver has been determined for fluences between 0.5 and 15 J/cm2 at the wavelengths 532 and 355 nm for a beam spot area of around 0.01 cm2. The ablated metal was collected on a quartz crystal microbalance. The rate at 5 J/cm2 was about 4 × 1013 Ag/cm2 per puls...

  13. Pulsed Laser Ablation and Deposition with the Thomas Jefferson National Accelerator Facility Free Electron Laser

    Science.gov (United States)

    Reilly, Anne; Allmond, Chris; Shinn, Michelle

    2002-05-01

    We have been conducting some of the first experiments in pulsed laser ablation and deposition with the Thomas Jefferson National Accelerator Facility Free Electron Laser (TJNAF-FEL). The wavelength tunability, high average power (up to 1.72 kW), very high repetition rate (cw rate up to 74 MHz) and ultrafast pulses ( 650 fs) of the TJNAF-FEL present a combination of parameters unmatched by any laser, which has marked benefits for ablation and deposition. We will be presenting results on ablation of metals (Co,NiFe,Ti,Nb). Comparison with thin films deposited with a standard nanosecond laser source and an ultrafast low-repetition rate laser system show the advantage of using the FEL to produce high quality films at high deposition rates. Preliminary optical spectroscopy studies of the ablation plume and electron/ion emission studies during ablation will also be presented.

  14. Filamented plasmas in laser ablation of solids

    Science.gov (United States)

    Davies, J. R.; Fajardo, M.; Kozlová, M.; Mocek, T.; Polan, J.; Rus, B.

    2009-03-01

    We report results from laser-solid experiments at PALS using an x-ray laser probe with a pulse length of 0.1 ns and a wavelength of 21.2 nm. A laser with a pulse length of 0.3 ns, a peak intensity of up to 5 × 1013 W cm-2 and a wavelength of 1.3 µm was focused to a 0.15 mm wide line on 3 mm long zinc and 1 mm long iron targets and the probe was passed along the length of the plasma formed. The results show plasma 'hairs', or filaments, appearing only below the critical density, 0.1 ns before the peak of the laser pulse. The plasma around the critical density was clearly imaged and remained uniform. Magneto-hydrodynamic modelling indicates that this is caused by a magnetic field that diffuses from the critical surface, where it is generated, leading to a magnetic pressure comparable to the plasma pressure below the critical density. A dispersion relation is derived for density perturbations perpendicular to a temperature gradient in the presence of an existing magnetic field, which shows that such perturbations always grow, with the growth rate being the greatest for small wavelength perturbations and at low densities. These results indicate that the hair-like structures should be a typical feature of laser ablated plasmas below the critical density following significant plasma expansion, in agreement with numerous experimental results. The implications for x-ray lasers and fast ignition inertial confinement fusion are discussed.

  15. Absorption Enhanced Liquid Ablation with TEA CO2 Laser

    National Research Council Canada - National Science Library

    Sterling, Enrique

    2004-01-01

    ... that strongly absorbs radiation in the 8-11 m wavelength interval. A TEA CO2 laser (λ = 10.6 m), 300 ns pulse width and 8 J pulse energy, was used for ablation of water diluted NaBF4 contained in a conical aluminum nozzle...

  16. Advances in laser ablation of materials

    International Nuclear Information System (INIS)

    Singh, R.K.; Lowndes, D.H.; Chrisey, D.B.; Fogarassy, E.; Narayan, J.

    1998-01-01

    The symposium, Advances in Laser Ablation of Materials, was held at the 1998 MRS Spring Meeting in San Francisco, California. The papers in this symposium illustrate the advances in pulsed laser ablation for a wide variety of applications involving semiconductors, superconductors, metals, ceramics, and polymers. In particular, advances in the deposition of oxides and related materials are featured. Papers dealing with both fundamentals and the applications of laser ablation are presented. Topical areas include: fundamentals of ablation and growth; in situ diagnostics and nanoscale synthesis advances in laser ablation techniques; laser surface processing; pulsed laser deposition of ferroelectric, magnetic, superconducting and optoelectronic thin films; and pulsed laser deposition of carbon-based and polymeric materials. Sixty papers have been processed separately for inclusion on the data base

  17. Water spray assisted ultrashort laser pulse ablation

    International Nuclear Information System (INIS)

    Silvennoinen, M.; Kaakkunen, J.J.J.; Paivasaari, K.; Vahimaa, P.

    2013-01-01

    Highlights: ► We show the novel method to use multibeam processing with ultrashort pulses efficiently. ► Sprayed thin water layer on ablation zone enhances ablation rate and quality. ► In some cases this method also enables ablation of the deeper and straighter holes compared to ones made without the water layer. ► Method also makes possible to directly write features without the self-organizing structures. - Abstract: We have studied femtosecond ablation under sprayed thin water film and its influence and benefits compared with ablation in the air atmosphere. These have been studied in case of the hole and the groove ablation using IR femtosecond laser. Water enhances the ablation rate and in some situations it makes possible to ablate the holes with a higher aspect ratio. While ablating the grooves, the water spray allows using the high fluences without the generation of the self-organized structures.

  18. Pulse laser ablation at water-air interface

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro

    2010-06-01

    We studied a new pulse laser ablation phenomenon on a liquid surface layer, which is caused by the difference between the refractive indices of the two materials involved. The present study was motivated by our previous study, which showed that laser ablation can occur at the interface between a transparent material and a gas or liquid medium when the laser pulse is focused through the transparent material. In this case, the ablation threshold fluence is reduced remarkably. In the present study, experiments were conducted in water and air in order to confirm this phenomenon for a combination of two fluid media with different refractive indices. This phenomenon was observed in detail by pulse laser shadowgraphy. A high-resolution film was used to record the phenomenon with a Nd:YAG pulse laser with 10-ns duration as a light source. The laser ablation phenomenon on the liquid surface layer caused by a focused Nd:YAG laser pulse with 1064-nm wavelength was found to be followed by the splashing of the liquid surface, inducing a liquid jet with many ligaments. The liquid jet extension velocity was around 1000 m/s in a typical case. The liquid jet decelerated drastically due to rapid atomization at the tips of the ligaments. The liquid jet phenomenon was found to depend on the pulse laser parameters such as the laser fluence on the liquid surface, laser energy, and laser beam pattern. The threshold laser fluence for the generation of a liquid jet was 20 J/cm2. By increasing the incident laser energy with a fixed laser fluence, the laser focused area increased, which eventually led to an increase in the size of the plasma column. The larger the laser energy, the larger the jet size and the longer the temporal behavior. The laser beam pattern was found to have significant effects on the liquid jet’s velocity, shape, and history.

  19. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    Science.gov (United States)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-02-01

    This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser-material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (Fth = 0.087 J/cm2) than that for the femtosecond laser ablation of ABS (Fth = 1.576 J/cm2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α-1 = 223 nm) than that for femtosecond laser ablation (α-1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the Cdbnd C bond completely through the chain scission process whereas Cdbnd C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the Cdbnd C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (Csbnd O and Cdbnd O bond) and nitrogen-rich (Csbnd N) functional groups.

  20. Choice of the laser wavelength for a herpetic keratitis treatment

    Science.gov (United States)

    Razhev, Alexander M.; Bagayev, Sergei N.; Chernikh, Valery V.; Kargapoltsev, Evgeny S.; Trunov, Alexander; Zhupikov, Andrey A.

    2002-06-01

    For the first time the effect of the UV laser radiation to human eye cornea with herpetic keratitis was experimentally investigated. In experiments the UV radiation of ArF (193 nm), KrCl (223 nm), KrF (248 nm) excimer lasers were used. Optimal laser radiation parameters for the treatment of the herpetic keratitis were determined. The immuno-biochemical investigations were carried out and the results of clinical trials are presented. The maximum ablation rate was obtained for the 248 nm radiation wavelength. The process of healing was successful but in some cases the haze on the surface of the cornea was observed. When used the 193 nm radiation wavelength the corneal surface was clear without any hazes but the epithelization process was slower than for 248 nm wavelength and in some cases the relapse was occurred. The best results for herpetic keratitis treatment have been achieved by utilizing the 223 nm radiation wavelength of the KrCl excimer laser. The use of the 223 nm radiation wavelength allows treating the herpetic keratitis with low traumatic process of ablation and provides high quality of corneal surface.

  1. Synthesis and Properties of Platinum Nanoparticles by Pulsed Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Maria Isabel Mendivil Palma

    2016-01-01

    Full Text Available Platinum (Pt nanoparticles were synthesized by pulsed laser ablation in liquid (PLAL technique in different liquids (acetone, ethanol, and methanol. Ablation was performed using a Q-switched Nd:YAG laser with output energy of 230 mJ/pulse for 532 nm wavelength. Ablation time and laser energy fluence were varied for all the liquids. Effects of laser energy fluence, ablation time, and nature of the liquid were reported. The mean size, size distributions, shape, elemental composition, and optical properties of Pt nanoparticles synthesized by PLAL were examined by transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and UV-Visible absorption spectroscopy.

  2. Aggregation effect on absorbance spectrum of laser ablated gold nanoparticles

    Science.gov (United States)

    Isnaeni; Irmaniar; Herbani, Y.

    2017-04-01

    Plasmon of gold nanoparticles is one of the hot topics nowadays due to various possible applications. The application is determined by plasmon peak in absorbance spectrum. We have fabricated gold nanoparticles using laser ablation technique and studied the influence of CTAB (Cetyl trimethylammonium bromide) effect on the optical characterization of fabricated gold nanoparticles. We ablated a gold plate using NdYAG pulsed laser at 1064 nm wavelength, 10 Hz pulse frequency at low energy density. We found there are two distinctive plasmon peaks, i.e., primary and secondary peaks, where the secondary peak is the main interests of this work. Our simulation results have revealed that the secondary plasmon peak is affected by random aggregation of gold nanoparticles. Our research leads to good techniques on fabrication of colloidal gold nanoparticles in aqueous solution using laser ablation technique.

  3. Fractional ablative erbium YAG laser

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth H; Haak, Christina S; Erlendsson, Andrés M

    2014-01-01

    BACKGROUND AND OBJECTIVES: Treatment of a variety of skin disorders with ablative fractional lasers (AFXL) is driving the development of portable AFXLs. This study measures micropore dimensions produced by a small 2,940 nm AFXL using a variety of stacked pulses, and determines a model correlating...... laser parameters with tissue effects. MATERIALS AND METHODS: Ex vivo pig skin was exposed to a miniaturized 2,940 nm AFXL, spot size 225 µm, density 5%, power levels 1.15-2.22 W, pulse durations 50-225 microseconds, pulse repetition rates 100-500 Hz, and 2, 20, or 50 stacked pulses, resulting in pulse...... 190 to 347 µm. CONCLUSIONS: Pulse stacking with a small, low power 2,940 nm AFXL created reproducible shallow to deep micropores, and influenced micropore configuration. Mathematical modeling established relations between laser settings and micropore dimensions, which assists in choosing laser...

  4. Laser ablation of paint in nuclear industry

    International Nuclear Information System (INIS)

    Brygo, Francois; Semerok, Alexandre; Weulersse, Jean-Marc; Thro, Pierre-Yves; Oltra, Roland; Decobert, Guy

    2006-01-01

    Nuclear dismantling faces the challenge of paint removal on large surfaces of painted walls. The conventional methods for paint stripping on concrete walls are mainly based on mechanical grinder and lead to an important volume of aerosols and wastes. Laser ablation has been evaluated as a promising method for paint removal with a number of advantages. The method reduces considerably the waste volume as the removal of paint is selective. The ablated matter can be collected by aerosol aspiration/filtration. The automation of the process can provide a higher capacity of paint removal. Laser ablation of paint was under our extensive studies. Laser ablation with different nanosecond repetition rate lasers was comparatively studied to understand the ablation mechanisms, and to obtain the highest efficiency of paint removal. The investigations were made with three Q-Switched Nd:YAG lasers (λ = 532 nm and λ = 1.064 μm). The different pulse durations (5 ns and 100 ns) demonstrated the different ablation regimes. Ablation with long pulses (100 ns) provided the best removal efficiency while the short ones (5 ns) decreased the ablation threshold fluence. It was demonstrated that the pulse repetition rate increasing in the 20 Hz - 10 kHz range induced heat accumulation in the paint. It resulted in ablation efficiency increase with a large decrease in the ablation threshold fluence. Laser ablation in the 0 - 10 J / cm 2 fluence range was investigated. Various paints were under investigation to obtain the maximum efficiency of paint removal for each specific experimental case. The ejected matter recording with a high speed imaging system allows to analyse the laser-matter interaction. (authors)

  5. Laser oscillator with a wavelength stabilizing device

    International Nuclear Information System (INIS)

    Terada, T.; Yamaguchi, I.

    1975-01-01

    The laser tube constantly maintains a desired uniform wavelength of the laser beam. At least one of the two mirror members of the laser tube is movable, and is coupled magnetically with an electromagnetic stabilizing mechanism. The magnetic power of the electromagnetic mechanism is adjustable so that the distance between the two mirror members can be maintained constant irrespective of temperature changes and the like. As a result, a laser beam having a constant desired uniform wavelength is obtained. (auth)

  6. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    Energy Technology Data Exchange (ETDEWEB)

    See, Tian Long, E-mail: tianlong.see@postgrad.manchester.ac.uk [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Liu, Zhu [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Li, Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Zhong, Xiang Li [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom)

    2016-02-28

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F{sub th} = 0.087 J/cm{sup 2}) than that for the femtosecond laser ablation of ABS (F{sub th} = 1.576 J/cm{sup 2}), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α{sup −1} = 223 nm) than that for femtosecond laser ablation (α{sup −1} = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas

  7. UV solid state laser ablation of intraocular lenses

    Science.gov (United States)

    Apostolopoulos, A.; Lagiou, D. P.; Evangelatos, Ch.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-06-01

    Commercially available intraocular lenses (IOLs) are manufactured from silicone and acrylic, both rigid (e.g. PMMA) and foldable (hydrophobic or hydrophilic acrylic biomaterials), behaving different mechanical and optical properties. Recently, the use of apodizing technology to design new diffractive-refractive multifocals improved the refractive outcome of these intraocular lenses, providing good distant and near vision. There is also a major ongoing effort to refine laser refractive surgery to correct other defects besides conventional refractive errors. Using phakic IOLs to treat high myopia potentially provides better predictability and optical quality than corneal-based refractive surgery. The aim of this work was to investigate the effect of laser ablation on IOL surface shaping, by drilling circular arrays of holes, with a homemade motorized rotation stage, and scattered holes on the polymer surface. In material science, the most popular lasers used for polymer machining are the UV lasers, and, therefore, we tried in this work the 3rd and the 5th harmonic of a Q-switched Nd:YAG laser (λ=355 nm and λ=213 nm respectively). The morphology of the ablated IOL surface was examined with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variations in surface height and, finally, the ablation rates were also mathematically simulated for depicting the possible laser ablation mechanism(s). The experimental results and the theoretical modelling of UV laser interaction with polymeric IOLs are discussed in relation with the physical (optical, mechanical and thermal) properties of the material, in addition to laser radiation parameters (laser energy fluence, number of pulses). The qualitative aspects of laser ablation at λ=213 nm reveal a

  8. Introduction to Laser Ablation Video Supplement.

    Science.gov (United States)

    Barnett, Gene H; Sloan, Andrew E; Tatsui, Claudio E

    2018-04-01

    Laser ablation (also known as laser interstitial thermal therapy [LITT]) has emerged as an important new technology for treating various disorders of the brain and spine. As with any new or emerging technology, there is a learning curve for its optimal use, and video tutorials can be important learning tools to help bridge gaps in knowledge for those who wish to become more familiar with laser ablation. In this special supplement to Neurosurgical Focus, videos illustrate laser ablation's use in the treatment of epilepsy and failed radiosurgery, as well as technical aspects of performing these procedures in eloquent brain and in the spine. We hope that these videos will enable you to enhance your understanding of the evolving use of laser ablation for disorders of the brain or spine. It is the editors' sincere hope that this will be helpful either in your own practice or in determining whether to refer to a neurosurgical colleague experienced in this field.

  9. Laser ablation in analytical chemistry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  10. Laser surface modification of polyethersulfone films: effect of laser wavelength on biocompatibility

    International Nuclear Information System (INIS)

    Pazokian, H; Jelvani, S; Mollabashi, M; Barzin, J

    2013-01-01

    In this paper laser ablation of polyethersulfone (PES) films regarding to the change in biocompatibility of the surface is investigated at 3 different wavelengths of 193nm (ArF), 248 nm (KrF) and 308 nm (XeCl). The optimum laser fluence and number of pulses for the improvement of the surface biocompatibility is found by examination of the surface behavior in contact with platelets and fibroblasts cells at 3 wavelengths. These biological modifications are explained by alteration of the surface morphology and chemistry following irradiation. The results show that the KrF laser is the best choice for treatment of PES in biological applications.

  11. Wavelength-versatile optical vortex lasers

    Science.gov (United States)

    Omatsu, Takashige; Miyamoto, Katsuhiko; Lee, Andrew J.

    2017-12-01

    The unique properties of optical vortex beams, in particular their spiral wavefront, have resulted in the emergence of a wide range of unique applications for this type of laser output. These applications include optical tweezing, free space optical communications, microfabrication, environmental optics, and astrophysics. However, much like the laser in its infancy, the adaptation of this type of laser output requires a diversity of wavelengths. We report on recent progress on development of optical vortex laser sources and in particular, focus on their wavelength extension, where nonlinear optical processes have been used to generate vortex laser beams with wavelengths which span the ultraviolet to infrared. We show that nonlinear optical conversion can be used to not only diversify the output wavelength of these sources, but can be used to uniquely engineer the wavefront and spatial properties of the laser output.

  12. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    Directory of Open Access Journals (Sweden)

    Buxiang Zheng

    2014-02-01

    Full Text Available The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter, ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloy were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm2.

  13. Selective Laser Ablation and Melting, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project Advratech will develop a new additive manufacturing (AM) process called Selective Laser Ablation and Melting (SLAM). The key innovation in this...

  14. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    Science.gov (United States)

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to

  15. Customized ablation using an all-solid-state deep-UV laser

    Science.gov (United States)

    Korn, G.; Lenzner, M.; Kittelmann, O.; Zatonski, R.; Kirsch, M.; Kuklin, Y.

    2003-07-01

    We show first deep UV ablation results achieved with our new all solid state laser system. The system parameters allow high repetition rate ablation with a small spot diameter of about 0.250mm and a fluence of 350 mJ/cm2 at a wavelength of 210 nm using sequential frequency conversion of a diode pumped laser source. The single shot and multishot ablation rates as well as the ablation profiles have been defined using MicroProf (Fries Research and Technology GmbH, Germany). By means of computer controlled scanning we produce smooth ablation profiles corresponding to a correction of myopia, hyperopia or astigmatism. Due to the small spot size and high repetition rate of the laser we are able to generate in short time intervals complicated ablation profiles described by higher order polynomial functions which are required for the needs of customized corneal ablation.

  16. Chemically assisted laser ablation ICP mass spectrometry.

    Science.gov (United States)

    Hirata, Takafumi

    2003-01-15

    A new laser ablation technique combined with a chemical evaporation reaction has been developed for elemental ratio analysis of solid samples using an inductively coupled plasma mass spectrometer (ICPMS). Using a chemically assisted laser ablation (CIA) technique developed in this study, analytical repeatability of the elemental ratio measurement was successively improved. To evaluate the reliability of the CLA-ICPMS technique, Pb/U isotopic ratios were determined for zircon samples that have previously been analyzed by other techniques. Conventional laser ablation for Pb/U shows a serious elemental fractionation during ablation mainly due to the large difference in elemental volatility between Pb and U. In the case of Pb/U ratio measurement, a Freon R-134a gas (1,1,1,2-tetrafluoroethane) was introduced into the laser cell as a fluorination reactant. The Freon gas introduced into the laser cell reacts with the ablated sample U, and refractory U compounds are converted to a volatile U fluoride compound (UF6) under the high-temperature condition at the ablation site. This avoids the redeposition of U around the ablation pits. Although not all the U is reacted with Freon, formation of volatile UF compounds improves the transmission efficiency of U. Typical precision of the 206Pb/238U ratio measurement is 3-5% (2sigma) for NIST SRM 610 and Nancy 91500 zircon standard, and the U-Pb age data obtained here show good agreement within analytical uncertainties with the previously reported values. Since the observed Pb/U ratio for solid samples is relatively insensitive to laser power and ablation time, optimization of ablation conditions or acquisition parameters no longer needs to be performed on a sample-to-sample basis.

  17. Effects of plasma confinement on the femtosecond laser ablation of silicon

    Science.gov (United States)

    Zhang, Chengyun; Yao, Jianwu; Lan, Sheng; Trofimov, Vyacheslav A.; Lysak, Tatiana M.

    2013-11-01

    We investigated the femtosecond laser ablation of silicon in a confined condition by covering the surface of a silicon wafer with a glass slide. The ablation was carried out by either irradiating the focused spot with different numbers of pulses or by scanning the laser beam on the surface of the silicon wafer. The morphology of the ablated surface was characterized by scanning electron microscope. For laser fluences much larger than the ablation threshold of silicon, cylindrical holes were generated in the confined ablation, in sharp contrast to the conical holes observed in the ablation performed in open air. Accordingly, grooves with U-shaped and V-shaped cross sections were achieved in the ablations carried out in the confined condition and in open air, respectively. For laser fluences close to the ablation threshold of silicon, the difference in the morphology of micro- and nanostructures obtained by these two ablation methods became not pronounced and two-dimensional nanohole arrays were created on the surface of silicon wafer. While the period of the nanohole arrays in the direction of the laser polarization was found to be close to the laser wavelength, the period in the direction perpendicular to the laser polarization was observed to be more than two times of the laser wavelength. In addition, the distribution of erupted nanoparticles was also found to be different in the two ablation processes. A ring-shaped distribution of nanoparticles was observed in the open air ablation while a monotonic decrease of nanoparticle density along the radial direction was found in the confined ablation.

  18. Short-wavelength ablation of molecular solids: pulse duration and wavelength effects

    Czech Academy of Sciences Publication Activity Database

    Juha, Libor; Bittner, Michal; Chvostová, Dagmar; Krása, Josef; Kozlová, Michaela; Pfeifer, Miroslav; Polan, Jiří; Präg R., Ansgar; Rus, Bedřich; Stupka, Michal; Feldhaus, J.; Létal, V.; Otčenášek, Zdeněk; Krzywinski, J.; Nietubyc, R.; Pelka, J. B.; Andrejczuk, A.; Sobierajski, R.; Ryc, L.; Boody, F. P.; Bartnik, A.; Mikolajczyk, J.; Rakowski, R.; Kubát, Pavel; Pína, L.; Horváth, M.; Grisham, M. E.; Vaschenko, G. O.; Menoni, C.S.; Rocca, J.J.; Fiedorowicz, H.

    2005-01-01

    Roč. 4, č. 3 (2005), 033007/1-033007/11 ISSN 1537-1646. [SPIE Conference on Fourth Generation X-Ray Sources and Optics. Denver, 00.08.2004-00.08.2004] R&D Projects: GA MŠk(CZ) LN00A100; GA MŠk(CZ) 1P04LA235 Institutional research plan: CEZ:AV0Z10100523 Keywords : ablation * XUV * x-rays * x-ray laser * material processing * microlithography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.389, year: 2005

  19. Ablation of silicon with bursts of femtosecond laser pulses

    Science.gov (United States)

    Gaudiuso, Caterina; Kämmer, Helena; Dreisow, Felix; Ancona, Antonio; Tünnermann, Andreas; Nolte, Stefan

    2016-03-01

    We report on an experimental investigation of ultrafast laser ablation of silicon with bursts of pulses. The pristine 1030nm-wavelength 200-fs pulses were split into bursts of up to 16 sub-pulses with time separation ranging from 0.5ps to 4080ps. The total ablation threshold fluence was measured depending on the burst features, finding that it strongly increases with the number of sub-pulses for longer sub-pulse delays, while a slowly increasing trend is observed for shorter separation time. The ablation depth per burst follows two different trends according to the time separation between the sub-pulses, as well as the total threshold fluence. For delays shorter than 4ps it decreases with the number of pulses, while for time separations longer than 510ps, deeper craters were achieved by increasing the number of subpulses in the burst, probably due to a change of the effective penetration depth.

  20. Laser ablation deposition measurements from silver and nickel

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Ellegaard, Ole; Schou, Jørgen

    1996-01-01

    The deposition rate for laser ablated metals has been studied in a standard geometry for fluences up to 20 J/cm(2). The rate for silver and nickel is a few percent of a monolayer per pulse at the laser wavelengths 532 nm and 355 nm. The rate for nickel is significantly higher than that for silver...... at 532 nm, whereas the rate for the two metals is similar at 355 nm. This behaviour disagrees with calculations based on the thermal properties at low intensities as well as predictions based on formation of an absorbing plasma at high intensities. The deposition rate falls strongly with increasing...

  1. Laser ablation studies in southern Africa

    Science.gov (United States)

    McKenzie, Edric; Forbes, A.; Turner, G. R.; Michaelis, Max M.

    2000-08-01

    With the launch of the South African National Laser Centre, new programs will need to be defined. Medical, environmental and industrial laser applications must obviously take top priority -- as opposed to the uranium isotope separation and military applications of the past. We argue however, that a small effort in laser ablation for space propulsion is justifiable, since a few very large CO2 lasers are available and since two tentative propulsion experiments have already been conducted in South Africa. We attempt to give LISP (Laser Impulse Space Propulsion) an equatorial and a Southern dimension.

  2. Laser ablation of silver and gold in liquid ammonia

    Science.gov (United States)

    Šmejkal, Petr; Pfleger, Jiří; Vlčková, Blanka

    2010-10-01

    Laser ablation of a silver (Ag) and/or gold (Au) target was performed in liquid ammonia (l-NH3) at 233 K using nanosecond laser pulses of 1064, 532 and 355 nm wavelengths. An “in situ” monitoring of the ablation process by UV/vis/NIR spectroscopy has shown the evolution of the surface plasmon extinction band of silver or gold nanoparticles and thus confirmed their formation. While sols of Au nanoparticles in l-NH3 are quite stable in air, those of Ag nanoparticles undergo oxidation to Ag(I) complexes with NH3 ligands. On the other hand, formation of solvated electrons, namely of the (e-)NH3 solvates, has not been unequivocally confirmed under the conditions of our laser ablation/nanoparticle fragmentation experiment, since only very weak vis/NIR spectral features of these solvates were observed with a low reproducibility. Reference experiments have shown that the well-known chemical production of these solvates is hindered by the presence of Ag and Au plates. Ag and Au targets can thus possibly act as electron scavengers in our ablation experiments.

  3. Processing condition influence on the characteristics of gold nanoparticles produced by pulsed laser ablation in liquids

    International Nuclear Information System (INIS)

    Nikov, R.G.; Nikolov, A.S.; Nedyalkov, N.N.; Atanasov, P.A.; Alexandrov, M.T.; Karashanova, D.B.

    2013-01-01

    A study is presented of Au nanoparticles (NPs) created by nanosecond pulsed laser ablation of a solid target in double distilled water. The influence was examined of the laser wavelength on the size, shape and optical properties of the resulting NPs. Three different wavelengths: the fundamental (λ = 1064 nm), second (λ SHG = 532) and third (λ THG = 355) harmonic of a Nd:YAG laser at the same fluence were utilized to produce various colloids. Ablation at the wavelength of 532 nm was investigated in more detail to reveal the influence of self-absorption by the already created NPs on their characteristics. The colloid produced was irradiated by λ irrad = 532 nm (laser energy 40 mJ) at different times up to 25 min after the end of ablation. The initial structure of welded NPs forming wires was modified. Transmission electron microscopy and optical transmission measurements were used to evaluate the shape and size distribution of the NPs.

  4. Specifications of nanosecond laser ablation with solid targets, aluminum, silicon rubber, and polymethylmethacrylate (PMMA)

    Science.gov (United States)

    Morshedian, Nader

    2017-09-01

    The ablation parameters such as threshold fluence, etch depth, ablation rate and the effect of material targets were investigated under the interaction of laser pulse with low intensity. The parameters of the laser system are: laser pulse energy in the range of 110-140 mJ, wavelength 1064 nm and pulse duration 20 ns. By macroscopic estimation of the outward images of the ablation and data obtained, we can conclude that the photothermal and photoionization processes have more influence for aluminum ablation. In contrast, for polymer samples, from the macroscopic observation of the border pattern at the irradiated spot, and also the data obtained from the experiment results, we deduce that both chemical change due to heating and photochemical dissociation were effective mechanisms of ablation. However, concerning the two polymer samples, apart from considering the same theoretical ablation model, it is conceived that the photomehanical specifications of PMMA are involved in the ablation parameters. The threshold fluence for an ablation rate of 30 laser shots were obtained as 12.4, 24.64, and 11.71 J cm-2, for aluminum, silicon rubber and polymethylmethacrylate (PMMA) respectively. The ablation rate is exponentially decreased by the laser-shot number, especially for aluminum. Furthermore, the etch depth after 30 laser shots was measured as 180, 630 and 870 μm, for aluminum, silicon rubber and PMMA, respectively.

  5. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  6. Nanostructuring of ITO thin films through femtosecond laser ablation

    Science.gov (United States)

    Sahin, Ramazan; Kabacelik, Ismail

    2016-04-01

    Due to reduced thermal effects, tightly focused femtosecond laser beams can yield submicron resolution with minimal side effects. In laser direct writing applications, diffraction-free nature of the Bessel beams relaxes alignment of the sample and shortens the production time. Micron-sized central spots and long depth of focused beams can be simultaneously produced. We apply fs Bessel beam single-pulse ablation method to transparent conductive oxide films. We use laser of 1030 nm wavelength and two different axicons (base angles are 25° and 40°). Fabricated structures are characterized by optical microscope, atomic force microscope and scanning electron microscope. Laser beam shaping and virtues of non-diffracted Bessel beams provide periodic structures for scribing in the solar cells or high-resolution displays and reduce the process time.

  7. Femtosecond laser ablation of carbon reinforced polymers

    International Nuclear Information System (INIS)

    Moreno, P.; Mendez, C.; Garcia, A.; Arias, I.; Roso, L.

    2006-01-01

    Interaction of intense ultrashort laser pulses (120 fs at 795 nm) with polymer based composites has been investigated. We have found that carbon filled polymers exhibit different ultrafast ablation behaviour depending on whether the filling material is carbon black or carbon fiber and on the polymer matrix itself. The shape and dimensions of the filling material are responsible for some geometrical bad quality effects in the entrance and inner surfaces of drilled microholes. We give an explanation for these non-quality effects in terms of fundamentals of ultrafast ablation process, specifically threshold laser fluences and material removal paths. Since carbon fiber reinforced polymers seemed particularly concerned, this could prevent the use of ultrafast ablation for microprocessing purposes of some of these materials

  8. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    Directory of Open Access Journals (Sweden)

    Y Al-Hadeethi

    Full Text Available Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM. Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX. The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  9. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    Science.gov (United States)

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  10. Laser ablation of lysozyme with UV, visible and infrared femto- and nanosecond pulses

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Matei, Andreea

    Lysozyme is an interesting molecule for laser ablation of organic materials, because the ablation has been comprehensively studied, it is a medium heavy molecule with a mass of 14305 Da, which can be detected by standard techniques, and because it is used as a bactericidal protein in the food...... industry. Lysozyme molecules do not absorb energy for wavelengths above 310 nm, but nevertheless there is a strong mass loss by ablation for laser irradiation in the visible regime. The total ablation yield of lysozyme at 355 nm and at 2 J/cm2 is about 155 µg/pulse, possibly one of the highest ablation...... yields ever measured. The mass loss is mainly caused by fragmentation of the lysozyme into simple gases, such as H2S, H2O and CO2 , which are rapidly pumped away in the vacuum chamber. We have investigated the mass loss by ablation of lysozyme in all regimes to see whether a similar mechanism governs...

  11. Laser systems for ablative fractional resurfacing

    DEFF Research Database (Denmark)

    Paasch, Uwe; Haedersdal, Merete

    2011-01-01

    ablative laser systems. Fractionated CO(2) (10,600-nm), erbium yttrium aluminum garnet, 2940-nm and yttrium scandium gallium garnet, 2790-nm lasers are available. In this article, we present an overview of AFR technology, devices and histopathology, and we summarize the current clinical possibilities...... with AFR incorporating our personal experience. AFR is still in the exploratory era, and systematic investigations of clinical outcomes related to various system settings are needed....

  12. Bending diamonds by femtosecond laser ablation

    DEFF Research Database (Denmark)

    Balling, Peter; Esberg, Jakob; Kirsebom, Kim

    2009-01-01

    We present a new method based on femtosecond laser ablation for the fabrication of statically bent diamond crystals. Using this method, curvature radii of 1 m can easily be achieved, and the curvature obtained is very uniform. Since diamond is extremely tolerant to high radiation doses, partly due...

  13. Diagnostics of laser ablated plasma plumes

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2004-01-01

    emission spectroscopy. Second, deposition rate and fast ion probe measurements have been used to study the plume propagation dynamics during laser ablation of a silver target, over a large range of Ar background gas pressures (from high vacuum to approximate to 100 Pa). A comparative analysis...

  14. Polymers designed for laser ablation-influence of photochemical properties

    International Nuclear Information System (INIS)

    Lippert, T.; Dickinson, J.T.; Hauer, M.; Kopitkovas, G.; Langford, S.C.; Masuhara, H.; Nuyken, O.; Robert, J.; Salmio, H.; Tada, T.; Tomita, K.; Wokaun, A.

    2002-01-01

    The ablation characteristics of various polymers were studied at low and high fluences. The polymers can be divided into three groups, i.e. polymers containing triazene and ester groups, the same polymers without the triazene group, and polyimide as reference polymer. At high fluences similar ablation parameters, i.e. etch rates and effective absorption coefficients, were obtained for all polymers. The main difference is the absence of carbon deposits for the designed polymers. At low fluences (at 308 nm) very pronounced differences are detected. The polymers containing the photochemically most active group (triazene) exhibit the lowest threshold of ablation (as low as 25 mJ cm -2 ) and the highest etch rates (up to 3 μm/pulse), followed by the designed polyesters and then polyimide. The laser-induced decomposition of the designed polymers was studied by nanosecond-interferometry. Only the triazene-polymer reveals etching without any sign of surface swelling, which is observed for all other polymers. The etching of the triazene-polymer starts and ends with the laser pulse, clearly indicating photochemical etching. The triazene-polymer was also studied by time-of-flight mass spectrometry (TOF-MS). The intensities of the ablation fragments show pronounced differences between irradiation at the absorption band of the triazene group (308 nm) and irradiation at a shorter wavelength (248 nm)

  15. A Review of Laser Ablation Propulsion

    International Nuclear Information System (INIS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-01-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  16. Laser Plasmas: Plasma dynamics from laser ablated solid lithium

    Indian Academy of Sciences (India)

    Emission plasma plume generated by pulsed laser ablation of a lithium solid target by a ruby laser (694 nm, 20 ns, 3 J) was subjected to optical emission spectroscopy: time and space resolved optical emission was characterised as a function of distance from the target surface. Propagation of the plume was studied through ...

  17. Laser ablation of dental materials using a microsecond Nd:YAG laser

    Science.gov (United States)

    Siniaeva, M. L.; Siniavsky, M. N.; Pashinin, V. P.; Mamedov, Ad. A.; Konov, V. I.; Kononenko, V. V.

    2009-05-01

    The action of microsecond laser pulses with a wavelength of 1064 nm on dental tissues (enamel and dentin) and various dental materials used for tooth replacement and filling (ceramics, metal alloys, and composites) is studied. It is demonstrated that the ablation thresholds of all of the dental materials are significantly lower than the threshold laser fluences for the dental tissue ( E thr = 200-300 J/cm2). At the laser fluences that do not allow ablation and damage of the dental tissues, the dental materials are effectively removed at a rate of no greater than 40 μm per pulse. It is shown that the laser ablation of the materials under study involves two processes (evaporation and volume explosion) depending on the optical density. The results obtained indicate that the laser radiation with a wavelength of 1064 nm and the microsecond pulse duration is promising for dental applications, since it allows effective cleaning of the tooth surface from various dental materials in the absence of the damages of dental tissues.

  18. Analysis of fabric materials cut using ultraviolet laser ablation

    Science.gov (United States)

    Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.

    2016-04-01

    Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.

  19. An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shi-zhen, E-mail: xusz@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yao, Cai-zhen [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Dou, Hong-qiang [Department of Material Science and Engineering, Sichuan Engineering Technical College, Deyang 618000 (China); Liao, Wei, E-mail: liaowei@caep.cn [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Xiao-yang; Ding, Ren-jie [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhang, Li-juan; Liu, Hao; Yuan, Xiao-dong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zu, Xiao-tao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2017-06-01

    Highlights: • The fs laser ablation of borosilicate glass (K9) were investigated under 35 and 500 fs pulses. • At high fluence regime, the ablation rate at 35 fs in air increased to a plateau, and 500 fs in air and vacuum decreased. • The mechanisms of multiple-photon ionization and impact ionization were included. • The ablation morphologies of smooth zone and laser-induced periodic surface structures were presented and illustrated. • The ablation mechanisms of non-thermal and thermal ablation were included. - Abstract: Ablation rates of K9 glass were studied as a function of femtosecond laser fluences. The central wavelength was 800 nm, and pulse durations of 35 fs and 500 fs in air and vacuum were employed. Ablation thresholds of 0.42 J/cm{sup 2} and 2.1 J/cm{sup 2} were obtained at 35 fs and 500 fs, respectively, which were independent with the ambient conditions and depend on the incident pulse numbers due to incubation effects. The ablation rate of 35 fs pulse laser increased with the increasing of laser fluence in vacuum, while in air condition, it slowly increased to a plateau at high fluence. The ablation rate of 500 fs pulse laser showed an increase at low fluence and a slow drop of ablation rate was observed at high fluence in air and vacuum, which may due to the strong defocusing effects associated with the non-equilibrium ionization of air, and/or the shielding effects of conduction band electrons (CBEs) produced by multi-photon ionization and impact ionization in K9 glass surface. The typical ablation morphologies, e.g. smooth zone and laser-induced periodic surface structures (LIPSS) were also presented and illustrated.

  20. Laser systems for ablative fractional resurfacing

    DEFF Research Database (Denmark)

    Paasch, Uwe; Haedersdal, Merete

    2011-01-01

    Ablative fractional resurfacing (AFR) creates microscopic vertical ablated channels that are surrounded by a thin layer of coagulated tissue, constituting the microscopic treatment zones (MTZs). AFR induces epidermal and dermal remodeling, which raises new possibilities for the treatment...... of a variety of skin conditions, primarily chronically photodamaged skin, but also acne and burn scars. In addition, it is anticipated that AFR can be utilized in the laser-assisted delivery of topical drugs. Clinical efficacy coupled with minimal downtime has driven the development of various fractional...

  1. Laser systems for ablative fractional resurfacing

    DEFF Research Database (Denmark)

    Paasch, Uwe; Haedersdal, Merete

    2011-01-01

    ablative laser systems. Fractionated CO(2) (10,600-nm), erbium yttrium aluminum garnet, 2940-nm and yttrium scandium gallium garnet, 2790-nm lasers are available. In this article, we present an overview of AFR technology, devices and histopathology, and we summarize the current clinical possibilities...... of a variety of skin conditions, primarily chronically photodamaged skin, but also acne and burn scars. In addition, it is anticipated that AFR can be utilized in the laser-assisted delivery of topical drugs. Clinical efficacy coupled with minimal downtime has driven the development of various fractional...

  2. Evaluation of ablation efficiency and surface morphology of human teeth upon irradiation with femtosecond laser pulses

    Science.gov (United States)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2014-11-01

    This study investigates changes in ablation efficiency and surface morphology induced in human dental enamel and dentin upon interaction with femtosecond laser pulses at variable energies and number of laser pulses. Craters were created using a Ti:sapphire femtosecond laser ablation system operating at a wavelength of 785 nm, pulse width of 130 fs, and repetition rate of 20 Hz. Various techniques, such as optical and scanning electron microscopy and inductively coupled plasma mass spectrometry (ICP-MS), were used to evaluate ablation depth, amount of material ablated, and surface morphology of the craters. Ablation rate (ablation depth per pulse) was found to be lower in enamel than dentin with the maximum rate occurring at fluence of 12.4 J cm-2 in both materials. A drop in ablation rate was observed for fluence greater than 12.4 J cm-2 and was attributed to attenuation of laser energy due to interaction with the laser-generated particles. Above this fluence, signs of thermal effects, such as melting and formation of droplets of molten material at the sample surface, were observed. The response of the ICP-MS indicated that the amount of ablated material removed from dentin is greater than that removed from enamel by a factor of 1.5 or more at all investigated fluence.

  3. Selective excavation of decalcified dentin using a mid-infrared tunable nanosecond pulsed laser: wavelength dependency in the 6 μm wavelength range

    Science.gov (United States)

    Ishii, Katsunori; Saiki, Masayuki; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2011-07-01

    Selective caries treatment has been anticipated as an essential application of dentistry. In clinic, some lasers have already realized the optical drilling of dental hard tissue. However, conventional lasers lack the selectivity, and still depend on the dentist's ability. Based on the absorption property of carious dentin, 6 μm wavelength range shows specific absorptions and promising characteristics for excavation. The objective of this study is to develop a selective excavation of carious dentin by using the laser ablation with 6 μm wavelength range. A mid-infrared tunable pulsed laser was obtained by difference-frequency generation technique. The wavelength was tuned around the absorption bands called amide 1 and amide 2. In the wavelength range from 5.75 to 6.60 μm, the difference of ablation depth between demineralized and normal dentin was observed. The wavelength at 6.02 μm and the average power density of 15 W/cm2, demineralized dentin was removed selectively with less-invasive effect on normal dentin. The wavelength at 6.42 μm required the increase of average power density, but also showed the possibility of selective ablation. This study provided a valuable insight into a wavelength choice for a novel dental laser device under development for minimal intervention dentistry.

  4. Laser ablation comparison by picosecond pulses train and nanosecond pulse

    Science.gov (United States)

    Lednev, V. N.; Filippov, M. N.; Bunkin, A. F.; Pershin, S. M.

    2015-12-01

    A comparison of laser ablation by a train of picosecond pulses and nanosecond pulses revealed a difference in laser craters, ablation thresholds, plasma sizes and spectral line intensities. Laser ablation with a train of picosecond pulses resulted in improved crater quality while ablated mass decreased up to 30%. A reduction in laser plasma dimensions for picosecond train ablation was observed while the intensity of atomic/ionic lines in the plasma spectra was greater by a factor of 2-4 indicating an improved excitation and atomization in the plasma.

  5. Measurements of erbium laser-ablation efficiency in hard dental tissues under different water cooling conditions.

    Science.gov (United States)

    Kuščer, Lovro; Diaci, Janez

    2013-10-01

    Laser triangulation measurements of Er:YAG and Er,Cr:YSGG laser-ablated volumes in hard dental tissues are made, in order to verify the possible existence of a "hydrokinetic" effect that has been proposed as an alternative to the "subsurface water expansion" mechanism for hard-tissue laser ablation. No evidence of the hydrokinetic effect could be observed under a broad range of tested laser parameters and water cooling conditions. On the contrary, the application of water spray during laser exposure of hard dental material is observed to diminish the laser-ablation efficiency (AE) in comparison with laser exposure under the absence of water spray. Our findings are in agreement with the generally accepted principle of action for erbium laser ablation, which is based on fast subsurface expansion of laser-heated water trapped within the interstitial structure of hard dental tissues. Our measurements also show that the well-known phenomenon of ablation stalling, during a series of consecutive laser pulses, can primarily be attributed to the blocking of laser light by the loosely bound and recondensed desiccated minerals that collect on the tooth surface during and following laser ablation. In addition to the prevention of tooth bulk temperature buildup, a positive function of the water spray that is typically used with erbium dental lasers is to rehydrate these minerals, and thus sustaining the subsurface expansion ablation process. A negative side effect of using a continuous water spray is that the AE gets reduced due to the laser light being partially absorbed in the water-spray particles above the tooth and in the collected water pool on the tooth surface. Finally, no evidence of the influence of the water absorption shift on the hypothesized increase in the AE of the Er,Cr:YSGG wavelength is observed.

  6. Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters.

    Science.gov (United States)

    Bello-Silva, Marina Stella; Wehner, Martin; Eduardo, Carlos de Paula; Lampert, Friedrich; Poprawe, Reinhart; Hermans, Martin; Esteves-Oliveira, Marcella

    2013-01-01

    This study aimed to evaluate the possibility of introducing ultra-short pulsed lasers (USPL) in restorative dentistry by maintaining the well-known benefits of lasers for caries removal, but also overcoming disadvantages, such as thermal damage of irradiated substrate. USPL ablation of dental hard tissues was investigated in two phases. Phase 1--different wavelengths (355, 532, 1,045, and 1,064 nm), pulse durations (picoseconds and femtoseconds) and irradiation parameters (scanning speed, output power, and pulse repetition rate) were assessed for enamel and dentin. Ablation rate was determined, and the temperature increase measured in real time. Phase 2--the most favorable laser parameters were evaluated to correlate temperature increase to ablation rate and ablation efficiency. The influence of cooling methods (air, air-water spray) on ablation process was further analyzed. All parameters tested provided precise and selective tissue ablation. For all lasers, faster scanning speeds resulted in better interaction and reduced temperature increase. The most adequate results were observed for the 1064-nm ps-laser and the 1045-nm fs-laser. Forced cooling caused moderate changes in temperature increase, but reduced ablation, being considered unnecessary during irradiation with USPL. For dentin, the correlation between temperature increase and ablation efficiency was satisfactory for both pulse durations, while for enamel, the best correlation was observed for fs-laser, independently of the power used. USPL may be suitable for cavity preparation in dentin and enamel, since effective ablation and low temperature increase were observed. If adequate laser parameters are selected, this technique seems to be promising for promoting the laser-assisted, minimally invasive approach.

  7. Advantages of dual-laser ablation in the growth of multicomponent thin films

    Science.gov (United States)

    Mukherjee, Devajyoti; Hyde, Robert; Mukherjee, Pritish; Witanachchi, Sarath

    2012-07-01

    We report the use of a dual-laser deposition process to grow stoichiometric films of the piezoelectric material PbZr0.52Ti0.48O3 (PZT) and the thermoelectric material Ba8Ga16Ge30. High volatility of Pb and Ba in these materials leads to non-stoichiometric growth in conventional PLD processes. Dual-laser ablation process preserves the Pb and Ba stoichiometry while significantly reducing the thickness variation and particulate density on the deposited films. This lead to the growth of smooth uniform films with enhanced ferroelectric and electrical properties. The dual-laser ablation combines the pulses of a KrF excimer laser (248 nm wavelength, 30 ns pulse width) and a CO2 laser (10.6 μm wavelength, 250 ns pulse width) where the beams are spatially overlapped on the ablation target and temporally delayed. At an optimum delay that is dependent on the physical properties of the material, CO2 pulse energy is coupled into the plume, generating a high temperature plasma (>25,000K). Laser-target interaction studies have shown the evaporation to be stoichiometric. Emission spectroscopy studies have shown ten-fold increase in emission intensities in dual-laser ablation while time-gated 2D ICCD imaging studies revealed the plume expansion to be stoichiometric over a large cone-angle of the plume under these conditions. Time-of-flight investigations in concert with hydrodynamic modeling provided a clear understanding of the mechanism of dual-laser ablation. Furthermore, plasma generated in the process is highly ionized (>75%) leading to films with high density and crystallinity. This paper will show the enhancement in properties attainable by the dual-laser ablation process in comparison to the single laser ablation.

  8. Selective ablation of photovoltaic materials with UV laser sources for monolithic interconnection of devices based on a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Molpeceres, C. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain)], E-mail: carlos.molpeceres@upm.es; Lauzurica, S.; Garcia-Ballesteros, J.J.; Morales, M.; Guadano, G.; Ocana, J.L. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain); Fernandez, S.; Gandia, J.J. [Dept. de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda, Complutense 22, 28040 Madrid (Spain); Villar, F.; Nos, O.; Bertomeu, J. [CeRMAE Dept. Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)

    2009-03-15

    Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.

  9. Selective ablation of photovoltaic materials with UV laser sources for monolithic interconnection of devices based on a-Si:H

    International Nuclear Information System (INIS)

    Molpeceres, C.; Lauzurica, S.; Garcia-Ballesteros, J.J.; Morales, M.; Guadano, G.; Ocana, J.L.; Fernandez, S.; Gandia, J.J.; Villar, F.; Nos, O.; Bertomeu, J.

    2009-01-01

    Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.

  10. Modeling CO2 Laser Ablative Impulse with Polymers

    International Nuclear Information System (INIS)

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-01-01

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO 2 laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO 2 laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  11. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  12. XUV-laser induced ablation of PMMA with nano-, pico-, and femtosecond pulses

    Czech Academy of Sciences Publication Activity Database

    Juha, Libor; Bittner, Michal; Chvostová, Dagmar; Létal, V.; Krása, Josef; Otčenášek, Zdeněk; Kozlová, Michaela; Polan, Jiří; Präg R., Ansgar; Rus, Bedřich; Stupka, Michal; Krzywinski, J.; Andrejczuk, A.; Pelka, J. B.; Sobierajski, R.; Ryc, L.; Feldhaus, J.; Boody, F. P.; Grisham, M. E.; Vaschenko, G. O.; Menoni, C.S.; Rocca, J.J.

    144-147, - (2005), s. 929-932 ISSN 0368-2048 R&D Projects: GA MŠk(CZ) 1P04LA235; GA MŠk(CZ) LN00A100 Institutional research plan: CEZ:AV0Z10100523 Keywords : XUV lasers * soft x-ray lasers * ablation * pulse duration effects * wavelength effects * poly(methyl methacrylate) * PMMA Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.183, year: 2005

  13. Ablation of polymers by ultraviolet pulsed laser

    International Nuclear Information System (INIS)

    Brezini, A.; Benharrats, N.

    1993-08-01

    The surface modifications of different polymers treated by far UV-Excimer laser (λ = 193mn, 248, 308nm) are analysed by X-Ray Photoelectrons Spectroscopy. The main feature observed depends strongly on the absorption coefficients. For the high absorbing polymers such (PVC, PS, PI,...) the mechanism of the UV-Excimer Laser interaction appears to be governed by an ablative photodecomposition process (APD) with an APD threshold. In the other limit, i.e. low absorbing polymer the interaction leads to a photothermal process. (author). 51 refs, 24 figs, 7 tabs

  14. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito [Graduate School of Engineering, Tohoku University, 6-6-05 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579 (Japan)

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  15. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    International Nuclear Information System (INIS)

    Kita, Tomohiro; Tang, Rui; Yamada, Hirohito

    2015-01-01

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range

  16. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

    International Nuclear Information System (INIS)

    Babushok, V.I.; DeLucia, F.C.; Gottfried, J.L.; Munson, C.A.; Miziolek, A.W.

    2006-01-01

    A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations have been suggested for the realization of the double pulse laser induced breakdown spectroscopy technique: collinear, orthogonal pre-spark, orthogonal pre-heating and dual pulse crossed beam modes. In addition, combinations of laser pulses with different wavelengths, different energies and durations were studied, thus providing flexibility in the choice of wavelength, pulse width, energy and pulse sequence. The double pulse laser induced breakdown spectroscopy approach provides a significant enhancement in the intensity of laser induced breakdown spectroscopy emission lines up to two orders of magnitude greater than a conventional single pulse laser induced breakdown spectroscopy. The double pulse technique leads to a better coupling of the laser beam with the plasma plume and target material, thus providing a more temporally effective energy delivery to the plasma and target. The experimental results demonstrate that the maximum effect is obtained at some optimum separation delay time between pulses. The optimum value of the interpulse delay depends on several factors, such as the target material, the energy level of excited states responsible for the emission, and the type of enhancement process considered. Depending on the specified parameter, the enhancement effects were observed on different time scales ranging from the picosecond time level (e.g., ion yield, ablation mass) up to the hundred microsecond level (e.g., increased emission intensity for laser induced breakdown spectroscopy of submerged metal target in water). Several suggestions have been proposed to explain

  17. Laser ablation of the protein lysozyme

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Amoruso, Salvatore

    Lysozyme is a well-known protein, which is used in food processing because of its bactericidal properties. The mass (14307 amu) is in the range in which it easily can be monitored by mass spectrometric methods, for example by MALDI (Matrix assisted laser desorption ionization). We have recently...... to a substrate as intact molecules by the violent laser impact ( up to 50 mJ/pulse) has not yet been understood. One issue is that up to 150 ng/pulse is removed by the laser, and much of the material is ejected from the target in relatively large chunks. We have explored as well the excitation mechanics by laser...... impact. Samples of pressed lysozyme prepared in the same manner as in ns-experiments have been irradiated at 527 nm with >>300-fs pulses and at a similar fluence as in ns ablation. Even though the pulse energy was much smaller, there was a considerable ablation weight loss of lysozyme from each shot...

  18. Human cornea wound healing in organ culture after Er:YAG laser ablation

    Science.gov (United States)

    Shen, Jin-Hui; Joos, Karen M.; Robinson, Richard D.; Shetlar, Debra J.; O'Day, Denis M.

    1998-06-01

    Purpose: To study the healing process in cultured human corneas after Er:YAG laser ablation. Methods: Human cadaver corneas within 24 hours post mortem were ablated with a Q- switched Er:YAG laser at 2.94 micrometer wavelength. The radiant exposure was 500 mJ/cm2. The cornea was cultured on a tissue supporting frame immediately after the ablation. Culture media consisted of 92% minimum essential media, 8% fetal bovine serum, 0.125% HEPES buffer solution, 0.125% gentamicin, and 0.05% fungizone. The entire tissue frame and media container were kept in an incubator at 37 degrees Celsius and 5% CO2. Serial macroscopic photographs of the cultured corneas were taken during the healing process. Histology was performed after 30 days of culture. Results: A clear ablated crater into the stroma was observed immediately after the ablation. The thickness of thermal damage ranges between 1 and 25 micrometer. Haze development within the crater varies from the third day to the fourteenth day according to the depth and the roughness of the crater. Histologic sections of the cultured cornea showed complete re- epithelization of the lased area. Loose fibrous tissue is observed filling the ablated space beneath the epithelium. The endothelium appeared unaffected. Conclusions: The intensity and time of haze development appears dependent upon the depth of the ablation. Cultured human corneas may provide useful information regarding the healing process following laser ablation.

  19. Dentin ablation-rate measurements in endodontics witj HF and CO2 laser radiation

    Science.gov (United States)

    Makropoulou, Mersini I.; Serafetinides, Alexander A.; Khabbaz, Marouan; Sykaras, Sotirios; Tsikrikas, G. N.

    1996-01-01

    Recent studies focused on the ability of the laser light to enlarge the root canal during the endodontic therapy. The aim of this research is the experimental and theoretical study of the ablation rate of two infrared laser wavelengths on dentin. Thirty freshly extracted human teeth were longitudinally sectioned at thicknesses ranged from 0.5 to 2 mm, and irradiated on the root canal dentin. The measured ablation rates in dentinal wall of the root canal showed that the HF laser at 2.9 micrometer can more effectively penetrate into the tissue, whereas the carbon dioxide laser at 10.6 micrometer leads to high thermal damage of the ablation crater surroundings.

  20. Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser

    Science.gov (United States)

    Jing, QI; Siqi, ZHANG; Tian, LIANG; Ke, XIAO; Weichong, TANG; Zhiyuan, ZHENG

    2018-03-01

    The ablation characteristics of carbon-doped glycerol were investigated in laser plasma propulsion using a pulse laser with 10 ns pulse width and 1064 nm wavelength. The results showed that with the incident laser intensity increasing, the target momentum decreased. Results still indicated that the strong plasma shielded the consumption loss and resulted in a low coupling coefficient. Furthermore, the carbon-doping gave rise to variations in the laser focal position and laser intensity, which in turn reduced the glycerol splashing. Based on the glycerol viscosity and the carbon doping, a high specific impulse is anticipated.

  1. CT Guided Laser Ablation of Osteoid Osteoma

    Directory of Open Access Journals (Sweden)

    Manohar Kachare

    2015-10-01

    Full Text Available To present our experience of Computed Tomography (CT guided laser ablation of radiologically proven osteoid osteoma in the inter trochantric region of the femur. A19 year old female presented with severe pain in left upper thigh region since 6-7 months, which was exaggerated during nights and was relived on taking oral Non Steroid Anti Inflammatory Drugs (NSAIDs. On CT scan hypodense lesion with surrounding dense sclerosis noted in intertrochanteric region in left femur. Magnetic Resonance Imaging (MRI revealed small focal predominantly cortical, oval lytic lesion in the intertrochanteric region which appeared hypointense on T1 Weighted Image (T1WI and hyperintense on T2 Weighted Image (T2WI and Short Tau Inversion Recovery (STIR image. Diffuse extensive sclerosis and hyperostosis of bone was noted surrounding the lesion appearing hypointense on T1W and T2W images. Under local anesthesia the laser fibre was inserted in the nidus under CT guidance through bone biopsy needle and 1800 joules energy delivered in the lesion continuous mode. Complete relief of pain noted after 24 hours after the treatment. CT guided LASER ablation is a safe, simple and effective method of treatment for osteoid osteoma.

  2. Synthesis by picosecond laser ablation of ligand-free Ag and Au nanoparticles for SERS applications

    Science.gov (United States)

    Fazio, Enza; Spadaro, Salvatore; Santoro, Marco; Trusso, Sebastiano; Lucotti, Andrea.; Tommasini, Matteo.; Neri, Fortunato; Maria Ossi, Paolo

    2018-01-01

    The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS) measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  3. Surface microstructure and chemistry of polyimide by single pulse ablation of picosecond laser

    Science.gov (United States)

    Du, Qifeng; Chen, Ting; Liu, Jianguo; Zeng, Xiaoyan

    2018-03-01

    Polyimide (PI) surface was ablated by the single pulse of picosecond laser, and the effects of laser wavelength (λ= 355 nm and 1064 nm) and fluence on surface microstructure and chemistry were explored. Scanning electron microscopy (SEM) analysis found that different surface microstructures, i.e., the concave of concentric ring and the convex of porous circular disk, were generated by 355 nm and 1064 nm picosecond laser ablation, respectively. X-ray photoelectron spectroscopy (XPS) characterization indicated that due to the high peak energy density of picosecond laser, oxygen and nitrogen from the ambient were incorporated into the PI surface mainly in the form of Cdbnd O and Csbnd Nsbnd C groups. Thus, both of the O/C and N/C atomic content ratios increased, but the increase caused by 1064 nm wavelength laser was larger. It inferred that the differences of PI surface microstructures and chemistry resulted from different laser parameters were related to different laser-matter interaction effects. For 355 nm picosecond laser, no obvious thermal features were observed and the probable ablation process of PI was mainly governed by photochemical effect; while for 1064 nm picosecond laser, obvious thermal feature appeared and photothermal effect was thought to be dominant.

  4. An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum

    Science.gov (United States)

    Xu, Shi-zhen; Yao, Cai-zhen; Dou, Hong-qiang; Liao, Wei; Li, Xiao-yang; Ding, Ren-jie; Zhang, Li-juan; Liu, Hao; Yuan, Xiao-dong; Zu, Xiao-tao

    2017-06-01

    Ablation rates of K9 glass were studied as a function of femtosecond laser fluences. The central wavelength was 800 nm, and pulse durations of 35 fs and 500 fs in air and vacuum were employed. Ablation thresholds of 0.42 J/cm2 and 2.1 J/cm2 were obtained at 35 fs and 500 fs, respectively, which were independent with the ambient conditions and depend on the incident pulse numbers due to incubation effects. The ablation rate of 35 fs pulse laser increased with the increasing of laser fluence in vacuum, while in air condition, it slowly increased to a plateau at high fluence. The ablation rate of 500 fs pulse laser showed an increase at low fluence and a slow drop of ablation rate was observed at high fluence in air and vacuum, which may due to the strong defocusing effects associated with the non-equilibrium ionization of air, and/or the shielding effects of conduction band electrons (CBEs) produced by multi-photon ionization and impact ionization in K9 glass surface. The typical ablation morphologies, e.g. smooth zone and laser-induced periodic surface structures (LIPSS) were also presented and illustrated.

  5. Obtention of Ti nanoparticles by laser ablation

    International Nuclear Information System (INIS)

    Diaz E, J.R.; Escobar A, L.; Camps, E.; Santiago, P.; Ascencio, J.

    2002-01-01

    The obtention of Ti nanoparticles around 5-30 nm diameter through the laser ablation technique is reported. The formation of nanoparticles is carried out in He atmosphere to different pressures, placing directly in Si substrates (100) and in Cu grids. The results show that the work pressure is an important parameter that allows to control the nanoparticles size. Also the plasma characterization results are presented where the Ti II is the predominant specie with an average kinetic energy of 1824 eV. (Author)

  6. Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation.

    Science.gov (United States)

    Jia, Yuechen; Dong, Ningning; Chen, Feng; Vázquez de Aldana, Javier R; Akhmadaliev, Sh; Zhou, Shengqiang

    2012-04-23

    We report on the fabrication of ridge waveguide in Nd:GGG crystal by using swift C(5+) ion irradiation and femtosecond laser ablation. At room temperature continuous wave laser oscillation at wavelength of ~1063 nm has been realized through the optical pump at 808 nm with a slope efficiency of 41.8% and the pump threshold is 71.6 mW. © 2012 Optical Society of America

  7. Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid

    Science.gov (United States)

    Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.

    2018-03-01

    Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.

  8. Topography-guided treatment of decentered laser ablation using LaserSight's excimer laser.

    Science.gov (United States)

    Wu, L; Zhou, X; Ouyang, Z; Weng, C; Chu, R

    2008-01-01

    To assess the efficacy of topography-guided laser ablation for correction of previously decentered laser ablation using LaserSight's excimer laser. Re-treatment was performed to correct decentered ablation using LaserSight's excimer laser for 18 patients who previously underwent LASIK surgery for myopia correction in both eyes. For each patient, only the decentered eye was re-treated while the other asymptomatic eye forms a control group for this study. Measurements were conducted on ablation center, best spectacle-corrected visual acuity (BSCVA), contrast sensitivity and corneal aberrations pre- and post-operatively. For the retreated 18 eyes, the mean decentration was significantly reduced from 1.32+/-0.28mm to 0.61+/-0.23mm post-operatively (t=16.24, pTopography-guided ablation with LaserSight excimer laser is effective to correct decentered ablation. However, the re-treated eye is still inferior to the eye with originally centered ablation in corneal optical quality or visual performance.

  9. Silver jewelry microanalysis with dual-pulse laser-induced breakdown spectroscopy: 266 + 1064 nm wavelength combination.

    Science.gov (United States)

    Mo, Junyu; Chen, Yuqi; Li, Runhua

    2014-11-01

    Orthogonal dual-wavelength dual-pulse laser-induced breakdown spectroscopy (ODWDP-LIBS) with 266+1064  nm wavelength combination was applied to realize silver jewelry microanalysis with enhanced sensitivity and minimal sample ablation. In this technique, the 266 nm laser with low pulse energy was selected as ablation laser and the time-delayed 1064 nm laser with moderate pulse energy was selected as reheating laser to enhance plasma emission. Significant signal enhancement was achieved under the excitation of the reheating laser without increasing mass ablation which was only determined by the ablation laser. Internal standard method was applied to realize quantitative analysis of copper impurity in silver jewelry samples. The calibration curve was built, and the limit of detection of copper in silver matrix was determined to be 37.4 ppm when the crater diameter was controlled at 6.5 μm. This technique is especially useful for microanalysis of precious samples due to the property of less sample ablation in comparison with single-pulse laser-induced breakdown spectroscopy (SP-LIBS) under the same analytical sensitivity.

  10. Nanosecond pulsed laser ablation of silicon in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Karimzadeh, R.; Anvari, J.Z.; Mansour, N. [Shahid Beheshti University, Department of Physics, Tehran (Iran)

    2009-03-15

    Laser fluence and laser shot number are important parameters for pulse laser based micromachining of silicon in liquids. This paper presents laser-induced ablation of silicon in liquids of the dimethyl sulfoxide (DMSO) and the water at different applied laser fluence levels and laser shot numbers. The experimental results are conducted using 15 ns pulsed laser irradiation at 532 nm. The silicon surface morphology of the irradiated spots has an appearance as one can see in porous formation. The surface morphology exhibits a large number of cavities which indicates as bubble nucleation sites. The observed surface morphology shows that the explosive melt expulsion could be a dominant process for the laser ablation of silicon in liquids using nanosecond pulsed laser irradiation at 532 nm. Silicon surface's ablated diameter growth was measured at different applied laser fluences and shot numbers in both liquid interfaces. A theoretical analysis suggested investigating silicon surface etching in liquid by intense multiple nanosecond laser pulses. It has been assumed that the nanosecond pulsed laser-induced silicon surface modification is due to the process of explosive melt expulsion under the action of the confined plasma-induced pressure or shock wave trapped between the silicon target and the overlying liquid. This analysis allows us to determine the effective lateral interaction zone of ablated solid target related to nanosecond pulsed laser illumination. The theoretical analysis is found in excellent agreement with the experimental measurements of silicon ablated diameter growth in the DMSO and the water interfaces. Multiple-shot laser ablation threshold of silicon is determined. Pulsed energy accumulation model is used to obtain the single-shot ablation threshold of silicon. The smaller ablation threshold value is found in the DMSO, and the incubation effect is also found to be absent. (orig.)

  11. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    Science.gov (United States)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  12. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Canteli, D., E-mail: david.canteli@ciemat.es [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Fernandez, S. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Molpeceres, C. [Centro Laser, Universidad Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain); Torres, I.; Gandia, J.J. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. Black-Right-Pointing-Pointer The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. Black-Right-Pointing-Pointer A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 Degree-Sign C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  13. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    International Nuclear Information System (INIS)

    Canteli, D.; Fernandez, S.; Molpeceres, C.; Torres, I.; Gandía, J.J.

    2012-01-01

    Highlights: ► A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. ► The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. ► A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 °C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  14. Synthesis of higher diamondoids by pulsed laser ablation plasmas in supercritical CO2

    Science.gov (United States)

    Nakahara, Sho; Stauss, Sven; Kato, Toru; Sasaki, Takehiko; Terashima, Kazuo

    2011-06-01

    Pulsed laser ablation (wavelength 532 nm; fluence 18 J/cm2; pulse width 7 ns; repetition rate 10 Hz) of highly oriented pyrolytic graphite was conducted in adamantane-dissolved supercritical CO2 with and without cyclohexane as a cosolvent. Micro-Raman spectroscopy of the products revealed the presence of hydrocarbons possessing sp3-hybridized carbons similar to diamond structures. The synthesis of diamantane and other possible diamondoids consisting of up to 12 cages was confirmed by gas chromatography-mass spectrometry. Furthermore, gas chromatography-mass spectrometry measurements of samples before and after pyrolysis treatment indicate the synthesis of the most compact decamantane, namely, superadamantane. It is thought that oxidant species originating from CO2 during pulsed laser ablation might lead to the selective dissociation of C-H bonds, enabling the synthesis of low H/C ratio molecules. Therefore, laser ablation in supercritical CO2 is proposed as a practical method for synthesizing diamondoids.

  15. Renaissance of laser interstitial thermal ablation.

    Science.gov (United States)

    Missios, Symeon; Bekelis, Kimon; Barnett, Gene H

    2015-03-01

    Laser interstitial thermal therapy (LITT) is a minimally invasive technique for treating intracranial tumors, originally introduced in 1983. Its use in neurosurgical procedures was historically limited by early technical difficulties related to the monitoring and control of the extent of thermal damage. The development of magnetic resonance thermography and its application to LITT have allowed for real-time thermal imaging and feedback control during laser energy delivery, allowing for precise and accurate provision of tissue hyperthermia. Improvements in laser probe design, surgical stereotactic targeting hardware, and computer monitoring software have accelerated acceptance and clinical utilization of LITT as a neurosurgical treatment alternative. Current commercially available LITT systems have been used for the treatment of neurosurgical soft-tissue lesions, including difficult to access brain tumors, malignant gliomas, and radiosurgery-resistant metastases, as well as for the ablation of such lesions as epileptogenic foci and radiation necrosis. In this review, the authors aim to critically analyze the literature to describe the advent of LITT as a neurosurgical, laser excision tool, including its development, use, indications, and efficacy as it relates to neurosurgical applications.

  16. Corneal tissue ablation using 6.1 μm quantum cascade laser

    Science.gov (United States)

    Huang, Yong; Kang, Jin U.

    2012-03-01

    High absorption property of tissues in the IR range (λ> 2 μm) results in effective tissue ablation, especially near 3 μm. In the mid-infrared range, wavelengths of 6.1 μm and 6.45 μm fall into the absorption bands of the amide protein groups Amide-I and Amide-II, respectively. They also coincide with the deformation mode of water, which has an absorption peak at 6.1 μm. This coincidence makes 6.1 μm laser a better ablation tool that has promising effectiveness and minimum collateral damages than 3 μm lasers. In this work, we performed bovine corneal ablation test in-vitro using high-power 6.1μm quantum cascade laser (QCL) operated at pulse mode. Quantum cascade laser has the advantages of low cost, compact size and tunable wavelength, which makes it great alternative Mid-IR light source to conventional tunable free-electron lasers (FEL) for medical applications. Preliminary results show that effective corneal stroma craters were achieved with much less collateral damage in corneal tissue that contains less water. Future study will focus on optimizing the control parameters of QCL to attain neat and precise ablation of corneal tissue and development of high peak power QCL.

  17. CuInGaSe{sub 2} nanoparticles by pulsed laser ablation in liquid medium

    Energy Technology Data Exchange (ETDEWEB)

    Mendivil, M.I.; García, L.V. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); Krishnan, B. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); CIIDIT—Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); Avellaneda, D. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); and others

    2015-12-15

    Highlights: • CIGS nanocolloids were synthesized using PLAL technique. • Characterized their morphology, structure, composition and optical properties. • Morphologies were dependent on ablation wavelength and liquid medium. • Optical absorption and bandgap of these nanocolloids were tunable. - Abstract: Pulsed laser ablation in liquid medium (PLALM) is a nanofabrication technique to produce complex nanostructures. CuInGaSe{sub 2} (CIGS) is an alloy with applications in photovoltaic industry. In this work, we studied the effects of laser ablation wavelength, energy fluence and liquid medium on the properties of the CIGS nanoparticles synthesized by PLALM. The nanoparticles obtained were analyzed by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. XPS results confirmed the chemical states and composition of the ablated products. TEM analysis showed different morphologies for the nanomaterials obtained in different liquid media and ablation wavelengths. The optical properties for these CIGS nanocolloids were analyzed using UV–vis absorption spectroscopy. The results demonstrated the use of PLALM as a useful synthesis technique for nanoparticles of quaternary photovoltaic materials.

  18. Mid-IR enhanced laser ablation molecular isotopic spectrometry

    Science.gov (United States)

    Brown, Staci; Ford, Alan; Akpovo, Codjo A.; Johnson, Lewis

    2016-08-01

    A double-pulsed laser-induced breakdown spectroscopy (DP-LIBS) technique utilizing wavelengths in the mid-infrared (MIR) for the second pulse, referred to as double-pulse LAMIS (DP-LAMIS), was examined for its effect on detection limits compared to single-pulse laser ablation molecular isotopic spectrometry (LAMIS). A MIR carbon dioxide (CO2) laser pulse at 10.6 μm was employed to enhance spectral emissions from nanosecond-laser-induced plasma via mid-IR reheating and in turn, improve the determination of the relative abundance of isotopes in a sample. This technique was demonstrated on a collection of 10BO and 11BO molecular spectra created from enriched boric acid (H3BO3) isotopologues in varying concentrations. Effects on the overall ability of both LAMIS and DP-LAMIS to detect the relative abundance of boron isotopes in a starting sample were considered. Least-squares fitting to theoretical models was used to deduce plasma parameters and understand reproducibility of results. Furthermore, some optimization for conditions of the enhanced emission was achieved, along with a comparison of the overall emission intensity, plasma density, and plasma temperature generated by the two techniques.

  19. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  20. Laser-induced shockwave propagation from ablation in a cavity

    International Nuclear Information System (INIS)

    Zeng Xianzhong; Mao Xianglei; Mao, Samuel S.; Wen, S.-B.; Greif, Ralph; Russo, Richard E.

    2006-01-01

    The propagation of laser-induced shockwaves from ablation inside of cavities was determined from time-resolved shadowgraph images. The temperature and electron number density of the laser-induced plasma was determined from spectroscopic measurements. These properties were compared to those for laser ablation on the flat surface under the same energy and background gas condition. A theoretical model was proposed to determine the amount of energy and vaporized mass stored in the vapor plume based on these measurements

  1. Single- and dual-wavelength laser pulses induced modification in 10×(Al/Ti)/Si multilayer system

    Energy Technology Data Exchange (ETDEWEB)

    Salatić, B. [University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Petrović, S., E-mail: spetro@vinca.rs [University of Belgrade, Institute of Nuclear Science-Vinča, POB 522, 11001 Belgrade (Serbia); Peruško, D. [University of Belgrade, Institute of Nuclear Science-Vinča, POB 522, 11001 Belgrade (Serbia); Čekada, M.; Panjan, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Pantelić, D.; Jelenković, B. [University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)

    2016-01-01

    Graphical abstract: - Highlights: • Experimental and numerical study of laser-induced ablation and micro-sized crater formation. • Dual-wavelength pulses induce creation of wider and deeper craters due to synergies of two processes. • Sunflower-like structure formed by dual-wavelength pulses at low irradiance. • Numerical model of nanosecond pulsed laser ablation for complex (Al/Ti)/Si system has been developed. - Abstract: The surface morphology of the ablation craters created in the multilayer 10×(Al/Ti)/Si system by nanosecond laser pulses at single- and dual wavelength has been studied experimentally and numerically. A complex multilayer thin film including ten (Al/Ti) bilayers deposited by ion sputtering on Si(1 0 0) substrate to a total thickness of 260 nm were illuminated at different laser irradiance in the range 0.25–3.5 × 10{sup 9} W cm{sup −2}. Single pulse laser irradiation was done at normal incidence in air, with the single wavelength, either at 532 nm or 1064 nm or with both laser light simultaneously in the ratio of 1:10 for energy per pulse between second harmonic and 1064 nm. Most of the absorbed laser energy was rapidly transformed into heat, producing intensive modifications of composition and morphology on the sample surface. The results show an increase in surface roughness, formation of specific nanostructures, appearance of hydrodynamic features and ablation of surface material with crater formation. Applying a small fraction (10%) of the second harmonic in dual-wavelength pulses, a modification of the 10×(Al/Ti)/Si system by a single laser pulse was reflected in the formation of wider and/or deeper craters. Numerical calculations show that the main physical mechanism in ablation process is normal evaporation without phase explosion. The calculated and experimental results agree relatively well for the whole irradiance range, what makes the model applicable to complex Al/Ti multilayer systems.

  2. Multiple Wavelength Quantum Dot Lasers (MW-QDL)

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative method to achieve optical gain over a wide spectral range using new laser materials is being investigated.  Multiple wavelength quantum dot lasers...

  3. Wavelength initialization employing wavelength recognition scheme in WDM-PON based on tunable lasers

    Science.gov (United States)

    Mun, Sil-Gu; Lee, Eun-Gu; Lee, Jong Hyun; Lee, Sang Soo; Lee, Jyung Chan

    2015-01-01

    We proposed a simple method to initialize the wavelength of tunable lasers in WDM-PON employing wavelength recognition scheme with an optical filter as a function of wavelength and accomplished plug and play operation. We also implemented a transceiver based on our proposed wavelength initialization scheme and then experimentally demonstrated the feasibility in WDM-PON configuration guaranteeing 16 channels with 100 GHz channel spacing. Our proposal is a cost-effective and easy-to-install method to realize the wavelength initialization of ONU. In addition, this method will support compatibility with all kind of tunable laser regardless of their structures and operating principles.

  4. Ex vivo comparison of the tissue effects of six laser wavelengths for potential use in laser supported partial nephrectomy

    Science.gov (United States)

    Khoder, Wael Y.; Zilinberg, Katja; Waidelich, Raphaela; Stief, Christian G.; Becker, Armin J.; Pangratz, Thomas; Hennig, Georg; Sroka, Ronald

    2012-06-01

    Laparoscopic/robotic partial nephrectomy (LPN) is increasingly considered for small renal tumors (RT). This demands new compatible surgical tools for RT-resection, such as lasers, to optimize cutting and coagulation. This work aims to characterize ex vivo handling requirements for six medically approved laser devices emitting different light wavelengths (940, 1064, 1318, 1470, 1940, and 2010 nm) amenable for LPN. Incisions were made by laser fibers driven by a computer-controlled stepping motor allowing precise linear movement with a preset velocity at a fixed fiber-tip distance to tissue. Optical parameters were measured on 200 μm tissue slices. Cutting quality depended on power output, fiber velocity and fiber-tip distance to tissue. Contact manner is suitable for cutting while a noncontact manner (5 mm distance) induces coagulation. Ablation threshold differs for each wavelength. Ablation depth is proportional to power output (within limit) while axial and superficial coagulation remains mostly constant. Increased fiber velocity compromises the coagulation quality. Optical parameters of porcine kidney tissue demonstrate that renal absorption coefficient follows water absorption in the 2 μm region while for other spectral regions (900 to 1500 and 1 μm) the tissue effects are influenced by other chromophores and scattering. Tissue color changes demonstrate dependencies on irradiance, scan velocity, and wavelength. Current results clearly demonstrate that surgeons considering laser-assisted RT excisions should be aware of the mentioned technical parameters (power output, fiber velocity and fiber-tip tissue-distance) rather than wavelength only.

  5. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation

    OpenAIRE

    González-Castillo, JR; Rodriguez, E.; Jimenez-Villar, E.; Rodríguez, D.; Salomon-García, I.; de Sá, Gilberto F.; García-Fernández, T.; Almeida, DB; Cesar, CL; Johnes, R.; Ibarra, Juana C.

    2015-01-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redo...

  6. A comparison of the DPSS UV laser ablation characteristic of 1024 and H10F WC-Co

    Science.gov (United States)

    See, Tian Long; Chantzis, Dimitrios; Royer, Raphael; Metsios, Ioannis; Antar, Mohammad; Marimuthu, Sundar

    2017-07-01

    An investigation on ablation characteristics of 1024 and H10F cobalt cemented tungsten carbide (WC-Co) with a DPSS nanosecond UV laser (50 ns pulse width, 355 nm wavelength, 90 W average power and 10 kHz repetition rate) is presented. The ablation characteristic parameters such as ablation threshold, incubation effect and optical penetration depth were evaluated based on the spot ablation diameter and depth. It was observed that the ablation threshold is significantly influenced by the number of pulses (NOP) and it decreases with increase NOP which is attributed to the incubation effect. Only one ablation region is observed at low laser fluence and an additional molten ablation region is observed at high laser fluence accompanied with cracks. The cracks formation is due to the thermal induced stress and changes in WC microstructure during laser beam irradiation. The crack depth is proportional to the thickness of the molten WC region. The ablation threshold of 1024 WC-Co and H10F WC-Co were found to be Fth1 =4.32 J/cm2 and Fth1 =4.26 J/cm2 respectively. The difference in chemical composition has insignificant effect on the ablation threshold value of the material. The incubation factor and optical penetration depth values of 1024 WC-Co and H10F WC-Co were found to be ξ=0.73, α-1 =411 nm and ξ=0.75, α-1 =397 nm respectively.

  7. Dual-Wavelength Internal-Optically-Pumped Semiconductor Laser Diodes

    Science.gov (United States)

    Green, Benjamin

    Dual-wavelength laser sources have various existing and potential applications in wavelength division multiplexing, differential techniques in spectroscopy for chemical sensing, multiple-wavelength interferometry, terahertz-wave generation, microelectromechanical systems, and microfluidic lab-on-chip systems. In the drive for ever smaller and increasingly mobile electronic devices, dual-wavelength coherent light output from a single semiconductor laser diode would enable further advances and deployment of these technologies. The output of conventional laser diodes is however limited to a single wavelength band with a few subsequent lasing modes depending on the device design. This thesis investigates a novel semiconductor laser device design with a single cavity waveguide capable of dual-wavelength laser output with large spectral separation. The novel dual-wavelength semiconductor laser diode uses two shorter- and longer-wavelength active regions that have separate electron and hole quasi-Fermi energy levels and carrier distributions. The shorter-wavelength active region is based on electrical injection as in conventional laser diodes, and the longer-wavelength active region is then pumped optically by the internal optical field of the shorter-wavelength laser mode, resulting in stable dual-wavelength laser emission at two different wavelengths quite far apart. Different designs of the device are studied using a theoretical model developed in this work to describe the internal optical pumping scheme. The carrier transport and separation of the quasi-Fermi distributions are then modeled using a software package that solves Poisson's equation and the continuity equations to simulate semiconductor devices. Three different designs are grown using molecular beam epitaxy, and broad-area-contact laser diodes are processed using conventional methods. The modeling and experimental results of the first generation design indicate that the optical confinement factor of the

  8. Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser.

    Science.gov (United States)

    Lin, Taichen; Aoki, Akira; Saito, Norihito; Yumoto, Masaki; Nakajima, Sadahiro; Nagasaka, Keigo; Ichinose, Shizuko; Mizutani, Koji; Wada, Satoshi; Izumi, Yuichi

    2016-12-01

    Mid-infrared erbium: yttrium-aluminum-garnet (Er:YAG) and erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers (2.94- and 2.78-μm, respectively) are utilized for effective dental hard tissue treatment because of their high absorption in water, hydroxide ion, or both. Recently, a mid-infrared tunable, nanosecond pulsed, all-solid-state chromium-doped: cadmium-selenide (Cr:CdSe) laser system was developed, which enables laser oscillation in the broad spectral range around 2.9 μm. The purpose of this study was to evaluate the ablation of dental hard tissue by the nanosecond pulsed Cr:CdSe laser at a wavelength range of 2.76-3.00 μm. Enamel, dentin, and cementum tissue were irradiated at a spot or line at a fluence of 0-11.20 J/cm 2 /pulse (energy output: 0-2.00 mJ/pulse) with a repetition rate of 10 Hz and beam diameter of ∼150 μm on the target (pulse width ∼250 ns). After irradiation, morphological changes, ablation threshold, depth, and efficiency, and thickness of the structurally and thermally affected layer of irradiated surfaces were analyzed using stereomicroscopy, scanning electron microscopy (SEM), and light microscopy of non-decalcified histological sections. The nanosecond pulsed irradiation without water spray effectively ablated dental hard tissue with no visible thermal damage such as carbonization. The SEM analysis revealed characteristic micro-irregularities without major melting and cracks in the lased tissue. The ablation threshold of dentin was the lowest at 2.76 μm and the highest at 3.00 μm. The histological analysis revealed minimal thermal and structural changes ∼20 μm wide on the irradiated dentin surfaces with no significant differences between wavelengths. The efficiency of dentin ablation gradually increased from 3.00 to 2.76 μm, at which point the highest ablation efficiency was observed. The nanosecond pulsed Cr:CdSe laser demonstrated an effective ablation ability of hard dental tissues

  9. Studies on perovskite film ablation and scribing with ns-, ps- and fs-laser pulses

    Science.gov (United States)

    Bayer, Lukas; Ye, Xinyuan; Lorenz, Pierre; Zimmer, Klaus

    2017-10-01

    Hybrid organic-inorganic perovskites attract much attention due to their exceptional optoelectronic properties, in particular for photovoltaic (PV) applications. The accurate, high-speed and reliable patterning of the PV films is required for perovskite solar modules fabrication. Laser scribing provides these characteristics needed for industrial fabrication processes. In this work, the laser ablation and scribing of perovskite layers (CH3NH3PbI3: MAPbI3) with different laser sources (ns-, ps-, fs-laser pulses with wavelengths of 248 nm to 2.5 µm) were systematically investigated. The perovskite material was irradiated from both the film side and the substrate (rear side) side to study and compare the particular processes. The patterning results of the perovskite film can be classified into (1) regular laser ablation, (2) thin-film delamination lift-off process, and (3) lift-off with thermal modifications. A particular process, the localised lift-off of single grains from the perovskite film, has been observed and is discussed in relation to the thin-film lift-off process. Ablation and ablation-related mechanisms provide good conditions for laser scribing of the perovskite layer required for module interconnection via P2.

  10. Processing condition influence on the characteristics of gold nanoparticles produced by pulsed laser ablation in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Nikov, R.G., E-mail: rosen_nikov@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Nikolov, A.S.; Nedyalkov, N.N.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Alexandrov, M.T. [Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, Building 25, Sofia 1113 (Bulgaria); Karashanova, D.B. [Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, G. Bonchev Street, Building 109, Sofia 1113 (Bulgaria)

    2013-06-01

    A study is presented of Au nanoparticles (NPs) created by nanosecond pulsed laser ablation of a solid target in double distilled water. The influence was examined of the laser wavelength on the size, shape and optical properties of the resulting NPs. Three different wavelengths: the fundamental (λ = 1064 nm), second (λ{sub SHG} = 532) and third (λ{sub THG} = 355) harmonic of a Nd:YAG laser at the same fluence were utilized to produce various colloids. Ablation at the wavelength of 532 nm was investigated in more detail to reveal the influence of self-absorption by the already created NPs on their characteristics. The colloid produced was irradiated by λ{sub irrad} = 532 nm (laser energy 40 mJ) at different times up to 25 min after the end of ablation. The initial structure of welded NPs forming wires was modified. Transmission electron microscopy and optical transmission measurements were used to evaluate the shape and size distribution of the NPs.

  11. Effect of laser radiation wavelength and reepithelization process on optical quality of eye cornea after laser correction of vision

    Energy Technology Data Exchange (ETDEWEB)

    Kitai, M S; Semchishen, A V; Semchishen, V A [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation)

    2015-10-31

    The optical quality of the eye cornea surface after performing the laser vision correction essentially depends on the characteristic roughness scale (CRS) of the ablated surface, which is mainly determined by the absorption coefficient of the cornea at the laser wavelength. Thus, in the case of using an excimer ArF laser (λ = 193 nm) the absorption coefficient is equal to 39000 cm{sup -1}, the darkening by the dissociation products takes place, and the depth of the roughness relief can be as large as 0.23 mm. Under irradiation with the Er : YAG laser (λ = 2940 nm) the clearing is observed due to the rupture of hydrogen bonds in water, and the relief depth exceeds 1 μm. It is shown that the process of reepithelization that occurs after performing the laser vision correction leads to the improvement of the optical quality of the cornea surface. (interaction of laser radiation with matter)

  12. Characterization, diagnosis and ablation of human teeth using blue laser at 457 nm

    Science.gov (United States)

    El-Sherif, Ashraf F.; Gomaa, Walid; El-Sharkawy, Yasser H.

    2014-02-01

    The light interaction with tissue is governed by the specific wavelength of the laser used and the optical properties of target tissue. Absorption, scattering and fluorescence together can probably be used as the basis of quantitative diagnostic methods for teeth caries. The absorption coefficient of human teeth was determined from detached wet teeth (incisors and premolars). Laser absorption of these teeth was measured using compact blue laser source at wavelength of 457 nm and a high resolution spectrometer equipped with an integrating sphere. The average absorption coefficient of abnormal caries tissue of human teeth is observed to be higher than the normal ones. Detection and diagnosis of caries tissues were monitored by high resolution translational scanning of human teeth. We have a powerful tool to diagnosis a caries region of human teeth using blue laser at 457 nm. Ablations of caries region are investigated using higher power of blue laser at 457 nm.

  13. Keratin film ablation for the fabrication of brick and mortar skin structure using femtosecond laser pulses

    Science.gov (United States)

    Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam

    2015-09-01

    The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.

  14. One-step synthesis of Zn/ZnO hollow nanoparticles by the laser ablation in liquid technique

    International Nuclear Information System (INIS)

    Desarkar, H S; Kumbhakar, P; Mitra, A K

    2013-01-01

    Here, one-step synthesis of Zn/ZnO hollow nanoparticles along with solid nanoparticles is reported using the laser ablation in liquid (LAL) technique. Laser radiation of the 1064 nm wavelength is emitted from a Q-switched Nd:YAG laser and is incident on a solid zinc target kept in a water medium. The as-obtained hollow and solid particles are characterized by transmission electron microscopy (TEM) and UV–visible absorption spectroscopy. Hollow nanoparticles are produced by the laser generated bubbles produced in water. The surface of a hollow nanoparticle is assembled from smaller solid nanoparticles. A strong laser–particle interaction is also observed when laser ablation is carried out for a longer time duration. Photoluminescence (PL) emission measurements at room temperature show that all samples exhibit PL emission in the UV–visible region. A reduction in size and an increase in concentration of the synthesized nanoparticles is observed with increasing laser ablation time. (letter)

  15. Laser tattoo removal with preceding ablative fractional treatment

    Science.gov (United States)

    Cencič, Boris; Možina, Janez; Jezeršek, Matija

    2013-06-01

    A combined laser tattoo removal treatment, first the ablative fractional resurfacing (AFR) with an Er:YAG laser and then the q-switched (QSW) Nd:YAG laser treatment, was studied. Experiments show that significantly higher fluences can be used for the same tissue damage levels.

  16. Identification of photoacoustic transients during pulsed laser ablation of the human temporal bone: an experimental model.

    Science.gov (United States)

    Wong, B J; Dickinson, M R; Berns, M W; Neev, J

    1996-12-01

    Laser ablation of hard tissues during neurotologic operations has been accomplished with continuous-wave (CW) lasers in the visible and midinfrared spectrum. The mechanism of ablation at these wavelengths is secondary to photothermal-induced tissue destruction. As a result, significant thermal damage to surrounding tissue may occur. Pulsed ultraviolet (UV) lasers have been suggested as an alternative to the argon, KTP-532, and CO2 lasers currently used in clinical practice. The pulse length of Excimer lasers are considerably shorter than the thermal diffusion time of bone tissue, and as a consequence thermal injury is minimal. This makes pulsed lasers an attractive tool for tissue ablation in the ear: in essence a "cold knife." However, the short pulse width of Excimer lasers (typically 10-150 ns) can create large thermoelastic stresses in the ablation specimen. This study identifies the presence of these photoacoustic waves during the Excimer laser treatment of the cadaveric human temporal bone. A XeCl (lambda = 308 nm, tau p = 12 ns) excimer laser was used to ablate hard tissue surrounding the oval window and facial ridge with energies of 75, 45, 25, and 12 mJ/pulse. Spot size was estimated to be 0.5 mm2. Custom high-frequency polyvinyldifluoride (PVDF) piezoelectric film transducers were fabricated and attached to the promontory, round window niche, and facial ridges. The signals were amplified using a low-noise preamplifier and recorded on a digitizing oscilloscope. Photoacoustic waves were clearly identified. Notably, large acoustic waves were measured on the promontory and on both sides of the facial ridge. The implications and clinical relevance of these findings is discussed and compared to findings obtained from a model system.

  17. Energy distribution of ions produced by laser ablation of silver in vacuum

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen; Canulescu, Stela

    2013-01-01

    the ablation process. A silver target in vacuum was irradiated with a Nd:YAG laser at a wavelength of 355nm and detailed measurements of the time-resolved angular distribution of plume ions were made. In contrast to earlier work, the beam spot was circular such that any flip-over effect of the plume is avoided......The ion energy in a silver ablation plume for fluence in the range of 0.6–2.4Jcm−2, typical for a pulsed laser deposition (PLD) experiment has been investigated. In this fluence range the ion fraction of the ablated particles becomes gradually dominant and can be utilized to characterize...

  18. Nanosecond laser ablation and deposition of silver, copper, zinc and tin

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Ettlinger, Rebecca Bolt; Canulescu, Stela

    2014-01-01

    Nanosecond pulsed laser deposition of different metals (Ag, Cu, Sn, Zn) has been studied in high vacuum at a laser wavelength of 355 nm and pulse length of 6 ns. The deposition rate is roughly similar for Sn, Cu and Ag, which have comparable cohesive energies, and much higher for the deposition...... of Zn which has a low cohesive energy. The deposition rate for all metals is strongly correlated with the total ablation yield, i.e., the total mass ablated per pulse, reported in the literature except for Sn, for which the deposition rate is low, but the total ablation yield is high. This may...... be explained by the continuous erosion by nanoparticles during deposition of the Sn films which appear to have a much rougher surface than those of the other metals studied in the present work....

  19. Preparation of silver nanoparticles in virgin coconut oil using laser ablation

    Science.gov (United States)

    Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A

    2011-01-01

    Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10−8, 1.6 × 10−8, 2.4 × 10−8, respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method. PMID:21289983

  20. Use of laser ablation in nuclear decontamination

    International Nuclear Information System (INIS)

    Moggia, Fabrice; Lecardonnel, Xavier; Damerval, Frederique

    2012-09-01

    The development and the use of clean decontamination process appear to be one of the main priorities for industries especially for nuclear industries. This is especially due to the fact of wastes minimization which is one of the principal commitments. One answer would be to use a photonic process such as the LASER process. The principle of this process is based on the absorption, by the contaminant, of the photon's energy. This energy then will propagate into the material and create some mechanical waves responsible of the interfaces embrittlement and de-cohesion. As we can see, this process so called LASER ablation does not use any chemicals and allows us to avoid any production of liquid waste. Since now a couple of years, the Clean-Up Business Unit of AREVA group (BE/CL) investigates this new decontamination technology. Many tests have been done in inactive conditions on various simulants such as paints, inks, resins, metallic oxides firstly in order to estimate its efficiency but also to fully qualify it. After that, we decided to move on hot tests to fully validate this new process and to show its interest for the nuclear industry. Those hot tests have been done on two kinds of contaminated material (on tank pieces covered with a thick metallic oxide layer and on metallic pieces covered with grease). Some information such as Scanning Electron Microscopy (SEM), X-Ray scattering spectroscopy and decontamination factors (DF) will be provided in this paper. (authors)

  1. Substrate-Mediated Laser Ablation under Ambient Conditions for Spatially-Resolved Tissue Proteomics.

    Science.gov (United States)

    Fatou, Benoit; Wisztorski, Maxence; Focsa, Cristian; Salzet, Michel; Ziskind, Michael; Fournier, Isabelle

    2015-12-17

    Numerous applications of ambient Mass Spectrometry (MS) have been demonstrated over the past decade. They promoted the emergence of various micro-sampling techniques such as Laser Ablation/Droplet Capture (LADC). LADC consists in the ablation of analytes from a surface and their subsequent capture in a solvent droplet which can then be analyzed by MS. LADC is thus generally performed in the UV or IR range, using a wavelength at which analytes or the matrix absorb. In this work, we explore the potential of visible range LADC (532 nm) as a micro-sampling technology for large-scale proteomics analyses. We demonstrate that biomolecule analyses using 532 nm LADC are possible, despite the low absorbance of biomolecules at this wavelength. This is due to the preponderance of an indirect substrate-mediated ablation mechanism at low laser energy which contrasts with the conventional direct ablation driven by sample absorption. Using our custom LADC system and taking advantage of this substrate-mediated ablation mechanism, we were able to perform large-scale proteomic analyses of micro-sampled tissue sections and demonstrated the possible identification of proteins with relevant biological functions. Consequently, the 532 nm LADC technique offers a new tool for biological and clinical applications.

  2. Substrate-Mediated Laser Ablation under Ambient Conditions for Spatially-Resolved Tissue Proteomics

    Science.gov (United States)

    Fatou, Benoit; Wisztorski, Maxence; Focsa, Cristian; Salzet, Michel; Ziskind, Michael; Fournier, Isabelle

    2015-01-01

    Numerous applications of ambient Mass Spectrometry (MS) have been demonstrated over the past decade. They promoted the emergence of various micro-sampling techniques such as Laser Ablation/Droplet Capture (LADC). LADC consists in the ablation of analytes from a surface and their subsequent capture in a solvent droplet which can then be analyzed by MS. LADC is thus generally performed in the UV or IR range, using a wavelength at which analytes or the matrix absorb. In this work, we explore the potential of visible range LADC (532 nm) as a micro-sampling technology for large-scale proteomics analyses. We demonstrate that biomolecule analyses using 532 nm LADC are possible, despite the low absorbance of biomolecules at this wavelength. This is due to the preponderance of an indirect substrate-mediated ablation mechanism at low laser energy which contrasts with the conventional direct ablation driven by sample absorption. Using our custom LADC system and taking advantage of this substrate-mediated ablation mechanism, we were able to perform large-scale proteomic analyses of micro-sampled tissue sections and demonstrated the possible identification of proteins with relevant biological functions. Consequently, the 532 nm LADC technique offers a new tool for biological and clinical applications. PMID:26674367

  3. Laser ablation for the synthesis of carbon nanotubes

    Science.gov (United States)

    Holloway, Brian C.; Eklund, Peter C.; Smith, Michael W.; Jordan, Kevin C.; Shinn, Michelle

    2010-04-06

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  4. Laser ablation for the synthesis of carbon nanotubes

    Science.gov (United States)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2012-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  5. Preparation of antibacterial textile using laser ablation method

    Science.gov (United States)

    Shahidi, Sheila; Rashidian, M.; Dorranian, D.

    2018-02-01

    A facile in situ laser ablation synthesis of Copper nanoparticles on cotton fabric is reported in this paper. This synthetic method is a laser ablation based fabrication of Cu nanoparticles on cotton fabric for improved performance and antibacterial activity. The treated cotton fabric was characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, UV-Visible spectroscopic techniques and antibacterial counting test. Very good antibacterial behavior of treated fabrics achieved. This fabric can be used as medical and industrial textiles.

  6. Development of laser ablation plasma by anisotropic self-radiation

    Directory of Open Access Journals (Sweden)

    Ohnishi Naofumi

    2013-11-01

    Full Text Available We have proposed a method for reproducing an accurate solution of low-density ablation plasma by properly treating anisotropic radiation. Monte-Carlo method is employed for estimating Eddington tensor with limited number of photon samples in each fluid time step. Radiation field from ablation plasma is significantly affected by the anisotropic Eddington tensor. Electron temperature around the ablation surface changes with the radiation field and is responsible for the observed emission. An accurate prediction of the light emission from the laser ablation plasma requires a careful estimation of the anisotropic radiation field.

  7. Investigations of the damage mechanisms during ultrashort pulse laser ablation of dental tissue

    Science.gov (United States)

    Domke, Matthias; Wick, Sebastian; Laible, Maike; Rapp, Stephan; Kuznetsova, Julia; Homann, Christian; Huber, Heinz P.; Sroka, Ronald

    2015-07-01

    Several investigations of dental tissue ablation with ultrashort pulsed lasers suggest that these lasers enable precise and selective material removal and reduce the formation of micro cracks and thermal effects, when compared to ns-pulses. In this study, two damage mechanisms are presented occurring during ablation of dentin using a laser emitting pulses of a duration of 380 fs at a wavelength of 1040 nm. First, it was found that nano cracks appear around the craters after single fs-pulse ablation. These cracks are directed to the crater and cross the dentinal tubules. Transient investigation of the single fs-pulse ablation process by pump-probe microscopy suggest that the driving mechanism could be a pressure wave that is released after stress confinement. Second, squared ablation holes were created by moving the laser focus at scan speeds between 0.5 mm/s and 2.0 m/s and fluences up to 14 J/cm2. It was found that deep cracks appear at the edges of the squared holes, if the scan speed is about 0.5 m/s. The fluence has only a minor impact on the crack formation. The crack propagation was investigated in the depth using x-ray micro tomography and optical coherence tomography. It was found that these cracks appear in the depth down to the dental pulp. These findings suggest that fast scanning of the laser beam is the key for damage free processing using ultrashort pulse lasers. Then, ablation rates of about 2.5 - 3.5 mm3/min/W can be achieved in dentine with pulse durations of 380 fs.

  8. Effects of Laser Energy Density on Silicon Nanoparticles Produced Using Laser Ablation in Liquid

    Science.gov (United States)

    Kobayashi, Hiroki; Chewchinda, Pattarin; Ohtani, Hiroyuki; Odawara, Osamu; Wada, Hiroyuki

    2013-06-01

    We investigated the morphology of silicon nanoparticles prepared using laser ablation in liquid through varying the energy density and laser irradiation time. Silicon nanoparticles were prepared using laser ablation in liquid. A silicon wafer was irradiated in ethanol using a laser beam (Nd: YAG/second harmonic generation, 532 nm). Crystalline silicon nanoparticles approximately 6 nm in size were observed by TEM observation. The quantity of silicon nanoparticles proportionally increased with an increase in energy density greater than the laser ablation threshold. This quantity also increased with an increase in laser irradiation time without saturation due to absorption of the nanoparticles in liquid in the light path.

  9. Laser ablation with applied magnetic field for electric propulsion

    Science.gov (United States)

    Batishcheva, Alla; Batishchev, Oleg; Cambier, Jean-Luc

    2012-10-01

    Using ultrafast lasers with tera-watt-level power allows efficient ablation and ionization of solid-density materials [1], creating dense and hot (˜100eV) plasma. We propose ablating small droplets in the magnetic nozzle configurations similar to mini-helicon plasma source [2]. Such approach may improve the momentum coupling compared to ablation of solid surfaces and facilitate plasma detachment. Results of 2D modeling of solid wire ablation in the applied magnetic field are presented and discussed. [4pt] [1] O. Batishchev et al, Ultrafast Laser Ablation for Space Propulsion, AIAA technical paper 2008-5294, -16p, 44th JPC, Hartford, 2008.[0pt] [2] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  10. A Multi-Wavelength IR Laser for Space Applications

    Science.gov (United States)

    Li, Steven X.; Yu, Anthony W.; Sun, Xiaoli; Fahey, Molly E.; Numata, Kenji; Krainak, Michael A.

    2017-01-01

    We present a laser technology development with space flight heritage to generate laser wavelengths in the near- to mid-infrared (NIR to MIR) for space lidar applications. Integrating an optical parametric crystal to the LOLA (Lunar Orbiter Laser Altimeter) laser transmitter design affords selective laser wavelengths from NIR to MIR that are not easily obtainable from traditional diode pumped solid-state lasers. By replacing the output coupler of the LOLA laser with a properly designed parametric crystal, we successfully demonstrated a monolithic intra-cavity optical parametric oscillator (iOPO) laser based on all high technology readiness level (TRL) subsystems and components. Several desired wavelengths have been generated including 2.1 microns, 2.7 microns and 3.4 microns. This laser can also be used in trace-gas remote sensing, as many molecules possess their unique vibrational transitions in NIR to MIR wavelength region, as well as in time-of-flight mass spectrometer where desorption of samples using MIR laser wavelengths have been successfully demonstrated.

  11. Wavelength-Agile External-Cavity Diode Laser for DWDM

    Science.gov (United States)

    Pilgrim, Jeffrey S.; Bomse, David S.

    2006-01-01

    A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.

  12. Nickel Nanoparticles Production using Pulsed Laser Ablation under Pressurized CO2

    Science.gov (United States)

    Mardis, Mardiansyah; Takada, Noriharu; Machmudah, Siti; Diono, Wahyu; Kanda, Hideki; Sasaki, Koichi; Goto, Motonobu

    2014-10-01

    We used nickel (Ni) plate as a target and irradiated pulse laser ablation with a fundamental wavelength of 1064 nm under pressurized CO2. The Ni plate was ablated at various pressure (5-15 MPa), temperature (15-80°), and irradiation time (3-30 min). The method successfully generated Ni nanoparticles in various shape and size. Generated Ni nanoparticles collected on a Si wafer and the ablated Ni plate were analyzed by Field Emission Scanning Electron Microscope (FE-SEM). With changing pressure and temperature, the structures of Ni nanoparticles also changed. The shape of generated particles is sphere-like structure with diameter around 10--100 nm. Also it was observed that a network structure of smaller particles was fabricated. The mechanism of nanoparticles fabrication could be explained as follows. Ablated nickel plate melted during the ablation process and larger particles formed, then ejected smaller spherical nanoparticles, which formed nanoclusters attached on the large particles. This morphology of particles was also observed for gold and silver nanoparticles with same condition. Further, the optical emission intensity from ablation plasma and the volume of the ablated crater were also examined under pressurized CO2.

  13. Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Dongfeng [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740 (United States); Semiconductor Photonics Research Center, Department of Physics, Xiamen University, Xiamen 361005 (China); Paeng, Dongwoo; Yeo, Junyeob; Kim, Eunpa; Wang, Letian; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740 (United States); Chen, Songyan [Semiconductor Photonics Research Center, Department of Physics, Xiamen University, Xiamen 361005 (China)

    2016-05-23

    Nanosecond pulsed laser dewetting and ablation of thin silver films is investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 5 ns temporal width are irradiated on silver films of different thicknesses (50 nm, 80 nm, and 350 nm). Below the ablation threshold, it is observed that the dewetting process does not conclude until 630 ns after the laser irradiation for all samples, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to the solidification of transported matter at about 700 ns following the laser pulse exposure. In addition to these features, droplet fingers are superposed upon irradiation of 350-nm thick silver films with higher intensity.

  14. Investigation of Ag nanoparticles produced by nanosecond pulsed laser ablation in water

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, A.S.; Nedyalkov, N.N.; Nikov, R.G.; Atanasov, P.A. [Bulgarian Academy of Sciences, Institute of Electronics, Sofia (Bulgaria); Alexandrov, M.T. [Bulgarian Academy of Sciences, Institute of Experimental Pathology and Parasitology, Sofia (Bulgaria); Karashanova, D.B. [Bulgarian Academy of Sciences, Institute of Optical Materials and Technologies, Sofia (Bulgaria)

    2012-11-15

    A study is presented of the properties of Ag nanoparticles produced by nanosecond pulsed laser ablation in twice-distilled water. An Ag target was immersed in the liquid and irradiated by the fundamental, second, third and fourth harmonics of a Nd:YAG laser system to create different colloids. Two specific boundary values of the laser fluence were applied for each wavelength. The properties of the nanoparticles at different wavelengths of the laser radiation were examined. The characterization of the colloids was performed immediately after their fabrication. Spherical and spherical-like shapes of the nanoparticles created were established. The formation of nanowires was observed when the second and the third harmonics of the laser were used. It is connected with self-absorption of the incident laser light from the already-created nanoparticles and depends also on the laser fluence. The size distribution of the nanoparticles is estimated by transmission electron microscopy. Generally, their mean size and standard deviation decreased as the wavelength of the incident laser light was increased and increased with the increase of the laser fluence. The substantial discrepancy between the results already commented on for both characteristics considered and others, obtained by dynamic light scattering, is discussed. The structure of the nanoparticles was established to be single and polycrystalline, and the phase composition in both cases is identified as consisting of cubic silver. The nanoparticles are slightly oxidized. (orig.)

  15. Characterization of Ag and Au nanoparticles created by nanosecond pulsed laser ablation in double distilled water

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, A.S., E-mail: anastas_nikolov@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Nedyalkov, N.N.; Nikov, R.G.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Alexandrov, M.T. [Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 25, Sofia 1113 (Bulgaria)

    2011-04-01

    Pulsed laser ablation of Ag and Au targets, immersed in double-distilled water is used to synthesize metallic nanoparticles (NPs). The targets are irradiated for 20 min by laser pulses at different wavelengths-the fundamental and the second harmonic (SHG) ({lambda} = 1064 and 532 nm, respectively) of a Nd:YAG laser system. The ablation process is performed at a repetition rate of 10 Hz and with pulse duration of 15 ns. Two boundary values of the laser fluence for each wavelength under the experimental conditions chosen were used-it varied from several J/cm{sup 2} to tens of J/cm{sup 2}. Only as-prepared samples were measured not later than two hours after fabrication. The NPs shape and size distribution were evaluated from transmission electron microscopy (TEM) images. The suspensions obtained were investigated by optical transmission spectroscopy in the near UV and in the visible region in order to get information about these parameters. Spherical shape of the NPs at the low laser fluence and appearance of aggregation and building of nanowires at the SHG and high laser fluence was seen. Dependence of the mean particle size at the SHG on the laser fluence was established. Comments on the results obtained have been also presented.

  16. High contrast optical imaging methods for image guided laser ablation of dental caries lesions

    Science.gov (United States)

    LaMantia, Nicole R.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel

    2014-02-01

    Laser based methods are well suited for automation and can be used to selectively remove dental caries to minimize the loss of healthy tissues and render the underlying enamel more resistant to acid dissolution. The purpose of this study was to determine which imaging methods are best suited for image-guided ablation of natural non-cavitated carious lesions on occlusal surfaces. Multiple caries imaging methods were compared including near-IR and visible reflectance and quantitative light fluorescence (QLF). In order for image-guided laser ablation to be feasible, chemical and physical modification of tooth surfaces due to laser irradiation cannot greatly reduce the contrast between sound and demineralized dental hard tissues. Sound and demineralized surfaces of 48 extracted human molar teeth with non-cavitated lesions were examined. Images were acquired before and after laser irradiation using visible and near-IR reflectance and QLF at several wavelengths. Polarization sensitive-optical coherence tomography was used to confirm that lesions were present. The highest contrast was attained at 1460-nm and 1500-1700-nm, wavelengths coincident with higher water absorption. The reflectance did not decrease significantly after laser irradiation for those wavelengths.

  17. Method of stabilizing a laser apparatus with wavelength converter

    DEFF Research Database (Denmark)

    2013-01-01

    A method of controlling beam quality and stability of a laser apparatus, the laser apparatus comprising, a diode laser (10) providing first radiation of at least a first wavelength, and a frequency conversion unit (12) configured to frequency-convert the first radiation from the diode laser......) into the first section (222), a second contact (221) for injecting a second current (I2) into the second section (223), and means for controlling a temperature of the diode laser; wherein the method comprises monitoring a first parameter indicative of the power content of a dominant lobe of the first radiation...... and to output the frequency-converted radiation (213), the frequency-converted radiation having at least a second wavelength different from the first wavelength, the diode laser (10) comprising at least a first and a second section (222,223), a first contact (220) for injecting a first current (I1...

  18. Ultrafast laser ablation for targeted atherosclerotic plaque removal

    Science.gov (United States)

    Lanvin, Thomas; Conkey, Donald B.; Descloux, Laurent; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-07-01

    Coronary artery disease, the main cause of heart disease, develops as immune cells and lipids accumulate into plaques within the coronary arterial wall. As a plaque grows, the tissue layer (fibrous cap) separating it from the blood flow becomes thinner and increasingly susceptible to rupturing and causing a potentially lethal thrombosis. The stabilization and/or treatment of atherosclerotic plaque is required to prevent rupturing and remains an unsolved medical problem. Here we show for the first time targeted, subsurface ablation of atherosclerotic plaque using ultrafast laser pulses. Excised atherosclerotic mouse aortas were ablated with ultrafast near-infrared (NIR) laser pulses. The physical damage was characterized with histological sections of the ablated atherosclerotic arteries from six different mice. The ultrafast ablation system was integrated with optical coherence tomography (OCT) imaging for plaque-specific targeting and monitoring of the resulting ablation volume. We find that ultrafast ablation of plaque just below the surface is possible without causing damage to the fibrous cap, which indicates the potential use of ultrafast ablation for subsurface atherosclerotic plaque removal. We further demonstrate ex vivo subsurface ablation of a plaque volume through a catheter device with the high-energy ultrafast pulse delivered via hollow-core photonic crystal fiber.

  19. Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air

    International Nuclear Information System (INIS)

    Wang, Z.B.; Hong, M.H.; Lu, Y.F.; Wu, D.J.; Lan, B.; Chong, T.C.

    2003-01-01

    Teflon, polytetrafluorethylene (PTFE), is an important material in bioscience and medical application due to its special characteristics (bio-compatible, nonflammable, antiadhesive, and heat resistant). The advantages of ultrashort laser processing of Teflon include a minimal thermal penetration region and low processing temperatures, precision removal of material, and good-quality feature definition. In this paper, laser processing of PTFE in ambient air by a Ti:sapphire femtosecond laser (780 nm, 110 fs) is investigated. It is found that the pulse number on each irradiated surface area must be large enough for a clear edge definition and the ablated depth increases with the pulse number. The air ionization effect at high laser fluences not only degrades the ablated structures quality but also reduces the ablation efficiency. High quality microstructures are demonstrated with controlling laser fluence below a critical fluence to exclude the air ionization effect. The ablated microstructures show strong adhesion property to liquids and clear edges that are suitable for bio-implantation applications. Theoretical calculation is used to analyze the evolution of the ablated width and depth at various laser fluences

  20. Angular distributions and total yield of laser ablated silver

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Nordskov, A.; Schou, Jørgen

    1997-01-01

    The angular distribution of laser ablated silver has been measured in situ with a newly constructed setup with an array of microbalances. The distribution is strongly peaked in the forward direction corresponding to cospθ, where p varies between 5 and 9 for laser fluences from 2 to 7 J/cm2 at 355...

  1. Assisted laser ablation: silver/gold nanostructures coated with silica

    Science.gov (United States)

    González-Castillo, J. R.; Rodríguez-González, Eugenio; Jiménez-Villar, Ernesto; Cesar, Carlos Lenz; Andrade-Arvizu, Jacob Antonio

    2017-11-01

    The synthesis processes of metallic nanoparticles have seen a growing interest in recent years, mainly by the potential applications of the phenomenon of localized surface plasmon resonance associated with metallic nanoparticles. This paper shows a fast method to synthesize silver, gold and silver/gold alloy nanoparticles coated with a porous silica shell by the assisted laser ablation method in three steps. The method involves a redox chemical reaction where the reducing agent is supplied in nanometric form by laser ablation. In the first step, a silicon target immersed in water is ablated for several minutes. Later, AgNO3 and HAuCl4 aliquots are added to the solution. The redox reaction between the silver and gold ions and products resulting from ablation process can produce silver, gold or silver/gold alloy nanoparticles coated with a porous silica shell. The influence of the laser pulse energy, ablation time, Ag+ and Au3+ concentration, as well as the Ag+/Au3+ ratio, on optical and structural properties of the nanostructures was investigated. This work represents a step forward in the study of reaction mechanisms that take place during the synthesis of nanoscale materials by the assisted laser ablation technique.

  2. Influence of liquid environments on femtosecond laser ablation of silicon

    International Nuclear Information System (INIS)

    Liu Hewei; Chen Feng; Wang Xianhua; Yang Qing; Bian Hao; Si Jinhai; Hou Xun

    2010-01-01

    Liquid-assisted ablation of solids by femtosecond laser pulses has proved to be an efficient tool for highly precise microfabrication, which evokes numerous research interests in recent years. In this paper, we systematically investigate the interaction of femtosecond laser pulses with silicon wafer in water, alcohol, and as a comparison, in air. After producing a series of multiple-shot craters on a silicon wafer in the three types of environments, surface morphologies and femtosecond laser-induced periodic surface structures are comparatively studied via the scanning electron microscope investigations. Meanwhile, the influence of liquid mediums on ablation threshold fluence and ablation depth is also numerically analyzed. The experimental results indicate that the ablation threshold fluences of silicon are reduced by the presence of liquids (water/alcohol) and ablation depths of craters are deepened in ambient water. Furthermore, smoother surfaces tend to be obtained in alcohol-mediated ablation at smaller shot numbers. Finally, the evolution of the femtosecond laser-induced periodic surface structures in air, water and alcohol is also discussed.

  3. Ablation behaviors of carbon reinforced polymer composites by laser of different operation modes

    Science.gov (United States)

    Wu, Chen-Wu; Wu, Xian-Qian; Huang, Chen-Guang

    2015-10-01

    Laser ablation mechanism of Carbon Fiber Reinforced Polymer (CFRP) composite is of critical meaning for the laser machining process. The ablation behaviors are investigated on the CFRP laminates subject to continuous wave, long duration pulsed wave and short duration pulsed wave lasers. Distinctive ablation phenomena have been observed and the effects of laser operation modes are discussed. The typical temperature patterns resulted from laser irradiation are computed by finite element analysis and thereby the different ablation mechanisms are interpreted.

  4. Laser ablation dynamics and production of thin films of lysozyme

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Amoruso, S.

    Lysozyme is a well-known protein, which is used in food processing because of its bactericidal properties. The mass (14307 amu) is in the range in which it easily can be monitored by mass spectrometric methods, for example by MALDI (Matrix assisted laser desorption ionization). We have recently....... This is the first time the ablation by fs-lasers of a protein has been recorded quantitatively. Films of lysozyme produced by fs-laser irradiation were analyzed by MALDI and a significant number of intact molecules in the films with fs-laser deposition was found as well....... impact. Samples of pressed lysozyme prepared in the same manner as in ns-experiments have been irradiated at 527 nm with 300-fs pulses and at at similar fluence as in ns ablation. Even though the pulse energy was much smaller, there was a considerable ablation weight loss of lysozyme from each shot...

  5. Laser ablation/ionization studies in a glow discharge

    International Nuclear Information System (INIS)

    Hess, K.R.; Harrison, W.W.

    1985-01-01

    The pin cathode glow discharge is used in the laboratory as an atomization/ionization source for a variety of applications, including solids mass spectrometry. Coupled with a tunable dye laser, the glow discharge may also serve as an atom reservoir for resonance ionization mass spectrometry in which the laser ionizes the discharge sputtered atoms. By tightly focusing the laser onto solid samples, various ablation effects may also be investigated. The laser may be used to generate an ionized plasma which may be directly analyzed by mass spectrometry. Alternatively, the ablated neutral atoms may be used in post-ablation excitation/ionization processes, in this case the glow discharge. The results of these investigations are the basis of this paper

  6. Synthesis and characterization of PVK/AgNPs nanocomposites prepared by laser ablation

    Science.gov (United States)

    Abd El-kader, F. H.; Hakeem, N. A.; Elashmawi, I. S.; Menazea, A. A.

    2015-03-01

    Nanocomposites of Poly (n-vinylcarbazole) PVK/Ag nanoparticles were prepared by laser ablation of a silver plate in aqueous solution of chlorobenzene. The influences of laser parameters such as; time of irradiation, source power and wavelength (photon energy) on structural, morphological and optical properties have been investigated using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) and Photoluminescence (PL). A correlation between the investigated properties has been discussed. XRD, TEM and PL indicated that the complexation between AgNPs and PVK in the composite system is possible. Only the reflection peak at 2θ = 38° of AgNPs appeared in the composite nanoparticles while the other reflection peaks were destroyed. The nanoparticles shape and size distribution were evaluated from TEM images. TEM analysis revealed a lower average particle size at long laser irradiation time 40 min and short laser wavelength 532 nm together with high laser power 570 mW. From UV-Visible spectra the values of absorption coefficient, absorption edge and energy tail were calculated. The reduction of band tail value with increasing the laser ablation parameters confirms the decrease of the disorder in such composite system. The PL and UV-Vis. spectra confirm that nanocomposite samples showed quantum confinement effect.

  7. Wavelength stabilized multi-kW diode laser systems

    Science.gov (United States)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  8. Preparation of silver nanoparticles in virgin coconut oil using laser ablation

    OpenAIRE

    Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A

    2011-01-01

    Reza Zamiri1, B Z Azmi1,2, Amir Reza Sadrolhosseini1, Hossein Abbastabar Ahangar3, A W Zaidan1, M A Mahdi41Department of Physics, 2Advanced Materials and Nanotechnology Laboratory, 3Department of Chemistry, 4Wireless and Photonics Networks Research Center, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaAbstract: Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for a...

  9. Fabrication of gold and silver nanoparticles with pulsed laser ablation under pressurized CO2

    Science.gov (United States)

    Machmudah, Siti; Wahyudiono; Takada, Noriharu; Kanda, Hideki; Sasaki, Koichi; Goto, Motonobu

    2013-12-01

    Pulsed laser ablation (PLA) has become a promising method for the synthesis of nanoclusters for photonics, electronics and medicine. In this work PLA in pressurized CO2 has been applied for fabrication of gold and silver nanoparticles. Laser ablation was performed with an excitation wavelength of 532 nm under various pressures (0.1-20 MPa), temperatures (40-80 °C) of CO2 medium and ablation times (1500-9000 s). On the basis of the experimental result, it follows that structures of gold (Au) and silver (Ag) nanoparticles were significantly affected by the changes in CO2 density. The structures of gold and silver nanoparticles also changed with an increase of ablation time. From a field-emission scanning electron microscopy (FE-SEM) image of the fabricated gold nano-structured particles on silicon wafer, it was seen that a network structure of smaller gold particles was fabricated. A similar morphology of particles fabricated from silver plate was observed. Silver particles contain nanoparticles with large-varied diameter ranging from 5 nm to 1.2 μm. The mechanism of nanoparticles fabrication could be observed as follows. Bigger gold/silver particles melted during the ablation process and then ejected smaller spherical nanoparticles, which formed nanoclusters attached on the molten particles.

  10. Fabrication of gold and silver nanoparticles with pulsed laser ablation under pressurized CO2

    International Nuclear Information System (INIS)

    Machmudah, Siti; Wahyudiono; Kanda, Hideki; Goto, Motonobu; Takada, Noriharu; Sasaki, Koichi

    2013-01-01

    Pulsed laser ablation (PLA) has become a promising method for the synthesis of nanoclusters for photonics, electronics and medicine. In this work PLA in pressurized CO 2 has been applied for fabrication of gold and silver nanoparticles. Laser ablation was performed with an excitation wavelength of 532 nm under various pressures (0.1–20 MPa), temperatures (40–80 °C) of CO 2 medium and ablation times (1500–9000 s). On the basis of the experimental result, it follows that structures of gold (Au) and silver (Ag) nanoparticles were significantly affected by the changes in CO 2 density. The structures of gold and silver nanoparticles also changed with an increase of ablation time. From a field-emission scanning electron microscopy (FE-SEM) image of the fabricated gold nano-structured particles on silicon wafer, it was seen that a network structure of smaller gold particles was fabricated. A similar morphology of particles fabricated from silver plate was observed. Silver particles contain nanoparticles with large-varied diameter ranging from 5 nm to 1.2 μm. The mechanism of nanoparticles fabrication could be observed as follows. Bigger gold/silver particles melted during the ablation process and then ejected smaller spherical nanoparticles, which formed nanoclusters attached on the molten particles. (paper)

  11. Synthesis of silver nanoparticles by laser ablation in ethanol: A pulsed photoacoustic study

    International Nuclear Information System (INIS)

    Valverde-Alva, M.A.; García-Fernández, T.; Villagrán-Muniz, M.; Sánchez-Aké, C.; Castañeda-Guzmán, R.; Esparza-Alegría, E.; Sánchez-Valdés, C.F.

    2015-01-01

    Graphical abstract: - Highlights: • Pulsed photoacoustic technique allowed to determine the production rate of NPs. • Pulsed photoacoustic technique allows to determine the Ag concentration in colloids. • The nanoparticles production rate drops quickly during the first laser pulses. • Nanoparticles production rate is almost constant after few hundreds of laser shots. • Photoacoustic signal amplitude was proportional to fluence on the target surface. - Abstract: The pulsed photoacoustic (PA) technique was used to study the synthesis by laser ablation of silver nanoparticles (Ag-NPs) in ethanol. PA technique allowed to determine the production rate per laser pulse and concentration of synthesized Ag-NPs. The samples were produced by using a pulsed Nd:YAG laser with 1064 nm of wavelength and 7 ns of pulse duration. The laser pulse energy varied from 10 to 100 mJ. Transmission electron microscopy micrographs demonstrated that the obtained nanoparticles were spherical with an average size close to 10 nm. The absorption spectra of the colloids showed a plasmon absorption peak around 400 nm. The PA analyses showed a significant reduction of the production rate of Ag-NPs during the first hundreds of laser pulses. For a higher number of pulses this rate was kept almost constant. Finally, we found that the root mean square (RMS) value of the PA signal was proportional to the laser pulse fluence on the target surface. Thus PA technique was useful to monitor the ablation process.

  12. Synthesis of silver nanoparticles by laser ablation in ethanol: A pulsed photoacoustic study

    Energy Technology Data Exchange (ETDEWEB)

    Valverde-Alva, M.A., E-mail: azbmiguel@gmail.com [Posgrado en Ciencia e Ingeniería de Materiales, Universidad Nacional Autónoma de México (UNAM), México D.F., C.P. 04510, México (Mexico); García-Fernández, T. [Universidad Autónoma de la Ciudad de México (UACM), Prolongación San Isidro 151, Col. San Lorenzo Tezonco, México D.F., C.P. 09790, México (Mexico); Villagrán-Muniz, M.; Sánchez-Aké, C.; Castañeda-Guzmán, R. [CCADET Universidad Nacional Autónoma de México (UNAM), México D.F., C.P. 04510, México (Mexico); Esparza-Alegría, E. [Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), México D.F., C.P. 04510, México (Mexico); Sánchez-Valdés, C.F. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a sección, San Luis Potosí, S.L.P., C.P. 78216, México (Mexico); and others

    2015-11-15

    Graphical abstract: - Highlights: • Pulsed photoacoustic technique allowed to determine the production rate of NPs. • Pulsed photoacoustic technique allows to determine the Ag concentration in colloids. • The nanoparticles production rate drops quickly during the first laser pulses. • Nanoparticles production rate is almost constant after few hundreds of laser shots. • Photoacoustic signal amplitude was proportional to fluence on the target surface. - Abstract: The pulsed photoacoustic (PA) technique was used to study the synthesis by laser ablation of silver nanoparticles (Ag-NPs) in ethanol. PA technique allowed to determine the production rate per laser pulse and concentration of synthesized Ag-NPs. The samples were produced by using a pulsed Nd:YAG laser with 1064 nm of wavelength and 7 ns of pulse duration. The laser pulse energy varied from 10 to 100 mJ. Transmission electron microscopy micrographs demonstrated that the obtained nanoparticles were spherical with an average size close to 10 nm. The absorption spectra of the colloids showed a plasmon absorption peak around 400 nm. The PA analyses showed a significant reduction of the production rate of Ag-NPs during the first hundreds of laser pulses. For a higher number of pulses this rate was kept almost constant. Finally, we found that the root mean square (RMS) value of the PA signal was proportional to the laser pulse fluence on the target surface. Thus PA technique was useful to monitor the ablation process.

  13. Wavelength and ambient luminance dependence of laser eye dazzle.

    Science.gov (United States)

    Williamson, Craig A; McLin, Leon N; Rickman, J Michael; Manka, Michael A; Garcia, Paul V; Kinerk, Wesley T; Smith, Peter A

    2017-10-10

    A series of experiments has been conducted to quantify the effects of laser wavelength and ambient luminance on the severity of laser eye dazzle experienced by human subjects. Eight laser wavelengths in the visible spectrum were used (458-647 nm) across a wide range of ambient luminance conditions (0.1-10,000  cd·m -2 ). Subjects were exposed to laser irradiance levels up to 600  μW·cm -2 and were asked to recognize the orientation of optotypes at varying eccentricities up to 31.6 deg of visual angle from the laser axis. More than 40,000 data points were collected from 14 subjects (ages 23-64), and these were consolidated into a series of obscuration angles for comparison to a theoretical model of laser eye dazzle. Scaling functions were derived to allow the model to predict the effects of laser dazzle on vision more accurately by including the effects of ambient luminance and laser wavelength. The updated model provides an improved match to observed laser eye dazzle effects across the full range of conditions assessed. The resulting model will find use in a variety of laser safety applications, including the estimation of maximum dazzle exposure and nominal ocular dazzle distance values.

  14. Two-Dimensional Fluorescence Spectroscopy for Measuring Uranium Isotopes in Femtosecond Laser Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Brumfield, Brian E.; Harilal, Sivanandan S.; Hartig, Kyle C.; Jovanovic, Igor

    2017-05-30

    We present the first two-dimensional fluorescence spectroscopy measurements of uranium isotopes in femtosecond laser ablation plasmas. A new method of signal normalization is presented to reduce noise in absorption-based measurements of laser ablation.

  15. Preparation of silver nanoparticles in virgin coconut oil using laser ablation

    Directory of Open Access Journals (Sweden)

    Reza Zamiri,B Z Azmi. Amir Reza Sadrolhosseini

    2011-01-01

    Full Text Available Reza Zamiri1, B Z Azmi1,2, Amir Reza Sadrolhosseini1, Hossein Abbastabar Ahangar3, A W Zaidan1, M A Mahdi41Department of Physics, 2Advanced Materials and Nanotechnology Laboratory, 3Department of Chemistry, 4Wireless and Photonics Networks Research Center, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaAbstract: Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10-8, 1.6 × 10-8, 2.4 × 10-8, respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method.Keywords: silver nanoparticles, laser ablation, virgin coconut oil

  16. Infrared Laser Ablation with Vacuum Capture for Fingermark Sampling

    Science.gov (United States)

    Donnarumma, Fabrizio; Camp, Eden E.; Cao, Fan; Murray, Kermit K.

    2017-09-01

    Infrared laser ablation coupled to vacuum capture was employed to collect material from fingermarks deposited on surfaces of different porosity and roughness. Laser ablation at 3 μm was performed in reflection mode with subsequent capture of the ejecta with a filter connected to vacuum. Ablation and capture of standards from fingermarks was demonstrated on glass, plastic, aluminum, and cardboard surfaces. Using matrix assisted laser desorption ionization (MALDI), it was possible to detect caffeine after spiking with amounts as low as 1 ng. MALDI detection of condom lubricants and detection of antibacterial peptides from an antiseptic cream was demonstrated. Detection of explosives from fingermarks left on plastic surfaces as well as from direct deposition on the same surface using gas chromatography mass spectrometry (GC-MS) was shown. [Figure not available: see fulltext.

  17. Anterior two-thirds corpus callosotomy via stereotactic laser ablation.

    Science.gov (United States)

    Karsy, Michael; Patel, Daxa M; Halvorson, Kyle; Mortimer, Vance; Bollo, Robert J

    2018-04-01

    Anterior two-thirds corpus callosotomy is a common palliative surgical intervention most commonly employed in patients with atonic or drop seizures. Recently, stereotactic laser ablation of the corpus callosum without a craniotomy has shown promise in achieving similar outcomes with fewer side effects and shorter hospitalizations. The authors demonstrate ablation of the anterior two-thirds corpus callosum in a patient with Lennox-Gastaut syndrome and drug-resistant drop seizures. Technical nuances of laser ablation with 3 laser fibers are described. Postoperatively, the patient showed a significant reduction in seizure frequency and severity over a 9-month follow-up period. The video can be found here: https://youtu.be/3-mMq5-PLiM .

  18. Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm.

    Science.gov (United States)

    Fried, D; Ragadio, J; Champion, A

    2001-01-01

    The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth. Excessive heat deposition or accumulation may result in unacceptable damage to the pulp. The objective of this study was to measure the residual heat deposition during the laser ablation of dental enamel at those IR laser wavelengths well suited for the removal of dental caries. Optimal laser ablation systems minimize the residual heat deposition in the tooth by efficiently transferring the deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in dental enamel was measured at laser wavelengths of 2.79, 2.94, 9.6, and 10.6 microm and pulse widths of 150 nsec -150 microsec using bovine block "calorimeters." Water droplets were applied to the surface before ablation with 150 microsec Er:YAG laser pulses to determine the influence of an optically thick water layer on reducing heat deposition. The residual heat was at a minimum for fluences well above the ablation threshold where measured values ranged from 25-70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual heat were measured for short (Droplets of water applied to the surface before ablation significantly reduced the residual heat deposition during ablation with 150 microsec Er:YAG laser pulses. Residual heat deposition can be markedly reduced by using CO(2) laser pulses of less than 20 microsec duration and shorter Q-switched Er:YAG and Er:YSGG laser pulses for enamel ablation. Copyright 2001 Wiley-Liss, Inc.

  19. Swept wavelength lasers in the 1 um region

    DEFF Research Database (Denmark)

    Nielsen, Frederik Donbæk

    2006-01-01

    In this Ph.D. work rapidly wavelength tunable laser configurations operating in the 1 m range have been investigated. Such lasers are interesting for the so-called optical coherence tomography (OCT) technique, whereof one successful application today is within the field of ophthalmology....... In this application, the 1-1.1 m wavelength range is particular suitable for imaging features in the deeper lying layers of the human retina. Ytterbium Doped Fiber Amplifiers (YDFAs) are an attractive and available gain medium for the 1-1.1 m wavelength band. However, the relative long upper state lifetime, imposes...... a serious limitation on the achievable scanning speed if the YDFA is to be used using for so-called cavity tuned lasers. Another swept wavelength configuration, the so-called lightwave synthesized frequency sweeper, is therefore in this work experimentally and numerically investigated as a possible...

  20. Glass particles produced by laser ablation for ICP-MSmeasurements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50 J cm{sup -2}. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloys samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns and fs-laser ablation than for metals alloys.

  1. High-power laser diodes at various wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, M.A.

    1997-02-19

    High power laser diodes at various wavelengths are described. First, performance and reliability of an optimized large transverse mode diode structure at 808 and 941 nm are presented. Next, data are presented on a 9.5 kW peak power array at 900 nm having a narrow emission bandwidth suitable for pumping Yb:S-FAP laser materials. Finally, results on a fiber-coupled laser diode array at {approx}730 nm are presented.

  2. Aerospace Laser Ignition/Ablation Variable High Precision Thruster

    Science.gov (United States)

    Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)

    2015-01-01

    A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.

  3. Infrared laser ablation and ionization of water clusters and biomolecules from ice

    International Nuclear Information System (INIS)

    Baltz-Knorr, M.L.; Schriver, K.E.; Haglund, R.F.

    2002-01-01

    We demonstrate the direct desorption and ionization of angiotensin II from frozen water ice samples without supplementary matrix, using a pulse train of approximately 340 intense (∼10 9 W/cm 2 ) picosecond pulses from a tunable, mid-infrared free-electron laser, at a wavelength of 5.9 μm. The pulse train was delivered at equally spaced intervals over a total duration of 120 ns. Ions thus formed were detected using a reflectron time-of-flight mass spectrometer. Single-shot ablation at spatially separated locations on the ice surface produced parent ions as well as Na and K adducts. Multiple pulse impact at a single location on the ice generated the parent ion signal and also protonated water clusters of the form (H 2 O) n-1 H 3 O + . Investigations of clusters produced by infrared laser ablation of frozen trifluoroacetic acid solution support a mechanism involving electrostatic ejection of pre-formed ions

  4. Fundamental Mechanisms of Pulsed Laser Ablation of Biological Tissue

    Science.gov (United States)

    Albagli, Douglas

    The ability to cut and remove biological tissue with short pulsed laser light, a process called laser ablation, has the potential to revolutionize many surgical procedures. Ablation procedures using short pulsed lasers are currently being developed or used in many fields of medicine, including cardiology, ophthalmology, dermatology, dentistry, orthopedics, and urology. Despite this, the underlying physics of the ablation process is not well understood. In fact, there is wide disagreement over whether the fundamental mechanism is primarily photothermal, photomechanical, or photochemical. In this thesis, both experimental and theoretical techniques are developed to explore this issue. The photothermal model postulates that ablation proceeds through vaporization of the target material. The photomechanical model asserts that ablation is initiated when the laser-induced tensile stress exceeds the ultimate tensile strength of the target. I have developed a three dimensional model of the thermoelastic response of tissue to short pulsed laser irradiation which allows the time dependent stress distribution to be calculated given the optical, thermal and mechanical properties of the target. A complimentary experimental technique has been developed to verify this model, measure the needed physical properties of the tissue, and record the thermoelastic response of the tissue at the onset of ablation. The results of this work have been widely disseminated to the international research community and have led to significant findings which support the photomechanical model of ablation of tissue. First, the energy deposited in tissue is an order of magnitude less than that required for vaporization. Second, unlike the one-dimensional thermoelastic model of laser-induced stress generation that has appeared in the literature, the full three-dimensional model predicts the development of significant tensile stresses on the surface of the target, precisely where ablation is observed to

  5. Pulsed CO2 laser tissue ablation: measurement of the ablation rate.

    Science.gov (United States)

    Walsh, J T; Deutsch, T F

    1988-01-01

    Ablation of guinea pig skin using a CO2 laser emitting 2-mu sec-long pulses has been quantified by measuring the mass of tissue removed as a function of incident fluence per pulse. The mass-loss curves show three distinct regimes in which water evaporation, explosive tissue removal, and laser-induced plasma formation dominate. The data are fit to two models that predict that the mass removed depends either linearly or logarithmically on fluence. Although the data are best fit by a linear dependence upon fluence, plasma formation at high fluences prohibited obtaining data over a wide enough fluence range to differentiate unambiguously between the two models. Ablation efficiency, ablation thresholds, and the optical penetration depth at 10.6 micron were obtained from the measurements.

  6. Spin-offs from laser ablation in art conservation

    Science.gov (United States)

    Asmus, J.; Elford, J.; Parfenov, V.

    2013-05-01

    In 1973 The Center for Art Conservation Studies (CASS) was established at the University of California, San Diego (UCSD). This was in response to demonstrations that were conducted during January-March 1972 in Venice for UNESCO, Venice in Peril, International Fund for Monuments, and the Italian Petroleum Institute (ENI). The feasibility investigation explored in-situ pulsed holography, holographic interferometry, and laser ablation divestment for applications in art conservation practice. During subsequent decades scores of UCSD graduate and undergraduate students as well as conservators, conservation scientists, academics, and engineers who resided in CASS as "Visiting Scholars" contributed to advancing the understanding and performance of radiation technologies in the arts. Several technologies in addition to those involving optical wavelengths were also investigated to aid in art conservation and conservation science. Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance (NMR) were employed to detect and map moisture within masonry. Lead isotopic analyses revealed authenticity and provenance of Benin bronzes. Inside-out x-ray radiography facilitated the detection of defects in stone. Ultrasonic imaging was introduced for the mapping of fresco strata. Photoacoustic Spectroscopy (PAS) was used to characterize varnish layers on paintings. Digital image processing was introduced in order to detect and visualize pentimenti within paintings as well as to perform virtual restoration and provide interactive museum displays. Holographic images were employed as imaginary theater sets. In the years that followed the graduation of students and the visits of professional collaborators, numerous other applications of radiation ablation began appearing in a wide variety of other fields such as aircraft maintenance, ship maintenance, toxic chemical remediation, biological sterilization, food processing, industrial fabrication, industrial maintenance, nuclear

  7. Measurement of ventilation- and perfusion-mediated cooling during laser ablation in ex vivo human lung tumors.

    Science.gov (United States)

    Vietze, Andrea; Koch, Franziska; Laskowski, Ulrich; Linder, Albert; Hosten, Norbert

    2011-11-01

    Perfusion-mediated tissue cooling has often been described in the literature for thermal ablation therapies of liver tumors. The objective of this study was to investigate the cooling effects of both perfusion and ventilation during laser ablation of lung malignancies. An ex vivo lung model was used to maintain near physiological conditions for the specimens. Fourteen human lung lobes containing only primary lung tumors (non-small cell lung cancer) were used. Laser ablation was carried out using a Nd:YAG laser with a wavelength of 1064 nm and laser fibers with 30 mm diffusing tips. Continuous invasive temperature measurement in 10 mm distance from the laser fiber was performed. Laser power was increased at 2 W increments starting at 10 W up to a maximum power of 12-20 W until a temperature plateau around 60 °C was reached at one sensor. Ventilation and perfusion were discontinued for 6 min each to assess their effects on temperature development. The experiments lead to 25 usable temperature profiles. A significant temperature increase was observed for both discontinued ventilation and perfusion. In 6 min without perfusion, the temperature rose about 5.5 °C (mean value, Pcooling are significant influencing factors on temperature development during thermal ablation. They should be taken into account during the planning and preparation of minimally invasive lung tumor treatment in order to achieve complete ablation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Observation of the initial stage of the laser ablation

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Ohyanagi, Takasumi; Murakami, Kouichi.

    1994-01-01

    The time and space resolved properties of laser ablated carbon particles were measured by X-ray absorption spectroscopy using Laser Plasma X-ray (LPX) as an X-ray source. The energy density of the irradiation laser on the sample was in the range of 0.5-20 J/cm 2 and the time delay was varied between 0 and 120ns. The absorption spectra exhibits several peaks originated from level to level transitions and an intense broad absorption in the energy range of C-K edge. At a delay time of 120ns, the absorption peak of 1s → 2p transition of neutral carbon atom (C 0 ), C - , C + and C 2+ ions were observed. The absorption peak from C 0 is stronger as the probing position is closer to the sample surface and its intensity decreases rapidly with distance from the sample surface. The absorption peak C 2+ ion was observed only at comparatively distant positions from surface. The maximum speed of highly charged ions are faster than that of neutral atoms and negative charged ions. The neutral atom and lower charged ions are emitted from the sample surface even after laser irradiation. The spatial distribution of the laser ablated particles in the localized helium gas environment were measured. In the helium gas environment, the ablation plume is depressed by the helium cloud generated on the top of ablation plume. (author)

  9. Formation and characterization of nanoparticles via laser ablation in solution

    Science.gov (United States)

    Golightly, Justin Samuel

    The work presented in this thesis encompassed laser ablation of various transition metals within a liquid environment. Through an improved understanding of the ablation process, control over the properties of the resultant nanoparticles can be obtained, and thusly nanoparticles can be tailored with specific properties. Creation of nanoparticles via laser ablation in solution is a relatively youngtechnique for nanoparticle synthesis, and the work presented should prove useful in guiding further exploration in ablation processes in liquids for nanomaterial production. When a laser is focused onto a target under a liquid environment, the target material and its surrounding liquid are vaporized. The concoction of vapor is ejected normal to the surface as a bubble. The bubble has a temperature reaching the boiling point of the metal, and has a gradient to the boiling point of the solvent. The bubble expands until it reaches a critical volume, and then subsequently collapses. It is within this bubble that nanoparticle formation occurs. As the bubble expands, the vapor cools and nanoparticle growth transpires. During the bubble collapse, pressures reaching GigaPascals have been reported, and a secondary nanoparticle formation occurs as a result of these high pressures. Chapter 1 delves a little more into the nanoparticle formation mechanisms, as well as an introduction to the analytical techniques used for characterization. Ablation of titanium took place in isopropanol, ethanol, water, and n-hexane, under various fluences, with a 532 nm Nd:YAG operating at 10 Hz. It was found that a myriad of nanoparticles could be made with vastly different compositions that were both solvent and fluence dependent. Nanoparticles were made that incorporated carbon and oxygen from the solvent, showing how solvent choice is an important factor in nanoparticle creation. Chapter 3 discusses the results of the titanium work in great detail and demonstrates carbide production with ablation in

  10. High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films

    International Nuclear Information System (INIS)

    Ko, Seung H.; Pan Heng; Hwang, David J.; Chung, Jaewon; Ryu, Sangil; Grigoropoulos, Costas P.; Poulikakos, Dimos

    2007-01-01

    Ablation of gold nanoparticle films on polymer was explored using a nanosecond pulsed laser, with the goal to achieve feature size reduction and functionality not amenable with inkjet printing. The ablation threshold fluence for the unsintered nanoparticle deposit was at least ten times lower than the reported threshold for the bulk film. This could be explained by the combined effects of melting temperature depression, lower conductive heat transfer loss, strong absorption of the incident laser beam, and the relatively weak bonding between nanoparticles. The ablation physics were verified by the nanoparticle sintering characterization, ablation threshold measurement, time resolved ablation plume shadowgraphs, analysis of ablation ejecta, and the measurement and calculation of optical properties. High resolution and clean feature fabrication with small energy and selective multilayer processing are demonstrated

  11. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Diaz, M; Ponce, L; Arronte, M; Flores, T [Laboratorio TecnologIa Laser, CICATA-IPN, Unidad Altamira, Carretera Tampico-Puerto Ind. Altamira, 89600, TAMPS (Mexico)

    2007-04-15

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  12. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Science.gov (United States)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  13. Laser ablation dynamics and production of thin films of lysozyme

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Matei, Andreea

    Lysozyme is a well-known protein, which is used in food processing because of its bacteriocidal properties. The mass (14307 u) is in the range, in which it easily can be controlled by mass spectrometric methods, for example by MALDI (Matrix assisted laser desorption ionisation). We have recently......, there was a considerable ablation weight loss of lysozyme from each shot. This is the first time the ablation by fs-lasers of a protein has been recorded quantitatively. Films of lysozyme produced by fs-laser irradiation will be analysed by MALDI in order to explore if there also is a significant amount of intact...... these experiments at CNR-SPIN, Napoli, to explore the excitation mechanics by laser impact. Samples of pressed lysozyme prepared in the same manner as in DTU have been irradiated at 523 nm with 300-fs pulses and a fluence of the same order of magnitude as in DYU. Even though the pulse energy was much smaller...

  14. Femtosecond two-wavelength laser ranging to the ground target

    International Nuclear Information System (INIS)

    Hamal, K.; Prochazka, I.; Jelinkova, H.; Babushkin, A.V.; Lozovoi, V.I.; Schelev, M.Y.

    1988-01-01

    Two-wavelength laser ranging experiments with subpicosecond temporal resolution are described. To provide these experiments a reliable passively mode-locked Nd:YAP laser with two saturable dyes in the same laser cavity have been designed. For the laser pulses recording the commercial anglo-soviet Imacon 500 streak camera fitted with the PV-001 tube and matched with SIT-vidicon and computer data handling system were employed. The possibilities for further increasing of resolution and other recording characteristics of the developed installation are briefly discussed

  15. Serial removal of caries lesions from tooth occlusal surfaces using near-IR image-guided IR laser ablation

    Science.gov (United States)

    Chan, Kenneth H.; Tom, Henry; Darling, Cynthia L.; Fried, Daniel

    2015-02-01

    Previous studies have established that caries lesions can be imaged with high contrast without the interference of stains at near-IR wavelengths greater than 1300-nm. It has been demonstrated that computer controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, we report our progress towards the development of algorithms for generating rasterized ablation maps from near-IR reflectance images for the removal of natural lesions from tooth occlusal surfaces. An InGaAs camera and a filtered tungsten-halogen lamp producing near-IR light in the range of 1500-1700-nm were used to collect crosspolarization reflectance images of tooth occlusal surfaces. A CO2 laser operating at a wavelength of 9.3- μm with a pulse duration of 10-15-μs was used for image-guided ablation.

  16. Erosion of nanostructured tungsten by laser ablation, sputtering and arcing

    Directory of Open Access Journals (Sweden)

    Dogyun Hwangbo

    2017-08-01

    Full Text Available Mass loss of nanostructured tungsten, which was formed by helium plasma irradiation, due to laser ablation, sputtering, and arcing was investigated. Below the helium sputtering energy threshold (200eV. Reduction in sputtering on nanostructured surface was observed. Arcing was initiated using laser pulses, and the erosion rate by arcing was measured. The erosion rate increased with arc current, while the erosion per Coulomb was not affected by arc current.

  17. Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths.

    Science.gov (United States)

    Wang, Jenny; Schuele, Georg; Palanker, Daniel

    2015-01-01

    Transparent ocular tissues, such as the cornea and crystalline lens, can be ablated or dissected using short-pulse lasers. In refractive and cataract surgeries, the cornea, lens, and lens capsule can be cut by producing dielectric breakdown in the focus of a near-infrared (IR) femtosecond laser, which results in explosive vaporization of the interstitial water, causing mechanical rupture of the surrounding tissue. Here, we compare the texture of edges of lens capsule cut by femtosecond lasers with IR and ultraviolet (UV) wavelengths and explore differences in interactions of these lasers with biological molecules. Scanning electron microscopy indicates that a 400-nm laser is capable of producing very smooth cut edges compared to 800 or 1030 nm at a similar focusing angle. Using gel electrophoresis and liquid chromatography/mass spectrometry, we observe laser-induced nonlinear breakdown of proteins and polypeptides by 400-nm femtosecond pulses above and below the dielectric breakdown threshold. On the other hand, 800-nm femtosecond lasers do not produce significant dissociation even above the threshold of dielectric breakdown. However, despite this additional interaction of UV femtosecond laser with proteins, we determine that efficient cutting requires plasma-mediated bubble formation and that remarkably smooth edges are the result of reduced thresholds and smaller focal volume.

  18. Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths

    Science.gov (United States)

    Wang, Jenny; Schuele, Georg; Palanker, Daniel

    2015-12-01

    Transparent ocular tissues, such as the cornea and crystalline lens, can be ablated or dissected using short-pulse lasers. In refractive and cataract surgeries, the cornea, lens, and lens capsule can be cut by producing dielectric breakdown in the focus of a near-infrared (IR) femtosecond laser, which results in explosive vaporization of the interstitial water, causing mechanical rupture of the surrounding tissue. Here, we compare the texture of edges of lens capsule cut by femtosecond lasers with IR and ultraviolet (UV) wavelengths and explore differences in interactions of these lasers with biological molecules. Scanning electron microscopy indicates that a 400-nm laser is capable of producing very smooth cut edges compared to 800 or 1030 nm at a similar focusing angle. Using gel electrophoresis and liquid chromatography/mass spectrometry, we observe laser-induced nonlinear breakdown of proteins and polypeptides by 400-nm femtosecond pulses above and below the dielectric breakdown threshold. On the other hand, 800-nm femtosecond lasers do not produce significant dissociation even above the threshold of dielectric breakdown. However, despite this additional interaction of UV femtosecond laser with proteins, we determine that efficient cutting requires plasma-mediated bubble formation and that remarkably smooth edges are the result of reduced thresholds and smaller focal volume.

  19. Langmuir probe study of plasma expansion in pulsed laser ablation

    DEFF Research Database (Denmark)

    Hansen, T.N.; Schou, Jørgen; Lunney, J.G.

    1999-01-01

    Langmuir probes were used to monitor the asymptotic expansion of the plasma produced by the laser ablation of a silver target in a vacuum. The measured angular and temporal distributions of the ion flux and electron temperature were found to be in good agreement with the self-similar isentropic...

  20. Online Monitoring of Nanoparticles Formed during Nanosecond Laser Ablation.

    Czech Academy of Sciences Publication Activity Database

    Nováková, H.; Holá, M.; Vojtíšek-Lomb, M.; Ondráček, Jakub; Kanický, V.

    2016-01-01

    Roč. 125, NOV 1 (2016), s. 52-60 ISSN 0584-8547 R&D Projects: GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:67985858 Keywords : laser ablation * fast mobility particle sizer * inductively coupled plasma mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.241, year: 2016

  1. Zinc nanoparticles in solution by laser ablation technique

    Indian Academy of Sciences (India)

    TECS

    Physical and chemical properties of these materi- als are highly size dependent. Therefore, it is important ... provided a powerful tool for the synthesis of nanomaterials in both solutions and gas matrices (Hodak et al ... 2006) and magnetic characterization of Co–Pt nanoparti- cles are reported by laser ablation of Co–Pt bulk ...

  2. Superhydrophobic/superoleophilic magnetic elastomers by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Milionis, Athanasios, E-mail: am2vy@virginia.edu [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Fragouli, Despina; Brandi, Fernando; Liakos, Ioannis; Barroso, Suset [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Athanassiou, Athanassia, E-mail: athanassia.athanassiou@iit.it [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy)

    2015-10-01

    Highlights: • We report the development of magnetic nanocomposite sheets. • Laser irradiation of the nanocomposites induces chemical and structural changes to the surface. • The laser-patterned surfaces exhibit superhydrophobicity and superoleophilicity. • The particle contribution in altering the surface and bulk properties of the material is studied. - Abstract: We report the development of magnetic nanocomposite sheets with superhydrophobic and supeoleophilic surfaces generated by laser ablation. Polydimethylsiloxane elastomer free-standing films, loaded homogeneously with 2% wt. carbon coated iron nanoparticles, were ablated by UV (248 nm), nanosecond laser pulses. The laser irradiation induces chemical and structural changes (both in micro- and nano-scale) to the surfaces of the nanocomposites rendering them superhydrophobic. The use of nanoparticles increases the UV light absorption efficiency of the nanocomposite samples, and thus facilitates the ablation process, since the number of pulses and the laser fluence required are greatly reduced compared to the bare polymer. Additionally the magnetic nanoparticles enhance significantly the superhydrophobic and oleophilic properties of the PDMS sheets, and provide to PDMS magnetic properties making possible its actuation by a weak external magnetic field. These nanocomposite elastomers can be considered for applications requiring magnetic MEMS for the controlled separation of liquids.

  3. Interferometric laser detection of nanomechanical perturbations in biological media under ablation conditions

    International Nuclear Information System (INIS)

    Morales-Bonilla, S; Torres-Torres, C; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H; Urriolagoitia-Calderon, G

    2011-01-01

    This article has to do with the development of a reliable and sensitive non-invasive laser technique for assessing damage of structures and systems involved in laser ablation processes. The optical response of a Michelson Interferometer in combination with a Measuring Reflectance System has been analyzed in order to identify the stability of the mechanical properties of the sample, the physical perturbations associated with the systems and the environment where the target is contained. This test includes the use of a cyan laser system with 10 mW at 488 nm wavelength as optical source. We found out that with the inclusion of an optical feedback in a sensing system it is possible to determine the modification of the physical properties exhibited by a biological medium under sharp ablation conditions with a high accuracy degree. The results reported in this research have potential applications related to the amount of light intensity that can be tolerated by human tissue. A wide array of disciplines, such as medicine, mechanical industry and optical instrumentation can benefit from this ultrafast optical feedback for controlling high intensity laser signals. Collateral damage of tissue around the laser irradiated zones can be reduced by using intelligent lasers systems with ultra-short temporal response.

  4. Interferometric laser detection of nanomechanical perturbations in biological media under ablation conditions

    Science.gov (United States)

    Morales-Bonilla, S.; Torres-Torres, C.; Urriolagoitia-Sosa, G.; Hernández-Gómez, L. H.; Urriolagoitia-Calderón, G.

    2011-07-01

    This article has to do with the development of a reliable and sensitive non-invasive laser technique for assessing damage of structures and systems involved in laser ablation processes. The optical response of a Michelson Interferometer in combination with a Measuring Reflectance System has been analyzed in order to identify the stability of the mechanical properties of the sample, the physical perturbations associated with the systems and the environment where the target is contained. This test includes the use of a cyan laser system with 10 mW at 488 nm wavelength as optical source. We found out that with the inclusion of an optical feedback in a sensing system it is possible to determine the modification of the physical properties exhibited by a biological medium under sharp ablation conditions with a high accuracy degree. The results reported in this research have potential applications related to the amount of light intensity that can be tolerated by human tissue. A wide array of disciplines, such as medicine, mechanical industry and optical instrumentation can benefit from this ultrafast optical feedback for controlling high intensity laser signals. Collateral damage of tissue around the laser irradiated zones can be reduced by using intelligent lasers systems with ultra-short temporal response.

  5. Selective treatment of carious dentin using a mid-infrared tunable pulsed laser at 6 μm wavelength range

    Science.gov (United States)

    Saiki, Masayuki; Ishii, Katsunori; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2011-03-01

    Optical technologies have good potential for caries detection, prevention, excavation, and the realization of minimal intervention dentistry. This study aimed to develop a selective excavation technique of carious tissue using the specific absorption in 6 μm wavelength range. Bovine dentin demineralized with lactic acid solution was used as a carious dentin model. A mid-infrared tunable pulsed laser was obtained by difference-frequency generation technique. The wavelength was tuned to 6.02 and 6.42 μm which correspond to absorption bands called amide I and amide II, respectively. The laser delivers 5 ns pulse width at a repetition rate of 10 Hz. The morphological change after irradiation was observed with a scanning electron microscope, and the measurement of ablation depth was performed with a confocal laser microscope. At λ = 6.02 μm and the average power density of 15 W/cm2, demineralized dentin was removed selectively with less-invasive effect on sound dentin. The wavelength of 6.42 μm also showed the possibility of selective removal. High ablation efficiency and low thermal side effect were observed using the nanosecond pulsed laser with λ = 6.02 μm. In the near future, development of compact laser device will open the minimal invasive laser treatment to the dental clinic.

  6. Pulsed laser deposition: metal versus oxide ablation

    NARCIS (Netherlands)

    Doeswijk, L.M.; Rijnders, Augustinus J.H.M.; Blank, David H.A.

    2004-01-01

    We present experimental results of pulsed laser interaction with metal (Ni, Fe, Nb) and oxide (TiO2, SrTiO3, BaTiO3) targets. The influence of the laser fluence and the number of laser pulses on the resulting target morphology are discussed. Although different responses for metal and oxide targets

  7. OMEGA: a short-wavelength laser for fusion experiments

    International Nuclear Information System (INIS)

    Soures, J.M.; Hutchison, R.J.; Jacobs, S.D.; Lund, L.D.; McCrory, R.L.; Richardson, M.C.

    1983-01-01

    The OMEGA, Nd:glass laser facility was constructed for the purpose of investigating the feasibility of direct-drive laser fusion. With 24 beams producing a total energy of 4 kJ or a peak power of 12 TW, OMEGA is capable of nearly uniform illumination of spherical targets. Six of the OMEGA beams have recently been converted to short-wavelength operation (351 nm). In this paper, we discuss details of the system design and performance, with particular emphasis on the frequency-conversion system and multi-wavelength diagnostic system

  8. Optimal laser wavelength for photoacoustic imaging of breast microcalcifications

    Science.gov (United States)

    Kang, Jeeun; Kim, Eun-Kyung; Young Kwak, Jin; Yoo, Yangmo; Song, Tai-Kyong; Ho Chang, Jin

    2011-10-01

    This paper presents photoacoustic imaging (PAI) for real-time detection of micro-scale calcifications (e.g., breast, which are an indicator of the cancer occurrence. Optimal wavelength of incident laser for the microcalcification imaging was ascertained through ex vivo experiments with seven breast specimens of volunteers. In the ex vivo experiments, the maximum amplitude of photoacoustic signals from the microcalcifications occurred when the laser wavelength ranged from 690 to 700 nm. This result demonstrated that PAI can serve as a real-time imaging and guidance tool for diagnosis and biopsy of the breast microcalcifications.

  9. Resonant ablation of single-wall carbon nanotubes by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Arutyunyan, N R; Komlenok, M S; Kononenko, V V; Pashinin, V P; Pozharov, A S; Konov, V I; Obraztsova, E D

    2015-01-01

    The thin 50 nm film of bundled arc-discharge single-wall carbon nanotubes was irradiated by femtosecond laser pulses with wavelengths 675, 1350 and 1745 nm corresponding to the absorption band of metallic nanotubes E 11 M , to the background absorption and to the absorption band of semiconducting nanotubes E 11 S , respectively. The aim was to induce a selective removal of nanotubes of specific type from the bundled material. Similar to conducted thermal heating experiments, the effect of laser irradiation results in suppression of all radial breathing modes in the Raman spectra, with preferential destruction of the metallic nanotubes with diameters less than 1.26 nm and of the semiconducting nanotubes with diameters 1.36 nm. However, the etching rate of different nanotubes depends on the wavelength of the laser irradiation. It is demonstrated that the relative content of nanotubes of different chiralities can be tuned by a resonant laser ablation of undesired nanotube fraction. The preferential etching of the resonant nanotubes has been shown for laser wavelengths 675 nm (E 11 M ) and 1745 nm (E 11 S ). (paper)

  10. Multi-wavelength Praseodymium fiber laser using stimulated Brillouin scattering

    Science.gov (United States)

    Ahmad, H.; Aidit, S. N.; Tiu, Z. C.

    2018-02-01

    A multi-wavelength Brillouin Praseodymium fiber laser (MWBPFL) operating at 1300 nm region is demonstrated based on the hybrid scheme by utilizing Brillouin gain medium and Praseodymium-doped fluoride fiber as linear gain medium. A 15 μm air gap is incorporated into the cavity to allow the switching of Brillouin frequency spacing from double to single spacing. Under the Brillouin pump of 8 dBm and the 1020 nm pump power of 567.2 mW, 36 Stokes lines with a wavelength spacing of 0.16 nm and 24 Stokes lines with a wavelength spacing of 0.08 nm are achieved. The wavelength tunability of 8 nm is realized for both MWBPFLs by shifting the Brillouin pump wavelength. The MWBPFLs exhibit an excellent stability in the number of generated Stokes and power level over one-hour period.

  11. Ablation of Liquids for Laser Propulsion with TEA CO2 Laser

    National Research Council Canada - National Science Library

    Sinko, John; Kodgis, Lisa; Porter, Simon; Sterling, Enrique; Lin, Jun; Pakhomov, Andrew V; Larson, C. W; Mead, Jr, Franklin B

    2005-01-01

    .... A Transversely Excited at Atmospheric pressure (TEA) CO2 laser operated at 10.6 micro-m, 300 ns pulse width, and 9 J pulse energy was used to ablate liquids contained in various aluminum and glass vessels...

  12. Ablation of Liquids for Laser Propulsion With TEA CO2 Laser

    National Research Council Canada - National Science Library

    Sinko, John; Kodgis, Lisa; Porter, Simon; Sterling, Enrique; Lin, Jun; Pakhomov, Andrew V; Larson, C. W; Mead, Jr., Franklin B

    2005-01-01

    .... A Transversely Excited at Atmospheric pressure (TEA) CO2 laser operated at 10.6 um, 300 ns pulse width, and 9 J pulse energy was used to ablate liquids contained in various aluminum and glass vessels...

  13. Percutaneous laser ablation of unresectable primary and metastatic adrenocortical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Pacella, Claudio M. [Regina Apostolorum Hospital, Department of Diagnostic Imaging and Interventional Radiology, Via San Francesco 50, Albano Laziale, Rome 00041 (Italy)], E-mail: claudiomaurizio.pacella@fastwebnet.it; Stasi, Roberto; Bizzarri, Giancarlo; Pacella, Sara; Graziano, Filomena Maria; Guglielmi, Rinaldo; Papini, Enrico [Regina Apostolorum Hospital, Department of Diagnostic Imaging and Interventional Radiology, Via San Francesco 50, Albano Laziale, Rome 00041 (Italy)

    2008-04-15

    Purpose: To evaluate the feasibility, safety, and clinical benefits of percutaneous laser ablation (PLA) in patients with unresectable primary and metastatic adrenocortical carcinoma (ACC). Patients and methods: Four patients with hepatic metastases from ACC and a Cushing's syndrome underwent ultrasound-guided PLA. In one case the procedure was performed also on the primary tumor. Results: After three sessions of PLA, the primary tumor of 15 cm was ablated by 75%. After 1-4 (median 1) sessions of PLA, five liver metastases ranging from 2 to 5 cm were completely ablated, while the sixth tumor of 12 cm was ablated by 75%. There were no major complications. Treatment resulted in an improvement of performance status and a reduction of the daily dosage of mitotane in all patients. The three patients with liver metastases presented a marked decrease of 24-h urine cortisol levels, an improved control of hypertension and a mean weight loss of 2.8 kg. After a median follow-up after PLA of 27.0 months (range, 9-48 months), two patients have died of tumor progression, while two other patients remain alive and free of disease. Conclusions: Percutaneous laser ablation is a feasible, safe and well tolerated procedure for the palliative treatment of unresectable primary and metastatic ACC. Further study is required to evaluate the impact of PLA on survival.

  14. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    Science.gov (United States)

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-08

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  15. Ablation spot area and impulse characteristics of polymers induced by burst irradiation of 1 μm laser pulses

    Science.gov (United States)

    Tsuruta, Hisashi; Dondelewski, Oskar; Katagiri, Yusuke; Wang, Bin; Sasoh, Akihiro

    2017-07-01

    The ablation spot area and impulse characteristics of various polymers were experimentally investigated against burst irradiation of Nd: YLF laser pulses with a pulse repetition frequency of 1 kHz, wavelength of 1047 nm, temporal pulse width of 10 ns, and single-pulse fluence of 6.1 J/cm2 to 17.1 J/cm2. The dependences of ablation area on the pulse energy from 0.72 to 7.48 mJ and the number of pulses from 10 pulses to 1000 pulses were investigated. In order to characterize their impulse performance as a function of fluence, which should not depend on ablation material, an effective ablation spot area was defined as that obtained against aluminum, 1050 A, as the reference material. An impulse that resulted from a single burst of 200 pulses was measured with a torsion-type impulse stand. Various impulse dependences on the fluence, which were not readily predicted from the optical properties of the material without ablation, were obtained. By fitting the experimentally measured impulse performance to Phipps and Sinko's model in the vapor regime, the effective absorption coefficient with laser ablation was evaluated, thereby resulting in three to six orders of magnitude larger than that without ablation. Among the polymers examined using polytetrafluoroethylene (PTFE) as the best volume absorbers, the highest momentum coupling coefficient of 66 μNs/J was obtained with an effective absorption coefficient more than six times smaller than that of the other polymers.

  16. Three wavelength optical alignment of the Nova laser

    International Nuclear Information System (INIS)

    Swift, C.D.; Bliss, E.S.; Jones, W.A.; Seppala, L.G.

    1983-01-01

    The Nova laser, presently under construction at Lawrence Livermore National Laboratory, will be capable of delivering more than 100 kJ of focused energy to an Inertial Confinement Fusion (ICF) target. Operation at the fundamental wavelength of the laser (1.05 μm) and at the second and third harmonic will be possible. This paper will discuss the optical alignment systems and techniques being implemented to align the laser output to the target at these wavelengths prior to each target irradiation. When experiments require conversion of the laser light to wavelengths of 0.53 μm and 0.35 μm prior to target irradiation, this will be accomplished in harmonic conversion crystals located at the beam entrances to the target chamber. The harmonic alignment system will be capable of introducing colinear alignment beams of all three wavelengths into the laser chains at the final spatial filter. The alignment beam at 1.05 μm will be about three cm in diameter and intense enough to align the conversion crystals. Beams at 0.53 μm and 0.35 μm will be expanded by the spatial filter to full aperture (74 cm) and used to illuminate the target and other alignment aids at the target chamber focus. This harmonic illumination system will include viewing capability as well. A final alignment sensor will be located at the target chamber. It will view images of the chamber focal plane at all three wavelengths. In this way, each beam can be aligned at the desired wavelength to produce the focal pattern required for each target irradiation. The design of the major components in the harmonic alignment system will be described, and a typical alignment sequence for alignment to a target will be presented

  17. Laser warning receiver to identify the wavelength and angle of arrival of incident laser light

    Science.gov (United States)

    Sinclair; Michael B.; Sweatt, William C.

    2010-03-23

    A laser warning receiver is disclosed which has up to hundreds of individual optical channels each optically oriented to receive laser light from a different angle of arrival. Each optical channel has an optical wedge to define the angle of arrival, and a lens to focus the laser light onto a multi-wavelength photodetector for that channel. Each multi-wavelength photodetector has a number of semiconductor layers which are located in a multi-dielectric stack that concentrates the laser light into one of the semiconductor layers according to wavelength. An electrical signal from the multi-wavelength photodetector can be processed to determine both the angle of arrival and the wavelength of the laser light.

  18. Thermal Ablation of Colorectal Lung Metastases: Retrospective Comparison Among Laser-Induced Thermotherapy, Radiofrequency Ablation, and Microwave Ablation.

    Science.gov (United States)

    Vogl, Thomas J; Eckert, Romina; Naguib, Nagy N N; Beeres, Martin; Gruber-Rouh, Tatjana; Nour-Eldin, Nour-Eldin A

    2016-12-01

    The purpose of this study is to retrospectively evaluate local tumor control, time to tumor progression, and survival rates among patients with lung metastatic colorectal cancer who have undergone ablation therapy performed using laser-induced thermotherapy (LITT), radiofrequency ablation (RFA), or microwave ablation (MWA). Data for this retrospective study were collected from 231 CT-guided ablation sessions performed for 109 patients (71 men and 38 women; mean [± SD] age, 68.6 ± 11.2 years; range, 34-94 years) from May 2000 to May 2014. Twenty-one patients underwent LITT (31 ablations), 41 patients underwent RFA (75 ablations), and 47 patients underwent MWA (125 ablations). CT scans were acquired 24 hours after each therapy session and at follow-up visits occurring at 3, 6, 12, 18, and 24 months after ablation. Survival rates were calculated from the time of the first ablation session, with the use of Kaplan-Meier and log-rank tests. Changes in the volume of the ablated lesions were measured using the Kruskal-Wallis method. Local tumor control was achieved in 17 of 25 lesions (68.0%) treated with LITT, 45 of 65 lesions (69.2%) treated with RFA, and 91 of 103 lesions (88.3%) treated with MWA. Statistically significant differences were noted when MWA was compared with LITT at 18 months after ablation (p = 0.01) and when MWA was compared with RFA at 6 months (p = 0.004) and 18 months (p = 0.01) after ablation. The overall median time to local tumor progression was 7.6 months. The median time to local tumor progression was 10.4 months for lesions treated with LITT, 7.2 months for lesions treated with RFA, and 7.5 months for lesions treated with MWA, with no statistically significant difference noted. New pulmonary metastases developed in 47.6% of patients treated with LITT, in 51.2% of patients treated with RFA, and in 53.2% of patients treated with MWA. According to the Kaplan-Meier test, median survival was 22.1 months for patients who underwent LITT, 24.2 months

  19. Frequency mixing in boron carbide laser ablation plasmas

    Science.gov (United States)

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; de Nalda, R.; Castillejo, M.

    2015-05-01

    Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B4C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  20. Near-field mapping by laser ablation of PMMA coatings

    DEFF Research Database (Denmark)

    Fiutowski, J.; Maibohm, C.; Kostiucenko, O.

    2011-01-01

    enhancements on and around the gold nanostructures. At the positions of the enhancements, the ablation threshold of the polymer coating is significantly lowered creating subdiffractional topographic modifications on the surface which are quantified via scanning electron microscopy and atomic force microscopy......The optical near-field of lithography-defined gold nanostructures, arranged into regular arrays on a gold film, is characterized via ablation of a polymer coating by laser illumination. The method utilizes femto-second laser pulses from a laser scanning microscope which induces electrical field....... The obtained experimental results for different polymer coating thicknesses and nanostructure geometries are in good agreement with theoretical calculations of the near field distribution for corresponding enhancement mechanisms. The developed method and its tunable experimental parameters show...

  1. Angular distribution of laser ablation plasma

    International Nuclear Information System (INIS)

    Kondo, K.; Kanesue, T.; Dabrowski, R.; Okamura, M.

    2010-01-01

    An expansion of a laser induced plasma is fundamental and important phenomena in a laser ion source. To understand the expanding direction, an array of Langmuir probes were employed. The chosen ion for the experiment was Ag 1+ which was created by a second harmonics of a Nd-YAG laser. The obtained angular distribution was about ±10 degree. This result also indicates a proper positioning of a solenoid magnet which enhances ion beam current.

  2. Plasmonic distributed feedback lasers at telecommunications wavelengths.

    Science.gov (United States)

    Marell, Milan J H; Smalbrugge, Barry; Geluk, Erik Jan; van Veldhoven, Peter J; Barcones, Beatrix; Koopmans, Bert; Nötzel, Richard; Smit, Meint K; Hill, Martin T

    2011-08-01

    We investigate electrically pumped, distributed feedback (DFB) lasers, based on gap-plasmon mode metallic waveguides. The waveguides have nano-scale widths below the diffraction limit and incorporate vertical groove Bragg gratings. These metallic Bragg gratings provide a broad bandwidth stop band (~500 nm) with grating coupling coefficients of over 5000/cm. A strong suppression of spontaneous emission occurs in these Bragg grating cavities, over the stop band frequencies. This strong suppression manifests itself in our experimental results as a near absence of spontaneous emission and significantly reduced lasing thresholds when compared to similar length Fabry-Pérot waveguide cavities. Furthermore, the reduced threshold pumping requirements permits us to show strong line narrowing and super linear light current curves for these plasmon mode devices even at room temperature.

  3. Laser ablation of titanium in liquid in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.

  4. Comparison of ablation stake measurements and Airborne Laser Scanning results

    Science.gov (United States)

    Rieg, Lorenzo; Galos, Stephan; Klug, Christoph; Sailer, Rudolf

    2014-05-01

    Ablation measurements using ablation stakes are a well-established method in glaciology, which sees a lot of use. However, ablation stakes cannot always be installed and read at a sufficient number of points on a glacier or on multiple glaciers, due to limited personnel and financial capacities or because of inaccessible areas due to dangerous zones (crevasses, rock falls, avalanches) or remote terrain. Furthermore, ablation stakes only enable measurements of surface melt, whereas basal or internal melt processes as well as surface change related to glacier dynamics cannot be measured. Multi temporal Airborne laser scanning (ALS) can provide high resolution and very accurate topographic information for the whole glacier area, which allows the calculation of the difference in surface height and therefore - if the density profile is known or can be estimated - the determination of the local mass balance, including processes like basal melt at least to a certain degree. To gain a better understanding of the differences between ablation stake readings and differential ALS data at the stake locations, the results of both methods have been compared in detail. At Langenferner, a glacier in the Italian Eastern Alps, where mass balance measurements have been carried out since 2004, three ALS campaigns have been conducted at the end of the hydrological year in 2005, 2010 and 2013. There are about 30 ablation stakes installed at the glacier, which have been read during or very close to the time of the flight campaigns. The ablation measurements are then compared to the surface differences calculated from ALS data at the locations of the ablation stakes. To take the movement of the stakes due to glacier dyanmics into account, the position of the stakes has been measured with a differential GPS.

  5. Reduction of secondary electron yield for E-cloud mitigation by laser ablation surface engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valizadeh, R., E-mail: reza.valizadeh@stfc.ac.uk [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Malyshev, O.B. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Wang, S. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Sian, T. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); The Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); Cropper, M.D. [Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Sykes, N. [Micronanics Ltd., Didcot, Oxon OX11 0QX (United Kingdom)

    2017-05-15

    Highlights: • SEY below 1 can be achieved with Laser ablation surface engineering. • SEY <1 surface can be produced with different types of nanosecond lasers. • Both microstructure (groves) and nano-structures are playing a role in reducing SEY. - Abstract: Developing a surface with low Secondary Electron Yield (SEY) is one of the main ways of mitigating electron cloud and beam-induced electron multipacting in high-energy charged particle accelerators. In our previous publications, a low SEY < 0.9 for as-received metal surfaces modified by a nanosecond pulsed laser was reported. In this paper, the SEY of laser-treated blackened copper has been investigated as a function of different laser irradiation parameters. We explore and study the influence of micro- and nano-structures induced by laser surface treatment in air of copper samples as a function of various laser irradiation parameters such as peak power, laser wavelength (λ = 355 nm and 1064 nm), number of pulses per point (scan speed and repetition rate) and fluence, on the SEY. The surface chemical composition was determined by x-ray photoelectron spectroscopy (XPS) which revealed that heating resulted in diffusion of oxygen into the bulk and induced the transformation of CuO to sub-stoichiometric oxide. The surface topography was examined with high resolution scanning electron microscopy (HRSEM) which showed that the laser-treated surfaces are dominated by microstructure grooves and nanostructure features.

  6. Microscopic and macroscopic modeling of femtosecond laser ablation of metals

    Energy Technology Data Exchange (ETDEWEB)

    Povarnitsyn, Mikhail E., E-mail: povar@ihed.ras.ru; Fokin, Vladimir B.; Levashov, Pavel R.

    2015-12-01

    Highlights: • We model laser ablation of aluminum using microscopic and macroscopic approaches. • We examine the domain of applicability for hydrodynamics and molecular dynamics. • Molecular dynamics describes ultra-fast processes of melting and fragmentation. • Hydrodynamics with a model of nucleation agrees well with molecular dynamics. • Both computational methods give similar ablation crater depths. - Abstract: Simulation of femtosecond laser ablation of a bulk aluminum target is performed using two complementary approaches. The first method is single-fluid two-temperature hydrodynamics (HD) completed with a two-temperature equation of state (EOS). The second approach is a combination of classical molecular dynamics (MD) and a continuum model of a free electron subsystem. In both methods, an identical and accurate description of optical and transport properties of the electron subsystem is based on wide-range models reproducing effects of electron heat wave propagation, electron–phonon/ion coupling and laser energy absorption on a time-dependent profile of the dielectric function. For simulation of homogeneous nucleation in a metastable liquid phase, a kinetic model of nucleation is implemented in the HD approach. The phase diagrams of the EOS and MD potential are in good agreement that gives opportunity to compare the dynamics of laser ablation obtained by both methods directly. Results of simulation are presented in the range of incident fluences 0.1–20 J/cm{sup 2} and match well with experimental findings for an ablation crater depth. The MD accurately reproduces nonequilibrium phase transitions and takes into account surface effects on nanoscale. The HD approach demonstrates good qualitative agreement with the MD method in the dynamics of phase explosion and spallation. Other advantages and disadvantages of both approaches are examined and discussed.

  7. Filamentation of ultrashort laser pulses of different wavelengths in ...

    Indian Academy of Sciences (India)

    2017-01-17

    Jan 17, 2017 ... Hence, many researchers choose a noble gas such as argon as the propagating medium [21–25]. In this paper, we adopt incident laser pulses hav- ing three different wavelengths to study the filament in argon. The content is organized as follows: Section 2 introduces the nonlinear Schrödinger equation for.

  8. Emission wavelength of multilayer distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Smith, Cameron L. C.; Brøkner Christiansen, Mads

    2012-01-01

    mode is reported. The method is advantageous to established methods as it predicts the wavelength precisely with reduced complexity. Four-layered hybrid polymer-TiO2 first order DFB dye lasers with different TiO2 layer thicknesses are studied. Varying the TiO2 thickness from 0 nm to 30 nm changes...

  9. Fourier ptychographic microscopy at telecommunication wavelengths using a femtosecond laser

    Science.gov (United States)

    Ahmed, Ishtiaque; Alotaibi, Maged; Skinner-Ramos, Sueli; Dominguez, Daniel; Bernussi, Ayrton A.; de Peralta, Luis Grave

    2017-12-01

    We report the implementation of the Fourier Ptychographic Microscopy (FPM) technique, a phase retrieval technique, at telecommunication wavelengths using a low-coherence ultrafast pulsed laser source. High quality images, near speckle-free, were obtained with the proposed approach. We demonstrate that FPM can also be used to image periodic features through a silicon wafer.

  10. PREFACE AND CONFERENCE INFORMATION: Eighth International Conference on Laser Ablation

    Science.gov (United States)

    Hess, Wayne P.; Herman, Peter R.; Bäuerle, Dieter; Koinuma, Hideomi

    2007-04-01

    Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11-16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in a unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications. Laser ablation continues to grow and evolve, touching forefront areas in science and driving new technological trends in laser processing applications. Please

  11. Synthesis of bimetallic nanostructures by nanosecond laser ablation of multicomponent thin films in water

    Science.gov (United States)

    Nikov, R. G.; Nedyalkov, N. N.; Atanasov, P. A.; Karashanova, D. B.

    2018-03-01

    The paper presents results on nanosecond laser ablation of thin films immersed in a liquid. The thin films were prepared by consecutive deposition of layers of different metals by thermal evaporation (first layer) and classical on-axis pulsed laser deposition (second layer); Ni/Au, Ag/Au and Ni/Ag thin films were thus deposited on glass substrates. The as-prepared films were then placed at the bottom of a glass vessel filled with double distilled water and irradiated by nanosecond laser pulses delivered by a Nd:YAG laser system at λ = 355 nm. This resulted in the formation of colloids of the thin films’ material. We also compared the processes of ablation of a bulk target and a thin film in the liquid by irradiating a Au target and a Au thin film by the same laser wavelength and fluence (λ = 355 nm, F = 5 J/cm2). The optical properties of the colloids were evaluated by optical transmittance measurements in the UV– VIS spectral range. Transmission electron microscopy was employed to estimate the particles’ size distribution.

  12. Selective ablation of dental enamel and dentin using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Lizarelli, R F Z; Costa, M M; Carvalho-Filho, E; Bagnato, V S; Nunes, F D

    2008-01-01

    The study of the interaction of intense laser light with matter, as well as transient response of atoms and molecules is very appropriated because of the laser energy concentration in a femtosecond optical pulses. The fundamental problem to be solved is to find tools and techniques which allow us to observe and manipulate on a femtosecond time scale the photonics events on and into the matter. Six third human extracted molars were exposed to a femtosecond Ti:Sapphire Q-switched and mode locked laser (Libra-S, Coherent, Palo Alto, CA, USA), emitting pulses with 70 fs width, radiation wavelength of 801 nm, at a constant pulse repetition rate of 1 KHz. The laser was operated at different power levels (70 to 400 mW) with constant exposition time of 10 seconds, at focused and defocused mode. Enamel and dentin surfaces were evaluated concerned ablation rate and morphological aspects under scanning electron microscopic. The results in this present experiment suggest that at the focused mode and under higher average power, enamel tissues present microcavities with higher depth and very precise edges, but, while dentin shows a larger melt-flushing, lower depth and melting and solidification aspect. In conclusion, it is possible to choose hard or soft ablation, under lower and higher average power, respectively, revealing different aspects of dental enamel and dentin, depending on the average power, fluence and distance from the focal point of the ultra-short pulse laser on the tooth surface

  13. Histological evaluation of vertical laser channels from ablative fractional resurfacing

    DEFF Research Database (Denmark)

    Skovbølling Haak, Christina; Illes, Monica; Paasch, Uwe

    2011-01-01

    Ablative fractional resurfacing (AFR) represents a new treatment potential for various skin conditions and new laser devices are being introduced. It is important to gain information about the impact of laser settings on the dimensions of the created laser channels for obtaining a safe...... and efficient treatment outcome. The aim of this study was to establish a standard model to document the histological tissue damage profiles after AFR and to test a new laser device at diverse settings. Ex vivo abdominal pig skin was treated with a MedArt 620, prototype fractional carbon dioxide (CO(2)) laser...... measurements for each laser setting (n = 28). AFR created cone-shaped laser channels. Ablation depths varied from reaching the superficial dermis (2 mJ, median 41 μm) to approaching the subcutaneous fat (144 mJ, median 1,943 μm) and correlated to the applied energy levels in an approximate linear relation (r(2...

  14. Nanosecond pulsed laser ablation of brass in a dry and liquid-confined environment

    Science.gov (United States)

    Bashir, Shazia; Vaheed, Hamza; Mahmood, Khaliq

    2013-02-01

    The effect of ambient environment (dry or wet) and overlapping laser pulses on the laser ablation performance of brass has been investigated. For this purpose, a Q-switched, frequency doubled Nd:YAG laser with a wavelength of 532 nm, pulse energy of 150 mJ, pulse width of 6 ns and repetition rate of 10 Hz is employed. In order to explore the effect of ambient environments, brass targets have been exposed in deionized water, methanol and air. The targets are exposed for 1000, 2000, 3000 and 4000 succeeding pulses in each atmosphere. The surface morphology and chemical composition of ablated targets have been characterized by using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM) and Attenuated Total Reflection (ATR) techniques. In case of liquid environment, various features like nano- and micro-scale laser-induced periodic surface structures with periodicity 500 nm-1 μm, cavities of size few micrometers with multiple ablative layers and phenomenon of thermal stress cracking are observed. These features are originated by various chemical and thermal phenomena induced by laser heating at the liquid-solid interfaces. The convective bubble motion, explosive boiling, pressure gradients, cluster and colloid formation due to confinement effects of liquids are possible cause for such kind of features. The metal oxides and alcohol formed on irradiated surface are also playing the significant role for the formation of these kinds of structure. In case of air one huge crater is formed along with the redeposition of sputtered material and is ascribed to laser-induced evaporation and oxide formation.

  15. Frequency mixing in boron carbide laser ablation plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; Nalda, R. de, E-mail: r.nalda@iqfr.csic.es; Castillejo, M.

    2015-05-01

    Graphical abstract: - Highlights: • Two-color frequency mixing has been studied in a laser ablation boron carbide plasma. • A space- and time-resolved study mapped the nonlinear optical species in the plasma. • The nonlinear process maximizes when charge recombination is expected to be completed. • Neutral atoms and small molecules are the main nonlinear species in this medium. • Evidence points to six-wave mixing as the most likely process. - Abstract: Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B{sub 4}C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  16. Selective femtosecond laser structuring of dielectric thin films with different band gaps: a time-resolved study of ablation mechanisms

    Science.gov (United States)

    Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2016-12-01

    Ultrashort pulse lasers have been increasingly gaining importance for the selective structuring of dielectric thin films in industrial applications. In a variety of works the ablation of thin SiO2 and SiNx films from Si substrates has been investigated with near infrared laser wavelengths with photon energies of about 1.2 eV where both dielectrics are transparent (E_{{gap,SiO2}}≈ 8 eV; E_{{gap,SiN}x}≈ 2.5 eV). In these works it was found that few 100 nm thick SiO2 films are selectively ablated with a "lift-off" initiated by confined laser ablation whereas the SiN_{{x}} films are ablated by a combination of confined and direct laser ablation. In the work at hand, ultrafast pump-probe imaging was applied to compare the laser ablation dynamics of the two thin film systems directly with the uncoated Si substrate—on the same setup and under identical parameters. On the SiO2 sample, results show the pulse absorption in the Si substrate, leading to the confined ablation of the SiO2 layer by the expansion of the substrate. On the SiN_{{x}} sample, direct absorption in the layer is observed leading to its removal by evaporation. The pump-probe measurements combined with reflectivity corrected threshold fluence investigations suggest that melting of the Si substrate is sufficient to initiate the lift-off of an overlaying transparent film—evaporation of the substrate seems not to be necessary.

  17. Endoluminal non-contact soft tissue ablation using fiber-based Er:YAG laser delivery

    Science.gov (United States)

    Kundrat, Dennis; Fuchs, Alexander; Schoob, Andreas; Kahrs, Lüder A.; Ortmaier, Tobias

    2016-03-01

    The introduction of Er:YAG lasers for soft and hard tissue ablation has proven promising results over the last decades due to strong absorption at 2.94 μm wavelength by water molecules. An extension to endoluminal applications demands laser delivery without mirror arms due to dimensional constraints. Therefore, fiber-based solutions are advanced to provide exible access while keeping space requirements to a minimum. Conventional fiber-based treatments aim at laser-tissue interactions in contact mode. However, this procedure is associated with disadvantages such as advancing decrease in power delivery due to particle coverage of the fiber tip, tissue carbonization, and obstructed observation of the ablation progress. The objective of this work is to overcome aforementioned limitations with a customized fiber-based module for non-contact robot-assisted endoluminal surgery and its associated experimental evaluation. Up to the authors knowledge, this approach has not been presented in the context of laser surgery at 2.94 μm wavelength. The preliminary system design is composed of a 3D Er:YAG laser processing unit enabling automatic laser to fiber coupling, a GeO2 solid core fiber, and a customized module combining collimation and focusing unit (focal length of 20 mm, outer diameter of 8 mm). The performance is evaluated with studies on tissue substitutes (agar-agar) as well as porcine samples that are analysed by optical coherence tomography measurements. Cuts (depths up to 3mm) with minimal carbonization have been achieved under adequate moistening and sample movement (1.5mms-1). Furthermore, an early cadaver study is presented. Future work aims at module miniaturization and integration into an endoluminal robot for scanning and focus adaptation.

  18. Plasma dynamics from laser ablated solid lithium

    Indian Academy of Sciences (India)

    ) model, invoked for the high density laser plasma under study. Some interesting results pertaining to the analysis of plume structure and spatio-temporal behaviour ofTe and ne along the plume length will be presented and discussed.

  19. Efficient Laser Ablation - Project AOARD 044033

    National Research Council Canada - National Science Library

    Uchida, Shigeaki

    2006-01-01

    .... The advantages of using laser is that it can avoid use of explosive or toxic oxidizing chemicals and eliminate the necessity of high voltage power supply that is for electrical propulsion systems...

  20. Spectroscopic studies of laser ablation plumes of artwork materials

    Science.gov (United States)

    Oujja, M.; Rebollar, E.; Castillejo, M.

    2003-04-01

    Studies on the plasma plume created during KrF laser (248 nm) ablation of dosimeter tempera samples in vacuum have been carried out to investigate the basic interactions of the laser with paint materials. Time resolved optical emission spectroscopy (OES) was used to measure the translational velocity of electronically excited transients in the plasma plume. Laser-induced fluorescence (LIF) studies using a probe dye laser, allowed to determine the velocities of non-emitting species. The propagation velocities of C 2 in the a 3π u and d 3π g electronic states and of excited atomic species are indicative of a high translational temperature. Differences between the velocities of organic and inorganic species and between emissions from the tempera systems and from the pigments as pellets allow to discuss the participation of photochemical mechanisms in the laser irradiation of the paint systems.

  1. Pulsed laser ablation of Germanium under vacuum and hydrogen environments at various fluences

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Hassan [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Dawood, Asadullah; Akram, Mahreen; Mahmood, Khaliq; Hayat, Asma; Ahmad, Riaz; Hussain, Tousif [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Mahmood, Arshad [National Institute of Laser and Optronics (NILOP), Islamabad (Pakistan)

    2015-07-30

    Highlights: • Germanium targets were exposed under vacuum and H{sub 2} environment by nanosecond laser pulses. • The effect of laser fluence and ambient environment has been investigated. • The surface morphology is investigated by SEM analysis. • Raman and FTIR Spectroscopy are performed to reveal structural modification. • Electrical conductivity is probed by four probe method. - Abstract: Laser fluence and ambient environment play a significant role for the formation and development of the micro/nano-structures on the laser irradiated targets. Single crystal (1 0 0) Germanium (Ge) has been ablated under two environments of vacuum (10{sup −3} Torr) and hydrogen (100 Torr) at various fluences ranging from 4.5 J cm{sup −2} to 6 J cm{sup −2}. For this purpose KrF Excimer laser with wavelength of 248 nm, pulse duration of 18 ns and repetition rate of 20 Hz has been employed. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets was explored by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy. Electrical conductivity of the irradiated Ge is measured by four probe method. SEM analysis exhibits the formation of laser-induced periodic surface structures (LIPSS), cones and micro-bumps in both ambient environments (vacuum and hydrogen). The formation as well as development of these structures is strongly dependent upon the laser fluence and environmental conditions. The periodicity of LIPSS or ripples varies from 38 μm to 60 μm in case of vacuum whereas in case of hydrogen environment, the periodicity varies from 20 μm to 45 μm. The difference in number of ripples and periodicity as well as in shape and size of cones and bumps in vacuum and hydrogen is explained on the basis of confinement and shielding effect of plasma. FTIR spectroscopy reveals that no new bands are formed for laser ablated Ge under vacuum, whereas C−H stretching vibration band is

  2. Multi-criteria optimization in CO2 laser ablation of multimode polymer waveguides

    Science.gov (United States)

    Tamrin, K. F.; Zakariyah, S. S.; Sheikh, N. A.

    2015-12-01

    High interconnection density associated with current electronics products poses certain challenges in designing circuit boards. Methods, including laser-assisted microvia drilling and surface mount technologies for example, are being used to minimize the impacts of the problems. However, the bottleneck is significantly pronounced at bit data rates above 10 Gbit/s where losses, especially those due to crosstalk, become high. One solution is optical interconnections (OI) based on polymer waveguides. Laser ablation of the optical waveguides is viewed as a very compatible technique with ultraviolet laser sources, such as excimer and UV Nd:YAG lasers, being used due to their photochemical nature and minimal thermal effect when they interact with optical materials. In this paper, the authors demonstrate the application of grey relational analysis to determine the optimized processing parameters concerning fabrication of multimode optical polymer waveguides by using infra-red 10.6 μm CO2 laser micromachining to etch acrylate-based photopolymer (Truemode™). CO2 laser micromachining offers a low cost and high speed fabrication route needed for high volume productions as the wavelength of CO2 lasers can couple well with a variety of polymer substrates. Based on the highest grey relational grade, the optimized processing parameters are determined at laser power of 3 W and scanning speed of 100 mm/s.

  3. A superradiant clock laser on a magic wavelength optical lattice.

    Science.gov (United States)

    Maier, Thomas; Kraemer, Sebastian; Ostermann, Laurin; Ritsch, Helmut

    2014-06-02

    An ideal superradiant laser on an optical clock transition of noninteracting cold atoms is predicted to exhibit an extreme frequency stability and accuracy far below mHz-linewidth. In any concrete setup sufficiently many atoms have to be confined and pumped within a finite cavity mode volume. Using a magic wavelength lattice minimizes light shifts and allows for almost uniform coupling to the cavity mode. Nevertheless, the atoms are subject to dipole-dipole interaction and collective spontaneous decay which compromises the ultimate frequency stability. In the high density limit the Dicke superradiant linewidth enhancement will broaden the laser line and nearest neighbor couplings will induce shifts and fluctuations of the laser frequency. We estimate the magnitude and scaling of these effects by direct numerical simulations of few atom systems for different geometries and densities. For Strontium in a regularly filled magic wavelength configuration atomic interactions induce small laser frequency shifts only and collective spontaneous emission weakly broadens the laser. These interactions generally enhance the laser sensitivity to cavity length fluctuations but for optimally chosen operating conditions can lead to an improved synchronization of the atomic dipoles.

  4. MULTI-WAVELENGTH AIRBORNE LASER SCANNING FOR ARCHAEOLOGICAL PROSPECTION

    Directory of Open Access Journals (Sweden)

    C. Briese

    2013-07-01

    Full Text Available Airborne laser scanning (ALS is a widely used technique for the sampling of the earth's surface. Next to the widely used geometric information current systems provide additional information about the signal strength of each echo. In order to utilize this information, radiometric calibration is essential. As a result physical observables that characterise the backscatter characteristic of the sensed surface are available. Due to the active illumination of the surfaces these values are independent of shadows caused by sunlight and due to the simultaneously recorded 3D information a single-channel true orthophoto can be directly estimated from the ALS data. By the combination of ALS data utilizing different laser wavelengths a multi-wavelength orthophoto of the scene can be generated. This contribution presents, next to the practical calibration workflow, the radiometric calibration results of the archaeological study site Carnuntum (Austria. The area has been surveyed at three different ALS wavelengths within a very short period of time. After the radiometric calibration of each single ALS wavelength (532 nm, 1064 nm and 1550 nm a multi-channel ALS orthophoto is derived. Subsequently, the radiometric calibration results of the single- and multi-wavelength ALS data are studied in respect to present archaeological features. Finally, these results are compared to the radiometric calibration results of an older ALS data acquisition campaign and to results of a systematic air photo interpretation.

  5. Precise femtosecond laser ablation of dental hard tissue: preliminary investigation on adequate laser parameters

    International Nuclear Information System (INIS)

    Hikov, Todor; Pecheva, Emilia; Petrov, Todor; Montgomery, Paul; Antoni, Frederic; Leong-Hoi, Audrey

    2017-01-01

    This work aims at evaluating the possibility of introducing state-of-the-art commercial femtosecond laser system in restorative dentistry by maintaining well-known benefits of lasers for caries removal, but also in overcoming disadvantages such as thermal damage of irradiated substrate. Femtosecond ablation of dental hard tissue is investigated by changing the irradiation parameters (pulsed laser energy, scanning speed and pulse repetition rate), assessed for enamel and dentin. The femtosecond laser system used in this work may be suitable for cavity preparation in dentin and enamel, due to the expected effective ablation and low temperature increase when using ultra short laser pulses. If adequate laser parameters are selected, this system seems to be promising for promoting a laser-assisted, minimally invasive approach in restorative dentistry. (paper)

  6. Precise femtosecond laser ablation of dental hard tissue: preliminary investigation on adequate laser parameters

    Science.gov (United States)

    Hikov, Todor; Pecheva, Emilia; Montgomery, Paul; Antoni, Frederic; Leong-Hoi, Audrey; Petrov, Todor

    2017-01-01

    This work aims at evaluating the possibility of introducing state-of-the-art commercial femtosecond laser system in restorative dentistry by maintaining well-known benefits of lasers for caries removal, but also in overcoming disadvantages such as thermal damage of irradiated substrate. Femtosecond ablation of dental hard tissue is investigated by changing the irradiation parameters (pulsed laser energy, scanning speed and pulse repetition rate), assessed for enamel and dentin. The femtosecond laser system used in this work may be suitable for cavity preparation in dentin and enamel, due to the expected effective ablation and low temperature increase when using ultra short laser pulses. If adequate laser parameters are selected, this system seems to be promising for promoting a laser-assisted, minimally invasive approach in restorative dentistry.

  7. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    International Nuclear Information System (INIS)

    Seto, Takafumi; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto

    2006-01-01

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism

  8. Laser Ablation Experiments on the Tamdakht H5 Chondrite

    Science.gov (United States)

    White, Susan M.; Stern, Eric

    2017-01-01

    High-powered lasers were used to induce ablation and to form fusion crusts in the lab on Tamdakht H5 chondrites and basalt. These ground tests were undertaken to improve our understanding, and ultimately improve our abilty to model and predict, meteoroid ablation during atmospheric entry. The infrared fiber laser at the LHMEL facilty, operated in the continuous wave (i.e. non-pulsed) mode, provided radiation surface heat flux at levels similar to meteor entry for these tests. Results are presented from the first round of testing on samples of Tamdakht H5 ordinary chondrite which were ex-posed to entry-relevant heating rates between 2 and 10 kWcm2.

  9. Nanostructured films of metal particles obtained by laser ablation

    International Nuclear Information System (INIS)

    Muniz-Miranda, M.; Gellini, C.; Giorgetti, E.; Margheri, G.; Marsili, P.; Lascialfari, L.; Becucci, L.; Trigari, S.; Giammanco, F.

    2013-01-01

    Colloidal dispersions of silver and gold nanoparticles were obtained in pure water by ablation with nanosecond pulsed laser. Then, by filtration of the metal particles on alumina, we fabricated nanostructured films, whose surface morphology was examined by atomic force microscopy (AFM) and related to surface-enhanced Raman scattering (SERS) after adsorption of adenine. - Highlights: • Ag and Au colloidal nanoparticles were obtained by laser ablation. • Nanostructured Ag and Au films were fabricated by filtration of metal nanoparticles. • Surface morphology of metal films was investigated by atomic force microscopy. • Surface-enhanced Raman spectra (SERS) of adenine on metal films were obtained. • SERS enhancements were related to the surface roughness of the metal films

  10. Carbon nanotubes/laser ablation gold nanoparticles composites

    International Nuclear Information System (INIS)

    Lascialfari, Luisa; Marsili, Paolo; Caporali, Stefano; Muniz-Miranda, Maurizio; Margheri, Giancarlo; Serafini, Andrea; Brandi, Alberto; Giorgetti, Emilia; Cicchi, Stefano

    2014-01-01

    The production of nanohybrids formed by oxidized multiwalled carbon nanotubes (MWCNTs) and nanoparticles, produced by pulsed laser ablation in liquids process, is described. The use of linkers, obtained by transformation of pyrene-1-butanol, is mandatory to generate an efficient and stable interaction between the two components. Transmission electron microscopy and X-ray photoelectron spectroscopy analysis showed the obtainment of the efficient coverage of the MWCNTs by nanoparticles composed by metal gold and, partially, by oxides. - Highlights: • Laser ablation is a used for the production of gold nanoparticle colloids • An efficient decoration of carbon nanotubes with nanoparticles is obtained through the use of a linker • This method allows an efficient and tunable preparation of carbon nanotube hybrids

  11. Carbon nanotubes/laser ablation gold nanoparticles composites

    Energy Technology Data Exchange (ETDEWEB)

    Lascialfari, Luisa [Department of Chemistry, Università di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze 50019 (Italy); Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, Sesto Fiorentino, Firenze 50019 (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, Firenze 50123 (Italy); Marsili, Paolo [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, Sesto Fiorentino, Firenze 50019 (Italy); Caporali, Stefano [Department of Chemistry, Università di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze 50019 (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, Firenze 50123 (Italy); Muniz-Miranda, Maurizio [Department of Chemistry, Università di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze 50019 (Italy); Margheri, Giancarlo [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, Sesto Fiorentino, Firenze 50019 (Italy); Serafini, Andrea; Brandi, Alberto [Department of Chemistry, Università di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze 50019 (Italy); Giorgetti, Emilia, E-mail: emilia.giorgetti@fi.isc.cnr.it [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, Sesto Fiorentino, Firenze 50019 (Italy); Cicchi, Stefano, E-mail: stefano.cicchi@unifi.it [Department of Chemistry, Università di Firenze, Via della Lastruccia 3-13, Sesto Fiorentino, Firenze 50019 (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, Firenze 50123 (Italy)

    2014-10-31

    The production of nanohybrids formed by oxidized multiwalled carbon nanotubes (MWCNTs) and nanoparticles, produced by pulsed laser ablation in liquids process, is described. The use of linkers, obtained by transformation of pyrene-1-butanol, is mandatory to generate an efficient and stable interaction between the two components. Transmission electron microscopy and X-ray photoelectron spectroscopy analysis showed the obtainment of the efficient coverage of the MWCNTs by nanoparticles composed by metal gold and, partially, by oxides. - Highlights: • Laser ablation is a used for the production of gold nanoparticle colloids • An efficient decoration of carbon nanotubes with nanoparticles is obtained through the use of a linker • This method allows an efficient and tunable preparation of carbon nanotube hybrids.

  12. Selective excavation of human carious dentin using the nanosecond pulsed laser in 5.8-μm wavelength range

    Science.gov (United States)

    Kita, Tetsuya; Ishii, Katsunori; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    Less-invasive treatment of caries has been needed in laser dentistry. Based on the absorption property of dentin substrates, 6 μm wavelength range shows specific absorptions and promising characteristics for the excavation. In our previous study, 5.8 μm wavelength range was found to be effective for selective excavation of carious dentin and restoration treatment using composite resin from the irradiation experiment with bovine sound and demineralized dentin. In this study, the availability of 5.8 μm wavelength range for selective excavation of human carious dentin was investigated for clinical application. A mid-infrared tunable nanosecond pulsed laser by difference-frequency generation was used for revealing the ablation property of human carious dentin. Irradiation experiments indicated that the wavelength of 5.85 μm and the average power density of 30 W/cm2 realized the selective excavation of human carious dentin, but ablation property was different with respect to each sample because of the different caries progression. In conclusion, 5.8 μm wavelength range was found to be effective for selective excavation of human carious dentin.

  13. Laser ablation of molecular carbon nitride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D., E-mail: d.fischer@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Schwinghammer, K. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany); Sondermann, C. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Lau, V.W.; Mannhart, J. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Lotsch, B.V. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany)

    2015-09-15

    We present a method for the preparation of thin films on sapphire substrates of the carbon nitride precursors dicyandiamide (C{sub 2}N{sub 4}H{sub 4}), melamine (C{sub 3}N{sub 6}H{sub 6}), and melem (C{sub 6}N{sub 10}H{sub 6}), using the femtosecond-pulsed laser deposition technique (femto-PLD) at different temperatures. The depositions were carried out under high vacuum with a femtosecond-pulsed laser. The focused laser beam is scanned on the surface of a rotating target consisting of the pelletized compounds. The resulting polycrystalline, opaque films were characterized by X-ray powder diffraction, infrared, Raman, and X-ray photoelectron spectroscopy, photoluminescence, SEM, and MALDI-TOF mass spectrometry measurements. The crystal structures and optical/spectroscopic results of the obtained rough films largely match those of the bulk materials.

  14. Negative ion production by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Motoi [Doshisha Univ., Tanabe, Kyoto (Japan). Faculty of Engineering; Sasao, Mamiko

    1997-02-01

    The status of the development of Li{sup -} production by generating a neutral Li flux with an intense radiation of a laser beam onto the surface of Li metal has been reported. The experimental apparatus was arranged to detect a mass separated Li{sup +} and Li{sup -} ion beams. A Li sputtering probe, immersed in the extraction region of a compact (6cm diam. 7cm long) magnetic multipole ion source was irradiated with a Nd-YAG laser of 0.4 J/pulse. The production of mass-separated positive ions of Li by laser irradiation has been confirmed, but the production of Li{sup -} has not been confirmed yet due to the noise caused by a temporal discharge. (author)

  15. Growth of epitaxial thin films by pulsed laser ablation

    International Nuclear Information System (INIS)

    Lowndes, D.H.

    1992-01-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs

  16. Laser ablation of Bi-substituted gadolinium iron garnet films

    International Nuclear Information System (INIS)

    Watanabe, N.; Hayashida, K.; Kawano, K.; Higuchi, K.; Ohkoshi, M.; Tsushima, K.

    1995-01-01

    Bi-substituted gadolinium iron garnet films were deposited by laser ablation. The composition, the structure and the magnetic properties of the films were found to be strongly dependent both on the compositions of the targets and on the pressure of oxygen. The highest values of Bi-substitution up to x=1.44 with uniform composition were obtained, after annealing in air. ((orig.))

  17. Characteristics of target polarization by laser ablation

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Delle Side, D.; Giuffreda, E.; Nassisi, V.

    2015-01-01

    Roč. 33, č. 4 (2015), 601-605 ISSN 0263-0346 R&D Projects: GA ČR GAP205/12/0454; GA MŠk EE2.3.20.0279 Grant - others: Laser Zdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : Target current in laser -produced plasmas * positive and negative target polarization * space structure of ion front Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.649, year: 2015

  18. Characterization of Aerosols Generated by nano-second Laser Ablation of an Acrylic Paint

    International Nuclear Information System (INIS)

    Dewalle, P.; Vendel, J.; Dewalle, P.; Weulersse, J.M.; Dewalle, P.; Herve, Ph.; Dewalle, P.; Decobert, G.

    2010-01-01

    This study focuses on particles produced during laser ablation of a green colored acrylic wall paint, which is frequently used in industrial buildings and in particular in nuclear installations. Ablation is carried out with a Nd:YAG laser at a wavelength of 532 nm and a pulse duration of 5 ns, in a cell at ambient pressure and temperature, which is ventilated by filtered air. The number of particles emitted was measured with a Condensation Particle Counter (CPC) and their size with an Engine Exhaust Particle Sizer (or EEPS) for the nano-metric range, and an AEROSIZER (for the micrometric range). The mass and shape of particles were determined by sampling on filters as well as on the different impaction plates of a Low-Pressure Impactor (LPI). Two particle populations were detected: a population of aggregates of primary nano-particles with an electrical mobility diameter ranging from 30 to 150 nm, and a population of spherical submicron particles with an aerodynamic diameter ranging from 400 to 1000 nm. The spherical particles are mainly composed of titanium dioxide, and the aggregates most likely of carbon. The presence of two types of particles with different size distributions, shapes, and chemical compositions, implies that particles originating from the ablation of paint are formed by two different mechanisms: agglomeration in the case of the nano-metric aggregates, which is preceded by steps of nucleation, condensation, and coagulation of the primary particles, while the submicron spheres result from a direct ejection mechanism. (authors)

  19. Tactile Sensing From Laser-Ablated Metallized PET Films

    KAUST Repository

    Nag, Anindya

    2016-10-17

    This paper reports the design, fabrication, and implementation of a novel sensor patch developed from commercial polyethylene terephthalate films metallized with aluminum on one side. The aluminum was ablated with laser to form interdigitated electrodes to make sensor prototypes. The interdigitated electrodes were patterned on the substrate with a laser cutter. Characterization of the prototypes was done to determine their operating frequency followed by experimentation. The prototypes have been used as a tactile sensor showing promising results for using these patches in applications with contact pressures considerably lesser than normal human contact pressure.

  20. Optical Thomson scatter from laser-ablated plumes

    International Nuclear Information System (INIS)

    Delserieys, A.; Khattak, F. Y.; Lewis, C. L. S.; Riley, D.; Pedregosa Gutierrez, J.

    2008-01-01

    We have obtained density and temperature informations on an expanding KrF laser-ablated magnesium plume via optical Thomson scatter with a frequency doubled Nd:YAG laser. The electron temperature was found to decay with the expected T e ∝t -1 dependence. However, we have found the electron density to have a time dependence n e ∝t -4.95 which can be explained by strong recombination processes. We also observed atomic Raman satellites originating from transitions between the different angular momentum levels of the metastable 3 P 0 term in Mg I

  1. Plasma dynamics from laser ablated solid lithium

    Indian Academy of Sciences (India)

    ture with respect to an appropriate theoretical plasma model. For a high density laser plasma one invokes the concept of local thermodynamic equilibrium (LTE) as a model to explain the atomic collision processes [4]. The experimental results when fitted to the proposed model, will validate the assumptions underlying the ...

  2. Polarization of plastic targets by laser ablation

    Czech Academy of Sciences Publication Activity Database

    Giuffreda, E.; Delle Side, D.; Krása, Josef; Nassisi, V.

    2016-01-01

    Roč. 11, May (2016), s. 1-6, č. článku C05004. ISSN 1748-0221 Institutional support: RVO:68378271 Keywords : lasers * ion sources * wake-field acceleration Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.220, year: 2016

  3. Reassembling Solid Materials by Femtosecond Laser Ablation: Case of Aluminum Nitride

    Science.gov (United States)

    Kobayashi, Tohru; Matsuo, Yukari

    2013-06-01

    Through atomization and ionization, we could completely alter the composition of a nonconductive material, aluminum nitride, by femtosecond laser ablation. Preferential production of pure aluminum cluster cations Aln+ (n≤32) reflects not only their higher energetic stability compared with mixed clusters AlnNm+ but also completion of thermal relaxation in ablation plasma. Observation of metastable dissociation of Aln+ indicates that cluster cations have still enough internal energy for dissociation to occur, although the process is much slower than the cluster formation. Almost no cluster formation has been observed after nanosecond laser ablation of aluminum nitride, which highlights the distinct nature of ablation plasma produced by femtosecond laser ablation.

  4. Comparison of soft and hard tissue ablation with sub-ps and ns pulse lasers

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L.B.; Stuart, B.C.; Celliers, P.M.; Feit, M.D.; Glinsky, M.E.; Heredia, N.J.; Herman, S.; Lane, S.M.; London, R.A.; Matthews, D.L.; Perry, M.D.; Rubenchik, A.M. [Lawrence Livermore National Lab., CA (United States); Chang, T.D. [Veterans Administration Hospital, Martinez, CA (United States); Neev, J. [Beckman Laser Inst. and Medical Clinic, Irvine, CA (United States)

    1996-05-01

    Tissue ablation with ultrashort laser pulses offers several unique advantages. The nonlinear energy deposition is insensitive to tissue type, allowing this tool to be used for soft and hard tissue ablation. The localized energy deposition lead to precise ablation depth and minimal collateral damage. This paper reports on efforts to study and demonstrate tissue ablation using an ultrashort pulse laser. Ablation efficiency and extent of collateral damage for 0.3 ps and 1000 ps duration laser pulses are compared. Temperature measurements of the rear surface of a tooth section is also presented.

  5. Surface wettability of silicon substrates enhanced by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Shih-Feng [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China); Hsiao, Wen-Tse; Huang, Kuo-Cheng; Hsiao, Sheng-Yi [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); Chen, Ming-Fei [National Changhua University of Education, Department of Mechatronics Engineering, Changhua (China); Lin, Yung-Sheng [Hungkuang University, Department of Applied Cosmetology and Graduate Institute of Cosmetic Science, Taichung (China); Chou, Chang-Pin [National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China)

    2010-11-15

    Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9 on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light. (orig.)

  6. Laser ablation of hard tissue: correlation between the laser beam parameters and the post-ablative tissue characteristics

    Science.gov (United States)

    Serafetinides, Alexandros A.; Makropoulou, Mersini I.; Khabbaz, Maruan

    2003-11-01

    Hard dental tissue laser applications, such as preventive treatment, laser diagnosis of caries, laser etching of enamel, laser decay removal and cavity preparation, and more recently use of the laser light to enlarge the root canal during the endodontic therapy, have been investigated for in vitro and in vivo applications. Post-ablative surface characteristics, e.g. degree of charring, cracks and other surface deformation, can be evaluated using scanning electron microscopy. The experimental data are discussed in relevance with the laser beam characteristics, e.g. pulse duration, beam profile, and the beam delivery systems employed. Techniques based on the laser illumination of the dental tissues and the subsequent evaluation of the scattered fluorescent light will be a valuable tool in early diagnosis of tooth diseases, as carious dentin or enamel. The laser induced autofluorescence signal of healthy dentin is much stronger than that of the carious dentin. However, a better understanding of the transmission patterns of laser light in teeth, for both diagnosis and therapy is needed, before the laser procedures can be used in a clinical environment.

  7. Effect of ablation parameters on infrared pulsed laser deposition of poly(ethylene glycol) films

    Science.gov (United States)

    Bubb, Daniel M.; Papantonakis, M. R.; Toftmann, B.; Horwitz, J. S.; McGill, R. A.; Chrisey, D. B.; Haglund, R. F., Jr.

    2002-06-01

    Polymer thin films were deposited by laser ablation using infrared radiation both resonant (2.90, 3.40, 3.45, and 8.96 mum) and nonresonant (3.30, 3.92, and 4.17 mum) with vibrational modes in the starting material, polyethylene glycol. The chemical structure of the films was characterized by Fourier transform infrared spectroscopy, while the molecular weight distribution was investigated using gel permeation chromatography. The films deposited by resonant irradiation are superior to those deposited with nonresonant radiation with respect to both the chemical structure and the molecular weight distribution of the films. However, the molecular-weight distributions of films deposited at nonresonant infrared wavelengths show marked polymer fragmentation. Fluence and wavelength dependence studies show that the effects may be related to the degree of thermal confinement, and hence to the relative absorption strengths of the targeted vibrational modes.

  8. Ablation of biological tissues by radiation of strontium vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Soldatov, A. N., E-mail: general@tic.tsu.ru; Vasilieva, A. V., E-mail: anita-tomsk@mail.ru [National Research Tomsk State University, Lenin ave., 36, 634050, Tomsk (Russian Federation)

    2015-11-17

    A two-stage laser system consisting of a master oscillator and a power amplifier based on sources of self- contained transitions in pairs SrI and SrII has been developed. The radiation spectrum contains 8 laser lines generating in the range of 1 – 6.45 μm, with a generation pulse length of 50 – 150 ns, and pulse energy of ∼ 2.5 mJ. The divergence of the output beam was close to the diffraction and did not exceed 0.5 mrad. The control range of the laser pulse repetition rate varied from 10 to 15 000 Hz. The given laser system has allowed to perform ablation of bone tissue samples without visible thermal damage.

  9. Multiple-wavelength free-space laser communications

    Science.gov (United States)

    Purvinskis, Robert; Giggenbach, Dirk; Henniger, Hennes; Perlot, Nicolas; David, Florian

    2003-07-01

    Free-space optical communications systems in the atmosphere, based on intensity modulation and direct detection, are heavily affected by fading caused by turbulence cells of varying scale and motion. Several data sets of fading measurements under different scenarios have been recorded demonstrating this effect. In this paper we introduce a form of free-space laser communications involving a source operating on several wavelengths. The goal is to overcome atmospheric interference on a communications link. We have performed simulations using the DLR PILab Matlab toolbox. These indicate the extent to which the turbulence and beam properties interact. Experimental investigations are planned. Further properties are also taken into account, including the choice of appropriate laser bandwidth and wavelengths, the effect of atmospheric absorption from aerosols and molecular absorption lines, as well as effects of atmospheric structure on beam propagation. Possible scenarios for application of this scheme will be presented as well.

  10. Corneal topograph-guided laser subepithelial keratomileusis (LASEK) corrects decentered ablation after laser in situ.

    Science.gov (United States)

    Yu, Ke Ming; Zhang, Jing; Luo, Hui Hui

    2012-12-01

    Corneal topograph-guided laser subepithelial keratomileusis (LASEK) can effectively correct decentered ablation occurring post laser in situ keratomileusis (LASIK) and to enhance our understanding and diagnosis of decentered ablation following LASIK. Previous studies in the relevant literature are reviewed, and a case report is provided. A patient with high myopia undergoing LASIK in both eyes presented with distorted vision in the left eye, which interfered with the vision in the right eye and caused blurred vision in both eyes. The patient was unable to see objects with both eyes. After receiving corneal topography-guided LASEK, the signs of distorted vision in the left eye and bilateral blurred vision were significantly alleviated, and the patient could see objects with both eyes simultaneously. Clinical ophthalmologists should be aware of the occurrence of decentered ablation after LASIK. Corneal topography-guided LASEK is an efficacious tool for correcting decentered ablation.

  11. Filamented plasmas in laser ablation of solids

    Czech Academy of Sciences Publication Activity Database

    Davies, J.R.; Fajardo, M.; Kozlová, Michaela; Mocek, Tomáš; Polan, Jiří; Rus, Bedřich

    2009-01-01

    Roč. 51, č. 3 (2009), 035013/1-035013/12 ISSN 0741-3335 EU Projects: European Commission(XE) 12843 - TUIXS Grant - others:FCT(PT) POCI/FIS/59563/2004 Institutional research plan: CEZ:AV0Z10100523 Keywords : magneto-hydrodynamic modelling * perturbation * filaments * x-ray * plasma Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.409, year: 2009

  12. Formation of plasmonic colloidal silver for flexible and printed electronics using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S., E-mail: skasa@physics.auth.gr [University of Ioannina, Department of Materials Science and Engineering, 45110 Ioannina (Greece); Kaziannis, S. [University of Ioannina, Department of Physics, 45110 Ioannina (Greece); Pliatsikas, N. [University of Ioannina, Department of Materials Science and Engineering, 45110 Ioannina (Greece); Aristotle University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Avgeropoulos, A.; Karantzalis, A.E. [University of Ioannina, Department of Materials Science and Engineering, 45110 Ioannina (Greece); Kosmidis, C. [University of Ioannina, Department of Physics, 45110 Ioannina (Greece); Lidorikis, E. [University of Ioannina, Department of Materials Science and Engineering, 45110 Ioannina (Greece); Patsalas, P. [Aristotle University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece)

    2015-05-01

    Highlights: • Silver plasmonic colloidal in organic solvents by ps laser ablation process. • Ag NPs that meet size requirements of the printed organic electronics technology. • Ag NPs size refinement by secondary process using the 355 nm beam of a ns laser. - Abstract: Laser ablation (LA) in liquids has been used for the development of various nanoparticles (NPs); among them, Ag NPs in aqueous solutions (usually produced by nanosecond (ns) LA) have attracted exceptional interest due to its strong plasmonic response. In this work, we present a comprehensive study of the LA of Ag in water, chloroform and toluene, with and without PVP, using a picosecond (ps) Nd:YAG laser and we consider a wide range of LA parameters such as the laser wavelength (1064, 532, 355 nm), the pulse energy (0.3–17 mJ) and the number of pulses. In addition, we consider the use of a secondary nanosecond laser beam for the refinement of the NPs size distribution. The optical properties of the NPs were evaluated by in situ optical transmittance measurements in the UV–vis spectral ranges. The morphology of the NPs and the formation of aggregates were investigated by Scanning Electron Microscopy and High-Resolution Transmission Electron Microscopy. The ps LA process resulted in the development of bigger Ag NPs, compared to the ns LA, compatible with the size requirements of the printed organic electronics technology. The optimum conditions for the ps LA of Ag in organic solvents include the use of the 355 nm beam at low pulse energy (<1 mJ); these conditions rendered isolated Ag nanoparticles manifesting strong and well defined surface plasmon resonance peak. The use of the secondary ns laser beam was proven to be able to refine the nanoparticles to intermediate size between those produced by the single ns or ps LA.

  13. SYNTHESIS OF 2,6-DIAMINOPYRIDINE-4-NITROPHENOL (2,6DAP4N COCRYSTAL NANOPARTICLES BY LASER ABLATION METHOD

    Directory of Open Access Journals (Sweden)

    N. A. Zulina

    2015-11-01

    Full Text Available We propose findings for laser ablation of organic materials in liquids as one of the perspective methods of nanoparticles synthesis on their basis. We describe nanoparticles synthesis for 2,6-diaminopyridine-4-nitrophenol (2,6DAP4N cocrystal by the method of material laser ablation at nanoparticles condensation in liquid (dodecane and polyphenyleneoxide. Laser radiation with wavelength equal to 355 nm, pulse duration - 10 ns, pulse repetition rate - 3.8 kHz, and pulse power density equal to 170 kW/cm2 has been used in the study. Nanoparticles in the form of colloids have been obtained and studied by visible range spectroscopy and optical microscopy. Obtained particles size is around 0.5 μm.

  14. A study of particle generation during laser ablation with applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunyi [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    A study has been made of the generation of particles during laser ablation and has included size distribution measurements and observation of the formation processes. The particle size distribution with respect to different laser parameters was obtained in-line using a differential mobility analyzer (DMA) and a particle counter. The experimental results show that the particle size varies with laser energy, laser pulsewidth, ambient gas flow rate and sample properties. The results serve as a basis for controlling the size of nanoparticles generated by laser ablation. Laser shadowgraph imaging was used to study mass ejection processes and mechanisms. At higher laser irradiance, some particles were ejected in the liquid and even in the solid phase. Time-resolved images show the propagation of the shockwaves: external shockwaves propagate outward and decelerate, and internal shockwaves reflect back and forth between the gas contact surface and the sample surface. The internal shockwave is proposed to cause the ejection of liquid particles when the internal shockwave strikes the liquid molten layer. A simulation based on vapor plume expansion was carried out and provides satisfactory agreement with experimental results. Different material properties result in different particle ejection behavior:particle ejection for most materials including metals result in a conically shaped envelope for the ejected material while ejection for silicon resembles a liquid jet. The difference in density change when the materials melt was proposed to be an important factor in the different ejection behavior. The characteristics of particles generated by laser ablation have a strong influence on the chemical analysis of the irradiated sample. Large particles are more difficult to completely vaporize and ionize, and induced preferential vaporization causes fractionation (i.e. a detected chemical composition that differs from the sample material). Large particles also result in spikes in

  15. Dynamic Sensor Interrogation Using Wavelength-Swept Laser with a Polygon-Scanner-Based Wavelength Filter

    Directory of Open Access Journals (Sweden)

    Kyung Hyun Park

    2013-07-01

    Full Text Available We report a high-speed (~2 kHz dynamic multiplexed fiber Bragg grating (FBG sensor interrogation using a wavelength-swept laser (WSL with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs. The reflected Bragg wavelengths of the FBGs are 1,532.02 nm, 1,537.84 nm, 1,543.48 nm, 1,547.98 nm, and 1,553.06 nm, respectively. A dynamic periodic strain ranging from 500 Hz to 2 kHz is applied to one of the multiplexed FBGs, which is fixed on the stage of the piezoelectric transducer stack. Good dynamic performance of the FBGs and recording of their fast Fourier transform spectra have been successfully achieved with a measuring speed of 18 kHz. The signal-to-noise ratio and the bandwidth over the whole frequency span are determined to be more than 30 dB and around 10 Hz, respectively. We successfully obtained a real-time measurement of the abrupt change of the periodic strain. The dynamic FBG sensor interrogation system can be read out with a WSL for high-speed and high-sensitivity real-time measurement.

  16. A multi-wavelength fiber laser based on superimposed fiber grating and chirp fiber Bragg grating for wavelength selection

    Science.gov (United States)

    Wang, Feng; Bi, Wei-hong; Fu, Xing-hu; Jiang, Peng; Wu, Yang

    2015-11-01

    In this paper, a new type of multi-wavelength fiber laser is proposed and demonstrated experimentally. Superimposed fiber grating (SIFG) and chirp fiber Bragg grating (CFBG) are used for wavelength selection. Based on gain equalization technology, by finely adjusting the stress device in the cavity, the gain and loss are equal, so as to suppress the modal competition and achieve multi-wavelength lasing at room temperature. The experimental results show that the laser can output stable multi-wavelength lasers simultaneously. The laser coupling loss is small, the structure is simple, and it is convenient for integration, so it can be widely used in dense wavelength division multiplexing (DWDM) system and optical fiber sensors.

  17. Laser ablative synthesis of carbon nanotubes

    Science.gov (United States)

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2010-03-02

    An improved method for the production of single walled carbon nanotubes that utilizes an RF-induction heated side-pumped synthesis chamber for the production of such. Such a method, while capable of producing large volumes of carbon nanotubes, concurrently permits the use of a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization. The method of the present invention utilizes a free electron laser operating at high average and peak fluence to illuminate a rotating and translating graphite/catalyst target to obtain high yields of SWNTs without the use of a vacuum chamber.

  18. Processing conditions in pulsed laser ablation of gold in liquid for fabrication of nanowire networks

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, A.S., E-mail: anastas_nikolov@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Nedyalkov, N.N.; Nikov, R.G.; Dimitrov, I.G.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Maximova, K.; Delaporte, Ph.; Kabashin, A. [Aix-Marseille University, CNRS, LP3 Laboratory, Marseille 13288 (France); Alexandrov, M.T. [Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 25, Sofia 1113 (Bulgaria); Karashanova, D.B. [Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 109, Sofia 1113 (Bulgaria)

    2014-05-01

    The experimental conditions were investigated enabling one to fabricate Au nanowire networks by pulsed laser ablation in water. The study revealed that it is possible to produce alternatively nanoparticles (or aggregates) or nanowire networks at certain wavelengths depending on the laser fluence. An Au disc immersed in double-distilled water was used as a target. The second (λ{sub SHG} = 532 nm) and the third (λ{sub THG} = 355 nm) harmonics of a Nd:YAG laser system were utilized to produce different Au colloids. The values of the laser fluence for both wavelengths under the experimental conditions chosen were varied from several J/cm{sup 2} to tens of J/cm{sup 2}. The optical extinction spectra of the colloids in the UV/vis region were obtained to evaluate the structure of the dispersed Au phase. Transmission electron microscopy (TEM) was applied to visualize the size and morphology of the colloidal particles. Their structure and phase composition were studied by high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) and used to make an assumption on how they had been formed.

  19. Synthesis and characterization of high-purity gold nanoparticles by laser ablation method using low-energy Nd:YAG laser 1064 nm

    Science.gov (United States)

    Khumaeni, Ali; Setia Budi, Wahyu; Sutanto, Heri

    2017-11-01

    High-purity gold nanoparticles (GNPs) has been successfully synthesized by using laser ablation method utilizing low-power neodymium yttrium aluminum garnet (Nd:YAG) laser at the fundamental wavelength. Experimentally, pulse laser beam (Nd:YAG laser, 1064 nm, 7 ns, 30 mJ) was directed and focused onto a high-purity gold sheet (99.95%), which was placed into a pure liquid of deionized water, to produce GNPs colloid. Dark-red color colloid of high-purity GNPs was successfully synthesized. The GNPs had a spherical shape with an average diameter of 23.5 nm and standard deviation of 6.4 nm. The surface plasma resonance was centered at wavelength maximum at 520 nm.

  20. Soft x-ray laser ablation of metals and dielectrics

    Science.gov (United States)

    Faenov, A.; Pikuz, T.; Ishino, M.; Inogamov, N.; Zhakhovsky, V.; Skobelev, I.; Hasegawa, N.; Nishikino, M.; Kando, M.; Kodama, R.; Kawachi, T.

    2017-05-01

    We present an overview of our systematic studies of the surface modifications resulting from the interactions of both single and multiple picosecond soft x-ray laser (SXRL) pulses with materials, such as gold (Au), copper (Cu), aluminum (Al), and lithium fluoride (LiF). We show experimentally the possibility of the precise nanometer size structures ( 10-40 nm) formation on their surfaces by ultra-low ( 10-30 mJ/cm2 ) fluencies of single picosecond SXRL pulse. Comparison experimental results with the atomistic model of ablation, which was developed for the single SXRL shot interaction with dielectrics and metals, is provided. Theoretical description of surface nanostructures is considered and is shown that such structures are formed after laser illumination in a process of mechanical spallation of ultrathin surface layer of molten metal. Spallation is accompanied by a strong foaming of melt, breaking of foam, and freezing of foam remnants. Those remnants form chaotic nanostructures, which are observed in experiments. Our measurements show that electron temperature of matter under irradiation of SXRL was lower than 1 eV. The model calculation also predicts that the ablation induced by the SXRL can create the significant low electron temperature. Our results demonstrate that tensile stress created in LiF and metals by short SXRL pulse can produce spallative ablation of target even for drastically small fluencies, which open new opportunities for material nano processing.

  1. Low density, non-ablative fractional CO2 laser rejuvenation.

    Science.gov (United States)

    Christiansen, Kaare; Bjerring, Peter

    2008-09-01

    Fractional skin rejuvenation has gained increased interest since its introduction in 2003. Both non-ablative and ablative lasers as well as different treatment techniques have been devised. Recent clinical studies indicate that a paradigm of low spot density combined with high fluences tend to produce better clinical results and less risk of post-inflammatory hyperpigmentation in darker skin types. The present study is focused on investigations of the clinical outcome by non-ablative fractional CO(2) treatments with a single pass with low spot density. A CO(2) laser was equipped with a scanner enabling it to perform fractional treatments with 36, 64 or 100 microthermal zones (MTZ)/cm(2). Twelve patients participated in the study. The perioral area was treated three times with 1-month intervals using a spot density of 64 MTZ/cm(2), a spot diameter of 0.5 mm, a micro-beam energy of 36-60 mJ, and a pulse duration of 3-5 milliseconds. Follow-up was performed 3 months after the last treatment. At the 3-month follow-up 72.7% of the volunteers had obtained improvement in ultrasonographically determined dermal density, and the average improvement was 40.2% (SD: 48.0%). This improvement was statistically significant (Plaser treatments.

  2. Resonant holographic measurements of laser ablation plume expansion in vacuum and argon gas backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, Roger Alan [Michigan Univ., Ann Arbor, MI (United States)

    1993-01-01

    This thesis discusses the following on resonant holographic measurements of laser ablation plume expansion: Introduction to laser ablation; applications of laser ablation; The study of plume expansion; holographic interferometry; resonant holographic interferometry; accounting for finite laser bandwidth; The solution for doppler broadening and finite bandwidth; the main optical table; the lumonics laser spot shape; developing and reconstructing the holograms; plume expansion in RF/Plasma Environments; Determining λ°; resonant refraction effects; fringe shift interpretation; shot-to-shot consistency; laser ablation in vacuum and low pressure, inert, background gas; theoretically modeling plume expansion in vacuum and low pressure, inert, background gas; and laser ablation in higher pressure, inert, background gas.

  3. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    International Nuclear Information System (INIS)

    Geohegan, D.B.

    1994-01-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume

  4. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  5. Ablation of carious dental tissue using an ultrashort pulsed laser (USPL) system.

    Science.gov (United States)

    Engelbach, Christoph; Dehn, Claudia; Bourauel, Christoph; Meister, Jörg; Frentzen, Matthias

    2015-07-01

    The aim of the study was to investigate the efficiency of caries removal employing an ultrashort pulsed laser (USPL) and to compare the results regarding to the ablation rate of sound enamel and dentin including surface texture. The study was performed with 59 freshly extracted carious human teeth. Two cavities with an edge length of 1 × 1 mm per tooth were created: one in the dental decay and one in sound hard tissue. For this purpose a 9-W Nd:YVO4 laser with a center wavelength of 1,064 nm and a pulse duration of 8 ps at a repetition rate of 500 kHz was used. A scanner system moved the laser beam across the surface with a scan speed of 2,000 mm/s. Ablated volume and roughness R z of the cavity ground were measured using an optical profilometer. Subsequently, the specimens were cut to undecalcified sections for histological investigations. The removal of dental decay (dentin, 14.9 mm(3)/min; enamel, 12.8 mm(3)/min) was significantly higher (p dental decay using the USPL system, caries removal seems to be much more efficient for cavity preparation.

  6. Temperature-controlled two-wavelength laser soldering of tissues.

    Science.gov (United States)

    Gabay, Ilan; Abergel, Avraham; Vasilyev, Tamar; Rabi, Yaron; Fliss, Dan M; Katzir, Abraham

    2011-11-01

    Laser tissue soldering is a method for bonding of incisions in tissues. A biological solder is spread over the cut, laser radiation heats the solder and the underlying cut edges and the incision is bonded. This method offers many advantages over conventional techniques (e.g., sutures). Past researches have shown that laser soldering, using a single laser, does not provide sufficient strength for bonding of cuts in thick (>1 mm) tissues. This study introduces a novel method for laser soldering of thick tissues, under temperature control, using two lasers, emitting two different wavelengths. An experimental system was built, using two lasers: (i) a CO(2) laser, whose radiation heated the upper surface of the tissue and (ii) a GaAs laser that heated an albumin layer under the tissue. An infrared fiber-optic radiometer monitored the temperature of the tissue. All three devices were connected to a computer that controlled the process. A computer simulation was written to optimize the system parameters. The system was tested on tissue phantoms, to validate the simulation and ensure that both the upper and lower sides of the cut were heated, and that the temperature could be controlled on both sides. The system was then used ex vivo to bond longitudinal cuts of lengths ∼12 mm in the esophagi of large farm pigs. The theoretical simulations showed a good stabilization of the temperatures at the upper and lower tissue surfaces at the target values. Experiments on tissue phantom showed a good agreement with these simulations. Incisions in esophagi, removed from large farm pigs, were then successfully bonded. The mean burst pressure was ∼3.6 m of water. This study demonstrated the capability of soldering cuts in thick tissues, paving the way for new types of surgical applications. Copyright © 2010 Wiley Periodicals, Inc.

  7. Investigation of ultrashort pulse laser ablation of solid targets by measuring the ablation-generated momentum using a torsion pendulum.

    Science.gov (United States)

    Zhang, Nan; Wang, Wentao; Zhu, Xiaonong; Liu, Jiansheng; Xu, Kuanhong; Huang, Peng; Zhao, Jiefeng; Li, Ruxin; Wang, Mingwei

    2011-04-25

    50 fs - 12 ps laser pulses are employed to ablate aluminum, copper, iron, and graphite targets. The ablation-generated momentum is measured with a torsion pendulum. Corresponding time-resolved shadowgraphic measurements show that the ablation process at the optimal laser fluence achieving the maximal momentum is primarily dominated by the photomechanical mechanism. When laser pulses with specific laser fluence are used and the pulse duration is tuned from 50 fs to 12 ps, the generated momentum firstly increases and then remains almost constant, which could be attributed to the change of the ablation mechanism involved from atomization to phase explosion. The investigation of the ablation-generated momentum also reveals a nonlinear momentum-energy conversion scaling law, namely, as the pulse energy increases, the momentum obtained by the target increases nonlinearly. This may be caused by the effective reduction of the dissipated energy into the surrounding of the ablation zone as the pulse energy increases, which indicates that for femtosecond laser the dissipated energy into the surrounding target is still significant.

  8. Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography

    International Nuclear Information System (INIS)

    Makarov, G N

    2013-01-01

    The fact that nanoparticles and nanomaterials have fundamental properties different both from their constituent atoms or molecules and from their bulk counterparts has stimulated great interest, both theoretical and practical, in nanoparticles and nanoparticle-based assemblies (functional materials), with the result that these structures have become the subject of explosive research over the last twenty years or so. A great deal of progress in this field has relied on the use of lasers. In this paper, the directions followed and results obtained in laser nanotechnology research are reviewed. The parameters, properties, and applications of nanoparticles are discussed, along with the physical and chemical methods for their fabrication and investigation. Nanofabrication applications of and fundamental physical principles behind laser ablation and laser nanolithography are discussed in detail. The applications of laser radiation are shown to range from fabricating, melting, and evaporating nanoparticles to changing their shape, structure, size, and size distribution, through studying their dynamics and forming them into periodic arrays and various structures and assemblies. The historical development of research on nanoparticles and nanomaterials and the application of laser nanotechnology in various fields are briefly reviewed. (reviews of topical problems)

  9. Spectroscopic studies on diamond like carbon films synthesized by pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Madhusmita; Krishnan, R., E-mail: krish@igcar.gov.in; Ravindran, T. R.; Das, Arindam; Mangamma, G.; Dash, S.; Tyagi, A. K. [Material Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102, Tamil Nadu (India)

    2016-05-23

    Hydrogen free Diamond like Carbon (DLC) thin films enriched with C-C sp{sup 3} bonding were grown on Si (111) substrates at laser pulse energies varying from 100 to 400 mJ (DLC-100, DLC-200, DLC-300, DLC-400), by Pulsed Laser Ablation (PLA) utilizing an Nd:YAG laser operating at fundamental wavelength. Structural, optical and morphological evolutions as a function of laser pulse energy were studied by micro Raman, UV-Vis spectroscopic studies and Atomic Force Microscopy (AFM), respectively. Raman spectra analysis provided critical clues for the variation in sp{sup 3} content and optical energy gap. The sp{sup 3} content was estimated using the FWHM of the G peak and found to be in the range of 62-69%. The trend of evolution of sp{sup 3} content matches well with the evolution of I{sub D}/I{sub G} ratio with pulse energy. UV-Vis absorption study of DLC films revealed the variation of optical energy gap with laser pulse energy (1.88 – 2.23 eV), which matches well with the evolution of G-Peak position of the Raman spectra. AFM study revealed that roughness, size and density of particulate in DLC films increase with laser pulse energy.

  10. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    Science.gov (United States)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  11. Scaling model for high-aspect-ratio microballoon direct-drive implosions at short laser wavelengths

    International Nuclear Information System (INIS)

    Schirmann, D.; Juraszek, D.; Lane, S.M.; Campbell, E.M.

    1992-01-01

    A scaling model for hot spherical ablative implosions in direct-drive mode is presented. The model results have been compared with experiments from LLE, ILE, and LLNL. Reduction of the neutron yield due to illumination nonuniformities is taken into account by the assumption that the neutron emission is cut off when the gas shock wave reflected off the center meets the incoming pusher, i.e., at a time when the probability of shell breakup is greatly enhanced. The main advantage of this semiempirical scaling model is that it elucidates the principal features of these simple implosions and permits one to estimate very quickly the performance of a high-aspect-ratio direct-drive target illuminated by short-wavelength laser light. (Author)

  12. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Effect of nonlinear light scattering in air on ablation of materials produced by femtosecond laser pulses

    Science.gov (United States)

    Klimentov, Sergei M.; Kononenko, Taras V.; Pivovarov, Pavel A.; Konov, Vitalii I.; Prokhorov, A. M.; Breitling, D.; Dausinger, F.

    2002-05-01

    Nonlinear light scattering appearing upon air breakdown induced by high-power ultrashort pulses (110 — 5200 fs) from a Ti:Al2O3 laser is studied. As a result of forward scattering, the beam profile is severely deformed, which is accompanied by spectral conversion of the incident radiation to a series of shorter-wavelength peaks extending into the visible spectral range. Measurements are made of the thresholds and the scattered radiation energy, which amounts to 75% of the incident energy. The effect of scattering on the material ablation in air is investigated. The obtained data offer an explanation for the experimentally observed paradoxical morphology of the channels ablated by high-power femtosecond pulses.

  13. Micro-scale novel stable isotope fractionation during weathering disclosed by femtosecond laser ablation

    Science.gov (United States)

    Schuessler, J. A.; von Blanckenburg, F.

    2012-12-01

    The stable isotope fractionation of metals and metalloids during chemical weathering and alteration of rocks at low temperature is a topic receiving increasing scientific attention. For these systems, weathering of primary minerals leads to selective partitioning of isotopes between the secondary minerals formed from them, and the dissolved phase of soil or river water. While the isotopic signatures of these processes have been mapped-out at the catchment or the soil scale, the actual isotopic fractionation is occurring at the mineral scale. To identify the processes underlying such micro-scale fractionation, the development of micro-analytical tools allows to investigate mechanisms of isotope fractionation in-situ, in combination with textural information of weathering reactions. We have developed a second-generation UV femtosecond (fs) laser system at GFZ Potsdam. The advantage of UV-fs laser ablation is the reduction of laser-induced isotopic and elemental fractionation by avoiding 'thermal effects' during ablation, such that accurate isotope ratios can be measured by standard-sample-standard bracketing using laser ablation multicollector ICP-MS; where the matrix of the bracketing standard does not need to match that of the sample [1]. Our system consists of the latest generation femtosecond solid-state laser (Newport Spectra Physics Solstice), producing an ultra short pulse width of about 100 femtoseconds at a wavelength of 196 nm. The system is combined with a custom-build computer-controlled sample stage and allows fully automated isotope analyses through synchronised operation of the laser with the Neptune MC-ICP-MS. To assess precision and accuracy of our laser ablation method, we analysed various geological reference materials. We obtained δ30Si values of -0.31 ± 0.23 (2SD, n = 13) for basalt glass BHVO-2G, and -1.25 ± 0.21 (2SD, n = 27) for pure Si IRMM17 when bracketed against NBS-28 quartz. δ56Fe and δ26Mg values obtained from non-matrix matched

  14. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jong Hyun [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    mechanism for high irradiance laser ablation. Laser processing parameters were also investigated for nanosecond laser ablation of silicon. Longer incident wavelengths and larger laser beam sizes were associated with higher values of a threshold irradiance.

  15. Production of silver nanoparticles by laser ablation in open air

    International Nuclear Information System (INIS)

    Boutinguiza, M.; Comesaña, R.; Lusquiños, F.; Riveiro, A.; Val, J. del; Pou, J.

    2015-01-01

    Highlights: • Silver nanoparticles have been obtained by laser ablation of metallic Ag in open air using nanosecond laser. • The continuous process enables increasing the production yield. • The obtained particles are rounded shape with narrow size distribution. - Abstract: Silver nanoparticles have attracted much attention as a subject of investigation due to their well-known properties, such as good conductivity, antibacterial and catalytic effects, etc. They are used in many different areas, such as medicine, industrial applications, scientific investigation, etc. There are different techniques for producing Ag nanoparticles, chemical, electrochemical, sonochemical, etc. These methods often lead to impurities together with nanoparticles or colloidal solutions. In this work, laser ablation of solids in open air conditions (LASOA) is used to produce silver nanoparticles and collect them on glass substrates. Production and deposition of silver nanoparticles are integrated in the same step to reduce the process. The obtained particles are analysed and the nanoparticles formation mechanism is discussed. The obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV/VIS absorption spectroscopy. The obtained nanoparticles consisted of Ag nanoparticles showing rounded shape with diameters ranging from few to 50 nm

  16. Laser ablation of posterior urethral valves by fetal cystoscopy.

    Science.gov (United States)

    Martínez, José María; Masoller, Narcis; Devlieger, Roland; Passchyn, Esther; Gómez, Olga; Rodo, Joan; Deprest, Jan A; Gratacós, Eduard

    2015-01-01

    To report the results of fetal cystoscopic laser ablation of posterior urethral valves (PUV) in a consecutive series in two referral centers. Twenty pregnant women with a presumptive isolated PUV were treated with fetal cystoscopy under local anesthesia. Identification and fulguration of the PUV by one or several firing-contacts with diode laser were attempted. Perinatal and long-term outcomes were prospectively recorded. The median gestational age at procedure was 18.1 weeks (range 15.0-25.6), and median operation time was 24 min (range 15-40). Access to the urethra was achieved in 19/20 (95%) cases, and postoperative, normalization of bladder size and amniotic fluid was observed in 16/20 (80%). Overall, there were 9 (45%) terminations of pregnancy and 11 women (55%) delivered a liveborn baby at a mean gestational age of 37.3 (29.1-40.2) weeks. No infants developed pulmonary hypoplasia and all were alive at 15-110 months. Eight (40% of all fetuses, 72.7% of newborns) had normal renal function and 3 (27.3%) had renal failure awaiting renal transplantation. Fetoscopic laser ablation for PUV can achieve bladder decompression and amniotic fluid normalization with a single procedure in selected cases with anyhydramnios. There is still a significant risk of progression to renal failure pre or postnatally. © 2014 S. Karger AG, Basel.

  17. UV and IR laser induced ablation of Al2O3/SiN:H and a-Si:H/SiN:H

    Directory of Open Access Journals (Sweden)

    Schutz-Kuchly T.

    2014-01-01

    Full Text Available Experimental work on laser induced ablation of thin Al2O3(20 nm/SiN:H (70 nm and a-Si:H (20 nm/SiN:H (70 nm stacks acting, respectively, as p-type and n-type silicon surface passivation layers is reported. Results obtained using two different laser sources are compared. The stacks are efficiently removed using a femtosecond infra-red laser (1030 nm wavelength, 300 fs pulse duration but the underlying silicon surface is highly damaged in a ripple-like pattern. This collateral effect is almost completely avoided using a nanosecond ultra-violet laser (248 nm wavelength, 50 ns pulse duration, however a-Si:H flakes and Al2O3 lace remain after ablation process.

  18. Visual laser ablation of the prostate with a cylindrically diffusing fiber and an 805-nm diode laser

    Science.gov (United States)

    Cromeens, Douglas M.; Johnson, Douglas E.; Stephens, L. Clifton

    1995-05-01

    We investigated the use of the 805 nm diode laser (Diomed 25 Diomedics, The Woodlands, Texas) in combination with a cylindrically diffusing fiber (Surgimedics, The Woodlands, Texas) to perform visual laser ablation of the prostate in 8 mongrel dogs. Each dog received 15,000 J of laser energy delivered to the prostate in one continuous dose of 25 W for 10 minutes. Gross and histopathologic examinations of serial sections of the prostate were performed at intervals from 3 hours to 7 weeks postoperatively. All dogs did well postoperatively with only one episode of urine retention 5 days after the surgery. Grossly, an ellipsoid zone of destruction with an average maximum diameter of 2.1 cm was present in all dogs. Histopathological changes in the prostate were similar to changes consistently reported for prostatectomies performed with similar dosimetry utilizing the 1.06 Nd:YAG laser. We believe this wavelength laser in combination with the diffusing fiber compared favorably with the Nd:YAG/sidefire fiber studies previously done in this laboratory with the added advantage of simplified operator technique, less postoperative complications and increased margin of safety.

  19. Laser Ablation Plume Expansion In The Presence Of Charged Impurities

    International Nuclear Information System (INIS)

    Djebli, M.

    2008-01-01

    The expansion of plasma created by laser ablation is investigated using the fluid model. At the first stage of the expansion, electrons are considered in thermal equilibrium. The presence of highly charged impurities is considered through Poisson's equation. The set of nonlinear differential equations is solved using a moving boundary and taken into account the charge separation effect. The uniformly distributed impurities can accelerate or decelerate the ion motion depending on their charge and concentration. It is also found that the separation of the charge is valid for a specific time which depends on the impurities parameters.

  20. Laser ablation studies of solid aerosols on the Baltic coast

    Directory of Open Access Journals (Sweden)

    Robert Jaworski

    2004-09-01

    Full Text Available A Berner cascade impactor was used for the separation of solid urban aerosols in two localities of the Baltic coastal macro-region - Słupsk and Hel - in different seasons and weathers. Ten ranges of aerodynamic diameters between 0.009 and 8.11 µm were used. The elementary composition for each diameter was obtained in a complex procedure consisting of laser ablation of deposits, then their successive ionization in an inductively coupled plasma generator, and finally, mass selection in a quadrupole spectrometer. Despite its complexity, the chemical element analysis method proved to be versatile, allowing the identification air pollution from natural and industrial sources, and road traffic.

  1. Ablation characteristics of aluminum oxide and nitride ceramics during femtosecond laser micromachining

    International Nuclear Information System (INIS)

    Kim, Sung Hoon; Sohn, Ik-Bu; Jeong, Sungho

    2009-01-01

    Femtosecond laser ablation of aluminum oxide (Al 2 O 3 ) and aluminum nitride (AlN) ceramics was performed under normal atmospheric conditions (λ = 785 nm, τ p = 185 fs, repetition rate = 1 kHz), and threshold laser fluencies for single- and multi-pulse ablation were determined. The ablation characteristics of the two ceramics showed similar trends except for surface morphologies, which revealed virtually no melting in Al 2 O 3 but clear evidence of melting for AlN. Based on subsequent X-ray photoelectron spectroscopy (XPS) analyses, the chemistry of these ceramics appeared to remain the same before and after femtosecond laser ablation.

  2. Process and structures for fabrication of solar cells with laser ablation steps to form contact holes

    Science.gov (United States)

    Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

    2013-11-19

    Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.

  3. Theoretical modeling of laser ablation of quaternary bronze alloys: case studies comparing femtosecond and nanosecond LIBS experimental data.

    Science.gov (United States)

    Fornarini, Lucilla; Fantoni, Roberta; Colao, Francesco; Santagata, Antonio; Teghil, Roberto; Elhassan, Asmaa; Harith, Mohamed A

    2009-12-31

    A model, formerly proposed and utilized to understand the formation of laser induced breakdown spectroscopy (LIBS) plasma upon irradiation with nanosecond laser pulses at different fluences and wavelengths, has been extended to the irradiation with femtosecond laser pulses in order to control the fractionation mechanisms which heavily affect the application of laser-ablation-based microanalytical techniques. The model takes into account the different chemico-physical processes occurring during the interaction of an ultrashort laser pulse with a metallic surface. In particular, a two-temperature description, relevant to the electrons and lattice of the substrate, respectively, has been introduced and applied to different ternary and quaternary copper-based alloys subjected to fs and ns ablation both in the visible (527 nm) and in the UV (248 nm). The model has been found able to reproduce the shorter plasma duration experimentally found upon fs laser ablation. Kinetic decay times of several copper (major element) emission lines have been examined together with those relevant to the main plasma parameters. The plasma experimental temperature, derived assuming a Boltzmann distribution, and the electron density following the Saha equation have been compared with the corresponding theoretical data. A satisfactory description of plasma parameters and main matrix constituent composition has been obtained in the time window where local thermal equilibrium was assumed for LIBS data analysis. Improved analytical capabilities are predicted upon delayed detection of plasma emission in femtosecond LIBS, in relation to the better LOD achieved and to the improved data reproducibility expected. Results support the utilization of ultrafast laser sources for trace detection, despite the residual fractionation occurring in the examined range of fluences which affects the linearity of experimental calibration curves built for tin and lead after internal standardization on copper. The

  4. Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation

    International Nuclear Information System (INIS)

    Liu, C Y; Mao, X L; Greif, R; Russo, R E

    2007-01-01

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume

  5. Time Resolved Shadowgraph Images of Silicon during Laser Ablation:Shockwaves and Particle Generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.Y.; Mao, X.L.; Greif, R.; Russo, R.E.

    2006-05-06

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume.

  6. MR guided percutaneous laser lumbar disk hernia ablation

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Takuo; Terao, Tohru; Ishibashi, Toshihiro; Yuhki, Ichiro; Harada, Junta; Tashima, Michiko [Jikei Univ., Chiba (Japan). Kashiwa Hospital; Abe, Toshiaki

    1998-03-01

    An MRI unit for interventional procedure is very useful for minimally invasive surgery of the brain and spine. Percutaneous laser disc decompression (PLDD) utilizing X-ray fluoroscopy is a relatively new less invasive procedure for treatment of lumbar disc herniation. MR guided laser surgery is applied to patients with disc herniation at our department. Approaching the target of the disc protrusion was easily conducted and vaporizing the disc hernia directly using a laser was possible under MR fluoroscopy. The purpose of the present study is to evaluate the usefulness of MR guided percutaneous laser disc hernia ablation (MR-guided PLDHA). As subjects, 36 patients with lumbar disc herniation, including 23 cases with L4/5 involvement and 13 cases with L5/S1 involvement were studied. Among these, 26 were males and 10 were females, age ranging from 24 to 62. We used an open type MR system (Hitachi, Airis 0.3T), a permanent, open configuration MR system. A YAG laser (LaserScope, USA) was used for PLDHA. An MR compatible 18G titanium needle 15 cm in length was used to puncture the herniated discs. The MR compatible needle was clearly visualized, and used to safely and accurately puncture the target herniated disc in each case with multidimensional guidance. Application of the laser was performed with MR guidance. The energy dose from the laser ranged from 800 to 2100 joules. In most cases, signs and symptoms improved in the patients immediately after disc vaporization. The overall success rate was 88.9%. The complication rate was 2.8%, including one case of discitis after PLDHA. MR fluoroscopy sequence permits near real time imaging and provides an easy approach to the therapeutic target of disc herniation. MR guided PLDHA is a minimally invasive procedure and is very useful for the treatment of lumbar disc protrusion. (author)

  7. MR guided percutaneous laser lumbar disk hernia ablation

    International Nuclear Information System (INIS)

    Hashimoto, Takuo; Terao, Tohru; Ishibashi, Toshihiro; Yuhki, Ichiro; Harada, Junta; Tashima, Michiko; Abe, Toshiaki.

    1998-01-01

    An MRI unit for interventional procedure is very useful for minimally invasive surgery of the brain and spine. Percutaneous laser disc decompression (PLDD) utilizing X-ray fluoroscopy is a relatively new less invasive procedure for treatment of lumbar disc herniation. MR guided laser surgery is applied to patients with disc herniation at our department. Approaching the target of the disc protrusion was easily conducted and vaporizing the disc hernia directly using a laser was possible under MR fluoroscopy. The purpose of the present study is to evaluate the usefulness of MR guided percutaneous laser disc hernia ablation (MR-guided PLDHA). As subjects, 36 patients with lumbar disc herniation, including 23 cases with L4/5 involvement and 13 cases with L5/S1 involvement were studied. Among these, 26 were males and 10 were females, age ranging from 24 to 62. We used an open type MR system (Hitachi, Airis 0.3T), a permanent, open configuration MR system. A YAG laser (LaserScope, USA) was used for PLDHA. An MR compatible 18G titanium needle 15 cm in length was used to puncture the herniated discs. The MR compatible needle was clearly visualized, and used to safely and accurately puncture the target herniated disc in each case with multidimensional guidance. Application of the laser was performed with MR guidance. The energy dose from the laser ranged from 800 to 2100 joules. In most cases, signs and symptoms improved in the patients immediately after disc vaporization. The overall success rate was 88.9%. The complication rate was 2.8%, including one case of discitis after PLDHA. MR fluoroscopy sequence permits near real time imaging and provides an easy approach to the therapeutic target of disc herniation. MR guided PLDHA is a minimally invasive procedure and is very useful for the treatment of lumbar disc protrusion. (author)

  8. Endoscopic laser ablation of clival chordoma with magnetic resonance-guided laser induced thermal therapy

    Directory of Open Access Journals (Sweden)

    James Barrese

    2014-12-01

    Conclusion: The endoscopic endonasal approach to MRI-guided laser ablation is both technically feasible and safe. As a result, this therapy may be a useful alternative in hard-to-reach chordomas, or in recurrent cases that have failed other conventional treatment modalities.

  9. Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling.

    Science.gov (United States)

    Poluektova, Anna A; Malskat, Wendy S J; van Gemert, Martin J C; Vuylsteke, Marc E; Bruijninckx, Cornelis M A; Neumann, H A Martino; van der Geld, Cees W M

    2014-03-01

    Minimally invasive treatment of varicose veins by endovenous laser ablation (EVLA) becomes more and more popular. However, despite significant research efforts performed during the last years, there is still a lack of agreement regarding EVLA mechanisms and therapeutic strategies. The aim of this article is to address some of these controversies by utilizing optical-thermal mathematical modeling. Our model combines Mordon's light absorption-based optical-thermal model with the thermal consequences of the thin carbonized blood layer on the laser fiber tip that is heated up to temperatures of around 1,000 °C due to the absorption of about 45% of the laser light. Computations were made in MATLAB. Laser wavelengths included were 810, 840, 940, 980, 1,064, 1,320, 1,470, and 1,950 nm. We addressed (a) the effect of direct light absorption by the vein wall on temperature behavior, comparing computations by using normal and zero wall absorption; (b) the prediction of the influence of wavelength on the temperature behavior; (c) the effect of the hot carbonized blood layer surrounding the fiber tip on temperature behavior, comparing wall temperatures from using a hot fiber tip and one kept at room temperature; (d) the effect of blood emptying the vein, simulated by reducing the inside vein diameter from 3 down to 0.8 mm; (e) the contribution of absorbed light energy to the increase in total energy at the inner vein wall in the time period where the highest inner wall temperature was reached; (f) the effect of laser power and pullback velocity on wall temperature of a 2-mm inner diameter vein, at a power/velocity ratio of 30 J/cm at 1,470 nm; (g) a comparison of model outcomes and clinical findings of EVLA procedures at 810 nm, 11 W, and 1.25 mm/s, and 1,470 nm, 6 W, and 1 mm/s, respectively. Interestingly, our model predicts that the dominating mechanism for heating up the vein wall is not direct absorption of the laser light by the vein wall but, rather, heat flow to the

  10. Fabrication and characterization of a cell electrostimulator device combining physical vapor deposition and laser ablation

    Science.gov (United States)

    Aragón, Angel L.; Pérez, Eliseo; Pazos, Antonio; Bao-Varela, Carmen; Nieto, Daniel

    2017-08-01

    In this work we present the process of fabrication and optimization of a prototype of a cell electrostimulator device for medical application combining physical vapor deposition and laser ablation. The fabrication of the first prototype begins with a deposition of a thin layer of 200 nm of aluminium on a borosilicate glass substrate using physical vapor deposition (PVD). In the second stage the geometry design of the electrostimulator is made in a CAD-like software available in a Nd:YVO4 Rofin Power line 20E, operating at the fundamental wavelength of 1064 nm and 20 ns pulse width. Choosing the proper laser parameters the negative of the electrostimulator desing is ablated. After that the glass is assembled between two polycarbonate sheets and a thick sheet of polydimethylsiloxane (PDMS). The PDMS sheet has a round hole in where cells are placed. There is also included a thin soda-lime silicate glass (100 μm) between the electrostimulator and the PMDS to prevent the cells for being in contact with the electric circuit. In order to control the electrical signal applied to the electrostimulator is used a digital I/O device from National Instruments (USB-6501) which provides 5 V at the output monitored by a software programmed in LabVIEW. Finally, the optical and electrical characterization of the cell electrostimulator device is presented.

  11. XUV spectral observations with two-wavelength laser irradiation

    Science.gov (United States)

    Burkhalter, P. G.; Apruzese, J. P.; Seely, J. F.; Brown, C. M.; Newman, D. A.

    1988-08-01

    XUV diagnostic equipment was designed and utilized on the OMEGA target chamber at the University of Rochester to study high atomic number plasma generation by two-wavelength laser excitation. Spectral data were collected from silver tracer dot targets irradiated with 1/3 TW of 0.35-μm laser light of the multiple-beam OMEGA laser and the single synchronized 1.06-μm beam of the GDL laser for generating energetic electrons. XUV spectral data in the 30-300-Å region were obtained with both a 3-m grazing incidence spectrograph and a compact 1-m grazing incidence spectrograph designed for reentrant mounting in the OMEGA chamber. High-resolution x-ray spectra were acquired in the 3.6-4.2-Å region with a dual, flat-diffraction crystal spectrograph. A low-resolution x-ray spectrum of silver was recorded with a curved mica spectrograph. Some x-ray spectral lines appeared only when both OMEGA and GDL beams were used. These were identified as 2p-3s,3d transitions in F-like Ag xxxix. F-, Na-, and Mg-like lines were found in the grazing incidence spectra, with F-like lines appearing only with 1.06-μm irradiation.

  12. Benign thyroid nodules treatment using percutaneous laser ablation (PLA) and radiofrequency ablation (RFA).

    Science.gov (United States)

    Mauri, Giovanni; Cova, Luca; Monaco, Cristian Giuseppe; Sconfienza, Luca Maria; Corbetta, Sabrina; Benedini, Stefano; Ambrogi, Federico; Milani, Valentina; Baroli, Alberto; Ierace, Tiziana; Solbiati, Luigi

    2016-11-15

    To evaluate the reduction over time of benign thyroid nodules treated using percutaneous laser ablation (PLA) and radiofrequency ablation (RFA) by the same equipe. Ninety patients (age 55.6 ± 14.1 years) underwent ablation for benign thyroid nodule causing compression/aesthetic dissatisfaction from 2011. Fifty-nine (age 55.8 ± 14.1 years) underwent RFA and 31 (age 55.2 ± 14.2 years) PLA, ultrasound guided. Technical success, complications, duration of ablation and treatment, energy deployed, volumetric percentage reduction at 1, 6 and 12 months were derived. A regression model for longitudinal measurements was used with random intercept and random slope. Values are expressed as mean ± standard deviation or N (%). Technical success was always obtained. No major complications occurred. Mean ablation time was 30.1 ± 13.8 vs. 13.9 ± 5.9 min (p < .0001) and mean energy deployment was 5422.3 ± 2484.5 J vs. 34 662.7 ± 15 812.3 J in PLA vs. RFA group. Mean volume reduced from 20.3 ± 16.4 ml to 13.17 ± 10.74 ml (42% ± 17% reduction) at 1st month, 8.7 ± 7.4 ml (60% ± 15% reduction) at 6th month and 7.1 ± 7.7 ml (70%% ± 16% reduction) at 12th month, in PLA group, and from 32.7 ± 19.5 ml to 17.2 ± 12.9 ml (51%±15% reduction) at 1st month, 12.8 ± 9.6 ml (64 ± 14% reduction) at 6th month and 9.9 ± 9.2 ml (74% ± 14% reduction) at 12th month in RFA group. No difference in time course of the relative volume reduction between the two techniques was found. RFA and PLA are similarly feasible, safe and effective in treating benign thyroid nodules when performed by the same equipe. RFA is faster than PLA but require significantly higher energy.

  13. Three dimensional characterization of laser ablation craters using high resolution X-ray computed tomography

    Science.gov (United States)

    Galmed, A. H.; du Plessis, A.; le Roux, S. G.; Hartnick, E.; Von Bergmann, H.; Maaza, M.

    2018-01-01

    Laboratory X-ray computed tomography is an emerging technology for the 3D characterization and dimensional analysis of many types of materials. In this work we demonstrate the usefulness of this characterization method for the full three dimensional analysis of laser ablation craters, in the context of a laser induced breakdown spectroscopy setup. Laser induced breakdown spectroscopy relies on laser ablation for sampling the material of interest. We demonstrate here qualitatively (in images) and quantitatively (in terms of crater cone angles, depths, diameters and volume) laser ablation crater analysis in 3D for metal (aluminum) and rock (false gold ore). We show the effect of a Gaussian beam profile on the resulting crater geometry, as well as the first visual evidence of undercutting in the rock sample, most likely due to ejection of relatively large grains. The method holds promise for optimization of laser ablation setups especially for laser induced breakdown spectroscopy.

  14. Noncontact Er:YAG laser ablation: clinical evaluation.

    Science.gov (United States)

    Dostálová, T; Jelínková, H; Kucerová, H; Krejsa, O; Hamal, K; Kubelka, J; Procházka, S

    1998-10-01

    The aim of this study is to evaluate the quality of laser ablation in comparison with the classical drilling preparation. For the experiment, the Er:YAG laser drilling machine was used. The system had a laser head, water cooler, and power supply with automatic control. Spot size of 300-350 microns was used for the preparation. Repetition rate of 1-4 Hz, and pulse energies of 100-400 mJ with water spray were chosen. Cavity shape in comparison with classical drill, time of preparation, and influence of cavity shape on filling materials retention in accordance with the U.S. Public Health Service System were used. The evaluation criteria for noncontact Er:YAG ablation were done. The cavity shape is irregular, but spot surface has larger area and microretentive appearance. Caries of enamel and dentin were treated with a noncontact preparation. It was possible to remove the old insufficient fillings, except for amalgam or metal alloys. The average number of pulses was 111.22 (SE 67.57). Vibrations of microexplosions during preparation were felt by patients on 14 cavities; however, nobody felt unpleasant pain. The qualities of filling materials in laser cavities were very stable; however, cavo surface margin discoloration of 82-86% of Alfa rating could be a problem. Changes of the color and anatomic form of the tooth were observed in 4-8%. In comparison with the classical treatment, it could be said that the retention and quality of filling materials is the same or very similar.

  15. Cost-effective wavelength selectable light source using DFB fiber laser array

    DEFF Research Database (Denmark)

    Liu, Fenghai; Xueyan, Zheng; Pedersen, Rune Johan Skullerud

    2000-01-01

    A cost-effective wavelength selectable light source comprising a distributed feedback (DFB) fibre laser array is proposed. A large number of wavelengths can be selected via optical space switches using only one shared pump laser. The structure is a good candidate for use as a wavelength selectable...

  16. Photonic Doppler velocimetry of laser-ablated ultrathin metals.

    Science.gov (United States)

    Valenzuela, A R; Rodriguez, G; Clarke, S A; Thomas, K A

    2007-01-01

    Obtaining velocity information from the interaction of a laser pulse on a metal layer provides insight into the rapid dynamics of material removal and plasma plume physics during ablation. A traditional approach involves using a velocity interferometer system for any reflector (VISAR) on a reflective metal surface. However, when the target is a thin metal layer, the cohesion of the surface is quickly lost resulting in a large spread of particle velocities that cannot be easily resolved by VISAR. This is due to material ejection"confusing" the VISAR measurement surface, effectively washing out the spatial fringe visibility in the VISAR interferometer. A new heterodyne-based optical velocimeter method is the photonic Doppler velocimeter (PDV). Because PDV tracks motion in a frequency encoded temporal electro-optical signal, velocity information is preserved and allows for multiple velocity components to be recorded simultaneously. The challenge lies in extracting PDV velocity information at short (nanosecond) laser ablation time scales with rapidly varying heterodyne beats by using electronic, optical, and analytical techniques to recover the velocity information from a fleeting signal. Here we show how we have been able to obtain velocity information on the nanosecond time scale and are able to compare it to hydrodynamic simulations. Also, we examine refinements to our PDV system by increasing the bandwidth, utilizing different probes, and sampling different analysis techniques.

  17. Equation of state study of Laser Megajoule capsules ablator materials

    International Nuclear Information System (INIS)

    Colin-Lalu, Pierre

    2016-01-01

    This PhD thesis enters the field of inertial confinement fusion studies. In particular, it focuses on the equation of state tables of ablator materials synthesized on LMJ capsules. This work is indeed aims at improving the theoretical models introduced into the equation of state tables. We focused in the Mbar-eV pressure-temperature range because it can be access on kJ-scale laser facilities.In order to achieve this, we used the QEOS model, which is simple to use, configurable, and easily modifiable.First, quantum molecular dynamics (QMD) simulations were performed to generate cold compression curve as well as shock compression curves along the principal Hugoniot. Simulations were compared to QEOS model and showed that atomic bond dissociation has an effect on the compressibility. Results from these simulations are then used to parametrize the Grueneisen parameter in order to generate a tabulated equation of state that includes dissociation. It allowed us to show its influence on shock timing in a hydrodynamic simulation.Second, thermodynamic states along the Hugoniot were measured during three experimental campaigns upon the LULI2000 and GEKKO XII laser facilities. Experimental data confirm QMD simulations.This study was performed on two ablator materials which are an undoped polymer CHO, and a silicon-doped polymer CHOSi. Results showed universal shock compression properties. (author) [fr

  18. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    International Nuclear Information System (INIS)

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.

    1991-05-01

    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  19. Hard tissue ablation with a spray-assisted mid-IR laser

    International Nuclear Information System (INIS)

    Kang, H W; Rizoiu, I; Welch, A J

    2007-01-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment

  20. Laser Ablation Increases PEM/Catalyst Interfacial Area

    Science.gov (United States)

    Whitacre, Jay; Yalisove, Steve

    2009-01-01

    An investigational method of improving the performance of a fuel cell that contains a polymer-electrolyte membrane (PEM) is based on the concept of roughening the surface of the PEM, prior to deposition of a thin layer of catalyst, in order to increase the PEM/catalyst interfacial area and thereby increase the degree of utilization of the catalyst. The roughening is done by means of laser ablation under carefully controlled conditions. Next, the roughened membrane surface is coated with the thin layer of catalyst (which is typically platinum), then sandwiched between two electrode/catalyst structures to form a membrane/ele c t - rode assembly. The feasibility of the roughening technique was demonstrated in experiments in which proton-conducting membranes made of a perfluorosulfonic acid-based hydrophilic, protonconducting polymer were ablated by use of femtosecond laser pulses. It was found that when proper combinations of the pulse intensity, pulse-repetition rate, and number of repetitions was chosen, the initially flat, smooth membrane surfaces became roughened to such an extent as to be converted to networks of nodules interconnected by filaments (see Figure 1). In further experiments, electrochemical impedance spectroscopy (EIS) was performed on a pristine (smooth) membrane and on two laser-roughened membranes after the membranes were coated with platinum on both sides. Some preliminary EIS data were interpreted as showing that notwithstanding the potential for laser-induced damage, the bulk conductivities of the membranes were not diminished in the roughening process. Other preliminary EIS data (see Figure 2) were interpreted as signifying that the surface areas of the laser-roughened membranes were significantly greater than those of the smooth membrane. Moreover, elemental analyses showed that the sulfur-containing molecular groups necessary for proton conduction remained intact, even near the laser-roughened surfaces. These preliminary results can be taken

  1. Method to control depth error when ablating human dentin with numerically controlled picosecond laser: a preliminary study.

    Science.gov (United States)

    Sun, Yuchun; Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Wang, Yong

    2015-07-01

    A three-axis numerically controlled picosecond laser was used to ablate dentin to investigate the quantitative relationships among the number of additive pulse layers in two-dimensional scans starting from the focal plane, step size along the normal of the focal plane (focal plane normal), and ablation depth error. A method to control the ablation depth error, suitable to control stepping along the focal plane normal, was preliminarily established. Twenty-four freshly removed mandibular first molars were cut transversely along the long axis of the crown and prepared as 48 tooth sample slices with approximately flat surfaces. Forty-two slices were used in the first section. The picosecond laser was 1,064 nm in wavelength, 3 W in power, and 10 kHz in repetition frequency. For a varying number (n = 5-70) of focal plane additive pulse layers (14 groups, three repetitions each), two-dimensional scanning and ablation were performed on the dentin regions of the tooth sample slices, which were fixed on the focal plane. The ablation depth, d, was measured, and the quantitative function between n and d was established. Six slices were used in the second section. The function was used to calculate and set the timing of stepwise increments, and the single-step size along the focal plane normal was d micrometer after ablation of n layers (n = 5-50; 10 groups, six repetitions each). Each sample underwent three-dimensional scanning and ablation to produce 2 × 2-mm square cavities. The difference, e, between the measured cavity depth and theoretical value was calculated, along with the difference, e 1, between the measured average ablation depth of a single-step along the focal plane normal and theoretical value. Values of n and d corresponding to the minimum values of e and e 1, respectively, were obtained. In two-dimensional ablation, d was largest (720.61 μm) when n = 65 and smallest when n = 5 (45.00 μm). Linear regression yielded the quantitative

  2. Diagnostics of Carbon Nanotube Formation in a Laser Produced Plume: An Investigation of the Metal Catalyst by Laser Ablation Atomic Fluorescence Spectroscopy

    Science.gov (United States)

    deBoer, Gary; Scott, Carl

    2003-01-01

    Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal

  3. Selective excavation of human carious dentin using a nanosecond pulsed laser with a wavelength of 5.85 μm

    Science.gov (United States)

    Kita, Tetsuya; Ishii, Katsunori; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2013-06-01

    Less-invasive treatment of caries has been needed in laser dentistry. Based on the absorption property of dentin substrates, 6 μm wavelength range shows specific absorptions and promising characteristics for the excavation. In our previous study, 5.8 μm wavelength range was found to be effective for selective excavation of carious dentin and restoration treatment using composite resin from the irradiation experiment with bovine sound and demineralized dentin. In this study, the availability of 5.8 μm wavelength range for selective excavation of human carious dentin was investigated for clinical application. A mid-infrared tunable nanosecond pulsed laser by difference-frequency generation was used for revealing the ablation property of human carious dentin. Irradiation experiments indicated that the wavelength of 5.85 μm and the average power density of 30 W/cm2 realized the selective excavation of human carious dentin, but ablation property was different with respect to each sample because of the different caries progression. In conclusion, the wavelength of 5.85 μm could realize the selective excavation of human carious dentin, but it was necessary to evaluate the stage of caries progression in order to control the ablation property.

  4. Assessment of in vivo laser ablation using MR elastography with an inertial driver.

    Science.gov (United States)

    Chen, Jun; Woodrum, David A; Glaser, Kevin J; Murphy, Matthew C; Gorny, Krzysztof; Ehman, Richard

    2014-07-01

    To evaluate the feasibility of using MR Elastography (MRE) to monitor tissue coagulation extent during in vivo percutaneous laser ablation of the liver. A novel inertial acoustic driver was developed to apply mechanical waves via the ablation instrument. Ablation testing was performed in live juvenile female pigs under anesthesia in a 1.5-T whole-body MRI scanner. The inertial driver produced suitable mechanical wave fields in the liver before, during, and after the laser ablation. During 2-min ablations using 4.5-, 7.5- and 15-W laser power, the stiffness of the lesions changed substantially in response to laser heating, indicative of protein denaturation. After a lethal thermal dose (2-min, 15-W) ablation, lesion stiffness was significantly greater than the baseline values (P W) ablations (64.4% vs. 22.5%, P = 0.009). MRE was shown capable of measuring tissue stiffness changes due to in vivo laser ablation. If confirmed through additional studies, this technology may be useful in clinical tumor ablation to monitor the spatial extent of tissue coagulation. Copyright © 2013 Wiley Periodicals, Inc.

  5. Morphological and spectroscopic characterization of laser-ablated tungsten at various laser irradiances

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Mahreen; Bashir, Shazia; Hayat, Asma; Mahmood, Khaliq; Dawood, Asadullah [Government College University, Centre for Advanced Studies in Physics, Lahore (Pakistan); Rafique, Muhammad Shahid [University of Engineering and Technology, Department of Physics, Lahore (Pakistan); Bashir, M.F. [COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan)

    2015-06-15

    The variation in surface morphology and plasma parameters of laser irradiated tungsten has been investigated as a function of irradiance. For this purpose, Nd:YAG laser (1064 nm, 10 ns, 10 Hz) is employed. Tungsten targets were exposed to various laser irradiances ranging from 6 to 50 GW/cm{sup 2} under ambient environment of argon at a pressure of 20 Torr. Scanning electron microscope analysis has been performed to analyze the surface modification of irradiated tungsten. It revealed the formation of micro- and nanoscale surface structures. In central ablated area, distinct grains and crack formation are observed, whereas peripheral ablated areas are dominated by cones and pinhole formation. It was observed that at irradiances exceeding a value of 13 GW/cm{sup 2}, the morphological trend of the observed structures has been changed from erosion to melting and re-deposition dominant phase. Ablation efficiency as a function of laser irradiance has also been investigated by measuring the crater depth using surface profilometry analysis. It is found to be maximum at an irradiance of 13 GW/cm{sup 2} and decreases at high laser irradiances. In order to correlate the accumulated effects of plasma parameters with the surface modification, laser-induced breakdown spectroscopy analysis has been performed. The electron temperature and number density of tungsten plasma have been evaluated at various laser irradiances. Initially with the increase of the laser irradiance up to 13 GW/cm{sup 2}, an increasing trend is observed for both plasma parameters due to enhanced energy deposition. Afterward, a decreasing trend is achieved which is attributed to the shielding effect. With further increase in irradiance, a saturation stage comes and insignificant changes are observed in plasma parameters. This saturation is explainable on the basis of the formation of a self-regulating regime near the target surface. Surface modifications of laser irradiated tungsten have been correlated with

  6. Thermal effect of laser ablation on the surface of carbon fiber reinforced plastic during laser processing

    Science.gov (United States)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2018-02-01

    Although laser processing is widely used for many applications, the cutting quality of carbon fiber reinforced plastic (CFRP) decreases around the heat-affected zone (HAZ) during laser processing. Carbon fibers are exposed around the HAZ, and tensile strength decreases with increasing length of the HAZ. Some theoretical studies of thermal conductions that do not consider fluid dynamics have been performed; however, theoretical considerations that include the dynamics of laser ablation are scarce. Using removed mass and depth observed from experiments, the dynamics of laser ablation of CFRP with high-temperature and high-pressure of compressive gas is simulated herein. In this calculation, the mushroom-like shape of laser ablation is qualitatively simulated compared with experiments using a high-speed camera. Considering the removal temperature of the resin and the temperature distribution at each point on the surface, the simulation results suggest that a wide area of the resin is removed when the processing depth is shallow, and a rounded kerf is generated as the processing depth increases.

  7. Effects of particle size and laser wavelength on heating of silver ...

    Indian Academy of Sciences (India)

    Calculations for acquiring temperatures under irradiations of pulsed KrF laser and pulsed Nd:YAG laser were performed. We showed that for low wavelengths of the laser, smaller nanoparticles have larger absorption efficiency compared to larger nanoparticles and in high wavelengths, temperature of all particles increased ...

  8. INFRARED PHOTOLUMINESCENCE SPECTRA OF PBS NANOPARTICLES PREPARED BY LANGMUIR–BLODGETT AND LASER ABLATION METHODS

    Directory of Open Access Journals (Sweden)

    Zdeněk Remes

    2014-12-01

    Full Text Available We optimized the optical setup originally designed for the photoluminescence measurements in the spectral range 400‒1100 nm. New design extends the spectral range into the near infrared region 900‒1700 nm and allows the colloidal solutions measurements in cuvettes as well as the measurements of nanoparticles deposited in the form of thin films on glass substrates. The infrared photoluminescence spectra of the PbS nanoparticles prepared by the Langmuir–Blodgett technique show the higher photoluminescence intensity and the shift to the shorter wavelengths compared to the infrared photoluminescence spectra of the PbS nanoparticles prepared by the laser ablation from PbS target. We aslo proved the high stability of PbS nanoparticles prepared in the form of thin layers.

  9. SERS activity of silver and gold nanostructured thin films deposited by pulsed laser ablation

    Science.gov (United States)

    Agarwal, N. R.; Tommasini, M.; Fazio, E.; Neri, F.; Ponterio, R. C.; Trusso, S.; Ossi, P. M.

    2014-10-01

    Nanostructured Au and Ag thin films were obtained by nanosecond pulsed laser ablation in presence of a controlled Ar atmosphere. Keeping constant other deposition parameters such as target-to-substrate distance, incidence angle, laser wavelength and laser fluence, the film morphology, revealed by SEM, ranges from isolated NPs to island structures and sensibly depends on gas pressure (10-100 Pa) and on the laser pulse number (500-3 × 10). The control of these two parameters allows tailoring the morphology and correspondingly the optical properties of the films. The position and width of the surface plasmon resonance peak, in fact, can be varied with continuity. The films showed remarkable surface-enhanced Raman activity (SERS) that depends on the adopted deposition conditions. Raman maps were acquired on micrometer-sized areas of both silver and gold substrates selected among those with the strongest SERS activity. Organic dyes of interest in cultural heritage studies (alizarin, purpurin) have been also considered for bench marking the substrates produced in this work. Also the ability to detect the presence of biomolecules was tested using lysozyme in a label free configuration.

  10. Selective laser etching or ablation for fabrication of devices

    KAUST Repository

    Buttner, Ulrich

    2017-01-12

    Methods of fabricating devices vial selective laser etching are provided. The methods can include selective laser etching of a portion of a metal layer, e.g. using a laser light source having a wavelength of 1,000 nm to 1,500 nm. The methods can be used to fabricate a variety of features, including an electrode, an interconnect, a channel, a reservoir, a contact hole, a trench, a pad, or a combination thereof. A variety of devices fabricated according to the methods are also provided. In some aspects, capacitive humidity sensors are provided that can be fabricated according to the provided methods. The capacitive humidity sensors can be fabricated with intricate electrodes, e.g. having a fractal pattern such as a Peano curve, a Hilbert curve, a Moore curve, or a combination thereof.

  11. Highly accurate Michelson type wavelength meter that uses a rubidium stabilized 1560 nm diode laser as a wavelength reference

    International Nuclear Information System (INIS)

    Masuda, Shin; Kanoh, Eiji; Irisawa, Akiyoshi; Niki, Shoji

    2009-01-01

    We investigated the accuracy limitation of a wavelength meter installed in a vacuum chamber to enable us to develop a highly accurate meter based on a Michelson interferometer in 1550 nm optical communication bands. We found that an error of parts per million order could not be avoided using famous wavelength compensation equations. Chromatic dispersion of the refractive index in air can almost be disregarded when a 1560 nm wavelength produced by a rubidium (Rb) stabilized distributed feedback (DFB) diode laser is used as a reference wavelength. We describe a novel dual-wavelength self-calibration scheme that maintains high accuracy of the wavelength meter. The method uses the fundamental and second-harmonic wavelengths of an Rb-stabilized DFB diode laser. Consequently, a highly accurate Michelson type wavelength meter with an absolute accuracy of 5x10 -8 (10 MHz, 0.08 pm) over a wide wavelength range including optical communication bands was achieved without the need for a vacuum chamber.

  12. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Laser ablation plume dynamics in nanoparticle synthesis

    Science.gov (United States)

    Osipov, V. V.; Platonov, V. V.; Lisenkov, V. V.

    2009-06-01

    The dynamics of the plume ejected from the surface of solid targets (YSZ, Nd:YAG and graphite) by a CO2 laser pulse with a duration of ~500 μs (at the 0.03 level), energy of 1.0-1.3 J and peak power of 6-7 kW have been studied using high-speed photography of the plume luminescence and shadow. The targets were used to produce nanopowders by laser evaporation. About 200 μs after termination of the pulse, shadowgraph images of the plumes above the YSZ and Nd:YAG targets showed dark straight tracks produced by large particles. The formation of large (~10 μm) particles is tentatively attributed to cracking of the solidified melt at the bottom of the ablation crater. This is supported by the fact that no large particles are ejected from graphite, which sublimes without melting. Further support to this hypothesis is provided by numerical 3D modelling of melt cooling in craters produced by laser pulses of different shapes.

  13. Modification of polyimide wetting properties by laser ablated conical microstructures

    International Nuclear Information System (INIS)

    Least, Brandon T.; Willis, David A.

    2013-01-01

    Laser texturing of Kapton ® HN polyimide was performed by low-fluence ablation using a pulsed, frequency tripled (349 nm) Nd:YLF laser. The laser was scanned in two dimensions in order to generate texture over a large area. The laser overlap percentage and fluence were varied and the resulting texture was studied. The texture features were inspected by electron microscopy and energy dispersive X-Ray spectroscopy (EDS), while the static contact angle of de-ionized water was measured by a contact angle goniometer. Rounded bump features were formed at all fluences, which decreased in areal density with fluence and number of laser pulses. Conical microstructures or “cones” were also formed at most fluences. Cones were larger than the bumps and thus had lower areal density, which increased as a function of the number of laser pulses. The polyimide was hydrophilic before texturing, with a contact angle of approximately 76°. For most of the experimental conditions the contact angle increased as a result of texturing, with the contact angle exceeding 90° for some textured surfaces, and reaching values as high as 118°. In general, the surfaces with significant increases in contact angle had high density of texture features, either bumps or cones. The surfaces that experienced a decrease in contact angle generally had low density of texture features. The increase in contact angle from a wetting (θ 90°) cannot be explained by texturing alone. EDS measurements indicate that textured regions had higher carbon content than the untextured regions due to depletion of oxygen species. The increase in carbon content relative to the oxygen content increased the native contact angle of the surface, causing the transition from hydrophilic to hydrophobic behavior. The contact angle of a textured surface increased as the relative spacing of features (diameter to spacing) decreased.

  14. Theoretical and experimental analysis of the impact on ablation depth of microchannel milling using femtosecond laser

    Science.gov (United States)

    Lei, Chen; Pan, Zhang; Jianxiong, Chen; Tu, Yiliu

    2018-04-01

    The plasma brightness cannot be used as a direct indicator of ablation depth detection by femtosecond laser was experimentally demonstrated, which led to the difficulty of depth measurement in the maching process. The tests of microchannel milling on the silicon wafer were carried out in the micromachining center in order to obtain the influences of parameters on the ablation depth. The test results showed that the defocusing distance had no significant impact on ablation depth in LAV effective range. Meanwhile, the reason of this was explained in this paper based on the theoretical analysis and simulation calculation. Then it was proven that the ablation depth mainly depends on laser fluence, step distance and scanning velocity. Finally, a research was further carried out to study the laser parameters which relate with the microchannel ablation depth inside the quartz glass for more efficiency and less cost in processing by femtosecond laser.

  15. Laser-Bioplasma Interaction: The Blood Type Transmutation Induced by Multiple Ultrashort Wavelength Laser Beams

    Science.gov (United States)

    Stefan, V. Alexander

    2015-11-01

    The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.

  16. Non-ablative fractional laser provides long-term improvement of mature burn scars

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth H; Danielsen, Patricia L; Paulsen, Ida F

    2015-01-01

    BACKGROUND AND OBJECTIVES: Non-ablative fractional laser-treatment is evolving for burn scars. The objective of this study was to evaluate clinical and histological long-term outcome of 1,540 nm fractional Erbium: Glass laser, targeting superficial, and deep components of mature burn scars...... of scar-appearance. CONCLUSIONS: Combined superficial and deep non-ablative fractional laser-treatments induce long-term clinical and histological improvement of mature burn scars....

  17. Free-space QKD system hacking by wavelength control using an external laser.

    Science.gov (United States)

    Lee, Min Soo; Woo, Min Ki; Jung, Jisung; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2017-05-15

    We develop a way to hack free-space quantum key distribution (QKD) systems by changing the wavelength of the quantum signal laser using an external laser. Most free-space QKD systems use four distinct lasers for each polarization, thereby making the characteristics of each laser indistinguishable. We also discover a side-channel that can distinguish the lasers by using an external laser. Our hacking scheme identifies the lasers by automatically applying the external laser to each signal laser at different intensities and detecting the wavelength variation according to the amount of incident external laser power. We conduct a proof-of-principle experiment to verify the proposed hacking structure and confirm that the wavelength varies by several gigahertzes to several nanometers, depending on the intensity of the external laser. The risk of hacking is successfully proven through the experimental results. Methods for prevention are also suggested.

  18. Stability of contamination-free gold and silver nanoparticles produced by nanosecond laser ablation of solid targets in water

    Energy Technology Data Exchange (ETDEWEB)

    Nikov, R.G., E-mail: rosen_nikov@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Nikolov, A.S.; Nedyalkov, N.N. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Dimitrov, I.G. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 25, Sofia 1113 (Bulgaria); Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Alexandrov, M.T. [Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 25, Sofia 1113 (Bulgaria)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Au and Ag colloids were prepared by nanosecond laser ablation of solids in water. Black-Right-Pointing-Pointer The alteration of the produced colloids during one month was investigated. Black-Right-Pointing-Pointer Optical transmission spectra of the samples were measured from 350 to 800 nm. Black-Right-Pointing-Pointer TEM measurements were made of as-prepared colloids and on the 30-th day. Black-Right-Pointing-Pointer Zeta potential measurements were performed of as-prepared samples. - Abstract: Preparation of noble metal nanoparticle (NPs) colloids using pulsed laser ablation in water has an inherent advantage compared to the different chemical methods used, especially when biological applications of the colloids are considered. The fabrication method is simple and the NPs prepared in this way are contamination free. The method of laser ablation of a solid target in water is applied in the present work in order to obtain gold and silver NP colloids. The experiment was preformed by using the fundamental wavelength (1064 nm) of a Nd:YAG laser system. The target immersed in double distilled water was irradiated for 20 min by laser pulses with duration of 15 ns and repetition rate of 10 Hz. The sedimentation and aggregation of NPs in the colloids, stored at constant temperature, as a function of the time after preparation were investigated. The analyses are based on optical transmission spectroscopy in UV and vis regions. The change of the plasmon resonance wavelength as a function of time was studied. Zeta potential measurement was also utilized to measure the charge of the NPs in the colloids. The size distribution of the NPs and its change in time was determined by transmission electron microscopy (TEM). On the basis of the results obtained, the optimal conditions of post fabrication manipulation with gold and silver colloids are defined in view of producing stable NPs with a narrow size distribution.

  19. Physical mechanisms of SiN{sub x} layer structuring with ultrafast lasers by direct and confined laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, S., E-mail: rapp@hm.edu [Faculty of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Lothstraße 34, 80335 Munich (Germany); Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 6, 91052 Erlangen (Germany); Heinrich, G. [Technische Universität Ilmenau, Institut für Physik, Weimarer Straße 25., 98693 Ilmenau (Germany); CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Straße 14, 99099 Erfurt (Germany); Wollgarten, M. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Huber, H. P. [Faculty of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Lothstraße 34, 80335 Munich (Germany); Schmidt, M. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Photonische Technologien, Konrad-Zuse-Straße 3-5, 91052 Erlangen (Germany)

    2015-03-14

    In the production process of silicon microelectronic devices and high efficiency silicon solar cells, local contact openings in thin dielectric layers are required. Instead of photolithography, these openings can be selectively structured with ultra-short laser pulses by confined laser ablation in a fast and efficient lift off production step. Thereby, the ultrafast laser pulse is transmitted by the dielectric layer and absorbed at the substrate surface leading to a selective layer removal in the nanosecond time domain. Thermal damage in the substrate due to absorption is an unwanted side effect. The aim of this work is to obtain a deeper understanding of the physical laser-material interaction with the goal of finding a damage-free ablation mechanism. For this, thin silicon nitride (SiN{sub x}) layers on planar silicon (Si) wafers are processed with infrared fs-laser pulses. Two ablation types can be distinguished: The known confined ablation at fluences below 300 mJ/cm{sup 2} and a combined partial confined and partial direct ablation at higher fluences. The partial direct ablation process is caused by nonlinear absorption in the SiN{sub x} layer in the center of the applied Gaussian shaped laser pulses. Pump-probe investigations of the central area show ultra-fast reflectivity changes typical for direct laser ablation. Transmission electron microscopy results demonstrate that the Si surface under the remaining SiN{sub x} island is not damaged by the laser ablation process. At optimized process parameters, the method of direct laser ablation could be a good candidate for damage-free selective structuring of dielectric layers on absorbing substrates.

  20. Physical mechanisms of SiNx layer structuring with ultrafast lasers by direct and confined laser ablation

    International Nuclear Information System (INIS)

    Rapp, S.; Heinrich, G.; Wollgarten, M.; Huber, H. P.; Schmidt, M.

    2015-01-01

    In the production process of silicon microelectronic devices and high efficiency silicon solar cells, local contact openings in thin dielectric layers are required. Instead of photolithography, these openings can be selectively structured with ultra-short laser pulses by confined laser ablation in a fast and efficient lift off production step. Thereby, the ultrafast laser pulse is transmitted by the dielectric layer and absorbed at the substrate surface leading to a selective layer removal in the nanosecond time domain. Thermal damage in the substrate due to absorption is an unwanted side effect. The aim of this work is to obtain a deeper understanding of the physical laser-material interaction with the goal of finding a damage-free ablation mechanism. For this, thin silicon nitride (SiN x ) layers on planar silicon (Si) wafers are processed with infrared fs-laser pulses. Two ablation types can be distinguished: The known confined ablation at fluences below 300 mJ/cm 2 and a combined partial confined and partial direct ablation at higher fluences. The partial direct ablation process is caused by nonlinear absorption in the SiN x layer in the center of the applied Gaussian shaped laser pulses. Pump-probe investigations of the central area show ultra-fast reflectivity changes typical for direct laser ablation. Transmission electron microscopy results demonstrate that the Si surface under the remaining SiN x island is not damaged by the laser ablation process. At optimized process parameters, the method of direct laser ablation could be a good candidate for damage-free selective structuring of dielectric layers on absorbing substrates

  1. Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones

    Science.gov (United States)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-01-01

    Optical fibers, consisting of 240-μm-core trunk fibers with rounded, 450-μm-diameter ball tips, are currently used during Holmium:YAG laser lithotripsy to reduce mechanical damage to the inner lining of the ureteroscope working channel during fiber insertion and prolong ureteroscope lifetime. Similarly, this study tests a smaller, 100-μm-core fiber with 300-μm-diameter ball tip during thulium fiber laser (TFL) lithotripsy. TFL was operated at a wavelength of 1908 nm, with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times were measured, and ablation rates were calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to track ball tip degradation and determine number of procedures completed before need for replacement. A high speed camera also recorded the cavitation bubble dynamics during TFL lithotripsy. Additionally, saline irrigation rates and ureteroscope deflection were measured with and without the presence of TFL fiber. There was no statistical difference (P>0.05) between stone ablation rates for single-use ball tip fiber (1.3±0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3±0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3±0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged greater than four stone procedures before failure, defined by rapid decline in stone ablation rates. Mechanical damage at the front surface of the ball tip was the limiting factor in fiber lifetime. The small fiber diameter did not significantly impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and into the ureter without risk of instrument damage or tissue perforation, and without compromising stone ablation efficiency during TFL lithotripsy.

  2. Optical-thermal mathematical model for endovenous laser ablation of varicose veins.

    Science.gov (United States)

    van Ruijven, Peter W M; Poluektova, Anna A; van Gemert, Martin J C; Neumann, H A Martino; Nijsten, Tamar; van der Geld, Cees W M

    2014-03-01

    Endovenous laser ablation (EVLA) is successfully used to treat varicose veins. However, the exact working mechanism is still not fully identified and the clinical procedure is not yet standardized. Mathematical modeling of EVLA could strongly improve our understanding of the influence of the various EVLA processes. The aim of this study is to combine Mordon's optical-thermal model with the presence of a strongly absorbing carbonized blood layer on the fiber tip. The model anatomy includes a cylindrically symmetric blood vessel surrounded by an infinite homogenous perivenous tissue. The optical fiber is located in the center of the vessel and is withdrawn with a pullback velocity. The fiber tip includes a small layer of strongly absorbing material, representing the layer of carbonized blood, which absorbs 45% of the emitted laser power. Heat transfer due to boiling bubbles is taken into account by increasing the heat conduction coefficient by a factor of 200 for temperatures above 95 °C. The temperature distribution in the blood, vessel wall, and surrounding medium is calculated from a numerical solution of the bioheat equation. The simulations were performed in MATLAB™ and validated with the aid of an analytical solution. The simulations showed, first, that laser wavelength did virtually not influence the simulated temperature profiles in blood and vessel wall, and, second, that temperatures of the carbonized blood layer varied slightly, from 952 to 1,104 °C. Our improved mathematical optical-thermal EVLA model confirmed previous predictions and experimental outcomes that laser wavelength is not an important EVLA parameter and that the fiber tip reaches exceedingly high temperatures.

  3. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.

    Science.gov (United States)

    Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook

    2015-01-01

    Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391  mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.

  4. Study on the lithium compound clusters using laser ablation

    International Nuclear Information System (INIS)

    Yokoyama, Keiichi

    2001-01-01

    Lithium-rich nonstoichiometric binary clusters including hyperlithiated molecules were found to be produced by a nanosecond laser ablation of lithium metal or compound target. Structural information on Li 3 O was obtained for the first time from experiments by measuring and analyzing photoionization efficiency curves of mass-selected ions. For example, the structure of Li 3 O was concluded to have both D 3h and C 2v symmetry. In other words, the vibrational wavefunction even at the ground state spreads over the C 2v and D 3h minima, which has been predicted as the global minimum in the latest theoretical calculations. Also, this is the first experimental evidence for electronomers'. (author)

  5. A laser ablation ion source for the FRS ion catcher

    Energy Technology Data Exchange (ETDEWEB)

    Rink, Ann-Kathrin; Ebert, Jens; Petrick, Martin; Reiter, Pascal [Justus Liebig Universitaet Giessen (Germany); Dickel, Timo; Geissel, Hans; Plass, Wolfgang; Scheidenberger, Christoph [Justus Liebig Universitaet Giessen (Germany); GSI, Darmstadt (Germany); Purushothamen, Sivaji [GSI, Darmstadt (Germany)

    2013-07-01

    The FRS Ion Catcher was developed to serve as test bench for the low energy branch of the Super FRS to slow down exotic nuclei and prepare them for further measurements/ experiments. It consists of a cryogenic stopping cell to thermalise the ions, a diagnostic unit for stopping cell characterisation and various radiofrequency quadrupole structures to guide the ions to the Multiple-Reflection Time-of-Flight Mass Spectrometer for mass measurements, α spectroscopy and isobar separation. To characterise the extraction times of the stopping cell, which is one of the main performance parameters of such a cell, a laser ablation ion source has been develped and tested. This ion source provides a sharply defined starting point of the ions for the extraction time measurement. In the future this source will provide reference ions to calibrate the mass spectrometer for accurate mass measurements.

  6. Comparison of the Effectiveness of Ablative and Non-Ablative Fractional Laser Treatments for Early Stage Thyroidectomy Scars

    Directory of Open Access Journals (Sweden)

    Jin-Uk Jang

    2016-11-01

    Full Text Available BackgroundOpen thyroidectomy is conventionally performed at the anterior side of neck, which is a body part with a comparatively great degree of open exposure; due to this, postoperative scarring may cause distress in patients. We aimed to compare the effects of ablative and nonablative fractional laser treatments on thyroidectomy scars. We examined medical records in a retrospective manner and analyzed scars based on their digital images by using the modified Manchester Scar Scale (mMSS.MethodsBetween February 2012 and May 2013, 55 patients with thyroidectomy scars were treated with ablative (34 patients or nonablative (21 patients fractional laser. Each patient underwent 4 laser treatment sessions in 3–4 week intervals, 1–2 months postoperatively. Scar improvement was assessed using patient images and the mMSS scale.ResultsThe mean decrease in scar score was 3.91 and 3.47 in the ablative and nonablative groups, respectively; the reduction between 2 groups did not exhibit any significant difference (P=0.16. We used the scale once again to individually evaluate scar attributes. The nonablative group accounted for a considerably higher color score value (P=0.03; the ablative group accounted for a considerably higher contour score value (P<0.01. Patient satisfaction was high and no complications occurred.ConclusionsBoth types of fractional laser treatments can be used successfully for thyroidectomy scar treatment with minimal complications; however, results indicate that higher effectiveness may be obtained from the use of ablative and nonablative lasers for hypertrophic scars and early erythematous scars, respectively. Therefore, the appropriate laser for scar treatment should be selected according to its specific characteristics.

  7. Study of laser preheating dependence on laser wavelength and intensity for MagLIF

    Science.gov (United States)

    Wei, M. S.; Harvey-Thompson, A. J.; Glinsky, M.; Nagayama, T.; Weis, M.; Geissel, M.; Peterson, K.; Fooks, J.; Krauland, C.; Giraldez, E.; Davies, J.; Campbell, E. M.; Bahr, R.; Edgell, D.; Stoeckl, C.; Glebov, V.; Emig, J.; Heeter, R.; Strozzi, D.

    2017-10-01

    The magnetized liner inertial fusion (MagLIF) scheme requires preheating underdense fuel to 100's eV temperature by a TW-scale long pulse laser via collisional absorption. To better understand how laser preheat scales with laser wavelength and intensity as well as to provide data for code validation, we have conducted a well-characterized experiment on OMEGA to directly compare laser propagation, energy deposition and laser plasma instabilities (LPI) using 2 ω (527 nm) and 3 ω (351 nm) lasers with intensity in the range of (1-5)x1014 Wcm-2. The laser beam (1 - 1.5 ns square pulse) enters the gas-filled plastic liner though a 2-µm thick polyimide window to heat an underdense Ar-doped deuterium gas with electron density of 5.5% of critical density. Laser propagation and plasma temperature are diagnosed by time-resolved 2D x-ray images and Ar emission spectroscopy, respectively. LPI is monitored by backscattering and hard x-ray diagnostics. The 2 ω beam propagation shows a noticeable larger lateral spread than the 3 ω beam, indicating laser spray due to filamentation. LPI is observed to increase with laser intensity and the 2 ω beam produces more hot electrons compared with the 3 ω beam under similar conditions. Results will be compared with radiation hydrodynamic simulations. Work supported by the U.S. DOE ARPA-E and NNSA.

  8. Stress assisted selective ablation of ITO thin film by picosecond laser

    Science.gov (United States)

    Farid, Nazar; Chan, Helios; Milne, David; Brunton, Adam; M. O'Connor, Gerard

    2018-01-01

    Fast selective pattering with high precession on 175 nm ITO thin film with IR ps lasers is investigated. Ablation parameters are optimized with detailed studies on the scribed depth, topography, and particle generation using AFM and SEM. A comparison of 10 and 150 ps laser revealed that the shorter pulse (10 ps) laser is more appropriate in selective and partial ablation; up to 20 nm resolution for controlled depth with multipulses having energy below the damage threshold is demonstrated. The experimental results are interpreted to involve stress assisted ablation mechanism for the 10 ps laser while thermal ablation along with intense melting occurs for 150 ps laser. The transition between these regimes is estimated to occur at approximately 30 ps.

  9. Signal intensity enhancement of laser ablated volume holograms

    Science.gov (United States)

    Versnel, J. M.; Williams, C.; Davidson, C. A. B.; Wilkinson, T. D.; Lowe, C. R.

    2017-11-01

    Conventional volume holographic gratings (VHGs) fabricated in photosensitive emulsions such as gelatin containing silver salts enable the facile visualization of the holographic image in ambient lighting. However, for the fabrication of holographic sensors, which require more defined and chemically-functionalised polymer matrices, laser ablation has been introduced to create the VHGs and thereby broaden their applications, although the replay signal can be challenging to detect in ambient lighting. When traditional photochemical bleaching solutions used to reduce light scattering and modulate refractive index within the VHG are applied to laser ablated volume holographic gratings, these procedures decrease the holographic peak intensity. This is postulated to occur because both light and dark fringes contain a proportion of metal particles, which upon solubilisation are converted immediately to silver iodide, yielding no net refractive index modulation. This research advances a hypothesis that the reduced intensity of holographic replay signals is linked to a gradient of different sized metal particles within the emulsion, which reduces the holographic signal and may explain why traditional bleaching processes result in a reduction in intensity. In this report, a novel experimental protocol is provided, along with simulations based on an effective medium periodic 1D stack, that offers a solution to increase peak signal intensity of holographic sensors by greater than 200%. Nitric acid is used to etch the silver nanoparticles within the polymer matrix and is thought to remove the smaller particles to generate more defined metal fringes containing a soluble metal salt. Once the grating efficiency has been increased, this salt can be converted to a silver halide, to modulate the refractive index and increase the intensity of the holographic signal. This new protocol has been tested in a range of polymer chemistries; those containing functional groups that help to

  10. Mass spectrometric study of carbon cluster formation in laser ablation of graphite at 355 nm

    CERN Document Server

    Koo, Y M; Lee, K H; Jung, K W

    2002-01-01

    The ablation dynamics and cluster formation of C sub n sup + ions ejected from 355 nm laser ablation of a graphite target in vacuum are investigated using a reflectron time-of-flight (RTOF) mass spectrometer. At low laser fluence, odd-numbered cluster ions with 3 =30) are produced at relatively long delay times, indicating that atoms or small carbon clusters aggregate during plume propagation. The dependence of the intensity of ablated C sub n sup + ions on delay time after laser irradiation shows that the most probable velocity of each cluster ion decreases with cluster size.

  11. Preparation of Graphene Oxide Stabilized Nickel Nanoparticles with Thermal Effusivity Properties by Laser Ablation Method

    OpenAIRE

    Sadrolhosseini, Amir Reza; Noor, A. S. M.; Shameli, Kamyar; Kharazmi, Alireza; Huang, N. M.; Mahdi, M. A.

    2013-01-01

    Nickel nanoparticles were dispersed uniformly in a graphene oxide solution, using a laser ablation technique with different ablation times that ranged from 5 to 20 minutes. The results indicate that the nickel nanoparticle sizes inside the graphene oxide decreased, and the volume fraction for the nickel nanoparticles in the graphene oxide increased with an increasing ablation time. Further, using Fourier Transform Infrared Spectroscopy, the nickel nanoparticles in the graphene oxide demonstra...

  12. Experimental and theoretical studies of picosecond laser interactions with electronic materials-laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Samuel S. [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    Lasers having picosecond and shorter pulse duration are receiving much attention due to their capabilities for direct-write micromachining on many materials with minimal substrate damage. Substantial progress has been made in the understanding of laser ablation processes, particularly the creation of plasmas that often shield the target and reduce the material processing efficiency at nanosecond time scales. However, a considerable challenge that still remains is the understanding of the underlying mechanisms during picosecond laser interactions with electronic solids. In this work we first study picosecond laser-induced electron emission from semiconductor surfaces. A theoretical model was set up based on carrier transport inside the semiconductor material during picosecond laser-semiconductor interactions. We demonstrate that nonequilibrium carrier dynamics plays a significant role for picosecond, as well as short nanosecond, laser induced electron emission from semiconductors. Photoelectric effect is found to be responsible for electron emission at low incident laser fluences, whereas thermionic emission is dominant at higher fluences. We have also performed experimental and theoretical studies on the formation and subsequent evolution of plasmas during laser-metal interactions at the picosecond time scale. Using picosecond time-resolved shadowgrams ahd interferograms, a novel type of plasma is observed, which has an electron density on the order of 1020cm-3.The origin of this picosecond plasma is attributed to gas breakdown, which is caused by laser-induced electron emission fi-om the target surface. After the laser pulse is completed, the longitudinal expansion of the plasma is suppressed. This suppression is found to result from an electric field above the target that prevents, after laser irradiation, fbrther movement of the electrons inside the plasma. Measurements of lateral plasma expansion indicate that the picosecond plasma may absorb

  13. Structural and nonlinear optical characterizations of ZnS/ PVP nanocomposites synthesized by pulsed laser ablation

    Science.gov (United States)

    Divyasree, M. C.; Chandrasekharan, K.

    2017-05-01

    ZnS/Poly Vinyl Pyrrolidone nanocomposites were synthesized by pulsed laser ablation at ambient conditions using an Nd: YAG laser at 532 nm wavelength and 7ns pulse width. Linear optical characterizations were done using UV-Vis spectrophotometer and fluorometer. Both absorption and emission peaks were found to be blue shifted, which could be due to quantum confinement effect. Spherical morphology and the purity in the elemental composition of the sample were confirmed by scanning electron microscope and energy dispersive X-ray spectrometer respectively. Average particle size of the ZnS nanoparticles was found to be 13.45 nm from the Gaussian fitted histogram of transmission electron Microscopy image and the structure was confirmed as hexagonal wurtzite by X-ray diffraction analysis. The nonlinear optical parameters were figured out by z scan analysis with the same laser system. The nanocomposite showed good absorptive and refractive properties in the nonlinear optical regime. Detailed study of the nanocomposite revealed its potential applications in optoelectronics and nonlinear optical device fabrication.

  14. Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation.

    Science.gov (United States)

    Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2016-01-28

    During the last few years, laser-induced breakdown spectroscopy (LIBS) has evolved significantly in the molecular sensing area through the optical monitoring of emissions from organic plasmas. Large efforts have been made to study the formation pathways of diatomic radicals as well as their connections with the bonding framework of molecular solids. Together with the structural and chemical-physical properties of molecules, laser ablation parameters seem to be closely tied to the observed spectral signatures. This research focuses on evaluating the impact of laser pulse duration on the production of diatomic species that populate plasmas of organic materials. Differences in relative intensities of spectral signatures from the plasmas of several organic molecules induced in femtosecond (fs) and nanosecond (ns) ablation regimes have been studied. Beyond the abundance and origin of diatomic radicals that seed the plasma, findings reveal the crucial role of the ablation regime in the breakage pattern of the molecule. The laser pulse duration dictates the fragments and atoms resulting from the vaporized molecules, promoting some formation routes at the expense of other paths. The larger amount of fragments formed by fs pulses advocates a direct release of native bonds and a subsequent seeding of the plasma with diatomic species. In contrast, in the ns ablation regime, the atomic recombinations and single displacement processes dominate the contribution to diatomic radicals, as long as atomization of molecules prevails over their progressive decomposition. Consequently, fs-LIBS better reflects correlations between strengths of emissions from diatomic species and molecular structure as compared to ns-LIBS. These new results entail a further step towards the specificity in the analysis of molecular solids by fs-LIBS.

  15. Investigation of acid-etched CO2 laser ablated enamel surfaces using polarization sensitive optical coherence tomography

    Science.gov (United States)

    Nahm, Byung J.; Kang, Hobin; Chan, Kenneth; Fried, Daniel

    2012-01-01

    A carbon dioxide laser operating at the highly absorbed wavelength of 9.3μm with a pulse duration of 10-15μs is ideally suited for caries removal and caries prevention. The enamel thermally modified by the laser has enhanced resistance to acid dissolution. This is an obvious advantage for caries prevention; however, it is often necessary to etch the enamel surface to increase adhesion to composite restorative materials and such surfaces may be more resistant to etching. The purpose of the study was to non-destructively measure the susceptibility of laser-ablated enamel surfaces to acid dissolution before and after acid-etching using Polarization Sensitive Optical Coherence Tomography (PS-OCT). PS-OCT was used to acquire images of bovine enamel surfaces after exposure to laser irradiation at ablative fluence, acid-etching, and a surface softened dissolution model. The integrated reflectivity from lesion and the lesion depth were measured using PS-OCT. Samples were also sectioned for examination by Polarized Light Microscopy (PLM). PS-OCT images showed that acid-etching greatly accelerated the formation of subsurface lesions on both laser-irradiated and non-irradiated surfaces (Plaser modified enamel layer after 5-10 seconds.

  16. Investigations on the Influence of Liquid-Assisted Laser Ablation of NiTi Rotating Target to Improve the Formation Efficiency of Spherical Alloyed NiTi Nanoparticles

    Science.gov (United States)

    Nandini, Patra; Akash, K.; Rohit, Gagrani; Vipul, Singh; Palani, I. A.

    2017-10-01

    In this work, the liquid-assisted laser ablation of NiTi rotating target has been used as a promising technique for generating spherical NiTi alloy nanoparticles with higher formation efficiency. Nd: YAG nanosecond laser with three different laser wavelengths (355, 532 and 1064 nm), three different laser fluences (30, 40 and 50 J/cm2) and three different rotational speeds (10 RPM, 20 RPM and 30 RPM) of target has been used to ablate the nitinol (Ni-55%, Ti-45%) target. The influences of different laser parameters (wavelengths and fluences) and different RPMs have been studied on the size, morphology and formation of alloy nanoparticles. It has been observed that the formation efficiency is maximum (39.9 mg/h) for smaller size nanoparticle ( 40 nm) at 355 nm wavelength, 50 J/cm2 fluence and 10 RPM rotational speed. On the other hand, we find that the formation efficiency (10.5 mg/h) is lowest with a bigger size of nanoparticle ( 110 nm) at 1064 nm wavelength, 50 J/cm2 fluence and 30 RPM speed. Therefore, this is a promising technique to synthesize spherical alloy nanoparticles with higher ablation efficiency. Thus, the higher ablation of particles helps to improve the optical absorption of the colloidal solution as optical absorption has a direct relation with the particle concentration. The shape and size of particles were characterized through SEM and DLS analysis whereas the crystallinity was confirmed through TEM and XRD analysis, respectively. Moreover, the elemental analysis was done with the help of XPS and EDS and optical absorption through UV-Vis spectrum analysis.

  17. Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes

    International Nuclear Information System (INIS)

    Sinko, John E.; Phipps, Claude R.

    2009-01-01

    An improved model for CO 2 laser ablation impulse in polyoxymethylene and similar polymers is presented that describes the transition effects from the onset of vaporization to the plasma regime in a continuous fashion. Several predictions are made for ablation behavior.

  18. Plasma luminescence feedback control system for precise ultrashort pulse laser tissue ablation

    Science.gov (United States)

    Kim, Beop-Min; Feit, Michael D.; Rubenchik, Alexander M.; Gold, David M.; Darrow, Christopher B.; Marion, John E., II; Da Silva, Luiz B.

    1998-05-01

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue without damaging nearby soft tissue using an ultrashort pulse laser. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so bone tissue is selectively ablated while preserving the spinal cord.

  19. Power-law scaling of plasma pressure on laser-ablated tin microdroplets

    NARCIS (Netherlands)

    Kurilovich, Dmitry; Basko, Mikhail M.; Kim, Dmitrii A.; Torretti, Francesco; Schupp, Ruben; Visschers, Jim C.; Scheers, Joris; Hoekstra, Ronnie; Ubachs, Wim; Versolato, Oscar O.

    The measurement of the propulsion of metallic microdroplets exposed to nanosecond laser pulses provides an elegant method for probing the ablation pressure in a dense laser-produced plasma. We present the measurements of the propulsion velocity over three decades in the driving Nd:YAG laser pulse

  20. CO2 TEA Laser-Enhanced Laser Ablation Molecular Isotopic Spectrometry (TELLAMIS)

    Science.gov (United States)

    Brown, Staci R.; Akpovo, Charlemagne A.; Ford, Alan; Herbert, Kenley; Johnson, Lewis

    2014-03-01

    Recently, it has been shown that the relative abundance of isotopes in enriched materials can be determined via laser-induced breakdown spectroscopy (LIBS) in a technique known as laser-ablation molecular isotopic spectroscopy (LAMIS). The original LAMIS work has focused on single-pulse (SP) LIBS for the excitation. However, dual-pulse (DP) LIBS reduces shot-to-shot variation and can lower detection limits of an element by about an order of magnitude or more. It also has the potential to improve the accuracy of the determination of the relative abundances of isotopes in LAMIS by minimizing the signal-to-noise ratio. In this work, a DP-LIBS technique for improving LAMIS relative-abundance information from a sample is presented. The new technique, called (TEA) Transverse-Excited breakdown in Atmosphere Laser-Enhanced Laser Ablation Molecular Isotopic Spectrometry (TELLAMIS), uses a carbon dioxide (CO2) laser to increase the breakdown emission from LIBS in the LAMIS method. This technique is demonstrated on a collection of relative abundance isotopes of boron- 10 and boron-11 in varying concentrations in boric acid. Least-squares fitting to theoretical models are used to deduce plasma parameters and understand reproducibility of results. DTRA.

  1. Experimental investigation on thermal ablation of carbon-fiber/epoxy composite irradiated by continuous wave laser

    Science.gov (United States)

    He, Minbo; Ma, Zhiliang; Chen, Linzhu; Lin, Xinwei; Zhou, Menglian

    2015-05-01

    The tests of carbon-fiber/epoxy composite laminates, subjected to a tangential gas-flow and 1070 nm continuous wave laser are carried out to acquire the ablation laws of samples on the conditions of different gas-flow. Simultaneously, considered the images from camera of large dynamic range, the damage laws of samples are also obtained for various laser power densities. Experimental results reveal that, without airflow on sample surface, the smoke caused by laser heating can be quickly on fire which causes a burn damage on the surface of samples so that the mass loss is most of all. However, the tangential airflow can remove away the smoke which has a weakening effect on the energy of incidence laser. So the ablation depth has an obvious increase in laser irradiation area. Unlike airflow, nitrogen flow can obviously restrain oxidation ablation on surface so that the ablation damage in laser irradiation area is relatively not severe. On the other hand, as laser power density increases, the mass loss of samples continues to rise but isn't proportional. And the ablation heat with the increase of power density shows a complex change. Below power density of 390 W/cm2, the mass loss mainly depends on the pyrolysis of epoxy while the ablation heat has a gradual decrease. Along with power density increasing but less than 1330 W/cm2 , the oxidation ablation of carbon fibers will be a leading factor and the ablation heat shows a little increase. Above power density of 1330 W/cm2 , the carbon fibers turn up the phenomenon of sublimation. What's more, airflow removed effects will be enhanced in high temperature. In this case, the ablation heat again has a trend of decrease.

  2. Selective removal of carious human dentin using a nanosecond pulsed laser operating at a wavelength of 5.85 μ m

    Science.gov (United States)

    Ishii, Katsunori; Kita, Tetsuya; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2015-05-01

    Less invasive methods for treating dental caries are strongly desired. However, conventional dental lasers do not always selectively remove caries or ensure good bonding to the composite resin. According to our previous study, demineralized dentin might be removed by a nanosecond pulsed laser operating at wavelengths of around 5.8 μm. The present study investigated the irradiation effect of the light on carious human dentin classified into "remove," "not remove," and "unclear" categories. Under 5.85-μm laser pulses, at average power densities of 30 W/cm2 and irradiation time of 2 s, the ablation depth of "remove" and "not remove," and also the ablation depth of "unclear" and "not remove," were significantly different (pcaries treatment.

  3. Reactive Laser-induced Ablation as Approach to Titanium Oxycarbide Films

    Czech Academy of Sciences Publication Activity Database

    Jandová, Věra; Fajgar, Radek; Dytrych, Pavel; Koštejn, Martin; Dřínek, Vladislav; Kupčík, Jaroslav

    2015-01-01

    Roč. 590, SEP 1 (2015), s. 270-275 ISSN 0040-6090 Institutional support: RVO:67985858 Keywords : IR laser * reactive ablation * titanium ethoxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.761, year: 2015

  4. Clinical risk factors to predict deep venous thrombosis post-endovenous laser ablation of saphenous veins.

    Science.gov (United States)

    Chi, Y-W; Woods, T C

    2014-04-01

    Endovenous laser ablation of saphenous veins is an alternative in treating symptomatic varicose veins. Deep venous thrombosis (DVT) has been reported in up to 7.7% of patients undergoing such procedure. We sought to establish clinical risk factors that predict DVT post-endovenous laser ablation. Patients who underwent endovenous laser ablation were prospectively followed. Clinical data and post-interventional duplex ultrasound were analysed. A P value 66 (P = 0.007), female gender (P = 0.048) and prior history of superficial thrombophlebitis (SVT) (P = 0.002) were associated with increased risk of DVT postprocedure. Age >66, female gender and history of SVT were significant predictors of DVT post-endovenous laser ablation of saphenous veins.

  5. Laser ablation of polymer coatings allows for electromagnetic field enhancement mapping around nanostructures

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob

    2011-01-01

    Subdiffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures. The acc......Subdiffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures....... The accompanying field enhancement substantially lowers the ablation threshold of the polymer film and thus creates local ablation spots and corresponding topographic modifications of the polymer film. Such modifications are quantified straightforwardly via scanning electron microscopy and atomic force microscopy...

  6. Oxidation and Carbidation of Laser-Ablated Amorphized Ti Particles in Carbon Monoxide

    Czech Academy of Sciences Publication Activity Database

    Jandová, Věra; Kupčík, Jaroslav; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2013-01-01

    Roč. 19, MAY (2013), s. 104-110 ISSN 1293-2558 Institutional support: RVO:67985858 ; RVO:61388980 ; RVO:61388955 Keywords : titanium * laser ablation * amorphization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.679, year: 2013

  7. Nanopillar formation from two-shot femtosecond laser ablation of poly-methyl methacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Baset, F.; Popov, K.; Villafranca, A.; Alshehri, A.M.; Guay, J.-M.; Ramunno, L.; Bhardwaj, V.R., E-mail: ravi.bhardwaj@uottawa.ca

    2015-12-01

    Highlights: • We studied morphological evolution and dynamics of two-pulse laser ablation in PMMA. • Nanopillar and volcanic eruption like structures are formed within the ablation crater. • Reflection of shockwave induced by the second laser pulse creates the structures. • Shockwave reflects from the boundary created by the first pulses. • Reflected shockwave causes density pinching in the middle of the ablation region. - Abstract: We present experimental and numerical studies on the morphological evolution and dynamics of femtosecond laser ablation of bulk poly-methyl methacrylate (PMMA) irradiated with a pair of pulses. We show that a nanopillar-like structure is formed in the middle of the ablation crater for pulse energies below single-shot ablation threshold. The nanopillar is ∼400 nm long, lies adjacent to a nanopore, and protrudes ∼150 nm above the sample surface. As the pulse energy is increased gradually, the nanopillar disappears and the nanopore inside the ablation crater becomes larger. At higher pulse energies, a volcanic eruption like structure appears in the middle of the crater whose size and height increases with energy. 2D molecular dynamics simulations reveal that a nanojet and other features observed at higher pulse energies can be formed when the reflection of a shockwave, induced by the second laser pulse, causes density pinching in the middle of the interaction region that rapidly pushes out molten material towards the surface. The shockwave is reflected from the cold boundaries of a modified region created by the first laser pulse.

  8. Synthesis and properties of palladium nanoparticles by pulsed laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Mendivil, M.I. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Krishnan, B. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); CIIDIT – Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); Castillo, G.A. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); CIIDIT – Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico)

    2015-09-01

    Highlights: • Pd nanoparticle colloids were synthesized using PLAL technique. • Characterized by TEM, XPS and UV–vis spectroscopy. • Average size distribution was affected by different liquid media. • Laser post-irradiation was effective to regain optical properties. • Ultrasonic treatment helped to regain the optical properties. - Abstract: Pulsed laser ablation in liquid (PLAL) as a prominent technique for nanofabrication was employed to synthesize palladium (Pd) nanoparticles in different liquids. The synthesis of Pd nanoparticles was developed using a pulsed Nd:YAG laser with its fundamental wavelength output of 1064 nm (10 Hz, 10 ns) in a range of energy fluence (40.5–8 J/cm{sup 2}). Pure Pd metal target was immersed in distilled water, methanol–water mixture (1:1) and sodium dodecyl sulfate (SDS) to study the effect of the nature of the liquid media. Laser post-irradiation and ultrasonic treatments were applied to the precipitated colloidal solution to investigate their effects on the re-dispersion and stability. The mean size, size distributions, shape, elemental composition, optical properties and stability of nanoparticles synthesized by PLAL were examined by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. TEM characterizations showed smaller nanoparticles in methanol–water mixture in comparison with the other liquids. Spherical morphology was observed for Pd nanoparticles synthesized in distilled water and methanol–water mixture. In the case of SDS, spherical nanoparticles embedded on the surfactant were observed. The effect of energy fluence was different for each liquid media. Laser post-irradiation and ultrasonic agitation worked as efficient methods to re-disperse the precipitates of NPs and to recover their optical properties.

  9. Particle size determination of silver nanoparticles generated by plasma laser ablation using a deconvolution method

    Czech Academy of Sciences Publication Activity Database

    Picciotto, A.; Torrisi, L.; Margarone, Daniele; Bellutti, P.

    2010-01-01

    Roč. 165, 6-10 (2010), s. 706-712 ISSN 1042-0150. [International Workshop on Pulsed Plasma Laser Ablation (PPLA)/4./. Monte Pieta, Messina, 18.06.2009-20.06.2009] Institutional research plan: CEZ:AV0Z10100522 Keywords : nanoparticles * plasma * laser ablation * surface plasmon resonance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.660, year: 2010

  10. Thin film growing by the laser ablation technique: possibilities for growing of dosimetric materials

    International Nuclear Information System (INIS)

    Rojas R, E.M.; Melo M, M.; Enriquez Z, E.; Fernandez G, M.; Haro P, E.; Hernandez P, J.L.

    2005-01-01

    In this talk we will present the basics about the laser ablation technique and how it is used for thin film growing, either as a single film or a stack of thin films, as well as some methods to characterize in real time the film thickness. Finally, we will discuss the possibilities of using laser ablation for growing thin films with applications to dosimetry. (Author)

  11. MoS2-wrapped microfiber-based multi-wavelength soliton fiber laser

    Science.gov (United States)

    Lu, Feifei

    2017-11-01

    The single-, dual- and triple-wavelength passively mode-locked erbium-doped fiber lasers are demonstrated with MoS2 and polarization-dependent isolator (PD-ISO). The saturable absorber is fabricated by wrapping an MoS2 around a microfiber. The intracavity PD-ISO acts as a wavelength-tunable filter with a polarization controller (PC) by adjusting the linear birefringence. Single-wavelength mode-locked fiber laser can self-start with suitable pump power. With appropriate PC state, dual- and triple-wavelength operations can be observed when gains at different wavelengths reach a balance. It is noteworthy that dual-wavelength pulses exhibiting peak and dip sidebands, respectively, are demonstrated in the experiment. The proposed simple and multi-wavelength all-fiber conventional soliton lasers could possess potential applications in numerous fields, such as sensors, THz generations and optical communications.

  12. Widely tunable multiwavelength Brillouin-erbium fiber laser with triple Brillouin-shift wavelength spacing

    Science.gov (United States)

    Al-Mansoori, M. H.; Al-Sheriyani, A.; Younis, M. A. A.; Mahdi, M. A.

    2018-03-01

    In this paper, we demonstrate a widely tunable multiwavelength Brillouin-erbium fiber laser (MBEFL) having a wavelength spacing of 0.25 nm (triple Brillouin-shift wavelength spacing). The proposed laser structure overcomes the need for Brillouin pump wavelength to be closed to the self-lasing cavity modes region. The laser exhibits a wide tuning range of 40 nm (from 1530 nm to 1570 nm) at Brillouin pump and 980 nm pump powers of 25 mW and 350 mW, respectively. Four stable output channels are produced within this wavelength range with all the channels having a peak output power greater than 1.58 mW. The laser has the potential to be used as a multiwavelength laser source for dense wavelength division multiplexing communication.

  13. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    Science.gov (United States)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  14. Comprehensive studies of ultrashort laser pulse ablation of tin target at terawatt power

    Science.gov (United States)

    Elsied, Ahmed M.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2018-01-01

    The fundamental properties of ultrashort laser interactions with metals using up to terawatt power were comprehensively studied, i.e., specifically mass ablation, nanoparticle formation, and ion dynamics using multitude of diagnostic techniques. Results of this study can be useful in many fields of research including spectroscopy, micromachining, thin film fabrication, particle acceleration, physics of warm dense matter, and equation-of-state determination. A Ti:Sapphire femtosecond laser system (110 mJ maximum energy, 40 fs, 800 nm, P-polarized, single pulse mode) was used, which delivered up to 3 terawatt laser power to ablate 1 mm tin film in vacuum. The experimental analysis includes the effect of the incident laser fluence on the ablated mass, size of the ablated area, and depth of ablation using white light profilometer. Atomic force microscope was used to measure the emitted particles size distribution at different laser fluence. Faraday cup (FC) detector was used to analyze the emitted ions flux by measuring the velocity, and the total charge of the emitted ions. The study shows that the size of emitted particles follows log-normal distribution with peak shifts depending on incident laser fluence. The size of the ablated particles ranges from 20 to 80 nm. The nanoparticles deposited on the wafer tend to aggregate and to be denser as the incident laser fluence increases as shown by AFM images. Laser ablation depth was found to increase logarithmically with laser fluence then leveling off at laser fluence > 400 J/cm2. The total ablated mass tends to increase logarithmically with laser fluence up to 60 J/cm2 while, increases gradually at higher fluence due to the increase in the ablated area. The measured ion emitted flux shows a linear dependence on laser fluence with two distinct regimes. Strong dependence on laser fluence was observed at fluences < 350 J/cm2. Also, a slight enhancement in ion velocity was observed with increasing laser fluence up to 350 J

  15. Onset and evolution of laser induced periodic surface structures on indium tin oxide thin films for clean ablation using a repetitively pulsed picosecond laser at low fluence

    Science.gov (United States)

    Farid, N.; Dasgupta, P.; O’Connor, G. M.

    2018-04-01

    The onset and evolution of laser induced periodic surface structures (LIPSS) is of key importance to obtain clean ablated features on indium tin oxide (ITO) thin films at low fluences. The evolution of subwavelength periodic nanostructures on a 175 nm thick ITO film, using 10 ps laser pulses at a wavelength of 1032 nm, operating at 400 kHz, is investigated. Initially nanoblisters are observed when a single pulse is applied below the damage threshold fluence (0.45 J cm‑2) the size and distribution of nanoblisters are found to depend on fluence. Finite difference time domain (FDTD) simulations support the hypothesis that conductive nanoblisters can enhance the local intensity of the applied electromagnetic field. The LIPSS are observed to evolve from regions where the electric field enhancement has occurred; LIPSS has a perpendicular orientation relative to the laser polarization for a small number (pulses. The LIPSS periodicity depends on nanoblister size and distribution; a periodicity down to 100 nm is observed at the lower fluence periphery of the Gaussian irradiated area where nanoblisters are smallest and more closely arranged. Upon irradiation with successive (>5) pulses, the orientation of the periodic structures appears to rotate and evolve to become aligned in parallel with the laser polarization at approximately the same periodicity. These orientation effects are not observed at higher fluence—due to the absence of the nanoblister-like structures; this apparent rotation is interpreted to be due to stress-induced fragmentation of the LIPSS structure. The application of subsequent pulses leads to clean ablation. LIPSS are further modified into features of a shorter period when laser scanning is used. Results provide evidence that the formation of conductive nanoblisters leads to the enhancement of the applied electromagnetic field and thereby can be used to precisely control laser ablation on ITO thin films.

  16. Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration

    Science.gov (United States)

    Sommer, P.; Metzkes-Ng, J.; Brack, F.-E.; Cowan, T. E.; Kraft, S. D.; Obst, L.; Rehwald, M.; Schlenvoigt, H.-P.; Schramm, U.; Zeil, K.

    2018-05-01

    For laser-driven ion acceleration from thin foils (∼10 μm–100 nm) in the target normal sheath acceleration regime, the hydro-carbon contaminant layer at the target surface generally serves as the ion source and hence determines the accelerated ion species, i.e. mainly protons, carbon and oxygen ions. The specific characteristics of the source layer—thickness and relevant lateral extent—as well as its manipulation have both been investigated since the first experiments on laser-driven ion acceleration using a variety of techniques from direct source imaging to knife-edge or mesh imaging. In this publication, we present an experimental study in which laser ablation in two fluence regimes (low: F ∼ 0.6 J cm‑2, high: F ∼ 4 J cm‑2) was applied to characterize and manipulate the hydro-carbon source layer. The high-fluence ablation in combination with a timed laser pulse for particle acceleration allowed for an estimation of the relevant source layer thickness for proton acceleration. Moreover, from these data and independently from the low-fluence regime, the lateral extent of the ion source layer became accessible.

  17. Dynamics of colliding aluminium plasmas produced by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Gambino, N., E-mail: gambino@lec.mavt.ethz.ch [INFN-Laboratori Nazionali del Sud, Via S.Sofia, 62, I95123 Catania (Italy); IET-Institute of Energy Technology, LEC-Laboratory for Energy Conversion, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich (Switzerland); Hayden, P. [School of Physical Sciences and National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland); Mascali, D. [INFN-Laboratori Nazionali del Sud, Via S.Sofia, 62, I95123 Catania (Italy); Costello, J.; Fallon, C.; Hough, P.; Yeates, P. [School of Physical Sciences and National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland); Anzalone, A.; Musumeci, F.; Tudisco, S. [INFN-Laboratori Nazionali del Sud, Via S.Sofia, 62, I95123 Catania (Italy)

    2013-05-01

    The collision of two aluminium plasmas was investigated by combining both time and space resolved spectroscopy and Langmuir probe measurements. Plasma plumes were produced by a Continuum™ Surelite Nd:YAG Laser System with pulse duration of FWHM of 6 ns and wavelength of 1064 nm, at a laser irradiance of 10{sup 11} W/cm{sup 2} on slab Al targets. By analyzing the emission spectra, the temporally and spatially resolved electron density and electron temperature at the stagnation layer were extracted, with a time resolution of 10 ns. Data analysis confirms that the electron density of the stagnation layer evolves over a longer timescale than in the single plume case. On the other hand, the temperature trends show that the electron temperature decreases much more rapidly at the stagnation layer than in the case for the single expanding plasma. In addition, a Langmuir probe was used to investigate the properties of the collisional front evolution. The overall experimental results show that colliding laser produced plasmas could be useful in the design of experiments devoted to fusion reaction rate measurements in a low energy domain by including the effect of the electron screening (ES).

  18. Molybdenum oxide nanocolloids prepared by an external field-assisted laser ablation in water

    Directory of Open Access Journals (Sweden)

    Spadaro Salvatore

    2018-01-01

    Full Text Available he synthesis of extremely stable molybdenum oxide nanocolloids by pulsed laser ablation was studied. This green technique ensures the formation of contaminant-free nanostructures and the absence of by-products. A focused picosecond pulsed laser beam was used to ablate a solid molybdenum target immersed in deionized water. Molybdenum oxide nearly spherical nanoparticles with dimensions within few nanometers (20-100 nm are synthesized when the ablation processes were carried out, in water, at room temperature and 80°C. The application of an external electric field during the ablation process induces a nanostructures reorganization, as indicated by Scanning-Transmission Electron Microscopy images analysis. The ablation products were also characterized by some spectroscopic techniques: conventional UV-vis optical absorption, atomic absorption, dynamic light scattering, micro-Raman and X-ray photoelectron spectroscopies. Finally, NIH/3T3 mouse fibroblasts were used to evaluate cell viability by the sulforhodamine B assay

  19. Conductors, semiconductors and insulators irradiated with short-wavelength free-electron laser

    Czech Academy of Sciences Publication Activity Database

    Krzywinski, J.; Sobierajski, R.; Jurek, M.; Nietubyc, R.; Pelka, J. B.; Juha, Libor; Bittner, Michal; Létal, V.; Vorlíček, Vladimír; Andrejczuk, A.; Feldhaus, J.; Keitel, B.; Saldin, E.; Schneidmiller, E.A.; Treusch, R.; Yurkov, M. V.

    2007-01-01

    Roč. 101, č. 4 (2007), 043107/1-043107/4 ISSN 0021-8979 R&D Projects: GA MŠk 1P04LA235; GA MŠk LC510; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : free-electron laser * extreme ultraviolet * ablation * laser-matter interaction Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.171, year: 2007

  20. Passively synchronized dual-wavelength Q-switched lasers

    DEFF Research Database (Denmark)

    Janousek, Jiri; Tidemand-Lichtenberg, Peter; Mortensen, Jesper Liltorp

    We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG....

  1. Treatment planning for prostate focal laser ablation in the face of needle placement uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Cepek, Jeremy, E-mail: jcepek@robarts.ca; Fenster, Aaron [Robarts Research Institute, London, Ontario N6A 5K8, Canada and Biomedical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Lindner, Uri; Trachtenberg, John [Department of Surgical Oncology, Division of Urology, University Health Network, Toronto, Ontario M5G 2C4 (Canada); Davidson, Sean R. H. [Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9 (Canada); Haider, Masoom A. [Department of Medical Imaging, Sunnybrook Health Sciences Center, Toronto, Ontario M4N 3M5, Canada and Department of Medical Imaging, University of Toronto, Toronto, Ontario M5S 2J7 (Canada); Ghai, Sangeet [Department of Medical Imaging, University Health Network, Toronto, Ontario M5G 2M9 (Canada)

    2014-01-15

    Purpose: To study the effect of needle placement uncertainty on the expected probability of achieving complete focal target destruction in focal laser ablation (FLA) of prostate cancer. Methods: Using a simplified model of prostate cancer focal target, and focal laser ablation region shapes, Monte Carlo simulations of needle placement error were performed to estimate the probability of completely ablating a region of target tissue. Results: Graphs of the probability of complete focal target ablation are presented over clinically relevant ranges of focal target sizes and shapes, ablation region sizes, and levels of needle placement uncertainty. In addition, a table is provided for estimating the maximum target size that is treatable. The results predict that targets whose length is at least 5 mm smaller than the diameter of each ablation region can be confidently ablated using, at most, four laser fibers if the standard deviation in each component of needle placement error is less than 3 mm. However, targets larger than this (i.e., near to or exceeding the diameter of each ablation region) require more careful planning. This process is facilitated by using the table provided. Conclusions: The probability of completely ablating a focal target using FLA is sensitive to the level of needle placement uncertainty, especially as the target length approaches and becomes greater than the diameter of ablated tissue that each individual laser fiber can achieve. The results of this work can be used to help determine individual patient eligibility for prostate FLA, to guide the planning of prostate FLA, and to quantify the clinical benefit of using advanced systems for accurate needle delivery for this treatment modality.

  2. Tunable multiwavelength SOA fiber laser with ultra-narrow wavelength spacing based on nonlinear polarization rotation.

    Science.gov (United States)

    Zhang, Zuxing; Wu, Jian; Xu, Kun; Hong, Xiaobin; Lin, Jintong

    2009-09-14

    A tunable multiwavelength fiber laser with ultra-narrow wavelength spacing and large wavelength number using a semiconductor optical amplifier (SOA) has been demonstrated. Intensity-dependent transmission induced by nonlinear polarization rotation in the SOA accounts for stable multiwavelength operation with wavelength spacing less than the homogenous broadening linewidth of the SOA. Stable multiwavelength lasing with wavelength spacing as small as 0.08 nm and wavelength number up to 126 is achieved at room temperature. Moreover, wavelength tuning of 20.2 nm is implemented via polarization tuning.

  3. Angular distribution of atoms ejected by laser ablation of different metals

    International Nuclear Information System (INIS)

    Konomi, I.; Motohiro, T.; Asaoka, T.

    2009-01-01

    Angular distributions of 13 different metals ejected by laser ablation using fourth harmonics (wavelength=266 nm) of neodymium doped yttrium aluminum garnet laser and a fluence close to near-threshold value (2.3 J/cm 2 ) have been investigated with a high angular resolution. The angular distribution which is characterized by the exponent n of cos n θ distribution showed very broad range of values between 3 and 24 for different metals. A simple relation that the exponent n is proportional to the square root of particle atomic weight as reported previously has not been observed. Instead, a general trend has been found that the metals with higher sublimation energy such as Ta and Zr show narrower angular distribution than those with lower sublimation energy such as Sn and In. While the sublimation energy of metals has a great influence on the angular distribution of ejected atoms, a simple consideration suggests that their thermal conductivity and specific heat have little effect on it.

  4. Laser-ablated silicon nanoparticles: optical properties and perspectives in optical coherence tomography

    International Nuclear Information System (INIS)

    Kirillin, M Yu; Sergeeva, E A; Agrba, P D; Krainov, A D; Ezhov, A A; Shuleiko, D V; Kashkarov, P K; Zabotnov, S V

    2015-01-01

    Due to their biocompatibility silicon nanoparticles have high potential in biomedical applications, especially in optical diagnostics. In this paper we analyze properties of the silicon nanoparticles formed via laser ablation in water and study the possibility of their application as contrasting agents in optical coherence tomography (OCT). The nanoparticles suspension was produced by picosecond laser irradiation of monocrystalline silicon wafers in water. According to transmission electron microcopy analysis the silicon nanoparticles in the obtained suspension vary in size from 2 to 200 nm while concentration of the particles is estimated as 10 13 cm −3 . The optical properties of the suspension in the range from 400 to 1000 nm were studied by spectrophotometry measurements revealing a scattering coefficient of about 0.1 mm −1 and a scattering anisotropy factor in the range of 0.2–0.4. In OCT study a system with a central wavelength of 910 nm was employed. Potential of the silicon nanoparticles as a contrasting agent for OCT is studied in experiments with agarose gel phantoms. Topical application of the nanoparticles suspension allowed the obtaining of the contrast of structural features of phantom up to 14 dB in the OCT image. (paper)

  5. Laser Ablated Silver Nanoparticles with Nearly the Same Size in Different Carrier Media

    Directory of Open Access Journals (Sweden)

    Antonio M. Brito-Silva

    2010-01-01

    Full Text Available Poly(vinyl-pyrrolidone (PVP stabilized silver nanoparticles with an average particle size ranging from 4.3 to 4.9 nm were synthesized by laser ablation in preformed colloids in methanol, acetone, ethylene glycol, and glycerin. Aqueous colloids obtained using PVP, poly(vinyl-alcohol (PVA, and sodium citrate as stabilizing agents also lead to a good control over particle size distribution. Silver ions were reduced with sodium borohydride. The smaller average particle size and narrower dispersivity in comparison to previously reported data were ascribed to the relatively small size of the particles formed in the chemical reduction step, laser fluence, and the use of PVP, which was not previously used as the stabilizing agent in “top-down” routes. The surface plasmon resonance band maximum wavelength shifted from 398 nm in methanol to 425 nm in glycerin. This shift must be due to solvent effects since all other variables were the same.

  6. Iron and iron oxide nanoparticles obtained by ultra-short laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    De Bonis, A., E-mail: angela.debonis@unibas.it [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano, 10 – 85100 Potenza (Italy); Lovaglio, T.; Galasso, A. [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano, 10 – 85100 Potenza (Italy); Santagata, A. [CNR-ISM, U.O.S di Potenza, Zona Industriale di Tito, 85050 Tito Scalo (PZ) (Italy); Teghil, R. [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano, 10 – 85100 Potenza (Italy)

    2015-10-30

    Highlights: • Laser ablation of a iron target in water and acetone performed by an ultra-short laser source has been reported. • The size distributions of the obtained nanoparticles have been related to the ablation dynamics. • The formation of a graphitic shell prevents the oxidation of the iron nanoparticles. - Abstract: Laser ablation of an iron target in water and acetone has been carried out using a frequency doubled Nd:glass laser source (pulse duration of 250 fs and frequency repetition rate of 10 Hz). The observation of the nanostructures formed in the laser irradiated region of the metallic target and fast shadowgraphic analysis of the laser induced cavitation bubble have been performed in order to correlate the size distribution of the obtained nanoparticles to the dynamics of the ablation process. The composition, morphology and oxidation state of the synthesized nanoproducts have been investigated by XPS (X-ray Photoelectron Spectroscopy), TEM (Transmission Electron Microscopy) and microRaman spectroscopy. The experimental data support a relationship between the nanoparticles size distribution and the femtosecond laser ablation mechanism, while the chemical and structural characteristics of the nanoparticles can be tuned by varying the liquid medium.

  7. Iron and iron oxide nanoparticles obtained by ultra-short laser ablation in liquid

    International Nuclear Information System (INIS)

    De Bonis, A.; Lovaglio, T.; Galasso, A.; Santagata, A.; Teghil, R.

    2015-01-01

    Highlights: • Laser ablation of a iron target in water and acetone performed by an ultra-short laser source has been reported. • The size distributions of the obtained nanoparticles have been related to the ablation dynamics. • The formation of a graphitic shell prevents the oxidation of the iron nanoparticles. - Abstract: Laser ablation of an iron target in water and acetone has been carried out using a frequency doubled Nd:glass laser source (pulse duration of 250 fs and frequency repetition rate of 10 Hz). The observation of the nanostructures formed in the laser irradiated region of the metallic target and fast shadowgraphic analysis of the laser induced cavitation bubble have been performed in order to correlate the size distribution of the obtained nanoparticles to the dynamics of the ablation process. The composition, morphology and oxidation state of the synthesized nanoproducts have been investigated by XPS (X-ray Photoelectron Spectroscopy), TEM (Transmission Electron Microscopy) and microRaman spectroscopy. The experimental data support a relationship between the nanoparticles size distribution and the femtosecond laser ablation mechanism, while the chemical and structural characteristics of the nanoparticles can be tuned by varying the liquid medium.

  8. Comparison of transcatheter laser and direct-current shock ablation of endocardium near tricuspid anulus

    Science.gov (United States)

    Zhang, Yu-Zhen; Wang, Shi-Wen; Li, Junheng

    1993-03-01

    Forty to eighty percent of the patients with accessory pathways (APs) manifest themselves by tachyarrhythmias. Many of these patients needed either life-long medical therapy or surgery. In order to avoid the discomfort and expenses in surgical procedures, closed chest percutaneous catheter ablation of APs became a potentially desirable therapeutic approach. Many investigations indicated that ablation of right APs by transcatheter direct current (dc) shock could cause life-threatening arrhythmias, right coronary arterical (RCA) spasm, etc. With the development of transcatheter laser technique, it has been used in drug-incurable arrhythmias. The results show that laser ablation is much safer than surgery and electric shock therapy. The purpose of this study is to explore the effectiveness, advantages, and complications with transcatheter Nd:YAG laser and dc shock in the ablation of right atrioventricular accessory pathways in the atrium near the tricuspid annulus (TA) in 20 dogs.

  9. Laboratory experiments on the formation and recoil jet transport of aerosol by laser ablation

    Science.gov (United States)

    Hirooka, Yoshi; Tanaka, Kazuo A.; Imamura, Keisuke; Okazaki, Katsuya

    2016-05-01

    In a high-repetition rate inertial fusion reactor, the first wall will be subjected to repeated ablation along with pellet implosions, which then leads to the formation of aerosol to scatter and/or deflect laser beams for the subsequent implosion, affecting the overall reactor performance. Proposed in the present work is a method of in-situ directed transport of aerosol particles by the use of laser ablation-induced jet recoil momenta. Lithium and carbon are used as the primary ablation targets, the former of which is known to form aerosol in the form of droplet, and the latter of which tends to form carbon nanotubes. Laboratory-scale experiments have been conducted to irradiate airborne aerosol particles with high-intensity laser to produce ablation-induced jet. Data have indicated a change in aerosol flow direction, but only in the case of lithium.

  10. Effects of picosecond laser repetition rate on ablation of Cr12MoV cold work mold steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Baoye; Deng, Leimin; Liu, Peng; Zhang, Fei; Duan, Jun, E-mail: duans@hust.edu.cn; Zeng, Xiaoyan

    2017-07-01

    In this paper, the effects of pulse repetition rate on ablation efficiency and quality of Cr12MoV cold work mold steel have been studied using a picosecond (ps) pulse Nd:YVO{sub 4} laser system at λ= 1064 nm. The experimental results of area ablation on target surface reveal that laser repetition rate plays a significant role in controlling ablation efficiency and quality. Increasing the laser repetition rate, while keeping a constant mean power improves the ablation efficiency and quality. For each laser mean power, there is an optimal repetition rate to achieve a higher laser ablation efficiency with low surface roughness. A high ablation efficiency of 42.29, 44.11 and 47.52 μm{sup 3}/mJ, with surface roughness of 0.476, 0.463 and 0.706 μm could be achieved at laser repetition rate of 10 MHz, for laser mean power of 15, 17 and 19 W, respectively. Scanning electron microcopy images revels that the surface morphology evolves from rough with numerous craters, to flat without pores when we increased the laser repetition rate. The effects of laser repetition rate on the heat accumulation, plasma shield and ablation threshold were analyzed by numerical simulation, spectral analysis and multi-laser shot, respectively. The synergetic effects of laser repetition rate on laser ablation rate and machining quality were analyzed and discussed systemically in this paper.

  11. Fully Automated Laser Ablation Liquid Capture Sample Analysis using NanoElectrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Matthias [ORNL; Ovchinnikova, Olga S [ORNL; Van Berkel, Gary J [ORNL

    2014-01-01

    RATIONALE: Laser ablation provides for the possibility of sampling a large variety of surfaces with high spatial resolution. This type of sampling when employed in conjunction with liquid capture followed by nanoelectrospray ionization provides the opportunity for sensitive and prolonged interrogation of samples by mass spectrometry as well as the ability to analyze surfaces not amenable to direct liquid extraction. METHODS: A fully automated, reflection geometry, laser ablation liquid capture spot sampling system was achieved by incorporating appropriate laser fiber optics and a focusing lens into a commercially available, liquid extraction surface analysis (LESA ) ready Advion TriVersa NanoMate system. RESULTS: Under optimized conditions about 10% of laser ablated material could be captured in a droplet positioned vertically over the ablation region using the NanoMate robot controlled pipette. The sampling spot size area with this laser ablation liquid capture surface analysis (LA/LCSA) mode of operation (typically about 120 m x 160 m) was approximately 50 times smaller than that achievable by direct liquid extraction using LESA (ca. 1 mm diameter liquid extraction spot). The set-up was successfully applied for the analysis of ink on glass and paper as well as the endogenous components in Alstroemeria Yellow King flower petals. In a second mode of operation with a comparable sampling spot size, termed laser ablation/LESA , the laser system was used to drill through, penetrate, or otherwise expose material beneath a solvent resistant surface. Once drilled, LESA was effective in sampling soluble material exposed at that location on the surface. CONCLUSIONS: Incorporating the capability for different laser ablation liquid capture spot sampling modes of operation into a LESA ready Advion TriVersa NanoMate enhanced the spot sampling spatial resolution of this device and broadened the surface types amenable to analysis to include absorbent and solvent resistant

  12. Characterization of ablated species in laser-induced plasma plume

    International Nuclear Information System (INIS)

    Furusawa, Hideki; Sakka, Tetsuo; Ogata, Yukio H.

    2004-01-01

    Plasma electron density and atomic population densities in the plasma plume produced by a laser ablation of aluminum metal were determined in various ambient gases at relatively high pressures. The method is based on the fit of a spectral line profile of Al(I) 2 P (convolutionsign) - 2 S emission to the theoretical spectrum obtained by one-dimensional radiative transfer calculation. The electron density was higher for a higher ambient gas pressure, suggesting the confinement of the plume by an ambient gas. The electron density also depends on the type of ambient gases, i.e., it increased in the order He 4 2 4 , while the atomic population density is almost independent of the type of ambient species and pressure. The population densities of the upper and lower levels of the transition were compared, and the ratio between their spatial distribution widths was calculated. These results provide valuable information regarding the confinement of the plume by the ambient gas and give insight into the time evolution of the plume

  13. Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water

    Directory of Open Access Journals (Sweden)

    Chen Shuei-Yuan

    2010-01-01

    Full Text Available Abstract Titanium oxide compounds TiO,Ti2O3, and TiO2 with a considerable extent of nonstoichiometry were fabricated by pulsed laser ablation in water and characterized by X-ray/electron diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. The titanium oxides were found to occur as nanoparticle aggregates with a predominant 3+ charge and amorphous microtubes when fabricated under an average power density of ca. 1 × 108W/cm2 and 1011W/cm2, respectively followed by dwelling in water. The crystalline colloidal particles have a relatively high content of Ti2+ and hence a lower minimum band gap of 3.4 eV in comparison with 5.2 eV for the amorphous state. The protonation on both crystalline and amorphous phase caused defects, mainly titanium rather than oxygen vacancies and charge and/or volume-compensating defects. The hydrophilic nature and presumably varied extent of undercoordination at the free surface of the amorphous lamellae accounts for their rolling as tubes at water/air and water/glass interfaces. The nonstoichiometric titania thus fabricated have potential optoelectronic and catalytic applications in UV–visible range and shed light on the Ti charge and phase behavior of titania-water binary in natural shock occurrence.

  14. Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Castañeda, Mariela [Instituto Nacional de Investigaciones Nucleares (Mexico); Vega-Jiménez, Alejandro L., E-mail: argelia.almaguer@mac.com; Almaguer-Flores, Argelia [Universidad Nacional Autónoma de México, Facultad de Odontología, DEPeI, I (Mexico); Camps, Enrique; Pérez, Mario [Instituto Nacional de Investigaciones Nucleares (Mexico); Silva-Bermudez, Phaedra [Instituto Nacional de Rehabilitación, Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa (Mexico); Berea, Edgardo [FarmaQuimia SA de CV. (Mexico); Rodil, Sandra E. [Universidad Nacional Autónoma de México, Instituto de Investigaciones en Materiales (Mexico)

    2015-11-15

    The antimicrobial properties of bismuth subsalicylate (BSS) nanoparticles against four opportunistic pathogens; E. coli, P. aeruginosa, S. aureus, and S. epidermidis were determined. BSS nanoparticles were synthesized by pulse laser ablation of a solid target in distilled water under different conditions. The nanoparticles were characterized using high-resolution transmission electron microscopy and absorption spectra and small angle X-ray scattering. The analysis shows that the colloids maintained the BSS structure and presented average particle size between 20 and 60 nm, while the concentration ranges from 95 to 195 mg/L. The antibacterial effect was reported as the inhibition ratio of the bacterial growth after 24 h and the cell viability was measured using the XTT assay. The results showed that the inhibition ratio of E. coli and S. epidermidis was dependant on the NPs size and/or concentration, meanwhile P. aeruginosa and S. aureus were more sensitive to the BSS nanoparticles independently of both the size and the concentration. In general, the BSS colloids with average particle size of 20 nm were the most effective, attaining inhibition ratios >80 %, similar or larger than those obtained with the antibiotic used as control. The results suggest that the BSS colloids could be used as effective antibacterial agents with potential applications in the medical area.

  15. Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation

    Science.gov (United States)

    Flores-Castañeda, Mariela; Vega-Jiménez, Alejandro L.; Almaguer-Flores, Argelia; Camps, Enrique; Pérez, Mario; Silva-Bermudez, Phaedra; Berea, Edgardo; Rodil, Sandra E.

    2015-11-01

    The antimicrobial properties of bismuth subsalicylate (BSS) nanoparticles against four opportunistic pathogens; E. coli, P. aeruginosa, S. aureus, and S. epidermidis were determined. BSS nanoparticles were synthesized by pulse laser ablation of a solid target in distilled water under different conditions. The nanoparticles were characterized using high-resolution transmission electron microscopy and absorption spectra and small angle X-ray scattering. The analysis shows that the colloids maintained the BSS structure and presented average particle size between 20 and 60 nm, while the concentration ranges from 95 to 195 mg/L. The antibacterial effect was reported as the inhibition ratio of the bacterial growth after 24 h and the cell viability was measured using the XTT assay. The results showed that the inhibition ratio of E. coli and S. epidermidis was dependant on the NPs size and/or concentration, meanwhile P. aeruginosa and S. aureus were more sensitive to the BSS nanoparticles independently of both the size and the concentration. In general, the BSS colloids with average particle size of 20 nm were the most effective, attaining inhibition ratios >80 %, similar or larger than those obtained with the antibiotic used as control. The results suggest that the BSS colloids could be used as effective antibacterial agents with potential applications in the medical area.

  16. Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser

    International Nuclear Information System (INIS)

    Durán-Sánchez, M; Álvarez-Tamayo, R I; Kuzin, E A; Ibarra-Escamilla, B; González-García, A; Maya-Ordoñez, F; Pottiez, O; Flores-Rosas, A

    2014-01-01

    We demonstrate experimentally a dual-wavelength tunable actively Q-switched fiber laser using 3 m of Er 3+ /Yb 3+ co-doped fiber as the gain medium. For wavelength tuning we used a tunable Hi-Bi FBG having two reflection wavelengths separated by 0.4 nm. The laser emits a dual-wavelength signal that is tunable in a range of 11.8 nm. Laser operation can be switched between single and double wavelength emission. The laser operates at repetition rates from 30 to 110 kHz with pulse durations of 280 ns and pulse energies near 0.5 μJ. (letter)

  17. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    Science.gov (United States)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  18. Multi-wavelength lasers with suppressed spectral linewidth of 10 kHz.

    Science.gov (United States)

    Wang, Tianhe; Yang, Tianxin; Jia, Dongfang; Wang, Zhaoying; Ge, Chunfeng

    2014-11-03

    High coherent multi-wavelength or multi-tone light source are in high demand for optical density wavelength division multiplexed (DWDM) networks as the telecommunication capacity expands exponentially. However the linewidths of commercial multi-wavelength semiconductor lasers are typically a few MHz which is not acceptable when the frequency spacing of the multi-tones is 10 GHz. In this paper, a novel and simple method to suppress the linewidths of the multi-wavelength from ~6 MHz to ~10 kHz using an all-optical approach is proposed and demonstrated. The linewidths of the multi-wavelength are suppressed by a factor of 600 and the noise level of the multi-wavelength is decreased by nearly 20 dB. Each wavelength of the multi-wavelength operates in single longitudinal mode. Finally, more than 8 wavelengths over 10 nm are suppressed simultaneously through the approach and scheme presented in this work.

  19. Tunable and non-reciprocal dual-wavelength SOA-fiber ring laser

    Science.gov (United States)

    Sabry, Yasser M.; Khalil, Kamal; Khalil, Diaa

    2017-02-01

    Dual-wavelength fiber lasers provide a low cost and simple method for the optical generation of microwave and THz radiation over the electrical techniques. The main reported technique for this purpose is based on the use of FBGs with two different and close wavelengths allowing these two wavelengths only to oscillate within a laser cavity comprising EDFA or SOA gain medium, where the latter provides much less homogeneous line-broadening and improved stability. Non-conventional FBGs and filtering mechanisms were reported all based on unidirectional configuration, where the two wavelengths propagate in the same direction in the ring laser. In this work, we report a tunable dual-wavelength ring laser including non-reciprocal circulators connected back to back providing uncommon path and allowing for having each wavelength rotating in a different direction in the ring. This technique provides the flexibility of controlling each of the wavelengths separately in terms of tunability, polarization and losses. Two tunable Fabry-Perot filters are inserted in the uncommon path and the wavelength of the CW and the CCW waves are controlled independently. Polarization controllers are used in the ring to achieve better stability and achieve single longitudinal mode of operation. For a given settings of the filters, the wavelength of the CW wave is 1485.2 nm while the CCW wave wavelength is 1488.5 nm. The generation of tunable dual wavelength laser is demonstrated by tuning of either of the Fabry-Perot filters. For instance, the CCW wave was tuned from 1532.2 nm to 1534.1 nm while holding the CW at 1535.2 nm. The results demonstrate the generation of tunable dual-wavelength laser output in the proposed nonreciprocal ring, which allows for tunable THz generation.

  20. Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Zamiri, Reza; Zakaria, Azmi [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Ahangar, Hossein Abbastabar [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Darroudi, Majid [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Zak, Ali Khorsand [Low Dimensional Material Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); Drummen, Gregor P.C., E-mail: gpcdrummen@bionano-solutions.de [Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio and Nano-Solutions, D-40472 Duesseldorf (Germany)

    2012-03-05

    Highlights: Black-Right-Pointing-Pointer Zinc oxide nanoparticles were synthesized via LASiS in aqueous starch solution. Black-Right-Pointing-Pointer Nanoparticles of {+-}15 nm are produced with a narrow size distribution. Black-Right-Pointing-Pointer Starch can be used as a template to control nanoparticle size. Black-Right-Pointing-Pointer Starch stabilizes zinc oxide nanoparticles in solution through steric hindrance. - Abstract: Zinc oxide is a semiconductor with exceptional thermal, luminescent and electrical properties, even compared with other semiconducting nanoparticles. Its potential for advanced applications in lasers and light emitting diodes, as bio-imaging agent, in biosensors and as drug delivery vehicles, in ointments, coatings and pigments has pulled zinc oxide into the focus of various scientific and engineering research fields. Recently we started investigating if nanoparticle synthesis via laser ablation in the presence of natural stabilizers allows control over size and shape and constitutes a useful, uncomplicated alternative over conventional synthesis methods. In the current paper, we determined the ability of natural starch to act as a size controller and stabilizer in the preparation of zinc oxide nanoparticles via ablation of a ZnO plate in a starch solution with a nanosecond Q-Switched Nd:YAG pulsed laser at its original wavelength ({lambda} = 1064 nm). Our results show that the particle diameter decreases with increasing laser irradiation time to a mean nanoparticle size of approximately 15 nm with a narrow size distribution. Furthermore, the obtained particle size in starch solution is considerably smaller compared with analogous ZnO nanoparticle synthesis in distilled water. The synthesized and capped nanoparticles retained their photoluminescent properties, but showed blue emission rather than the often reported green luminescence. Evaluation of old preparations compared with freshly made samples showed no agglomeration or

  1. Effect of wavelength and pulse duration on laser micro-welding of monocrystalline silicon and glass

    Science.gov (United States)

    Nordin, I. H. W.; Okamoto, Y.; Okada, A.; Jiang, H.; Sakagawa, T.

    2016-04-01

    Micro-welding characteristics of silicon and glass by pulsed lasers are described. In this study, four types of laser beam, which are nanosecond pulsed laser and picosecond pulsed laser of 532 and 1064 nm in wavelength, were used for joining monocrystalline silicon and glass. Influence of wavelength and pulse duration on micro-welding of monocrystalline silicon and glass was experimentally investigated under the same spot diameter, and the molten area of monocrystalline silicon and glass was characterized. Finally, the breaking strength was evaluated for the overlap weld joint with different pulse duration and wavelength. A splash area of molten silicon around the weld bead line was obvious in the nanosecond pulsed laser. On the other hand, there was no remarkable molten splash around the weld bead line in the picosecond pulsed laser. Breaking strength of specimens with 1064 nm wavelength was higher than with 532 nm wavelength in nanosecond laser, whereas breaking strength of laser-irradiated specimen by picosecond pulse duration was higher than that by nanosecond pulse duration. It is concluded that the combination of picosecond pulse duration and infrared wavelength leads to the stable molten area appearance of the weld bead and higher breaking strength in micro-welding of glass and monocrystalline silicon.

  2. Real time determination of the laser ablated mass by means of electric field-perturbation measurement

    Science.gov (United States)

    Pacheco, P.; Álvarez, J.; Sarmiento, R.; Bredice, F.; Sánchez-Aké, C.; Villagrán-Muniz, M.; Palleschi, V.

    2018-04-01

    A Nd:YAG ns-pulsed laser was used to ablate Al, Cd and Zn targets, which were placed between the plates of a planar charged capacitor. The plasma generates a transient redistribution of the electrical charges on the plates that can be measured as a voltage drop across a resistor connected to the ground plate. This signal is proportional to the capacitor applied voltage, the distance between the plates and the total number of ions produced in the ablation process which in turn is related to the laser energy and the ablated mass. After a series of pulses, the targets were weighed on a thermogravimetric balance to measure the ablated mass. Our results show that the electrical signal measured on the resistor is univocally related to the ablated mass from the target. Therefore, after a proper calibration depending on the material and the experimental geometry, the electrical signal can be used for real time quantitative measurement of the ablated mass in pulsed laser generated plasma experiments. The experiments were repeated on an aluminum target, with and without the presence of the external electric field in order to determine the possible influence of the applied electric field on the ablated mass.

  3. Laser ablation as monotherapy for penile squamous cell carcinoma: A multi-center cohort analysis.

    Science.gov (United States)

    Tang, Dominic H; Yan, Sylvia; Ottenhof, Sarah R; Draeger, Désirée; Baumgarten, Adam S; Chipollini, Juan; Protzel, Chris; Zhu, Yao; Ye, Ding-Wei; Hakenberg, Oliver W; Horenblas, Simon; Watkin, Nicholas A; Spiess, Philippe E

    2017-10-30

    Although the trend towards penile sparing therapy is increasing for penile squamous cell carcinoma, outcomes for laser ablation therapy have not been widely reported. We assessed the clinical outcomes of penile cancer patients treated with only laser ablation. A retrospective review was performed on 161 patients across 5 multi-center tertiary referral centers from 1985 to 2015. All patients underwent penile sparing surgery with only laser ablation for squamous cell carcinoma of the penis. Laser ablation was performed with neodymium-doped yttrium aluminum garnet or carbon dioxide. Overall and recurrence-free survival was calculated using the Kaplan-Meier method and compared with the log rank test. A total of 161 patients underwent laser ablation for penile cancer. The median age was 62 (IQR: 52-71) years and median follow-up was 57.7 (IQR: 28-90) months. The majority of patients were pTa/Tis (59, 37%) or pT1a (62, 39%). Only 19 (12%) had a poorly differentiated grade. The 5-year recurrence-free survival was 46%. When stratified by stage, the 5-year local recurrence-free survival was pTa/Tis: 50%; pT1a: 41%; pT1b: 38%; and pT2: 52%. The inguinal/pelvic nodal recurrence was pTa/Tis: 2%; pT1a: 5%; pT1b: 18%; and pT2: 22%. There were no differences among stages with respect to recurrence-free survival (P = 0.98) or overall survival (P = 0.20). Laser ablation therapy is safe for appropriately selected patients with penile squamous cell carcinoma. Due to the increased risk of nodal recurrence, laser ablation coupled with diagnostic nodal staging is indicated for patients with pT1b or higher. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    Energy Technology Data Exchange (ETDEWEB)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein, E-mail: mahdm@iust.ac.ir

    2017-02-28

    Highlights: • Laser ablation of aluminum target by single and double pulse (∼ 5 ns delay) in ambient air and distilled water • Comparing with air, in ambient water, plasma confinement results in higher crater depth. • In comparison with single pulse laser ablation, the absorption of the laser pulse energy is higher for double pulse regime. • As a result of ablated material expansion, the crater depth is decreased if the target is placed at lower depth. - Abstract: In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  5. Effect of the wavelength on laser induced breakdown spectrometric analysis of archaeological bone

    International Nuclear Information System (INIS)

    Kasem, M.A.; Gonzalez, J.J.; Russo, R.E.; Harith, M.A.

    2014-01-01

    The analytical exploitation of the laser induced plasma suffers from its transient behavior due to some nonlinear effects. These phenomena are matrix-dependent and limit the use of LIBS to mostly semi-quantitative precision. The plasma parameters have to be kept as constant as possible during LIBS measurements. Studying archaeological bone samples using LIBS technique could be more difficult since these samples are less tough in their texture than many other solid samples. Thus, the ablation process could change the sample morphological features rapidly resulting in poor reproducibility and statistics. Furthermore archaeological bones are subjected to diagenesis effects due to burial environment and postmortem effects. In the present work comparative analytical study of UV (266 nm) and IR (1064 nm) LIBS for archaeological bone samples belonging to four ancient Egyptian dynasties representing the middle kingdom (1980–1630 BC), 2nd intermediate period (1630–1539/23 BC), Roman–Greek period (30 BC–A.D. 395) and the late period (664–332 BC). Measurements have been performed under identical experimental conditions except the laser wavelength to examine its effects. Elemental fluctuations within the same dynasty were studied for reliable information about each dynasty. The analytical results demonstrated that UV-LIBS gives a more realistic picture for bone elemental composition within the same dynasty, and bone ash could be more suitable as a reference material for bone calibration in the case of UV-LIBS. - Highlights: • UV and IR LIBS for archaeological bone samples have been performed. • Elemental fluctuations within the same dynasty were studied. • UV-LIBS gave realistic picture for bone elemental composition for the same dynasty. • Depth profile for Sr/Ca concentration was an indicator for the diagenesis effect. • Bone ash is the most suitable for calcified tissue calibration for UV-LIBS

  6. Angular distributions of emitted particles by laser ablation of silver at 355 nm

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Schou, Jørgen; Hansen, T.

    1998-01-01

    The angular distribution of laser ablated silver in vacuum has been measured in situ with an array of quartz-crystal microbalances. The silver surface was irradiated by ns pulses from a Nd:YAG laser operating at 355 nm for fluences ranging from 0.7 J/cm2 to 8 J/cm2. The distribution is strongly...

  7. IR laser ablative modification of poly(ethylene-co-acrylic acid) zinc salt

    Czech Academy of Sciences Publication Activity Database

    Blazevska-Gilev, J.; Šubrt, Jan; Bastl, Zdeněk; Pola, Josef

    2006-01-01

    Roč. 91, č. 12 (2006), s. 2834-2839 ISSN 0141-3910 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503; CEZ:AV0Z40720504 Keywords : poly(ethylene-co-acrylic acid) zinc salt * laser ablation * laser degradation Subject RIV: CA - Inorganic Chemistry Impact factor: 2.174, year: 2006

  8. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole L.; Harilal, Sivanandan S.; Hartig, Kyle C.; Jovanovic, Igor

    2017-06-19

    We demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security applications.

  9. Analysis and removal of ITER relevant materials and deposits by laser ablation

    International Nuclear Information System (INIS)

    Xiao, Qingmei; Huber, Alexander; Philipps, Volker; Sergienko, Gennady; Gierse, Niels; Mertens, Philippe; Hai, Ran; Ding, Hongbin

    2014-01-01

    The analysis of the deposition of eroded wall material on the plasma-facing materials in fusion devices is one of the crucial issues to maintain the plasma performance and to fulfill safety requirements with respect to tritium retention by co-deposition. Laser ablation with minimal damage to the plasma facing material is a promising method for in situ monitoring and removal of the deposition, especially for plasma-shadowed areas which are difficult to reach by other cleaning methods like plasma discharge. It requires the information of ablation process and the ablation threshold for quantitative analysis and effective removal of the different deposits. This paper presents systemic laboratory experimental analysis of the behavior of the ITER relevant materials, graphite, tungsten, aluminum (as a substitution of beryllium) and mixed deposits ablated by a Nd:YAG laser (1064 nm) with different energy densities (1–27 J/cm 2 , power density 0.3–3.9 GW/cm 2 ). The mixed deposits consisted of W–Al–C layer were deposited on W substrate by magnetron sputtering and arc plasma deposition. The aim was to select the proper parameters for the quantitative analysis and for laser removal of the deposits by investigating the ablation efficiency and ablation threshold for the bulk materials and deposits. The comparison of the ablation and saturation energy thresholds for pure and mixed materials shows that the ablation threshold of the mixed layer depends on the concentration of the components. We propose laser induced breakdown spectroscopy for determination of the elemental composition of deposits and then we select the laser parameters for the layer removal. Comparison of quantitative analysis results from laboratory to that from TEXTOR shows reasonable agreements. The dependence of the spectra on plasma parameters and ambient gas pressure is investigated

  10. Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses

    Science.gov (United States)

    Freitas, A. Z.; Freschi, L. R.; Samad, R. E.; Zezell, D. M.; Gouw-Soares, S. C.; Vieira, N. D., Jr.

    2010-03-01

    The use of laser for caries removal and cavity preparation is already a reality in the dental clinic. The objective of the present study was to consider the viability of ultrashort laser pulses for restorative material selective removal, by determining the ablation threshold fluence for composite resins and amalgam irradiated with femtosecond laser pulses. Lasers pulses centered at 830 nm with 50 fs of duration and 1 kHz of repetition rate, with energies in the range of 300 to 770 μJ were used to irradiate the samples. The samples were irradiated using two different geometrical methods for ablation threshold fluence determinations and the volume ablation was measured by optical coherence tomography. The shape of the ablated surfaces were analyzed by optical microscopy and scanning electron microscopy. The determined ablation threshold fluence is 0.35 J/cm2 for the composite resins Z-100 and Z-350, and 0.25 J/cm2 for the amalgam. These values are half of the value for enamel in this temporal regime. Thermal damages were not observed in the samples. Using the OCT technique (optical coherence tomography) was possible to determine the ablated volume and the total mass removed.

  11. Pulpal effects of enamel ablation with a microsecond pulsed lambda = 9.3-microm CO2 laser.

    Science.gov (United States)

    Staninec, Michal; Darling, Cynthia L; Goodis, Harold E; Pierre, Daniel; Cox, Darren P; Fan, Kenneth; Larson, Michael; Parisi, Renaldo; Hsu, Dennis; Manesh, Saman K; Ho, Chi; Hosseini, Mehran; Fried, Daniel

    2009-04-01

    In vitro studies have shown that CO2 lasers operating at the highly absorbed 9.3 and 9.6-microm wavelengths with a pulse duration in the range of 10-20-microsecond are well suited for the efficient ablation of enamel and dentin with minimal peripheral thermal damage. Even though these CO2 lasers are highly promising, they have yet to receive FDA approval. Clinical studies are necessary to determine if excessive heat deposition in the tooth may have any detrimental pulpal effects, particularly at higher ablative fluencies. The purpose of this study was to evaluate the pulpal safety of laser irradiation of tooth occlusal surfaces under the conditions required for small conservative preparations confined to enamel. Test subjects requiring removal of third molar teeth were recruited and teeth scheduled for extraction were irradiated using a pulsed CO2 laser at a wavelength of 9.3 microm operating at 25 or 50 Hz using a incident fluence of 20 J/cm(2) for a total of 3,000 laser pulses (36 J) for both rates with water cooling. Two control groups were used, one with no treatment and one with a small cut made with a conventional high-speed hand-piece. No anesthetic was used for any of the procedures and tooth vitality was evaluated prior to treatment by heat, cold and electrical testing. Short term effects were observed on teeth extracted within 72 hours after treatment and long term effects were observed on teeth extracted 90 days after treatment. The pulps of the teeth were fixed with formalin immediately after extraction and subjected to histological examination. Additionally, micro-thermocouple measurements were used to estimate the potential temperature rise in the pulp chamber of extracted teeth employing the same irradiation conditions used in vivo. Pulpal thermocouple measurements showed the internal temperature rise in the tooth was within safe limits, 3.3+/-1.4 degrees C without water cooling versus 1.7+/-1.6 degrees C with water-cooling, n = 25, PCO2 laser can

  12. In vitro and in vivo mapping of drug release after laser ablation thermal therapy with doxorubicin-loaded hollow gold nanoshells using fluorescence and photoacoustic imaging

    Science.gov (United States)

    Lee, Hannah J.; Liu, Yang; Zhao, Jun; Zhou, Min; Bouchard, Richard R.; Mitcham, Trevor; Wallace, Michael; Stafford, R. Jason; Li, Chun; Gupta, Sanjay; Melancon, Marites P.

    2013-01-01

    Doxorubicin-loaded hollow nanoshells (Dox@PEG-HAuNS) increases the efficacy of photothermal ablation (PTA) by not only mediating efficient PTA but also through chemotherapy, and therefore have potential utility for local anticancer therapy. However, in vivo real-time monitoring of Dox release and temperature achieved during the laser ablation technique has not been previously demonstrated before. In this study, we used fluorescence optical imaging to map the release of Dox from Dox@PEG-HAuNS and photoacoustic imaging to monitor the tumor temperature achieved during near-infrared laser–induced photothermal heating in vitro and in vivo. In vitro, treatment with a 3-W laser was sufficient to initiate the release of Dox from Dox@PEG-HAuNS (1:3:1 wt/wt, 1.32×1012 particles/mL). Laser powers of 3 and 6 W achieved ablative temperatures of more than 50 °C. In 4T1 tumor–bearing nude mice that received intratumoral or intravenous injections of Dox@PEG-HAuNS, fluorescence optical imaging (emission wavelength = 600 nm, excitation wavelength = 500 nm) revealed that the fluorescence intensity in surface laser–treated tumors 24 h after treatment was significantly higher than that in untreated tumors (p=0.015 for intratumoral, p=0.008 for intravenous). Similar results were obtained using an interstitial laser to irradiate tumors following the intravenous injection of Dox@PEG-HAuNS (p=0.002 at t=24h). Photoacoustic imaging (acquisition wavelength = 800 nm) revealed that laser treatment caused a substantial increase in tumor temperature, from 37 °C to ablative temperatures of more than 50 °C. Ex vivo analysis revealed that the fluorescence intensity of laser-treated tumors was twice as high as that of untreated tumors (p=0.009). Histological analysis confirmed that intratumoral injection of Dox@PEG-HAuNS and laser treatment caused significantly more tumor necrosis compared to tumors that were not treated with laser (pimaging and photoacoustic imaging are promising

  13. Isotope analysis of micro metal particles by adopting laser-ablation mass spectrometry

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Ha, Young Kyung; Han, Sun Ho; Park, Yong Joon; Kim, Won Ho

    2005-01-01

    The isotope analysis of microparticles in environmental samples as well as laboratory samples is an important task. A special concern is necessary in particle analysis of swipe samples. Micro particles are normally analyzed either by dissolving particles in the solvents and adopting conventional analytical methods or direct analysis method such as a laser-ablation ICP mass spectrometry (LA-ICP-MS), SIMS, and SNMS (sputtered neutral mass spectrometry). But the LA-ICPMS uses large amount of samples because normally laser beam is tightly focused on the target particle for the complete ablation. The SIMS and SNMS utilize ion beams for the generation of sample ions from the particle. But the number of ions generated by an ion beam is less than 5% of the total generated particles in SIMS. The SNMS is also an excellent analytical technique for particle analysis, however, ion beam and frequency tunable laser system are required for the analysis. Recently a direct analysis of elements as well as isotopes by using laser-ablation is recognized one of the most efficient detection technology for particle samples. The laser-ablation mass spectrometry requires only one laser source without frequency tuneability with no sample pretreatment. Therefore this technique is one of the simplest analysis techniques for solid samples as well as particles. In this study as a part of the development of the new isotope analysis techniques for particles samples, a direct laser-ablation is adopted with mass spectrometry. Zinc and gadolinium were chosen as target samples, since these elements have isotopes with minor abundance (0.62% for Zn, and 0.2% for Gd). The preliminary result indicates that isotopes of these two elements are analyzed within 10% of natural abundance with good mass resolution by using direct laser-ablation mass spectrometry

  14. Stable L-band multi-wavelength SOA fiber laser based on polarization rotation.

    Science.gov (United States)

    Liu, Tonghui; Jia, Dongfang; Yang, Tianxin; Wang, Zhaoying; Liu, Ying

    2017-04-01

    We propose and experimentally demonstrate a stable multi-wavelength fiber ring laser operating in the L-band with wavelength spacing of 25 GHz. The mechanism is induced by a polarization rotation intensity equalizer consisting of a semiconductor optical amplifier and polarization devices. A Fabry-Perot filter is inserted into the cavity to serve as a multi-wavelength selection device. Stable L-band multi-wavelength lasing with 3 dB uniformity of 21.2 nm, and simultaneous oscillation of 101 lines with wavelength spacing of 25 GHz, is obtained.

  15. Potassium titanyl phosphate laser tissue ablation: development and experimental validation of a new numerical model.

    Science.gov (United States)

    Elkhalil, Hossam; Akkin, Taner; Pearce, John; Bischof, John

    2012-10-01

    The photoselective vaporization of prostate (PVP) green light (532 nm) laser is increasingly being used as an alternative to the transurethral resection of prostate (TURP) for treatment of benign prostatic hyperplasia (BPH) in older patients and those who are poor surgical candidates. In order to achieve the goals of increased tissue removal volume (i.e., "ablation" in the engineering sense) and reduced collateral thermal damage during the PVP green light treatment, a two dimensional computational model for laser tissue ablation based on available parameters in the literature has been developed and compared to experiments. The model is based on the control volume finite difference and the enthalpy method with a mechanistically defined energy necessary to ablate (i.e., physically remove) a volume of tissue (i.e., energy of ablation E(ab)). The model was able to capture the general trends experimentally observed in terms of ablation and coagulation areas, their ratio (therapeutic index (TI)), and the ablation rate (AR) (mm(3)/s). The model and experiment were in good agreement at a smaller working distance (WD) (distance from the tissue in mm) and a larger scanning speed (SS) (laser scan speed in mm/s). However, the model and experiment deviated somewhat with a larger WD and a smaller SS; this is most likely due to optical shielding and heat diffusion in the laser scanning direction, which are neglected in the model. This model is a useful first step in the mechanistic prediction of PVP based BPH laser tissue ablation. Future modeling efforts should focus on optical shielding, heat diffusion in the laser scanning direction (i.e., including 3D effects), convective heat losses at the tissue boundary, and the dynamic optical, thermal, and coagulation properties of BPH tissue.

  16. High-brightness switchable multi-wavelength remote laser in air

    OpenAIRE

    Yao, Jinping; Zeng, Bin; Xu, Huailiang; Li, Guihua; Chu, Wei; Ni, Jielei; Zhang, Haisu; Chin, See Leang; Cheng, Ya; Xu, Zhizhan

    2011-01-01

    Remote laser in air based on amplified spontaneous emission (ASE) has produced rather well-collimated coherent beams in both backward and forward propagation directions, opening up possibilities for new remote sensing approaches. The remote ASE-based lasers were shown to enable operation either at ~391 and 337 nm using molecular nitrogen or at ~845 nm using molecular oxygen as gain medium, depending on the employed pump lasers. To date, a multi-wavelength laser in air that allows for dynamica...

  17. Laser ablation-laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils.

    Science.gov (United States)

    Pareja, Jhon; López, Sebastian; Jaramillo, Daniel; Hahn, David W; Molina, Alejandro

    2013-04-10

    The performances of traditional laser-induced breakdown spectroscopy (LIBS) and laser ablation-LIBS (LA-LIBS) were compared by quantifying the total elemental concentration of potassium in highly heterogeneous solid samples, namely soils. Calibration curves for a set of fifteen samples with a wide range of potassium concentrations were generated. The LA-LIBS approach produced a superior linear response different than the traditional LIBS scheme. The analytical response of LA-LIBS was tested with a large set of different soil samples for the quantification of the total concentration of Fe, Mn, Mg, Ca, Na, and K. Results showed an acceptable linear response for Ca, Fe, Mg, and K while poor signal responses were found for Na and Mn. Signs of remaining matrix effects for the LA-LIBS approach in the case of soil analysis were found and discussed. Finally, some improvements and possibilities for future studies toward quantitative soil analysis with the LA-LIBS technique are suggested.

  18. Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study

    International Nuclear Information System (INIS)

    Samek, Ota; Kurowski, Andre; Kittel, Silke; Kukhlevsky, Sergei; Hergenroeder, Roland

    2005-01-01

    This work reports on a feasibility study of proximity ablation using femtosecond pulses. Ultra-short pulses were launched to a bare tapered optical fiber and delivered to the sample. The tip-sample distance was controlled by means of shear-force feedback. Consequently, ablation craters with submicrometer dimensions were obtained. Potential analytical applications for Laser Induced Breakdown Spectroscopy (LIBS) technique, such as e.g. inclusions in steel or bio cells, are suggested

  19. UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface

    International Nuclear Information System (INIS)

    Spyratou, E.; Asproudis, I.; Tsoutsi, D.; Bacharis, C.; Moutsouris, K.; Makropoulou, M.; Serafetinides, A.A.

    2010-01-01

    Several new materials and patterns are studied for the formation and etching of intraocular lenses (IOLs), in order to improve their optical properties, to reduce the diffractive aberrations and to decrease the incidence of posterior capsular opacification. The aim of this study is to investigate the use of UV (λ = 266 nm) laser pulses to ablate the intraocular lenses materials, and thus to provide an alternative to conventional surface shaping techniques for IOLs fabrication. Ablation experiments were conducted using various polymer substrates of hydrophobic acrylic IOLs and PMMA IOLs. We investigated the ablation efficiency and the morphology of the ablated area by imaging the surface modification with atomic force microscopy (AFM) and scanning electron microscopy (SEM). The morphological appearance of IOL samples reveals the effect of a photochemical and photothermal ablation mechanism.

  20. Integrated polymer polarization rotator based on tilted laser ablation

    Science.gov (United States)

    Poulopoulos, Giannis; Kalavrouziotis, Dimitrios; Missinne, Jeroen; Bosman, Erwin; Van Steenberge, Geert; Apostolopoulos, Dimitrios; Avramopoulos, Hercules

    2017-02-01

    sidewalls, employing the tilted laser ablation technology, currently available at CMST. Therefore, the aforementioned simulation steps adhere fully to the respective design rules, taking into account the anticipated fabrication variations

  1. Synthesis and characterization of a novel laser ablation sensitive triazene incorporated epoxy resin

    KAUST Repository

    Patole, Archana S.

    2014-01-01

    New triazene monomer was synthesized and further employed as a crosslinking agent partner with epoxy matrix using ethyl methyl imidazole as a curing agent in order to investigate the effect of triazene moieties on polymeric properties for laser ablation application. The synthesized triazene monomer was characterized by analytical and spectroscopic methods, while the surface morphology of resist after laser ablation was visualized by optical laser scanning images and scanning electron microscopy. Thermogravimetrical investigations indicate the loss of nitrogen being the initial thermal decomposition step and exhibit sufficient stabilities for the requirements for laser ablation application. Fourier transform infra-red, nuclear magnetic resonance, and gas chromatography analyses showed the successful synthesis of triazene. The ablation results from the optical laser scanning images revealed that the etching depth could be controlled by varying the concentration of triazene monomer in the formulation of epoxy. The shear strength analysis revealed that that the shear strength increased with increasing the amount of triazene in the formulation of direct ablation sensitive resist. © 2014 The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht.

  2. Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system.

    Science.gov (United States)

    Braun, Andreas; Krillke, Raphael Franz; Frentzen, Matthias; Bourauel, Christoph; Stark, Helmut; Schelle, Florian

    2015-02-01

    Heat generation during the removal of dental hard tissues may lead to a temperature increase and cause painful sensations or damage dental tissues. The aim of this study was to assess heat generation in dental hard tissues following laser ablation using an ultrashort pulse laser (USPL) system. A total of 85 specimens of dental hard tissues were used, comprising 45 specimens of human dentine evaluating a thickness of 1, 2, and 3 mm (15 samples each) and 40 specimens of human enamel with a thickness of 1 and 2 mm (20 samples each). Ablation was performed with an Nd:YVO4 laser at 1,064 nm, a pulse duration of 9 ps, and a repetition rate of 500 kHz with an average output power of 6 W. Specimens were irradiated for 0.8 s. Employing a scanner system, rectangular cavities of 1-mm edge length were generated. A temperature sensor was placed at the back of the specimens, recording the temperature during the ablation process. All measurements were made employing a heat-conductive paste without any additional cooling or spray. Heat generation during laser ablation depended on the dental hard tissue (enamel or dentine) and the thickness of the respective tissue (p dental hard tissues, heat generation has to be considered. Especially during laser ablation next to pulpal tissues, painful sensations and potential thermal injury of pulp tissue might occur.

  3. Ablative fractional laser enhances MAL-induced PpIX accumulation

    DEFF Research Database (Denmark)

    Haak, C S; Christiansen, K; Erlendsson, Andrés M

    2016-01-01

    BACKGROUND AND OBJECTIVES: Pretreatment of skin with ablative fractional laser enhances accumulation of topical provided photosensitizer, but essential information is lacking on the interaction between laser channel densities and pharmacokinetics. Hence our objectives were to investigate how...... protoporphyrin accumulation was affected by laser densities, incubation time and drug concentration. METHODS: We conducted the study on the back of healthy male volunteers (n=11). Test areas were pretreated with 2940nm ablative fractional Er:YAG laser, 11.2mJ per laser channel using densities of 1, 2, 5, 10...... incubation. The individual fluorescence intensity reached from the highest density (15%) and longest MAL 160mg/g incubation time (180min) was selected as reference (100%) for other interventional measurements. RESULTS: A low laser density of 1% markedly enhanced fluorescence intensities from 34% to 75% (no...

  4. Linearly Polarized Dual-Wavelength Vertical-External-Cavity Surface-Emitting Laser (Postprint)

    National Research Council Canada - National Science Library

    Fan, Li; Fallahi, Mahmoud; Hader, Joerg; Zakharian, Aramais R; Moloney, Jerome V; Stolz, Wolfgang; Koch, Stephan W; Bedford, Robert; Murray, James T

    2007-01-01

    The authors demonstrate the multiwatt linearly polarized dual-wavelength operation in an optically pumped vertical-external-cavity surface-emitting laser by means of an intracavity tilted Fabry-Perot...

  5. Short-wavelength ablation of polymers in the high-fluence regime

    Czech Academy of Sciences Publication Activity Database

    Liberatore, Chiara; Mann, K.; Müller, M.; Pina, L.; Juha, Libor; Vyšín, Luděk; Rocca, J.J.; Endo, Akira; Mocek, Tomáš

    T161, MAY (2014), "014066-1"-"014066-4" ISSN 0031-8949 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : extreme ultraviolet * soft x-ray * ablation * polymers Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.126, year: 2014

  6. Numerical analysis of laser ablation using the axisymmetric two-temperature model

    Science.gov (United States)

    Dziatkiewicz, Jolanta; Majchrzak, Ewa

    2018-01-01

    Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.

  7. Evaluation of the efficacy of excimer laser ablation of cross-linked porcine cornea.

    Directory of Open Access Journals (Sweden)

    Shihao Chen

    Full Text Available BACKGROUND: Combination of riboflavin/UVA cross-linking (CXL and excimer laser ablation is a promising therapy for treating corneal ectasia. The cornea is strengthened by cross-linking, while the irregular astigmatism is reduced by laser ablation. This study aims to compare the efficacy of excimer laser ablation on porcine corneas with and without cross-linking. METHODS AND FINDINGS: The porcine cornea was de-epithelialized and treated with 0.1% riboflavin solution for 30 minutes. A half of the cornea was exposed to UVA-radiation for another 30 minutes while the controlled half of the cornea was protected from the UVA using a metal shield. Photo therapeutic keratectomy (PTK was then performed on the central cornea. Corneal thickness of 5 paired locations on the horizontal line, ± 0.5, ± 1.0, ± 1.5, ± 2.0, and ± 2.5 mm from the central spot, were measured using optical coherence tomography prior to and after PTK. The ablation depth was then determined by the corneal thickness. There was a 9% difference (P<0.001 in the overall ablation depth between the CXL-half corneas (158 ± 22 µm and the control-half corneas (174 ± 26 µm. The ablation depths of all 5 correspondent locations on the CXL-half were significantly smaller (P<0.001. CONCLUSION: The efficacy of the laser ablation seems to be lower in cross-linked cornea. Current ablation algorithms may need to be modified for cross-linked corneas.

  8. XPS investigations on the UV-laser ablation mechanism of poly(ether imide)

    Energy Technology Data Exchange (ETDEWEB)

    Wambach, J.; Kunz, T.; Schnyder, B.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    UV-Laser ablated samples of poly(ether imide) [Kapton{sup TM}] were studied with small-spot XPS. Applying fluences above the threshold level (0.167 J/cm{sup 2}) resulted in the expected behaviour of a decline of both nitrogen and oxygen. Below the threshold level a hint for an altered ablation mechanism was found. (author) 1 fig., 5 refs.

  9. Ablation of organic polymers by 46.9-nm-laser radiation

    Czech Academy of Sciences Publication Activity Database

    Juha, Libor; Bittner, Michal; Chvostová, Dagmar; Krása, Josef; Präg R., Ansgar; Ullschmied, Jiří; Pientka, Zbyněk; Krzywinski, J.; Wawro, A.; Grisham, M. E.; Menoni, C.S.; Rocca, J.J.; Otčenášek, Zdeněk; Pelka, B.; Vaschenko, G. O.

    2005-01-01

    Roč. 86, č. 3 (2005), 034109/1-034109/3 ISSN 0003-6951 R&D Projects: GA MŠk(CZ) 1P04LA235; GA MŠk(CZ) LN00A100 Institutional research plan: CEZ:AV0Z10100523 Keywords : ablation * XUV laser * capillary discharge laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.127, year: 2005

  10. Seven-wavelength pyrometer for determining surface temperature of ablation materials

    Science.gov (United States)

    Yi, H.

    1985-01-01

    Results which were achieved by a seven-wavelength pyrometer last year are reported in this paper. These studies are directed toward the development of a method for determining the real surface temperature of thermal protection materials and for evaluating its emittance under varieties of reentry environment. A description of the data processing method and apparatus is also included.

  11. Optical feedback-induced light modulation for fiber-based laser ablation.

    Science.gov (United States)

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  12. Passive cavity surface-emitting lasers: option of temperature-insensitive lasing wavelength for uncooled dense wavelength division multiplexing systems

    Science.gov (United States)

    Shchukin, V. A.; Ledentsov, N. N.; Slight, T.; Meredith, W.; Gordeev, N. Y.; Nadtochy, A. M.; Payusov, A. S.; Maximov, M. V.; Blokhin, S. A.; Blokhin, A. A.; Zadiranov, Yu. M.; Maleev, N. A.; Ustinov, V. M.; Choquette, K. D.

    2016-03-01

    A concept of passive cavity surface-emitting laser is proposed aimed to control the temperature shift of the lasing wavelength. The device contains an all-semiconductor bottom distributed Bragg reflector (DBR), in which the active medium is placed, a dielectric resonant cavity and a dielectric top DBR, wherein at least one of the dielectric materials has a negative temperature coefficient of the refractive index, dn/dT < 0. This is shown to be the case for commonly used dielectric systems SiO2/TiO2 and SiO2/Ta2O5. Two SiO2/TiO2 resonant structures having a cavity either of SiO2 or TiO2 were deposited on a substrate, their optical power reflectance spectra were measured at various temperatures, and refractive index temperature coefficients were extracted, dn/dT = 0.0021 K-1 for SiO2 and dn/dT = -0.0092 K-1 for TiO2. Using such dielectric materials allows designing passive cavity surface-emitting lasers having on purpose either positive, or zero, or negative temperature shift of the lasing wavelength dλ/dT. A design for temperature-insensitive lasing wavelength (dλ/dT = 0) is proposed. Employing devices with temperature-insensitive lasing wavelength in wavelength division multiplexing systems may allow significant reducing of the spectral separation between transmission channels and an increase in number of channels for a defined spectral interval enabling low cost energy efficient uncooled devices.

  13. Influence of ns-laser wavelength in laser-induced breakdown spectroscopy for discrimination of painting techniques

    Science.gov (United States)

    Bai, Xueshi; Syvilay, Delphine; Wilkie-Chancellier, Nicolas; Texier, Annick; Martinez, Loic; Serfaty, Stéphane; Martos-Levif, Dominique; Detalle, Vincent

    2017-08-01

    The influence of ns-laser wavelength to discriminate ancient painting techniques such as are fresco, casein, animal glue, egg yolk and oil was investigated in this work. This study was carried out with a single shot laser on samples covered by a layer made of a mixture of the cinnabar pigment and different binders. Three wavelengths based on Nd: YAG laser were investigated (1064, 532 and 266 nm). The plasma is controlled at the same electron temperature after an adjustment of pulse energy for these three wavelengths on a fresco sample without organic binder. This approach allows to eliminate the effects of laser pulse energy and the material laser absorption. Afterwards, the emission spectra were compared to separate different techniques. The organic binding media has been separated based on the relative emission intensity of the present CN or C2 rovibrational emissions. In order to test the capability of separating or identifying, the chemometric approach (PCA) was applied to the different matrix. The different solutions in term of wavelength range to optimise the identification was investigated. We focused on the evaluation for the laser wavelength to insure a better separation. The different capacity was interpreted by differentiating the binders by the altered interaction mechanisms between the laser photon and the binders. Also, the electron temperature in the plasma was estimated, which provided the evidences to our findings.

  14. TiO{sub 2} nanoparticles obtained by laser ablation in water: Influence of pulse energy and duration on the crystalline phase

    Energy Technology Data Exchange (ETDEWEB)

    Giorgetti, E., E-mail: emilia.giorgetti@fi.isc.cnr.it [Istituto dei Sistemi Complessi (ISC) CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Muniz Miranda, M.; Caporali, S. [Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Canton, P. [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari, Via Torino, 30170 Venezia-Mestre (Italy); Marsili, P. [Istituto dei Sistemi Complessi (ISC) CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy); Vergari, C.; Giammanco, F. [Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy)

    2015-09-15

    Highlights: • Laser ablation of Ti in water at 1064 nm and comparison of ns and ps temporal regimes. • Structural and spectroscopic characterization of the colloids: TiO{sub 2} is the predominant phase. • Determination of an energy window where ps ablation produces more anatase than rutile. • Modelling of the experimental dependence of anatase/rutile yield on pulse length and energy. - Abstract: We fabricated Ti oxide nanoparticles by laser ablation of a Ti target in doubly deionized water with ps or ns pulses at a laser wavelength of 1064 nm. Electron microscopy, Raman, X-ray diffraction and X-ray photoelectron spectroscopy showed that, while with ns pulses the dominant oxide phase is rutile, with ps pulses anatase is the most abundant form in an intermediate energy window centered around 25 mJ per pulse. This experimental behavior can be described by a theoretical model which calculates the pressure and temperature evolution of the ablated material and, from this, the rutile and anatase yield.

  15. Endovenous Laser Ablation as a Treatment for Postsurgical Recurrent Saphenous Insufficiency

    International Nuclear Information System (INIS)

    Anchala, Praveen R.; Wickman, Christopher; Chen, Richard; Faundeen, Tonya; Pearce, William; Narducy, Lisa; Resnick, Scott A.

    2010-01-01

    The purpose of this study was to investigate the safety and efficacy of endovenous laser ablation as a treatment for recurrent symptomatic saphenous insufficiency occurring after saphenous vein ligation and stripping. A single-center retrospective review of patients who received endovenous laser ablation as a treatment for recurrent symptomatic saphenous insufficiency after ligation and stripping between November 2003 and October 2006 was performed. Fifty-six insufficient saphenous systems were identified in 38 patients. Follow-up consisted of a clinical examination in all patients as well as selective lower-extremity duplex ultrasound as clinically indicated. All 38 patients demonstrated complete closure of the insufficient saphenous vein by clinical examination and/or duplex ultrasound evaluation. Preoperative symptoms resolved after treatment in all 38 patients. No major complications were identified. Endovenous laser ablation of recurrent symptomatic saphenous venous insufficiency is a safe and effective treatment in patients who develop recurrent symptoms after saphenous vein ligation and stripping.

  16. Laser ablation of metal into liquid: near critical point phenomena and hydrodynamic instability

    Science.gov (United States)

    Inogamov, Nail; Zhakhovsky, Vasily; Khokhlov, Viktor

    2017-06-01

    Laser ablation of metal in contact with liquid differs much from ablation into vacuum. In spite of importance of this kind of laser-matter interaction (e.g., for nanoparticles production), the involved processes are still poorly understood. We show that to produce nanoparticles the laser absorbed energy should overcome the ablation threshold into vacuum by a few times. Thus the required temperatures in the heat-affected zone increase above a critical temperature. The flow of the substances, including propagation of a strong shock in liquid and a rarefaction wave inside the metal target, is analyzed. We demonstrate that the contact between metal and liquid, both being in their supercritical states, is hydrodynamically unstable. The instability is of the Rayleigh-Taylor type. Dynamics of the instability is important for separation of melt droplets which are frozen up to solid nanoparticles later.

  17. Synthesis of molybdenum oxide-titanium dioxide nanocomposites with ultrashort laser ablation in water.

    Science.gov (United States)

    Khan, Abdul Qayyum; Yuan, Shuai; Niu, Sheng; Zheng, Lijuan; Li, Wenxue; Zeng, Heping

    2017-06-12

    Nanocomposites of Molybdenum oxide (MoO 3 ) and Titanium dioxide (TiO 2 ) were synthesized with femtosecond laser ablation of the pelleted powder in water. The pressing with Cold Isostatic press (CIP) provides facile method for pelletization of the oxides mixture. With this method the nanocomposites can be synthesized without replacement of the target during laser ablation. After laser ablation in water the stable MoO 3 -TiO 2 nanocomposites were synthesized. The morphology of the synthesized nanocomposites was investigated with transmission electron microscopy. While the band gap modifications of the synthesized nanocomposites were witnessed with UV-Visible diffuse reflectance spectroscopy analysis. Besides, the generated nanocomposites were used for photovoltaic and photocatalytic applications. The nanocomposites exhibit significant improvement in the rate of photo conversion and photodegradation as well.

  18. Dual-wavelength external cavity laser device for fluorescence suppression in Raman spectroscopy

    Science.gov (United States)

    Zhang, Xuting; Cai, Zhijian; Wu, Jianhong

    2017-10-01

    Raman spectroscopy has been widely used in the detection of drugs, pesticides, explosives, food additives and environmental pollutants, for its characteristics of fast measurement, easy sample preparation, and molecular structure analyzing capability. However, fluorescence disturbance brings a big trouble to these applications, with strong fluorescence background covering up the weak Raman signals. Recently shifted excitation Raman difference spectroscopy (SERDS) not only can completely remove the fluorescence background, but also can be easily integrated into portable Raman spectrometers. Usually, SERDS uses two lasers with small wavelength gap to excite the sample, then acquires two spectra, and subtracts one to the other to get the difference spectrum, where the fluorescence background will be rejected. So, one key aspects of successfully applying SERDS method is to obtain a dual-wavelength laser source. In this paper, a dual-wavelength laser device design based on the principles of external cavity diode laser (ECDL) is proposed, which is low-cost and compact. In addition, it has good mechanical stability because of no moving parts. These features make it an ideal laser source for SERDS technique. The experiment results showed that the device can emit narrow-spectral-width lasers of two wavelengths, with the gap smaller than 2 nanometers. The laser power corresponding to each wavelength can be up to 100mW.

  19. Interstitial laser-induced thermotherapy of the lung: evaluation of the influence of ablation continuity on ablation size in a swine model.

    Science.gov (United States)

    Schoellnast, Helmut; Monette, Sebastien; Ezell, Paula C; Keene, Andrew; Quehenberger, Franz; Erinjeri, Joseph P; Solomon, Stephen B

    2013-02-22

    The purpose of this study was to assess the relationship between size and the continuity of energy application in interstitial laser-induced thermotherapy. Percutaneous computed tomography-guided laser ablation (30 W, 600 nm diode) of the lung was performed in 7 Yorkshire pigs; a total of 42 ablation zones were created. Twenty ablations were performed using a continuous cycle of 2 min (protocol A) and 22 ablations were performed using 4 intermittent cycles with a duration of 1 min for each cycle interrupted by a 10-s stop between the cycles (protocol B). The lung was harvested immediately after euthanasia for gross pathology and histopathologic evaluation. Statistical analysis was performed using the Student t test and the Spearman correlation coefficient. Laser ablation resulted in complete necrosis of variable size of lung. The mean ablation zone dimensions (±SD) were 1.9 (±0.4) cm × 1.4 (±0.3) cm for protocol A and 2.2 (±0.5) cm × 1.4 (±0.4) cm for protocol B. The size of the necrosis is not significantly different when comparing a continuous 2-min ablation to a 4-cycle intermittent ablation for 1 min each cycle interrupted by a 10-s stop between the cycles (P = 0.98 and 0.53, respectively).

  20. An x-ray probe of nickel nanoparticles generated by laser ablation

    Science.gov (United States)

    Lehmann, C. S.; Doumy, G.; Southworth, S. H.; March, A. M.; Dichiara, A. D.; Gao, Y.; Kanter, E. P.; Krässig, B.; Moonshiram, D.; Young, L.; Chapman, K. W.; Chupas, P. J.

    2014-05-01

    A plume of nickel atoms and nanoparticles can be generated by an intense laser pulse hitting a solid nickel surface. We set up a Ni ablation source in a vacuum chamber on an x-ray beamline at the Advanced Photon Source and used x-ray absorption, x-ray emission, and ion spectroscopies to probe the ablation plume at x-ray energies above the Ni K-edge at 8.33 keV. The laser and x-ray pulses were overlapped in time and space with variable delay to measure the time evolution of the ablation plume. Measurements of the charge states produced by x-ray absorption were not possible due to the intense prompt ions ejected in the ablation process. However, Ni K α x-ray emission was measured as functions of laser fluence and pump-probe delay. The fluorescence yield was also used to record the near-edge x-ray absorption spectrum of the nanoparticles in the plume. The nanoparticles were collected and their diameters were determined to be ~9 nm from x-ray scattering pair-distribution-function measurements. The experiments demonstrate the use of x-ray techniques to characterize laser ablation processes. Work supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Dept of Energy, Contract DE-AC02-06CH11357.

  1. Tissue ablation and gas formation of two excimer laser systems: an in vitro evaluation on porcine aorta

    NARCIS (Netherlands)

    Appelman, Y. E.; Piek, J. J.; Verhoofstad, G. G.; Gijsbers, G. H.; van Gemert, M. J.

    1996-01-01

    BACKGROUND and The relationship between tissue ablation volume and the formation of insoluble gas of the currently available excimer laser systems is unknown. This aspect was evaluated in two excimer laser systems. STUDY DESIGN/MATERIALS and We measured tissue ablation volume and gas production of

  2. Influence of external cooling on the femtosecond laser ablation of dentin.

    Science.gov (United States)

    Le, Q T; Vilar, R; Bertrand, C

    2017-12-01

    In the present work, the influence of external cooling on the temperature rise in the tooth pulpal chamber during femtosecond laser ablation was investigated. The influence of the cooling method on the morphology and constitution of the laser-treated surfaces was studied as well. The ablation experiments were performed on dentin specimens using an Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs, 1030 nm). Cavities were created by scanning the specimens at a velocity of 5 mm/s while pulsing the stationary laser beam at 1 kHz and with fluences in the range of 2-14 J/cm 2 . The experiments were performed in air and with surface cooling by a lateral air jet and by a combination of an air jet and water irrigation. The temperature in the pulpal chamber of the tooth was measured during the laser experiments. The ablation surfaces were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The temperature rise reached 17.5 °C for the treatments performed with 14 J/cm 2 and without cooling, which was reduced to 10.8 ± 1.0 and 6.6 ± 2.3 °C with forced air cooling and water cooling, respectively, without significant reduction of the ablation rate. The ablation surfaces were covered by ablation debris and resolidified droplets containing mainly amorphous calcium phosphate, but the amount of redeposited debris was much lower for the water-cooled specimens. The redeposited debris could be removed by ultrasonication, revealing that the structure and constitution of the tissue remained essentially unaltered. The present results show that water cooling is mandatory for the femtosecond laser treatment of dentin, in particular, when high fluences and high pulse repetition rates are used to achieve high material removal rates.

  3. Deposition and characterization of ITO films produced by laser ablation at 355 nm

    DEFF Research Database (Denmark)

    Holmelund, E.; Thestrup Nielsen, Birgitte; Schou, Jørgen

    2002-01-01

    Indium tin oxide (ITO) films have been deposited by pulsed laser deposition (PLD) at 355 nm. Even though the absorption of laser light at the wavelength 355 nm is much smaller than that of the standard excimer lasers for PLD at 248 nm and 193 nm, high-quality films can be produced. At high fluence...

  4. Quantum dot SOA/silicon external cavity multi-wavelength laser.

    Science.gov (United States)

    Zhang, Yi; Yang, Shuyu; Zhu, Xiaoliang; Li, Qi; Guan, Hang; Magill, Peter; Bergman, Keren; Baehr-Jones, Thomas; Hochberg, Michael

    2015-02-23

    We report a hybrid integrated external cavity, multi-wavelength laser for high-capacity data transmission operating near 1310 nm. This is the first demonstration of a single cavity multi-wavelength laser in silicon to our knowledge. The device consists of a quantum dot reflective semiconductor optical amplifier and a silicon-on-insulator chip with a Sagnac loop mirror and microring wavelength filter. We show four major lasing peaks from a single cavity with less than 3 dB power non-uniformity and demonstrate error-free 4 × 10 Gb/s data transmission.

  5. Translational medicine in the field of ablative fractional laser (AFXL)-assisted drug delivery

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Erlendsson, Andrés M; Paasch, Uwe

    2016-01-01

    Ablative fractional lasers enhance uptake of topical therapeutics and the concept of fractional laser-assisted drug delivery has now been taken into clinical practice. Objectives We systematically reviewed preclinical data and clinical evidence for fractional lasers to enhance drug uptake...... level of evidence was reached for actinic keratoses treated with methylaminolevulinate for photodynamic therapy (level IB, 5 randomized controlled trials), substantiating superior and long-lasting efficacy versus conventional photodynamic therapy. No adverse events were reported, but ablative fractional...... laser-assisted drug delivery implies risks of systemic drug absorption, especially when performed over large skin areas. Conclusions Fractional laser-assisted drug delivery is beneficial in enhancing preclinical and clinical outcomes for certain skin conditions....

  6. Mass spectroscopic analysis of a plume induced by laser ablation of pyrolytic boron nitride

    CERN Document Server

    Chae, H B; Lee, I H; Park, S M

    1998-01-01

    The laser ablation of a pyrolytic boron nitride (pBN) target was investigated by time-of- flight quadrupole mass spectroscopy. According to the laser-correlated ion mass spectra, B sup + and B sub 2 sup + ions were produced, but neither N sup + , N sub 2 sup + , or BN sup + ions were observed at laser fluences below 1 J/cm sup 2. Instead, neutral N sub 2 molecules were found to be formed. The mean velocities and kinetic energies of the B sup + ions were obtained by time-of-flight analysis. Also, reactive laser ablation under a N sub 2 atmosphere was attempted by using a pulsed valve synchronized with the laser pulse.

  7. Photonic Generation of Microwave Signals Using Dual-Wavelength Distributed-Feedback Waveguide Lasers

    NARCIS (Netherlands)

    Bernhardi, Edward; Khan, M.R.H.; Roeloffzen, C.G.H.; van Wolferen, Hendricus A.G.M.; Worhoff, Kerstin; de Ridder, R.M.; Pollnau, Markus

    2012-01-01

    The fabrication and characterization of dual-wavelength distributed-feedback channel waveguide lasers in Al2O3:Yb3+ are described. These integrated lasers are used to generate narrowband microwave signals, with frequencies ranging between 12.43 GHz and 23.2 GHz, via the heterodyne photodetection of

  8. Quantum interference metrology at deep-UV wavelengths using phase-controlled ultrashort laser pulses

    NARCIS (Netherlands)

    Zinkstok, R. Th; Witte, S.; Ubachs, W.; Hogervorst, W.; Eikema, K. S E

    2005-01-01

    High-resolution metrology at wavelengths shorter than ultraviolet is in general hampered by a limited availability of appropriate laser sources. It is demonstrated that this limitation can be overcome by quantum-interference metrology with frequency up-converted ultrafast laser pulses. The required

  9. Short-pulse laser ablation of solids: From phase explosion to fragmentation

    International Nuclear Information System (INIS)

    Lorazo, Patrick; Lewis, Laurent J.; Meunier, Michel

    2003-01-01

    The mechanisms of laser ablation in silicon are investigated close to the threshold energy for pulse durations of 500 fs and 50 ps. This is achieved using a unique model coupling carrier and atom dynamics within a unified Monte Carlo and molecular-dynamics scheme. Under femtosecond laser irradiation, isochoric heating and rapid adiabatic expansion of the material provide a natural pathway to phase explosion. This is not observed under slower, nonadiabatic cooling with picosecond pulses where fragmentation of the hot metallic fluid is the only relevant ablation mechanism

  10. Spot size and pulse number dependence of femtosecond laser ablation thresholds of silicon and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, Oskar; Naghilou, Aida [University of Vienna, Department of Physical Chemistry, Währinger Straße 42, A-1090 Vienna (Austria); Kitzler, Markus [TU Wien, Photonics Institute, Gusshausstraße 27-29, A-1040 Vienna (Austria); Kautek, Wolfgang, E-mail: wolfgang.kautek@univie.ac.at [University of Vienna, Department of Physical Chemistry, Währinger Straße 42, A-1090 Vienna (Austria)

    2017-02-28

    Highlights: • Influence of laser spot size and pulse number on the ablation of solids. • An extended defect model describes the dependence of the threshold fluence on the basis of high and low density defects. • Successfully applied to silicon and stainless steel. - Abstract: Laser spot size and pulse number are two major parameters influencing the ablation of solids. The extended defect model describes the dependence of the threshold fluence on the basis of high and low density defects. This model was successfully applied to silicon and stainless steel. It is demonstrated that heat accumulation cannot describe the experimental results.

  11. Study on high-speed deep etching of GaN film by UV laser ablation

    Science.gov (United States)

    Zhang, J.; Sugioka, K.; Wada, S.; Tashiro, H.; Midorikawa, K.

    1998-06-01

    High-speed deep etching of GaN thin films by UV (266 nm) laser ablation followed by a treatment in HCl solution, was achieved. The etch rate was as high as 50 nm/pulse. Scanning electron microscopy and scanning probe microscopy measurement results indicate that the surface of the etched films was structurally well-defined and cleanly patterned. Micro-photoluminescence measurements of ablated samples revealed no severe damage to the optical properties or the crystal structure. In addition, coupling with VUV (133-184 nm) laser beams, the etch quality of GaN was markedly improved. The etch rate was 55 nm/pulse

  12. Structure and Properties of Nanocrystalline Iron Oxide Powder Prepared by the Method of Pulsed Laser Ablation

    Science.gov (United States)

    Svetlichnyi, V. A.; Shabalina, A. V.; Lapin, I. N.

    2017-04-01

    Colloidal solution of iron oxide nanoparticles is synthesized by nanosecond pulsed laser ablation (Nd:YAG laser, 1064 nm, 7 ns, and 180 mJ) of a metallic iron target in water, and nanocrystalline powder is prepared from this solution by vacuum drying. A composition and structure of the material obtained are investigated by methods of electron microscopy, x-ray diffraction, and optical spectroscopy. It is established that oxide particles with average size of about 5 nm and Fe3O4 magnetite structure are mainly formed during ablation. Preliminary investigation of magnetic properties of the prepared nanoparticle powders shows that they can be in ferromagnetic and/or superparamagnetic states.

  13. Experimental study of laser ablation as sample introduction technique for inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Van Winckel, S.

    2001-01-01

    The contribution consists of an abstract of a PhD thesis. In the PhD study, several complementary applications of laser-ablation were investigated in order to characterise experimentally laser ablation (LA) as a sample introduction technique for ICP-MS. Three applications of LA as a sample introduction technique are discussed: (1) the microchemical analysis of the patina of weathered marble; (2) the possibility to measure isotope ratios (in particular Pb isotope ratios in archaeological bronze artefacts); and (3) the determination of Si in Al as part of a dosimetric study of the BR2 reactor vessel

  14. A fast 8-channel wavelength switching DFB diode laser array based on reconstruction-equivalent-chirp technique

    Science.gov (United States)

    Li, Wei; Wang, Yingying; Du, Yinchao; Du, Weikang; Zhao, Guowang; Fang, Tao

    2018-01-01

    We propose a new method to investigate fast wavelength switching, which consists of control circuit, driving circuit and 8-channel DFB laser array using reconstruction-equivalent-chirp technique. The control circuit is in charge of selecting required lasers to switch wavelength, the driving circuit supply adjustable and stable direct current to the DFB laser arrays. Experimental results show that wavelength switching time of 8 channels is about 500ns and stability of laser output is promised.

  15. A low-temperature external cavity diode laser for broad wavelength tuning

    Science.gov (United States)

    Tobias, William G.; Rosenberg, Jason S.; Hutzler, Nicholas R.; Ni, Kang-Kuen

    2016-11-01

    We report on the design and characterization of a low-temperature external cavity diode laser (ECDL) system for broad wavelength tuning. The performance achieved with multiple diode models addresses the scarcity of commercial red laser diodes below 633 nm, which is a wavelength range relevant to the spectroscopy of many molecules and ions. Using a combination of multiple-stage thermoelectric cooling and water cooling, the operating temperature of a laser diode is lowered to -64 °C, more than 85 °C below the ambient temperature. The laser system integrates temperature and diffraction grating feedback tunability for coarse and fine wavelength adjustments, respectively. For two different diode models, single-mode operation is achieved with 38 mW output power at 616.8 nm and 69 mW at 622.6 nm, more than 15 nm below their ambient temperature free-running wavelengths. The ECDL design can be used for diodes of any available wavelength, allowing individual diodes to be tuned continuously over tens of nanometers and extending the wavelength coverage of commercial laser diodes.

  16. Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol

    Science.gov (United States)

    Svetlichnyi, V. A.; Lapin, I. N.

    2013-10-01

    Size characteristics, structure, and spectral and luminescent properties of nanoparticles fabricated by laser ablation of zinc metal targets in water and ethanol are experimentally investigated upon excitation by Nd:YAG-laser radiation (1064 nm, 7 ns, and 15 Hz). It is demonstrated that zinc oxide nanoparticles with average sizes of 10 nm (in water) and 16 nm (in ethanol) are formed in the initial stage as a result of ablation. The kinetics of the absorption and luminescence spectra, transmission electron microscopy, and x-ray structural analysis demonstrate that during long storage of water dispersions and their drying, nanoparticles efficiently interact with carbon dioxide gas of air that leads to the formation of water-soluble Zn(CO3)2(OH)6. In ethanol, Zn oxidation leads to the formation of stable dispersions of ZnO nanoparticles with 99% of the wurtzite phase; in this case, the fluorescence spectra of ZnO nanoparticles change with time, shifting toward longer wavelength region from 550 to 620 nm, which is caused by the changed nature of defects.

  17. Coagulative and ablative characteristics of a novel diode laser system (1470nm) for endonasal applications

    Science.gov (United States)

    Betz, C. S.; Havel, M.; Janda, P.; Leunig, A.; Sroka, R.

    2008-02-01

    Introduction: Being practical, efficient and inexpensive, fibre guided diode laser systems are preferable over others for endonasal applications. A new medical 1470 nm diode laser system is expected to offer good ablative and coagulative tissue effects. Methods: The new 1470 nm diode laser system was compared to a conventional 940 nm system with regards to laser tissue effects (ablation, coagulation, carbonization zones) in an ex vivo setup using fresh liver and muscle tissue. The laser fibres were fixed to a computer controlled stepper motor, and the light was applied using comparable power settings and a reproducible procedure under constant conditions. Clinical efficacy and postoperative morbidity was evaluated in two groups of 10 patients undergoing laser coagulation therapy of hyperplastic nasal turbinates. Results: In the experimental setup, the 1470 nm laser diode system proved to be more efficient in inducing tissue effects with an energy factor of 2-3 for highly perfused hepatic tissue to 30 for muscular tissue. In the clinical case series, the higher efficacy of the 1470 nm diode laser system led to reduced energy settings as compared to the conventional system with comparable clinical results. Postoperative crusting was less pronounced in the 1470 nm laser group. Conclusion: The 1470 nm diode laser system offers a highly efficient alternative to conventional diode laser systems for the coagulation of hyperplastic nasal turbinates. According to the experimental results it can be furthermore expected that it disposes of an excellent surgical potential with regards to its cutting abilities.

  18. A dual-wavelength tunable laser with superimposed fiber Bragg gratings

    International Nuclear Information System (INIS)

    Álvarez-Tamayo, R I; Durán-Sánchez, M; Pottiez, O; Ibarra-Escamilla, B; Kuzin, E A; Cruz, J L; Andrés, M V

    2013-01-01

    We report a dual-wavelength tunable fiber laser. The cavity is formed by two superimposed fiber Bragg gratings (FBGs) and a temperature tunable high-birefringence fiber optical loop mirror (FOLM). FBGs with wavelengths of 1548.5 and 1538.5 nm were printed in the same section of a fiber using two different masks. The superimposed FBGs were placed on a mechanical mount that allows stretch or compression of the FBGs. As a result of the FBG strain both lines are shifted simultaneously. Dual-wavelength generation requires a fine adjustment of the cavity loss for both wavelengths. (paper)

  19. Laser Treatment of Professional Tattoos With a 1064/532-nm Dual-Wavelength Picosecond Laser.

    Science.gov (United States)

    Kauvar, Arielle N B; Keaney, Terrence C; Alster, Tina

    2017-12-01

    Picosecond-domain laser pulses improve the photomechanical disruption of tattoos. This study evaluates the efficacy and safety of a novel, dual-wavelength, 1,064/532-nm, picosecond-domain laser for tattoo clearance. This was a prospective, self-controlled, clinical study of 34 subjects with 39 tattoos treated at 2 sites with an interval of 4.8 ± 1.6 weeks and up to 10 treatments (mean, 7.5). Blinded evaluation and investigator assessment of serial digital images was performed to evaluate treatment efficacy in the 36 tattoos that received at least 3 treatments. Investigators also assessed efficacy before each treatment visit up to 10 treatments. Safety and tolerability was evaluated for all 39 tattoos that underwent at least 1 treatment. Blinded evaluation demonstrated that lightening of tattoos was achieved in all subjects, with 86% (31 of 36 tattoos) showing at least a 50% clearance after 3 treatments. Adverse events were few and transient in nature. Patient satisfaction and treatment tolerability were high. Treatment of single-colored and multicolored tattoos with this novel 1,064/532-nm picosecond laser is highly safe and effective.

  20. Focal Laser Ablation of Prostate Cancer: Feasibility of Magnetic Resonance Imaging-Ultrasound Fusion for Guidance.

    Science.gov (United States)

    Natarajan, Shyam; Jones, Tonye A; Priester, Alan M; Geoghegan, Rory; Lieu, Patricia; Delfin, Merdie; Felker, Ely; Margolis, Daniel J A; Sisk, Anthony; Pantuck, Allan; Grundfest, Warren; Marks, Leonard S

    2017-10-01

    Focal laser ablation is a potential treatment in some men with prostate cancer. Currently focal laser ablation is performed by radiologists in a magnetic resonance imaging unit (in bore). We evaluated the safety and feasibility of performing focal laser ablation in a urology clinic (out of bore) using magnetic resonance imaging-ultrasound fusion for guidance. A total of 11 men with intermediate risk prostate cancer were enrolled in this prospective, institutional review board approved pilot study. Magnetic resonance imaging-ultrasound fusion was used to guide laser fibers transrectally into regions of interest harboring intermediate risk prostate cancer. Thermal probes were inserted for real-time monitoring of intraprostatic temperatures during laser activation. Multiparametric magnetic resonance imaging (3 Tesla) was done immediately after treatment and at 6 months along with comprehensive fusion biopsy. Ten of 11 patients were successfully treated while under local anesthesia. Mean procedure time was 95 minutes (range 71 to 105). Posttreatment magnetic resonance imaging revealed a confined zone of nonperfusion in all 10 men. Mean zone volume was 4.3 cc (range 2.1 to 6.0). No CTCAE grade 3 or greater adverse events developed and no changes were observed in urinary or sexual function. At 6 months magnetic resonance imaging-ultrasound fusion biopsy of the treatment site showed no cancer in 3 patients, microfocal Gleason 3 + 3 in another 3 and persistent intermediate risk prostate cancer in 4. Focal laser ablation of prostate cancer appears safe and feasible with the patient under local anesthesia in a urology clinic using magnetic resonance imaging-ultrasound fusion for guidance and thermal probes for monitoring. Further development is necessary to refine out of bore focal laser ablation and additional studies are needed to determine appropriate treatment margins and oncologic efficacy. Copyright © 2017 American Urological Association Education and Research, Inc

  1. Controlled Contamination of Epoxy Composites with PDMS and Removal by Laser Ablation

    Science.gov (United States)

    Palmieri, Frank; Ledesma, Rodolfo; Cataldo, Daniel; Lin, Yi; Wohl, Christopher; Gupta, Mool; Connell, John

    2016-01-01

    Surface preparation is critical to the performance of adhesively bonded composites. During manufacturing, minute quantities of mold release compounds are inevitably deposited on faying surfaces and may compromise bond performance. To ensure safety, mechanical fasteners and other crack arrest features must be installed in the bondlines of primary structures, which negates some advantages of adhesively bonded construction. Laser ablation is an automated, repeatable, and scalable process with high potential for the surface preparation of metals and composites in critical applications such as primary airframe structures. In this study, laser ablation is evaluated on composite surfaces for the removal of polydimethylsiloxane (PDMS), a common mold release material. Composite panels were contaminated uniformly with PDMS film thicknesses as low as 6.0 nm as measured by variable angle spectroscopic ellipsometry. Bond performance was assessed by mechanical testing using a 250 F cure, epoxy adhesive and compared with pre-bond surface inspection results. Water contact angle, optically stimulated electron emission, and laser induced breakdown spectroscopy were used to characterize contaminated and laser ablated surfaces. The failure mode obtained from double cantilever beam tests correlated well with surface characterization data. The test results indicated that even low levels of PDMS were not completely removed by laser ablation.

  2. Laser Ablation Surface Preparation of Ti-6A1-4V for Adhesive Bonding

    Science.gov (United States)

    Palmieri, Frank L.; Watson, Kent A.; Morales, Guillermo; Williams, Thomas; Hicks, Robert; Wohl, Christopher J.; Hopkins, John W.; Connell, John W.

    2012-01-01

    Adhesive bonding offers many advantages over mechanical fastening, but requires certification before it can be incorporated in primary structures for commercial aviation without disbond-arrestment features or redundant load paths. Surface preparation is widely recognized as the key step to producing robust and predictable bonds. Laser ablation imparts both topographical and chemical changes to a surface which can lead to increased bond durability. A laser based process provides an alternative to chemical-dip, manual abrasion and grit blast treatments which are expensive, hazardous, polluting, and less precise. This report documents preliminary testing of a surface preparation technique using laser ablation as a replacement for the chemical etch and abrasive processes currently applied to Ti-6Al-4V alloy adherends. Failure mode, surface roughness, and chemical makeup were analyzed using fluorescence enhanced visualization, microscopy, and X-ray photoelectron spectroscopy, respectively. Single lap shear tests were conducted on bonded and aged specimens to observe bond strength retention and failure mode. Some promising results showed increasing strength and durability of lap shear specimens as laser ablation coverage area and beam intensity increased. Chemical analyses showed trends for surface chemical species which correlated with improved bond strength and durability. Combined, these results suggest that laser ablation is a viable process for inclusion with or/and replacement of one or more currently used titanium surface treatments. On-going work will focus on additional mechanical tests to further demonstrate improved bond durability.

  3. Semiconductor laser with a birefringent external cavity for information systems with wavelength division multiplexing

    Energy Technology Data Exchange (ETDEWEB)

    Paranin, V D; Matyunin, S A; Tukmakov, K N [S.P. Korolev Samara State Aerospace University, Samara (Russian Federation)

    2013-10-31

    The spectrum of a semiconductor laser with a birefringent external Gires – Tournois cavity is studied. The generation of two main laser modes corresponding to the ordinary and extraordinary wave resonances is found. It is shown that the radiation spectrum is controlled with a high energy efficiency without losses for spectral filtration. The possibility of using two-mode lasing in optical communication systems with wavelength division multiplexing is shown. (control of laser radiation parameters)

  4. Laser ablation isotope ratio mass spectrometry for enhanced sensitivity and spatial resolution in stable isotope analysis.

    Science.gov (United States)

    Moran, James J; Newburn, Matt K; Alexander, M Lizabeth; Sams, Robert L; Kelly, James F; Kreuzer, Helen W

    2011-05-15

    Stable isotope analysis permits the tracking of physical, chemical, and biological reactions and source materials at a wide variety of spatial scales. We present a laser ablation isotope ratio mass spectrometry (LA-IRMS) method that enables δ(13)C measurement of solid samples at 50 µm spatial resolution. The method does not require sample pre-treatment to physically separate spatial zones. We use laser ablation of solid samples followed by quantitative combustion of the ablated particulates to convert sample carbon into CO(2). Cryofocusing of the resulting CO(2) coupled with modulation in the carrier flow rate permits coherent peak introduction into an isotope ratio mass spectrometer, with only 65 ng carbon required per measurement. We conclusively demonstrate that the measured CO(2) is produced by combustion of laser-ablated aerosols from the sample surface. We measured δ(13)C for a series of solid compounds using laser ablation and traditional solid sample analysis techniques. Both techniques produced consistent isotopic results but the laser ablation method required over two orders of magnitude less sample. We demonstrated that LA-IRMS sensitivity coupled with its 50 µm spatial resolution could be used to measure δ(13) C values along a length of hair, making multiple sample measurements over distances corresponding to a single day's growth. This method will be highly valuable in cases where the δ(13)C analysis of small samples over prescribed spatial distances is required. Suitable applications include forensic analysis of hair samples, investigations of tightly woven microbial systems, and cases of surface analysis where there is a sharp delineation between different components of a sample. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Highly Efficient 2 Micron Wavelength Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thulium doped fiber laser near 2 micron is of great interest because of the prospect of combining high efficiency, high output power, and retina safety together....

  6. Optimization of silver nanoparticles production by laser ablation in water using a 150-ps laser

    International Nuclear Information System (INIS)

    Stašić, J.; Živković, Lj.; Trtica, M.

    2016-01-01

    Silver nanoparticles were synthesized by laser ablation in liquid (water) using a 150-ps Nd:YAG laser. Due to their extraordinary characteristics, especially when obtained by this method providing high purity and high stability of colloids, silver NPs are nowadays highly important in various applications. The objective of this study was to optimize the process parameters in order to achieve the highest possible yield while retaining small particle size. Yield/mass concentration of the obtained particles was measured depending on different parameters: time of irradiation, pulse energy, position regarding the focus, and number of irradiation locations. The conditions providing relatively high yield, small particle size, highest production rate, and highest efficiency are 7 mJ, 15-min irradiation time (9000 pulses), and target position ∼4 mm in front of the lens focus. The results are compared with the results obtained by the longer nanosecond as well as the ultrashort pulsed lasers. A possible physical explanation is given.

  7. Optimization of silver nanoparticles production by laser ablation in water using a 150-ps laser

    Energy Technology Data Exchange (ETDEWEB)

    Stašić, J.; Živković, Lj.; Trtica, M., E-mail: etrtica@vinca.rs [University of Belgrade, Institute of Nuclear Sciences “Vinča” (Serbia)

    2016-12-15

    Silver nanoparticles were synthesized by laser ablation in liquid (water) using a 150-ps Nd:YAG laser. Due to their extraordinary characteristics, especially when obtained by this method providing high purity and high stability of colloids, silver NPs are nowadays highly important in various applications. The objective of this study was to optimize the process parameters in order to achieve the highest possible yield while retaining small particle size. Yield/mass concentration of the obtained particles was measured depending on different parameters: time of irradiation, pulse energy, position regarding the focus, and number of irradiation locations. The conditions providing relatively high yield, small particle size, highest production rate, and highest efficiency are 7 mJ, 15-min irradiation time (9000 pulses), and target position ∼4 mm in front of the lens focus. The results are compared with the results obtained by the longer nanosecond as well as the ultrashort pulsed lasers. A possible physical explanation is given.

  8. UV laser induced proton-transfer of protein molecule in the gas phase produced by droplet-beam laser ablation

    Science.gov (United States)

    Kohno, Jun-ya; Kondow, Tamotsu

    2008-09-01

    Droplet-beam laser-ablation mass-spectrometry was applied for a study of the UV-laser induced proton-transfer reaction of protonated lysozyme hydrated clusters in the gas phase. Protonated lysozyme hydrated clusters were produced by irradiation of an IR laser onto a droplet-beam of an aqueous solution of lysozyme and were subsequently irradiated by a UV laser. It is found that H + and H 3O + are produced through photodissociation of protonated lysozyme hydrated clusters. The mechanism of the proton-transfer reaction is discussed.

  9. Infrared laser-induced chaos and conformational disorder in a model polymer crystal: Melting vs ablation

    International Nuclear Information System (INIS)

    Sumpter, B.G.; Noid, D.W.; Voth, G.A.; Wunderlich, B.

    1990-01-01

    Molecular dynamics-based computer simulations are presented for the interaction of one and two infrared (IR) laser beams with a model polymer surface. When a single laser beam system is studied over a wide range of intensities, only melting of the polymer, or melting followed by bond dissociation, is observed for up to 100 picoseconds. In contrast, the two-laser simulation results exhibit a marked difference in the energy absorption behavior of the irradiated polymer which, in turn, results in multiple bond dissociations. The results for the one- and two-laser cases studied can be divided into four different classes of physical behavior: (a) the polymer remains in the solid state; (b) the polymer crystal melts; (c) the polymer ablates, but with significant melting (charring); or (d) the polymer ablates with minimal melting. Damage to the model polymer crystal from absorption of energy from either one or two lasers occurs through a mechanism that involves the competition between the absorption of energy and internal energy redistribution. The rate of energy loss from the absorption site(s) relative to the rate of absorption of energy from the radiation field determines rather the polymer melts or ablates (low absorption rates lead to melting or no change and high rates lead to ablation). A sufficiently large rate of energy absorption is only obtainable through the use of two lasers. Two lasers also significantly decrease the total laser intensity required to cause polymer crystal melting. The differences between the one- and two-laser cases are studied by adapting novel signal/subspace techniques to analyze the dynamical changes in the mode spectrum of the polymer as it melts

  10. Estimation of Al2O3 critical temperature using a Langmuir probe in laser ablation

    Science.gov (United States)

    Yahiaoui, K.; Abdelli-Messaci, S.; Messaoud Aberkane, S.; Kellou, A.

    2016-11-01

    Pulsed laser deposition (PLD) has demonstrated its capacity in thin films growing under the moderate laser intensity. But when the laser intensity increases, the presence of droplets on the thin film limits the PLD efficiency such that the process needs an optimization study. In this way, an experimental study has been conducted in order to correlate between the appearance of those droplets and the laser fluence. The comprehension of the physical mechanism during ablation and the control of the deposition parameters allowed to get a safe process. Our experiment consists in measuring the amount of ejected matter from polycrystalline alumina target as a function of the laser fluence when irradiated by a KrF laser. According to laser fluence, several kinds of ablation regimes have been identified. Below a threshold value found as 12 J/cm2, the mechanism of ablation was assigned to normal evaporation, desorption and nonthermal processes. While above this threshold value, the mechanism of ablation was assigned to phase explosion phenomenon which is responsible of droplets formation when the surface temperature approaches the critical temperature T tc. A negative charge collector was used to collect the positive ions in the plume. Their times of flight (TOF) signal were used to estimate the appropriate T tc for alumina target. Ions yield, current as well as kinetic energy were deduced from the TOF signal. Their evolutions show the occurrence of an optical breakdown in the vapor plume which is well correlated with the onset of the phase explosion phenomenon. At 10 J/cm2, the ions velocities collected by the probe have been compared to those obtained from optical emission spectroscopy diagnostic and were discussed. To prove the occurrence of phase explosion by the appearance of droplets, several thin films were elaborated on Si (100) substrate at different laser fluence into vacuum. They have been characterized by scanning electron microscope. The results were well

  11. Laser ablation for analytical sampling: what can we learn from modeling?

    International Nuclear Information System (INIS)

    Bogaerts, Annemie; Chen Zhaoyang; Gijbels, Renaat; Vertes, Akos

    2003-01-01

    The paper is built up in two parts. First, a rather comprehensive introduction is given, with a brief overview of the different application fields of laser ablation, focusing mainly on the analytical applications, and an overview of the different modeling approaches available for laser ablation. Further, a discussion is presented here about the laser evaporated plume expansion in vacuum or in a background gas, as well as about the different mechanisms for particle formation in the laser ablation process, which is most relevant for laser ablation as solid sampling technique for inductively coupled plasma (ICP) spectrometry. In the second part, a model is presented that describes the interaction of an ns-pulsed laser with a Cu target, as well as the resulting plume expansion and plasma formation. The results presented here, include the temperature distribution in the target, the melting and evaporation of the target, the vapor density, velocity and temperature distribution in the evaporated plume, the ionization degree and the density profiles of Cu 0 atoms, Cu + and Cu 2+ ions and electrons in the plume (plasma), as well as the resulting plasma shielding of the incoming laser beam. Results are presented as a function of time during and after the laser pulse, and as a function of position in the target or in the plume. The influence of the target reflection coefficient on the above calculation results is investigated. Finally, the effect of the laser pulse fluence on the target heating, melting and vaporization, and on the plume characteristics and plasma formation is studied. Our modeling results are in reasonable agreement with calculated and measured data from literature

  12. Heat generation caused by ablation of dental restorative materials with an ultra short pulse laser (USPL) system

    Science.gov (United States)

    Braun, Andreas; Wehry, Richard; Brede, Olivier; Frentzen, Matthias; Schelle, Florian

    2011-03-01

    The aim of this study was to assess heat generation in dental restoration materials following laser ablation using an Ultra Short Pulse Laser (USPL) system. Specimens of phosphate cement (PC), ceramic (CE) and composite (C) were used. Ablation was performed with an Nd:YVO4 laser at 1064 nm and a pulse length of 8 ps. Heat generation during laser ablation depended on the thickness of the restoration material. A time delay for temperature increase was observed in the PC and C group. Employing the USPL system for removal of restorative materials, heat generation has to be considered.

  13. An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum

    International Nuclear Information System (INIS)

    Zhang, Jinping; Chen, Yuping; Hu, Mengning; Chen, Xianfeng

    2015-01-01

    In this paper, an improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum was proposed and proved in our experiment. Aiming to achieve hole-drilling with a high ratio of depth/entrance diameter in vacuum, this model can predict the depth and radius of the drilled holes precisely when employing different laser parameters. Additionally, for multi-pulse laser ablation, we found that the laser fluence and number of pulses are the dominant parameters and the multi-pulse ablation threshold is much lower than the single-pulse one, which will help to obtain high-quality holes

  14. An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinping; Chen, Yuping, E-mail: ypchen@sjtu.edu.cn; Hu, Mengning; Chen, Xianfeng [State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-02-14

    In this paper, an improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum was proposed and proved in our experiment. Aiming to achieve hole-drilling with a high ratio of depth/entrance diameter in vacuum, this model can predict the depth and radius of the drilled holes precisely when employing different laser parameters. Additionally, for multi-pulse laser ablation, we found that the laser fluence and number of pulses are the dominant parameters and the multi-pulse ablation threshold is much lower than the single-pulse one, which will help to obtain high-quality holes.

  15. Impacts of Ambient and Ablation Plasmas on Short- and Ultrashort-Pulse Laser Processing of Surfaces

    Directory of Open Access Journals (Sweden)

    Nadezhda M. Bulgakova

    2014-12-01

    Full Text Available In spite of the fact that more than five decades have passed since the invention of laser, some topics of laser-matter interaction still remain incompletely studied. One of such topics is plasma impact on the overall phenomenon of the interaction and its particular features, including influence of the laser-excited plasma re-radiation, back flux of energetic plasma species, and massive material redeposition, on the surface quality and processing efficiency. In this paper, we analyze different plasma aspects, which go beyond a simple consideration of the well-known effect of plasma shielding of laser radiation. The following effects are considered: ambient gas ionization above the target on material processing with formation of a “plasma pipe”; back heating of the target by both laser-driven ambient and ablation plasmas through conductive and radiative heat transfer; plasma chemical effects on surface processing including microstructure growth on liquid metals; complicated dynamics of the ablation plasma flow interacting with an ambient gas that can result in substantial redeposition of material around the ablation spot. Together with a review summarizing our main to-date achievements and outlining research directions, we present new results underlining importance of laser plasma dynamics and photoionization of the gas environment upon laser processing of materials.

  16. Plasma characterization of cross-beam pulsed-laser ablation used for carbon thin film deposition

    International Nuclear Information System (INIS)

    Sanchez Ake, C.; Sobral, H.; Villagran-Muniz, M.

    2007-01-01

    The dynamics of the interaction between two delayed plasmas induced by cross-beam pulsed-laser ablation was analyzed by fast photography using narrow interference filters. In this configuration, two perpendicular rotating carbon targets were ablated by two synchronized laser beams generating two interacting plasma plumes. A Nd: yttrium-aluminum-garnet (1064 nm) laser beam is focused onto a target generating a highly directed plume; subsequently an excimer laser (248 nm) produces a second perpendicular plasma, which expands through the plume region generated by the first laser. In the cross-beam configuration, collision processes cause a reduction in the C II ion kinetic energy from ∼ 110 to 35 eV; moreover, the species of the second plasma which travel on the normal direction to the target surface (toward the substrate) are mainly C II. Interaction between plasmas has been compared with laser-induced plume propagation through a background gas in terms to the drag model. Carbon thin films were deposited by the cross-beam technique for different delays between lasers. Raman spectroscopy was employed to study the changes in the bonding carbon films as a function of the kinetic energy of ablated C ions

  17. Combination of Q-switched and quasi long-pulsed 1064-nm Nd:YAG laser, non-ablative 1450-nm diode laser, and ablative 10 600-nm carbon dioxide fractional laser for enlarged pores.

    Science.gov (United States)

    Cho, Sung Bin; Noh, Seongmin; Lee, Sang Ju; Kang, Jin Moon; Kim, Young Koo; Lee, Ju Hee

    2010-07-01

    Currently, there is no gold standard for the treatment of enlarged facial pores. In this report, we describe a patient with enlarged nasal pores which were treated with a combination of a non-ablative 1450-nm diode laser, a Q-switched and quasi long-pulsed 1064-nm Nd:YAG laser, and an ablative 10 600-nm carbon dioxide fractional laser system. Four months after the final treatment, the condition of the patient's pores had markedly improved, and the patient was satisfied with the results.

  18. Impacts of ambient and ablation plasmas on short- and ultrashort-pulse laser processing of surfaces

    Czech Academy of Sciences Publication Activity Database

    Bulgakova, Nadezhda M.; Panchenko, A.N.; Zhukov, V.P.; Kudryashov, S.I.; Pereira, A.; Marine, W.; Mocek, Tomáš; Bulgakov, A.V.

    2014-01-01

    Roč. 5, č. 4 (2014), s. 1344-1372 ISSN 2072-666X R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : pulsed laser ablation * laser material processing * laser plasma * ambient gas breakdown * material redeposition * plasma pipe formation * microstructures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.269, year: 2014

  19. Enhanced Broadband Photoresponse in Plasmonic Nanoparticles decorated ZnO Nanowire Film fabricated by Laser Ablation method

    Science.gov (United States)

    Nath, Rajib; Ghimire, Rishi Ram; Neogy, Rajesh Kr.; Raychaudhuri, Arup K.

    ZnO is a high band gap semiconductor which is widely used as an UV photo-detector. However, one of the draw backs of ZnO based photo-detectors is its lack of response in the visible, in particular above a wavelength (λ) of 450 nm which limits its use as broadband photodetector. Here, we report that the photoresponse of ZnO nanowire (NW) based photodetector can be significantly enhanced in wide spectral range (350 to 650nm) using ligand free attachment of plasmonic Au-nanoparticles (NP) on its surface by laser ablation process. This simple fabrication method increases responsitivity (R) (2 to 4 order) of Au-ZnO device in a window of 500financial support from Unit for Nanoscience, DST,India.

  20. Laser-ablated active doping technique for visible spectroscopy measurements on Z.

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Matthew Robert

    2013-09-01

    Visible spectroscopy is a powerful diagnostic, allowing plasma parameters ranging from temperature and density to electric and magnetic fields to be measured. Spectroscopic dopants are commonly introduced to make these measurements. On Z, dopants are introduced passively (i.e. a salt deposited on a current-carrying surface); however, in some cases, passive doping can limit the times and locations at which measurements can be made. Active doping utilizes an auxiliary energy source to disperse the dopant independently from the rest of the experiment. The objective of this LDRD project was to explore laser ablation as a method of actively introducing spectroscopic dopants. Ideally, the laser energy would be delivered to the dopant via fiber optic, which would eliminate the need for time-intensive laser alignments in the Z chamber. Experiments conducted in a light lab to assess the feasibility of fibercoupled and open-beam laser-ablated doping are discussed.

  1. 3D transient model to predict temperature and ablated areas during laser processing of metallic surfaces

    Directory of Open Access Journals (Sweden)

    Babak. B. Naghshine

    2017-02-01

    Full Text Available Laser processing is one of the most popular small-scale patterning methods and has many applications in semiconductor device fabrication and biomedical engineering. Numerical modelling of this process can be used for better understanding of the process, optimization, and predicting the quality of the final product. An accurate 3D model is presented here for short laser pulses that can predict the ablation depth and temperature distribution on any section of the material in a minimal amount of time. In this transient model, variations of thermal properties, plasma shielding, and phase change are considered. Ablation depth was measured using a 3D optical profiler. Calculated depths are in good agreement with measured values on laser treated titanium surfaces. The proposed model can be applied to a wide range of materials and laser systems.

  2. Ultrashort-pulse laser ablation of gold thin film targets: Theory and experiment

    International Nuclear Information System (INIS)

    Amoruso, S.; Nedyalkov, N.N.; Wang, X.; Ausanio, G.; Bruzzese, R.; Atanasov, P.A.

    2014-01-01

    Laser ablation of a gold thin film irradiated by ultrashort pulses is studied using molecular-dynamics simulations, and compared with that of a bulk target. A film thickness comparable to the ballistic electron depth in gold (≈ 100 nm) is considered, evidencing a significant change of the temperature spatial profile inside the target material, which eventually influences the material decomposition. Particular emphasis is given to the process of nanoparticle generation. The simulations indicate a more uniform heating of the sample in the case of the thin film, which is accompanied by a more homogeneous size distribution of the nanoparticles produced in the ablation process. An experimental characterization of the ultrashort-pulse ablation process is also carried out. The produced nanoparticles are collected on suitable substrates, and atomic force microscopy analysis of less than one layer deposits is performed. An ≈ 2 × narrowing of the nanoparticles equivalent to spherical diameter size distribution is observed in the case of ablation of the gold thin film, in fairly good agreement with the theoretical predictions. Moreover, interesting changes of the nanoparticle shape are evidenced, which are correlated to the changes in the nanoparticle ablation plume dynamics, as studied by time-gated imaging of its self-emission. Our findings suggest ultrashort-pulse laser ablation of thin films as a viable route to achieve a more uniform nanoparticle size distribution. - Highlights: • Nanoparticle generation at fs laser ablation of Au bulk target and thin film is studied. • The spatial confinement in depth at thin film geometry results in homogeneous heating. • Narrower and more homogeneous particle size distribution is observed for thin film

  3. Harmonic generation by atomic and nanoparticle precursors in a ZnS laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Oujja, M.; Lopez-Quintas, I.; Benítez-Cañete, A.; Nalda, R. de; Castillejo, M., E-mail: marta.castillejo@iqfr.csic.es

    2017-01-15

    Highlights: • Plume species in infrared ns laser ablation of ZnS studied by low-order harmonic generation. • Different spatiotemporal properties of harmonics from atoms and nanoparticles. • Results compared with calculations of optical frequency up-conversion in perturbative regime. - Abstract: Harmonic generation of a driving laser propagating across a laser ablation plasma serves for the diagnosis of multicomponent plumes. Here we study the contribution of atomic and nanoparticle precursors to the generation of coherent ultraviolet and vacuum ultraviolet light as low-order harmonics of the fundamental emission (1064 nm) of a Q-switched Nd:YAG laser in a nanosecond infrared ZnS laser ablation plasma. Odd harmonics from the 3rd up to the 9th order (118.2 nm) have been observed with distinct temporal and spatial characteristics which were determined by varying the delay between the ablation and driving nanosecond pulses and by spatially scanning the plasma with the focused driving beam propagating parallel to the target. At short distances from the target surface (≤1 mm), the harmonic intensity displays two temporal components peaked at around 250 ns and 10 μs. While the early component dies off quickly with increasing harmonic order and vanishes for the 9th order, the late component is notably intense for the 7th harmonic and is still clearly visible for the 9th. Spectral analysis of spontaneous plume emissions help to assign the origin of the two components. While the early plasma component is mainly constituted by neutral Zn atoms, the late component is mostly due to nanoparticles, which upon interaction with the driving laser are subject to breakup and ionization. With the aid of calculations of the phase matching integrals within the perturbative model of optical harmonic generation, these results illustrate how atom and nanoparticle populations, with differing temporal and spatial distributions within the ablation plasma, contribute to the nonlinear

  4. Self-consistent model of the Rayleigh--Taylor instability in ablatively accelerated laser plasma

    International Nuclear Information System (INIS)

    Bychkov, V.V.; Golberg, S.M.; Liberman, M.A.

    1994-01-01

    A self-consistent approach to the problem of the growth rate of the Rayleigh--Taylor instability in laser accelerated targets is developed. The analytical solution of the problem is obtained by solving the complete system of the hydrodynamical equations which include both thermal conductivity and energy release due to absorption of the laser light. The developed theory provides a rigorous justification for the supplementary boundary condition in the limiting case of the discontinuity model. An analysis of the suppression of the Rayleigh--Taylor instability by the ablation flow is done and it is found that there is a good agreement between the obtained solution and the approximate formula σ = 0.9√gk - 3u 1 k, where g is the acceleration, u 1 is the ablation velocity. This paper discusses different regimes of the ablative stabilization and compares them with previous analytical and numerical works

  5. Plasmonic angular tunability of gold nanoparticles generated by fs laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pace, M.L.; Guarnaccio, A.; Ranù, F. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Trucchi, D. [CNR, ISM UOS Montelibretti, Via Salaria km 29.300, Monterotondo Scalo, (RM) 00015 (Italy); Orlando, S., E-mail: stefano.orlando@ism.cnr.it [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Mollica, D.; Parisi, G.P. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Medici, L.; Lettino, A. [CNR, IMAA, Area della Ricerca di Potenza -Zona Industriale, Tito Scalo, (PZ) 85050 (Italy); De Bonis, A.; Teghil, R. [Dipart. di Scienze,Università della Basilicata, Viale dell’Ateneo Lucano 10, Potenza, 85100 (Italy); Santagata, A. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy)

    2016-06-30

    Highlights: • fs pulsed laser ablation as a technique to produce nanoparticles. • Nanoparticle distribution as an evidence for plasmonic tunable resonances. • Correlation between angular distribution of deposited nanoparticles and specific plasmonic resonances. - Abstract: With the aim to study the influence of deposition parameters on the plasmonic properties of gold (Au) nanoparticles (NPs) deposited by ultra-short ablation, we have focused our attention in evaluating how their size distribution can be varied. In this work, the role played by the NPs’ angular distribution, agglomeration and growth is related to the resulting optical properties. UV–vis-NIR absorption spectra together with Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray microdiffraction observations are presented in order to show how the angular distribution of fs laser ablation and deposition of Au NPs provides different plasmonic properties which can be beneficial for several aims, from optoelectronic to biosensor applications.

  6. Design of a chamber for deposit of thin films by laser ablation

    International Nuclear Information System (INIS)

    Chirino O, S.

    2001-01-01

    The present work has as purpose to design a vacuum chamber, to the one that is denominated chamber of ablation, in which were carried out deposits of thin films using the well-known technique as laser ablation. To fulfill the purpose, the work has been distributed in the following way: in the chapter 1 there are discussed the generalities of the technique of ablation laser for the obtaining of materials in form of thin film, in the chapter 2 the basic concepts of the vacuum technology are mentioned that includes among other things, systems to produce vacuum and vacuum gages and in the chapter 3 the design of the chamber is presented with the accessories and specific systems. (Author)

  7. Post ablation recanalization of varicose veins of the limbs: Comparison ablation method of mechanochemical and laser procedure

    Science.gov (United States)

    Suhartono, R.; Irfan, W.; Wangge, G.; Moenadjat, Y.; Destanto, W. I.

    2017-08-01

    Endovenous ablation has been performed for varicose veins of the limbs in Indonesia since 2010. Endovenous laser ablation (EVLA) therapy has been performed in Cipto Mangunkusumo Hospital (RSCM) in Jakarta, and mechanochemical ablation (MOCA) has been conducted in Fatmawati Hospital. This was a descriptive analytical study, with a cross-sectional design to analyze post-ablation recanalization after MOCA and EVLA procedures. Patients who had undergone MOCA or EVLA treatment were interviewed 3-18 months after the procedures. All the patients underwent vascular ultrasonography (USG) of the operated limb to assess recanalization. Secondary presurgery data were obtained from the patients’ from patients’ medical records. The clinical characteristics of the subjects were recorded to compare the potential correlation between these characteristics and recanalization post-MOCA and EVLA procedures. All the data were analyzed using SPSS ver. 20.0. The study consisted of 43 limbs: 24 treated by MOCA and 19 treated by EVLA. Most subjects in the MOCA group were 7 mm in 13/19 extremities. In the MOCA group, total recanalization occurred in 2/24 extremities, and partial recanalization occurred in 8/24 extremities. In the EVLA group, total recanalization occurred in 1/19 extremities, and partial recanalization occurred in 3/19 extremities. The association between the clinical characteristics of the patients and recanalization was not statistically significant (p > 0.05). The recanalization tendency was higher in the MOCA group than in the EVLA group. Although there was no statistically significant association between the clinical characteristics of the patients and recanalization, the largest diameter of the VSM presurgery (>7 mm) was higher in 3/4 extremities in the MOCA group, as compared to 3/13 extremities in the EVLA group.

  8. The impact of laser ablation on optical soft tissue differentiation for tissue specific laser surgery-an experimental ex vivo study

    Directory of Open Access Journals (Sweden)

    Stelzle Florian

    2012-06-01

    Full Text Available Abstract Background Optical diffuse reflectance can remotely differentiate various bio tissues. To implement this technique in an optical feedback system to guide laser surgery in a tissue-specific way, the alteration of optical tissue properties by laser ablation has to be taken into account. It was the aim of this study to evaluate the general feasibility of optical soft tissue differentiation by diffuse reflectance spectroscopy under the influence of laser ablation, comparing the tissue differentiation results before and after laser intervention. Methods A total of 70 ex vivo tissue samples (5 tissue types were taken from 14 bisected pig heads. Diffuse reflectance spectra were recorded before and after Er:YAG-laser ablation. The spectra were analyzed and differentiated using principal component analysis (PCA, followed by linear discriminant analysis (LDA. To assess the potential of tissue differentiation, area under the curve (AUC, sensitivity and specificity was computed for each pair of tissue types before and after laser ablation, and compared to each other. Results Optical tissue differentiation showed good results before laser exposure (total classification error 13.51%. However, the tissue pair nerve and fat yielded lower AUC results of only 0.75. After laser ablation slightly reduced differentiation results were found with a total classification error of 16.83%. The ti