WorldWideScience

Sample records for ablation inductively coupled

  1. Imaging gold nanoparticles in mouse liver by laser ablation inductively coupled plasma mass spectrometry

    OpenAIRE

    Li, Qing; Wang, Zheng; Mo, Jiamei; Zhang, Guoxia; Chen, Yirui; Huang, Chuchu

    2017-01-01

    Imaging the size distribution of metal nanoparticles (NPs) in a tissue has important implications in terms of evaluating NP toxicity. Microscopy techniques used to image tissue NPs are limited by complicated sample preparation or poor resolution. In this study, we developed a laser ablation (LA) system coupled to single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) for quantitative imaging of gold (G)NPs in tissue samples. In this system, GNPs were ablated but did not disi...

  2. Evaluation of the analytical capability of NIR femtosecond laser ablation-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Hirata, Takafumi; Kon, Yoshiaki

    2008-03-01

    A laser ablation-inductively coupled plasma-mass spectrometric (LA-ICPMS) technique utilizing a titanium-sapphire (TiS) femtosecond laser (fs-laser) has been developed for elemental and isotopic analysis. The signal intensity profile, depth of the ablation pit and level of elemental fractionation were investigated in order to evaluate the analytical capability of the present fs-laser ablation-ICPMS technique. The signal intensity profile of (57)Fe, obtained from iron sulfide (FeS(2)), demonstrated that the resulting signal intensity of (57)Fe achieved by the fs-laser ablation was almost 4-times higher than that obtained by ArF excimer laser ablation under a similar energy fluence (5 J/cm(2)). In fs-laser ablation, there is no significant difference in a depth of the ablation pit between glass and zircon material, while in ArF laser ablation, the resulting crater depth on the zircon crystal was almost half the level than that obtained for glass material. Both the thermal-induced and particle size-related elemental fractionations, which have been thought to be main sources of analytical error in the LA-ICPMS analysis, were measured on a Harvard 91500 zircon crystal. The resulting fractionation indexes on the (206)Pb/(238)U (f(Pb/U)) and (238)U/(232)Th (f(U/Th)) ratios obtained by the present fs-laser ablation system were significantly smaller than those obtained by a conventional ArF excimer laser ablation system, demonstrative of smaller elemental fractionation. Using the present fs-laser ablation technique, the time profile of the signal intensity of (56)Fe and the isotopic ratios ((57)Fe/(54)Fe and (56)Fe/(54)Fe) have been measured on a natural pyrite (FeS(2)) sample. Repeatability in signal intensity of (56)Fe achieved by the fs-laser ablation system was significantly better than that obtained by ArF excimer laser ablation. Moreover, the resulting precision in (57)Fe/(54)Fe and (56)Fe/(54)Fe ratio measurements could be improved by the fs-laser ablation system

  3. Laser ablation - inductively coupled plasma mass spectrometry (LA-ICP-MS): Novel applications for coal research

    Energy Technology Data Exchange (ETDEWEB)

    Booth, C.A.; Spears, D.A.

    1999-07-01

    Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS) has enormous potential in coal research. Element concentrations are determined with limits of detection currently in the parts per billion range, whilst spatial resolution as low as 10 microns can be achieved using the CETAC Technologies LSX-100 laser ablation system. Calibration of the LA-ICP-MS systems is notoriously difficult but in this paper the authors review two different techniques used in Sheffield, which allow trace element concentrations of whole coals (bituminous) and minerals and macerals within the coal to be determined. The first technique involves calibrating the system with PF grade coal samples in order that trace element concentrations can directly be determined after ablation of a solid coal or pressed coal sample. Using this technique, potentially hazardous trace elements such as As, Cd, Pb and Hg can be detected and measured even in the low parts per billion concentration (mg/Kg) range. The second application utilizes the spatial resolution of the laser to measure element concentrations in individual coal components. In this paper the results from ablating pyrite framboids in polished sections of the coal are discussed. Elemental information is obtained throughout the ablation procedure and this is then calibrated against the Fe content in order to establish the concentration of an element per 1% pyritic iron.

  4. Analysis of tungsten carbide coatings by UV laser ablation inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Kanicky, V.; Otruba, V.; Mermet, J.-M.

    2000-06-01

    Tungsten carbide coatings (thickness 0.1-0.2 mm) containing 8.0, 12.2, 17.2 and 22.9% Co were studied with laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES). Composition of these plasma sprayed deposits on steel disks was determined using X-ray fluorescence spectrometry and electron microprobe energy/wavelength dispersive X-ray spectrometry. The coatings were ablated by means of a Q-switched Nd:YAG laser at 266 nm (10 Hz, 10 mJ per shot) coupled to an ICP echelle-based spectrometer equipped with a segmented charge-coupled device detector. Non-linear dependences of cobalt lines intensities on the Co percentage were observed both at a single spot ablation and at a sample translation. This behaviour could be attributed to a complex phase composition of the system W-C-Co. However, employing tungsten as internal standard the linear calibration was obtained for studied analytical lines Co II 228.616 nm, Co II 230.786 nm, Co II 236.379 nm and Co II 238.892 nm.

  5. Strategies for the analysis of coal by laser ablation inductively coupled plasma mass spectroscopy.

    Science.gov (United States)

    Kleiber, L; Fink, H; Niessner, R; Panne, U

    2002-09-01

    The potential of laser ablation inductively coupled mass spectrometry (LA-ICP-MS) was investigated for the inorganic characterization of different coal samples pressed into pellets. Reference analysis was performed by microwave-assisted digestion of the ground samples followed by ICP-MS analysis of the resulting solutions. Two different laser ablation sampling procedures were compared. For continuous sampling, three sites of the pellet were sampled for approximately one minute, whereas for sequential sampling 15 sites were sampled for two seconds, respectively. The qualitative results of the two procedures were equivalent, but continuous sampling allowed faster analysis and better precision (RSD about 10%) than sequential sampling (RSD 10-20%). Different normalization procedures with internal and extrinsic standards were investigated and allowed a quantitative determination of Al, Ti, Zn, Ni, and V with measurement uncertainties below 10% and Fe, Si, and Sn with measurement uncertainties below 20%.

  6. Strategies for the analysis of coal by laser ablation inductively coupled plasma mass spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kleiber, L.; Fink, H.; Niessner, R.; Panne, U. [Institute of Hydrochemistry, Technical University of Munich, Marchioninistr. 17, 81377 Munich (Germany)

    2002-09-01

    The potential of laser ablation inductively coupled mass spectrometry (LA-ICP-MS) was investigated for the inorganic characterization of different coal samples pressed into pellets. Reference analysis was performed by microwave-assisted digestion of the ground samples followed by ICP-MS analysis of the resulting solutions. Two different laser ablation sampling procedures were compared. For continuous sampling, three sites of the pellet were sampled for approximately one minute, whereas for sequential sampling 15 sites were sampled for two seconds, respectively. The qualitative results of the two procedures were equivalent, but continuous sampling allowed faster analysis and better precision (RSD about 10%) than sequential sampling (RSD 10-20%). Different normalization procedures with internal and extrinsic standards were investigated and allowed a quantitative determination of Al, Ti, Zn, Ni, and V with measurement uncertainties below 10% and Fe, Si, and Sn with measurement uncertainties below 20%. (orig.)

  7. Inductively Coupled Plasma: Fundamental Particle Investigations with Laser Ablation and Applications in Magnetic Sector Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Saetveit, Nathan Joe [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Particle size effects and elemental fractionation in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are investigated with nanosecond and femtosecond laser ablation, differential mobility analysis, and magnetic sector ICP-MS. Laser pulse width was found to have a significant influence on the LA particle size distribution and the elemental composition of the aerosol and thus fractionation. Emission from individual particles from solution nebulization, glass, and a pressed powder pellet are observed with high speed digital photography. The presence of intact particles in an ICP is shown to be a likely source of fractionation. A technique for the online detection of stimulated elemental release from neural tissue using magnetic sector ICP-MS is described. Detection limits of 1 μg L-1 or better were found for P, Mn, Fe, Cu, and Zn in a 60 μL injection in a physiological saline matrix.

  8. Imaging gold nanoparticles in mouse liver by laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Li, Qing; Wang, Zheng; Mo, Jiamei; Zhang, Guoxia; Chen, Yirui; Huang, Chuchu

    2017-06-07

    Imaging the size distribution of metal nanoparticles (NPs) in a tissue has important implications in terms of evaluating NP toxicity. Microscopy techniques used to image tissue NPs are limited by complicated sample preparation or poor resolution. In this study, we developed a laser ablation (LA) system coupled to single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) for quantitative imaging of gold (G)NPs in tissue samples. In this system, GNPs were ablated but did not disintegrate and integrate under optimised operation conditions, which were verified by characterising LA particles by scanning electron microscopy. The feasibility of imaging size distributions in tissue was validated using reference GNPs 60 and 80 nm in size on matrix-matched kidney. A transport efficiency of 6.07% was obtained by LA-SP-ICP-MS under optimal conditions. We used this system to image 80-nm GNPs in mouse liver and the size distribution thus obtained was in accordance with that determined by nebuliser SP-ICP-MS. The images revealed that 80-nm GNPs mainly accumulate in the liver and did not obviously aggregate. Our results demonstrate that LA-SP-ICP-MS is an effective tool for evaluating the size distribution of metal NPs in tissue.

  9. Femtosecond laser ablation: Experimental study of the repetition rate influence on inductively coupled plasma mass spectrometry performance

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Jhanis J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Fernandez, Alberto [Centro de Fisicoquimica. Escuela de Quimica, Universidad Central de Venezuela, Caracas 1020-A (Venezuela); Oropeza, Dayana; Mao Xianglei [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Russo, Richard E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: RERusso@lbl.gov

    2008-02-15

    This paper demonstrates the feasibility of performing bulk chemical analysis based on laser ablation for good lateral resolution with only nominal mass ablated per pulse. The influence of repetition rate (1-1000 Hz) and scan speed (1-200 {mu}m/s) using a low energy (30 {mu}J) and a small spot size ({approx} 10 {mu}m) UV-femtosecond laser beam was evaluated for chemical analysis of silica glass samples, based on laser ablation sampling and inductively coupled plasma mass spectrometry (ICP-MS). Accuracy to approximately 14% and precision of 6% relative standard deviation (RSD) were measured.

  10. Minimally-invasive Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis of model ancient copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walaszek, Damian [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Senn, Marianne; Wichser, Adrian [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Faller, Markus [Laboratory for Jointing Technology and Corrosion, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Wagner, Barbara; Bulska, Ewa [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Ulrich, Andrea [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2014-09-01

    This work describes an evaluation of a strategy for multi-elemental analysis of typical ancient bronzes (copper, lead bronze and tin bronze) by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).The samples originating from archeological experiments on ancient metal smelting processes using direct reduction in a ‘bloomery’ furnace as well as historical casting techniques were investigated with the use of the previously proposed analytical procedure, including metallurgical observation and preliminary visual estimation of the homogeneity of the samples. The results of LA-ICPMS analysis were compared to the results of bulk composition obtained by X-ray fluorescence spectrometry (XRF) and by inductively coupled plasma mass spectrometry (ICPMS) after acid digestion. These results were coherent for most of the elements confirming the usefulness of the proposed analytical procedure, however the reliability of the quantitative information about the content of the most heterogeneously distributed elements was also discussed in more detail. - Highlights: • The previously proposed procedure was evaluated by analysis of model copper alloys. • The LA-ICPMS results were comparable to the obtained by means of XRF and ICPMS. • LA-ICPMS results indicated the usefulness of the proposed analytical procedure.

  11. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS)

    National Research Council Canada - National Science Library

    Bühn, Bernhard; Pimentel, Márcio M; Matteini, Massimo; Dantas, Elton L

    2009-01-01

    ...), are widely used to decipher geological processes. A new method developed in the last couple of years, the laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS...

  12. Analysis of liquid samples using dried-droplet laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Do, Trong-Mui; Hsieh, Hui-Fang; Chang, Wei-Ciang [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan (China); Chang, E.-E. [Department of Biochemistry, Taipei Medical University, Taipei City, 11031 Taiwan (China); Wang, Chu-Fang, E-mail: cfwang@mx.nthu.edu.tw [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan (China); Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2011-08-15

    In this study we developed a dried-droplet method for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method provides accurate and precise results when building calibration curves and determining elements of interest in real liquid samples. After placing just 1 {mu}L of a liquid standard solution or a real sample onto the filter surface and then converting the solution into a very small, thin dry spot, the sample could be applied as an analytical subject for LA. To demonstrate the feasibility of this proposed method, we used LA-ICP-MS and conventional ICP-MS to determine the levels of 13 elements (Li, V, Mn, Co, Ni, Cu, Zn, As, Mo, Cd, Sb, Tl, and Pb) in five water samples. The correlation coefficients obtained from the various calibration curves ranged from 0.9920 ({sup 205}Tl) to 0.9998 ({sup 51}V), sufficient to allow the determination of a wide range of elements in the samples. We also investigated the effects of Methylene Blue (MB) and the NaCl concentration on the elemental analyses. MB could be used as an indicator during the ablation process; its presence in the samples only negligibly influenced the intensities of the signals of most of the tested elements. Notably, high NaCl contents led to signal suppression for some of the elements. In comparison with the established sample introduction by nebulization, our developed technique abrogates the need for time-consuming sample preparation and reduces the possibility of sample contamination.

  13. Comparison of femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McIntosh, Kathryn Gallagher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Judge, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dirmyer, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Campbell, Keri [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Jhanis J. [Applied Spectra Inc., Fremont, CA (United States)

    2016-10-20

    Feasibility tests were conducted using femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for rapid uranium isotopic measurements. The samples used in this study consisted of a range of pg quantities of known 235/238 U solutions as dried spot residues of 300 pL drops on silicon substrates. The samples spanned the following enrichments of 235U: 0.5, 1.5, 2, 3, and 15.1%. In this direct comparison using these particular samples both pulse durations demonstrated near equivalent data can be produced on either system with respect to accuracy and precision. There is no question that either LA-ICP-MS method offers the potential for rapid, accurate and precise isotopic measurements of U10Mo materials whether DU, LEU or HEU. The LA-ICP-MS equipment used for this work is commercially available. The program is in the process of validating this work for large samples using center samples strips from Y-12 MP-1 LEU-Mo Casting #1.

  14. Trace Elements Analysis of Geological Samples by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper describes recent work applying a taser ablation system (LSX-200) hyphenated with POEMS Ⅲ inductively coupled plasma mass spectrometry (LA-ICP-MS) for the in situ analysis of 22 trace elements of solid geological materials. It demonstrates the potential of LA-ICP-MS for the determination of geochemically important trace and ultra-trace elements following XRF routine sample preparation. Signal drift, difference in transport efficiency and sampling yield are well corrected with NIST SRM 612 as external calibration standard and Ca as internal standard. The obtained results agree to the recommended values with relative error better than 15 % and RSD less than 15 % for most determined trace elemems. LOD ranges from 0.021 × 10-6 to 0. 23 × 10-6 and less than 0.10 × 10-6 for majority trace elements determined. In addition, home-made macro functions including filter and calculator compiled by VBA language under Excel software greatly enhanced off-line data reduction efficiency.``

  15. Inductively coupled plasma mass spectrometer with laser ablation metal ions release detection in the human mouth

    Science.gov (United States)

    Kueerova, Hana; Dostalova, Tatjana; Prochazkova, J.

    2002-06-01

    Presence of more dental alloys in oral cavity often causes pathological symptoms. Due to various and multi-faced symptomatology, they tend to be a source of significant problems not only for the patient but also for the dentist. Metal ions released from alloys can cause subjective and objective symptoms in mouth. The aim of this study was detection of metal elements presence in saliva. There were 4 groups of examined persons: with intact teeth (15 individuals) with metallic restorations, pathological currents 5-30 (mu) A, multi-faced subjective symptomatology and uncharacteristic objective diagnosis (32 patients), with metallic restorations and no subjective symptoms (14 persons) and with metallic restorations, without pathological currents and with problems related to galvanism (13 patients). Presence of 14 metal elements was checked by inductively coupled plasma mass spectrometer with laser ablation. Nd:YAG laser detector was used. There were significant differences in content of silver, gold and mercury between persons with intact teeth and other three groups. There were no differences found between subjects with and without galvanic currents, and presence of subjective and objective symptoms.

  16. Determination of additives in PVC material by UV laser ablation inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Hemmerlin, M.; Mermet, J. M.; Bertucci, M.; Zydowicz, P.

    1997-04-01

    UV laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES) has been applied to the direct determination of additives in solid poly(vinyl chloride) materials. A Nd:YAG laser, operating at its fourth harmonic (266 nm), was used with a beam masking device, in the most reproducible conditions, to introduce solid particles into the plasma torch of a simultaneous ICP-AES system. Emphasis was placed on both precision and accuracy in the analysis of PVC materials by LA-ICP-AES. A series of six in-house PVC reference materials was prepared by incorporating several additives in increasing concentrations. Three alternative methods were evaluated to certify the amount of incorporated elements: ICP-AES with sample dissolution, NAA and XRF. Satisfactory results and good agreement were obtained for seven elements (Al, Ca, Cd, Mg, Sb, Sn and Ti) among the ten incorporated. Sample homogeneity appeared to be satisfactory, and calibration graphs obtained by LA-ICP-AES for several elements are presented. Finally, the performance of the technique in terms of repeatability (1.6-5%), reproducibility (2-5%), and limits of detection was investigated.

  17. Laser ablation inductively coupled plasma mass spectrometry imaging of metals in experimental and clinical Wilson's disease.

    Science.gov (United States)

    Boaru, Sorina Georgiana; Merle, Uta; Uerlings, Ricarda; Zimmermann, Astrid; Flechtenmacher, Christa; Willheim, Claudia; Eder, Elisabeth; Ferenci, Peter; Stremmel, Wolfgang; Weiskirchen, Ralf

    2015-04-01

    Wilson's disease is an autosomal recessive disorder in which the liver does not properly release copper into bile, resulting in prominent copper accumulation in various tissues. Affected patients suffer from hepatic disorders and severe neurological defects. Experimental studies in mutant mice in which the copper-transporting ATPase gene (Atp7b) is disrupted revealed a drastic, time-dependent accumulation of hepatic copper that is accompanied by formation of regenerative nodes resembling cirrhosis. Therefore, these mice represent an excellent exploratory model for Wilson's disease. However, the precise time course in hepatic copper accumulation and its impact on other trace metals within the liver is yet poorly understood. We have recently established novel laser ablation inductively coupled plasma mass spectrometry protocols allowing quantitative metal imaging in human and murine liver tissue with high sensitivity, spatial resolution, specificity and quantification ability. By use of these techniques, we here aimed to comparatively analyse hepatic metal content in wild-type and Atp7b deficient mice during ageing. We demonstrate that the age-dependent accumulation of hepatic copper is strictly associated with a simultaneous increase in iron and zinc, while the intrahepatic concentration and distribution of other metals or metalloids is not affected. The same findings were obtained in well-defined human liver samples that were obtained from patients suffering from Wilson's disease. We conclude that in Wilson's disease the imbalances of hepatic copper during ageing are closely correlated with alterations in intrahepatic iron and zinc content.

  18. Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    Science.gov (United States)

    Becker, J Sabine; Zoriy, Miroslav; Matusch, Andreas; Wu, Bei; Salber, Dagmar; Palm, Christoph; Becker, J Susanne

    2010-01-01

    The distribution analysis of (essential, beneficial, or toxic) metals (e.g., Cu, Fe, Zn, Pb, and others), metalloids, and non-metals in biological tissues is of key interest in life science. Over the past few years, the development and application of several imaging mass spectrometric techniques has been rapidly growing in biology and medicine. Especially, in brain research metalloproteins are in the focus of targeted therapy approaches of neurodegenerative diseases such as Alzheimer's and Parkinson's disease, or stroke, or tumor growth. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using double-focusing sector field (LA-ICP-SFMS) or quadrupole-based mass spectrometers (LA-ICP-QMS) has been successfully applied as a powerful imaging (mapping) technique to produce quantitative images of detailed regionally specific element distributions in thin tissue sections of human or rodent brain. Imaging LA-ICP-QMS was also applied to investigate metal distributions in plant and animal sections to study, for example, the uptake and transport of nutrient and toxic elements or environmental contamination. The combination of imaging LA-ICP-MS of metals with proteomic studies using biomolecular mass spectrometry identifies metal-containing proteins and also phosphoproteins. Metal-containing proteins were imaged in a two-dimensional gel after electrophoretic separation of proteins (SDS or Blue Native PAGE). Recent progress in LA-ICP-MS imaging as a stand-alone technique and in combination with MALDI/ESI-MS for selected life science applications is summarized.

  19. Improved Cd determination in glasses by laser ablation inductively coupled plasma mass spectrometry using nitrogen as a matrix modifier

    Institute of Scientific and Technical Information of China (English)

    Qian Ni; Zhao Chu Hu; Zheng Yu Bao; Ya Feng Zhang

    2009-01-01

    The addition of 5-10 mL min-1 nitrogen to the central channel of plasma in Laser ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) increases the sensitivities of Cd by a factor of 3 and decreases oxide interferences by one order of magnitude, which allows the direct analysis of trace levels of Cd in glass samples. This simple method shows a great potential for the direct determination of Cd in various kinds of samples.

  20. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos S. [Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, SP (Brazil); Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Schenk, Emily R. [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Professor Arthur Riedel 275, Diadema, SP (Brazil); Krug, Francisco José [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Almirall, José R., E-mail: almirall@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States)

    2014-04-01

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg{sup −1} for Zn to as high as 94 mg kg{sup −1} for K but were generally below 6 mg kg{sup −1} for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ∼ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ∼ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis. - Highlights: • An evaluation of LA-ICP-OES for the direct analysis of pelleted plant material is reported. • Orange citrus, soy and sugarcane plants were pressed into pellets and sampled directly. • The element menu consisted of Ca, Mg, P, K, Fe, Mn, Zn and B. • LODs for the method ranged from 0.1 mg kg{sup −1} for Zn to 94 mg kg{sup −1} for K. • The precision ranged from 4% RSD for Mn to 17% RSD for Zn (∼ 6.5% RSD average)

  1. Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon.

    Science.gov (United States)

    Poitrasson, Franck; Mao, Xianglei; Mao, Samuel S; Freydier, Rémi; Russo, Richard E

    2003-11-15

    We compared the analytical performance of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The benefit of ultrafast lasers was evaluated regarding thermal-induced chemical fractionation, that is otherwise well known to limit LA-ICPMS. Both lasers had a Gaussian beam energy profile and were tested using the same ablation system and ICPMS analyzer. Resulting crater morphologies and analytical signals showed more straightforward femtosecond laser ablation processes, with minimal thermal effects. Despite a less stable energy output, the ultrafast laser yielded elemental (Pb/U, Pb/Th) and Pb isotopic ratios that were more precise, repeatable, and accurate, even when compared to the best analytical conditions for the nanosecond laser. Measurements on NIST glasses, monazites, and zircon also showed that femtosecond LA-ICPMS calibration was less matrix-matched dependent and therefore more versatile.

  2. Determination of minor elements in steelmaking flue dusts using laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Coedo, A G; Padilla, I; Dorado, M T

    2005-07-15

    Element determination in solid waste products from the steel industry usually involves the time-consuming step of preparing a solution of the solid. Laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the analysis of Cr, Ni, Cu, As, Cd and Sn, elements of importance from the point of view of their impact on the environment, in electric arc furnace flue dust (EAFD). A simple method of sample preparation as pressed pellets using a mixture of cellulose and paraffin as binder material was applied. Calibration standards were prepared spiking multielement solution standards to a 1:1 ZnO+Fe(2)O(3) synthetic matrix. The wet powder was dried and mechanically homogenised. Quantitative analysis were based on external calibration using a set of matrix matched calibration standards with Rh as a internal standard. Results obtained using only one-point for calibration without matrix matched, needing less time for standardization and data processing, are also presented. Data are calculated for flue dust reference materials: CRM 876-1 (EAFD), AG-6203 (EAFD), AG-6201 (cupola dust) and AG-SX3705 (coke ashes), and for two representative electrical arc furnace flue dusts samples from Spanish steelmaking companies: MS-1 and MS-2. For the reference materials, an acceptable agreement with certificate values was achieved, and the results for the MS samples matched with those obtained from conventional nebulization solutions (CN). The analytical precision was found to be better than 7% R.S.D. both within a single pellet and between several pellets of the same sample for all the elements.

  3. Comparison of laser ablation and dried solution aerosol as sampling systems in inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Coedo, A G; Padilla, I; Dorado, M T

    2004-12-01

    This paper describes a study designed to determine the possibility of using a dried aerosol solution for calibration in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The relative sensitivities of tested materials mobilized by laser ablation and by aqueous nebulization were established, and the experimentally determined relative sensitivity factors (RSFs) were used in conjunction with aqueous calibration for the analysis of solid steel samples. To such a purpose a set of CRM carbon steel samples (SS-451/1 to SS-460/1) were sampled into an ICP-MS instrument by solution nebulization using a microconcentric nebulizer with membrane desolvating (D-MCN) and by laser ablation (LA). Both systems were applied with the same ICP-MS operating parameters and the analyte signals were compared. The RSF (desolvated aerosol response/ablated solid response) values were close to 1 for the analytes Cr, Ni, Co, V, and W, about 1.3 for Mo, and 1.7 for As, P, and Mn. Complementary tests were carried out using CRM SS-455/1 as a solid standard for one-point calibration, applying LAMTRACE software for data reduction and quantification. The analytical results are in good agreement with the certified values in all cases, showing that the applicability of dried aerosol solutions is a good alternative calibration system for laser ablation sampling.

  4. Quantitative Characterization of Gold Nanoparticles by Coupling Thin Layer Chromatography with Laser Ablation Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Yan, Neng; Zhu, Zhenli; Jin, Lanlan; Guo, Wei; Gan, Yiqun; Hu, Shenghong

    2015-06-16

    Metal nanoparticles (NPs) determination has recently attracted considerable attention because of the continuing boom of nanotechnology. In this study, a novel method for separation and quantitative characterization of NPs in aqueous suspension was established by coupling thin layer chromatography (TLC) with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Gold nanoparticles (AuNPs) of various sizes were used as the model system. It was demonstrated that TLC not only allowed separation of gold nanoparticles from ionic gold species by using acetyl acetone/butyl alcohol/triethylamine (6:3:1, v/v) as the mobile phase, but it also achieved the separation of differently sized gold nanoparticles (13, 34, and 47 nm) by using phosphate buffer (0.2 M, pH = 6.8), Triton X-114 (0.4%, w/v), and EDTA (10 mM) as the mobile phase. Various experimental parameters that affecting TLC separation of AuNPs, such as the pH of the phosphate buffer, the coating of AuNPs, the concentrations of EDTA and Triton X-114, were investigated and optimized. It was found that separations of AuNPs by TLC displayed size dependent retention behavior with good reproducibility, and the retardation factors (R(f) value) increased linearly with decreasing nanoparticle size. The analytical performance of the present method was evaluated under optimized conditions. The limits of detection were in the tens of pg range, and repeatability (RSD, n = 7) was 6.3%, 5.9%, and 8.3% for 30 ng of 13 nm AuNPs, 34 nm AuNPs, and 47 nm AuNPs, respectively. The developed TLC-LA-ICP-MS method has also been applied to the analysis of spiked AuNPs in lake water, river water, and tap water samples.

  5. Investigation of lanthanum-strontium-cobalt ferrites using laser ablation inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Óvári, Mihály; Tarsoly, Gergely; Németh, Zoltán; Mihucz, Victor G.; Záray, Gyula

    2017-01-01

    In the present study, suitability of laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for characterization of the purity and homogeneity of lanthanum-strontium-cobalt ferrite (LSCF) ceramic microsamples with general formula La1 - xSrxFe0.025Co0.975O3 (0.00 ≤ x ≤ 0.50) was studied through determination of their Sr:La ratios as well as Sr content either in depth or line profiling mode. The Sr content of the LSCF samples expressed as weight percent ranged between 5.8% and 9.7% in the case of wet chemical ICP-MS analysis, while theoretical values varied from 5.5% to 9.4%. In the case of LA-ICP-MS, relative standard deviation of the La-normalized Sr intensities was sufficient to characterize the homogeneity of the studied samples. Major and trace element (Mn, Ni, Cu, Mg, Al, Ba) concentrations could be detected at medium resolution of the applied sector field ICP-MS instrument after microwave-assisted acid digestion. For depth and line profiling, a successful approach consisted of the normalization of intensities of Sr, Fe and Co with the corresponding La counts. For the determination of the elemental ratios of La and Sr, the methods involving LA were in good agreement with theoretical values by standardization to an in-house standard corresponding to the LSCF sample having the highest x value (i.e., 0.50) checked by wet chemical ICP-MS measurements. Thus, assessment of fine scale doping of synthesized perovskite type of microsamples could be achieved by the proposed LA-ICP-MS based on a novel calibration approach applying an in-house perovskite standard. Therefore, LA-ICP-MS can be recommended for quality control of perovskite-based products. In memoriam Attila Vértes (1934-2011), full professor of the Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary.

  6. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Cleveland, Danielle; Stchur, Peter; Hou, Xiandeng; Yang, Karl X; Zhou, Jack; Michel, Robert G

    2005-12-01

    It has been shown that an increase in sensitivity and selectivity of detection of an analyte can be achieved by tuning the ablation laser wavelength to match that of a resonant gas-phase transition of that analyte. This has been termed resonant laser ablation (RLA). For a pulsed tunable nanosecond laser, the data presented here illustrate the resonant enhancement effect in pure copper and aluminum samples, chromium oxide thin films, and for trace molybdenum in stainless steel samples, and indicate two main characteristics of the RLA phenomenon. The first is that there is an increase in the number of atoms ablated from the surface. The second is that the bandwidth of the wavelength dependence of the ablation is on the order of 1 nm. The effect was found to be virtually identical whether the atoms were detected by use of a microwave-induced plasma with atomic emission detection, by an inductively coupled plasma with mass spectrometric detection, or by observation of the number of laser pulses required to penetrate through thin films. The data indicate that a distinct ablation laser wavelength dependence exists, probably initiated via resonant radiation trapping, and accompanied by collisional broadening. Desorption contributions through radiation trapping are substantiated by changes in crater morphology as a function of wavelength and by the relatively broad linewidth of the ablation laser wavelength scans, compared to gas-phase excitation spectra. Also, other experiments with thin films demonstrate the existence of a distinct laser-material interaction and suggest that a combination of desorption induced by electronic transition (DIET) with resonant radiation trapping could assist in the enhancement of desorption yields. These results were obtained by a detailed inspection of the effect of the wavelength of the ablation laser over a narrow range of energy densities that lie between the threshold of laser-induced desorption of species and the usual analytical

  7. Infrared laser ablation study of pressed soil pellets with inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mikolas, J.; Musil, P.; Stuchlikova, V.; Novotny, K.; Otruba, V.; Kanicky, V. [Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University Brno, Kotlarska 2, 61137 Brno (Czech Republic)

    2002-09-01

    Potential of infrared laser ablation (LA) coupled with ICP-AES as a technique suitable for the determination of trace elements (Zn, Cu, Ni, Cr, and V) in agricultural soils was studied. Operating parameters such as laser beam energy, laser beam focusing with respect to the sample surface, and velocity of the sample translation in the plane perpendicular to the laser beam were optimized. Soil samples were mixed with powdered Ag as a binder, and an internal standard (GeO{sub 2}), and pressed into pellets. Calibration samples were prepared by adding known amounts of oxides of elements of interest into soils of known elemental composition and then processed in the same way as the analyzed samples. Calibration curves were found to be linear at least up to several hundreds of mg kg{sup -1} for the elements of interest. The elemental contents obtained by using LA-ICP-AES were compared with those obtained by analysis using wet chemistry followed by ICP-AES with pneumatic nebulization (PN). The results were in good agreement. Accuracy was also tested using certified reference soils with a bias not exceeding 10% relative. (orig.)

  8. Characterization of the aerosol produced by infrared femtosecond laser ablation of polyacrylamide gels for the sensitive inductively coupled plasma mass spectrometry detection of selenoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Claverie, Fanny [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 Avenue du President Angot, 64053 Pau Cedex 9 (France); Novalase SA, Z.I de la Briqueterie, 6 Impasse du bois de la Grange, 33610 Canejan (France); Pecheyran, Christophe [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 Avenue du President Angot, 64053 Pau Cedex 9 (France)], E-mail: Christophe.pecheyran@univ-pau.fr; Mounicou, Sandra [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 Avenue du President Angot, 64053 Pau Cedex 9 (France); Ballihaut, Guillaume [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 Avenue du President Angot, 64053 Pau Cedex 9 (France); Laboratoire d' Ecologie Moleculaire (Microbiologie), UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, avenue de l' Universite, B.P. 1155, F-64013 Pau (France); Fernandez, Beatriz [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 Avenue du President Angot, 64053 Pau Cedex 9 (France); Alexis, Joel [Laboratoire Genie de Production, Ecole Nationale d' Ingenieurs de Tarbes, 47 avenue d' Azereix BP 1629, 65016 Tarbes (France)] (and others)

    2009-07-15

    A 2D high repetition rate femtosecond laser ablation strategy (2-mm wide lane) previously developed for the detection of selenoproteins in gel electrophoresis by inductively coupled plasma mass spectrometry was found to increase signal sensitivity by a factor of 40 compared to conventional nanosecond ablation (0.12-mm wide lane) [G. Ballihaut, F. Claverie, C. Pecheyran, S. Mounicou, R. Grimaud and R. Lobinski, Sensitive Detection of Selenoproteins in Gel Electrophoresis by High Repetition Rate Femtosecond Laser Ablation-Inductively Coupled Plasma Mass Spectrometry, Anal. Chem. 79 (2007) 6874-6880]. Such improvement couldn't be explained solely by the difference of amount of material ablated, and then, was attributed to the aerosol properties. In order to validate this hypothesis, the characterization of the aerosol produced by nanosecond and high repetition rate femtosecond laser ablation of polyacrylamide gels was investigated. Our 2D high repetition rate femtosecond laser ablation strategy of 2-mm wide lane was found to produce aerosols of similar particle size distribution compared to nanosecond laser ablation of 0.12-mm wide lane, with 38% mass of particles < 1 {mu}m. However, at high repetition rate, when the ablated surface was reduced, the particle size distribution was shifted toward thinner particle diameter (up to 77% for a 0.12-mm wide lane at 285 {mu}m depth). Meanwhile, scanning electron microscopy was employed to visualize the morphology of the aerosol. In the case of larger ablation, the fine particles ejected from the sample were found to form agglomerates due to higher ablation rate and then higher collision probability. Additionally, investigations of the plasma temperature changes during the ablation demonstrated that the introduction of such amount of polyacrylamide gel particles had very limited impact on the ICP source ({delta}T{approx} 25 {+-} 5 K). This suggests that the cohesion forces between the thin particles composing these large

  9. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, Rick|info:eu-repo/dai/nl/357286081; Jilbert, Tom|info:eu-repo/dai/nl/304835714; Mason, Paul R D|info:eu-repo/dai/nl/304829331; de Lange, Gert J.|info:eu-repo/dai/nl/073930962; Reichart, Gert Jan|info:eu-repo/dai/nl/165599081

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (μm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental

  10. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, R.; Jilbert, T.; de Lange, G.J.; Reichart, G.J.

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (µm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental

  11. Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Schulze, Marie; Ziegerick, Marco; Horn, Ingo; Weyer, Stefan; Vogt, Carla

    2017-04-01

    In comparison to isotope analysis of dissolved samples femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS) enables precise isotope ratio analyses consuming much less sample material and with a minimum effort in sample preparation. This is especially important for the investigation of valuable historical objects for which visual traces of sampling are unwanted. The present study provides a basis for tin isotope ratio measurements using LA-MC-ICP-MS technique. For this, in house isotope standards had to be defined. Investigations on interferences and matrix effects illustrate that beside Sb only high Te contents (with values above those to be expected in cassiterite) result in a significant shift of the measured tin isotope ratios. This effect can partly be corrected for using natural isotope abundances. However, a natural isotope fractionation of Te cannot be excluded. Tin beads reduced from cassiterite were analysed by laser ablation and after dissolution. It was shown that tin isotope ratios can be determined accurately by using fs-LA-MC-ICP-MS. Furthermore the homogeneity of tin isotope ratios in cassiterite was proven.

  12. Green and Fast Laser Fusion Technique for Bulk Silicate Rock Analysis by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Zhang, Chenxi; Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Zong, Keqing; Li, Ming; Chen, Haihong; Hu, Shenghong

    2016-10-18

    Sample preparation of whole-rock powders is the major limitation for their accurate and precise elemental analysis by laser ablation inductively-coupled plasma mass spectrometry (ICPMS). In this study, a green, efficient, and simplified fusion technique using a high energy infrared laser was developed for major and trace elemental analysis. Fusion takes only tens of milliseconds for each sample. Compared to the pressed pellet sample preparation, the analytical precision of the developed laser fusion technique is higher by an order of magnitude for most elements in granodiorite GSP-2. Analytical results obtained for five USGS reference materials (ranging from mafic to intermediate to felsic) using the laser fusion technique generally agree with recommended values with discrepancies of less than 10% for most elements. However, high losses (20-70%) of highly volatile elements (Zn and Pb) and the transition metal Cu are observed. The achieved precision is within 5% for major elements and within 15% for most trace elements. Direct laser fusion of rock powders is a green and notably simple method to obtain homogeneous samples, which will significantly accelerate the application of laser ablation ICPMS for whole-rock sample analysis.

  13. Laser ablation inductively coupled plasma mass spectrometry: a new tool for trace element analysis in ice cores.

    Science.gov (United States)

    Reinhardt, H; Kriews, M; Miller, H; Schrems, O; Lüdke, C; Hoffmann, E; Skole, J

    2001-07-01

    A new method for the detection of trace elements in polar ice cores using laser ablation with subsequent inductively coupled plasma mass spectrometry analysis is described. To enable direct analysis of frozen ice samples a special laser ablation chamber was constructed. Direct analysis reduces the risk of contamination. The defined removal of material from the ice surface by means of a laser beam leads to higher spatial resolution (300-1000 microm) in comparison to investigations with molten ice samples. This is helpful for the detection of element signatures in annual layers of ice cores. The method was applied to the successful determination of traces for the elements Mg, Al, Fe, Zn, Cd, Pb, some rare-earth elements (REE) and minor constituents such as Ca and Na in ice cores. These selected elements serve as tracer elements for certain sources and their element signatures detected in polar ice cores can give hints to climate changes in the past. We report results from measurements of frozen ice samples, the achievable signal intensities, standard deviations and calibration graphs as well as the first signal progression of 205Pb in an 8,000-year-old ice core sample from Greenland. In addition, the first picture of a crater on an ice surface burnt by an IR laser made by cryogenic scanning electron microscopy is presented.

  14. Unambiguous characterization of gunshot residue particles using scanning laser ablation and inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Abrego, Zuriñe; Ugarte, Ana; Unceta, Nora; Fernández-Isla, Alberto; Goicolea, M Aranzazu; Barrio, Ramón J

    2012-03-06

    A new method based on scanning laser ablation and inductively coupled plasma-mass spectrometry (LA-ICPMS) for the detection and identification of gunshot residue (GSR) particles from firearms discharges has been developed. Tape lifts were used to collect inorganic residues from skin surfaces. The laser ablation pattern and ICPMS conditions were optimized for the detection of metals present in GSR, such as (121)Sb, (137)Ba, and (208)Pb. Other isotopes ((27)Al, (29)Si, (31)P, (33)S, (35)Cl, (39)K, (44)Ca, (57)Fe, (60)Ni, (63)Cu, (66)Zn, and (118)Sn) were monitored during the ICPMS analyses to obtain additional information to possibly classify the GSR particles as either characteristic of GSR or consistent with GSR. In experiments with real samples, different firearms, calibers, and ammunitions were used. The performed method evaluation confirms that the developed methodology can be used as an alternative to the standard scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) technique, with the significant advantage of drastically reducing the analysis time to less than 66 min.

  15. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, M.E., E-mail: mshaheen73@science.tanta.edu.eg [Department of Physics, Faculty of Sciences, Tanta University, Tanta (Egypt); Gagnon, J.E.; Fryer, B.J. [Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, Ontario N9B 3P4 (Canada); Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2015-05-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using {sup 66}Zn/{sup 63}Cu, {sup 208}Pb/{sup 238}U, {sup 232}Th/{sup 238}U, {sup 66}Zn/{sup 232}Th and {sup 66}Zn/{sup 208}Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%). - Highlights: • Fractionation and ICP-MS signal response were investigated for two different pulse widths using NIST 610 and Naval Brass. • Dependence of fractionation indices on repetition rate and pulse width. • Higher ablation rate was observed in picosecond compared to

  16. Role of laser ablation-inductively coupled plasma-mass spectrometry in cultural heritage research: a review.

    Science.gov (United States)

    Giussani, Barbara; Monticelli, Damiano; Rampazzi, Laura

    2009-03-02

    Cultural heritage represents a bridge between the contemporary society and the past populations, and a strong collaboration between archaeologists, art historians and analysts may lead to the decryption of the information hidden in an ancient object. Quantitative elemental compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship of ancient cultures with the environment. Nevertheless, the scientific investigation of an artifact should be carried out complying with some important constraints: above all the analyses should be as little destructive as possible and performed directly on the object to preserve its integrity. Laser ablation sampling coupled to inductively coupled plasma-mass spectrometry (LA-ICP-MS) fulfils these requirements exhibiting comparably strong analytical performance in trace element determination. This review intends to show through the applications found in the literature how valuable is the contribution of LA-ICP-MS in the investigation of ancient materials such as obsidian, glass, pottery, human remains, written heritage, metal objects and miscellaneous stone materials. The main issues related to cultural heritage investigation are introduced, followed by a brief description of the features of this technique. An overview of the exploitation of LA-ICP-MS is then presented. Finally, advantages and drawbacks of this technique are critically discussed: the fit for purpose and prospects of the use of LA-ICP-MS are presented.

  17. Laser ablation-inductively coupled plasma mass spectrometry: an emerging technology for detecting rare cells in tissue sections.

    Science.gov (United States)

    Managh, Amy J; Hutchinson, Robert W; Riquelme, Paloma; Broichhausen, Christiane; Wege, Anja K; Ritter, Uwe; Ahrens, Norbert; Koehl, Gudrun E; Walter, Lisa; Florian, Christian; Schlitt, Hans J; Reid, Helen J; Geissler, Edward K; Sharp, Barry L; Hutchinson, James A

    2014-09-01

    Administering immunoregulatory cells to patients as medicinal agents is a potentially revolutionary approach to the treatment of immunologically mediated diseases. Presently, there are no satisfactory, clinically applicable methods of tracking human cells in patients with adequate spatial resolution and target cell specificity over a sufficient period of time. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) represents a potential solution to the problem of detecting very rare cells in tissues. In this article, this exquisitely sensitive technique is applied to the tracking of gold-labeled human regulatory macrophages (Mregs) in immunodeficient mice. Optimal conditions for labeling Mregs with 50-nm gold particles were investigated by exposing Mregs in culture to variable concentrations of label: Mregs incubated with 3.5 × 10(9) particles/ml for 1 h incorporated an average of 3.39 × 10(8) Au atoms/cell without loss of cell viability. Analysis of single, gold-labeled Mregs by LA-ICP-MS registered an average of 1.9 × 10(5) counts/cell. Under these conditions, 100% labeling efficiency was achieved, and label was retained by Mregs for ≥36 h. Gold-labeled Mregs adhered to glass surfaces; after 24 h of culture, it was possible to colabel these cells with human-specific (154)Sm-tagged anti-HLA-DR or (174)Yb-tagged anti-CD45 mAbs. Following injection into immunodeficient mice, signals from gold-labeled human Mregs could be detected in mouse lung, liver, and spleen for at least 7 d by solution-based inductively coupled plasma mass spectrometry and LA-ICP-MS. These promising results indicate that LA-ICP-MS tissue imaging has great potential as an analytical technique in immunology. Copyright © 2014 by The American Association of Immunologists, Inc.

  18. Multiplexed microRNA detection using lanthanide-labeled DNA probes and laser ablation inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    de Bang, Thomas Christian; Shah, Pratik; Cho, Seok Keun

    2014-01-01

    . The narrow size range of miRNAs (20-24 nucleotides) combined with the chemical properties of conventional reporter tags has hampered the development of multiplexed miRNA assays. In this study, we have used lanthanide-labeled DNA probes for the detection of miRNAs on membranes using laser ablation inductively...

  19. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  20. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic)], E-mail: kaiser@fme.vutbr.cz; Galiova, M.; Novotny, K.; Cervenka, R. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Reale, L. [Faculty of Sciences, University of L' Aquila, Via Vetoio (Coppito 1), 67010 L' Aquila (Italy); Novotny, J.; Liska, M.; Samek, O. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Kanicky, V.; Hrdlicka, A. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Stejskal, K.; Adam, V.; Kizek, R. [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, 613 00 Brno (Czech Republic)

    2009-01-15

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 {mu}m in a up to cm x cm area of sunflower (Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  1. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    Science.gov (United States)

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  2. Characterization of a 50kW Inductively Coupled Plasma Torch for Testing of Ablative Thermal Protection Materials

    Science.gov (United States)

    Greene, Benton R.; Clemens, Noel T.; Varghese, Philip L.; Bouslog, Stanley A.; Del Papa, Steven V.

    2017-01-01

    With the development of new manned spaceflight capabilities including NASA's Orion capsule and the Space-X Dragon capsule, there is a renewed importance of understanding the dynamics of ablative thermal protection systems. To this end, a new inductively coupled plasma torch facility is being developed at UT-Austin. The torch operates on argon and/or air at plasma powers up to 50 kW. In the present configuration the flow issues from a low-speed subsonic nozzle and the hot plume is characterized using slug calorimetry and emission spectroscopy. Preliminary measurements using emission spectroscopy have indicated that the torch is capable of producing an air plasma with a temperature between 6,000 K and 8,000 K depending on the power and flow settings and an argon plasma with a temperature of approximately 12,000 K. The operation envelope was measured, and heat flux measured for every point within the envelope using both a slug calorimeter and a Gardon gauge heat flux sensor. The torch was found to induce a stagnation point heat flux of between 90 and 225 W/sq cm.

  3. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics.

    Science.gov (United States)

    Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne

    2010-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.

  4. Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS).

    Science.gov (United States)

    Hare, Dominic J; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P; Bush, Ashley I; Crouch, Peter J; Doble, Philip A

    2017-01-22

    Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures.

  5. High-resolution laser ablation-inductively coupled plasma-mass spectrometry imaging of cisplatin-induced nephrotoxic side effects.

    Science.gov (United States)

    Van Acker, Thibaut; Van Malderen, Stijn J M; Van Heerden, Marjolein; McDuffie, James Eric; Cuyckens, Filip; Vanhaecke, Frank

    2016-11-16

    Two-dimensional elemental mapping (bioimaging) via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was performed on 5 μm thick formalin-fixed, paraffin-embedded kidney tissue sections from Cynomolgus monkeys administered with increasing pharmacological doses of cisplatin. Laterally resolved pixels of 1 μm were achieved, enabling elemental analysis on a (sub-)cellular level. Zones of high Pt response were observed in the renal cortex, where proximal tubules are present, the epithelium of which is responsible for partial reabsorption of cisplatin. Histopathological evaluation, of hematoxylin and eosin-stained serial sections, adjacent to the sections probed via LA-ICP-MS, revealed minimal to mild cisplatin-related lesions (<100 μm) in the renal cortex. Necrotic proximal tubules with sloughed epithelial cells in their lumen could be linked directly to the areas with the highest accumulation of cisplatin, indicating a direct link between cellular concentration and toxicity, thereby providing more insight into the mechanisms through which renal damage occurs.

  6. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Duodu, Godfred Odame; Goonetilleke, Ashantha; Allen, Charlotte; Ayoko, Godwin A

    2015-10-22

    Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (-52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments.

  7. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duodu, Godfred Odame [School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), 2 George St, 4001, QLD (Australia); Goonetilleke, Ashantha [School of Civil Engineering and Built Environment, Science and Engineering Faculty, Queensland University of Technology (QUT), 2 George St, 4001, QLD (Australia); Allen, Charlotte [Institute for Future Environments, Queensland University of Technology (QUT), 2 George St, 4001, QLD (Australia); Ayoko, Godwin A., E-mail: g.ayoko@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), 2 George St, 4001, QLD (Australia)

    2015-10-22

    Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (−52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments. - Highlights: • Wet milling was used to produce pressed tablet sediment for LA-ICP-MS analysis. • Milling was effective for refractive elements with narrow range of particle size. • This is the first use of LA-ICP-MS for Hg analysis in sediment samples. • Acceptable accuracy and precision were obtained for most of the elements studied. • Detection limits down to parts per trillion were observed for some elements.

  8. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    Science.gov (United States)

    Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.

  9. Direct multielement trace analyses of silicon carbide powders by spark ablation simultaneous inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kiera, Arne F.; Schmidt-Lehr, Sebastian; Song, Ming [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Bings, Nicolas H. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: bings@chemie.uni-hamburg.de; Broekaert, Jose A.C. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)

    2008-02-15

    A procedure for the direct analysis of silicon carbide powders (SiC) by simultaneous detection inductively coupled plasma optical emission spectrometry using a Spectro-CIROS{sup TM} spectrometer (CCD-ICP-OES) and a novel spark ablation system Spectro-SASSy (SA) as sample introduction technique is described. The sample preparation procedure for SA of non-conducting material is based on mixing the sample powders with a conducting matrix, in this case copper and briquetting pellets. Pressing time, pressure and mixing ratio are shown to be important parameters of the pelleting technique with respect to their mechanical stability for the reliability of the analysis results. A mixing ratio of 0.2 g +0.6 g for SiC and Cu, a pressure of 10 t cm{sup -2} and a pressing time of 8 min have been found optimum. It has also been shown that the spark parameters selected are crucial for uniform volatilization. Electron probe micrographs of the burning spots and the analytical signal magnitude showed that a rather hard spark at 100 Hz was optimum. The determination of trace elements in silicon carbide powders is demonstrated using a calibration based on the addition of standard solutions. For Al, Ti, V, Mn and Fe detection limits in the lower {mu}g g{sup -1} range can be achieved. Internal standardization with Y in combination with the addition of standard solutions allows relative standard deviations in the range of 4 to 24% for concentration levels of the order of 3 to 350 {mu}g g{sup -1}.

  10. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Rusk, Brian; Koenig, Alan; Lowers, Heather

    2011-01-01

    Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.

  11. Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablation-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Yokoyama, Takaomi D; Suzuki, Toshihiro; Kon, Yoshiaki; Hirata, Takafumi

    2011-12-01

    We have developed a new calibration technique for multielement determination and U-Pb dating of zircon samples using laser ablation-inductively coupled plasma mass spectrometry (ICPMS) coupled with galvanometric optics. With the galvanometric optics, laser ablation of two or more sample materials could be achieved in very short time intervals (~10 ms). The resulting sample aerosols released from different ablation pits or different solid samples were mixed and homogenized within the sample cell and then transported into the ICP ion source. Multiple spot laser ablation enables spiking of analytes or internal standard elements directly into the solid samples, and therefore the standard addition calibration method can be applied for the determination of trace elements in solid samples. In this study, we have measured the rare earth element (REE) abundances of two zircon samples (Nancy 91500 and Prešovice) based on the standard addition technique, using a direct spiking of analytes through a multispot laser ablation of the glass standard material (NIST SRM612). The resulting REE abundance data show good agreement with previously reported values within analytical uncertainties achieved in this study (10% for most elements). Our experiments demonstrated that nonspectroscopic interferences on 14 REEs could be significantly reduced by the standard addition technique employed here. Another advantage of galvanometric devices is the accumulation of sample aerosol released from multiple spots. In this study we have measured the U-Pb age of a zircon sample (LMR) using an accumulation of sample aerosols released from 10 separate ablation pits of low diameters (~8 μm). The resulting (238)U-(206)Pb age data for the LMR zircons was 369 ± 64 Ma, which is in good agreement with previously reported age data (367.6 ± 1.5 Ma). (1) The data obtained here clearly demonstrate that the multiple spot laser ablation-ICPMS technique can become a powerful approach for elemental and isotopic

  12. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Vašinová Galiová, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Čopjaková, Renata; Škoda, Radek [Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Štěpánková, Kateřina; Vaňková, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kuta, Jan [Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 126/3, 625 00 Brno (Czech Republic); Prokeš, Lubomír [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kynický, Jindřich [Department of Pedology and Geology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno (Czech Republic); and others

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS. - Highlights: • Elements in phosphate and oxalate urolith phases were quantified by LA-ICP-MS. • SRM NIST 1486 Bone Meal was proved suitable for quantification in uroliths. • Different ablation rates in particular phases were included at quantification. • Oxalate and apatite phases show opposite hardness order to natural minerals. • Uroliths were classified according to elemental association to phases.

  13. Application of femtosecond laser ablation inductively coupled plasma mass spectrometry for quantitative analysis of thin Cu(In,Ga)Se{sub 2} solar cell films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seokhee [School of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Gonzalez, Jhanis J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Applied Spectra Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Yoo, Jong H. [Applied Spectra Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Chirinos, Jose R. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041A (Venezuela, Bolivarian Republic of); Russo, Richard E. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Applied Spectra Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Jeong, Sungho, E-mail: shjeong@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2015-02-27

    This work reports that the composition of Cu(In,Ga)Se{sub 2} (CIGS) thin solar cell films can be quantitatively predicted with high accuracy and precision by femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS). It is demonstrated that the results are strongly influenced by sampling conditions during fs-laser beam (λ = 1030 nm, τ = 450 fs) scanning on the CIGS surface. The fs-LA-ICP-MS signals measured at optimal sampling conditions generally provide a straight line calibration with respect to the reference concentrations measured by inductively coupled plasma optical emission spectroscopy (ICP-OES). The concentration ratios predicted by fs-LA-ICP-MS showed high accuracy, to 95–97% of the values measured with ICP-OES, for Cu, In, Ga, and Se elements. - Highlights: • Laser ablation inductively coupled plasma mass spectrometry of thin film is reported. • Concentration ratio prediction with a confidence level of 95–97% is achieved. • Quantitative determination of composition is demonstrated.

  14. Depth profile analysis of various titanium based coatings on steel and tungsten carbide using laser ablation inductively coupled plasma--"time of flight" mass spectrometry.

    Science.gov (United States)

    Bleiner, D; Plotnikov, A; Vogt, C; Wetzig, K; Günther, D

    2000-01-01

    A homogenized 193 nm ArF* laser ablation system coupled to an inductively coupled plasma-"Time of Flight"-mass spectrometer (LA-ICP-TOFMS) was tested for depth profiling analysis on different single-layer Ti based coatings on steel and W carbides. Laser parameters, such as repetition rate, pulse energy and spatial resolution were tested to allow optimum depth related calibration curves. The ablation process using a laser repetition rate of 3 Hz, 120 microm crater diameter, and 100 mJ output energy, leads to linear calibration curves independent of the drill time or peak area used for calibrating the thickness of the layer. The best depth resolution obtained (without beam splitter) was 0.20 microm per laser shot. The time resolution of the ICP-TOFMS of 102 ms integration time per isotope was sufficient for the determination of the drill time of the laser through the coatings into the matrix with better than 2.6% RSD (about 7 microm coating thickness, n = 7). Variation of the volume of the ablation cell was not influencing the depth resolution, which suggests that the depth resolution is governed by the ablation process. However, the application on the Ti(N,C) based single layer shows the potential of LA-ICP-TOFMS as a complementary technique for fast depth determinations on various coatings in the low to medium microm region.

  15. Laser ablation inductively coupled plasma dynamic reaction cell mass spectrometry for the multi-element analysis of polymers

    Science.gov (United States)

    Resano, M.; García-Ruiz, E.; Vanhaecke, F.

    2005-11-01

    In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the μg g - 1 level in this kind of materials, due to the interference of ArC + ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g - 1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g - 1 level to tens of thousands of μg g - 1 . However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 μg g - 1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g - 1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due

  16. Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lingott, Jana; Lindner, Uwe; Telgmann, Lena; Esteban-Fernández, Diego; Jakubowski, Norbert; Panne, Ulrich

    2016-02-01

    Gadolinium (Gd) based contrast agents (CA) are used to enhance magnetic resonance imaging. As a consequence of excretion by patients and insufficient elimination in wastewater treatment plants they are detected in high concentrations in surface water. At present, little is known about the uptake of these species by living organisms in aquatic systems. Therefore the uptake of gadolinium containing chelates by plants and animals grown in exposed water or on soil irrigated with exposed water was investigated. For this purpose two types of plants were treated with two different contrast agents. The uptake of the Gd contrast agents was studied by monitoring the elemental distribution with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This technique allows the multi-elemental analysis of solid samples with high resolution and little sample preparation. The analysis of L. minor showed that the uptake of Gd correlated with the concentration of gadodiamide in the water. The higher the concentration in the exposed water, the larger the Gd signal in the LA-ICP-MS acquired image. Exposure time experiments showed saturation within one day. The L. minor had contact with the CAs through roots and fronds, whereas the L. sativum only showed uptake through the roots. These results show that an external absorption of the CA through the leaves of L. sativum was impossible. All the analyzed parts of the plant showed Gd signal from the CA; the highest being at the main vein of the leaf. It is shown that the CAs can be taken up from plants. Furthermore, the uptake and distribution of Gd in Daphnia magna were shown. The exposure via cultivation medium is followed by Gd signals on the skin and in the area of the intestine, while the uptake via exposed nutrition algae causes the significantly highest Gd intensities in the area of the intestine. Because there are hints of negative effects for human organism these findings are important as they show that Gd based

  17. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  18. Imaging of Selenium by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in 2-D Electrophoresis Gels and Biological Tissues.

    Science.gov (United States)

    Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra

    2018-01-01

    Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.

  19. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Perdian, David C. [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  20. Elemental Quantitative Distribution and Statistical Analysis on Cross Section of Stainless Steel Sheet by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Qian-hua LUO; Hai-zhou WANG

    2015-01-01

    An innovative application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) technique in illustrating elemental distributions on stainless steel sheets was presented. The technique proved to be a systematic and accurate ap-proach in producing visual images or maps of elemental distributions at cross-sectional surface of a stainless steel sheet. Two stain-less steel sheets served as research objects: 3 mm×1 300 mm hot-rolled stainless steel plate and 1 mm×1 260 mm cold-rolled plate. The cross-sectional surfaces of the two samples at 1/4 position along the width direction were scanned (raster area-44 mm2 and 11 mm2) with a focused laser beam (wavelength 213 nm, diameter of laser crater 100 μm, and laser power 1.6 mJ) in a laser abla-tion chamber. The laser ablation system was coupled to a quadrupole ICP-MS, which made the detection of ion intensities of27Al+, 44Ca+,47Ti+,55Mn+ and56Fe+ within an area of interest possible. One-dimensional (1D) content line distribution maps and two-dimensional (2D) contour maps for speciifc positions or areas were plotted to indicate the element distribution of a target area with high accuracy. Statistic method was used to analyze the acquired data by calculating median contents, maximum segregation, sta-tistic segregation and content-frequency distribution.

  1. Detection of metals in proteins by means of polyacrylamide gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry: application to selenium.

    Science.gov (United States)

    Chéry, Cyrille C; Günther, Detlef; Cornelis, Rita; Vanhaecke, Frank; Moens, Luc

    2003-10-01

    The capabilities of laser ablation-inductively coupled plasma-mass spectrometry for the detection of trace elements in a gel after gel electrophoresis were systematically studied. Figures of merit, such as limit of detection, linearity, and repeatability, were evaluated for various elements (Li, V, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Pd, Ag, Cd, Pt, Tl, Pb). Two ablation strategies were followed: single hole drilling, relevant for ablation of spots after two-dimensional (2-D) separations, and ablation with translation, i.e., on a line, relevant for one-dimensional (1-D) separations. This technique was applied to the detection of selenoproteins in red blood cells extracts after a 1-D separation (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and the detection of selenium-containing proteins in yeast after 2-D electrophoresis (2-DE). The detection procedure was further improved by using the dynamic reaction cell technology, which allowed the removal of the Ar_2(+) interference and hence the use of the most abundant Se isotope, (80)Se. Reaction gases were compared (methane, carbon monoxide, ammonia, oxygen and the combination of argon (collision gas) and hydrogen (reaction gas)). In each instance, the reaction cell parameters were optimized in order to obtain the lowest detection limit for Se (as (80)Se(+), (82)Se(+) or (77)Se(+); and as (80)Se(16)O(+), (82)Se(16)O(+) or (77)Se(16)O(+) with O(2) as the reaction gas). Carbon monoxide was found to offer the best performance. The detection limit with the use of DRC and He as transport gas was 0.07 microg Se g(-1) gel with single hole drilling and 0.15 microg Se g(-1) gel for ablation with translation.

  2. Metallurgical and chemical characterization of copper alloy reference materials within laser ablation inductively coupled plasma mass spectrometry: Method development for minimally-invasive analysis of ancient bronze objects

    Energy Technology Data Exchange (ETDEWEB)

    Walaszek, Damian, E-mail: damian.walaszek@empa.ch [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw (Poland); Senn, Marianne [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Faller, Markus [Laboratory for Jointing Technology and Corrosion, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Philippe, Laetitia [Laboratory for Mechanics of Materials and Nanostructures, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkstrasse 39, CH-3602 Thun (Switzerland); Wagner, Barbara; Bulska, Ewa [University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw (Poland); Ulrich, Andrea [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2013-01-01

    The chemical composition of ancient metal objects provides important information for manufacturing studies and authenticity verification of ancient copper or bronze artifacts. Non- or minimal-destructive analytical methods are preferred to mitigate visible damage. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) enables the determination of major elements as well as impurities down to lower ppm-levels, however, accuracy and precision of analysis strongly depend on the homogeneity of reference materials used for calibration. Moreover, appropriate analytical procedures are required e.g. in terms of ablation strategies (scan mode, spot size, etc.). This study reviews available copper alloy (certified) reference materials — (C)RMs from different sources and contributes new metallurgical data on homogeneity and spatial elemental distribution. Investigations of the standards were performed by optical and scanning electron microscopy with X-ray spectrometry (SEM-EDX) for the following copper alloy and bronze (certified) reference materials: NIST 454, BAM 374, BAM 211, BAM 227, BAM 374, BAM 378, BAS 50.01-2, BAS 50.03-4, and BAS 50.04-4. Additionally, the influence of inhomogeneities on different ablation and calibration strategies is evaluated to define an optimum analytical strategy in terms of line scan versus single spot ablation, variation of spot size, selection of the most appropriate RMs or minimum number of calibration reference materials. - Highlights: ► New metallographic data for copper alloy reference materials are provided. ► Influence of RMs homogeneity on quality of LA-ICPMS analysis was evaluated. ► Ablation and calibration strategies were critically discussed. ► An LA-ICPMS method is proposed for analyzing most typical ancient copper alloys.

  3. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hola, Marketa [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Otruba, Vitezslav [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Kanicky, Viktor [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic)]. E-mail: viktork@chemi.muni.cz

    2006-05-15

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm{sup 3}) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between {+-} 3% and {+-} 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed

  4. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Holá, Markéta; Otruba, Vítězslav; Kanický, Viktor

    2006-05-01

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm 3) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between ± 3% and ± 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed. The

  5. Metal imaging in non-denaturating 2D electrophoresis gels by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the detection of metalloproteins.

    Science.gov (United States)

    Becker, J Susanne; Lobinski, Ryszard; Becker, J Sabine

    2009-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was developed as a powerful analytical technique for metal imaging of 2D gels for the detection of metalloproteins in rat kidney after electrophoretic separation. Protein complexes, extracted with water, were separated in their native state in the first and second dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, manganese and lead, were monitored by LA-ICP-MS after gel ablation by a focused laser beam in a way that the total surface of a selected fragment of the gel was totally ablated. The metal distribution of this part of the gel was then constructed by plotting the metal (isotope) signal intensity as a function of the x,y (isoelectric point, molecular mass) coordinates of the gel. The proteins at locations rich in metals were cut out, digested with trypsin and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS).

  6. Measurement of the isotopic composition of uranium micrometer-size particles by femtosecond laser ablation-inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Amélie, E-mail: amelie.hubert@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Claverie, Fanny [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, UMR 5254, Hélioparc Pau-Pyrénées, 2 Avenue du Président Angot, 64053 Pau (France); Novalase SA, ZI de la Briqueterie, 6 Impasse du Bois de la Grange, 33610 Canejan (France); Pécheyran, Christophe [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, UMR 5254, Hélioparc Pau-Pyrénées, 2 Avenue du Président Angot, 64053 Pau (France); Pointurier, Fabien [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-03-01

    In this paper, we will describe and indicate the performance of a new method based on the use of femtosecond laser ablation (fs-LA) coupled to a quadrupole-based inductively coupled plasma mass spectrometer (ICP-QMS) for analyzing the isotopic composition of micrometer-size uranium particles. The fs-LA device was equipped with a high frequency source (till 10 kHz). We applied this method to 1–2 μm diameter-uranium particles of known isotopic composition and we compared this technique with the two techniques currently used for uranium particle analysis: Secondary Ionization Mass Spectrometry (SIMS) and Fission Track Thermal Ionization Mass Spectrometry (FT-TIMS). By optimizing the experimental conditions, we achieved typical accuracy and reproducibility below 4% on {sup 235}U/{sup 238}U for short transient signals of only 15 s related to 10 to 200 pg of uranium. The detection limit (at the 3 sigma level) was ∼ 350 ag for the {sup 235}U isotope, meaning that {sup 235}U/{sup 238}U isotope ratios in natural uranium particles of ∼ 220 nm diameter can be measured. We also showed that the local contamination resulting from the side deposition of ablation debris at ∼ 100 μm from the ablation crater represented only a small percentage of the initial uranium signal of the ablated particle. Despite the use of single collector ICP-MS, we were able to demonstrate that fs-LA-ICP-MS is a promising alternative technique for determining uranium isotopic composition in particle analysis. - Highlights: • An infrared femtosecond laser ablation device coupled to an ICP-MS is used. • The isotopic composition of micrometer-size U particles is measured. • Results are in good agreement with the ones obtained by other relevant techniques. • Detection limit is 350 attograms for the {sup 235}U isotope • {sup 235}U/{sup 238}U ratios can be measured in 220 nm diameter natural uranium particles.

  7. Analysis of polyacrylamide gels for trace metals using diffusive gradients in thin films and laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Warnken, Kent W; Zhang, Hao; Davison, William

    2004-10-15

    A simple method for the analysis of polyacrylamide diffusive gradients in thin film (DGT) gels by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), employing a novel use of (115)In internal standardization, has been developed. This method allows the determination of Co, Ni, Cu, Zn, Cd, and Pb concentrations (at the DGT filter face) or fluxes in sediments at a spatial resolution of 100 microm. Single-layered gels, using an optimized laser defocus of 4000 microm at 400 mJ power, showed high precision (generally approximately 10%) and a linear response during solution deployment. Of the elements Sc, In, Ba, La, Ce, and Tb, Ba most closely tracked variations in laser energy and showed the highest analytical precision but could not be used as an internal standard due to its elevated presence in natural sediments. Therefore, internal standardization, necessary to normalize data collected on different days, was carried out using (115)In contained within a second layer of backing gel and dried along with the analyte layer as a dual-gel disk. This multilayered gel standard required a laser defocus setting of 1000 microm and a laser power of approximately 800 mJ. Analytical precision for a 64-spot ablation grid at 100-microm spacing was approximately 10%. Verification of this method was carried out on DGT sediment probes deployed in Priest Pot (English Lake District). Results obtained by conventional slicing techniques and aqueous elution agreed with laser ablation results when the different sampling areas were considered. The elution results varied by a factor of laser ablation technique showed a variability of approximately 4, indicating localized elevated concentrations of Co. This higher resolution LA-ICPMS method could ultimately lead to an improved understanding of the geochemical processes responsible for metal uptake and release in sediments.

  8. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Jhanis [Applied Spectra Inc., Fremont, CA (United States)

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elemental composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.

  9. Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Travis [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

  10. Calibration graphs for Ti, Ta and Nb in sintered tungsten carbide by infrared laser ablation inductively coupled plasma atomic emission spectrometry.

    Science.gov (United States)

    Kanický, V; Otruba, V; Mermet, J M

    2001-12-01

    Infrared laser ablation (IR-LA) has been studied as a sample introduction technique for the analysis of sintered cobalt-cemented tungsten carbide materials by inductively coupled plasma atomic emission spectrometry (ICP-AES). Fractionation of cobalt was observed. Linearity of calibration plots was verified at least up to 15% Ti, 8% Ta, and 3% Nb. Above 1% (m/m) Ti, Ta, and Nb, the repeatability of results was better than 3% R.S.D. The relative uncertainty at the centroid of the calibration line was in the range from +/- 3% to +/- 4% for Ti, Ta, and Nb with internal standardization by tungsten and up to +/- 5% without internal standardization. The limits of detection were 0.004% Ti, 0.001% Ta, and 0.004% Nb. Elimination of the cemented hardmetal dissolution procedure is the main advantage of this method.

  11. Biomonitoring of metal contamination in a marine prosobranch snail (Nassarius reticulatus) by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    Science.gov (United States)

    Santos, Mirian C; Wagner, Martin; Wu, Bei; Scheider, Jessica; Oehlmann, Jörg; Cadore, Solange; Becker, J Sabine

    2009-12-15

    An imaging mass spectrometric method using laser ablation inductively coupled plasma spectrometry (LA-ICP-MS) was developed to determine Cu, Zn, Cd, Hg and Pb and metal distribution in longitudinal tissue sections of the marine snail Nassarius reticulatus (Gastropoda, Prosobranchia). Snails were sampled in northern Brittany (France) at three stations with different contamination levels. The quantification of metal distribution (imaging or mapping) in a thin slice of the snail tissue was carried out using different strategies: by one-point calibration and via matrix-matched laboratory standards using different biological materials (BCR 278, snail tissue, and rat brain). Together with the imaging of metals the distribution of two non-metals (carbon and sulfur) was analyzed. The imaging LA-ICP-MS analysis yielded an inhomogeneous distribution for all elements investigated. The detection limits for the distribution analysis of Cu, Zn, Cd, Hg and Pb measured by LA-ICP-MS were in the low microg g(-1) range.

  12. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Galiová, M.; Kaiser, J.; Novotný, K.; Novotný, J.; Vaculovič, T.; Liška, M.; Malina, R.; Stejskal, K.; Adam, V.; Kizek, R.

    2008-12-01

    Single-pulse Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass-Spectrometry (LA-ICP-MS) were applied for mapping the silver and copper distribution in Helianthus Annuus L. samples treated with contaminant in controlled conditions. For Ag and Cu detection the 328.07 nm Ag(I) and 324.75 nm Cu(I) lines were used, respectively. The LIBS experimental conditions (mainly the laser energy and the observation window) were optimized in order to avoid self-absorption effect in the measured spectra. In the LA-ICP-MS analysis the Ag 107 and Cu 63 isotopes were detected. The capability of these two analytical techniques for high-resolution mapping of selected trace chemical elements was demonstrated.

  13. 87Sr/86Sr isotope ratio measurements by laser ablation multicollector inductively coupled plasma mass spectrometry: Reconsidering matrix interferences in bioapatites and biogenic carbonates

    Science.gov (United States)

    Irrgeher, Johanna; Galler, Patrick; Prohaska, Thomas

    2016-11-01

    This study is dedicated to the systematic investigation of the effect of interferences on Sr isotopic analyses in biological apatite and carbonate matrices using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC ICP-MS). Trends towards higher 87Sr/86Sr ratios for LA-MC ICP-MS compared to solution-nebulization based MC ICP-MS when analysing bioapatite matrices (e.g. human teeth) and lower ratios in case of calcium carbonates (e.g. fish ear stones) were observed. This effect can be related to the presence of significant matrix-related interferences such as molecular ions (e.g. (40Ca-31P-16O)+, (40Ar-31P-16O)+, (42Ca-44Ca)+, (46Ca40Ar)+) as well as in many cases concomitant atomic ions (e.g. 87Rb+, 174Hf2 +). Direct 87Sr/86Sr ratio measurements in Ca-rich samples are conducted without the possibility of prior sample separation, which can be accomplished routinely for solution-based analysis. The presence of Ca-Ar and Ca-Ca molecular ion interferences in the mass range of Sr isotopes is shown using the mass resolving capabilities of a single collector inductively coupled plasma sector field mass spectrometer operated in medium mass resolution when analysing bioapatites and calcium carbonate samples. The major focus was set on analysing human tooth samples, fish hard parts and geological carbonates. Potential sources of interferences were identified and corrected for. The combined corrections of interferences and adequate instrumental isotopic fractionation correction procedures lead to accurate data even though increased uncertainties have to be taken into account. The results are discussed along with approaches presented in literature for data correction in laser ablation analysis.

  14. The determination of low level trace elements in coals by laser ablation-inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Booth, C.A.; Spears, D.A.; Krause, P.; Cox, A.G. [University of Sheffield, Sheffield (United Kingdom). Dept. of Earth Sciences

    1999-11-01

    The rapid determination of elements present in low level concentrations in bituminous coals is possible using laser abalation-inductively coupled plasma-mass spectrometry (l.a.-i.c.p.-m.s.). A wide range of trace elements can routinely be determined using this technique but it is for environmentally sensitive elements, such as As, Cd, Mo, Sb, Se and Hg, that it is of most use due to the low levels of detection. Calibration of the i.c.p.-m.s. was achieved using a series of uncertified coals and the method evaluated using the South African certified coals, Sarm 18, 19 and 20. A critical evaluation of the data obtained shows that for many of the elements studied the results obtained are both accurate and precise, even at very low concentrations, with the limits of detection for all of the elements being in the {mu}g/kg (parts per billion) range. 6 refs., 3 figs., 9 tabs.

  15. Solid Matrix Transformation and Tracer Addition using Molten Ammonium Bifluoride Salt as a Sample Preparation Method for Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Gonzalez, Jhanis J.; O' Hara, Matthew J.; Kellogg, Cynthia M.; Morrison, Samuel S.; Koppenaal, David W.; Chan, George C.; Mao, Xianglei; Zorba, Vassilia; Russo, Richard

    2017-09-08

    Laser ablation (LA) is a means of sample introduction to inductively coupled plasma (ICP) mass spectrometry (MS) that avoids acid dissolution and chemical separation steps conventionally associated with solid sample analysis. At the same time, certain features of LA-ICP-MS are often mentioned in critical reviews including solid matrix variability and its influence on the ablation process, matrix dependent elemental fractionation, lack of matrix matched standards for external calibration, and limitations to internal calibration because it is challenging to add and distribute spikes into solid samples. In this paper we introduce the concept of a synergistic minimal sample preparation method that is used in combination with LA-ICP-MS as a means to overcome these limitations. The aim of this minimal sample preparation procedure is to reactively transform the original matrix to a more consistent matrix for LA-based analysis, thus reducing the effects of matrix variability, while enabling the addition of tracers. In conjunction with ICP-MS, we call this MTR-LA-ICP-MS, where MTR is derived from matrix transformation including the option to add tracers

  16. Gas-flow optimization studies on brass samples using closed and open types of laser ablation cells in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kantor, Tibor, E-mail: kantort@mafi.hu; Kiraly, Edit; Bertalan, Eva; Bartha, Andras

    2012-02-15

    The effect of the carrier gas flow rate on laser ablation inductively coupled mass spectrometry (LA-ICP-MS) signals of brass components (Cu, Zn, and Ni) were studied primarily with the use of a conventional closed ablation cell (UP-213) and with the use of an open ablation cell of our own construction. In the closed ablation cell configuration with the carrier gas flow rate in the range of 0.40-1.3 L min{sup -1} Ar, the MS signals increased significantly (an 8.2-fold increase for a Cu signal), and the Zn/Cu signal ratio increased 3.2 times. To identify the degree of fractionation, the conventional solution sample introduction method was selected as the reference method because it is expected free from fractionation for Cu and Zn. To obtain a theoretical value, calculations were made based on Saha's relationship of ionization, which resulted in fair agreement with the experimental results of the solution method. By comparing the Zn/Cu signal ratios obtained from both the LA and the solution method, a fractionation factor of 2.26 was deduced for these two components. To explain the increased signals described above, the transport efficiency as a function of the carrier gas flow rate was calculated for different particle size fractions based on existing theories. It was demonstrated that the large increase in the signals with carrier gas flow rate is predominantly due to processes taking place in the ablation cell (i.e., neither during the transportation nor in the ICP). The results of the novel fundamental works on aerosol formation under LA conditions were considered and complemented with the application of the Kelvin (Gibbs-Thomson) equation to calculate critical sizes of aerosol particles in the nucleating vapors of Cu, Zn, Ni and Pb elements. It was concluded that the noted increase of signals was due to the intensification of mixing of the expanding vapor-cloud with cold gas when applying an increasing carrier gas flow rate. It was also concluded that the

  17. Comparison of 265 nm Femtosecond and 213 nm Nanosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Pb Isotope Ratio Measurements.

    Science.gov (United States)

    Ohata, Masaki; Nonose, Naoko; Dorta, Ladina; Günther, Detlef

    2015-01-01

    The analytical performance of 265 nm femtosecond laser ablation (fs-LA) and 213 nm nanosecond laser ablation (ns-LA) systems coupled with multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for Pb isotope ratio measurements of solder were compared. Although the time-resolved signals of Pb measured by fs-LA-MC-ICPMS showed smoother signals compared to those obtained by ns-LA-MC-ICPMS, similar precisions on Pb isotope ratio measurements were obtained between them, even though their operating conditions were slightly different. The mass bias correction of the Pb isotope ratio measurement was carried out by a comparison method using a Pb standard solution prepared from NIST SRM 981 Pb metal isotopic standard, which was introduced into the ICP by a desolvation nebulizer (DSN) via a dual-sample introduction system, and it was successfully demonstrated for Pb isotope ratio measurements for either NIST 981 metal isotopic standard or solder by fs-LA-MC-ICPMS since the analytical results agreed well with the certified value as well as the determined value within their standard deviations obtained and the expanded uncertainty of the certified or determined value. The Pb isotope ratios of solder obtained by ns-LA-MC-ICPMS also showed agreement with respect to the determined value within their standard deviations and expanded uncertainty. From these results, it was evaluated that the mass bias correction applied in the present study was useful and both LA-MC-ICPMS could show similar analytical performance for the Pb isotope ratio microanalysis of metallic samples such as solder.

  18. Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    Science.gov (United States)

    Wu, Bei; Zoriy, Miroslav; Chen, Yingxu; Becker, J Sabine

    2009-04-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of nutrient elements (such as K, Mg, Mn, Cu, P, S and B) in the leaves of Elsholtzia splendens. The plant leaves were scanned directly with a focused Nd:YAG laser in the laser ablation chamber. The ablated material was transported with argon as carrier gas to a quadrupole-based ICP-MS (ICP-QMS), and the ion intensities of (39)K(+), (24)Mg(+), (55)Mn(+), (63)Cu(+), (31)P(+), (34)S(+) and (11)B(+) were measured by ICP-QMS to study the distribution of the elements of interest. The imaging technique using LA-ICP-MS on plant leaves does not require any sample preparation. Carbon ((13)C(+)) was used as an internal standard element to compensate for the difference in the amount of material ablated. Additional experiments were performed in order to study the influence of the water content of the analyzed leaves on the intensity signal of the analyte. For quantification purposes, standard reference material (NIST SRM 1515 Apple Leaves) was selected and doped with standard solutions of the analytes within the concentration range of 0.1-2000 mg L(-1). The synthetic laboratory standards together with the samples were measured by LA-ICP-MS. The shape and structure of the leaves was clearly given by LA-ICP-MS imaging of all the elements measured. The elemental distribution varied according to the element, but with a high content in the veins for all the elements investigated. Specifically, Cu was located uniformly in the mesophyll with a slightly higher concentration in the main vein. High ion intensity was measured for S with a high amount of this element in the veins similar to the images of the metals, whereas most of the B was detected at the tip of the leaf. With synthetic laboratory standard calibration, the concentrations of elements in the leaves measured by LA-ICP-MS were between 20 microg g(-1) for Cu and 14,000 microg g(-1) for K.

  19. Gold upgrading in metamorphosed massive sulfide ore deposits: Direct evidence from laser-ablation-inductively coupled plasma-mass spectrometry analysis of invisible gold

    Science.gov (United States)

    Wagner, Thomas; Klemd, Reiner; Wenzel, Thomas; Mattsson, Benny

    2007-09-01

    The metamorphosed Boliden volcanic-hosted massive sulfide (VHMS) ore deposit, northern Sweden, is characterized by an abundance of massive arsenopyrite ore and unusually high gold enrichments (up to 300-600 g/t) in crosscutting veins and fracture zones. The ore textures observed record progressive recrystallization and porphyroblast growth during meta morphism. We conducted a systematic laser-ablation-inductively coupled plasma-mass spectrom etry (LA-ICP-MS) study on the gold distribution in fine-grained massive arseno-pyrite and pyrite ore, partially recrystallized arsenopyrite ore, and both arsenopyrite and pyrite porphyroblasts found in gold-rich veins. The gold concentrations in massive arseno-pyrite are highest (30-50 ppm on average) and systematically decrease to 0-2.7 ppm with increasing degree of recrystallization. By contrast, gold concentrations in pyrite ore are much lower and do not exceed 0.2 ppm. The LA-ICP-MS data, coupled with textural data, provide the first direct conclusive evidence that gold is progressively liberated from massive sulfide ores during metamorphism and reprecipitated in veins and other low-strain sites. We suggest that such upgrading is the principal mechanism responsible for significant gold enrichment observed in many metamorphosed VHMS deposits worldwide.

  20. Tandem Laser Induced Breakdown Spectroscopy (LIBS), Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and/or Laser Ablation Inductively Coupled Plasma Optical Emission Spectroscopy (LA-ICP-OES) for the analysis of samples of geological interest

    Science.gov (United States)

    Oropeza, D.

    2016-12-01

    A highly innovative laser ablation sampling instrument (J200 Tandem LA - LIBS) that combines the capabilities and analytical benefits of LIBS, LA-ICP-MS and LA-ICP-OES was used for micrometer-scale, spatially-resolved, elemental analysis of a wide variety of samples of geological interest. Data collected using ablation systems consisted of nanosecond (Nd:YAG operated 266nm) and femtosecond lasers (1030 and 343nm). An ICCD LIBS detector and Quadrupole based mass spectrometer were selected for LIBS and ICP-MS detection, respectively. This tandem instrument allows simultaneous determination of major and minor elements (for example, Si, Ca, Na, and Al, and trace elements such as Li, Ce, Cr, Sr, Y, Zn, Zr among others). The research also focused on elemental mapping and calibration strategies, specifically the use of emission and mass spectra for multivariate data analysis. Partial Least Square Regression (PLSR) is shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The study provides a benchmark to evaluate analytical results for more complex geological sample matrices.

  1. Current developments in laser ablation-inductively coupled plasma-mass spectrometry for use in geology, forensics, and nuclear nonproliferation research

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, Joshua D. [Iowa State Univ., Ames, IA (United States)

    2008-08-26

    This dissertation focused on new applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The diverse fields that were investigated show the versatility of the technique. In Chapter 2, LA-ICP-MS was used to investigate the rare earth element (REE) profiles of garnets from the Broken Hill Deposit in New South Wales, Australia. The normalized REE profiles helped to shed new light on the formation of deposits of sulfide ores. This information may be helpful in identifying the location of sulfide ore deposits in other locations. New sources of metals such as Pg, Zn, and Ag, produced from these ores, are needed to sustain our current technological society. The application of LA-ICP-MS presented in Chapter 3 is the forensics analysis of automotive putty and caulking. The elemental analysis of these materials was combined with the use of Principal Components Analysis (PCA). The PCA comparison was able to differentiate the automotive putty samples by manufacturer and lot number. The analysis of caulk was able to show a differentiation based on manufacturer, but no clear differentiation was shown by lot number. This differentiation may allow matching of evidence in the future. This will require many more analyses and the construction of a database made up of many different samples. The 4th chapter was a study of the capabilities of LA-ICP-MS for fast and precise analysis of particle ensembles for nuclear nonproliferation applications. Laser ablation has the ability to spatially resolve particle ensembles which may contain uranium or other actinides from other particles present in a sample. This is of importance in samples obtained from air on filter media. The particle ensembles of interest may be mixed in amongst dust and other particulates. A problem arises when ablating these particle ensembles directly from the filter media. Dust particles other than ones of interest may be accidentally entrained in the aerosol of the ablated particle

  2. Current developments in laser ablation-inductively coupled plasma-mass spectrometry for use in geology, forensics, and nuclear nonproliferation research

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, Joshua D. [Iowa State Univ., Ames, IA (United States)

    2008-08-26

    This dissertation focused on new applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The diverse fields that were investigated show the versatility of the technique. In Chapter 2, LA-ICP-MS was used to investigate the rare earth element (REE) profiles of garnets from the Broken Hill Deposit in New South Wales, Australia. The normalized REE profiles helped to shed new light on the formation of deposits of sulfide ores. This information may be helpful in identifying the location of sulfide ore deposits in other locations. New sources of metals such as Pg, Zn, and Ag, produced from these ores, are needed to sustain our current technological society. The application of LA-ICP-MS presented in Chapter 3 is the forensics analysis of automotive putty and caulking. The elemental analysis of these materials was combined with the use of Principal Components Analysis (PCA). The PCA comparison was able to differentiate the automotive putty samples by manufacturer and lot number. The analysis of caulk was able to show a differentiation based on manufacturer, but no clear differentiation was shown by lot number. This differentiation may allow matching of evidence in the future. This will require many more analyses and the construction of a database made up of many different samples. The 4th chapter was a study of the capabilities of LA-ICP-MS for fast and precise analysis of particle ensembles for nuclear nonproliferation applications. Laser ablation has the ability to spatially resolve particle ensembles which may contain uranium or other actinides from other particles present in a sample. This is of importance in samples obtained from air on filter media. The particle ensembles of interest may be mixed in amongst dust and other particulates. A problem arises when ablating these particle ensembles directly from the filter media. Dust particles other than ones of interest may be accidentally entrained in the aerosol of the ablated particle

  3. Quantitative analysis of trace elements in environmental powders with laser ablation inductively coupled mass spectrometry using non-sample-corresponding reference materials for signal evaluation

    Science.gov (United States)

    Bauer, Gerald; Limbeck, Andreas

    2015-11-01

    Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an attractive alternative to traditional procedures for the analysis of environmental samples (i.e., conventional liquid measurement after sample digestion). However, for accurate quantification, certified reference materials (CRM) are necessary which match the composition of the sample and include all elements of interest at the required concentration levels. The limited availability of appropriate CRMs hampers therefore substantial application. In this work, an LA-ICP-MS procedure allowing for accurate determination of trace element contents in powdered environmental samples is presented. For LA-ICP-MS analysis, the samples are mixed with an internal standard (silver oxide) and a binder (sodium tetra borate) and subsequently pressed to pellets. Quantification is accomplished using a calibration function determined using CRMs with varying matrix composition and analyte content, pre-treated and measured in the same way as the samples. With this approach, matrix-induced ablation differences resulting from varying physical/chemical properties of the individual CRMs could be compensated. Furthermore, ICP-related matrix-effects could be minimized using collision/reaction cell technology. Applicability of the procedure has been demonstrated by assessment of Cd, Cu, Ni, and Zn in four different environmental CRMs (NIST SRM1648a (urban particulate matter), NIST SRM2709 (San Joaquin Soil), BCR144 (sewage sludge), and BCR723 (road dust)). Signal evaluation was performed by alternative use of three CRMs for calculation of the calibration function whereas the remaining fourth CRM acted as unknown sample, resulting in a good agreement between measured and certified values for all elements and reference materials.

  4. Influence of relative abundance of isotopes on depth resolution for depth profiling of metal coatings by laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Fariñas, Juan C; Coedo, Aurora G; Dorado, Teresa

    2010-04-15

    A systematic study on the influence of relative abundance of isotopes of elements in the coating (A(c)) and in the substrate (A(s)) on both shape of time-resolved signals and depth resolution (Delta z) was performed for depth profile analysis of metal coatings on metal substrates by ultraviolet (266 nm) nanosecond laser ablation inductively coupled plasma quadrupole mass spectrometry. Five coated samples with coating thicknesses of the same order of magnitude (20-30 microm) were tested: nickel coating on aluminium, chromium and copper, and steel coated with copper and zinc. A laser repetition rate of 1 Hz and a laser fluence of 21 J cm(-2) were used. Five different depth profile types were established, which showed a clear dependence on A(c)/A(s) ratio. In general, depth profiles obtained for ratios above 1-10 could not be used to determine Delta z. We found that Delta z increased non-linearly with A(c)/A(s) ratio. The best depth profile types, leading to highest depth resolution and reproducibility, were attained in all cases by using the isotopes with low/medium A(c) values and with the highest A(s) values. In these conditions, an improvement of up to 4 times in Delta z values was achieved. The average ablation rates were in the range from 0.55 microm pulse(-1) for copper coating on steel to 0.83 microm pulse(-1) for zinc coating on steel, and the Delta z values were between 2.74 microm for nickel coating on chromium and 5.91 microm for nickel coating on copper, with RSD values about 5-8%.

  5. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    Science.gov (United States)

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method.

  6. Biomonitoring of essential and toxic metals in single hair using on-line solution-based calibration in laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Dressler, Valderi L; Pozebon, Dirce; Mesko, Marcia Foster; Matusch, Andreas; Kumtabtim, Usarat; Wu, B; Sabine Becker, J

    2010-10-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful and sensitive surface analytical technique for the determination of concentration and distribution of trace metals within biological systems at micrometer spatial resolution. LA-ICP-MS allows easy quantification procedures if suitable standard references materials (SRM) are available. In this work a new SRM-free approach of solution-based calibration method in LA-ICP-MS for element quantification in hair is described. A dual argon flow of the carrier gas and nebulizer gas is used. A dry aerosol produced by laser ablation (LA) of biological sample and a desolvated aerosol generated by pneumatic nebulization (PN) of standard solutions are carried by two different flows of argon as carrier or nebulizer gas, respectively and introduced separately in the injector tube of a special ICP torch, through two separated apertures. Both argon flows are mixed directly in the ICP torch. External calibration via defined standard solutions before analysis of single hair was employed as calibration strategy. A correction factor, calculated using hair with known analyte concentration (measured by ICP-MS), is applied to correct the different elemental sensitivities of ICP-MS and LA-ICP-MS. Calibration curves are obtained by plotting the ratio of analyte ion M(+)/(34)S(+) ion intensities measured using LA-ICP-MS in dependence of analyte concentration in calibration solutions. Matrix-matched on-line calibration in LA-ICP-MS is carried out by ablating of human hair strands (mounted on a sticky tape in the LA chamber) using a focused laser beam in parallel with conventional nebulization of calibration solutions. Calibrations curves of Li, Na, Mg, Al, K, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Mo, Ag, Cd, I, Hg, Pb, Tl, Bi and U are presented. The linear correlation coefficients (R) of calibration curves for analytes were typically between 0.97 and 0.999. The limits of detection (LODs) of

  7. Element bioimaging of liver needle biopsy specimens from patients with Wilson's disease by laser ablation-inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Hachmöller, Oliver; Aichler, Michaela; Schwamborn, Kristina; Lutz, Lisa; Werner, Martin; Sperling, Michael; Walch, Axel; Karst, Uwe

    2016-05-01

    A laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method is developed and applied for the analysis of paraffin-embedded liver needle biopsy specimens of patients with Wilson's disease (WD), a rare autosomal recessive disorder of the copper metabolism causing various hepatic, neurological and psychiatric symptoms due to a copper accumulation in the liver and the central nervous system. The sample set includes two WD liver samples and one negative control sample. The imaging analysis was performed with a spatial resolution of 10 μm. Besides copper, iron was monitored because an elevated iron concentration in the liver is known for WD. In addition to this, both elements were quantified using an external calibration based on matrix-matched gelatine standards. The presented method offers low limits of detection of 1 and 5 μg/g for copper and iron, respectively. The high detection power and good spatial resolution allow the analysis of small needle biopsy specimen using this method. The two analyzed WD samples can be well differentiated from the control sample due to their inhomogeneous copper distribution and high copper concentrations of up to 1200 μg/g. Interestingly, the WD samples show an inverse correlation of regions with elevated copper concentrations and regions with high iron concentrations.

  8. Medieval glass from the Cathedral in Paderborn: a comparative study using X-ray absorption spectroscopy, X-ray fluorescence, and inductively coupled laser ablation mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hormes, J. [University of Saskatchewan, Canadian Light Source Inc., Saskatoon, SK (Canada); Louisiana State University, CAMD, Baton Rouge, LA (United States); Roy, A.; Bovenkamp, G.L. [Louisiana State University, CAMD, Baton Rouge, LA (United States); Simon, K. [University of Goettingen, Geochemistry, Centre for Geosciences, Goettingen (Germany); Kim, C.Y. [University of Saskatchewan, Canadian Light Source Inc., Saskatoon, SK (Canada); Boerste, N. [Faculty for Theology Paderborn, Paderborn (Germany); Gai, S. [LWL - Archaeologie fuer Westfalen, Muenster (Germany)

    2013-04-15

    We have investigated four stained glass samples recovered from an archaeological excavation at the Cathedral in Paderborn (Germany) between 1978 and 1980. On two of the samples there are parts of paintings. Concentrations of major elements were determined using two independent techniques: LA-ICP-MS (a UV laser ablation microsampler combined with an inductively coupled plasma mass spectrometer) and synchrotron radiation X-ray excited X-ray fluorescence (SR-XRF). The SR-XRF data were quantified by using the program package PyMCA developed by the software group of the ESRF in Grenoble. Significant differences were found between the concentrations determined by the two techniques that can be explained by concentration gradients near the surface of the glasses caused, for example, by corrosion/leaching processes and the different surface sensitivities of the applied techniques. For several of the elements that were detected in the glass and in the colour pigments used for the paintings X-ray absorption near edge structure (XANES) spectra were recorded in order to determine the chemical speciation of the elements of interest. As was expected, most elements in the glass were found as oxides in their most stable form. Two notable exceptions were observed: titanium was not found as rutile - the most stable form of TiO{sub 2} - but in the form of anatase, and lead was not found in one defined chemical state but as a complex mixture of oxide, sulphate, and other compounds. (orig.)

  9. Direct trace-elemental analysis of urine samples by laser ablation-inductively coupled plasma mass spectrometry after sample deposition on clinical filter papers.

    Science.gov (United States)

    Aramendía, Maite; Rello, Luis; Vanhaecke, Frank; Resano, Martín

    2012-10-16

    Collection of biological fluids on clinical filter papers shows important advantages from a logistic point of view, although analysis of these specimens is far from straightforward. Concerning urine analysis, and particularly when direct trace elemental analysis by laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) is aimed at, several problems arise, such as lack of sensitivity or different distribution of the analytes on the filter paper, rendering obtaining reliable quantitative results quite difficult. In this paper, a novel approach for urine collection is proposed, which circumvents many of these problems. This methodology consists on the use of precut filter paper discs where large amounts of sample can be retained upon a single deposition. This provides higher amounts of the target analytes and, thus, sufficient sensitivity, and allows addition of an adequate internal standard at the clinical lab prior to analysis, therefore making it suitable for a strategy based on unsupervised sample collection and ulterior analysis at referral centers. On the basis of this sampling methodology, an analytical method was developed for the direct determination of several elements in urine (Be, Bi, Cd, Co, Cu, Ni, Sb, Sn, Tl, Pb, and V) at the low μg L(-1) level by means of LA-ICPMS. The method developed provides good results in terms of accuracy and LODs (≤1 μg L(-1) for most of the analytes tested), with a precision in the range of 15%, fit-for-purpose for clinical control analysis.

  10. Determination of major, minor and trace elements in rock samples by laser ablation inductively coupled plasma mass spectrometry: Progress in the utilization of borate glasses as targets

    Science.gov (United States)

    Leite, Tácito Dantas F.; Escalfoni, Rainério, Jr.; da Fonseca, Teresa Cristina O.; Miekeley, Norbert

    2011-05-01

    The present work is a continuation of a research study performed at our laboratory aiming at the multielement analysis of rock samples (basalts and shale) by inductively coupled plasma mass spectrometry in combination with laser ablation using borate glasses as analytical targets. Argon, nitrogen-argon mixtures and helium were evaluated as cell gases, the latter confirming its better performance. Different operational parameters of the laser, such as gas flow, energy, focus, scanning speed and sampling frequency were optimized. External calibration was made with standards prepared by fusion of geological reference materials (basalts 688 and BCR-2, obsidian SRM 278, and shale SGR-1) of different mass fractions in the meta-tetra borate matrix. Coefficients of determination ( R2) were > 0.99 for 30 elements from o total of 40 determined. Method validation was then performed using additional certified reference materials (BHVO-2, BIR-1, SCo-1) produced as borate targets in a similar way. Accuracies were better than 10% for most of the elements studied and analytical precisions, calculated from the residual standard deviations of calibration curves were, typically, between 6% and 10%. Additionally, the semiquantitative TotalQuant® technique was applied, which gave, within the expected uncertainty for this calibration technique, concordant results when compared to the quantitative external calibration procedure. Both methods were then used for the analysis of marine shale samples, which are of great geological interest in petroleum prospecting.

  11. A comparison of the use of refractive index (RI) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the provenance establishment of glass bottles.

    Science.gov (United States)

    May, Christopher D; Watling, R John

    2009-01-01

    The use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been compared with the traditional method of refractive index (RI) measurement for the establishment of the provenance of glass bottles. Using the RI method alone, it is not possible to discriminate between certain glass bottles produced up to 18 days apart from a single manufacturing plant. Furthermore, variations in RI within a single bottle can be large enough to invalidate co-provenance establishment using this technique alone. Determination of the trace elemental composition of bottles collected over a 1-month period confirmed that minimal variation of trace metal distribution occurred within individual bottles made during this period. Therefore, the trace element composition of any fragment of glass from a broken bottle may be considered representative of the elemental composition of the entire bottle. In addition, statistical comparison of the distribution of approximately 38 of the 56 analytes that were determined established that it was possible to discriminate between two glass bottles manufactured in the same plant two hours apart. Using this methodology it has been possible to develop an analytical protocol to significantly improve the accurate comparison and provenance establishment of forensic glass evidence.

  12. Laser ablation inductively coupled plasma mass spectrometric analyses of base metals in arctic char (Salvelinus alpinus) otoliths collected from a flooded base metal mine.

    Science.gov (United States)

    Friedrich, Lisa A; Halden, Norman M

    2011-05-15

    Otoliths from arctic char recovered from the water body formed from an abandoned open-pit nickel-copper mine contain a trace element record related to the geology of the immediate watershed, past mining activity in the area, and the fish's diet. Laser ablation inductively coupled plasma mass spectrometric analyses across the annular structure of the otoliths detected trace amounts of nickel, copper, and chromium believed to be related to the metal-bearing, mafic-ultramafic minerals in the pit. Oscillatory strontium, barium, and zinc profiles may reflect changing water temperature, diet, or fish metabolism. Lead was detected in very low concentrations and may be related to anthropogenic influence. This closed lake system provides a unique opportunity to study an introduced exotic species in a setting where neither migration nor recruitment have been possible. The fish have successfully occupied the lake and continue to breed despite the influence of the surrounding rocks and local contamination. The chemical record retained within otoliths provides a method of monitoring trace elements affecting fish on a yearly basis and may be regarded as a useful assessment tool for examining the exposure of wild organisms to trace elements.

  13. Metal imaging on surface of micro- and nanoelectronic devices by laser ablation inductively coupled plasma mass spectrometry and possibility to measure at nanometer range.

    Science.gov (United States)

    Zoriy, Myroslav V; Mayer, Dirk; Becker, J Sabine

    2009-05-01

    An analytical mass spectrometric method for the elemental analysis of nano-bioelectronic devices involved in bioengineering research was developed and applied for measurements of selected metals (Au, Ti, Pt, Cr, etc.) on interdigitated electrode array chips (IDA-chip). An imaging laser ablation inductively coupled plasma mass spectrometric (LA-ICP-MS) procedure was used to map the elements of interest on the surface of the analyzed sample. The obtained images of metals were in a good agreement and corresponded to the micro- and nanofabricated metal electrode pattern. For the analysis at nanometer resolution scale a NF-LA-ICP-MS (NF-near-field) procedure was applied, which utilize thin Ag needle to enhance laser beam energy and improve spatial resolution of the method. The results show a approximately 100x enhancement of analyte signal, when the needle was positioned in the "near-field region" to the sample surface and the laser shot was performed. In addition, mass spectrometric studies of reproducibly for five separated NF-LA shots in different places of analyzed sample yielded an RSD of the measurement of 16%.

  14. Comparative Study of Metal Quantification in Neurological Tissue Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging and X-ray Fluorescence Microscopy.

    Science.gov (United States)

    Davies, Katherine M; Hare, Dominic J; Bohic, Sylvain; James, Simon A; Billings, Jessica L; Finkelstein, David I; Doble, Philip A; Double, Kay L

    2015-07-07

    Redox-active metals in the brain mediate numerous biochemical processes and are also implicated in a number of neurodegenerative diseases. A number of different approaches are available for quantitatively measuring the spatial distribution of biometals at an image resolution approaching the subcellular level. Measured biometal levels obtained using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS; spatial resolution 15 μm × 15 μm) were within the range of those obtained using X-ray fluorescence microscopy (XFM; spatial resolution 2 μm × 7 μm) and regional changes in metal concentration across discrete brain regions were replicated to the same degree. Both techniques are well suited to profiling changes in regional biometal distribution between healthy and diseased brain tissues, but absolute quantitation of metal levels varied significantly between methods, depending on the metal of interest. Where all possible variables affect metal levels, independent of a treatment/phenotype are controlled, either method is suitable for examining differences between experimental groups, though, as with any method for imaging post mortem brain tissue, care should be taken when interpreting the total metal levels with regard to physiological concentrations.

  15. Bioimaging of metals and biomolecules in mouse heart by laser ablation inductively coupled plasma mass spectrometry and secondary ion mass spectrometry.

    Science.gov (United States)

    Becker, J Sabine; Breuer, Uwe; Hsieh, Hui-Fang; Osterholt, Tobias; Kumtabtim, Usarat; Wu, Bei; Matusch, Andreas; Caruso, Joseph A; Qin, Zhenyu

    2010-11-15

    Bioimaging mass spectrometric techniques allow direct mapping of metal and biomolecule distributions with high spatial resolution in biological tissue. In this study laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used for imaging of transition metals (Fe, Cu, Zn, Mn, and Ti), alkali and alkaline-earth metals (Na, K, Mg, and Ca, respectively), and selected nonmetals (such as C, P, and S) in native cryosections of mouse heart. The metal and nonmetal images clearly illustrated the shape and the anatomy of the samples. Zinc and copper were inhomogeneously distributed with average concentrations of 26 and 11 μg g(-1), respectively. Titanium and manganese were detected at concentrations reaching 1 and 2 μg g(-1), respectively. The highest regional metal concentration of 360 μg g(-1)was observed for iron in blood present in the lumen of the aorta. Secondary ion mass spectrometry (SIMS) as an elemental and biomolecular mass spectrometric technique was employed for imaging of Na, K, and selected biomolecules (e.g., phosphocholine, choline, cholesterol) in adjacent sections. Here, two different bioimaging techniques, LA-ICPMS and SIMS, were combined for the first time, yielding novel information on both elemental and biomolecular distributions.

  16. Determination of major, minor and trace elements in rock samples by laser ablation inductively coupled plasma mass spectrometry: Progress in the utilization of borate glasses as targets

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Tacito Dantas F. [Departmento de Quimica da Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de Sao Vicente 225, 22451-900 Rio de Janeiro (Brazil); Universidade Estadual de Goias (UEG) (Brazil); Instituto Federal de Educacao, Ciencia e Tecnologia de Brasilia (IFB) (Brazil); Escalfoni, Rainerio [Departmento de Quimica da Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de Sao Vicente 225, 22451-900 Rio de Janeiro (Brazil); Centro de Pesquisas Leopoldo A. Miguez de Mello da Petrobras (CENPES) (Brazil); Fonseca, Teresa Cristina O. da [Centro de Pesquisas Leopoldo A. Miguez de Mello da Petrobras (CENPES) (Brazil); Miekeley, Norbert, E-mail: miekeley@puc-rio.br [Departmento de Quimica da Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de Sao Vicente 225, 22451-900 Rio de Janeiro (Brazil)

    2011-05-15

    The present work is a continuation of a research study performed at our laboratory aiming at the multielement analysis of rock samples (basalts and shale) by inductively coupled plasma mass spectrometry in combination with laser ablation using borate glasses as analytical targets. Argon, nitrogen-argon mixtures and helium were evaluated as cell gases, the latter confirming its better performance. Different operational parameters of the laser, such as gas flow, energy, focus, scanning speed and sampling frequency were optimized. External calibration was made with standards prepared by fusion of geological reference materials (basalts 688 and BCR-2, obsidian SRM 278, and shale SGR-1) of different mass fractions in the meta-tetra borate matrix. Coefficients of determination (R{sup 2}) were > 0.99 for 30 elements from o total of 40 determined. Method validation was then performed using additional certified reference materials (BHVO-2, BIR-1, SCo-1) produced as borate targets in a similar way. Accuracies were better than 10% for most of the elements studied and analytical precisions, calculated from the residual standard deviations of calibration curves were, typically, between 6% and 10%. Additionally, the semiquantitative TotalQuant (registered) technique was applied, which gave, within the expected uncertainty for this calibration technique, concordant results when compared to the quantitative external calibration procedure. Both methods were then used for the analysis of marine shale samples, which are of great geological interest in petroleum prospecting.

  17. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Devulder, Veerle; Gerdes, Axel; Vanhaecke, Frank; Degryse, Patrick

    2015-03-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ11B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement.

  18. Evaluation of the Forensic Utility of Scanning Electron Microscopy-Energy Dispersive Spectroscopy and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for Printing Ink Examinations.

    Science.gov (United States)

    Corzo, Ruthmara; Subedi, Kiran; Trejos, Tatiana; Almirall, José R

    2016-05-01

    Improvements in printing technology have exacerbated the problem of document counterfeiting, prompting the need for analytical techniques that better characterize inks for forensic analysis and comparisons. In this study, 319 printing inks (toner, inkjet, offset, and Intaglio) were analyzed directly on the paper substrate using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). As anticipated, the high sensitivity of LA-ICP-MS pairwise comparisons resulted in excellent discrimination (average of ~ 99.6%) between different ink samples from each of the four ink types and almost 100% correct associations between ink samples known to originate from the same source. SEM-EDS analysis also resulted in very good discrimination for different toner and intaglio inks (>97%) and 100% correct association for samples from the same source. SEM-EDS provided complementary information to LA-ICP-MS for certain ink types but showed limited utility for the discrimination of inkjet and offset inks.

  19. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    Science.gov (United States)

    Syta, Olga; Rozum, Karol; Choińska, Marta; Zielińska, Dobrochna; Żukowska, Grażyna Zofia; Kijowska, Agnieszka; Wagner, Barbara

    2014-11-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th-14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers.

  20. Study on quantitative analysis of Ti, Al and V in clinical soft tissues after placing the dental implants by laser ablation inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Sajnóg, Adam; Hanć, Anetta; Makuch, Krzysztof; Koczorowski, Ryszard; Barałkiewicz, Danuta

    2016-11-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for in-situ quantitative analysis of oral mucosa of patients before and after implantation with titanium implants and a closing screw based on Ti6Al4V alloy. Two calibration strategies were applied, both were based on matrix matched solid standards with analytes addition. A novel approach was the application of powdered egg white proteins as a matrix material which have a similar composition to the examined tissue. In the another approach, certified reference material Bovine Muscle ERM-BB184 was used. The isotope 34S was found to be the most appropriate as an internal standard since it is homogenously distributed in the examined tissues and resulted in lower relative standard deviation values of signal of analytes of interest. Other isotopes (13C, 26Mg, 43Ca) were also evaluated as potential internal standards. The analytical performance parameters and microwave digestion of solid standards followed by solution nebulization ICP-MS analysis proved that both calibration methods are fit for their intended purpose. The LA-ICP-MS analysis on the surface of tissues after the implantation process revealed an elevated content of elements in comparison to the control group. Analytes are distributed inhomogeneously and display local maximal content of Ti up to ca. 900 μg g- 1, Al up to ca. 760 μg g- 1 and for V up to 160 μg g- 1.

  1. Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities

    Directory of Open Access Journals (Sweden)

    Nigel Cook

    2016-10-01

    Full Text Available Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS has rapidly established itself as the method of choice for generation of multi-element datasets for specific minerals, with broad applications in Earth science. Variation in absolute concentrations of different trace elements within common, widely distributed phases, such as pyrite, iron-oxides (magnetite and hematite, and key accessory minerals, such as apatite and titanite, can be particularly valuable for understanding processes of ore formation, and when trace element distributions vary systematically within a mineral system, for a vector approach in mineral exploration. LA-ICP-MS trace element data can assist in element deportment and geometallurgical studies, providing proof of which minerals host key elements of economic relevance, or elements that are deleterious to various metallurgical processes. This contribution reviews recent advances in LA-ICP-MS methodology, reference standards, the application of the method to new mineral matrices, outstanding analytical uncertainties that impact on the quality and usefulness of trace element data, and future applications of the technique. We illustrate how data interpretation is highly dependent on an adequate understanding of prevailing mineral textures, geological history, and in some cases, crystal structure.

  2. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lazarov, Marina, E-mail: m.lazarov@mineralogie.uni-hannover.de; Horn, Ingo

    2015-09-01

    Copper isotope compositions in Cu-bearing metals and minerals have been measured by deep (194 nm) ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (UV-fsLA-MC-ICP-MS). Pure Cu-metal, brass, and several Cu-rich minerals (chalcopyrite, enargite, covellite, malachite and cuprite) have been investigated. A long-term reproducibility of better than 0.08‰ at the 95% confidence limit on the NIST SRM 976 (National Institute of Standards and Technology) Cu-metal standard has been achieved with this technique. The δ{sup 65}Cu values for all samples have been calculated by standard-sample-standard bracketing with NIST SRM 976. All analyses have been carried out using Ni as a mass discrimination monitor added by nebulization prior to entering the plasma torch. For further verification samples have been analysed by conventional solution nebulization MC-ICP-MS and the results obtained have been compared with those from UV-fsLA-MC-ICP-MS. Several potential matrix-induced molecular interferences on the mineral copper isotope ratio, such as ({sup 32}S{sup 33}S){sup +} and ({sup 32}S-{sup 16}O{sup 17}O){sup +} do not affect the Cu isotope measurements on sulfides, while hydrides, such as Zn–H or doubly-charged Sn{sup 2+} that interfere Ni isotopes can be either neglected or stripped by calculation. Matrix independent Cu-isotope measurements are sensitive to the energy density (fluence) applied onto the sample and can produce artificial shifts in the obtained δ{sup 65}Cu values which are on the order of 3‰ for Cu-metal, 0.5‰ for brass and 0.3‰ for malachite when using energy density of up to 2 J/cm{sup 2} for ablation. A positive correlation between applied energy density and the magnitude of the isotope ratio shift has been found in the energy density range from 0.2 to 1.3 J/cm{sup 2} which is below the ablation threshold for ns-laser ablation. The results demonstrate that by using appropriate low fluence it is possible

  3. Forensic analysis of printing inks using tandem Laser Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Kiran, E-mail: ksube001@fiu.edu; Trejos, Tatiana, E-mail: trejost@fiu.edu; Almirall, José, E-mail: almirall@fiu.edu

    2015-01-01

    Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample. - Highlights: • The optimization of the parameters for LA-ICP-MS and LIBS in a tandem experiment are presented. • The analytical figures of merit for the tandem experiment for data collected simultaneously, are presented. • A

  4. Testing the limits of micro-scale analyses of Si stable isotopes by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry with application to rock weathering

    Energy Technology Data Exchange (ETDEWEB)

    Schuessler, Jan A., E-mail: jan.schuessler@gfz-potsdam.de; Blanckenburg, Friedhelm von

    2014-08-01

    An analytical protocol for accurate in-situ Si stable isotope analysis has been established on a new second-generation custom-built femtosecond laser ablation system. The laser was coupled to a multicollector inductively coupled plasma mass spectrometer (fsLA-MC-ICP-MS). We investigated the influence of laser parameters such as spot size, laser focussing, energy density and repetition rate, and ICP-MS operating conditions such as ICP mass load, spectral and non-spectral matrix effects, signal intensities, and data processing on precision and accuracy of Si isotope ratios. We found that stable and reproducible ICP conditions were obtained by using He as aerosol carrier gas mixed with Ar/H{sub 2}O before entering the plasma. Precise δ{sup 29}Si and δ{sup 30}Si values (better than ± 0.23‰, 2SD) can be obtained if the area ablated is at least 50 × 50 μm; or, alternatively, for the analysis of geometric features down to the width of the laser spot (about 20 μm) if an equivalent area is covered. Larger areas can be analysed by rastering the laser beam, whereas small single spot analyses reduce the attainable precision of δ{sup 30}Si to ca. ± 0.6‰, 2SD, for < 30 μm diameter spots. It was found that focussing the laser beam beneath the sample surface with energy densities between 1 and 3.8 J/cm{sup 2} yields optimal analytical conditions for all materials investigated here. Using pure quartz (NIST 8546 aka. NBS-28) as measurement standard for calibration (standard-sample-bracketing) did result in accurate and precise data of international reference materials and samples covering a wide range in chemical compositions (Si single crystal IRMM-017, basaltic glasses KL2-G, BHVO-2G and BHVO-2, andesitic glass ML3B-G, rhyolitic glass ATHO-G, diopside glass JER, soda-lime glasses NIST SRM 612 and 610, San Carlos olivine). No composition-dependent matrix effect was discernible within uncertainties of the method. The method was applied to investigate the Si isotope

  5. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet

    Energy Technology Data Exchange (ETDEWEB)

    Noël, Marie, E-mail: marie.noel@stantec.com [Stantec Consulting Ltd. 2042 Mills Road, Unit 11, Sidney BC V8L 4X2 (Canada); Christensen, Jennie R., E-mail: jennie.christensen@stantec.com [Stantec Consulting Ltd. 2042 Mills Road, Unit 11, Sidney BC V8L 4X2 (Canada); Spence, Jody, E-mail: jodys@uvic.ca [School of Earth and Ocean Sciences, Bob Wright Centre A405, University of Victoria, PO BOX 3065 STN CSC, Victoria, BC V8W 3V6 (Canada); Robbins, Charles T., E-mail: ctrobbins@wsu.edu [School of the Environment and School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 (United States)

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size = 30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r{sup 2} = 0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. - Highlights: • LA-ICP-MS provides temporal trace metal exposure information for wild grizzly bears. • Cu and Zn temporal exposures provide

  6. Quantitative analysis of major and trace elements in NH4HF2-modified silicate rock powders by laser ablation - inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Zhang, Wen; Hu, Zhaochu; Liu, Yongsheng; Yang, Wenwu; Chen, Haihong; Hu, Shenghong; Xiao, Hongyan

    2017-08-29

    In this paper, we described a NH4HF2 digestion method as sample preparation for the rapid determination of major and trace elements in silicate rocks using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). Sample powders digested by NH4HF2 at 230 °C for 3 h form ultrafine powders with a typical grain size d80 rocks have a consistent grain morphology and size, allowing us to produce pressed powder pellets that have excellent cohesion and homogeneity suitable for laser ablation micro-analysis without the addition of binder. The influences of the digestion parameters were investigated and optimized, including the evaporation stage of removing residual NH4HF2, sample homogenization, selection of the digestion vessel and calibration strategy of quantitative analysis. The optimized NH4HF2 digestion method was applied to dissolve six silicate rock reference materials (BCR-2, BHVO-2, AGV-2, RGM-2, GSP-2, GSR-1) covering a wide range of rock types. Ten major elements and thirty-five trace elements were simultaneously analyzed by LA-ICP-MS. The analytical results of the six reference materials generally agreed with the recommended values, with discrepancies of less than 10% for most elements. The analytical precision is within 5% for most major elements and within 10% for most trace elements. Compared with previous methods of LA-ICP-MS bulk analysis, our method enables the complete dissolution of refractory minerals, such as zircon, in intermediate-acidic intrusive rocks and limits contamination as well as the loss of volatile elements. Moreover, there are many advantages for the new technique, including reducing matrix effects between reference materials and samples, spiking the internal standard simply and feasibly and sample batch processing. The applicability filed of the new technique in this study was focused on the whole-rock analysis of igneous rock samples, which are from basic rocks to acid rocks (45% rock analysis. Copyright © 2017

  7. Multi-element quantification of ancient/historic glasses by laser ablation inductively coupled plasma mass spectrometry using sum normalization calibration

    Energy Technology Data Exchange (ETDEWEB)

    Elteren, Johannes T. van, E-mail: elteren@ki.si [National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana (Slovenia); Tennent, Norman H. [Fyne Conservation Services, St. Catherine' s, Argyll PA25 8BA, Scotland (United Kingdom); Faculty of Humanities, University of Amsterdam, Oude Turfmarkt 147, 1012GC Amsterdam (Netherlands); Selih, Vid S. [National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana (Slovenia)

    2009-06-30

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for quantitative analysis of ancient/historic glasses is subject to calibration issues which have been addressed in this work. Since ancient/historic glasses have widely ranging matrix compositions, a complementary analysis by an alternative method is generally employed to determine at least one major element which can be used as an internal standard. We demonstrate that such a complementary analysis is unnecessary using a so-called sum normalization calibration technique (mathematically formulated) by simultaneous measurement of 54 elements and normalizing them to 100% [w/w] based on their corresponding oxide concentrations. The crux of this approach is that by assuming a random internal standard concentration of a particular major oxide, e.g. SiO{sub 2}, the normalization algorithm varies the internal standard concentration until the cumulated concentrations of all 54 elemental oxides reach 100% [w/w]. The fact that 54 elements are measured simultaneously predetermines the laser ablation mode to rastering. Nine glass standards, some replicating historic compositions, were used for calibration. The linearity of the calibration graphs (forced through the origin) represented by the relative standard deviations in the slope were between 0.1 and 6.6% using SiO{sub 2} as an internal standard. This allows high-accuracy determination of elemental oxides as confirmed by good agreement between found and reported values for major and minor elemental oxides in some synthetic glasses with typical medieval composition (European Science Foundation 151 and 158). Also for trace elemental concentrations of lanthanides in a reference glass (P and H Developments Ltd. DLH7, a base glass composition with nominally 75 {mu}g g{sup -1} elements added) accurate data were obtained. Interferences from polyatomic species and doubly charged species on the masses of trace elements are possible, depending on the base

  8. The in vivo biodistribution and fate of CdSe quantum dots in the murine model: a laser ablation inductively coupled plasma mass spectrometry study.

    Science.gov (United States)

    Wang, TsingHai; Hsieh, HuiAn; Hsieh, YiKong; Chiang, ChiShiun; Sun, YuhChang; Wang, ChuFang

    2012-12-01

    Understanding the cytotoxicity of quantum dots strongly relies upon the development of new analytical techniques to gather information about various aspects of the system. In this study, we demonstrate the in vivo biodistribution and fate of CdSe quantum dots in the murine model by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). By comparing the hot zones of each element acquired from LA-ICP-MS with those in fluorescence images, together with hematoxylin and eosin-stained images, we are able to perceive the fate and in vivo interactions between quantum dots and rat tissues. One hour after intravenous injection, we found that all of the quantum dots had been concentrated inside the spleen, liver and kidneys, while no quantum dots were found in other tissues (i.e., muscle, brain, lung, etc.). In the spleen, cadmium-114 signals always appeared in conjunction with iron signals, indicating that the quantum dots had been filtered from main vessels and then accumulated inside splenic red pulp. In the liver, the overlapped hot zones of quantum dots and those of phosphorus, copper, and zinc showed that these quantum dots have been retained inside hepatic cells. Importantly, it was noted that in the kidneys, quantum dots went into the cortical areas of adrenal glands. At the same time, hot zones of copper appeared in proximal tubules of the cortex. This could be a sign that the uptake of quantum dots initiates certain immune responses. Interestingly, the intensity of the selenium signals was not proportional to that of cadmium in all tissues. This could be the result of the decomposition of the quantum dots or matrix interference. In conclusion, the advantage in spatial resolution of LA-ICP-MS is one of the most powerful tools to probe the fate, interactions and biodistribution of quantum dots in vivo.

  9. Evaluation of gel electrophoresis techniques and laser ablation-inductively coupled plasma-mass spectrometry for screening analysis of Zn and Cu-binding proteins in plankton.

    Science.gov (United States)

    Jiménez, Maria S; Rodriguez, L; Bertolin, Juan R; Gomez, Maria T; Castillo, Juan R

    2013-01-01

    The determination of metal-binding proteins in plankton is important because of their involvement in photosynthesis, which is fundamental to the biogeochemical cycle of the oceans and other ecosystems. We have elaborated a new strategy for screening of Cu and Zn-containing proteins in plankton on the basis of separation of proteins by use of Blue-Native PAGE (BN-PAGE), which entails use of a non-denaturing Tris-tricine system and detection of metals in the proteins by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). For comparison, denaturing PAGE based on Tris-glycine and Tris-tricine systems and Anodic-Native PAGE have also been investigated. A large number of protein bands with MW between 20 and 75 kDa were obtained by use of Tris-glycine PAGE but detection of metals by LA-ICP-MS was unsuccessful because of loss of metals from the proteins during the separation process. Different protein extraction, purification, and preconcentration methods were evaluated, focussing on both issues-achieving the best extraction and characterization of the proteins while maintaining the integrity of metal-protein binding in the plankton sample. Use of 25 mmol L(-1) Tris-HCl and a protease inhibitor as extraction buffer with subsequent ultrafiltration and acetone precipitation was the most efficient means of sample preparation. Two Cu and Zn proteins were detected, a protein band corresponding to a MW of 60 kDa and another poorly resolved band with a MW between 15 and 35 kDa.

  10. Imaging of metals, metalloids, and non-metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in biological tissues.

    Science.gov (United States)

    Becker, J Sabine; Becker, J Susanne

    2010-01-01

    The determination of the localization and distribution of essential and beneficial metals (e.g., Cu, Fe, Zn, Mn, Co, Ti, Al, Ca, K, Na, Cr and others), toxic metals (like Cd, Pb, Hg, U), metalloids (e.g., As, Se, Sb), and non-metals (such as C, S, P, Cl, I) in biological tissues is a challenging task for life science studies. Over the past few years, the development and application of mass spectrometric imaging (MSI) techniques for elements has been rapidly growing in the life sciences in order to investigate the uptake and the transport of both essential and toxic metals in plant and animal sections. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a very sensitive and efficient trace, surface, and isotopic analytical technique for biological samples. LA-ICP-MS is increasingly utilized as an elemental mass spectrometric technique using double-focusing sector field (LA-ICP-SFMS) or quadrupole mass spectrometers (LA-ICP-QMS) to produce images of detailed regionally specific element distributions in thin biological tissue sections. Nowadays, MSI studies focus on brain research for studying neurodegenerative diseases such as Alzheimer's or Parkinson's, stroke, or tumor growth, or for the imaging of cancer biomarkers in tissue sections.The combination of the mass spectrometry imaging of metals by LA-ICP-MS with proteomics using biomolecular mass spectrometry (such as MALDI-MS or ESI-MS) to identify metal-containing proteins has become an important strategy in the life sciences. Besides the quantitative imaging of metals, non-metals and metalloids in biological tissues, LA-ICP-MS has been utilized for imaging metal-containing proteins in a 2D gel after electrophoretic separation of proteins. Recent progress in applying LA-ICP-MS in life science studies will be reviewed including the imaging of thin slices of biological tissue and applications in proteome analysis in combination with MALDI/ESI-MS to analyze metal-containing proteins.

  11. Novel bioimaging techniques of metals by laser ablation inductively coupled plasma mass spectrometry for diagnosis of fibrotic and cirrhotic liver disorders.

    Directory of Open Access Journals (Sweden)

    Pornwilard M-M

    Full Text Available BACKGROUND AND AIMS: Hereditary disorders associated with metal overload or unwanted toxic accumulation of heavy metals can lead to morbidity and mortality. Patients with hereditary hemochromatosis or Wilson disease for example may develop severe hepatic pathology including fibrosis, cirrhosis or hepatocellular carcinoma. While relevant disease genes are identified and genetic testing is applicable, liver biopsy in combination with metal detecting techniques such as energy-dispersive X-ray spectroscopy (EDX is still applied for accurate diagnosis of metals. Vice versa, several metals are needed in trace amounts for carrying out vital functions and their deficiency due to rapid growth, pregnancy, excessive blood loss, and insufficient nutritional or digestive uptake results in organic and systemic shortcomings. Established in situ techniques, such as EDX-ray spectroscopy, are not sensitive enough to analyze trace metal distribution and the quantification of metal images is difficult. METHODS: In this study, we developed a quantitative biometal imaging technique of human liver tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS in order to compare the distribution of selected metals in cryo-sections of healthy and fibrotic/cirrhotic livers. RESULTS: Most of the metals are homogeneous distributed within the normal tissue, while they are redirected within fibrotic livers resulting in significant metal deposits. Moreover, total iron and copper concentrations in diseased liver were found about 3-5 times higher than in normal liver samples. CONCLUSIONS: Biometal imaging via LA-ICP-MS is a sensitive innovative diagnostic tool that will impact clinical practice in identification and evaluation of hepatic metal disorders and to detect subtle metal variations during ongoing hepatic fibrogenesis.

  12. Imaging of metals in biological tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): state of the art and future developments.

    Science.gov (United States)

    Sabine Becker, J

    2013-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is well established as a sensitive trace and ultratrace analytical technique with multielement capability for bioimaging of metals and studying metallomics in biological and medical tissue. Metals and metalloproteins play a key role in the metabolism and formation of metal-containing deposits in the brain but also in the liver. In various diseases, analysis of metals and metalloproteins is essential for understanding the underlying cellular processes. LA-ICP-MS imaging (LA-ICP-MSI) combined with other complementary imaging techniques is a sophisticated tool for investigating the regional and cellular distribution of metals and related metal-containing biomolecules. On the basis of successful routine techniques for the elemental bioimaging of cryosections by LA-ICP-MSI with a spatial resolution between 200 and ~10 µm, the further development used online laser microdissection ICP-MSI to study the metal distribution in small biological sample sections (at the cellular level from 10 µm to the submicrometer range). The use of mass spectrometric imaging of metals and also nonmetals is demonstrated on a series of biological specimens. This article discusses the state of the art of bioimaging of metals in thin biological tissue sections by LA-ICP-MSI with spatial resolution at the micrometer scale, future developments and prospects for quantitative imaging techniques of metals in the nanometer range. In addition, combining quantitative elemental imaging by LA/laser microdissection-ICP-MSI with biomolecular imaging by matrix-assisted laser desorption/ionization-MSI will be challenging for future life science research.

  13. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Devulder, Veerle [Department of Analytical Chemistry, Ghent University, Krijgslaan 281-S12, 9000 Ghent (Belgium); Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200 E-box 2408, 3001 Leuven (Belgium); Gerdes, Axel [Institute of Geoscience, Goethe Universität, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Vanhaecke, Frank, E-mail: Frank.Vanhaecke@UGent.be [Department of Analytical Chemistry, Ghent University, Krijgslaan 281-S12, 9000 Ghent (Belgium); Degryse, Patrick [Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200 E-box 2408, 3001 Leuven (Belgium)

    2015-03-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ{sup 11}B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement. - Highlights: • First use of LA-MC-ICP-MS for B isotopic analysis of ancient glass • Careful validation of LA-MC-ICP-MS approach • Similar precision & accuracy via solution MC-ICP-MS after isolation of B • Enhancement of sample throughput & reduction of sample consumption • Improved conditions for archeometric research on (pre-)Roman glass.

  14. Comparative Investigation between In Situ Laser Ablation Versus Bulk Sample (Solution Mode) Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis of Trinitite Post-Detonation Materials.

    Science.gov (United States)

    Dustin, Megan K; Koeman, Elizabeth C; Simonetti, Antonio; Torrano, Zachary; Burns, Peter C

    2016-09-01

    In the event of the interception of illicit nuclear materials or detonation of a nuclear device, timely and accurate deciphering of the chemical and isotopic composition of pertinent samples is pivotal in enhancing both nuclear security and source attribution. This study reports the results from a first time (to our knowledge), detailed comparative investigation conducted of Trinitite post-detonation materials using both solution mode (SM) and laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) techniques. Trace element abundances determined for bulk Trinitite samples subsequent to digestion and preparation for SM-ICP-MS analysis compare favorably to calculated median concentrations based on LA-ICP-MS analyses for the identical samples. The trace element concentrations obtained by individual LA-ICP-MS analyses indicate a large scatter compared to the corresponding bulk sample SM-ICP-MS results for the same sample; this feature can be attributed to the incorporation into the blast melt of specific, precursor accessory minerals (minerals in small quantities, such as carbonates, sulfates, chlorites, clay, and mafic minerals) present at ground zero. The favorable comparison reported here validates and confirms the use of the LA-ICP-MS technique in obtaining accurate forensic information at high spatial resolution in nuclear materials for source attribution purposes. This investigation also reports device-like (240)Pu/(239)Pu ratios (∼0.022) for Pu-rich regions of the blast melt that are also characterized by higher Ca and U contents, which is consistent with results from previous studies. © The Author(s) 2016.

  15. Trace metal analysis by laser ablation-inductively coupled plasmamass spectrometry and x-ray K-edge densitometry of forensic samples

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Jonna Elizabeth [Iowa State Univ., Ames, IA (United States)

    2016-10-25

    This dissertation describes a variety of studies on the determination of trace elements in samples with forensic importance. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine the trace element composition of numerous lipstick samples. Lipstick samples were determined to be homogeneous. Most lipstick samples of similar colors were readily distinguishable at a 95% confidence interval based on trace element composition. Numerous strands of a multi-strand speaker cable were analyzed by LA-ICP-MS. The strands in this study are spatially heterogeneous in trace element composition. In actual forensic applications, the possibility of spatial heterogeneity must be considered, especially in cases where only small samples (e.g., copper wire fragments after an explosion) are available. The effects of many unpredictable variables, such as weather, temperature, and human activity, on the retention of gunshot residue (GSR) around projectile wounds were assessed with LAICP- MS. Skin samples around gunshot and stab wounds and larvae feeding in and around the wounds on decomposing pig carcasses were analyzed for elements consistent with GSR (Sb, Pb, Ba, and Cu). These elements were detected at higher levels in skin and larvae samples around the gunshot wounds compared to the stab wounds for an extended period of time throughout decomposition in both a winter and summer study. After decomposition, radiographic images of the pig bones containing possible damage from bullets revealed metallic particles embedded within a number of bones. Metallic particles within the bones were analyzed with x-ray, K-edge densitometry and determined to contain lead, indicating that bullet residue can be retained throughout decomposition and detected within bones containing projectile trauma.

  16. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Syta, Olga; Rozum, Karol; Choińska, Marta [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Zielińska, Dobrochna [Institute of Archaeology, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw (Poland); Żukowska, Grażyna Zofia [Chemical Faculty, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Kijowska, Agnieszka [National Museum in Warsaw, Aleje Jerozolimskie 3, 00-495 Warsaw (Poland); Wagner, Barbara, E-mail: barbog@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2014-11-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th–14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers. - Highlights: • The analytical procedure for examination of unique wall paintings was proposed. • Identification of pigments and supporting layers of wall-paintings was obtained. • Heterogeneous samples were mapped with the use of LA-ICPMS. • Anatase in the sub-surface regions of samples was detected by Raman spectroscopy.

  17. Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry.

    Science.gov (United States)

    Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav

    2003-12-01

    The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method.

  18. Laser ablation-inductively coupled plasma-dynamic reaction cell-mass spectrometry for the multi-element analysis of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Resano, M. [Laboratory of Analytical Chemistry, Ghent University, Institute for Nuclear Sciences, Proeftuinstraat 86, B-9000 Ghent (Belgium)]. E-mail: mresano@unizar.es; Garcia-Ruiz, E. [Laboratory of Analytical Chemistry, Ghent University, Institute for Nuclear Sciences, Proeftuinstraat 86, B-9000 Ghent (Belgium); Vanhaecke, F. [Laboratory of Analytical Chemistry, Ghent University, Institute for Nuclear Sciences, Proeftuinstraat 86, B-9000 Ghent (Belgium)

    2005-11-15

    In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the {mu}g g{sup -1} level in this kind of materials, due to the interference of ArC{sup +} ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 {mu}g g{sup -1} for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-{mu}g g{sup -1} level to tens of thousands of {mu}g g{sup -1}. However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 {mu}g g{sup -1} level or higher, while this value could deteriorate to 20% for analytes found at the sub-{mu}g g{sup -1} level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and

  19. [Characterization of matrix effects in microanalysis of sulfide minerals by laser ablation-inductively coupled plasma-mass spectrometry based on an element pair method].

    Science.gov (United States)

    Yuan, Ji-hai; Zhan, Xiu-chun; Hu, Ming-yue; Zhao, Ling-hao; Sun, Dong-yang

    2015-02-01

    Matrix effect between reference materials and samples is one of the major factors affecting the accuracy of analytical results by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). However, there is no method or calculation formula to quantify matrix effect between standards and samples up to date. In this paper, the linear correlation coefficient r of the Ii/I(is-Ci)/Cis graphs of element pairs were used to characterize the matrix effect, which took the ratios of concentrations (ci/ c(is)) and intensities (Ii/Iis) of the analytical element and internal standard element as x-axis and gamma-axis, respectively. Matrix effects of 6 element pairs in 13 glass reference materials, 2 sulfide reference materials and 2 sulfide minerals using Fe as internal standard was studied, with the linear correlation coefficient r of Fe-Cu, Fe-Zn element pairs both less than 0. 999 and trace Fe--Mn, Fe--Co, Fe--Ga, Fe--Pb element pairs all better than 0.999. Matrix effects of 3 major element pairs in 2 sulfide ref- erence materials and 6 sulfide minerals using S as internal standard was also studied, with the linear correlation coefficient r of S--Fe, S--Cu, S--Zn all less than 0.999. The great majority of relative errors of EMPA analytical results for major elements in sulfide minerals were greater than 10%, whether analyzed using Fe as internal standard with glass reference materials as external standard, or S as internal standard with sulfide reference materials MASS-1, IMER-1 as external standard, respectively. But the most analytical results for trace elements calibrated by glass reference materials using Fe as internal standard were well agreed with sulfide standard MASS-1, with the relative errors less than 15%. The results showed that matrix effects existed in glass reference materials, sulfide reference materials and sulfide minerals, and it also proved a certain rationality and practicability for quantification of matrix effect using the linear

  20. Inductively Coupled Augmented Railgun

    CERN Document Server

    Bahder, Thomas B

    2011-01-01

    We derive the non-linear dynamical equations for an augmented electromagnetic railgun, whose augmentation circuit is inductively coupled to the gun circuit. We solve these differential equations numerically using example parameter values. We find a complicated interaction between the augmentation circuit, gun circuit, and mechanical degrees of freedom, leading to a complicated optimization problem. For certain values of parameters, we find that an augmented electromagnetic railgun has an armature kinetic energy that is 42% larger than the same railgun with no augmentation circuit. Optimizing the parameters may lead to further increase in performance.

  1. Study of near infra red femtosecond laser induced particles using transmission electron microscopy and low pressure impaction: Implications for laser ablation-inductively coupled plasma-mass spectrometry analysis of natural monazite

    Energy Technology Data Exchange (ETDEWEB)

    D' Abzac, Francois-Xavier, E-mail: dabzac@lmtg.obs-mip.fr [GET - UMR 5563 CNRS - Universite de Toulouse - IRD - OMP, 14 avenue Edouard Belin, 31400 Toulouse (France); Seydoux-Guillaume, Anne-Magali; Chmeleff, Jerome [GET - UMR 5563 CNRS - Universite de Toulouse - IRD - OMP, 14 avenue Edouard Belin, 31400 Toulouse (France); Datas, Lucien [TEMSCAN - CIRIMAT - Universite de Toulouse, 118 route de Narbonne, 31400 Toulouse (France); Poitrasson, Franck [GET - UMR 5563 CNRS - Universite de Toulouse - IRD - OMP, 14 avenue Edouard Belin, 31400 Toulouse (France)

    2011-09-15

    The characteristics of infra red femtosecond laser-induced aerosols are studied for monazite (LREE, Th(PO{sub 4})) ablation and correlations are established with inductively coupled plasma-mass spectrometry (ICP-MS) signals. Critical parameters are tested within wide ranges of values in order to cover the usual laser ablation -ICP-MS analysis conditions: pulse energy (0.15 < E{sub 0} < 1 mJ/pulse), pulse width (60 < {tau} < 3000 fs), ablation time (t {<=} 10 min) and transport length (l {<=} 6.3 m). Transmission electron microscopy reveals that aerosols are made of agglomerates of {approx} 10 nm particles and 20-300 nm phosphorus depleted condensed spherical particles. These structures are not affected by any laser ablation parameter. Particle counting is performed using electronic low pressure impaction. Small changes on particle size distribution are noticed. They may be induced either by a peak of ablation rate in the first 15 s at high fluence (larger particles) or the loss of small particles during transport. We found a positive correlation between I (ICP-MS mean signal intensity in cps) and N (particle density in cm{sup -3}) when varying E{sub 0} and t, suggesting that N is controlled by the irradiance (P{sub 0} in W{center_dot}cm{sup -2}). Elemental ratio measurements show a steady state signal after the initial high ablation rate (mass load effect in the plasma torch) and before a late chemical fractionation, induced by poor extraction of bigger, early condensed spherical particles from the deepening crater. Such chemical fractionation effects remain within uncertainties, however. These effects can be limited by monitoring E{sub 0} to shorten the initial transient state and delay the attainment of an unfavorable crater aspect ratio. Most adopted settings are for the first time deduced from aerosol characteristics, for infra red femtosecond laser ablation. A short transport (l < 4.0 m) limits the agglomeration of particles by collision process along the tube

  2. Spatial resolution in laser ablation inductively coupled plasma mass spectrometry; Resolucion espacial en la ablacion laser acoplada a la espectrometria de masas con fuente de plasm de acoplamiento inductivo

    Energy Technology Data Exchange (ETDEWEB)

    Coedo, A. G.; Dorado, M. T.

    2010-07-01

    Laser ablation as sampling system in inductively coupled plasma mass spectrometry (LA-ICP-MS) offers the possibility to know the spatial distribution of elements present in a solid sample. By varying the position of the laser beam on the sample surface, the profile of the lateral distribution of elements is obtained and, with successive pulses fired on a fixed point, profile in depth is achieved. After optimization of operating parameters the technique has been applied to samples with different compositions in both surface and depth.With regard to the lateral resolution has been found that in a length similar to the crater diameter of the laser beam, the signals of the elements appear mixed, making difficult to accurately establish the interface. Regarding the resolution in depth is clearly established the influence of the natural abundance of the measured isotopes. (Author)

  3. Imaging of uranium on rat brain sections using laser ablation inductively coupled plasma mass spectrometry: a new tool for the study of critical substructures affined to heavy metals in tissues.

    Science.gov (United States)

    Becker, J Sabine; Dobrowolska, Justina; Zoriy, Miroslav; Matusch, Andreas

    2008-09-01

    The specific toxicity of trace metals and compounds largely depends on their bioavailability in different organs or compartments of the organism considered. Imaging mass spectrometry (IMS) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with a spatial resolution in the 100 microm range was developed and employed to study heavy metal distribution in brain tissues for toxicological screening. Rat brain post-mortem tissues were stained in an aqueous solution of either uranium or neodymium (metal concentration 100 microg g(-1)) for 3 h. The incubation of heavy metal in thin slices of brain tissue is followed by an imaging mass spectrometric LA-ICP-MS technique. Stained rat brain tissue (thickness 30 microm) were scanned with a focused laser beam (wavelength 266 nm, diameter of laser crater 100 microm and laser power density 3 x 10(9) W cm(-2)). The ion intensities of (235)U(+), (238)U(+), (145)Nd(+) and (146)Nd(+) were measured by LA-ICP-MS within the ablated area. For quantification purposes, matrix-matched laboratory standards were prepared by dosing each analyte to the pieces of homogenized brain tissue. Imaging LA-ICP-MS allows structures of interest to be identified and the relevant dose range to be estimated.

  4. Closed inductively coupled plasma cell

    Science.gov (United States)

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  5. A comparison of laser ablation-inductively coupled plasma-mass spectrometry and high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers

    Science.gov (United States)

    de Gois, Jefferson S.; Van Malderen, Stijn J. M.; Cadorim, Heloisa R.; Welz, Bernhard; Vanhaecke, Frank

    2017-06-01

    This work describes the development and comparison of two methods for the direct determination of Br in polymer samples via solid sampling, one using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and the other using high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid sample analysis (HR-CS SS-GF MAS). The methods were optimized and their accuracy was evaluated by comparing the results obtained for 6 polymeric certified reference materials (CRMs) with the corresponding certified values. For Br determination with LA-ICP-MS, the 79Br+ signal could be monitored interference-free. For Br determination via HR-CS SS-GF MAS, the CaBr molecule was monitored at 625.315 nm with integration of the central pixel ± 1. Bromine quantification by LA-ICP-MS was performed via external calibration against a single CRM while using the 12C+ signal as an internal standard. With HR-CS SS-GF MAS, Br quantification could be accomplished using external calibration against aqueous standard solutions. Except for one LA-ICP-MS result, the concentrations obtained with both techniques were in agreement with the certified values within the experimental uncertainty as evidenced using a t-test (95% confidence level). The limit of quantification was determined to be 100 μg g- 1 Br for LA-ICP-MS and 10 μg g- 1 Br for HR-CS SS-GF MAS.

  6. Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    Science.gov (United States)

    Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard

    2008-09-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.

  7. Development of a 2D laser ablation inductively coupled plasma mass spectrometry mapping procedure for mercury in maize (Zea mays L.) root cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Debeljak, Marta [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia); Elteren, Johannes T. van, E-mail: elteren@ki.si [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia)

    2013-07-17

    Graphical abstract: -- Highlights: •LA-ICP-MS mapping to study the distribution of Hg in plant root cross-sections. •Sorption of LA-generated Hg vapour leads to serious memory effects. •Spot analysis with a delay time of 10 s in between spots alleviates memory effects. •Ablation straight through the sample simplifies calibration. •Hg{sup 2+} does not cross the endodermal root barrier of maize plants. -- Abstract: A LA-ICP-MS method based on a 213 nm Nd:YAG laser and a quadrupole ICP-MS has been developed for mapping of mercury in root cross-sections of maize (Zea mays L.) to investigate the mechanism of mercury uptake from soil and its potential translocation to the edible parts. Conventional rastering was found to be unusable due to sorption of mercury onto the internal parts of the LA device, giving rising to memory effects resulting in serious loss of resolution and inaccurate quantification. Spot analysis on a virtual grid on the surface of the root sections using washout times of 10 s in between spots greatly alleviated problems related to these memory effects. By ablating straight through the root sections on a poly(methyl methacrylate) support the calibration process was simplified as internal standardization and matrix-matching could be circumvented. Mercury-spiked freeze-drying embedding medium, sectioned similarly to the root sections, was used for the preparation of the standards. Standards and root sections were subjected to spot analysis using the following operational parameters: beam diameter, 15 μm; laser fluence, 2.5 J cm{sup −2}; repetition rate, 20 Hz; dwell time, 1 s; acquisition time, 0.1 s. The mercury peaks for standards and roots sections could be consistently integrated for quantification and construction of the 2D mercury maps for the root sections. This approach was successfully used to investigate the mercury distribution in root sections of maize grown in soil spiked to a level of 50 mg kg{sup −1} DW HgCl{sub 2}. It was

  8. A novel quantification strategy of transferrin and albumin in human serum by species-unspecific isotope dilution laser ablation inductively coupled plasma mass spectrometry (ICP-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Liuxing, E-mail: fenglx@nim.ac.cn; Zhang, Dan; Wang, Jun; Shen, Dairui; Li, Hongmei

    2015-07-16

    Highlights: • Species-unspecific ID-PAGE-LA-ICP-MS was used to quantify Alb and Tf in human serum. • Addition methods of species-unspecific {sup 34}S spike were evaluated. • Isotope change conditions were investigated to reach satisfactory “isotope equilibration”. • Human serum CRM (ERM-DA470k/IFCC) was used to validate the new arrangements. • The developed method offers potential for accurate quantification of protein by ID-PAGE-LA-ICP-MS. - Abstract: Species-specific (SS) isotope dilution analysis with gel electrophoresis (GE)-laser ablation (LA)-ICP-MS is a promising technique for the quantification of particular metal-binding proteins in biological samples. However, unavailable isotopically enriched spike and metal losses in GE separation are main limitations for SS-isotope dilution PAGE-LA-ICP-MS. In this study, we report for the first time the absolute quantification of transferrin (Tf) and albumin (Alb) in human serum by non-denaturing (native) GE combined with species-unspecific isotope dilution mass spectrometry (IDMS). In order to achieve a homogeneous distribution of both protein and isotope-enriched spike (simulated isotope equilibration), immersing the protein strips with {sup 34}S spike solution after gel electrophoresis was demonstrated to be an effective way of spike addition. Furthermore, effects of immersion time and {sup 34}S spike concentration were investigated to obtain optimal conditions of the post-electrophoresis isotope dilution method. The relative mass of spike and ablated sample (m{sub sp}/m{sub sam}) in IDMS equation was calculated by standard Tf and Alb proteins, which could be applied to the quantification of Tf and Alb in ERM-DA470k/IFCC for method confirmation. The results were in agreement with the certified value with good precision and small uncertainty (1.5–3%). In this method, species-specific spike protein is not necessary and the integrity of the heteroatom-protein could be maintained in sample preparation

  9. Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry

    Science.gov (United States)

    Dong, Meirong; Oropeza, Dayana; Chirinos, José; González, Jhanis J.; Lu, Jidong; Mao, Xianglei; Russo, Richard E.

    2015-07-01

    The capabilities and analytical benefits of combined LIBS and LA-ICP-MS were evaluated for the analysis of coal samples. The ablation system consisted of a Nd:YAG laser operated 213 nm. A Czerny-turner spectrograph with ICCD detector and time-of-flight based mass spectrometer were utilized for LIBS and ICP-MS detection, respectively. This tandem approach allows simultaneous determination of major and minor elements (C, Si, Ca, Al, Mg), and trace elements (V, Ba, Pb, U, etc.) in the coal samples. The research focused on calibration strategies, specifically the use of univariate and multivariate data analysis on analytical performance. Partial least square regression (PLSR) was shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The correlation between measurements from these two techniques demonstrated that mass spectral data combined with LIBS emission measurements by PLSR improved the accuracy and precision for quantitative analysis of trace elements in coal.

  10. Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Meirong [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Oropeza, Dayana [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Chirinos, José [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041a (Venezuela, Bolivarian Republic of); González, Jhanis J. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Lu, Jidong [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Mao, Xianglei [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Russo, Richard E., E-mail: RERusso@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2015-07-01

    The capabilities and analytical benefits of combined LIBS and LA-ICP-MS were evaluated for the analysis of coal samples. The ablation system consisted of a Nd:YAG laser operated 213 nm. A Czerny-turner spectrograph with ICCD detector and time-of-flight based mass spectrometer were utilized for LIBS and ICP-MS detection, respectively. This tandem approach allows simultaneous determination of major and minor elements (C, Si, Ca, Al, Mg), and trace elements (V, Ba, Pb, U, etc.) in the coal samples. The research focused on calibration strategies, specifically the use of univariate and multivariate data analysis on analytical performance. Partial least square regression (PLSR) was shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The correlation between measurements from these two techniques demonstrated that mass spectral data combined with LIBS emission measurements by PLSR improved the accuracy and precision for quantitative analysis of trace elements in coal. - Highlights: • Tandem LIBS LA-ICP-MS • Simultaneous determination of major and minor elements and trace elements in the coal samples. • Extended Dynamic Range • Correlation between LIBS with LA-ICP-MS demonstrated improved the accuracy and precision for quantitative analysis of coal.

  11. Bayesian Integration and Classification of Composition C-4 Plastic Explosives Based on Time-of-Flight-Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Mahoney, Christine M; Kelly, Ryan T; Alexander, Liz; Newburn, Matt; Bader, Sydney; Ewing, Robert G; Fahey, Albert J; Atkinson, David A; Beagley, Nathaniel

    2016-04-05

    Time-of-flight-secondary ion mass spectrometry (TOF-SIMS) and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) were used for characterization and identification of unique signatures from a series of 18 Composition C-4 plastic explosives. The samples were obtained from various commercial and military sources around the country. Positive and negative ion TOF-SIMS data were acquired directly from the C-4 residue on Si surfaces, where the positive ion mass spectra obtained were consistent with the major composition of organic additives, and the negative ion mass spectra were more consistent with explosive content in the C-4 samples. Each series of mass spectra was subjected to partial least squares-discriminant analysis (PLS-DA), a multivariate statistical analysis approach which serves to first find the areas of maximum variance within different classes of C-4 and subsequently to classify unknown samples based on correlations between the unknown data set and the original data set (often referred to as a training data set). This method was able to successfully classify test samples of C-4, though with a limited degree of certainty. The classification accuracy of the method was further improved by integrating the positive and negative ion data using a Bayesian approach. The TOF-SIMS data was combined with a second analytical method, LA-ICPMS, which was used to analyze elemental signatures in the C-4. The integrated data were able to classify test samples with a high degree of certainty. Results indicate that this Bayesian integrated approach constitutes a robust classification method that should be employable even in dirty samples collected in the field.

  12. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore geochemical taphonomy of vertebrate fossils in the upper cretaceous two medicine and Judith River formations of Montana

    Science.gov (United States)

    Rogers, R.R.; Fricke, H.C.; Addona, V.; Canavan, R.R.; Dwyer, C.N.; Harwood, C.L.; Koenig, A.E.; Murray, R.; Thole, J.T.; Williams, J.

    2010-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine rare earth element (REE) content of 76 fossil bones collected from the Upper Cretaceous (Campanian) Two Medicine (TMF) and Judith River (JRF) Formations of Montana. REE content is distinctive at the formation scale, with TMF samples exhibiting generally higher overall REE content and greater variability in REE enrichment than JRF samples. Moreover, JRF bones exhibit relative enrichment in heavy REE, whereas TMF bones span heavy and light enrichment fields in roughly equal proportions. TMF bones are also characterized by more negative Ce anomalies and greater U enrichment than JRF bones, which is consistent with more oxidizing diagenetic conditions in the TMF. Bonebeds in both formations show general consistency in REE content, with no indication of spatial or temporal mixing within sites. Previous studies, however, suggest that the bonebeds in question are attritional assemblages that accumulated over considerable time spans. The absence of geochemical evidence for mixing is consistent with diagenesis transpiring in settings that remained chemically and hydrologically stable during recrystallization. Lithology-related patterns in REE content were also compared, and TMF bones recovered from fluvial sandstones show relative enrichment in heavy REE when compared with bones recovered from fine-grained floodplain deposits. In contrast, JRF bones, regardless of lithologic context (sandstone versus mudstone), exhibit similar patterns of REE uptake. This result is consistent with previous reconstructions that suggest that channel-hosted microfossil bonebeds of the JRF developed via the reworking of preexisting concentrations embedded in the interfluve. Geochemical data further indicate that reworked elements were potentially delivered to channels in a recrystallized condition, which is consistent with rapid adsorption of REE postmortem. Copyright ?? 2010, SEPM (Society for

  13. Reproducibility of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) measurements in mussel shells and comparison with micro-drill sampling and solution ICP-MS.

    Science.gov (United States)

    Phung, Anh Tuan; Baeyens, Willy; Leermakers, Martine; Goderis, Steven; Vanhaecke, Frank; Gao, Yue

    2013-10-15

    The accumulation of trace elements (Mg, Mn, Sr, Ba) in Unio pictorum L. mussel shells from Lake Balaton has been assessed using a Laser Ablation (LA) system coupled to either a quadrupole-based or a sector-field inductively coupled plasma-mass spectrometer (ICP - MS), as well as by a combination of micro-drill sampling and solution ICP-MS. The LA-ICP-MS measurements were carried out in the holes made by the micro-drilling system. The longitudinal concentration profiles obtained with the different methods show similar patterns. However, the absolute concentrations determined at individual spots (holes) can be quite different. Especially Ba shows erratic peaks at a very small spatial scale. A paired, two-sample t-test between LA-ICP-MS longitudinal profiles and between LA-ICP-MS and micro-drill/solution ICP-MS profiles indicates that, in most cases, there is no significant difference between the concentration profiles of Ba, Mg, Mn and Sr. Average shell concentrations of Mg, Mn, Sr and Ba, as obtained by LA-ICP-MS and micro-drill/solution ICP-MS, compare well with bulk shell concentrations as obtained by acid digestion/ICP-MS of larger shell pieces. Next to the four elements mentioned above, also the concentrations of Cd, Co, Cr, Cu, Ni, Pb and Zn could be determined by bulk shell analysis. The element concentrations in 11 shells, all sampled at the same site, show a relative standard deviation (RSD) between 2% (Ni) and 46% (Zn). LA-ICP-MS and micro-drill solution ICP-MS are not sensitive enough for the determination of ultra-trace elements in Lake Balaton's mussel shells. We estimated the amount of shell material necessary to determine Ni, Pb, Cr and Cu by micro-drilling ICP-MS (for a concentration that equals 3 times their limit of detection) at, respectively, 0.04, 0.82, 2.7 and 0.4 mg, while the amount sampled by micro-drilling is about 0.06 mg.

  14. Superconducting Resonant Inductive Power Coupling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will develop a technology to wirelessly and efficiently transfer power over hundreds of meters via resonant inductive coupling. The key...

  15. 激光剥蚀电感耦合等离子体质谱法测定金属镀锡层的厚度%Quick Measurement of Thickness of Tin Coating on Metal by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    金献忠; 谢健梅; 陈建国

    2015-01-01

    激光剥蚀电感耦合等离子体质谱法(LA -ICP -MS)应用于测定金属镀锡层的厚度时激光脉冲能量的大小及其稳定性会影响分析结果的准确度。本文采用一款自制的皮秒激光剥蚀固体进样系统(psLA),与ICP -MS 联用建立了一种测定金属镀锡层厚度的方法。在激光脉冲能量为12μJ,散焦距离为625μm 的条件下采集锡和镀锡层基材元素检测同位素的时间分辨图,根据提出的边界确定规则确定了剥蚀镀锡层的时间,同时根据厚度标准片计算单位脉冲剥蚀量。该方法的单位脉冲剥蚀量为88 nm /pulse,厚度分辨率为0.40μm,应用于测定钢镀锡厚度标准片、铜镀锡厚度标准片、有涂层马口铁和镀锡不锈钢带等样品,测定值与认定值的最大偏差为0.5μm。本方法避免了激光脉冲能量的不稳定使得单位脉冲剥蚀量发生变化的问题,提高了镀层厚度测定的准确度,适用于各种形态、各种规格金属镀层厚度的测定,也可应用于生命科学、考古、环境、司法等领域。%Thickness analysis of tin coating on metal by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS)is affected by the laser pulse energy and its stability.A method has been proposed for quick measurement of thickness of tin coating on metal using a self-made picosecond laser ablation system coupled Inductively Coupled Plasma-Mass Spectrometry.Laser ablation was carried out using pulse energy of 12 μJ and defocus distance of 625 μm.Time resolved spectra (TRS)of 118 Sn and measured isotopes of the main elements in substrate were acquired,the time of ablation of zinc coating was gained according to the relationship of these TRS, the ablation rate was calculated by thickness standard sheet,and thickness of tin coating could be measured quickly.Ablation rate of tin coating was 88 nm /pulse and depth solution was 0.40 μm.The thickness standard sheet

  16. Enhanced coupling of optical energy during liquid-confined metal ablation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Wook, E-mail: wkang@pknu.ac.kr [Department of Biomedical Engineering, Pukyong National University, Busan, South Korea and Center for Marine-integrated Biomedical Technology (MIBT), Pukyong National University, Busan (Korea, Republic of); Welch, Ashley J. [Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712 (United States)

    2015-10-21

    Liquid-confined laser ablation was investigated with various metals of indium, aluminum, and nickel. Ablation threshold and rate were characterized in terms of surface deformation, transient acoustic responses, and plasma emissions. The surface condition affected the degree of ablation dynamics due to variations in reflectance. The liquid confinement yielded up to an order of larger ablation crater along with stronger acoustic transients than dry ablation. Enhanced ablation performance resulted possibly from effective coupling of optical energy at the interface during explosive vaporization, plasma confinement, and cavitation. The deposition of a liquid layer can induce more efficient ablation for laser metal processing.

  17. Inductively coupled radio frequency methane plasma simulation

    Science.gov (United States)

    Bera, K.; Farouk, B.; Vitello, P.

    2001-05-01

    A self-consistent two-dimensional radio frequency inductively coupled glow discharge model has been developed in cylindrical coordinates using a fluid model. The objective of the study is to provide insight into charged species dynamics and investigate their effects on plasma process for a methane discharge. The model includes continuity and energy equations for electrons and continuity, momentum and energy equations for positive and negative ions. An electromagnetic model that considers the electric field due to the space charge within the plasma and due to inductive power coupling is also incorporated. For an inductively coupled methane discharge we expect to find higher fluxes of ions and radicals to the cathode, and hence a higher deposition/etch rate for a high-density plasma. The independent control of ion energy to the cathode in an inductively coupled discharge will facilitate control on film deposition/etch rate and uniformity on the wafer. Swarm data as a function of the electron energy are provided as input to the model. The model predicts the electron density, ion density and their fluxes and energies to the cathode. The radical and neutral densities in the discharge are calculated using a gas phase chemistry model. The diamond-like-carbon thin-film deposition/etch rate is predicted using a surface chemistry model. The gas phase chemistry model considers the diffusion of radicals and neutrals along with creation and loss terms. The surface deposition/etching process involves adsorption-desorption, adsorption layer reaction, ion stitching, direct ion incorporation and carbon sputtering.

  18. A Microfabricated Inductively Coupled Plasma Excitation Source

    Institute of Scientific and Technical Information of China (English)

    WANG Yong-Qing; PU Yong-Ni; SUN Rong-Xia; TANG Yu-Jun; CHEN Wen-Jun; LOU Jian-Zhong; MA Wen

    2008-01-01

    A novel miniaturization of inductively coupled plasma(ICP)source based on printed circuit produced using micro-fabrication techniques is presented.The basic parameters of the novel ICP,including its radio frequency,power loss,size,and argon consumption are less than 1% of that for the case of atmospheric pressure ICP source.For example,at 100 Pa of argon gas pressure,the present ICP source can be ignited by using the rf power less than 3.5 W.Potential applications of the ICP is discussed.

  19. Wireless Power Transmission Using Resonance Inductive Coupling

    Directory of Open Access Journals (Sweden)

    Prof. Vishal V. Pande,

    2014-04-01

    Full Text Available In this paper, we present the concept of transmitting power without using wires i.e.transmitting power as Magnetic waves from one place to another is in order to reduce the transmission and distribution losses. This concept is known as Resonance Inductive Coupling (RIC. We also discussed the technological developments in Wireless Power Transmission (WPT. The advantages, disadvantages, biological impacts and applications of WPT are also presented. Wireless power or wireless energy transmission is the transmission of electrical energy from a power source to an electrical load without man-made conductors. Wireless transmission is useful in cases where interconnecting wires are inconvenient, hazardous, or impossible. the proportion of energy received becomes critical only if it is too low for the signal to be distinguished from the background noise. With wireless power, efficiency is the more significant parameter. A large part of the energy sent out by the generating plant must arrive at the receiver or receivers to make the system economical.The most common form of wireless power transmission is carried out using direct induction followed by resonant magnetic induction. Other methods under consideration are electromagnetic radiation in the form of microwaves or lasers and electrical conduction through natural media

  20. Étude expérimentale et modélisation des potentialités de la technique libs (ablation laser couplée à la spectroscopie) pour l'analyse directe des solides

    OpenAIRE

    Barreda, Flory-Anne

    2010-01-01

    Laser ablation is widely spread for solid sample microanalysis. A tightly focused laser beam allows direct sampling of matter, the ablated mass can then be analysed either with LIBS (Laser Induced Breakdown Spectroscopy) or with an inductively coupled plasma source combined with an optical emission spectrometer (ICP-AES) or a mass spectrometer (ICP-MS). With spatial resolution down to the micron scale, laser ablation techniques permit local elemental analysis of sample surface. Nevertheless, ...

  1. Effect of mutual inductance coupling on superconducting flux qubit decoherence

    Institute of Scientific and Technical Information of China (English)

    Yanyan Jiang; Hualan Xu; Yinghua Ji

    2009-01-01

    In the Born-Markov approximation and two-level approximation, and using the Bloch-Redfield equation, the decoherence property of superconducting quantum circuit with a flux qubit is investigated. The influence on decoherence of the mutual inductance coupling between the circuit components is complicated. The mutual inductance coupling between different loops will decrease the decoherence time. However, the mutual inductance coupling of the same loop, in a certain interval, will increase the decoherence time. Therefore, we can control the decoherence time by changing the mutual inductance parameters such as the strength and direction of coupling.

  2. 激光剥蚀-等离子体质谱技术及其在地球化学宇宙化学和环境研究中的应用%Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry and Its Application in Geochemistry, Cosmochemistry and Environmental Research

    Institute of Scientific and Technical Information of China (English)

    JOCHUM Klaus Peter; KUZMIN Dmitry; MERTZ-KRAUS Regina; MüLLER Werner E G; REGNERY Julia; SOBOLEV Alexander; 王晓红; 詹秀春; STOLL Brigitte; FRIEDRICH Jon M; AMINI Marghaleray; BECKER Stefan; DüCKING Marc; EBEL Denton S; ENZWEILER Jacinta; HU Ming-yue

    2009-01-01

    激光剥蚀-等离子体质谱(LA-ICPMS)已成为地球化学、宇宙化学和环境研究领域元素和同位素原位分析最重要的技术之一.文章介绍了多种类型的质谱仪及其使用的激光器.用途最广的LA-ICPMS仪器之一是单接收器扇形磁场质谱仪,配有Nd:YAG激光剥蚀系统(激光波长分为193 nm和213 nm两种),MPI Mainz实验室使用的就是这套系统,文章对此作一详细介绍.文中阐述了数据优化技术及其多种校正过程;介绍LA-ICPMS在痕量元素和同位素分析领域的一些应用,包括参考物质的研制,Hawaiian玄武岩、Martian陨石、生物骨针和珊瑚虫中痕量元素分析及熔融包裹体和富钙-铝碳质球粒陨石中的铅和锶同位素测量.%Laser ablation (LA)-inductively coupled plasma-mass spectrometry (ICP-MS) has become one of the most important methods for in situ trace elemental and isotopic analysis in geochemistry, cosmochemistry and environmental research. For these purposes, different kinds of mass spectrometers and lasers are used, which are presented in this paper. One of the most useful LA-ICPMS instruments is the combination of a single-collector sector field mass spectrometer with Nd:YAG laser ablation systems (193 nm and 213 nm wavelengths, respectively). This design used in the MPI Mainz laboratory is described in detail in this paper. Data optimization techniques including diverse correction procedures are also discussed. To demonstrate the power of LA-ICPMS, several applications of trace elemental and isotopic analysis are presented, such as investigations of reference materials, trace element analysis in Hawaiian basalts, Martian meteorites, biological spicules and corals, as well as Pb and Sr isotope measurements of melt inclusions and Ca-Al rich inclusions of carbonaceous chondrites.

  3. 激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)定量分析小麦籽粒锌元素的空间分布%Quantification and spatial distribution of zinc in wheat grains by laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)

    Institute of Scientific and Technical Information of China (English)

    王云霞; 杨连新; W.J.Horst

    2011-01-01

    激光剥蚀电感耦合等离子体质谱(laser ablation inductively coupled plasma mass spectrometry,LA-ICP-MS)是用于测定植物组织中元素分布的最新技术.采用LA-ICP-Ms技术对小麦成熟籽粒中锌的空间分布进行了定量分析.结果表明:成熟小麦籽粒锌浓度的空间分布差异明显.从浓度分布看,种皮、糊粉层和胚中的锌分别为192、432和292 mg·kg-1,而胚乳中的锌只有14 mg·kg-1;从积累量分布看,种皮、糊粉层、胚和胚乳中的锌积累量分别占籽粒总积累量的24%、47%、11%和18%,说明小麦籽粒经加工后锌含量锐减(下降约80%).分别采用LA-ICP-MS和酸消解溶液雾化进样ICP-MS法测定了自制校正标准样和小麦整粒种子的锌浓度,结果两种方法的测定值很接近且重复间变异较小,证实了LA-ICP-MS这一空间分布定量分析方法的可靠性.%Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)is a recently developed technology for examining mineral elements distribution in plant tissue. In this paper, the spatial distribution of zinc in wheat grains was quantified by LA-ICP-MS. Results indicated large spatial variation of zinc concentration in wheat grains. Zinc concentration in seed coat, aleurone layer and ambryo is 192,432 and 292 mg-kg-1, respectively, only 14 mg·kg-1 in endosperm. As for zinc accumulation, zinc amount in seed coat,aleurone layer,ambryo and endosperm account for 24% ,47%, 11% and 18% of total zinc in grain, which implied that zinc content in grains decreased sharply after seed processing (polished). By comparing the measured zinc value of two different methods (i. e. , LA-1CP-MS and ICP-MS after digestion), we also found that the variation of measured zinc concentration between two methods as well as among replications were small, which suggested that LA-ICP-MS is a reliable method for quantifying the spatial distribution of elements in grains.

  4. Element Colocalization in Wheat Seed Revealed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)%用激光剥蚀电感耦合等离子体质谱研究小麦籽粒元素的共分布

    Institute of Scientific and Technical Information of China (English)

    王云霞; 杨连新; WalterJ.HORST

    2012-01-01

    For enhancement of micronutrient concentrations in edible parts of food crops, element uptake and partition in plants, especially in seeds, should be better understanded. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a recently developed technology for examining mineral elements distribution in plant tissues. By using this technique, we quantitatively measured distributions of manganese (Mn), copper (Cu), zinc (Zn), and phosphorus (P) in different parts of wheat seeds. The concentrations of Cu, Zn, and P were the highest in aleurone layer and the lowest in endosperm with the difference of 15, 42, and 33 folds, respectively. The Mn concentration was the highest in embryo, which was 9-fold higher than the lowest concentration in endosperm. The concentration gradients of measured elements were also found in same parts of wheat grain. The concentrations of P, Mn, Cu, and Zn in endosperm close to aleurone layer were higher than those in the middle of wheat seed. Similarly, the element concentrations in scutellum were higher than those in embryo axis. The four elements had similar distribution pattern in wheat seed with a clear synchronization. This phenomenon suggested the colocalization of these elements in wheat seeds. Therefore, the translocations and accumulations of P, Mn, Cu, and Zn in wheat seeds might be closely related to each other, and the finding is useful for wheat biofortification programs in the future.%增加粮食可食用部分微量营养元素的浓度,需要更好地了解其在植株,特别是籽粒内的运输和分布规律.激光剥蚀电感耦合等离子体质谱(laser ablation inductively coupled plasma mass spectrometry,LA-ICP-MS)是一种测定植物组织中元素空间分布的新技术.采用该技术对成熟小麦籽粒中锰(Mn)、铜(Cu)、锌(Zn)和磷(P)的空间分布及其关联程度定量研究.结果表明,所测元素在籽粒不同部位的浓度分布差异很大.Cu、Zn和P浓度均以糊粉

  5. Study on the uptake and distribution of gadolinium based contrast agents in biological samples using laser ablation with inductively coupled plasma mass spectroscopy; Untersuchungen zur Aufnahme und Verteilung von gadoliniumbasierten Kontrastmitteln in biologischen Proben mittels Laserablation mit induktiv gekoppelter Plasma-Massenspektrometrie

    Energy Technology Data Exchange (ETDEWEB)

    Lingott, Jana

    2016-01-05

    Gadolinium based contrast agents are used for magnetic resonance imaging. After their excretion by medicated patients they reach surface water passing waste water treatment plants where they are not removed sufficiently. The behavior of the contrast agents in the environment and the interaction with organisms was investigated in this work due to the toxicity of the free Gd{sup 3+} ion and the associated risks, such as accumulation in the human food chain. In this work, the two elemental analytical imaging methods laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and synchrotron radiation X-ray fluorescence analysis (SRXRF) have been used to investigate the uptake, distribution, and excretion of Gd-based contrast agents by various biological systems. Both methods were analytically characterized and compared for this application. The detection limits of gadolinium were determined under optimized conditions by LA-ICP-MS and SRXRF. With calibration by remains of dried elemental standard droplets detection limits of 0.78 pg absolute amount of gadolinium (LA-ICP-MS), respectively 89 pg (SRXRF) were reached. Based on filamentous algae as water plants the uptake and the excretion of Gd-based contrast agents were revealed. The dependence on concentration of the contrast agent in the exposition solution and the independence of temporal uptake within one to seven days were studied for duckweed. By LA-ICP-MS gadolinium was quantified in a leaf of cress plant. The verification of the results was performed by SRXRF and ICP-MS after digestion. Furthermore, the uptake and distribution of Gd-based contrast agents in higher organisms (water flea) were observed. The exact location of gadolinium was resolved by three-dimensional μ-computed tomography by the comparison of an exposed with a Gd-free water flea. In all studies, gadolinium was detected in the investigated exposed model organisms. It can be concluded that the contrast agents were taken from the

  6. Progress in antenna coupled kinetic inductance detectors

    NARCIS (Netherlands)

    Baryshev, A.; Baselmans, J.J.A.; Freni, A.; Gerini, G.; Hoevers, H.; Iacono, A.; Neto, A.

    2011-01-01

    This paper describes the combined Dutch efforts toward the development of large wideband focal plane array receivers based on kinetic inductance detectors (KIDs). Taking into account strict electromagnetic and detector sensitivity requirements for future ground and space based observatories, this

  7. Impact of Coupled Radiation and Ablation on the Aerothermodynamics of Meteor Entries

    Science.gov (United States)

    Johnston, Christopher O.; Stern, Eric C.

    2017-01-01

    A high-fidelity approach for simulating the aerothermodynamic environments of meteor entries is developed. Two primary components of this model are coupled radiation and coupled ablation. Coupled radiation accounts for the impact of radiation on the flow field energy equations, while coupled ablation explicitly models the injection of ablation products within the flow field and radiation simulations. For a meteoroid with a velocity of 20 km/s, coupled radiation reduces the stagnation point radiative heating by over 60%. For altitudes below 40 km, the impact of coupled radiation on the flow field structure is shown to be fundamentally different, as a result of the large optical thicknesses, than that seen for reentry vehicles, which do not reach such altitudes at velocities greater than 10 km/s. The impact of coupled ablation (with coupled radiation) is shown to provide at least a 70% reduction in the radiative heating relative to the coupled-radiation-only cases. This large reduction is partially the result of the low ionization energies, relative to air species, of ablation products. The low ionization energies of ablation products, such as Mg and Ca, provide strong photoionization and atomic line absorption in regions of the spectrum that air species do not. MgO and CaO are also shown to provide significant absorption. Turbulence is shown to impact the distribution of ablation products through the shock- layer, which results in up to a 100% increase in the radiative heating downstream of the stagnation point. To create a database of heat transfer coefficients the developed model was applied to a range of cases. This database considered velocities ranging from 14 to 20 km/s, altitudes ranging from 20 to 50 km, and nose radii ranging from 1 to 100 m. The heat transfer coefficients from these simulations are below 0.045 for the range of cases (with turbulence), which is significantly lower than the canonical value of 0.1.

  8. Implementation of Radiation, Ablation, and Free Energy Minimization Modules for Coupled Simulations of Hypersonic Flow

    Science.gov (United States)

    Gnoffo, Peter A.; Johnston, Christopher O.; Thompson, Richard A.

    2009-01-01

    A description of models and boundary conditions required for coupling radiation and ablation physics to a hypersonic flow simulation is provided. Chemical equilibrium routines for varying elemental mass fraction are required in the flow solver to integrate with the equilibrium chemistry assumption employed in the ablation models. The capability also enables an equilibrium catalytic wall boundary condition in the non-ablating case. The paper focuses on numerical implementation issues using FIRE II, Mars return, and Apollo 4 applications to provide context for discussion. Variable relaxation factors applied to the Jacobian elements of partial equilibrium relations required for convergence are defined. Challenges of strong radiation coupling in a shock capturing algorithm are addressed. Results are presented to show how the current suite of models responds to a wide variety of conditions involving coupled radiation and ablation.

  9. Inductive Coupling of Power Converter’s – EMC

    Directory of Open Access Journals (Sweden)

    Irena Kováčová

    2009-07-01

    Full Text Available The paper presents a computer analysis of inductive coupling of theelectromagnetic compatibility (EMC problem. Its focus is on power electronics andelectrical drives and tests performed by a numerical computer simulation that can disclosesuite surprising findings about EMC.

  10. Training course on inductively coupled plasma spectrometry - Note

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    TRAINING COURSE ON INDUCTIVELY COUPLED PLASMA SPECTROMETRY In the present day geological, chemical, environmental and archaeological research activities, the Inductively Coupled Plasma (ICP) Spectrometry is established as a cost-effective multi... research and educational institutions and the industry participated in the course. The participants were research students, teachers and professionals from the states of Andhra Pradesh, Karnataka, Gujarat, Maharashtra, Uttar Pradesh, Rajasthan, Goa, Tamil...

  11. Progress in antenna coupled kinetic inductance detectors

    NARCIS (Netherlands)

    Baryshev, A.; Baselmans, J.J.A.; Freni, A.; Gerini, G.; Hoevers, H.; Iacono, A.; Neto, A.

    2011-01-01

    This paper describes the combined Dutch efforts toward the development of large wideband focal plane array receivers based on kinetic inductance detectors (KIDs). Taking into account strict electromagnetic and detector sensitivity requirements for future ground and space based observatories, this wo

  12. Inductively coupled transducer system for damage detection in composites

    Science.gov (United States)

    Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.

    2012-04-01

    The laminated construction of composite offers the possibility of permanently embedding sensors into structure, for example, ultrasonic transducers which can be used for NDE applications. An attractive and simple solution for probing embedded sensors wirelessly is via inductive coupling. However, before this can be achieved it is necessary to have a full understanding and proper design strategy for the inductively coupled system. This paper presents the developments of both system design procedure and a computer program for one dimensional inductively coupled transducer system mounted on a solid substrate. The design strategy in this paper mainly focuses on issues of localization of transducers, and optimizing the signal to noise level. Starting from a three coil equivalent circuit, this paper also explains how the measured impedance of a bonded piezoelectric disc is implemented into the system model representing a transducer bonded to an arbitrary solid substrate. The computer programme using this model provides immediate predictions of electrical input impedance, acoustic response and pulse-echo response. A series of experiments and calculations have been performed in order to validate the model. This has enabled the degree of accuracy required for various parameters within the model, such as mutual inductance between the coils and self-inductance of coils, to be assessed. Once validated, the model can be used as a tool to predict the effect of physical parameters, such as distance, lateral misalignment between the coils, and the coil geometry on the performance of an inductively coupled system.

  13. Determination of trace elements in petroleum products by inductively coupled plasma techniques: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, Raquel [Department of Analytical Chemistry, Nutrition and Food Sciences, P.O. Box 99, 03080, Alicante (Spain); Todolí, José Luis, E-mail: jose.todoli@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences, P.O. Box 99, 03080, Alicante (Spain); Lienemann, Charles-Philippe [IFP Energies Nouvelles, Rond-point de l' échangeur de Solaize, BP 3, F-69360 Solaize (France); Mermet, Jean-Michel [Spectroscopy Forever, 01390 Tramoyes (France)

    2013-10-01

    The fundamentals, applications and latter developments of petroleum products analysis through inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are revisited in the present bibliographic survey. Sample preparation procedures for the direct analysis of fuels by using liquid sample introduction systems are critically reviewed and compared. The most employed methods are sample dilution, emulsion or micro-emulsion preparation and sample decomposition. The first one is the most widely employed due to its simplicity. Once the sample has been prepared, an organic matrix is usually present. The performance of the sample introduction system (i.e., nebulizer and spray chamber) depends strongly upon the nature and properties of the solution finally obtained. Many different devices have been assayed and the obtained results are shown. Additionally, samples can be introduced into the plasma by using an electrothermal vaporization (ETV) device or a laser ablation system (LA). The recent results published in the literature showing the feasibility, advantages and drawbacks of latter alternatives are also described. Therefore, the main goal of the review is the discussion of the different approaches developed for the analysis of crude oil and its derivates by inductively coupled plasma (ICP) techniques. - Highlights: • Analysis of petroleum products by inductively coupled plasma techniques is revisited. • Fundamental studies are included together with reports dealing with applications. • Conventional and non-conventional sample introduction methods are considered. • Sample preparation methods are critically compared and described.

  14. Monitoring microbial metabolites using an inductively coupled resonance circuit

    NARCIS (Netherlands)

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; Visser, de Arjan; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys

    2015-01-01

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacteria

  15. Laser ablated coupling structures for stacked optical interconnections on printed circuit boards

    Science.gov (United States)

    Hendrickx, Nina; Van Steenberge, Geert; Geerinck, Peter; Van Erps, Jürgen; Thienpont, Hugo; Van Daele, Peter

    2006-04-01

    Laser ablation is presented as a versatile technology that can be used for the definition of arrays of multimode waveguides and coupling structures in a stacked two layer optical structure, integrated on a printed circuit board (PCB). The optical material, Truemode Backplane TM Polymer, is fully compatible with standard PCB manufacturing and shows excellent ablation properties. A KrF excimer laser is used for the ablation of both waveguides and coupling structures into the optical layer. The stacking of individual optical layers containing waveguides, that guide the light in the plane of the optical layer, and coupling structures, that provide out-of-plane coupling and coupling between different optical layers, is very interesting since it allows us to increase the integration density and routing possibilities and limit the number of passive components that imply a certain loss. Experimental results are presented, and surface roughness and profile measurements are performed on the structured elements for further characterization. Numerical simulations are presented on the tolerance on the angle of the coupling structures and the influence of tapering on the coupling efficiency of the waveguides.

  16. Design And Construction Of Wireless Charging System Using Inductive Coupling

    Directory of Open Access Journals (Sweden)

    Do Lam Mung

    2015-06-01

    Full Text Available Abstract Wireless charging system described by using the method of inductive coupling. In this project oscillation circuit converts DC energy to AC energytransmitter coil to transmit magnetic field by passing frequency and then induce the receiver coil. The properties of Induction coupling are wavemagnetic field-wideband rangevery shortcm efficiencyhight and operation frequencyLF-bandseveral handred kHz.The project shows as a small charging for 5V battery of phone in this method. The system bases on coupling magnetic field then designed and constructed as two parts. There are transmitter part and receiver part. The transmitter coil transmitter part transmits coupling magnetic field to receiver coil receiver part by passing frequency at about 1.67MHz. The Amperes law Biot-Savart law and Faraday law are used to calculate the inductive coupling between the transmitter coil and the receiver coil. The calculation of this law shows how many power transfer in receiver part when how many distance between the transmitter coil and the receiver coil. The system is safe for users and neighbouring electronic devices. To get more accurate wireless charging system it needs to change the design of the following keywords.

  17. Attachment Instabilities of SF6 Inductively Coupled Plasmas under Different Coupling Intensities

    Institute of Scientific and Technical Information of China (English)

    GAO Wei; SUN Bin; DING Zhen-Feng

    2009-01-01

    Characteristics of attachment instabilities in SF6 inductively coupled plasmas are experimentally studied under different coupling intensities.Experimental results show that the instabilities only occur in H modes operating in positive feedback regions.Both the sudden mode transitions and the instabilities are influenced by the coupling intensities.With increasing absorbed power,weak and middle coupling discharges can sequently undergo sudden mode transitions and attachment instabilities.In strong coupling discharges,the sudden mode transitions disappear and only attachment instabilities exist.The strong and weak coupling discharges are the most stable and unstable,respectively.

  18. Coupled Aeroheating and Ablative Thermal Response Simulation Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A predictive tool with tight coupling of the fluid and thermal physics will give insights into the conservatism of the uncoupled design process and could lead to...

  19. New Applications of Inductively Coupled Plasma-Mass Spectrometry in the Nuclear Industry

    Energy Technology Data Exchange (ETDEWEB)

    Rob Henry; Dagmar Koller; Phil Marriott

    1998-12-31

    Inductively coupled plasma mass spectrometry (ICP-MS) complements the traditional methods of quantitation of radioactive isotopes. Because of the favorable ionization potential of most actinides and their daughter products, the argon plasma provides a rich, stable source of ions, which are introduced through a plasma-mass spectrometer interface into the mass spectrometer for isotopic separation. Samples are normally introduced in solution, although direct solids analysis has also been achieved using laser ablation of the sample into the argon plasma. Since 1983, improvements in ICP-MS sensitivity have resulted in correspondingly lower mass detection capability. This development has in turn expanded the number of isotopes accessible to measurement at the levels required in the nuclear industry.

  20. Inductively coupled plasma mass spectrometry (ICP-MS)and its application in life sciences

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Inductively-coupled plasma mass spectrometry (ICP-MS) has made much progress since its birth in the late 1990s. This paper will give a rather systematic overview on the use of this technique in new devices and technologies related to plasma source, sample-introducing device and detecting spectrometer etc. In this overview, an emphasis will be put on the evaluation of the ICPMS technique in combination with a series of physical, chemical and biological techniques, such as laser ablation (LA), capillary electrophoresis (CE) and high performance liquid chromatograph (HPLC), along with their representative high accuracy and high sensitivity. Finally, comprehensive and fruitful applications of the ICP-MS and its combinative techniques in the detection of trace metallic elements and isotopes in complex biological and environmental samples will be revealed.

  1. Double-pulse laser ablation coupled to laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, Reto, E-mail: reglaus@ufl.edu; Hahn, David W.

    2014-08-01

    Laser ablation coupled to laser-induced breakdown spectroscopy (LA-LIBS) is an analytical method, which minimizes sample matrix effects typically found in quantitative LIBS-based direct solid analyses. This paper reports the application of double-pulse laser ablation (DP-LA) to improve the analyte response and the achievable precisions of LA-LIBS. Two coaxial laser beams were applied at the ablation site and the analytical signals were then collected from a second free-standing LIBS plasma downstream of the ablation site. Signal improvements of up to one order of magnitude were observed compared to single-pulse LA-LIBS. The effect of the interpulse delay on the observed signal-to-noise ratios was studied and the quantification capabilities of the optimized DP-LA-LIBS setup were investigated for manganese and iron in a broad range of different alloy types. A linear response was observed for manganese across the different matrices, allowing for nonmatrix-matched calibrations. Matrix effects were observed when analyzing aluminum samples, which, however, could be compensated for by applying iron as internal standard. Size distributions of the ablated material and electron density measurements provide additional insight into the double-pulse process, with additional future work suggested. - Highlights: • Double-pulse laser ablation was coupled to laser-induced breakdown spectroscopy. • Nonmatrix-matched calibration of manganese in various alloys was performed. • Improved sensitivities and precisions compared to single-pulse LA were demonstrated. • Remaining matrix effects and internal standardization are discussed.

  2. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  3. Development of ti-coated ferromagnetic needle, adaptable for ablation cancer therapy by high-frequency induction heating.

    Science.gov (United States)

    Naohara, Takashi; Aono, Hiromichi; Maehara, Tsunehiro; Hirazawa, Hideyuki; Matsutomo, Shinya; Watanabe, Yuji

    2012-03-06

    To develop a novel ablation therapy for human solid cancer, the heating properties of a ferromagnetic carbon steel rod and a prototype Ti-coated needle using this carbon steel rod, were investigated in several high-frequency outputs at 300 kHz. In the former, the heating property was drastically different among the three inclination angles (θ = 0°, 45° and 90°) relative to the magnetic flux direction as a result of the shape magnetic anisotropy. However, the effect of the inclination angles was completely eliminated in the latter. It is considered that the complete non-oriented heating property relative to the magnetic flux direction allows the precise control of the ablation temperature during minimally invasive thermotherapy without a lead-wire connected to a fiber-optic thermometer. This newly designed Ti-coated device will be suitable for clinical use combined with its superior biocompatibility for ablation treatments using high-frequency induction heating.

  4. Bulk molybdenum field emitters by inductively coupled plasma etching.

    Science.gov (United States)

    Zhu, Ningli; Cole, Matthew T; Milne, William I; Chen, Jing

    2016-12-07

    In this work we report on the fabrication of inductively coupled plasma (ICP) etched, diode-type, bulk molybdenum field emitter arrays. Emitter etching conditions as a function of etch mask geometry and process conditions were systematically investigated. For optimized uniformity, aspect ratios of >10 were achieved, with 25.5 nm-radius tips realised for masks consisting of aperture arrays some 4.45 μm in diameter and whose field electron emission performance has been herein assessed.

  5. 基于元素对研究激光剥蚀-电感耦合等离子体质谱分析硫化物矿物的基体效应%Characterization of Matrix Effects in Microanalysis of Sulfide Minerals by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Based on An Element Pair Method

    Institute of Scientific and Technical Information of China (English)

    袁继海; 詹秀春; 胡明月; 赵令浩; 孙冬阳

    2015-01-01

    基体效应是影响LA-ICP-MS分析结果准确性的主要因素之一,但目前却没有一种量化基体效应研究的方法。提出了一种以分析元素与内标元素的强度比(Ii/Iis )为纵坐标、浓度比(ci/cis )为横坐标绘制Ii/Iis-ci/cis图,以元素对Ii/Iis-ci/cis图的线性相关系数r量化基体效应的思路。以Fe为内标,考察了13个常用玻璃标准物质与2个硫化物标准及多个硫化物矿物中6个元素对的基体效应,结果显示Cu/Fe和Zn/Fe的线性相关系数r 都小于0.99,而痕量元素对 Mn/Fe,Co/Fe,Ga/Fe,Pb/Fe 的线性相关系数r 都大于0.999;以S为内标,考察了2个硫化物标准与多个硫化物矿物中三个主量元素对Fe/S,Cu/S和Zn/S的基体效应,结果显示其线性相关系数r都小于0.999。无论是以Fe为内标结合玻璃标准为外标,还是以S为内标结合硫化物标准为外标分析硫化物矿物,主量元素大多数分析结果的误差大于10%;而以Fe 为内标时,绝大多数玻璃标准获得的痕量元素分析结果与 MASS-1较为一致,误差小于15%。研究表明,玻璃标准及硫化物矿物标准均与硫化物矿物存在一定的基体效应差异,而采用元素对Ii/Iis-ci/cis图的线性相关系数r量化基体效应具有一定的合理性与实用性。研究也表明了以Fe为内标,采用非基体匹配的玻璃标准可用于定量分析硫化物矿物中的痕量元素,尤其是具有较高痕量元素含量的NIST610。%Matrix effect between reference materials and samples is one of the major factors affecting the accuracy of analytical results by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).However,there is no method or calcula-tion formula to quantify matrix effect between standards and samples up to date.In this paper,the linear correlation coefficient r of the Ii/Iis-ci/cis graphs of element pairs were

  6. Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Christopher Hysjulien [Ames Lab., Ames, IA (United States)

    2012-01-01

    This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows that MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.

  7. Analysis of the Coupling Coefficient in Inductive Energy Transfer Systems

    Directory of Open Access Journals (Sweden)

    Rafael Mendes Duarte

    2014-01-01

    Full Text Available In wireless energy transfer systems, the energy is transferred from a power source to an electrical load without the need of physical connections. In this scope, inductive links have been widely studied as a way of implementing these systems. Although high efficiency can be achieved when the system is operating in a static state, it can drastically decrease if changes in the relative position and in the coupling coefficient between the coils occur. In this paper, we analyze the coupling coefficient as a function of the distance between two planar and coaxial coils in wireless energy transfer systems. A simple equation is derived from Neumann’s equation for mutual inductance, which is then used to calculate the coupling coefficient. The coupling coefficient is computed using CST Microwave Studio and compared to calculation and experimental results for two coils with an excitation signal of up to 10 MHz. The results showed that the equation presents good accuracy for geometric parameters that do not lead the solution of the elliptic integral of the first kind to infinity.

  8. Investigation of inductively coupled ultrasonic transducer system for NDE.

    Science.gov (United States)

    Zhong, Cheng Huan; Croxford, Anthony J; Wilcox, Paul D

    2013-06-01

    Inductive coupling offers a simple solution to wirelessly probe ultrasonic transducers. This paper investigates the theory and feasibility of such an inductively coupled transducer system in the context of nondestructive evaluation (NDE) applications. The noncontact interface is based on electromagnetic coupling between three coils; one of the coils is physically connected to the transducer, the other two are in a separate probing unit, where they are connected to the transmit and receive channels of the instrumentation. The complete system is modeled as a three-port network with the measured impedance of a bonded piezoelectric ceramic disc representing a sensor attached to an arbitrary solid substrate. The developed transmission line model is a function of the physical parameters of the electromagnetic system, such as the number of turns and diameter of each coil, and their separation. This model provides immediate predictions of electrical input impedance and pulse-echo response. The model has been validated experimentally and a sensitivity analysis of the input parameters performed. This has enabled optimization of the various parameters. Inductively coupled transducer systems have been built for both bulk and guided wave examples. By using chirped excitation and baseline subtraction, inspection distance of up to 700 mm is achieved in single-shot, guided-wave pulse-echo mode measurements with a 5 mm separation between the probing coils and transducer coil on an aluminum plate structure. In the bulk wave example, a delamination in an 8.9-mm-thick carbon fiber composite specimen is successfully identified from the changes in the arrival time of a reflected pulse.

  9. MRI surface-coil pair with strong inductive coupling.

    Science.gov (United States)

    Mett, Richard R; Sidabras, Jason W; Hyde, James S

    2016-12-01

    A novel inductively coupled coil pair was used to obtain magnetic resonance phantom images. Rationale for using such a structure is described in R. R. Mett et al. [Rev. Sci. Instrum. 87, 084703 (2016)]. The original rationale was to increase the Q-value of a small diameter surface coil in order to achieve dominant loading by the sample. A significant improvement in the vector reception field (VRF) is also seen. The coil assembly consists of a 3-turn 10 mm tall meta-metallic self-resonant spiral (SRS) of inner diameter 10.4 mm and outer diameter 15.1 mm and a single-loop equalization coil of 25 mm diameter and 2 mm tall. The low-frequency parallel mode was used in which the rf currents on each coil produce magnetic fields that add constructively. The SRS coil assembly was fabricated and data were collected using a tissue-equivalent 30% polyacrylamide phantom. The large inductive coupling of the coils produces phase-coherency of the rf currents and magnetic fields. Finite-element simulations indicate that the VRF of the coil pair is about 4.4 times larger than for a single-loop coil of 15 mm diameter. The mutual coupling between coils influences the current ratio between the coils, which in turn influences the VRF and the signal-to-noise ratio (SNR). Data on a tissue-equivalent phantom at 9.4 T show a total SNR increase of 8.8 over the 15 mm loop averaged over a 25 mm depth and diameter. The experimental results are shown to be consistent with the magnetic resonance theory of the emf induced by spins in a coil, the theory of inductively coupled resonant circuits, and the superposition principle. The methods are general for magnetic resonance and other types of signal detection and can be used over a wide range of operating frequencies.

  10. SU-8 etching in inductively coupled oxygen plasma

    DEFF Research Database (Denmark)

    Rasmussen, Kristian Hagsted; Keller, Stephan Sylvest; Jensen, Flemming

    2013-01-01

    Structuring or removal of the epoxy based, photo sensitive polymer SU-8 by inductively coupled plasma reactive ion etching (ICP-RIE) was investigated as a function of plasma chemistry, bias power, temperature, and pressure. In a pure oxygen plasma, surface accumulation of antimony from the photo......-initiator introduced severe roughness and reduced etch rate significantly. Addition of SF6 to the plasma chemistry reduced the antimony surface concentration with lower roughness and higher etch rate as an outcome. Furthermore the etch anisotropy could be tuned by controlling the bias power. Etch rates up to 800 nm...

  11. Quantum Effects of Mesoscopic Inductance and Capacity Coupling Circuits

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Xin; AN Zhan-Yuan; SONG Yong-Hua

    2006-01-01

    Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finitedifference Schrodinger equation of the non-dissipative mesoscopic inductance and capacity coupling circuit is achieved.The Coulomb blockade effect, which is caused by the discreteness of electric charges, is studied. Appropriately choose the components in the circuits, the finite-difference Schrodinger equation can be divided into two Mathieu equations in p representation. With the WKBJ method, the currents quantum fluctuations in the ground states of the two circuits are calculated. The results show that the currents quantum zero-point fluctuations of the two circuits are exist and correlated.

  12. Uranium isotopic ratio measurements ({sup 235}U/{sup 238}U) by laser ablation high resolution inductively coupled plasma mass spectrometry for environmental radioactivity monitoring - {sup 235}U/{sup 238}U isotope ratio analysis by LA-ICP-MS-HR for environmental radioactivity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    David, K.; Mokili, M.B.; Rousseau, G.; Deniau, I.; Landesman, C. [SUBATECH, Ecole des Mines de Nantes, Universite de Nantes, CNRS/IN2P3, 4 rue Alfred Kastler, 44307 Nantes cedex 3 (France)

    2014-07-01

    The protection of the aquatic and terrestrial environments from a broad range of contaminants spread by nuclear activities (nuclear plants, weapon tests or mining) require continuous monitoring of long-lives radionuclides that were released into the environment. The precise determination of uranium isotope ratios in both natural and potential contaminated samples is of primary concern for the nuclear safeguards and the control of environmental contamination. As an example, analysis of environmental samples around nuclear plants are carried out to detect the traces in the environment originating from nuclear technology activities. This study deals with the direct analysis of {sup 235}U/{sup 238}U isotope ratios in real environmental solid samples performed with laser ablation (LA)-HR-ICP-MS. A similar technique has already been reported for the analysis of biological samples or uranium oxide particles [1,2] but to our knowledge, this was never applied on real environmental samples. The high sensitivity, rapid acquisition time and low detection limits are the main advantages of high resolution ICP-MS for accurate and precise isotope ratio measurements of uranium at trace and ultra-trace levels. In addition, the use of laser ablation allows the analysis of solid samples with minimal preparation. A a consequence, this technique is very attractive for conducting rapid direct {sup 235}U/{sup 238}U isotope ratio analysis on a large set of various matrix samples likely to be encountered in environmental monitoring such as corals, soils, sands, sediments, terrestrial and marine bio-indicators. For the present study, LA-ICP-MS-HR analyses are performed using a New Wave UP213 nano-second Nd:YAG laser coupled to a Thermo Element-XR high resolution mass spectrometer. Powdered samples are compacted with an hydraulic press (5 tons) in order to obtain disk-shaped pellet (10-13 mm in diameter and 2 mm in thickness). The NIST612 reference glass is used for LA-ICP-MS-HR tuning and as

  13. Ionized PVD with an Inductively Coupled Plasma Source

    Science.gov (United States)

    Hayden, D. B.; Juliano, D. R.; Ruzic, D. N.

    1997-10-01

    Ionized physical vapor deposition (iPVD) is used to enhance the directionality of metal deposition. This is a potential solution to depositing into higher aspect-ratio trenches and vias for metal interconnects. A dc magnetron (Donated by Materials Research Corporation) is coupled with an inductively coupled plasma (ICP) coil to increase the ionization of the sputtered metal atoms. This allows metal ions to be accelerated across the plasma sheath to a biased substrate and deposited normally. One coil design has a wider diameter than the substrate to reduce shadowing and flaking effects. Argon and neon working gases and aluminum and copper targets are investigated at varying pressures and power levels. Deposition rates and metal flux ionization fractions are measured with a quartz crystal microbalance and a multi-grid analyzer.

  14. Microwave Kinetic Inductance Detector with Selective Polarization Coupling

    Science.gov (United States)

    Wollack, Edward; U-yen, Kongpop; Stevenson, Thomas; Brown, Ari; Moseley, Samuel; Hsieh, Wen-Ting

    2013-01-01

    A conventional low-noise detector requires a technique to both absorb incident power and convert it to an electrical signal at cryogenic temperatures. This innovation combines low-noise detector and readout functionality into one device while maintaining high absorption, controlled polarization sensitivity, and broadband detection capability. The resulting far-infrared detectors can be read out with a simple approach, which is compact and minimizes thermal loading. The proposed microwave kinetic inductance detector (MKID) consists of three basic elements. The first is the absorptive section in which the incident power is coupled to a superconducting resonator at far-infrared frequency above its superconducting critical frequency (where superconductor becomes normal conductor). This absorber's shape effectively absorbs signals in the desired polarization state and is resonant at the radio frequency (RF) used for readout of the device. Control over the metal film used in the absorber allows realization of structures with either a 50% broadband or 100% resonance absorptance over a 30% fractional bandwidth. The second element is a microwave resonator - which is realized from the thin metal films used to make the absorber as transmission lines - whose resonance frequency changes due to a variation in its kinetic inductance. The resonator's kinetic inductance is a function of the power absorbed by the device. A low-loss dielectric (mono-crystalline silicon) is used in a parallel-plate transmission line structure to realize the desired superconducting resonators. There is negligible coupling among the adjacent elements used to define the polarization sensitivity of each detector. The final component of the device is a microwave transmission line, which is coupled to the resonator, and allows detection of changes in resonance frequency for each detector in the focal plane array. The spiral shape of the detector's absorber allows incident power with two polarizations to

  15. Importance of Ventricular Tachycardia Induction and Mapping for Patients Referred for Epicardial Ablation.

    Science.gov (United States)

    Nazer, Babak; Woods, Christopher; Dewland, Thomas; Moyers, Brian; Badhwar, Nitish; Gerstenfeld, Edward P

    2015-11-01

    Many nonischemic cardiomyopathy (NICMP) patients referred for catheter ablation of ventricular tachycardia (VT) undergo an initial epicardial approach under general anesthesia (GA). However, GA may suppress inducibility and decrease tolerance of induced VT, leaving substrate modification as the sole ablation method. Determine the utility of a strategy of initial programmed electrical stimulation (PES) under light sedation in patients referred for epicardial ablation of VT. Of 68 NICMP patients referred for VT ablation, 25 were referred specifically for epicardial ablation. All patients underwent PES under conscious sedation, with conversion to GA and epicardial access only if VT morphology and/or endocardial mapping suggested an epicardial substrate. VT was induced with PES in 24 of 25 patients (mean age 52 years; 76% male; ejection fraction 38 ± 18%). VT was hemodynamically tolerated in 63% and unstable in 38% of patients. The noninducible/unstable VT patients underwent substrate modification based on voltage and pace mapping. Of the patients with stable VT, 73% were mapped and ablated endocardially (six right ventricle, three left ventricle, one left coronary cusp, one middle cardiac vein), and 33% were successfully ablated in areas of normal endocardial voltage. After ablation, the clinical VT was noninducible in all patients. After mean follow-up of 10 months, 80% were free of implantable cardioverter defibrillator shocks or sustained VT. An initial approach of PES and entrainment mapping under conscious sedation is critically important for patients with NICMP referred for epicardial ablation. Empiric ablation of endocardial/epicardial scar would have missed the clinical VT in 20% of patients. © 2015 Wiley Periodicals, Inc.

  16. Physical limitations in ferromagnetic inductively coupled plasma sources

    CERN Document Server

    Bliokh, Yury P; Slutsker, Yakov Z

    2012-01-01

    The Ferromagnetic Inductively Coupled Plasma (FICP) source, which is a version of the common inductively coupled plasma sources, has a number of well known advantages such as high efficiency, high level of ionization, low minimal gas pressure, very low required driver frequency, and even a possibility to be driven by single current pulses. We present an experimental study of such an FICP source which showed that above a certain value of the driving pulse power the properties of this device changed rather drastically. Namely, the plasma became non-stationary and non-uniform contrary to the stationary and uniform plasmas typical for this kind of plasma sources. In this case the plasma appeared as a narrow dense spike which was short compared to the driving pulse. The local plasma density could exceed the neutral atoms density by a few orders of magnitude. When that happened, the afterglow plasma decay time after the end of the pulse was long compared to an ordinary case with no plasma spike. Experiments were pe...

  17. Using Some Coupled Numerical Models in Problems of Designing an Inductive Electrothermal Equipment

    Directory of Open Access Journals (Sweden)

    LEUCA Teodor

    2014-05-01

    Full Text Available This paper focuses on the numerical modeling of coupling the electromagnetic and the thermal field, in the process of inductive heating, for inductive electrothermal equipments. Numerical results are carried out by using a FLUX2D application.

  18. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    Science.gov (United States)

    2016-02-29

    effects are described based on a hybrid State-to-State (StS) approach. A multi-temperature formulation is used to account for thermal non-equilibrium...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State...usually obtained through quantum chemistry calculations51–56 or through phenomenological models providing a simplified descrip- tion of the kinetic

  19. Molecular Nitrogen Vibrational Temperature in an Inductively Coupled Plasma

    Institute of Scientific and Technical Information of China (English)

    康正德; 蒲以康

    2002-01-01

    Using a technique applied previously to vibrationally excited molecular nitrogen (N*2) in the region of daytime and nighttime aurora, the emission intensity of the N2 second positive band system in an inductively coupled plasma (ICP) has been analysed and the vibrational temperature of nitrogen molecules in the ICP is thus determined. The result shows that the vibrational temperature increases with the increase of the neutral gas pressure from 0.04Pa to 10Pa, then decreases with the further increase of the pressure from 10Pa to 100Pa. Also,this is explained by using the Boltzmann relation between the vibrational temperature and the concentration of the vibrationally excited N*2(X1∑+g ) molecules.

  20. A Review on Inductively Coupled Plasma Mass Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ramyalakshmi G

    2012-12-01

    Full Text Available Inductively coupled plasma mass spectroscopy is routinely used in many diverse research fields such as earth, environmental, life and forensic sciences and in food, material, chemical, semiconductor and nuclear industries. The high ion density and the high temperature in a plasma provide an ideal atomizer and element ionizer for all types of samples and materials introduced by a specialised devices .outstanding properties such as high sensitivity, relative salt tolerance, compound-independent element response and highest quantitation accuracy lead to the unchallenged performance of ICPMS in efficiently detecting, identifying and reliably quantifying trace element. The increasing availability of relevant reference compounds and high separation selectively extend the molecular identification capability of ICPMS hyphenated to species – specific separation techniques

  1. Diagnostic studies of ion beam formation in inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jenee L. [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This dissertation describes a variety of studies focused on the plasma and the ion beam in inductively coupled plasma mass spectrometry (ICP-MS). The ability to use ICP-MS for measurements of trace elements in samples requires the analytes to be efficiently ionized. Updated ionization efficiency tables are discussed for ionization temperatures of 6500 K and 7000 K with an electron density of 1 x 1015 cm-3. These values are reflective of the current operating parameters of ICP-MS instruments. Calculations are also discussed for doubly charged (M2+) ion formation, neutral metal oxide (MO) ionization, and metal oxide (MO+) ion dissociation for similar plasma temperature values. Ionization efficiency results for neutral MO molecules in the ICP have not been reported previously.

  2. Quantitative aspects of inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Bulska, Ewa; Wagner, Barbara

    2016-10-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.

  3. Monitoring microbial metabolites using an inductively coupled resonance circuit

    Science.gov (United States)

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G. M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys

    2015-08-01

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power.

  4. Effects of driving frequency on properties of inductively coupled plasmas

    Science.gov (United States)

    Godyak, Valery; Kolobov, Vladimir

    2016-10-01

    Inductively coupled plasma (ICP) can be maintained over a wide range of driving frequencies from 50 Hz up to GHz. In this paper, we analyze how the properties of ICP depend on driving frequency ω. With respect to the time of ion transport to the walls, τd and the electron energy relaxation time τɛ three operating regimes are distinguished. The quasi-static regime, ωτd > 1 and the intermediate dynamic regime, 1 /τd helical coil with the plasma current flowing outside the coil, Bc = 0 , while when the plasma current flows inside the coil, Bc ≠ 0 . We show that in the latter case, in the quasi-static regimes, electrons become magnetized over a significant part of the period that may strongly affect the plasma properties. Examples of ICP simulations in different frequency regimes will be demonstrated in this paper.

  5. H-mode inductive coupling plasma for PVC surface treatment

    Science.gov (United States)

    Croccolo, F.; Quintini, A.; Barni, R.; Ripamonti, M.; Malgaroli, A.; Riccardi, C.

    2009-08-01

    An inductively coupled plasma machine has been modified to be able to apply working powers in the order of 1 kW, thus switching to the real inductive H-mode. The plasma is generated by applying a 13.56 MHz radio-frequency to a λ/4 antenna outside the plasma chamber in low pressure conditions. The working gas is argon at pressure in the range from 10 to 100 Pa. With this high power source we have been able to perform plasma etching on a poly(vinyl-chloride) (PVC) film. In particular the effect of the plasma is the selective removal of hydrogen and chlorine from the sample surface. The action of the high power plasma on the sample has been proved to be much more effective than that of the low power one. Results similar to those obtained with the low power machine at about 300 W for 120 min, have been obtained with the high power source at about 600 W for 30 min. The superficial generation of a conductive layer of double C=C bonds was obtained. The samples have been investigated by means of ATR spectroscopy, FIB/SEM microscopy and micro-electrical measurements, which revealed the change in charge conductivity.

  6. Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Wook, E-mail: shindong37@skku.edu; Kim, Tae Sung; Yoo, Ji-Beom, E-mail: jbyoo@skku.edu

    2016-10-15

    Highlights: • Substitution doping is a promising method for opening the energy band gap of graphene. • Substitution doping with phosphorus in the graphene lattice has numerous advantage such as high band gap, low formation energy, and high net charge density compared to nitrogen. • V{sub dirac} of Inductively coupled plasma (ICP) and triphenylphosphine (TPP) treated graphene was −57 V, which provided clear evidence of n-type doping. • Substitutional doping of graphene with phosphorus is verified by the XPS spectra of P 2p core level and EELS mapping of phosphorus. • The chemical bonding between P and graphene is very stable for a long time in air (2 months). - Abstract: Graphene is considered a host material for various applications in next-generation electronic devices. However, despite its excellent properties, one of the most important issues to be solved as an electronic material is the creation of an energy band gap. Substitution doping is a promising method for opening the energy band gap of graphene. Herein, we demonstrate the substitutional doping of graphene with phosphorus using inductively coupled plasma (ICP) and triphenylphosphine (TPP) treatments. The electrical transfer characteristics of the phosphorus doped graphene field effect transistor (GFET) have a V{sub dirac} of ∼ − 54 V. The chemical bonding between P and C was clearly observed in XPS spectra, and uniform distribution of phosphorus within graphene domains was confirmed by EELS mapping. The capability for substitutional doping of graphene with phosphorus can significantly promote the development of graphene based electronic devices.

  7. Matrix effects in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoshan [Iowa State Univ., Ames, IA (United States)

    1995-07-07

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the "Fassel" TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.

  8. Analysis of tungsten carbide coatings by infrared laser-induced argon spark with inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Kanický, V.; Otruba, V.; Mermet, J.-M.

    2000-10-01

    Infrared laser ablation was studied for application to the analysis of plasma-sprayed tungsten carbide/cobalt coatings. The potential of the laser induced argon-spark (LINA-Spark™), as a sample introduction device in inductively coupled plasma atomic emission spectrometry was studied. The use of an IR laser along with defocusing led to laser-induced microplasma-based ablation. The mass ablation rate, represented by the ICP emission intensity per laser beam unit area, exhibited a flat increase in the irradiance range 2-250 GW/cm 2. A low slope (0.5) of this dependence in log-log scale gave evidence of plasma shielding. The steep increase in the measured acoustic signal when focused in front of the sample, i.e. in argon, indicated a breakdown of argon. Consequently, considerably lower ICP emissions were observed within the same range of irradiance. The cobalt/tungsten line intensity ratio in the ICP was practically constant from 1.5 up to at least 250 GW/cm 2. Acceptable precision (R.S.D.<5%) was obtained without internal standardization for irradiance between 2 and 8 GW/cm 2. Optimization of the laser pulse energy, repetition rate, beam focusing and sample displacement during interaction led to the linearization of dependences of signal vs. cobalt percentage, at least up to the highest studied value of 23% Co.

  9. Effect of inter-tissue inductive coupling on multi-frequency imaging of intracranial hemorrhage by magnetic induction tomography

    Science.gov (United States)

    Xiao, Zhili; Tan, Chao; Dong, Feng

    2017-08-01

    Magnetic induction tomography (MIT) is a promising technique for continuous monitoring of intracranial hemorrhage due to its contactless nature, low cost and capacity to penetrate the high-resistivity skull. The inter-tissue inductive coupling increases with frequency, which may lead to errors in multi-frequency imaging at high frequency. The effect of inter-tissue inductive coupling was investigated to improve the multi-frequency imaging of hemorrhage. An analytical model of inter-tissue inductive coupling based on the equivalent circuit was established. A set of new multi-frequency decomposition equations separating the phase shift of hemorrhage from other brain tissues was derived by employing the coupling information to improve the multi-frequency imaging of intracranial hemorrhage. The decomposition error and imaging error are both decreased after considering the inter-tissue inductive coupling information. The study reveals that the introduction of inter-tissue inductive coupling can reduce the errors of multi-frequency imaging, promoting the development of intracranial hemorrhage monitoring by multi-frequency MIT.

  10. Development of Ti-Coated Ferromagnetic Needle, Adaptable for Ablation Cancer Therapy by High-Frequency Induction Heating

    Directory of Open Access Journals (Sweden)

    Shinya Matsutomo

    2012-03-01

    Full Text Available To develop a novel ablation therapy for human solid cancer, the heating properties of a ferromagnetic carbon steel rod and a prototype Ti-coated needle using this carbon steel rod, were investigated in several high-frequency outputs at 300 kHz. In the former, the heating property was drastically different among the three inclination angles (θ = 0°, 45° and 90° relative to the magnetic flux direction as a result of the shape magnetic anisotropy. However, the effect of the inclination angles was completely eliminated in the latter. It is considered that the complete non-oriented heating property relative to the magnetic flux direction allows the precise control of the ablation temperature during minimally invasive thermotherapy without a lead-wire connected to a fiber-optic thermometer. This newly designed Ti-coated device will be suitable for clinical use combined with its superior biocompatibility for ablation treatments using high-frequency induction heating.

  11. Synthesis of Silicon Nanoparticles in Inductively Coupled Plasmas

    Science.gov (United States)

    Markosyan, Aram H.; Le Picard, Romain; Girshick, Steven L.; Kushner, Mark J.

    2016-09-01

    The synthesis of silicon nanoparticles (Si-NPs) is being investigated for their use in photo-emitting electronics, photovoltaics, and biotechnology. The ability to control the size and mono-disperse nature of Si-NPs is important to optimizing these applications. In this paper we discuss results from a computational investigation of Si-NP formation and growth in an inductively coupled plasma (ICP) reactor with the goal of achieving this control. We use a two dimensional numerical model where the algorithms for the kinetics of NP formation are self-consistently coupled with a plasma hydrodynamics simulation. The reactor modeled here resembles a GEC reference cell through which, for the base case, a mixture of Ar/SiH4 = 70/30 flows at 150 sccm at a pressure of 100 mTorr. In continuous wave mode, three coils located on top of the reactor deliver 150 W. The electric plasma potential confines negatively charged particles at the center of the discharge, increasing the residence time of negative NPs, which enables the NPs to potentially grow to large and controllable sizes of many to 100s nm. We discuss methods of controlling NP growth rates by varying the mole fraction and flow rate of SiH4, and using a pulsed plasma by varying the pulse period and duty cycle. Work supported by DOE Office of Fusion Energy Science and National Science Foundation.

  12. Measuring atomic oxygen densities and electron properties in an Inductively Coupled Plasma for thin film deposition

    Science.gov (United States)

    Meehan, David; Gibson, Andrew; Booth, Jean-Paul; Wagenaars, Erik

    2016-09-01

    Plasma Enhanced Pulsed Laser Deposition (PE-PLD) is an advanced way of depositing thin films of oxide materials by using a laser to ablate a target, and passing the resulting plasma plume through a background Inductively-Coupled Plasma (ICP), instead of a background gas as is done in traditional PLD. The main advantage of PE-PLD is the control of film stoichiometry via the direct control of the reactive oxygen species in the ICP instead of relying on a neutral gas background. The aim is to deposit zinc oxide films from a zinc metal target and an oxygen ICP. In this work, we characterise the range of compositions of the reactive oxygen species achievable in ICPs; in particular the atomic oxygen density. The density of atomic oxygen has been determined within two ICPs of two different geometries over a range of plasma powers and pressures with the use of Energy Resolved Actinometry (ERA). ERA is a robust diagnostic technique with determines both the dissociation degree and average electron energy by comparing the excitation ratios of two oxygen and one argon transition. Alongside this the electron densities have been determined with the use of a hairpin probe. This work received financial support from the EPSRC, and York-Paris CIRC.

  13. The influence of laser ablation plume at different laser incidence angle on the impulse coupling coefficient with metal target

    Science.gov (United States)

    Zhao, Xiong-Tao; Tang, Feng; Han, Bing; Ni, Xiao-Wu

    2016-12-01

    A calibrated pendulum measuring device and a dimensionless analysis method were used to measure the impulse coupling coefficient at different laser intensities with aluminum, steel, and iron targets. The experiment was performed with a pulsed laser with the wavelength of 1.06 μm and the pulse duration of 7 ns. The experimental measurements of the variation of the impulse coupling coefficient versus the laser energy density agree with the theoretical prediction, and the optimum laser energy density correlated with the maximum impulse coupling coefficient corresponding to the theoretical predictions. The impulse coupling coefficients with laser incidence angles of 0 ° and 45 ° are compared for understanding of the effects of the ablation plume on the impulse coupling effect, and the experimental result shows that the impulse coupling effect grows as the incidence angle changes from 0 ° to 45 ° . Furthermore, the transmittance of the incident laser through the ablation plume in front of the target is deduced from the impulse measurements, and the effect of the ablation plume on the impulse coupling at high laser intensity is discussed. In order to investigate the weak impulse coupling effect, which is difficult to obtain from the experiments, the impulse coupling coefficient at low laser energy density was calculated by the finite element simulation.

  14. Investigations on Capacitor Compensation Topologies Effects of Different Inductive Coupling Links Configurations

    Directory of Open Access Journals (Sweden)

    Norezmi Jamal

    2015-06-01

    Full Text Available This paper presents investigations on capacitor compensation topologies with different inductive coupling links for loosely coupled inductive power transfer (IPT system. In general, the main constraint of the loosely coupled IPT system is power losses due to the large leakage inductances. Therefore, to overcome the aforementioned problem, in this work, capacitor compensation is proposed to be used by adding an external capacitor to the system. By using this approach, the resonant inductive coupling can be achieved efficiently and hence the efficiency of the system is also increased significantly. This paper analyzes the performance of two different compensation topologies, which are primary series-secondary series (SS and primary series- secondary parallel (SP topology. The performance of such topologies is evaluated through the experimental results at 1MHz operating frequency for different types of inductive coupling. From the results, SS topology produces a high power transfer but SP topology gives better efficiency.

  15. AETHER: A simulation platform for inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Turkoz, Emre, E-mail: emre.turkoz@boun.edu.tr; Celik, Murat

    2015-04-01

    An in-house code is developed to simulate the inductively coupled plasma (ICP). The model comprises the fluid, electromagnetic and transformer submodels. Fluid equations are solved to evaluate the plasma flow parameters, including the plasma and neutral densities, ion and neutral velocities, electron flux, electron temperature, and electric potential. The model relies on the ambipolar approximation and offers the evaluation of plasma parameters without solving the sheath region. The electromagnetic model handles the calculation of the electric and magnetic fields using the magnetic vector potential. The transformer model captures the effect of the matching circuit utilized in laboratory experiments for RF power deposition. The continuity and momentum equations are solved using finite volume method. The energy, electric potential, and magnetic vector potential equations are solved using finite difference method. The resulting linear systems of equations are solved with iterative solvers including Jacobi and GMRES. The code is written using the C++ programming language, it works in parallel and has graphical user interface. The model is applied to study ICP characteristics of a plasma confined within a cylindrical chamber with dielectric walls for two different power deposition cases. The results obtained from the developed model are verified using the plasma module of COMSOL Multiphysics. The model is also applied to a plasma source configuration, and it is demonstrated that there is an overall increase in the plasma potential when current is extracted from ICP with a biased wall electrode.

  16. Consequences of photon beam excitation in an inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, E.R.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1998-12-31

    Plasma enhanced deposition and etching processes have been common in the semiconductor industry for some time. Generally the chemical systems are complex and consist of many different neutral and ionic species, only a subset of which are desired. Establishing process control is sometimes difficult, as changing most system parameters will not be selective in terms of which species they affect It may also be difficult to simultaneously optimize all process variables. In this paper, the authors present results from a numerical study of an Inductively Coupled Plasma (ICP) system which is excited by a photon beam. The Hybrid Plasma Equipment Model (HPEM), modified to include the Monte Carlo Photon Beam (MCPB) module, is the simulation tool used in the study. The MCPB models the injection and propagation of a photon beam through a plasma processing reactor using a Monte Carlo simulation. Photon absorption in the plasma is described using a variable particle weighting method. Multiple photon species are allowed, and photon absorption cross sections for photolysis and ionization are input through a parser. Source rates for charged and neutral species, which result from photon absorption, are generated by the MCPB and used by the fluid module of the HPEM. They will present the results of a parametric study of the effects of an auxiliary photon source on species densities and plasma potential for a Cl{sub 2} etching plasma.

  17. Uranium quantification in semen by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Todorov, Todor I; Ejnik, John W; Guandalini, Gustavo; Xu, Hanna; Hoover, Dennis; Anderson, Larry; Squibb, Katherine; McDiarmid, Melissa A; Centeno, Jose A

    2013-01-01

    In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4-7% RSD and spike recoveries were 97-100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n=10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans' semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments.

  18. Uranium quantification in semen by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Todorov, Todor; Ejnik, John W.; Guandalini, Gustavo S.; Xu, Hanna; Hoover, Dennis; Anderson, Larry W.; Squibb, Katherine; McDiarmid, Melissa A.; Centeno, Jose A.

    2013-01-01

    In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2 g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4–7% RSD and spike recoveries were 97–100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n = 10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans’ semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments.

  19. Deposition of Nano-Scaled Coatings Using Inductively Coupled Plasma

    Institute of Scientific and Technical Information of China (English)

    D H Jung; B Park; J J Lee

    2004-01-01

    Nano-scaled Ti-B-N coatings could be produced by inductively coupled plasma (ICP) assisted magnetron spurtering. The properties and microstructure of the coating can be changed drastically by applying ICP to conventional magnetron sputtering. In this work, an internal type rf ICP process is used. The core of this technology is the efficient production and control of self-depositing ions and reactive gas ions by an induced electric field. Ti-B-N coatings were prepared by using a TiB2 target and a gas mixture of N2 and Ar at 200 ℃ and a pressure of 60 mTorr. In addition to ICP, the effect of the substrate bias voltage on the structure and properties of the coating was investigated. By applying ICP and a bias voltage to the substrate the hardness of the Ti-B-N coating is increased by more than 75 GPa, as a result of enhanced ionization in the plasma. The Ti-B-N coating, which has the highest hardness, shows the best surface uniformity and a very dense structure with a grain size of 3 nm. This sample also shows a high crystallinity compared to the coating prepared using other deposition parameters.

  20. Lightning Strike Ablation Damage Influence Factors Analysis of Carbon Fiber/Epoxy Composite Based on Coupled Electrical-Thermal Simulation

    Science.gov (United States)

    Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.

    2016-12-01

    According to the mathematical analysis model constructed on the basis of energy-balance relationship in lightning strike, and accompany with the simplified calculation strategy of composite resin pyrolysis degree dependent electrical conductivity, an effective three dimensional thermal-electrical coupling analysis finite element model of composite laminate suffered from lightning current was established based on ABAQUS, to elucidate the effects of lighting current waveform parameters and thermal/electrical properties of composite laminate on the extent of ablation damage. Simulated predictions agree well with the composite lightning strike directed effect experimental data, illustrating the potential accuracy of the constructed model. The analytical results revealed that extent of composite lightning strike ablation damage can be characterized by action integral validly, there exist remarkable power function relationships between action integral and visual damage area, projected damage area, maximum damage depth and damage volume of ablation damage, and enhancing the electrical conductivity and specific heat of composite, ablation damage will be descended obviously, power function relationships also exist between electrical conductivity, specific heat and ablation damage, however, the impact of thermal conductivity on the extent of ablation damage is not notable. The conclusions obtained provide some guidance for composite anti-lightning strike structure-function integration design.

  1. Three-phase inductive-coupled structures for contactless PHEV charging system

    Science.gov (United States)

    Lee, Jia-You; Shen, Hung-Yu; Li, Cheng-Bin

    2016-07-01

    In this article, a new-type three-phase inductive-coupled structure is proposed for the contactless plug-in hybrid electric vehicle (PHEV) charging system regarding with SAE J-1773. Four possible three-phase core structures are presented and subsequently investigated by the finite element analysis. To study the correlation between the core geometric parameter and the coupling coefficient, the magnetic equivalent circuit model of each structure is also established. In accordance with the simulation results, the low reluctance and the sharing of flux path in the core material are achieved by the proposed inductive-coupled structure with an arc-shape and three-phase symmetrical core material. It results in a compensation of the magnetic flux between each phase and a continuous flow of the output power in the inductive-coupled structure. Higher coupling coefficient between inductive-coupled structures is achieved. A comparison of coupling coefficient, mutual inductance, and self-inductance between theoretical and measured results is also performed to verify the proposed model. A 1 kW laboratory scale prototype of the contactless PHEV charging system with the proposed arc-shape three-phase inductive-coupled structure is implemented and tested. An overall system efficiency of 88% is measured when two series lithium iron phosphate battery packs of 25.6 V/8.4 Ah are charged.

  2. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Munafò, A., E-mail: munafo@illinois.edu; Alfuhaid, S. A., E-mail: alfuhai2@illinois.edu; Panesi, M., E-mail: mpanesi@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Talbot Laboratory, 104 S. Wright St., Urbana, Illinois 61801 (United States); Cambier, J.-L., E-mail: jean-luc.cambier@us.af.mil [Edwards Air Force Base Research Laboratory, 10 E. Saturn Blvd., Edwards AFB, California 93524 (United States)

    2015-10-07

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.

  3. An investigation of algebraic quantum dynamics for mesoscopic coupled electric circuits with mutual inductance

    Energy Technology Data Exchange (ETDEWEB)

    Pahlavani, H., E-mail: h-pahlavani@qom.ac.ir; Kolur, E. Rahmanpour

    2016-08-15

    Based on the electrical charge discreteness, the Hamiltonian operator for the mutual inductance coupled quantum mesoscopic LC circuits has been found. The persistent current on two driven coupled mesoscopic electric pure L circuits (two quantum loops) has been obtained by using algebraic quantum dynamic approach. The influence of the mutual inductance on energy spectrum and quantum fluctuations of the charge and current for two coupled quantum electric mesoscopic LC circuits have been investigated.

  4. EPDM绝热材料耦合烧蚀模型%Coupled ablation model for EPDM insulator

    Institute of Scientific and Technical Information of China (English)

    李强; 杨飒; 李江; 何国强

    2012-01-01

    以EPDM类绝热材料烧蚀特性为研究对象,借鉴多孔介质领域的相关理论和方法,以炭化层的孔隙结构特征和参数为纽带,建立了考虑热化学烧蚀、颗粒侵蚀和气流剥蚀的EPDM类绝热材料耦合烧蚀模型,并进行了模型的初步实验验证.结果表明,所建立的模型不仅在EPDM类绝热材料烧蚀率预示方面具有较高的计算精度,而且在细管上能够基本反映绝热材料的烧蚀特性.%Aiming at ablation characteristics of EPDM insulator,the porosity of the charring layer was investigated,and thermo-chemical ablation, gas erosion and particle erosion were coupled, then a new ablation model for EPDM insulator was established and validated. Results show that the model is accurate in predicating the ablation rate of EPDM insulator,and can describe the details of ablation.

  5. A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS)

    Science.gov (United States)

    Loch, D. A. L.; Ehiasarian, A. P.

    2012-09-01

    Sputtering magnetic materials with magnetron based systems has the disadvantage of field quenching and variation of alloy composition with target erosion. The advantage of eliminating magnetic fields in the chamber is that this enables sputtered particles to move along the electric field more uniformly. Inductively coupled impulse sputtering (ICIS) is a form of high power impulse magnetron sputtering (HIPIMS) without a magnetic field where a high density plasma is produced by a high power radio frequency (RF) coil in order to sputter the target and ionise the metal vapour. In this emerging technology, the effects of power and pressure on the ionisation and deposition process are not known. The setup comprises of a 13.56 MHz pulsed RF coil pulsed with a duty cycle of 25 %. A pulsed DC voltage of 1900 V was applied to the cathode to attract Argon ions and initiate sputtering. Optical emission spectra (OES) for Cu and Ti neutrals and ions at constant pressure show a linear intensity increase for peak RF powers of 500 W - 3400 W and a steep drop of intensity for a power of 4500 W. Argon neutrals show a linear increase for powers of 500 W - 2300 W and a saturation of intensity between 2300 W - 4500 W. The influence of pressure on the process was studied at a constant peak RF power of 2300 W. With increasing pressure the ionisation degree increased. The microstructure of the coatings shows globular growth at 2.95×10-2 mbar and large-grain columnar growth at 1.2×10-1 mbar. Bottom coverage of unbiased vias with a width of 0.360 μm and aspect ratio of 2.5:1 increased from 15 % to 20 % for this pressure range. The current work has shown that the concept of combining a RF powered coil with a magnet-free high voltage pulsed DC powered cathode is feasible and produces very stable plasma. The experiments have shown a significant influence of power and pressure on the plasma and coating microstructure.

  6. Delta34S measurements of sulfur by multicollector inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Clough, Robert; Evans, Peter; Catterick, Tim; Evans, E Hywel

    2006-09-01

    An accurate and precise method for the determination of delta34S measurements by multicollector inductively coupled plasma mass spectrometry has been developed. Full uncertainty budgets, taking into consideration all the uncertainties of the measurement process, have been calculated. The technique was evaluated by comparing measured values with a range of isotopically enriched sulfur solutions prepared by gravimetric addition of a 34S spike. The gravimetric and measured results exhibited a correlation of R2 >0.999. Repeat measurements were also made after adding Na (up to 420 microg g(-1)) and Ca (up to 400 microg g(-1)) salts to the sulfur standard. No significant deviations in the delta34S values were observed. The Russell correction expression (Ingle, C.; Sharp, B.; Horstwood, M.; Parrish, R.; Lewis, D. J. J. Anal. At. Spectrom. 2003, 18, 219) was used to correct for mass bias on the 34S/32S isotope amount ratio from the mass bias observed for the 30Si/28Si isotope amount ratio. Consistent compensation for instrumental mass bias was achieved. Resolution of the measured delta34S values was better than 1 per thousand after consideration of all uncertainty components. The technique was evaluated for practical applications by measurement of delta34S for a range of mineral waters by pneumatic nebulization sample introduction and the analysis of genuine and counterfeit pharmaceuticals using both laser ablation sample introduction and liquid chromatography. For the former two cases polyatomic interferences were resolved by operating the MC-ICPMS in medium resolution, while for the chromatographic analyses polyatomic interferences were minimized by the use of a membrane desolvator, allowing the instrument to be operated at a resolution of 400.

  7. Investigation of pyrolysis gas chemistry in an inductively coupled plasma facility

    Science.gov (United States)

    Tillson, Corey C.

    The pyrolysis mechanics of Phenolic Impregnated Carbon Ablators (PICA) makes it a valued material for use in thermal protection systems for spacecraft atmospheric re-entry. The present study of the interaction of pyrolysis gases and char with plasma gases in the boundary layer over PICA and its substrate, FiberForm, extends previous work on this topic that has been done in the UVM 30 kW Inductively Coupled Plasma (ICP) Torch Facility. Exposure of these material samples separately to argon, nitrogen, oxygen, air, and carbon dioxide plasmas, and combinations of said test gases provides insight into the evolution of the pyrolysis gases as they react with the different environments. Measurements done to date include time-resolved absolute emission spectroscopy, location-based temperature response, flow characterization of temperature, enthalpy, and enthalpy flux, and more recently, spatially resolved and high-resolution emission spectroscopy, all of which provide measure of the characteristics of the pyrolysis chemistry and material response. Flow characterization tests construct an general knowledge of the test condition temperature, composition, and enthalpy. Tests with relatively inert argon plasmas established a baseline for the pyrolysis gases that leave the material. Key pyrolysis species such as CN Violet bands, NH, OH and Hydrogen Alpha (Hα) lines were seen with relative repeatability in temporal, spectral, and intensity values. Tests with incremental addition, and static mixtures, of reactive plasmas provided a preliminary image of how the gases interacted with atmospheric flows and other pyrolysis gases. Evidence of a temporal relationship between NH and Hα relating to nitrogen addition is seen, as well as a similar relationship between OH and Hα in oxygen based environments. Temperature analysis highlighted the reaction of the material to various flow conditions and displayed the in depth material response to argon and air/argon plasmas. The development

  8. Documenting utility of paddlefish otoliths for quantification of metals using inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Long, James M.; Schaffler, James J.

    2013-01-01

    RATIONALE The otoliths of the inner ear of fishes record the environment of their surrounding water throughout their life. For paddlefish (Polyodon spathula), otoliths have not been routinely used by scientists since their detriments were outlined in the early 1940s. We sought to determine if paddlefish otoliths were useful for resolving elemental information contained within. METHODS Adult paddlefish were collected from two wild, self-sustaining populations in Oklahoma reservoirs in the Arkansas River basin. Juveniles were obtained from a hatchery in the Red River basin of Oklahoma. Otoliths were removed and laser ablation, inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify eight elements (Li, Mg, Mn, Rb, Sr, Y, Ba, and Pb) along the core and edge portions, which were analyzed for differences between otolith regions and among paddlefish sources. RESULTS Differences were found among samples for six of the eight elements examined. Otoliths from Red River basin paddlefish born in a hatchery had significantly lower amounts of Mg and Mn, but higher levels of Rb than otoliths from wild paddlefish in the Arkansas River basin. Concentrations of Y, Sr, and Ba were reduced on the edges of adult paddlefish from both reservoirs compared with the cores. CONCLUSIONS This research shows the utility of using an ICP-MS analysis of paddlefish otoliths. Future research that seeks to determine sources of paddlefish production, such as which reservoir tributaries are most important for reproduction or what proportion of the population is composed of wild versus hatchery-produced individuals, appears promising. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  9. electrical-thermal coupling of induction machine for improved ...

    African Journals Online (AJOL)

    user

    The interaction of its electrical and mechanical parts leads to an increase in temperature which if not properly ... Keywords: induction machine, electrical model, mechanical model, thermal model, ..... is the geometry, material constraints and the.

  10. Design of an Improved Type Rotary Inductive Coupling Structure for Rotatable Contactless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Lee Jia-You

    2015-01-01

    Full Text Available This paper is aimed at analyzing the rotary inductive coupling structure of contactless rotary transformer. The main feature of the proposed rotatable contactless power transfer system is which winding is coaxial-interlayered for improving the magnetic coupling capability. There is no ferrite core used in the secondary-side of the rotary inductive coupling structure, this helps to ease the exerted force that is stress by the secondary-side on spindle. In order to verify the feasibility of the proposed contactless power transfer system for rotary applications, an inductive powered rotary machinery and the control system have been integrated. The experimental results show that the maximum power transfer efficiency of the proposed rotary inductive coupling structure is about 94.8%. The maximum output power received in the load end is 1030 W with transmission efficiency of 88%.

  11. Quantum Fluctuation of a Mesoscopic Inductance Coupling Circuit at Finite Temperature

    Institute of Scientific and Technical Information of China (English)

    SONG Tong-Qiang; ZHU Yue-Jin

    2003-01-01

    We study the quantization of mesoscopic inductance coupling circuit and discuss its time evolution. Bymeans of the thermal field dynamics theory we study the quantum fluctuation of the system at finite temperature.

  12. Low wireless power transfer using Inductive Coupling for mobile phone charger

    Science.gov (United States)

    Fareq, M.; Fitra, M.; Irwanto, M.; Hasan, Syafruddin; Arinal, M.

    2014-04-01

    A wireless power transfer (WPT) using inductive coupling for mobile phone charger is studied. The project is offer to study and fabricate WPT using inductive coupling for mobile phone charger that will give more information about distance is effect for WPT performance and WPT is not much influenced by the presence of hands, books and types of plastics. The components used to build wireless power transfer can be divided into 3 parts components, the transceiver for power transmission, the inductive coils in this case as the antenna, receiver and the rectifier which act convert AC to DC. Experiments have been conducted and the wireless power transfer using inductive coupling is suitable to be implemented for mobile phone charger.

  13. Development of NbTiN-Al direct antenna coupled kinetic inductance detectors

    NARCIS (Netherlands)

    Lankwarden, Y.J.Y.; Endo, A.; Baselmans, J.J.A.; Bruijn, M.P.

    2012-01-01

    We have developed a coplanar waveguide (CPW) Kinetic Inductance Detector consisting of Al and NbTiN, coupled at its shorted end to a planar antenna. To suppress the odd mode due to direct coupling to sky radiation by the KID we have also developed freestanding metal air bridges

  14. Effects of leakage inductances on magnetically-coupled impedance-source networks

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede

    2014-01-01

    Coupled inductors have lately been used with impedance-source networks for keeping their shoot-through times short, while providing higher voltage boosts. The parameter that is critical to the operation of such impedance network based converter with coupled inductors is the leakage inductances. H...

  15. Setup for functional cell ablation with lasers: coupling of a laser to a microscope.

    Science.gov (United States)

    Sweeney, Sean T; Hidalgo, Alicia; de Belle, J Steven; Keshishian, Haig

    2012-06-01

    The selective removal of cells by ablation is a powerful tool in the study of eukaryotic developmental biology, providing much information about their origin, fate, or function in the developing organism. In Drosophila, three main methods have been used to ablate cells: chemical, genetic, and laser ablation. Each method has its own applicability with regard to developmental stage and the cells to be ablated, and its own limitations. The primary advantage of laser-based ablation is the flexibility provided by the method: The operations can be performed in any cell pattern and at any time in development. Laser-based techniques permit manipulation of structures within cells, even to the molecular level. They can also be used for gene activation. However, laser ablation can be expensive, labor-intensive, and time-consuming. Although live cells can be difficult to image in Drosophila embryos, the use of vital fluorescent imaging methods has made laser-mediated cell manipulation methods more appealing; the methods are relatively straightforward. This article provides the information necessary for setting up and using a laser microscope for lasesr ablation studies.

  16. Verification of the Model of Inductive Coupling between a Josephson Oscillator and a Stripline

    Science.gov (United States)

    Kudo, Keisuke; Yoshida, Keiji; Enpuku, Keiji; Yamafuji, Kaoru

    1993-01-01

    In order to realize an efficient coupling between a flux-flow-type Josephson oscillator (FFO) and a stripline, we have carried out experiments to verify the mathematical model of the inductive coupling scheme between FFO and a stripline resonator in the frequency range between 50 GHz and 350 GHz. It is shown that the simulation using the proposed equivalent circuit for the inductive coupling scheme well explains the experimental results. The experimentally obtained center frequency and the bandwidth of the matching circuit were as large as 120 GHz and 40 GHz, respectively, which are also in reasonable agreement with those obtained in the simulation.

  17. Case report: respiratory inductance plethysmography as a monitor of ventilation during laser ablation and balloon dilatation of subglottic tracheal stenosis.

    Science.gov (United States)

    Atkins, Joshua H; Mirza, Natasha; Mandel, Jeff E

    2009-01-01

    We describe a 61-year-old female who underwent KTP laser ablation and CRE balloon dilatation of symptomatic idiopathic subglottic stenosis (50% obstruction). The procedure was conducted, using our standard approach for such cases, under total intravenous general anesthesia with subglottic high-frequency jet ventilation (HFJV) via Lindholm laryngoscope. The patient was enrolled in an ongoing investigational protocol in which respiratory inductance plethysmography (RIP; Ambulatory Monitoring Inc., Ardsley, N.Y., USA) bands were used to monitor ventilation in addition to pulse oximetry and visual inspection. HFJV instituted with an Acutronic Monsoon jet ventilator (Acutronic Medical, Hirzel, Switzerland) resulted in a rapid increase in RIP signal amplitude consistent with breath stacking and inadequate expiratory flow around the tight stenosis. High pressure alarms sounded and automatic cessation of jet ventilation ensued. After successful tracheal dilation under intermittent apnea, subsequent jet ventilation produced only modest RIP amplitude changes. RIP may be an important safety monitor during jet ventilation for patients with obstructive tracheal lesions to lessen the risk of both barotrauma and hypoventilation. RIP remains under active study by our group for this purpose.

  18. Computational Tool for Coupled Simulation of Nonequilibrium Hypersonic Flows with Ablation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop a computational tool with unique predictive capabilities for the aerothermodynamic environment around ablation-cooled...

  19. Computational Tool for Coupled Simulation of Nonequilibrium Hypersonic Flows with Ablation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop a predictive computational tool for the aerothermal environment around ablation-cooled hypersonic atmospheric entry...

  20. Experimental Observation of Nonlinear Mode Coupling In the Ablative Rayleigh-Taylor Instability on the NIF

    Science.gov (United States)

    Martinez, David

    2015-11-01

    We investigate on the National Ignition Facility (NIF) the ablative Rayleigh-Taylor (RT) instability in the transition from linear to highly nonlinear regimes. This work is part of the Discovery Science Program on NIF and of particular importance to indirect-drive inertial confinement fusion (ICF) where careful attention to the form of the rise to final peak drive is calculated to prevent the RT instability from shredding the ablator in-flight and leading to ablator mixing into the cold fuel. The growth of the ablative RT instability was investigated using a planar plastic foil with pre-imposed two-dimensional broadband modulations and diagnosed using x-ray radiography. The foil was accelerated for 12ns by the x-ray drive created in a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. The dependence on initial conditions was investigated by systematically changing the modulation amplitude, ablator material and the modulation pattern. For each of these cases bubble mergers were observed and the nonlinear evolution of the RT instability showed insensitivity to the initial conditions. This experiment provides critical data needed to validate current theories on the ablative RT instability for indirect drive that relies on the ablative stabilization of short-scale modulations for ICF ignition. This paper will compare the experimental data to the current nonlinear theories. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  1. Parameters assessment of the inductively-coupled circuit for wireless power transfer

    Science.gov (United States)

    Isaev, Yu N.; Vasileva, O. V.; Budko, A. A.; Lefebvre, S.

    2017-02-01

    In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.

  2. Coupling of electromagnetic and thermal codes. Induction heating; Couplage des codes electromagnetique et thermique. Le chauffage par induction

    Energy Technology Data Exchange (ETDEWEB)

    Colombani, M. [CEDRAT, (France)

    1997-12-31

    The development and adjustment of induction heating systems is quite delicate because two different subjects of physics are involved: magnetism (Foucault currents) and thermal engineering. Moreover, the magnetic and electrical properties depends on the temperature and the dissipated power depends on the magnetic and electrical properties and on the electrical excitation sources (geometry, intensity, frequency). The CEDRAT company has been involved since several years in the development of modeling softwares which allow to analyze these kind of problems. The most used is the FLUX2D software, developed by CEDRAT RECHERCHE in collaboration with the LEG (CNRS-INPG) and EdF, and which is used in several domains of applications (electric motors, actuators, high-voltage devices, magnetic recording, induction heating etc..). This software is based on a finite-element calculation method and, in the case of induction heating, it can perform different types of modeling: magnetic, thermal, temperature-dependant properties, weak and strong coupling, coupling with the electric circuit equations etc.. (J.S.)

  3. WIRELESS POWER TRANSMISSION USING INDUCTIVE RESONANCE COUPLING IN MOBILE CHARGERING

    OpenAIRE

    Valarmathi Krishnan*, N. Suyambu, Vijayaragavan. M, Rajalakshmi. S

    2016-01-01

    The objective of this technical report is to provide electrical energy to remote objects without wires.   Wireless energy transfer also known as wireless energy transmission is the process that takes place in any system where electromagnetic energy is transmitted from a power source to an electrical load, without interconnecting wires. The principle of wireless electricity works on the principle of using coupled resonant objects for the transfer of electricity to objects without the use of an...

  4. Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model

    Institute of Scientific and Technical Information of China (English)

    徐会静; 赵书霞; 高飞; 张钰如; 李雪春; 王友年

    2015-01-01

    A new type of two-dimensional self-consistent fluid model that couples an equivalent circuit module is used to in-vestigate the mode transition characteristics and hysteresis in hydrogen inductively coupled plasmas at different pressures, by varying the series capacitance of the matching box. The variations of the electron density, temperature, and the cir-cuit electrical properties are presented. As cycling the matching capacitance, at high pressure both the discontinuity and hysteresis appear for the plasma parameters and the transferred impedances of both the inductive and capacitive discharge components, while at low pressure only the discontinuity is seen. The simulations predict that the sheath plays a determi-native role on the presence of discontinuity and hysteresis at high pressure, by influencing the inductive coupling efficiency of applied power. Moreover, the values of the plasma transferred impedances at different pressures are compared, and the larger plasma inductance at low pressure due to less collision frequency, as analyzed, is the reason why the hysteresis is not seen at low pressure, even with a wider sheath. Besides, the behaviors of the coil voltage and current parameters during the mode transitions are investigated. They both increase (decrease) at the E to H (H to E) mode transition, indicating an improved (worsened) inductive power coupling efficiency.

  5. Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model

    Science.gov (United States)

    Xu, Hui-Jing; Zhao, Shu-Xia; Fei, Gao; Yu-Ru, Zhang; Xue-Chun, Li; You-Nian, Wang

    2015-11-01

    A new type of two-dimensional self-consistent fluid model that couples an equivalent circuit module is used to investigate the mode transition characteristics and hysteresis in hydrogen inductively coupled plasmas at different pressures, by varying the series capacitance of the matching box. The variations of the electron density, temperature, and the circuit electrical properties are presented. As cycling the matching capacitance, at high pressure both the discontinuity and hysteresis appear for the plasma parameters and the transferred impedances of both the inductive and capacitive discharge components, while at low pressure only the discontinuity is seen. The simulations predict that the sheath plays a determinative role on the presence of discontinuity and hysteresis at high pressure, by influencing the inductive coupling efficiency of applied power. Moreover, the values of the plasma transferred impedances at different pressures are compared, and the larger plasma inductance at low pressure due to less collision frequency, as analyzed, is the reason why the hysteresis is not seen at low pressure, even with a wider sheath. Besides, the behaviors of the coil voltage and current parameters during the mode transitions are investigated. They both increase (decrease) at the E to H (H to E) mode transition, indicating an improved (worsened) inductive power coupling efficiency. Project supported by the National Natural Science Foundation of China (Grant Nos. 11175034, 11205025, 11305023, and 11075029).

  6. Two-dimensional simulation of inductively coupled plasma based on COMSOL and comparison with experimental data

    Institute of Scientific and Technical Information of China (English)

    Cheng Jia; Ji Linhong; Wang Kesheng; Han Chuankun; Shi Yixiang

    2013-01-01

    A two-dimensional axisymmetric inductively coupled plasma (ICP) model,and its implementation in the COMSOL multiphysical software,is described.The simulations are compared with the experimental results of argon discharge from the gaseous electronics conference RF reference cell in the inductively coupled plasma mode.The general trends of the number density and temperature of electrons with radial scanning are approximately correct.Finally,we discuss the reasons why the comparisons are not in agreement,and then propose an improvement in the assumptions of the Maxwellian electron energy distribution function and reaction rate.

  7. Absolute vacuum ultraviolet flux in inductively coupled plasmas and chemical modifications of 193 nm photoresist

    Science.gov (United States)

    Titus, M. J.; Nest, D.; Graves, D. B.

    2009-04-01

    Vacuum ultraviolet (VUV) photons in plasma processing systems are known to alter surface chemistry and may damage gate dielectrics and photoresist. We characterize absolute VUV fluxes to surfaces exposed in an inductively coupled argon plasma, 1-50 mTorr, 25-400 W, using a calibrated VUV spectrometer. We also demonstrate an alternative method to estimate VUV fluence in an inductively coupled plasma (ICP) reactor using a chemical dosimeter-type monitor. We illustrate the technique with argon ICP and xenon lamp exposure experiments, comparing direct VUV measurements with measured chemical changes in 193 nm photoresist-covered Si wafers following VUV exposure.

  8. Trace elemental imaging of coralline hydroxyapatite by laser-ablation inductively coupled plasma-mass spectroscopy.

    Science.gov (United States)

    Chou, J; Austin, C; Doble, P; Ben-Nissan, B; Milthorpe, B

    2014-07-01

    The determination of trace element concentrations, as well as their distribution in different biomaterials aimed for clinical applications, is a challenging task in both the areas of biological and materials research. In this research, LA-ICP-MS was employed for image mapping of the trace element distribution in a hydrothermally converted coralline hydroxyapatite material aimed for tissue-scaffolding applications. Quantification using synthetic matrix-matched standards was successfully applied for the determination and distribution of elements of interest, Sr and Mg, that influences the mechanical and biological properties of hydroxyapatite-based bone graft materials. The results showed that the instrument can successfully analyse trace elements and a relatively good image can be produced that identifies their distribution. The LA-ICP-MS method can provide an easy and effective tool, in the field of biomaterials with respect to distribution of trace elements, to better understand tissue-implant interactions, and will open up a new window for in vitro and in vivo analysis and imaging of different tissues and structures.

  9. Laser ablation in analytical chemistry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  10. High-Q cavity-induced fluxon bunching in inductively coupled Josephson junctions

    DEFF Research Database (Denmark)

    Madsen, S.; Grønbech-Jensen, Niels; Pedersen, Niels Falsig

    2008-01-01

    We consider fluxon dynamics in a stack of inductively coupled long Josephson junctions connected capacitively to a common resonant cavity at one of the boundaries. We study, through theoretical and numerical analyses, the possibility for the cavity to induce a transition from the energetically...

  11. Determination of Arsenic in Sinus Wash and Tap Water by Inductively Coupled Plasma-Mass Spectrometry

    Science.gov (United States)

    Donnell, Anna M.; Nahan, Keaton; Holloway, Dawone; Vonderheide, Anne P.

    2016-01-01

    Arsenic is a toxic element to which humans are primarily exposed through food and water; it occurs as a result of human activities and naturally from the earth's crust. An experiment was developed for a senior level analytical laboratory utilizing an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) for the analysis of arsenic in household…

  12. Determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Björn, Erik; Nygren, Yvonne; Nguyen, Tam T. T. N.

    2007-01-01

    A fast and robust method for the determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry was developed, characterized, and validated. Samples of isolated DNA and exosome fractions from human ovarian (2008) and melanoma (T289) cancer cell lines...

  13. Improvement of Uniformity of Inductively Coupled Plasma with a Cone Spiral Antenna

    Institute of Scientific and Technical Information of China (English)

    LI Lin-Sen; XU Xu; LIU Feng; ZHOU Qian-Hong; NIE Zong-Fu; LIANG Yi-Zi; LIANG Rong-Qing

    2008-01-01

    Uniformity of inductively coupled plasma (ICP) is improved with a cone spiral antenna in our experiment. Performance of the ICP with a new type of antenna is experimentally investigated, The results indicate that the uniformity of plasma density in the radial direction is obviously improved as compared to the ICP with a planar spiral antenna. Performance of ICP is analysed with the experimental results.

  14. The reciprocal relation of mutual inductance in a coupled circuit system

    Science.gov (United States)

    Wang, Dake

    2012-09-01

    The reciprocal relation of mutual inductance in a coupled circuit system is demonstrated theoretically. An alternating-current (AC) analysis is employed to investigate energy conservation in the system, with the only assumption being the steady-state operation of the circuit. This method can be adopted for teaching electromagnetism at the introductory level, provided the students have an adequate background in calculus.

  15. Characterization of inductively coupled plasma generated by a quadruple antenna

    Science.gov (United States)

    Shafir, G.; Zolotukhin, D.; Godyak, V.; Shlapakovski, A.; Gleizer, S.; Slutsker, Ya; Gad, R.; Bernshtam, V.; Ralchenko, Yu; Krasik, Ya E.

    2017-02-01

    The results of the characterization of large-scale RF plasma for studying nonlinear interaction with a high-power (˜400 MW) short duration (˜0.8 ns) microwave (˜10 GHz) beam are presented. The plasma was generated inside a Pyrex tube 80 cm in length and 25 cm in diameter filled by either Ar or He gas at a pressure in the range 1.3-13 Pa using a 2 MHz RF generator with a matching system and a quadruple antenna. Good matching was obtained between the plasma parameters, which were determined using different methods including a movable Langmuir probe, microwave cut-off, interferometry, and optical emission spectroscopy. It was shown that, depending on the gas pressure and RF power delivered to the antenna, the plasma density and electron temperature can be controlled in the range 1 × 1010-5 × 1012 cm-3 and 1-3.5 eV, respectively. The plasma density was found to be uniform in terms of axial (˜60 cm) and radial (˜10 cm) dimensions. Further, it was also shown that the application of the quadruple antenna, with resonating capacitors inserted in its arms, decreases the capacitive coupling of the antenna and the plasma as well as the RF power loss along the antenna. These features make this plasma source suitable for microwave plasma wake field experiments.

  16. Mathematical modeling of intrinsic Josephson junctions with capacitive and inductive couplings

    Science.gov (United States)

    Rahmonov, I. R.; Shukrinov, Yu M.; Zemlyanaya, E. V.; Sarhadov, I.; Andreeva, O.

    2012-11-01

    We investigate the current voltage characteristics (CVC) of intrinsic Josephson junctions (IJJ) with two types of couplings between junctions: capacitive and inductive. The IJJ model is described by a system of coupled sine-Gordon equations which is solved numerically by the 4th order Runge-Kutta method. The method of numerical simulation and numerical results are presented. The magnetic field distribution is calculated as the function of coordinate and time at different values of the bias current. The influence of model parameters on the CVC is studied. The behavior of the IJJ in dependence on coupling parameters is discussed.

  17. Optically detunable, inductively coupled coil for self-gating in small animal magnetic resonance imaging.

    Science.gov (United States)

    Korn, Matthias; Umathum, Reiner; Schulz, Jessica; Semmler, Wolfhard; Bock, Michael

    2011-03-01

    An inductively coupled coil concept is presented, which improves the compensation of physiological motion by the self-gating (SG) technique. The animal is positioned in a conventional volume coil encompassing the whole animal. A small, resonant surface coil (SG-coil) is placed on the thorax so that its sensitive region includes the heart. Via inductive coupling the SG-coil amplifies selectively the MR signal of the beating heart. With an optical detuning mechanism, this coupling can be switched off during acquisition of the MR image information, whereas it is active during SG data sampling to provide the physiological information. In vivo experiments on a mouse show an amplification of the SG signal by at least 40%. Copyright © 2010 Wiley-Liss, Inc.

  18. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient.

    Science.gov (United States)

    Lal, Shankar; Pant, K K

    2016-08-01

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.

  19. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    Science.gov (United States)

    Lal, Shankar; Pant, K. K.

    2016-08-01

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.

  20. Consideration of different heating lengths of needles with induction heating and resistance system: A novel design of needle module for thermal ablation.

    Science.gov (United States)

    Bui, Huy-Tien; Hwang, Sheng-Jye; Lee, Huei-Huang; Huang, Durn-Yuan

    2017-04-01

    Thermal ablation using alternating electromagnetic fields is a promising method to treat tissues including tumors. With this approach, an electromagnetic field is generated around an induction coil, which is supplied with high frequency current from a power source. Any electrically conducting object, which is placed in the electromagnetic field, is then heated due to eddy currents. Basic principles underlying this novel thermotherapy needle system are internal induction and resistance heating. This presents a new design of a standard gauge 18 percutaneous trans-hepatic cholangiography needle module combined with a compact power source. Three needle modules containing coils of different lengths were used to locally heat up different volumes of tissues in in vitro experiments on pig livers. Temperature on the inside surface of the needle was controlled and monitored through a K-type thermocouple. By using this needle module system, no two-section or ferromagnetic nanoparticle-coated needles were required; the system worked well with the SUS-304 stainless-steel needle. Successful results were demonstrated in the in vitro experiments on pig livers with different heating lengths of 10, 20, and 30 mm needles. With low power sources, needles could be heated up to a high temperature. The novel design of the needle module incorporated with a high frequency power source was thus shown to be a promising technology for tissue ablation. Bioelectromagnetics.38:220-226, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Mathematical Modeling of the Three Phase Induction Motor Couple to DC Motor in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zulkarnain Lubis

    2009-01-01

    Full Text Available Problem statement: With emphasis on a cleaner environment and efficient operation, vehicles today rely more and more heavily on electrical power generation for success. Approach: Mathematical modeling the components of the HEV as the three phase induction motor couple to DC motor in hybrid electric vehicle was introduced. The controller of Induction Motor (IM was designed based on input-output feedback linearization technique. It allowed greater electrical generation capacity and the fuel economy and emissions benefits of hybrid electric automotive propulsion. Results: A typical series hybrid electric vehicle was modeled and investigated. Conclusion: Various tests, such as acceleration traversing ramp and fuel consumption and emission were performed on the proposed model of 3 phase induction motor coupler DC motor in electric hybrid vehicles drive.

  2. Study on spatial distribution of plasma parameters in a magnetized inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hee-Woon; Lee, Woohyun; Kim, Ji-Won; Whang, Ki-Woong, E-mail: kwhang@snu.ac.kr [Plasma Laboratory, Inter-University Semiconductor Research Center, Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyuk [Samsung Electronics Co., Banwol-dong, Hwaseong 445-701 (Korea, Republic of); Park, Wanjae [Tokyo Electron Miyagi Ltd., Taiwa-cho, Kurokawa-gun, Miyagi 981-3629 (Japan)

    2015-07-15

    Spatial distributions of various plasma parameters such as plasma density, electron temperature, and radical density in an inductively coupled plasma (ICP) and a magnetized inductively coupled plasma (M-ICP) were investigated and compared. Electron temperature in between the rf window and the substrate holder of M-ICP was higher than that of ICP, whereas the one just above the substrate holder of M-ICP was similar to that of ICP when a weak (<8 G) magnetic field was employed. As a result, radical densities in M-ICP were higher than those in ICP and the etch rate of oxide in M-ICP was faster than that in ICP without severe electron charging in 90 nm high aspect ratio contact hole etch.

  3. Laser sampling system for an inductively-coupled atomic emission spectrometer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-15

    A laser sampling system was attached to a Perkin Elmer Optima 3000 inductively-coupled plasma, atomic emission spectrometer that was already installed and operating in the Chemistry and Geochemistry Department at the Colorado School of Mines. The use of the spectrometer has been highly successful. Graduate students and faculty from at least four different departments across the CSM campus have used the instrument. The final report to NSF is appended to this final report. Appendices are included which summarize several projects utilizing this instrument: acquisition of an inductively-coupled plasma atomic emission spectrometer for the geochemistry program; hydrogen damage susceptibility assessment for high strength steel weldments through advanced hydrogen content analysis, 1996 and 1997 annual reports; and methods for determination of hydrogen distribution in high strength steel welds.

  4. Rigorous design of matched wireless power transfer links based on inductive coupling

    Science.gov (United States)

    Monti, G.; Costanzo, A.; Mastri, F.; Mongiardo, M.; Tarricone, L.

    2016-06-01

    This paper focuses on a near-field wireless power transmission link consisting of two magnetically coupled inductances. The case of a resonant coupling realized by adding appropriate compensating capacitances is solved. By using a network formalism, the link is modeled as a two-port network and rigorously analyzed in the case where both the input impedance and the load are specified. In particular, it is demonstrated that there is just one optimum design of the network that allows maximizing both the efficiency and the active power on the load. Closed-form design formulas for the optimum design are presented and validated by circuital simulations.

  5. On frequency optimization of assymetric resonant inductive coupling wireless power transfer links

    OpenAIRE

    2014-01-01

    Resonant Inductive Coupling Wireless Power Transfer (RIC-WPT) is a leading field of research due to the growing number of applications that can benefit from this technology: from biomedical implants to consumer electronics, fractionated spacecraft and electric vehicles amongst others. However, current applications are limited to symetric point-to-point-links. New challenges and applications of RIC-WPT emphasize the necessity to explore, predict and optimize the behavior of these links for dif...

  6. Influence of External Magnetic Field on Anomalous Skin Effects in Inductively Coupled Plasmas

    Institute of Scientific and Technical Information of China (English)

    MAO Ming; WANG You-Nian

    2004-01-01

    @@ Using a one-dimensional slab model, we study the influence of the external static magnetic field on the anomalous skin effects in the inductively coupled plasma. The rf electromagnetic field in the plasma is determined by solving the linearized Boltzmann equation incorporating with the Maxwell equations. The numerical results show that,due to the existence of the external magnetic field, the anomalous skin effects are greatly enhanced and the number of regions with negative absorption is decreased.

  7. Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas

    OpenAIRE

    Titus, Monica Joy

    2010-01-01

    The semiconductor industry's continued trend of manufacturing device features on the nanometer scale requires increased plasma processing control and improved understanding of plasma characteristics and plasma-surface interactions. This dissertation presents a series of experimental results for focus studies conducted in an inductively coupled plasma (ICP) system. First novel "on-wafer" diagnostic tools are characterized and related to plasma characteristics. Second, plasma-polymer interactio...

  8. Geometry Optimization Approaches of Inductively Coupled Printed Spiral Coils for Remote Powering of Implantable Biomedical Sensors

    Directory of Open Access Journals (Sweden)

    Sondos Mehri

    2016-01-01

    Full Text Available Electronic biomedical implantable sensors need power to perform. Among the main reported approaches, inductive link is the most commonly used method for remote powering of such devices. Power efficiency is the most important characteristic to be considered when designing inductive links to transfer energy to implantable biomedical sensors. The maximum power efficiency is obtained for maximum coupling and quality factors of the coils and is generally limited as the coupling between the inductors is usually very small. This paper is dealing with geometry optimization of inductively coupled printed spiral coils for powering a given implantable sensor system. For this aim, Iterative Procedure (IP and Genetic Algorithm (GA analytic based optimization approaches are proposed. Both of these approaches implement simple mathematical models that approximate the coil parameters and the link efficiency values. Using numerical simulations based on Finite Element Method (FEM and with experimental validation, the proposed analytic approaches are shown to have improved accurate performance results in comparison with the obtained performance of a reference design case. The analytical GA and IP optimization methods are also compared to a purely Finite Element Method based on numerical optimization approach (GA-FEM. Numerical and experimental validations confirmed the accuracy and the effectiveness of the analytical optimization approaches to design the optimal coil geometries for the best values of efficiency.

  9. Reduction of the electrostatic coupling in a large-area internal inductively coupled plasma source using a multicusp magnetic field

    Science.gov (United States)

    Lee, Y. J.; Kim, K. N.; Yeom, G. Y.; Lieberman, M. A.

    2004-09-01

    A large area (1020mm×830mm) inductively coupled plasma (ICP) source has been developed using an internal-type linear antenna with permanent magnets forming a multicusp magnetic field. The large rf antenna voltages, which cause the electrostatic coupling between the antenna and the plasma in a large area internal-type linear-antenna ICP source, were decreased significantly by applying the magnetic field near and parallel to the antenna. Through the application of the magnetic field, an approximately 20% higher plasma density, with a value of close to 1.0×1011cm-3 at a rf power of 2000W, and about three times higher photoresist etch rates were observed, while maintaining the plasma nonuniformity at less than 9%.

  10. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J

    2011-07-01

    Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

  11. Equivalent circuit effects on mode transitions in H{sub 2} inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hui-Jing; Zhao, Shu-Xia, E-mail: zhaonie@dlut.edu.cn; Zhang, Yu-Ru; Gao, Fei; Li, Xue-Chun; Wang, You-Nian [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2015-04-15

    It is well known experimentally that the circuit matching network plays an important role in the mode transition behavior of inductively coupled plasmas. To date, however, there have been no reports of numerical models being used to study the role of the matching circuit in the transition process. In this paper, a new two-dimensional self-consistent fluid model that couples the components of an equivalent circuit module is developed to investigate the effects of the equivalent circuit on the mode transition characteristics of an inductively coupled, hydrogen plasma. The equivalent circuit consists of a current source, impedance matching network, reactor impedance, and plasma transferred impedance. The nonlinear coupling of the external circuit with the internal plasma is investigated by adjusting the matching capacitance at a fixed input current. The electron density and temperature as well as the electromagnetic fields all change suddenly, and the E to H mode transition occurs abruptly at a certain matching capacitance as the impedance matching of the external circuit is varied. We also analyze the fields and the plasma characteristics during the transition process, especially for the case of the capacitive E mode.

  12. Complex image method for RF antenna-plasma inductive coupling calculation in planar geometry. Part I: basic concepts

    Science.gov (United States)

    Howling, A. A.; Guittienne, Ph; Jacquier, R.; Furno, I.

    2015-12-01

    The coupling between an inductive source and the plasma determines the power transfer efficiency and the reflected impedance in the primary circuit. Usually, the plasma coupling is analysed by means of a transformer equivalent circuit, where the plasma inductance and resistance are estimated using a global plasma model. This paper shows that, for planar RF antennas, the mutual inductance between the plasma and the primary circuit can be calculated using partial inductances and the complex image method, where the plasma coupling is determined in terms of the plasma skin depth and the distance to the plasma. To introduce the basic concepts, the mutual inductance is calculated here for a linear conductor parallel to the plasma surface. In the accompanying paper part II Guittienne et al (2015 Plasma Sources Sci. Technol. 24 065015), impedance measurements on a RF resonant planar plasma source are modeled using an impedance matrix where the plasma-antenna mutual impedances are calculated using the complex image method presented here.

  13. Symmetric Absorber-Coupled Far-Infrared Microwave Kinetic Inductance Detector

    Science.gov (United States)

    U-yen, Kongpop (Inventor); Wollack, Edward J. (Inventor); Brown, Ari D. (Inventor); Stevenson, Thomas R. (Inventor); Patel, Amil A. (Inventor)

    2016-01-01

    The present invention relates to a symmetric absorber-coupled far-infrared microwave kinetic inductance detector including: a membrane having an absorber disposed thereon in a symmetric cross bar pattern; and a microstrip including a plurality of conductor microstrip lines disposed along all edges of the membrane, and separated from a ground plane by the membrane. The conducting microstrip lines are made from niobium, and the pattern is made from a superconducting material with a transition temperature below niobium, including one of aluminum, titanium nitride, or molybdenum nitride. The pattern is disposed on both a top and a bottom of the membrane, and creates a parallel-plate coupled transmission line on the membrane that acts as a half-wavelength resonator at readout frequencies. The parallel-plate coupled transmission line and the conductor microstrip lines form a stepped impedance resonator. The pattern provides identical power absorption for both horizontal and vertical polarization signals.

  14. Study on Wireless Power Transmission for Gastrointestinal Microsystems Based on Inductive Coupling

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Wireless power transmission based on inductive coupling for remotely implanted micro devices has been considered in this paper. The receiving coil, integrated in microsystems and the external transmitting coil compose a loosely coupled transformer. The coupling coefficient was calculated and measured on spacing misalignments. The geometric size of transmitting coil was analyzed for the target of remotely delivering power. The received power was maximized by choosing appropriate value of frequency, tuning capacitance and the load resistance. A conventional full bridge rectifier circuit was employed to convert ac to dc voltage. The Received dc power was up to 160 mW with a transmitting voltage of 5 Vrms when the receiving coil was placed at the center of the transmitting coil.This may meet the requirement of some microsystems for high power over a long time.

  15. Analysis of cobalt, tantalum, titanium, vanadium and chromium in tungsten carbide by inductively coupled plasma-optical emission spectrometry

    CSIR Research Space (South Africa)

    Archer, M

    2003-12-01

    Full Text Available Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to measure the concentrations of cobalt, tantalum, titanium, vanadium and chromium in solutions of tungsten carbide. The main advantage of the method described here lies...

  16. A 3-dimensional model for inductively coupled plasma etching reactors: Coil generated plasma asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, M.J.; Collison, W.Z.; Grapperhaus, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1996-12-31

    Inductively Coupled Plasma (ICP) reactors are being developed as high plasma density, low gas pressure sources for etching and deposition of semiconductor materials. In this paper, the authors describe a 3-dimensional, time dependent model for ICP reactors whose intent is to provide an infrastructure to investigate asymmetries in plasma etching and deposition tools. The model is a 3-dimensional extension of a previously described 2-dimensional simulation called the Hybrid Plasma Equipment Model (HPEM). HPEM-3D consists of an electromagnetics module (EMM), a Boltzmann-electron energy module (BEM) and a fluid-chemical kinetics simulation (FKS). The inductively coupled electromagnetic fields are produced by the EMM. Results from HPEM-3D will be discussed for reactors using etching (Cl{sub 2}, BCl{sub 3}) and non-etching (Ar, Ar/N{sub 2}) gas mixtures, and which have geometrical asymmetries such as wafer clamps and load-lock bays. The authors show how details in the design of the coil, such as the value of the termination capacitance or number of turns, lead to azimuthal variations in the inductive electric field.

  17. Numerical Simulations of Low Pressure Inductively Coupled Plasmas in Geometrically Complex Reactors

    Science.gov (United States)

    Yu, Ben; Wu, Hanming; Krishnan, Anantha

    1996-10-01

    A two-dimensional fluid model has been developed for simulation of low pressure inductively coupled plasma (ICP) reactors. The model obtains solutions for the plasma density, electron temperature, and electric field for the given operating conditions. The physical phenomena and processes such as ambipolar diffusion, thermal diffusion, quasi-neutrality, ionization, inductive Joule heating, and excitations are considered in the model. A significant feature of the model is its capability of handling complex geometries that are often encountered in industrial reactors. Complex reactor geometries are modeled by a body-fitted-coordinate (BFC) formulation. A series of numerical experiments have been conducted using the model to study effects of various parameters such as chamber pressure, size of the wafer, position of the inductive coil, and the power input into the plasma. Different reactor geometries such as the GEC ICP reference cell and the belljar reactor have been simulated. The results of the parametric experiments are presented to show certain systematic trends in performance parameters such as uniformity and processing rates. The ICP model has been coupled to a computational fluid dynamics (CFD) code (capable of 3D simulations) that obtains the flow and pressure distribution inside the chamber. The ICP model will use pressure predictions (from the CFD model) to compute the local ionization rates. Chemical source/sink terms from the plasma dissociation model will be used by the CFD code to account for local reactant depletion effects.

  18. Specific Aspects Regarding Coupled Numerical Modeling of Inverter and Load Equipments in an Induction Heating Installation

    Directory of Open Access Journals (Sweden)

    Claudiu MICH-VANCEA

    2008-05-01

    Full Text Available The most propitious projection of inductiveelectrothermic installation requires a deep study ofcoupled electrothermic and circuits problems; thereforethe present paper follows the same line. Research inspecific literature have emphasized that induction heatinghas a much higher efficiency if the supply of the charge(inductor – piece is done at frequencies other thatindustrial one. [1]. Due to material alter depending ontemperature and, implicitly, the variation of the electricalparameters of the heating installation it is necessary totackle the projection of these inductive electrothermicinstallation projected through coupled numericalmodeling of the inverter circuit and of the heatingthrough induction process. The paper presents thenumerical modeling of the continuous current –alternating current conversion bridge (inverter withelements of static switch – over, the type of commandsignal (PWM of elements of static switch of power, thenumerical modeling of the heating throughelectromagnetic induction process and aspects ofcorrelation regarding the functioning/ working of theinstallation depending on the parameters of the load. Theparameters get modified due to material alter dependingon temperature during the heating process.

  19. INDUCTION OF GONADAL MATURATION OF POND CULTURED MALE TIGER SHRIMP, Penaeus monodon WITH DIFFERENT DOSAGES OF GONADOTROPIN RELEASING HORMONE ANALOGUE AGAINST EYE STALK ABLATION

    Directory of Open Access Journals (Sweden)

    Asda Laining

    2016-12-01

    Full Text Available Very low naturally mating rate of pond-reared tiger shrimp broodstock is probably due to the slow maturation of the male stock. The aim of this study was to evaluate the salmon gonadotrophin releasing hormone analoque (sGnRHa in stimulating the gonadal maturation of male stock of pond-reared tiger shrimp. The treatments were three dosages of sGnRHa at 0.1 (OV-1, 0.2 (OV-2, and 0.3 (OV-3 mL/kg of shrimp weight and control was eye stalk ablation (AB. The sGnRHa was administered via injection three times with one week interval. Male stocks with average initial body weight of 82.1 g were randomly distributed into four of 10 m3 concrete tanks, 26 males for each tank. Variables observed were performances of spermatophores and profiles of amino acid and fatty acid of muscle of the male stocks. After induction, number of male maturing indicated by spermatophores releasing from terminal ampullas was higher in shrimp induced with OV-1 (80.8% compared to control which was only 46.1%. Furthermore, shrimp treated OV-2 had the highest spermatophore weight of 0.16 g compared to control (0.11 g and other two groups. Amino acid profiles improved as the dose of sGnRHa increased up to 0.2 mL/kg from 61.23% for ablated male becoming 71.27% for OV-2. Total fatty acid also tended to improve by increasing the dose of hormone injection, however, the ablated male had higher total fatty acid content than that of OV-1. The present finding demonstrated that the dose of sGnRHa to stimulate the gonadal maturation of pond-reared male tiger shrimp could be applied at range between 0.1-0.2 mL/kg of shrimp weight.

  20. Induction

    DEFF Research Database (Denmark)

    Sprogøe, Jonas; Elkjaer, Bente

    2010-01-01

    The purpose of this paper is to explore how induction of newcomers can be understood as both organizational renewal and the maintenance of status quo, and to develop ways of describing this in terms of learning.......The purpose of this paper is to explore how induction of newcomers can be understood as both organizational renewal and the maintenance of status quo, and to develop ways of describing this in terms of learning....

  1. Coplanar UHF RFID tag antenna with U-shaped inductively coupled feed for metallic applications.

    Science.gov (United States)

    Salman, Karrar Naji; Ismail, Alyani; Raja Abdullah, Raja Syamsul Azmir; Saeedi, Tale

    2017-01-01

    In this paper, we present a novel compact, coplanar, tag antenna design for metallic objects. Electrically small antenna has designed for a UHF RFID (860-960 MHz) based on a proximity-coupled feed through. Furthermore, two symmetrical Via-loaded coplanar grounds fed by a U-shaped inductively coupled feed through an embedded transmission line. This configuration results in an antenna with dimensions of 31 × 19.5 × 3.065 mm3 at 915 MHz, and the total gain for the antenna is 0.12 dBi. The Via-loaded coplanar and U-shaped inductively coupled feeds allow the antenna to provide flexible tuning in terms of antenna impedance. In addition, a figure of merit is applied for the proposed tag antenna, and the results are presented. The read range is measured to be 4.2 m, which is very close to simulated values. This antenna measurement shows very good agreement with simulations.

  2. Quantitative Characterization of Gold Nanoparticles by Field-Flow Fractionation Coupled Online with Light Scattering Detection and Inductively Coupled Plasma Mass Spectrometry

    DEFF Research Database (Denmark)

    Schmidt, Bjørn; Löschner, Katrin; Hadrup, Niels

    2011-01-01

    An analytical platform coupling asymmetric flow field-flow fractionation (AF4) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass ...

  3. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    Science.gov (United States)

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  4. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    Energy Technology Data Exchange (ETDEWEB)

    Luong, Elise [Iowa State Univ., Ames, IA (United States)

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 ± 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 ± 0.4 ng/g, while the certified value is 11.5 ± 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 ± 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and β-cyclodextrin are chosen for the study, initial observation of spectral interference of 13C+ with 12C 1H+ comes from the incomplete dissociation of myoglobin and/or β-cyclodextrin.

  5. Construction of Larger Area Density-Uniform Plasma with Collisional Inductively Coupled Plasma Cells

    Institute of Scientific and Technical Information of China (English)

    OUYANG Liang; LIU Wandong; BAI Xiaoyan; CHEN Zhipeng; WANG Huihui; LI LUO Chen; JI Liangliang; HU Bei

    2007-01-01

    The plasma density and electron temperature of a multi-source plasma system composed of several collisional inductively coupled plasma (ICP) cells were measured by a double-probe. The discharges of the ICP cells were shown to be independent of each other. Furthermore, the total plasma density at simultaneous multi-cell discharge was observed to be approximately equal to the summation of the plasma density when the cells discharge separately. Based on the linear summation phenomenon, it was shown that a larger area plasma with a uniform density and temperature profile could be constructed with multi-collisional ICP cells.

  6. Surface Modification of Nanometre Silicon Carbide Powder with Polystyrene by Inductively Coupled Plasma

    Institute of Scientific and Technical Information of China (English)

    WEI Gang; MENG Yuedong; ZHONG Shaofeng; LIU Feng; JIANG Zhongqing; SHU Xingsheng; REN Zhaoxing; WANG Xiangke

    2008-01-01

    An investigation was made into polystyrene (PS) grafted onto nanometre sili-con carbide (SIC) particles. In our experiment, the grafting polymerization reaction was in-duced by a radio frequency (RF) inductively coupled plasma (ICP) treatment of the nanome-tre powder. FTIR (Fourier transform infrared spectrum) and XPS (X-ray photoelectron spec-troscopy) results reveal that PS is grafted onto the surface of silicon carbide powder. An analysis is presented on the effectiveness of this approach as a function of plasma operating variables including the plasma treating power, treating time, and grafting reaction temperature and time.

  7. Inductive coupling between overhead power lines and nearby metallic pipelines. A neural network approach

    Directory of Open Access Journals (Sweden)

    Levente Czumbil

    2015-12-01

    Full Text Available The current paper presents an artificial intelligence based technique applied in the investigation of electromagnetic interference problems between high voltage power lines (HVPL and nearby underground metallic pipelines (MP. An artificial neural network (NN solution has been implemented by the authors to evaluate the inductive coupling between HVPL and MP for different constructive geometries of an electromagnetic interference problem considering a multi-layer soil structure. Obtained results are compared to solutions provided by a finite element method (FEM based analysis and considered as reference. The advantage of the proposed method yields in a simplified computation model compared to FEM, and implicitly a lower computational time.

  8. Solid Carbon Produced in an Inductively Coupled Plasma Torch with a Titan Like Atmosphere

    Directory of Open Access Journals (Sweden)

    D. Vacher

    2013-01-01

    Full Text Available Solid carbon is deposited on the surfaces of an inductively coupled plasma torch operating with a Titan like atmosphere plasma gas. The frame of the initial research is the study of the radiative properties of plasma encountered around a spacecraft during its hypersonic entry in upper layers of planetary atmosphere. Deposition of carbon is observed not only on the quartz tube outside the inductor but also on the ceramic protection of the torch injector. Carbon exhibits two types of morphology more or less dense and it is analyzed by various analytic devices as MEB, SEM, TEM, EDS and Raman spectroscopy. The gathered carbon powder shows the presence of nanostructured particles.

  9. Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology.

    Science.gov (United States)

    Wang, Shunquan; Zhou, Changhe; Ru, Huayi; Zhang, Yanyan

    2005-07-20

    Polymer deposition is a serious problem associated with the etching of fused silica by use of inductively coupled plasma (ICP) technology, and it usually prevents further etching. We report an optimized etching condition under which no polymer deposition will occur for etching fused silica with ICP technology. Under the optimized etching condition, surfaces of the fabricated fused silica gratings are smooth and clean. Etch rate of fused silica is relatively high, and it demonstrates a linear relation between etched depth and working time. Results of the diffraction of gratings fabricated under the optimized etching condition match theoretical results well.

  10. Analysis of tree leaves, bark and wood by sequential inductively coupled argon plasma atomic emission spectrometry

    Science.gov (United States)

    Verbeek, A. A.

    The analysis of extracts from tree leaf, bark and wood samples for Ca, Mg, K, Na, P, Mn, Fe, Al, B, Cu and Zn by inductively coupled argon plasma sequential emission spectrometry is described. Recovery percentages for simulated tree extracts and for spiked tree samples are presented together with typical analysis values for a leaf and a wood sample. The choice of analytical line for each element is discussed and spectral interferences, not listed in the ICP tables of Boumans, of Cu on the 214.9 nm line of P and of Fe on the 249.7 nm line of B are noted.

  11. System Design for Ocean Sensor Data Transmission Based on Inductive Coupling

    Science.gov (United States)

    Xu, Ming; Liu, Fei; Zong, Yuan; Hong, Feng

    Ocean observation is the precondition to explore and utilize ocean. How to acquire ocean data in a precise, efficient and real-time way is the key question of ocean surveillance. Traditionally, there are three types of methods for ocean data transmission: underwater acoustic, GPRS via mobile network and satellite communication. However, none of them can meet the requirements of efficiency, accuracy, real-time and low cost at the same time. In this paper, we propose a new wireless transmission system for underwater sensors, which established on FGR wireless modules, combined with inductive coupling lab and offshore experiments confirmed the feasibility and effectiveness of the proposed wireless transmission system.

  12. Inductively Coupled Plasma Optical-Emission Spectroscopy Determination of Major and Minor Elements in Vinegar

    Directory of Open Access Journals (Sweden)

    Arzu AKPINAR-BAYIZIT

    2010-12-01

    Full Text Available This study characterizes the mineral content of vinegar samples. The concentrations of Na, K, Ca, Mg and P (major elements as well as Fe, Mn, Sn, Cu, Ni, Zn, Pb and Cd (minor elements were determined in 35 commercial vinegar samples using inductively coupled plasma optical-emission spectrometry (ICP-OES. The elements with the highest concentrations were K, Na, Ca, Mg and P. The concentrations of heavy metals in the vinegar samples, including Cd, Ni, Sn and Pb, were not considered a health risk.

  13. [Determination of total sulfur in coal by inductively coupled plasma atomic emission spectrometry].

    Science.gov (United States)

    Liu, Dong-yan; Zhang, Yuan-li

    2002-02-01

    A direct method was reported for the determination of total sulfur in coal by inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution conditions of coal samples as well as interference conditions of hydrochloric acid and matrix were studied. The recommended method not only proved to be simple and rapid than traditional gravimetric method but show satisfying precision and accuracy as well. The results of samples are as same as gravimetry. The recoveries are more than 96%, and the relative standard deviation of six samples are less than 3%.

  14. Self-consistent Kinetic Description of the Low-Pressure Solenoidal Inductively Coupled Argon Discharge

    Institute of Scientific and Technical Information of China (English)

    毛明; 王友年

    2005-01-01

    Using an one-dimensional slab model, we have studied the electron energy distribution, the anomalous skin effect, and power absorption in the solenoidal-inductively-coupled argon discharge under low pressures (≤1.33 Pa). The electron energy distribution function and rf electromagnetic field in the plasma are determined self-consistently by the linearized Bolztmann equation incorporating with the Maxwell equations. The numerical results show that, at low pressures, the electron energy distribution function exhibits a non-Maxwellian distribution with a long high-energy tail. The anomalous skin effect is greatly enhanced under low pressures and the negative power absorption is also obtained.

  15. Application of Inductively Coupled Wireless Radio Frequency Probe to Knee Joint in Magnetic Resonance Image

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2009-10-01

    Full Text Available An inductively coupled wireless coil for a radio frequency (RF probe has been designed and applied to a human knee joint to improve the signal to noise ratio (SNR in a magnetic resonance image (MRI. A birdcage type of a primary coil and a Helmholtz type of a wireless secondary coil have been manufactured. The coils were applied to a human knee with a 3 T MRI system. SNR was calculated both in the proton density image and in the T2 weighted image of MRI. The experimental results show that the designed coils are effective to increase SNR in the human knee MRI.

  16. Electron energy probability function and L-p similarity in low pressure inductively coupled bounded plasma

    OpenAIRE

    Chatterjee, Sanghamitro; Bhattacharjee, Sudeep; Charles, Christine; Boswell, Rod

    2015-01-01

    Particle-In-Cell (PIC) simulations are carried out to investigate the effect of discharge length (L) and pressure (p) on Electron Energy Probability Function (EEPF) in a low pressure radio frequency (rf) inductively coupled plasma (ICP) at 13.56 MHz. It is found that for both cases of varying L (0.1–0.5 m) and p (1–10 mTorr), the EEPF is a bi-Maxwellian with a step in the bounded direction (x) and non-Maxwellian with a hot tail in the symmetric unbounded directions (y, z). The plasma space po...

  17. Plasma characteristics in inductively and capacitively coupled hybrid source using single RF power

    Science.gov (United States)

    Kim, Kwan-Yong; Lee, Moo-Young; Kim, Tae-Woo; Kim, Ju-Ho; Chung, Chin-Wook

    2016-09-01

    Parallel combined inductively coupled plasma (ICP) and capacitively coupled plasma (CCP) using single RF generator was proposed to linear control of the plasma density with RF power. In the case of ICP, linear control of the plasma density is difficult because there is a density jump up due to E to H transition. Although the plasma density of CCP changes linearly with power, the density is lower than that of ICP due to high ion energy loss at the substrate. In our hybrid source, the single RF power generator was connected to electrode and antenna, and the variable capacitor was installed between the antenna and the power generator to control the current flowing through the antenna and the electrode. By adjusting the current ratio between the antenna and the electrode, linear characteristic of plasma density with RF power is achieved.

  18. Continuous ice-core chemical analyses using inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    McConnell, Joseph R; Lamorey, Gregg W; Lambert, Steven W; Taylor, Kendrick C

    2002-01-01

    Impurities trapped in ice sheets and glaciers have the potential to provide detailed, high temporal resolution proxy information on paleo-environments, atmospheric circulation, and environmental pollution through the use of chemical, isotopic, and elemental tracers. We present a novel approach to ice-core chemical analyses in which an ice-core melter is coupled directly with both an inductively coupled plasma mass spectrometer and a traditional continuous flow analysis system. We demonstrate this new approach using replicated measurements of ice-core samples from Summit, Greenland. With this method, it is possible to readily obtain continuous, exactly coregistered concentration records for a large number of elements and chemical species at ppb and ppt levels and at unprecedented depth resolution. Such very-high depth resolution, multiparameter measurements will significantly expand the use of ice-core records for environmental proxies.

  19. Langmuir Probe Measurements in an Inductively Coupled GEC Reference Cell Plasma

    Science.gov (United States)

    Ji, J. S.; Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    Measurements of electron number density, electron temperature, and electron energy distribution function (EEDF) using a compensated Langmuir probe have been performed on an inductively (transformer ) coupled Gaseous Electronics Conference (GEC) reference cell plasma. The plasma source is operated with CH4, CF4, or their mixtures with argon. The effect of independently driving the electrode supporting the wafer on the probe data is studied. In particular, we find that the plasma structure depends on the phase in addition to the magnitude of the power coupled to the electrode relative to that of the transformer coil. The Langmuir probe is translated in a plane parallel to the electrode to investigate the spatial structure of the plasma. The probe data is also compared with fluid model predictions.

  20. Impulse-coupling coefficients from a pulsed-laser ablation of semiconductor GaAs

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Impulse-coupling coefficients from 1.06 - μm, 10-ns Nd:YAG pulsed-laser radiation to GaAs targets with different areas were measured using the ballistic pendulum method in the laser power density ranging from 4.0 × 108 to 5.0 × 109 W·cm-2.A detonation wave model of the plasma was established theoretically. The expansion process of plasma after the laser pulse ends is described in detail, and the impulse-coupling coefficients from pulsed laser with different energies to GaAs with different areas were calculated using the given model. It is found that the theoretical results agree well with the experimental data.

  1. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  2. Local thermodynamic equilibrium modeling of ionization of impurities in argon inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Serapinas, Petras, E-mail: serapinas@pfi.l [Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, 01108 Vilnius (Lithuania); Salkauskas, Julius; Ezerinskis, Zilvinas; Acus, Arturas [Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, 01108 Vilnius (Lithuania)

    2010-01-15

    Essentially higher ionization degree of small concentrations of elements in inductively coupled plasma in comparison to the ionization of pure elements is emphasized. This conclusion is used to determine the relative dependence of the sensitivity of the inductively coupled plasma mass spectrometer on the atomic mass. The possibility of evaluation of the ionization temperature and electron density from mass spectrometric signals is proposed. Temperatures about 7000 K and 8000 K were obtained from the ionization ratio dependences on ionization potentials. Electron densities of the order of magnitude 10{sup 15} cm{sup -3}, in excess to the local thermodynamic equilibrium values, follow from the application of the Saha equation to the measurement results and indicate the recombining character of the plasma in the mass spectrometer measurement region. Effects due to additional ionization from matrix were discussed. The effect is largest on minor abundant ionization state components. Matrix effect is restricted to some temperature interval, which depends on the whole matrix composition and the plasma state. The results show that the local thermodynamic equilibrium modeling, if adequately matching the sample composition, can be useful as a quantitative basis for both description of the plasma state and indication of the character of the nonequilibrium effects.

  3. Ion flux and ion distribution function measurements in synchronously pulsed inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Brihoum, Melisa; Cunge, Gilles; Darnon, Maxime; Joubert, Olivier [Laboratoire des Technologies de la Microelectronique CNRS, Grenoble Cedex 9, Isere 38054 (France); Gahan, David [Impedans Ltd., Dublin 17 (Ireland); Braithwaite, Nicholas St. J. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2013-03-15

    Changes in the ion flux and the time-averaged ion distribution functions are reported for pulsed, inductively coupled RF plasmas (ICPs) operated over a range of duty cycles. For helium and argon plasmas, the ion flux increases rapidly after the start of the RF pulse and after about 50 {mu}s reaches the same steady state value as that in continuous ICPs. Therefore, when the plasma is pulsed at 1 kHz, the ion flux during the pulse has a value that is almost independent of the duty cycle. By contrast, in molecular electronegative chlorine/chlorosilane plasmas, the ion flux during the pulse reaches a steady state value that depends strongly on the duty cycle. This is because both the plasma chemistry and the electronegativity depend on the duty cycle. As a result, the ion flux is 15 times smaller in a pulsed 10% duty cycle plasma than in the continuous wave (CW) plasma. The consequence is that for a given synchronous RF biasing of a wafer-chuck, the ion energy is much higher in the pulsed plasma than it is in the CW plasma of chlorine/chlorosilane. Under these conditions, the wafer is bombarded by a low flux of very energetic ions, very much as it would in a low density, capacitively coupled plasma. Therefore, one can extend the operating range of ICPs through synchronous pulsing of the inductive excitation and capacitive chuck-bias, offering new means by which to control plasma etching.

  4. The optoelectronic properties of silicon films deposited by inductively coupled plasma CVD

    Energy Technology Data Exchange (ETDEWEB)

    Qin Yanli; Yan Hengqing; Li Fei; Qiao Li; Liu Qiming [Department of Physics, Lanzhou University, Lanzhou 730000 (China); He Deyan, E-mail: hedy@lzu.edu.cn [Department of Physics, Lanzhou University, Lanzhou 730000 (China)

    2010-11-15

    Hydrogenated amorphous and microcrystalline silicon films were deposited by inductively coupled plasma chemical vapor deposition (ICP-CVD) at low substrate temperatures using H{sub 2}-diluted SiH{sub 4} as a source gas. High-density plasma generated by inductively coupled excitation facilitates the crystallization of silicon films at low temperatures, and microcrystalline silicon films were obtained at the substrate temperature as low as 180 deg. C. The columnar structure of the films becomes more and more compact with an increase of their crystallinity. The reduction of hydrogen content in the films causes a narrowing of the optical bandgap and an enhancement of the absorption with increasing the substrate temperature. The microcrystalline silicon films show two electronic transport mechanisms: one is related to the density of state distribution in the temperature region near room temperature and the other is the variable range hopping between localized electronic states close to the Fermi level below 170 K. A reasonable explanation is presented for the dependence of the optoelectronic properties on the microstructure of the silicon films. The films prepared at a substrate temperature of 300 deg. C have highly crystalline and compact columnar structure, high optical absorption coefficient and electrical conductivity, and a low hydrogen content of 3.8%.

  5. Inductively coupled corrosion potential sensor for steel reinforced concrete with time domain gating interrogation

    Science.gov (United States)

    Thomson, D. J.; Perveen, K.; Bridges, G. E.; Bhadra, S.

    2012-04-01

    Corrosion is a major problem for civil infrastructure and is one of the leading factors in infrastructure deterioration. Techniques such as half-cell potential can be used to periodically monitor corrosion, but can be difficult to reliably interpret. Wired systems have large installation cost and long-term reliability issues due to wire corrosion. In this paper an embedded inductively coupled coil sensor able to monitor the corrosion potential of reinforcement steel in concrete is presented. The sensor is based on a coil resonator whose resonant frequency changes due to the corrosion potential being applied across a parallel varactor diode. The corrosion potential can be monitored externally using an inductively coupled coil. An accelerated corrosion test shows that it can measure corrosion potentials with a resolution of less than 10 mV. This sensor will detect corrosion at the initiation stage before observable corrosion has taken place. The wireless sensor is passive and simple in design, making it an inexpensive, battery less option for long-term monitoring of the corrosion potential of reinforcing steel.

  6. A study on plasma parameters in Ar/SF6 inductively coupled plasma

    Science.gov (United States)

    Oh, Seung-Ju; Lee, Hyo-Chang; Chung, Chin-Wook

    2017-01-01

    Sulfur hexafluoride (SF6) gas or Ar/SF6 mixing gas is widely used in plasma processes. However, there are a little experimental studies with various external parameters such as gas pressure and mixing ratio. In this work, a study of the plasma parameters by changing the gas mixing ratio was done in an Ar/SF6 inductively coupled plasma from the measurement of the electron energy distribution function. At a low gas pressure, as the mixing ratio of SF6 gas increased at a fixed inductively coupled plasma (ICP) power, the electron density decreased and the electron temperature increased, while they were not changed drastically. At a high gas pressure, a remarkable increase in the electron temperature was observed with the decrease in the electron density. These variations are due to the electron loss reactions such as the electron attachment. It was also found that at a fixed ICP power, the negative ion creation with the diluted SF6 gas can change the discharge mode transition from an inductive mode to a capacitive mode at the high gas pressure. The electron attachment reactions remove the low energy electrons and change the mean electron energy towards higher energies with diluting SF6 gas at high pressure. The measured results were compared with the simplified global model, and the global model is in relatively good agreement with the measured plasma parameters except for the result in the case of the large portion of SF6 gas at the high pressure and the capacitive mode, which causes strong negative ion formation by the electron attachment reactions.

  7. Rapid lead isotope analysis of archaeological metals by multiple-collector inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Baker, J.A.; Stos, S.; Waight, Tod Earle

    2006-01-01

    Lead isotope ratios in archaeological silver and copper were determined by MC-ICPMS using laser ablation and bulk dissolution without lead purification. Laser ablation results on high-lead metals and bulk solution analyses on all samples agree within error of TIMS data, suggesting that problems...... from isobaric interferences and/or mass bias variations due to the presence of matrix elements are insignificant. Inaccurate laser ablation analyses on low-lead copper reflect erroneous mass bias corrections from use of a non-matrix matched standard. However, in most cases, silver and copper...... are analysable for lead isotopes by bulk dissolution or laser ablation MC-ICPMS with simplified sample preparation....

  8. Lesion size in relation to ablation site during radiofrequency ablation

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, A;

    1998-01-01

    convective cooling by induction of a flow around the electrode tip increases lesion dimensions and power consumptions. Furthermore we conclude that for the given target temperature the power consumption is positively correlated with lesion volume (p ...This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation...... larger for septal applications than apical applications (p convective cooling by induction of flow yielded larger lesion volume, depth and width (p

  9. Metal particles produced by laser ablation for ICP-MSmeasurements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Jhanis J.; Liu, Chunyi; Wen, Sy-Bor; Mao, Xianglei; Russo, Richard E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate metal particles of Zn and Al alloys using femtosecond (150 fs) and nanosecond (4 ns) laser pulses with identical fluences of 50 J cm{sup -2}. Characterization of particles and correlation with Inductively Coupled Plasma Mass Spectrometer (ICP-MS) performance was investigated. Particles produced by nanosecond laser ablation were mainly primary particles with irregular shape and hard agglomerates (without internal voids). Particles produced by femtosecond laser ablation consisted of spherical primary particles and soft agglomerates formed from numerous small particles. Examination of the craters by white light interferometric microscopy showed that there is a rim of material surrounding the craters formed after nanosecond laser ablation. The determination of the crater volume by white light interferometric microscopy, considering the rim of material surrounding ablation craters, revealed that the volume ratio (fs/ns) of the craters on the selected samples was approximately 9 (Zn), 7 (NIST627 alloy) and 5 (NIST1711 alloy) times more ablated mass with femtosecond pulsed ablation compared to nanosecond pulsed ablation. In addition, an increase of Al concentration from 0 to 5% in Zn base alloys caused a large increase in the diameter of the particles, up to 65% while using nanosecond laser pulses. When the ablated particles were carried in argon into an ICP-MS, the Zn and Al signals intensities were greater by factors of {approx} 50 and {approx} 12 for fs vs. ns ablation. Femtosecond pulsed ablation also reduced temporal fluctuations in the {sup 66}Zn transient signal by a factor of ten compared to nanosecond laser pulses.

  10. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part II. Practical considerations.

    Science.gov (United States)

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are increasingly used to carry out analyses in organic/hydro-organic matrices. The introduction of such matrices into ICP sources is particularly challenging and can be the cause of numerous drawbacks. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP sources. Part I provided theoretical considerations associated with the physico-chemical properties of such matrices, in an attempt to understand the induced phenomena. Part II of this tutorial review is dedicated to more practical considerations on instrumentation, instrumental and operating parameters, as well as analytical strategies for elemental quantification in such matrices. Two important issues are addressed in this part: the first concerns the instrumentation and optimization of instrumental and operating parameters, pointing out (i) the description, benefits and drawbacks of different kinds of nebulization and desolvation devices and the impact of more specific instrumental parameters such as the injector characteristics and the material used for the cone; and, (ii) the optimization of operating parameters, for both ICP-OES and ICP-MS. Even if it is at the margin of this tutorial review, Electrothermal Vaporization and Laser Ablation will also be shortly described. The second issue is devoted to the analytical strategies for elemental quantification in such matrices, with particular insight into the isotope dilution technique, particularly used in speciation analysis by ICP-coupled separation techniques.

  11. A two-dimensional global simulation study of inductive-dynamic magnetosphere-ionosphere/thermosphere coupling

    Science.gov (United States)

    Tu, J.; Song, P.

    2016-12-01

    We have developed a new numerical simulation model of the ionosphere/thermosphere by using an inductive-dynamic approach (including self-consistent solutions of Faraday's law and retaining inertia terms in ion momentum equations), that is, based on magnetic field B and plasma velocity v (B, v paradigm), which is distinctive from the conventional modeling based on electric field E and current j. The model solves self-consistently time-dependent continuity, momentum, and energy equations for multiple species of ions and neutrals including photochemistry, and Maxwell's equations. The governing equations solved in the model are a set of multifluid-collisional-Hall MHD equations which are one of unique features of our ionosphere/thermosphere model. With such an inductive-dynamic approach, not only sound wave mode but also all possible MHD wave modes are retained in the solutions of the governing equations so that the dynamic coupling between the magnetosphere and ionosphere and among different regions of the ionosphere can be self-consistently investigated. In the present study, we demonstrate dynamic propagation of field-aligned currents and ionospheric electric field carried by Alfven waves, as well as formation of closure horizontal currents (Pedersen currents in the E-region), indicating that the M-I coupling is via the Alfven waves instead of the field-aligned currents or electric field mapping. The simulation results also show that the Poynting flux and strongest energy dissipation in the ionosphere/thermosphere is in the regions of the largest ion velocities and not necessarily in the auroral oval where the field-aligned currents reside. The frictional heating increases plasma temperature and thus drives ion upflows. The frictional heating also increase neutral temperature and produces neutral upflows but in a much longer time scale. Furthermore, the coupling of high-to-low latitude ionosphere is investigated in terms of propagation of fast MHD waves.

  12. Bottom-series coupled quadrature VCO using the inductive gate voltage boosting technique

    Science.gov (United States)

    Jang, Sheng-Lyang; Chou, Li-Te

    2013-09-01

    This article presents a new low-voltage bottom-series coupled quadrature voltage-controlled oscillator (QVCO), which consists of two n-core cross-coupled VCOs with the bottom-series coupling transistors. The low-voltage operation is obtained via an inductive gate voltage boosting technique. The proposed CMOS QVCO has been implemented with the TSMC 0.18 µm CMOS technology and the die area is 0.897 × 0.767 mm2. At the supply voltage of 0.7 V, the total power consumption is 1.5 mW. The free-running frequency of the QVCO is tuneable from 3.77 to 4.12 GHz as the tuning voltage is varied from 0.0 to 0.7 V. The measured phase noise at 1 MHz frequency offset is -123.35 dBc/Hz at the oscillation frequency of 4.12 GHz and the figure of merit of the proposed QVCO is -193.5 dBc/Hz.

  13. Thin-layer chromatography combined with diode laser thermal vaporization inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Bednařík, Antonín; Tomalová, Iva; Kanický, Viktor; Preisler, Jan

    2014-10-17

    Here we present a novel coupling of thin-layer chromatography (TLC) to diode laser thermal vaporization inductively coupled plasma mass spectrometry (DLTV ICP MS). DLTV is a new technique of aerosol generation which uses a diode laser to induce pyrolysis of a substrate. In this case the cellulose stationary phase on aluminum-backed TLC sheets overprinted with black ink to absorb laser light. The experimental arrangement relies on economic instrumentation: an 808-nm 1.2-W continuous-wave infrared diode laser attached to a syringe pump serving as the movable stage. Using a glass tubular cell, the entire length of a TLC separation channel is scanned. The 8-cm long lanes were scanned in ∼35 s. The TLC - DLTV ICP MS coupling is demonstrated on the separation of four cobalamins (hydroxo-; adenosyl-; cyano-; and methylcobalamin) with limits of detection ∼2 pg and repeatability ∼15% for each individual species. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Sulfur analysis by inductively coupled plasma-mass spectrometry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J.M.; García Alonso, J.I., E-mail: jiga@uniovi.es

    2015-06-01

    In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC–ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review. - Highlights: • Emphasis placed on the sulfur-specific detection by chromatographic techniques coupled on-line to ICP-MS. • Different instrumental approaches available for sulfur measurements by ICP-MS. • Quantification of proteins and the analysis of metalloproteins via sulfur by LC-ICP-MS. • Labelling procedures for metabolic applications are also included. • The measurement of natural variations in S isotope composition with multicollector ICP-MS.

  15. Misalignment detection in induction motors with flexible coupling by means of estimated torque analysis and MCSA

    Science.gov (United States)

    Verucchi, Carlos; Bossio, José; Bossio, Guillermo; Acosta, Gerardo

    2016-12-01

    In recent years, progress has been made in developing techniques to detect mechanical faults in actuators driven by induction motors. The latest developments show their capability to detect faults from the analysis of the motor electrical variables. The techniques are based on the analysis of the Motor Current Signature Analysis (MCSA) and the Load Torque Signature Analysis (LTSA), among others. Thus, failures such as misalignment between the motor and load, progressive gear teeth wear, and mass imbalances have been successfully detected. In case of misalignment between the motor and load, both angular and radial misalignment, the results presented in literature do not consider the characteristics of the coupling device. In this work, it is studied a mechanism in which the power transmission between the motor and load is performed by means of different types of couplings, mainly those most frequently used in industry. Results show that the conclusions drawn for a particular coupling are not necessarily applicable to others. Finally, this paper presents data of interest for the development of algorithms or expert systems for fault detection and diagnosis.

  16. Speciation of cisplatin in environmental water samples by hydrophilic interaction liquid chromatography coupled to inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Vidmar, Janja; Martinčič, Anže; Milačič, Radmila; Ščančar, Janez

    2015-06-01

    Cisplatin is still widely used for treatment of numerous types of tumours. Different speciation methods have been applied to study behaviour of the intact drug and its individual biotransformation species in various clinical samples. These methods are mainly based on electrophoresis, size exclusion (SEC) or ion chromatography (IC) techniques coupled to inductively coupled plasma mass spectrometry (ICP-MS). Hydrophilic interaction liquid chromatography (HILIC), which is a common technique for separation of polar substances, was rarely applied for separation of cisplatin and its hydrolysed metabolites. There is also a lack of information available on the occurrence of cisplatin and its hydrolysed complexes in the environmental waters. In the present study the concentrations of Pt were determined in hospital wastewaters by ICP-MS. A procedure for separation of cisplatin and its aqueous hydrolysed complexes by the use of HILIC column was optimized. Quantification of separated Pt species was performed by isotope dilution (ID)-ICP-MS procedure. Low limits of detection (LODs) and quantification (LOQs) were obtained for cisplatin and its hydrolysed complexes ranging from 0.0273 to 0.1726 ng Pt/mL and from 0.0909 to 0.5753 ng Pt/mL, respectively. Good repeatability of the procedure with relative standard deviation (RSD) lower than ±2.3% was obtained. The column recoveries, which ranged from 95 to 101%, indicated that the procedure developed enabled quantitative speciation analysis of aqueous cisplatin complexes. The ZIC-HILIC-ID-ICP-MS procedure was successfully applied in speciation of cisplatin in spiked hospital wastewater samples.

  17. Analytical Model and Optimized Design of Power Transmitting Coil for Inductively Coupled Endoscope Robot.

    Science.gov (United States)

    Ke, Quan; Luo, Weijie; Yan, Guozheng; Yang, Kai

    2016-04-01

    A wireless power transfer system based on the weakly inductive coupling makes it possible to provide the endoscope microrobot (EMR) with infinite power. To facilitate the patients' inspection with the EMR system, the diameter of the transmitting coil is enlarged to 69 cm. Due to the large transmitting range, a high quality factor of the Litz-wire transmitting coil is a necessity to ensure the intensity of magnetic field generated efficiently. Thus, this paper builds an analytical model of the transmitting coil, and then, optimizes the parameters of the coil by enlarging the quality factor. The lumped model of the transmitting coil includes three parameters: ac resistance, self-inductance, and stray capacitance. Based on the exact two-dimension solution, the accurate analytical expression of ac resistance is derived. Several transmitting coils of different specifications are utilized to verify this analytical expression, being in good agreements with the measured results except the coils with a large number of strands. Then, the quality factor of transmitting coils can be well predicted with the available analytical expressions of self- inductance and stray capacitance. Owing to the exact estimation of quality factor, the appropriate coil turns of the transmitting coil is set to 18-40 within the restrictions of transmitting circuit and human tissue issues. To supply enough energy for the next generation of the EMR equipped with a Ø9.5×10.1 mm receiving coil, the coil turns of the transmitting coil is optimally set to 28, which can transfer a maximum power of 750 mW with the remarkable delivering efficiency of 3.55%.

  18. Double layer formation in the expanding region of an inductively coupled electronegative plasma

    CERN Document Server

    Plihon, N; Chabert, P

    2015-01-01

    Double-layers (DLs) were observed in the expanding region of an inductively coupled plasma with $\\text{Ar}/\\text{SF}\\_6$ gas mixtures. No DL was observed in pure argon or $\\text{SF}\\_6$ fractions below few percent. They exist over a wide range of power and pressure although they are only stable for a small window of electronegativity (typically between 8\\% and 13\\% of $\\text{SF}\\_6$ at 1mTorr), becoming unstable at higher electronegativity. They seem to be formed at the boundary between the source tube and the diffusion chamber and act as an internal boundary (the amplitude being roughly 1.5$\\frac{kT\\_e}{e}$)between a high electron density, high electron temperature, low electronegativity plasma upstream (in the source), and a low electron density, low electron temperature, high electronegativity plasma downstream.

  19. Nonlinear electromagnetic fields in 0.5 MHz inductively coupled plasmas

    DEFF Research Database (Denmark)

    Ostrikov, K.N.; Tsakadze, E.L.; Xu, S.

    2003-01-01

    Radial profiles of magnetic fields in the electrostatic (E) and electromagnetic (H) modes of low-frequency (similar to500 kHz) inductively coupled plasmas have been measured using miniature magnetic probes. In the low-power (similar to170 W) E-mode, the magnetic field pattern is purely linear......, with the fundamental frequency harmonics only. After transition to higher-power (similar to1130 W) H-mode, the second-harmonic nonlinear azimuthal magnetic field B-phi(2omega) that is in 4-6 times larger than the fundamental frequency component B-phi(omega), has been observed. A simplified plasma fluid model...... explaining the generation of the second harmonics of the azimuthal magnetic field in the plasma source is proposed. The nonlinear second harmonic poloidal (r-z) rf current generating the azimuthal magnetic field B-phi(2omega) is attributed to nonlinear interactions between the fundamental frequency radial...

  20. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasma

    CERN Document Server

    Choudhary, Mangilal; Bandyopadhyay, P

    2016-01-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current (DC) glow discharge. These dust particles are found to get trapped in an electrostatic potential well which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self excited dust acoustic waves and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust par...

  1. Inductively Coupling Plasma (ICP) Treatment of Propylene (PP) Surface and Adhesion Improvement

    Science.gov (United States)

    Liu, Yenchun; Fu, Yenpei

    2009-12-01

    Study on increasing the roughness of the polymer substrate surface to enhance the adhesion with the copper layer in an inductively coupling plasma (ICP) process was carried out. The microstructure of the polymer substrate surfaces, which were exposed to different kinds of plasma treatment, was identified by scanning electron microscopy(SEM) analysis, peel strength of the copper coating and water surface contact angle. The adhesion of the substrate was largely enhanced by plasma treatment and the copper deposited coating reached a value of 7.68 kgf/m in verifying the adhesion of the copper coating with polymer material. The quality of the line/space 50/50 μm produced in the laboratory was examined by the pressure cooker test and proved to meet the requirement.

  2. Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma

    Science.gov (United States)

    Younus, Maria; Rehman, N. U.; Shafiq, M.; Naeem, M.; Zaka-ul-Islam, M.; Zakaullah, M.

    2017-03-01

    This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density n e , electron temperature T e , plasma potential V p , skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled helium plasma source with magnetic pole enhancement. An RF compensated Langmuir probe is used to measure these plasma parameters. It is observed that the electron number density increases with both the RF power and the filling gas pressure. Conversely, the electron temperature decreases with increasing RF power and gas pressure. It is also noted that, at low RF powers and gas pressures, the EEPFs are non-Maxwellian, while at RF powers of ≥50 W, they evolve into a Maxwellian distribution. The dependences of the skin depth and plasma potential on the RF power are also studied and show a decreasing trend.

  3. Stable isotope dilution analysis of hydrologic samples by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Garbarino, J.R.; Taylor, H.E.

    1987-01-01

    Inductively coupled plasma mass spectrometry is employed in the determination of Ni, Cu, Sr, Cd, Ba, Ti, and Pb in nonsaline, natural water samples by stable isotope dilution analysis. Hydrologic samples were directly analyzed without any unusual pretreatment. Interference effects related to overlapping isobars, formation of metal oxide and multiply charged ions, and matrix composition were identified and suitable methods of correction evaluated. A comparability study snowed that single-element isotope dilution analysis was only marginally better than sequential multielement isotope dilution analysis. Accuracy and precision of the single-element method were determined on the basis of results obtained for standard reference materials. The instrumental technique was shown to be ideally suited for programs associated with certification of standard reference materials.

  4. Al-Induced Crystallization Growth of Si Films by Inductively Coupled Plasma Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Shuai; WANG Jin-Xiao; YIN Min; GAO Ping-Qi; HE De-Yan

    2006-01-01

    Polycrystalline Si (poly-Si) films are in situ grown on Al-coated glass substrates by inductively coupled plasma chemical vapour deposition at a temperature as low as 350 C. Compared to the traditional annealing crystallization of amorphous Si/Al-layer structures, no layer exchange is observed and the resultant poly-Si film is much thicker than Al layer. By analysing the depth profiles of the elemental composition, no remains of Al atoms are detected in Si layer within the limit (< 0.01 at. %) of the used evaluations. It is indicated that the poly-Si material obtained by Al-induced crystallization growth has more potential applications than that prepared by annealing the amorphous Si/Al-layer structures.

  5. Numerical Study of a System of Long Josephson Junctions with Inductive and Capacitive Couplings

    Science.gov (United States)

    Rahmonov, I. R.; Shukrinov, Yu. M.; Plecenik, A.; Zemlyanaya, E. V.; Bashashin, M. V.

    2016-02-01

    The phase dynamics of the stacked long Josephson junctions is investigated taking into account the inductive and capacitive couplings between junctions and the diffusion current. The simulation of the current-voltage characteristics is based on the numerical solution of a system of nonlinear partial differential equations by a fourth order Runge-Kutta method and finite-difference approximation. A parallel implementation is based on the MPI technique. The effectiveness of the MPI/C++ code is confirmed by calculations on the multi-processor cluster CICC (LIT JINR, Dubna). We demonstrate the appearance of the charge traveling wave (CTW) at the boundary of the zero field step. Based on this fact, we conclude that the CTW and the fluxons coexist.

  6. Numerical Study of a System of Long Josephson Junctions with Inductive and Capacitive Couplings

    Directory of Open Access Journals (Sweden)

    Rahmonov I. R.

    2016-01-01

    Full Text Available The phase dynamics of the stacked long Josephson junctions is investigated taking into account the inductive and capacitive couplings between junctions and the diffusion current. The simulation of the current–voltage characteristics is based on the numerical solution of a system of nonlinear partial differential equations by a fourth order Runge–Kutta method and finite-difference approximation. A parallel implementation is based on the MPI technique. The effectiveness of the MPI/C++ code is confirmed by calculations on the multi-processor cluster CICC (LIT JINR, Dubna. We demonstrate the appearance of the charge traveling wave (CTW at the boundary of the zero field step. Based on this fact, we conclude that the CTW and the fluxons coexist.

  7. Computational Finite Element Software Assisted Development of a 3D Inductively Coupled Power Transfer System

    Directory of Open Access Journals (Sweden)

    P. Raval

    2014-02-01

    Full Text Available To date inductively coupled power transfer (ICPT systems have already found many practical applications including battery charging pads. In fact, current charging platforms tend to largely support only one- or two-dimensional planar movement in load. This paper proposes a new concept of extending the aspect ratios of the operating power transfer volume of ICPT systems to support arbitrary three dimensional load movements with respect to the primary coils. This is done by use of modern finite element method analysis software to propose the primary and secondary magnetic structures of such an ICPT system. Firstly, two primary magnetic structures are proposed based on contrasting modes of operation and different field directions. This includes a single-phase and multi-phase current model. Next, a secondary magnetic structure is customized to be compatible with both primary structures. The resulting system is shown to produce a 3D power transfer volume for battery cell charging applications.

  8. Filterless preconcentration, flow injection analysis and detection by inductively-coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    The influence of interferences in the analysis of elements by inductively-coupled-plasma mass-spectrometry (ICP-MS) may be significantly diminished by utilising a protocol of flow-injection analysis (FIA). The method is based on filterless preconcentration of metallic elements at the walls...... of a knotted reactor that was made of nylon tubings. In the load mode, the preconcentration was accomplished by precipitation of metallic species in alkaline-buffered carriers onto the inner walls of the hydrofilic tube. After a preconcen-tration period of 40-120 seconds using sample volumes of 4-10 m......L, the analyte was transferred by a FIAS 400 system to the ICP-MS detector by dissolving the species in an acidic carrier. The magnitude of the enrichment factor largely depended on the time of preconcentration, on the pH-value of the preconcentration buffer and on the pH-value of the samples. Enrichment factors...

  9. Horn-coupled, commercially-fabricated aluminum lumped-element kinetic inductance detectors for millimeter wavelengths.

    Science.gov (United States)

    McCarrick, H; Flanigan, D; Jones, G; Johnson, B R; Ade, P; Araujo, D; Bradford, K; Cantor, R; Che, G; Day, P; Doyle, S; Leduc, H; Limon, M; Luu, V; Mauskopf, P; Miller, A; Mroczkowski, T; Tucker, C; Zmuidzinas, J

    2014-12-01

    We discuss the design, fabrication, and testing of prototype horn-coupled, lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic microwave background studies. The LEKIDs are made from a thin aluminum film deposited on a silicon wafer and patterned using standard photolithographic techniques at STAR Cryoelectronics, a commercial device foundry. We fabricated 20-element arrays, optimized for a spectral band centered on 150 GHz, to test the sensitivity and yield of the devices as well as the multiplexing scheme. We characterized the detectors in two configurations. First, the detectors were tested in a dark environment with the horn apertures covered, and second, the horn apertures were pointed towards a beam-filling cryogenic blackbody load. These tests show that the multiplexing scheme is robust and scalable, the yield across multiple LEKID arrays is 91%, and the measured noise-equivalent temperatures for a 4 K optical load are in the range 26±6 μK√s.

  10. Measurement of neutral gas temperature in a 13.56 MHz inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jayapalan, Kanesh K.; Chin, Oi Hoong [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Measuring the temperature of neutrals in inductively coupled plasmas (ICP) is important as heating of neutral particles will influence plasma characteristics such as the spatial distributions of plasma density and electron temperature. Neutral gas temperatures were deduced using a non-invasive technique that combines gas actinometry, optical emission spectroscopy and simulation which is described here. Argon gas temperature in a 13.56 MHz ICP were found to fall within the range of 500 − 800 K for input power of 140 − 200 W and pressure of 0.05 − 0.2 mbar. Comparing spectrometers with 0.2 nm and 0.5 nm resolution, improved fitting sensitivity was observed for the 0.2 nm resolution.

  11. Determination of Trace Elements in High Purity Gold by High Resolution Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    XIE Hualin; HUANG Kelong; NIE Xidu; FU Liang

    2009-01-01

    Trace elements were determined in high purity gold by high resolution inductively coupled plasma mass spectrometry(HR-ICP-MS).Sample were decomposed by aqua regia.To overcome some potentially problematic spectral interference,measurements were acquired in both medium and high resolution modes.The matrix effects due to the presence of excessive HCl and Au were evaluated.The optimum conditions for the determination was tested and discussed.The standard addition method was employed for quantitative analysis.The detection limits range from 0.01 μg/g to 0.28 μg/g depending on the elements.The method is accurate,quick and convenient.It has been applied to the determination of trace elements in high purity gold with satisfactory results.

  12. RF electric field penetration and power deposition into nonequilibrium planar-type inductively coupled plasmas

    Institute of Scientific and Technical Information of China (English)

    Mao Ming; Wang Shuai; Dai Zhong-Ling; Wang You-Nian

    2007-01-01

    The RF electric field penetration and the power deposition into planar-type inductively coupled plasmas in lowpressure discharges have been studied by means of a self-consistent model which consists of Maxwell equations combined with the kinetic equation of electrons. The Maxwell equations are solved based on the expansion of the Fourier-Bessel series for determining the RF electric field. Numerical results show the influence of a non-Maxwellian electron energy distribution on the RF electric field penetration and the power deposition for different coil currents. Moreover, the two-dimensional spatial profiles of RF electric field and power density are also shown for different numbers of RF coil turns.

  13. Inductively coupled plasma mass spectrometry with hexapole collision cell: figures of merit and applications

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F. [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen]|[Radiation Physics and Chemistry Problems Inst., Minsk (Belarus); Becker, J.S. [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen

    2000-11-01

    The use of gas-filled multipole collision cells represents important progress in ICP-MS instrumentation. It enables an increase in element sensitivity based on the improvement of ion transmission efficiency from near thermalization and collisional focusing of ions. In addition, gas-phase ion-molecule chemistry can be applied in order to reduce mass spectral interferences via charge transfer reaction of interfering ions with reaction gas or via fragmentation of interfering molecular ions by collision-induced dissociation. The application of a hexapole collision cell in quadrupole based ICP-MS (HEX-ICP-QMS) was studied systematically in order to characterize the analytical figures of merit of this approach. Additionally, the performance of different solution introduction systems as well as an inductively coupled plasma shielded torch was studied for use with HEX-ICP-QMS. (orig.)

  14. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Ornatsky, Olga I; Kinach, Robert; Bandura, Dmitry R; Lou, Xudong; Tanner, Scott D; Baranov, Vladimir I; Nitz, Mark; Winnik, Mitchell A

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping.

  15. Anisotropic pattern transfer in ultrananocrystalline diamond films by inductively coupled plasma etching.

    Science.gov (United States)

    Park, Jong Cheon; Kim, Seong Hak; Cha, Seung Uk; Jeong, Geun; Kim, Tae Gyu; Kim, Jin Kon; Cho, Hyun

    2014-12-01

    High density plasma etching of ultrananocrystalline diamond (UNCD) films wasperformed in O2 and O2/Ar inductively coupled plasma (ICP) discharges. The O2/Ar ICP discharges produced higher etch rates due to enhanced physical component of the etching, and a maximum etch rate of -280 nm/min was obtained in 10 sccm O2/5 sccm Ar discharges. Very high etch selectivities up to -140:1 were obtained for the UNCD over Al mask layer. Anisotropic pattern transfer with a vertical sidewall profile was achieved in the 10 sccm O2/5 sccm Ar discharges at a relatively low source power (300 W) and a moderate rf chuck power (200 W).

  16. Trace elemental composition of curry by inductively coupled plasma optical emission spectrometry (ICP-OES).

    Science.gov (United States)

    Gonzálvez, A; Armenta, S; De La Guardia, M

    2008-01-01

    A methodology based on inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted acid digestion was developed to determine the content of traces elements in curry samples from the Spanish market. The methodology was validated in terms of accuracy by the analysis of citrus and tomato leaf reference materials achieving comparable results with the certified values. The trace metal content of curry samples was compared with data available from previously published reports concerning Indian samples, especially in terms of heavy metal composition, in order to guarantee the quality of the commercially available spices in the European countries. Values found for the analysis of arsenic, lead and cadmium were significantly lower than the maximum limit allowed by European Union statutory limits for heavy metals and lower than those obtained for Indian curry leaves reported by Indian research teams by using neutron activation and γ-ray analysis.

  17. Inductively coupled plasma optical emission spectroscopy determination of trace element composition of argan oil.

    Science.gov (United States)

    Gonzálvez, A; Ghanjaoui, M E; El Rhazi, M; de la Guardia, M

    2010-02-01

    A methodology based on inductively coupled plasma optical emission spectroscopy (ICP-OES) after microwave assisted acid digestion has been developed to determine the trace element content of Moroccan argan oil. Limit of detection values equal or lower than few mg/kg were obtained for all elements under study. To assure the accuracy of the whole procedure, recovery studies were carried out on argan oil samples spiked at different concentration levels from 10 to 200 µg/L. Quantitative average recovery values were obtained for all elements evaluated, demonstrating the suitability of this methodology for the determination of trace elements in argan oil samples. Aluminum, calcium, chromium, iron, potassium, lithium, magnesium, sodium, vanadium and zinc were quantitatively determined in Moroccan argan oils being found that their concentration is different of that found in other edible oils thus offering a way for authentication and for the evaluation of possible adulterations.

  18. Three-dimensional discharge simulation of inductively coupled plasma (ICP) etching reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    More and more importance has been attached to inductively coupled plasma (ICP) in semiconductor manufacture. For a deep understanding of the plasma discharge process in the etching reactor, this study made a three-dimensional simulation on the Ar plasma discharge process with the commercial software CFD-ACE, which is according to the real experiment conditions and data supplied by North Microelec-tronic Corporation. The error of the simulation results is in the range of ±20% with credibility. The numerical results show that the three-dimentional spatial distribu-tion of electron density is reduced from the chamber center to the wall. The distri-bution of electron density, electron temperature and power deposition is related to the shape and placement of the coil.

  19. Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Bua, Daniel Giuseppe; Annuario, Giovanni; Albergamo, Ambrogina; Cicero, Nicola; Dugo, Giacomo

    2016-09-01

    Objective of this study was to determine the content of Cd, Hg, As and Pb in common spices traded in the Italian market, using inductively coupled plasma-mass spectrometry (ICP-MS). The results were compared with the maximum limits established by the national Legislative Decree (LD) no. 107 implementing the Council Directive 88/388/EEC and by international organisations, such as Food and Agriculture Organization (FAO) and World Health Organization (WHO). Food safety for spices was assessed considering the tolerable weekly intake (TWI) and the provisional tolerable weekly intake (PTWI), respectively, for Cd and Hg and the 95% lower confidence limit of the benchmark dose of 1% extra risk (BMDL01) for As and Pb. Investigated elements in all samples were within the maximum limits as set by the national and international normative institutions. Nevertheless, the heavy metal content of some spices exceeded the PTWI, TWI and BMDL01, which needs attention when considering consumer's health.

  20. Plasma chemistry modeling for an inductively coupled plasma used for the growth of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mao Ming; Bogaerts, Annemie, E-mail: annemie.bogaerts@ua.ac.be [Research group PLASMANT, Department of Chemistry, University of Antwerp Universiteitsplein 1, B-2610 Wilrijk-Antwerp (Belgium)

    2011-01-01

    A hybrid model, called the hybrid plasma equipment model (HPEM), is used to describe the plasma chemistry in an inductively coupled plasma, operating in a gas mixture of C{sub 2}H{sub 2} with either H{sub 2} or NH{sub 3}, as typically used for carbon nanotube (CNT) growth. Two-dimensional profiles of power density, electron temperature and density, gas temperature, and densities of some plasma species are plotted and analyzed. Besides, the fluxes of the various plasma species towards the substrate (where the CNTs can be grown), as well as the decomposition rates of the feedstock gases (C{sub 2}H{sub 2}, NH{sub 3} and H{sub 2}), are calculated as a function of the C{sub 2}H{sub 2} fraction in both gas mixtures.

  1. Determination of {sup 233}U by inductively coupled argon plasma - atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Patwardhan, A.B.; Kulkarni, V.T.; Radhakrishnan, K.; Ramanujam, A.; Page, A.G. [Bhabha Atomic Research Centre, Bombay (India)

    1994-09-01

    The paper describes studies carried out for the determination of {sup 233}U at various stages during the recovery and purification of {sup 233}U from {sup 233}U-Al alloy scraps generated during the fabrication of {sup 233}U-Al alloy fuel. Employing a high resolution sequential spectrometer and Inductively Coupled argon Plasma (ICP) as the spectral excitation source, isotope shift for {sup 233}U with respect to {sup 238}U has been resolved and recorded. The shift for the 424.437 nm emission line of {sup 238}U is found to be of the order of 0.040 nm on the lower wavelength side for {sup 233}U and this isotopic effect has been utilised for the quantitative determination of {sup 233}U. The overall precision of the method is 5% RSD with the detection limit of 0.01 {mu}g/ml.

  2. Horn-coupled, commercially-fabricated aluminum lumped-element kinetic inductance detectors for millimeter wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    McCarrick, H., E-mail: hlm2124@columbia.edu; Flanigan, D.; Jones, G.; Johnson, B. R.; Araujo, D.; Limon, M.; Luu, V.; Miller, A. [Department of Physics, Columbia University, New York, New York 10025 (United States); Ade, P.; Doyle, S.; Tucker, C. [School of Physics and Astronomy, Cardiff University, Cardiff, Wales CF24 3AA (United Kingdom); Bradford, K.; Che, G. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Cantor, R. [STAR Cryoelectronics, Santa Fe, New Mexico 87508 (United States); Day, P.; Leduc, H. [Jet Propulsion Laboratory, Caltech, Pasadena, California 91109 (United States); Mauskopf, P. [School of Physics and Astronomy, Cardiff University, Cardiff, Wales CF24 3AA (United Kingdom); Department of Physics and School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States); Mroczkowski, T. [Naval Research Laboratory, Washington DC 20375 (United States); Zmuidzinas, J. [Jet Propulsion Laboratory, Caltech, Pasadena, California 91109 (United States); Department of Physics, Caltech, Pasadena, California 91125 (United States)

    2014-12-15

    We discuss the design, fabrication, and testing of prototype horn-coupled, lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic microwave background studies. The LEKIDs are made from a thin aluminum film deposited on a silicon wafer and patterned using standard photolithographic techniques at STAR Cryoelectronics, a commercial device foundry. We fabricated 20-element arrays, optimized for a spectral band centered on 150 GHz, to test the sensitivity and yield of the devices as well as the multiplexing scheme. We characterized the detectors in two configurations. First, the detectors were tested in a dark environment with the horn apertures covered, and second, the horn apertures were pointed towards a beam-filling cryogenic blackbody load. These tests show that the multiplexing scheme is robust and scalable, the yield across multiple LEKID arrays is 91%, and the measured noise-equivalent temperatures for a 4 K optical load are in the range 26±6 μK√(s)

  3. OPTIMAL CONTROL OF A NONLINEAR COUPLED ELECTROMAGNETIC INDUCTION HEATING SYSTEM WITH POINTWISE STATE CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    Irwin Yousept

    2010-07-01

    Full Text Available An optimal control problem arising in the context of 3D electromagnetic induction heating is investigated. The state equation is given by a quasilinear stationary heat equation coupled with a semilinear time harmonic eddy current equation. The temperature-dependent electrical conductivity and the presence of pointwise inequality state-constraints represent the main challenge of the paper. In the first part of the paper, the existence and regularity of the state are addressed. The second part of the paper deals with the analysis of the corresponding linearized equation. Some suffcient conditions are presented which guarantee thesolvability of the linearized system. The final part of the paper is concerned with the optimal control. The aim of the optimization is to find the optimal voltage such that a desired temperature can be achieved optimally. The corresponding first-order necessary optimality condition is presented.

  4. A cleaning method for reduced graphene oxide by inductively coupled plasma

    Science.gov (United States)

    Shen, Yan; Zhou, Peng; Zhang, David Wei

    2016-10-01

    In this work, we make reduced graphene oxide (rGO) solution via chemical way and use it to fabricate Field-effect transistor (FET) channel by spin coating for investigating the performance of grapheme-based devices. An inductively coupled plasma (ICP) with very low plasma density is applied to etch the surface of rGO. It has been confirmed that residues and contaminations can be removed through etching and proper etching parameters can lead to better electrical properties more like the pristine graphene without creating defects. Considering the application of graphene added to silicon-based electronic devices, such a cleaning method can be used due to its advantages of being a low-temperature, large-area, high-throughput, and Si-compatible process.

  5. Determination of metals in composite diet samples by inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Melnyk, Lisa Jo; Morgan, Jeffrey N; Fernando, Reshan; Pellizzari, Edo D; Akinbo, Olujide

    2003-01-01

    A study was conducted to evaluate the applicability of inductively coupled plasma-mass spectrometry (ICP-MS) techniques for determination of metals in composite diets. Aluminum, cadmium, chromium, copper, lead, manganese, nickel, vanadium, and zinc were determined by this method. Atmospheric pressure microwave digestion was used to solubilize analytes in homogenized composite diet samples, and this procedure was followed by ICP-MS analysis. Recovery of certified elements from standard reference materials ranged from 92 to 119% with relative standard deviations (RSDs) of 0.4-1.9%. Recovery of elements from fortified composite diet samples ranged from 75 to 129% with RSDs of 0-11.3%. Limits of detection ranged from 1 to 1700 ng/g; high values were due to significant amounts of certain elements naturally present in composite diets. Results of this study demonstrate that low-resolution quadrupole-based ICP-MS provides precise and accurate measurements of the elements tested in composite diet samples.

  6. Multiplex DNA assay based on nanoparticle probes by single particle inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Zhang, Shixi; Han, Guojun; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2014-04-01

    A multiplex DNA assay based on nanoparticle (NP) tags detection utilizing single particle mode inductively coupled plasma mass spectrometry (SP-ICP-MS) as ultrasensitive readout has been demonstrated in the article. Three DNA targets associated with clinical diseases (HIV, HAV, and HBV) down to 1 pM were detected by DNA probes labeled with AuNPs, AgNPs, and PtNPs via DNA sandwich assay. Single nucleotide polymorphisms in genes can also be effectively discriminated. Since our method is unaffected by the sample matrix, it is well-suited for diagnostic applications. Moreover, with the high sensitivity of SP-ICP-MS and the variety of NPs detectable by SP-ICP-MS, high-throughput DNA assay could be achieved without signal amplification or chain reaction amplification.

  7. Multielement Analysis of Deep-Sea Sediments by Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    XIA Ning; WU Zhaohui; GUO Dongfa; YAO De

    2008-01-01

    Marine sediments were dissolved by HNO3-HF-HCIO4 in a sealed container at low pressure; I-IF was evaporated in an open container and salts were dissolved in HCl by heating, then transferred to 2% HNO3 solution. A total of 45 elements, including Li, Be, So, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, TI, Pb, Bi, Th and U, were measured by inductively coupled plasma mass spectrometry (ICP-MS). Condi-tions and sample experiments showed that this procedure defines a good experimental method which has the advantages of clear interference, easy operation and reliable results. The concentrations of the 45 elements could be used for resource exploration, envi-ronmental assessment and academic research.

  8. Analysis of iodine in food samples by inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Todorov, Todor I; Gray, Patrick J

    2016-01-01

    This work shows a method for the determination of iodine in a variety of food samples and reference materials using inductively coupled plasma-mass spectrometry (ICP-MS) following alkaline extraction. Optimisation of the addition of organic carbon showed that a minimum of 3% 2-propanol was necessary for a constant ratio of iodine to internal standard. The limit of quantification (LOQ), calculated as 30σ for the method, was 36 ng g(-1) in solid food samples. For method validation, seven standard reference materials (SRM) and 21 fortified food samples were used. The precision (%RSD) of the measurements was in the 2-7% range. Accuracies for the SRMs were 85-105%, while the fortified food samples showed 81-119% recoveries, including a number of samples fortified at 50% of the LOQ.

  9. E→H mode transition density and power in two types of inductively coupled plasma configuration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian; Du, Yin-chang; Zhang, Xiao; Zheng, Zhe; Liu, Yu; Xu, Liang; Wang, Pi; Cao, Jin-xiang, E-mail: jxcao@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-07-15

    E → H transition power and density were investigated at various argon pressures in inductively coupled plasma (ICP) in a cylindrical interlaid chamber. The transition power versus the pressure shows a minimum transition power at 4 Pa (ν/ω=1) for argon. Then the transition density hardly changes at low pressures (ν/ω≪1), but it increases clearly when argon pressure exceeds an appropriate value. In addition, both the transition power and transition density are lower in the re-entrant configuration of ICP compared with that in the cylindrical configuration of ICP. The result may be caused from the decrease of stochastic heating in the re-entrant configuration of ICP. This work is useful to understand E → H mode transition and control the transition points in real plasma processes.

  10. Inductively Coupled Plasma-Induced Etch Damage of GaN p-n Junctions

    Energy Technology Data Exchange (ETDEWEB)

    SHUL,RANDY J.; ZHANG,LEI; BACA,ALBERT G.; WILLISON,CHRISTI LEE; HAN,JUNG; PEARTON,S.J.; REN,F.

    1999-11-03

    Plasma-induced etch damage can degrade the electrical and optical performance of III-V nitride electronic and photonic devices. We have investigated the etch-induced damage of an Inductively Coupled Plasma (ICP) etch system on the electrical performance of mesa-isolated GaN pn-junction diodes. GaN p-i-n mesa diodes were formed by Cl{sub 2}/BCl{sub 3}/Ar ICP etching under different plasma conditions. The reverse leakage current in the mesa diodes showed a strong relationship to chamber pressure, ion energy, and plasma flux. Plasma induced damage was minimized at moderate flux conditions ({le} 500 W), pressures {ge}2 mTorr, and at ion energies below approximately -275 V.

  11. Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Coffer, J.; Encalada, N.; Huang, M.; Camparo, J. [Physical Sciences Laboratories, The Aerospace Corporation 2310, E. El Segundo Blvd., El Segundo, California 90245 (United States)

    2014-10-28

    We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

  12. Development of an Inductively Coupled Thermometer for a Cryogenic Half-Wave Plate

    Science.gov (United States)

    Madurowicz, Alexander; Kusaka, Akito

    2017-01-01

    The current state of Cosmic Microwave Background (CMB) research has focused much attention on the measurement of polarization. In an effort to modulate the CMB polarization while also minimizing photon noise due to thermal emission, we are developing a sapphire half-wave plate (HWP) cooled to 50 K rotating at 2 Hz on a superconducting magnetic levitating bearing. In order to measure the temperature of the rotor without making physical contact, we designed an inductively coupled cryogenic thermometer. The complex impedance of the circuit has a resonant peak when driven around 1 MHz. The width of this resonance is dependent on the value of the resistor, which varies with temperature and functions as a thermometer once calibrated. In this talk, we will present results from stationary measurements of this impedance and discuss the temperature accuracy of this thermometer, as well as a preliminary circuit design to measure this impedance during the HWP rotation.

  13. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, Sangeeta B. [Electrical Engineering Department, V. J.T.I, Matunga, Mumbai 400019 (India); Department of Physics, University of Mumbai, Kalina, Santacruz(E) 400098 (India); Joshi, N. K. [Faculty of Engineering and technology, MITS, lakshmangarh, (Sikar), Rajasthan 332311 (India); Mangalvedekar, H. A.; Lande, B. K. [Electrical Engineering Department, V. J.T.I, Matunga, Mumbai 400019 (India); Das, A. K. [Laser and Plasma Technology Division, BARC, Mumbai 400085 (India); Kothari, D. C. [Department of Physics, University of Mumbai, Kalina, Santacruz(E) 400098 (India)

    2012-01-15

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent{sup (c)}. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  14. Determination of trace multi-elements in coal fly ash by inductively coupled plasma mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    XIE Hua-lin; TANG You-gen; LI Yu-jie; LI Li-bo

    2007-01-01

    The contents of Cr,Cu, Ni, As, Cd and Pb in coal fly ash were determined by a high resolution inductively coupled plasma mass spectrometry method.The sample digestions were performed in closed microwave vessels with HN03, HClO4 and HF.The optimum conditions for the determination were obtained.The applicability of the proposed method was validated by the analysis of coal fly ash reference material (NIST SRM 1633a). The results show that most of the spectral interferences can be avoided by measuring in the high resolution mode(maximum mass resolution R=9 000).The detection limit is from 0.05 to 0.21μg/g,and the precision is fine with relative standard deviation less than 4.3%.

  15. Standard practice for alternate actinide calibration for inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This practice provides guidance for an alternate linear calibration for the determination of selected actinide isotopes in appropriately prepared aqueous solutions by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). This alternate calibration is mass bias adjusted using thorium-232 (232Th) and uranium-238 (238U) standards. One of the benefits of this standard practice is the ability to calibrate for the analysis of highly radioactive actinides using calibration standards at much lower specific activities. Environmental laboratories may find this standard practice useful if facilities are not available to handle the highly radioactive standards of the individual actinides of interest. 1.2 The instrument response for a series of determinations of known concentration of 232Th and 238U defines the mass versus response relationship. For each standard concentration, the slope of the line defined by 232Th and 238U is used to derive linear calibration curves for each mass of interest using interference equ...

  16. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    Science.gov (United States)

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  17. Mass spectroscopy of the ion flux produced during inductively coupled plasma nitriding process

    Science.gov (United States)

    Kolodko, D. V.; Kaziev, A. V.; Ageychenkov, D. G.; Meshcheryakova, E. A.; Pisarev, A. A.; Tumarkin, A. V.

    2017-05-01

    Ion fluxes on the surface of sample embedded in inductively coupled plasma have been studied in conditions typical for titanium alloy nitriding: total pressure 0.44 Pa, Ar/N2 = 70%/30%, and RF power 1500 W. The gas composition was independently monitored by the quadrupole analyser. The ion fluxes were sampled using a specially designed electrostatic extractor and then analysed with a magnetic sector mass-separator. The extractor design allowed us to apply a bias voltage to the plasma facing electrode thus imitating interaction of ions with the surface during the plasma processing. The ion fluxes of Ar+, {{{N}}}2{}+, and N+ on the surface were measured. The mass spectroscopy diagnostics unit is suitable for extensive ion content studies in the plasma technology facilities.

  18. Qualitative and quantitative spectro-chemical analysis of dates using UV-pulsed laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Mehder, A O; Habibullah, Y B; Gondal, M A; Baig, Umair

    2016-08-01

    Laser Induced Breakdown Spectroscopy (LIBS) is demonstrated for the spectral analysis of nutritional and toxic elements present in several varieties of date fruit samples available in the Saudi Arabia market. The method analyzes the optical emission of a test sample when subjected to pulsed laser ablation. In this demonstration, our primary focus is on calcium (Ca) and magnesium (Mg), as nutritional elements, and on chromium (Cr), as a toxic element. The local thermodynamic equilibrium (LTE) condition was confirmed prior to the elemental characterization of date samples to ensure accuracy of the LIBS analysis. This was achieved by measuring parameters associated with the plasma, such as the electron temperature and the electron number density. These plasma parameters aid interpretation of processes such as ionization, dissociation, and excitation occurring in the plasma plume formed by ablating the date palm sample. The minimum detection limit was established from calibration curves that involved plotting the LIBS signal intensity as a function of standard date samples with known concentrations. The concentration of Ca and Mg detected in different varieties of date samples was between 187 and 515 and 35-196mgL(-1) respectively, while Cr concentration measured between 1.72 and 7.76mgL(-1). In order to optimize our LIBS system, we have studied how the LIBS signal intensity depends on the incident laser energy and the delay time. In order to validate our LIBS analysis results, standard techniques such as inductively coupled plasma mass spectrometry (ICP-MS) were also applied on an identical (duplicate) date samples as those used for the LIBS analysis. The LIBS results exhibit remarkable agreement with those obtained from the ICP-MS analysis. In addition, the finger print wavelengths of other elements present in date samples were also identified and are reported here, which has not been previously reported, to the best of our knowledge. Copyright © 2016 Elsevier B

  19. Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization

    Science.gov (United States)

    Gans, T.; Osiac, M.; O'Connell, D.; Kadetov, V. A.; Czarnetzki, U.; Schwarz-Selinger, T.; Halfmann, H.; Awakowicz, P.

    2005-05-01

    Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.

  20. Design optimization of transmitting antennas for weakly coupled magnetic induction communication systems

    Science.gov (United States)

    2017-01-01

    This work focuses on the design of transmitting coils in weakly coupled magnetic induction communication systems. We propose several optimization methods that reduce the active, reactive and apparent power consumption of the coil. These problems are formulated as minimization problems, in which the power consumed by the transmitting coil is minimized, under the constraint of providing a required magnetic field at the receiver location. We develop efficient numeric and analytic methods to solve the resulting problems, which are of high dimension, and in certain cases non-convex. For the objective of minimal reactive power an analytic solution for the optimal current distribution in flat disc transmitting coils is provided. This problem is extended to general three-dimensional coils, for which we develop an expression for the optimal current distribution. Considering the objective of minimal apparent power, a method is developed to reduce the computational complexity of the problem by transforming it to an equivalent problem of lower dimension, allowing a quick and accurate numeric solution. These results are verified experimentally by testing a number of coil geometries. The results obtained allow reduced power consumption and increased performances in magnetic induction communication systems. Specifically, for wideband systems, an optimal design of the transmitter coil reduces the peak instantaneous power provided by the transmitter circuitry, and thus reduces its size, complexity and cost. PMID:28192463

  1. Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study

    Science.gov (United States)

    Zhao, Shu-Xia; Zhang, Yu-Ru; Gao, Fei; Wang, You-Nian; Bogaerts, Annemie

    2015-06-01

    A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.

  2. Plasma analysis of inductively coupled impulse sputtering of Cu, Ti and Ni

    Science.gov (United States)

    Loch, D. A. L.; Aranda Gonzalvo, Y.; Ehiasarian, A. P.

    2017-06-01

    Inductively coupled impulse sputtering (ICIS) is a new development in the field of highly ionised pulsed PVD processes. For ICIS the plasma is generated by an internal inductive coil, replacing the need for a magnetron. To understand the plasma properties, measurements of the current and voltage waveforms at the cathode were conducted. The ion energy distribution functions (IEDFs) were measured by energy resolved MS and plasma chemistry was analysed by OES and then compared to a model. The target was operated in pulsed DC mode and the coil was energised by pulsed RF power, with a duty cycle of 7.5%. At a constant pressure (14 Pa) the set peak RF power was varied from 1000-4000 W. The DC voltage to the target was kept constant at 1900 V. OES measurements have shown a monotonic increase in intensity with increasing power. Excitation and ionisation processes were single step for ICIS of Ti and Ni and multi-step for Cu. The latter exhibited an unexpectedly steep rise in ionisation efficiency with power. The IEDFs measured by MS show the material- and time-dependant plasma potential in the range of 10-30 eV, ideal for increased surface mobility without inducing lattice defects. A lower intensity peak, of high energetic ions, is visible at 170 eV during the pulse.

  3. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    Science.gov (United States)

    Zhang, W.; Lani, A.; Panesi, M.

    2016-07-01

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  4. Atlas of Atomic Spectral Lines of Neptunium Emitted by Inductively Coupled Plasma

    Energy Technology Data Exchange (ETDEWEB)

    DeKalb, E.L. and Edelson, M. C.

    1987-08-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlas of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred [1] and Haaland [2]. Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.

  5. Serum/plasma methylmercury determination by isotope dilution gas chromatography-inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Douglas C., E-mail: douglas.baxter@alsglobal.com [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Faarinen, Mikko [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Osterlund, Helene; Rodushkin, Ilia [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Division of Geosciences, Lulea University of Technology, 977 87 Lulea (Sweden); Christensen, Morten [ALS Scandinavia AB, Maskinvaegen 2, 183 53 Taeby (Sweden)

    2011-09-09

    Highlights: {center_dot} We determine methylmercury in serum and plasma using isotope dilution calibration. {center_dot} Separation by gas chromatography and detection by inductively coupled plasma mass spectrometry. {center_dot} Data for 50 specimens provides first reference range for methylmercury in serum. {center_dot} Serum samples shown to be stable for 11 months in refrigerator. - Abstract: A method for the determination of methylmercury in plasma and serum samples was developed. The method uses isotope dilution with {sup 198}Hg-labeled methylmercury, extraction into dichloromethane, back-extraction into water, aqueous-phase ethylation, purge and trap collection, thermal desorption, separation by gas chromatography, and mercury isotope specific detection by inductively coupled plasma mass spectrometry. By spiking 2 mL sample with 1.2 ng tracer, measurements in a concentration interval of (0.007-2.9) {mu}g L{sup -1} could be performed with uncertainty amplification factors <2. A limit of quantification of 0.03 {mu}g L{sup -1} was estimated at 10 times the standard deviation of concentrations measured in preparation blanks. Within- and between-run relative standard deviations were <10% at added concentration levels of 0.14 {mu}g L{sup -1}, 0.35 {mu}g L{sup -1} and 2.8 {mu}g L{sup -1}, with recoveries in the range 82-110%. Application of the method to 50 plasma/serum samples yielded a median (mean; range) concentration of methylmercury of 0.081 (0.091; <0.03-0.19) {mu}g L{sup -1}. This is the first time methylmercury has been directly measured in this kind of specimen, and is therefore the first estimate of a reference range.

  6. Multiplex bio-assay with inductively coupled plasma mass spectrometry: Towards a massively multivariate single-cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Scott D. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Room 407, 164 College Street, Toronto, Ontario, M5S 3G9 (Canada)], E-mail: sd.tanner@utoronto.ca; Ornatsky, Olga; Bandura, Dmitry R.; Baranov, Vladimir I. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Room 407, 164 College Street, Toronto, Ontario, M5S 3G9 (Canada)

    2007-03-15

    Recent progress in the development of massively multiplexed bioanalytical assays using element tags with inductively coupled plasma mass spectrometry detection is reviewed. Feasibility results using commercially available secondary immunolabeling reagents for leukemic cell lines are presented. Multiplex analysis of higher order is shown with first generation tag reagents based on functionalized carriers that bind lanthanide ions. DNA quantification using metallointercalation allows for cell enumeration or mitotic state differentiation. In situ hybridization permits the determination of cellular RNA. The results provide a feasibility basis for the development of a multivariate assay tool for individual cell analysis based on inductively coupled plasma mass spectrometry in a cytometer configuration.

  7. Quantitative Analysis of Sulfide Minerals by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using Glass Reference Materials with Matrix Normalization Plus Sulfur Internal Standardization Calibration%玻璃标样结合硫内标归一定量技术在激光剥蚀-等离子体质谱分析硫化物矿物中的应用

    Institute of Scientific and Technical Information of China (English)

    袁继海; 詹秀春; 范晨子; 赵令浩; 孙冬阳; 贾泽荣; 胡明月; 蒯丽君

    2012-01-01

    A novel strategy for microanalysis of sulfides by laser ablation (LA)-ICP-MS was established. In this method, the relative sensitivity factor of Ca relative to S in anhydrite mineral reference material was taken as a transition bridge, by which the relative sensitivity factors of interesting elements in glass reference materials relative to Ca could be converted into relative sensitivity factors relative to S by the transition bridge, then the quantitative analysis of multi-elements in sulfide minerals by multi-glass reference materials with matrix normalization plus sulfur internal standardizationcalibration was carried out. 20 elements in the American polymetal sulfide mineral reference material MASS-1 were analyzed using this new method. The relative errors of major elements in MASS-1 were less than 10% ? And the results of trace elements with reference values were nearly within the uncertainty of the preliminary values. Multi-elements in 12 sulfide single minerals were analyzed by applying this new method. The relative errors of the greatest number of major elements were less than 10% , with which the results of most major elements were accurate than those obtained by MASS-1 as calibration standard with matrix normalization plus internal standardization or internal standard calibration. And the results to trace elements agreed well with the calibrated results by MASS-1 with matrix normalization plus internal standardization or internal standard calibration. This method overcomes the problem of non-matrix matched standards, enables to accurately determine the major composition of sulfur in sulfide minerals and suggests a new approach for analysis of sulfide minerals.%以硬石膏矿物标样中Ca相对于S的灵敏度因子为基准,将玻璃标样中主量和痕量元素相对于Ca的灵敏度因子转换成元素相对于S的灵敏度因子,建立了多玻璃标样结合硫内标归一定量技术分析硫化物单矿物多元素的新方法.利用本方法

  8. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  9. Inductively coupled plasma-MS in drug development: bioanalytical aspects and applications.

    Science.gov (United States)

    van Heuveln, Fred; Meijering, Henri; Wieling, Jaap

    2012-08-01

    The vast majority of today's modern bioanalytical methods for pharmacokinetic, pharmacodynamic and immunogenicity purposes are based on LC-MS/MS and immunoanalytical approaches. Indeed, these methodologies are suitable for a wide range of molecules from small to large. For a smaller but not insignificant group of compounds, LC-MS/MS is not suitable - or in some cases much less suitable - as a reliable bioanalytical methodology, and inductively coupled plasma (ICP)-MS is a more appropriate methodology. ICP-MS is one of these less widely used techniques in drug development. This methodology is predominantly used for elemental bioanalysis for pharmacokinetics, for imaging purposes, for mass-balance, food-effect and biomarker studies. In addition, in the last couple of years an increasing number of applications has been published, where ICP-MS and its various hyphenations (LC-ICP-MS, CE-ICP-MS) have been used for speciation/metabolism and proteomics studies. Here, the analytical potential, the quantitative bioanalytical aspects, the various modes of operation and the challenges of the application of ICP-MS in life sciences applications are given. This includes an overview of recent applications in this area in scientific literature, the various hyphenation possibilities and their application areas and the analysis of the various sample matrices applicable to these fields. It also provides a brief outlook of where the potential of this technique lies in the future of regulated bioanalysis and drug development.

  10. Induction of RAGE Shedding by Activation of G Protein-Coupled Receptors

    Science.gov (United States)

    Metz, Verena V.; Kojro, Elzbieta; Rat, Dorothea; Postina, Rolf

    2012-01-01

    The multiligand Receptor for Advanced Glycation End products (RAGE) is involved in various pathophysiological processes, including diabetic inflammatory conditions and Alzheimes disease. Full-length RAGE, a cell surface-located type I membrane protein, can proteolytically be converted by metalloproteinases ADAM10 and MMP9 into a soluble RAGE form. Moreover, administration of recombinant soluble RAGE suppresses activation of cell surface-located RAGE by trapping RAGE ligands. Therefore stimulation of RAGE shedding might have a therapeutic value regarding inflammatory diseases. We aimed to investigate whether RAGE shedding is inducible via ligand-induced activation of G protein-coupled receptors (GPCRs). We chose three different GPCRs coupled to distinct signaling cascades: the V2 vasopressin receptor (V2R) activating adenylyl cyclase, the oxytocin receptor (OTR) linked to phospholipase Cβ, and the PACAP receptor (subtype PAC1) coupled to adenylyl cyclase, phospholipase Cβ, calcium signaling and MAP kinases. We generated HEK cell lines stably coexpressing an individual GPCR and full-length RAGE and then investigated GPCR ligand-induced activation of RAGE shedding. We found metalloproteinase-mediated RAGE shedding on the cell surface to be inducible via ligand-specific activation of all analyzed GPCRs. By using specific inhibitors we have identified Ca2+ signaling, PKCα/PKCβI, CaMKII, PI3 kinases and MAP kinases to be involved in PAC1 receptor-induced RAGE shedding. We detected an induction of calcium signaling in all our cell lines coexpressing RAGE and different GPCRs after agonist treatment. However, we did not disclose a contribution of adenylyl cyclase in RAGE shedding induction. Furthermore, by using a selective metalloproteinase inhibitor and siRNA-mediated knock-down approaches, we show that ADAM10 and/or MMP9 are playing important roles in constitutive and PACAP-induced RAGE shedding. We also found that treatment of mice with PACAP increases the amount of

  11. Cloning and Expression of Ecdysone Receptor and Retinoid X Receptor from Procambarus clarkii: Induction by Eyestalk Ablation

    Directory of Open Access Journals (Sweden)

    Tian-Hao Dai

    2016-10-01

    Full Text Available Ecdysone receptor and retinoid X receptor are key regulators in molting. Here, full length ecdysone receptor (PcEcR and retinoid X receptor (PcRXR cDNAs from Procambarus clarkii were cloned. Full length cDNA of PcEcR has 2500 bp, encoding 576 amino acid proteins, and full length cDNA of PcRXR has 2593 bp, in which a 15 bp and a 204 bp insert/deletion splice variant regions in DNA binding domain and hinge domain were identified. The two splice variant regions in PcRXR result four isoforms: PcRXR1-4, encoding 525, 520, 457 and 452 amino acids respectively. PcEcR was highly expressed in the hepatopancreas and eyestalk and PcRXR was highly expressed in the eyestalk among eight examined tissues. Both PcEcR and PcRXR had induced expression after eyestalk ablation (ESA in the three examined tissues. In muscle, PcEcR and PcRXR were upregulated after ESA, PcEcR reached the highest level on day 3 after ESA and increased 33.5-fold relative to day 0, and PcRXR reached highest the level on day 1 after ESA and increased 2.7-fold relative to day 0. In the hepatopancreas, PcEcR and PcRXR dEcReased continuously after ESA, and the expression levels of PcEcR and PcRXR were only 0.7% and 1.7% on day 7 after ESA relative to day 0, respectively. In the ovaries, PcEcR was upregulated after ESA, reached the highest level on day 3 after ESA, increased 3.0-fold relative to day 0, and the expression level of PcRXR changed insignificantly after ESA (p > 0.05. The different responses of PcEcR and PcRXR after ESA indicates that different tissues play different roles (and coordinates their functions in molting.

  12. A two-dimensional global simulation study of inductive-dynamic magnetosphere-ionosphere coupling

    Science.gov (United States)

    Tu, Jiannan; Song, Paul

    2016-12-01

    We present the numerical methods and results of a global two-dimensional multifluid-collisional-Hall magnetohydrodynamic (MHD) simulation model of the ionosphere-thermosphere system, an extension of our one-dimensional three-fluid MHD model. The model solves, self-consistently, Maxwell's equations, continuity, momentum, and energy equations for multiple ion and neutral species incorporating photochemistry, collisions among the electron, ion and neutral species, and various heating sources in the energy equations. The inductive-dynamic approach (solving self-consistently Faraday's law and retaining inertia terms in the plasma momentum equations) used in the model retains all possible MHD waves, thus providing faithful physical explanation (not merely description) of the magnetosphere-ionosphere/thermosphere (M-IT) coupling. In the present study, we simulate the dawn-dusk cross-polar cap dynamic responses of the ionosphere to imposed magnetospheric convection. It is shown that the convection velocity at the top boundary launches velocity, magnetic, and electric perturbations propagating with the Alfvén speed toward the bottom of the ionosphere. Within the system, the waves experience reflection, penetration, and rereflection because of the inhomogeneity of the plasma conditions. The reflection of the Alfvén waves may cause overshoot (stronger than the imposed magnetospheric convection) of the plasma velocity in some regions. The simulation demonstrates dynamic propagation of the field-aligned currents and ionospheric electric field carried by the Alfvén waves, as well as formation of closure horizontal currents (Pedersen currents in the E region), indicating that in the dynamic stage the M-I coupling is via the Alfvén waves instead of field-aligned currents or electric field mapping as described in convectional M-I coupling models.

  13. Multicapillary gas chromatography coupled to inductively coupled plasma-time-of-flight mass spectrometry for rapid mercury speciation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jitaru, Petru; Goenaga Infante, Heidi; Adams, Freddy C

    2003-08-11

    A simple, rapid and accurate method on the basis of multicapillary gas chromatography (MCGC) combined with inductively coupled plasma-time-of-flight mass spectrometry (ICP-TOFMS) was developed for speciation analysis of methylmercury (MeHg{sup +}) and inorganic mercury (Hg{sup 2+}). The potential of the ICP-TOFMS for transient multi-isotope detection of very short signals (peak width of 0.4 s at half peak height) was evaluated. Two injection systems (purge-and-trap (PTI) and split (SI) injections) were compared in terms of species separation resolution and transient signal profile. Using purge-and-trap injection, after in situ derivatization of the ionic mercury species with sodium tetraethylborate, a baseline separation of MeHg{sup +} and Hg{sup 2+} was achieved within a chromatographic run of <35 s. To correct for matrix-induced ion signal variation and instrumental drift, propylmercury (PrHg{sup +}) was used as internal standard. Detection limits of 16 and 257 fg g{sup -1} for MeHg{sup +} (as Hg) and Hg{sup 2+}, respectively, were achieved. The analytical precision (R.S.D. (%)) for 10 successive injections of a standard mixture containing 10 pg MeHg{sup +} (as Hg) and Hg{sup 2+} was 1.2% for MeHg{sup +} and 4.1% for Hg{sup 2+}. The method was validated by analysis of two biological certified reference materials (CRM): a dogfish muscle (DORM-2) and a freeze-dried tuna fish (CRM 464)

  14. Determination of platinum surface contamination in veterinary and human oncology centres using inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Janssens, T.; Brouwers, E. E M; de Vos, J. P.; de Vries, N.; Schellens, J. H M; Beijnen, J. H.

    2015-01-01

    The objective of this study was to determine the surface contamination with platinum-containing antineoplastic drugs in veterinary and human oncology centres. Inductively coupled plasma mass spectrometry was used to measure platinum levels in surface samples. In veterinary and human oncology

  15. Coupling mechanisms in inductive discharges with RF substrate bias driven at consecutive harmonics with adjustable relative phase

    Science.gov (United States)

    Steinberger, Thomas; Berger, Birk; Schulze, Julian; Schuengel, Edmund; Koepke, Mark

    2016-09-01

    Hybrid combinations of inductive and capacitive RF discharges are commonly used for plasma etching because the inductive coupling ensures a high plasma density, while the capacitive coupling allows the control of the ion bombardment energy at the substrate. We experimentally study the coupling mechanisms between the two driving-voltage sources in such a plasma driven inductively at 13.56 MHz and capacitively at 27.12 MHz in argon and neon at low pressure. We find that the resulting DC self-bias can be controlled via the Electrical Asymmetry Effect by adjusting the relative phase between the two driving harmonics in the E-mode. Langmuir probe measurements and Phase Resolved Optical Emission Spectroscopy (PROES) reveal that the addition of the applied RF-bias in the plasma acts as a catalyst for the transition between E- and H-mode. PROES measurements generally show that the electron power absorption dynamics are affected by the relative phase between the two driving voltage waveforms and by the ratio of the inductive to the capacitive driving powers. Finally, the ion flux-energy distribution function is measured at the RF-powered electrode and found also to be affected by coupling effects.

  16. Determination of selenoprotein P in human plasma by solid phase extraction and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Bendahl, L.; Sidenius, U.; Gammelgaard, Bente

    2000-01-01

    measured by inductively coupled plasma mass spectrometry (ICP-MS) monitoring the Se-82 isotope. Linear response was observed in the concentration range 0.3-70.8 mu g/l selenium as selenoprotein P with a correlation coefficient of 0.9994. The precision expressed as relative standard deviation was better...

  17. Determination of selenite and selenate in human urine by ion chromatography and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jons, O.

    2000-01-01

    monitored in the inductively coupled plasma mass spectrometry (ICP-MS) detector. When the chromatographic system was applied to analysis of urine samples diluted 1 + 1, the selenomethionine signal appeared in the front together with other unresolved selenium species, while the selenite and selenate signals...

  18. Determination of traces of uranium and thorium in titanium and copper used for the construction of the Russian Emission Detector 100 by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Poteshin, Sergey S; Sysoev, Alexey A; Lagunov, Sergey S; Sereda, Andrei; Sosnovtsev, Valery V; Bolozdynya, Alexander I; Efremenko, Yuriy B

    2015-01-01

    The Russian Emission Detector 100 (RED-100) under construction at the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) is designed to detect the presently undiscovered effect of coherent neutrino scattering. One of the factors limiting the sensitivity of the detector is the spontaneous decay of uranium and thorium in the detector materials. Radioactive impurities in detector materials at levels of parts per billion can significantly affect the sensitivity. Five random samples of titanium and one of copper from materials used in the construction of the detector were selected for assay. The concentration of (232)Th and (238)U were measured by inductively coupled plasma mass spectrometry (ICP- MS) in solid titanium using both: solutions in acids and direct sampling by laser ablation (LA-ICP-MS). The LA- ICP-MS method allowed us to determine (238)U and (232)Th at subnanogram per gram levels. This method is much faster than ICP-MS with liquid injection. The titanium samples studied have impurities in the range between 1 ng g(-1) and 21 ng g(-1) for (238)U and 3 ng g(-1) and 31 ng g(-1) for (232)Th. In copper we set upper limits of 0.4 ng g(-1) for (238)U and 1 ng g(-1)for (232)Th. The total activity of the cryostat constructed from materials studied was estimated to be 43 Bq.

  19. Comparison of sample digestion techniques for the determination of trace and residual catalyst metal content in single-wall carbon nanotubes by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grinberg, Patricia, E-mail: patricia.grinberg@nrc.ca [Measurement Science and Standards, National Research Council Canada, Ottawa (Canada); Sturgeon, Ralph E. [Measurement Science and Standards, National Research Council Canada, Ottawa (Canada); Diehl, Liange de O.; Bizzi, Cezar A. [Measurement Science and Standards, National Research Council Canada, Ottawa (Canada); Chemistry Department, Universidade Federal de Santa Maria, Santa Maria (Brazil); Flores, Erico M.M. [Chemistry Department, Universidade Federal de Santa Maria, Santa Maria (Brazil)

    2015-03-01

    A single-wall carbon nanotube material produced by laser ablation of renewable biochar in the presence of Ni and Co catalyst was characterized for residual catalyst (Co and Ni) as well as trace metal impurity content (Fe, Mo, Cr, Pb and Hg) by isotope dilution ICP-MS following sample digestion. Several matrix destruction procedures were evaluated, including a multi-step microwave-assisted acid digestion, dry ashing at 450 °C and microwave-induced combustion with oxygen. Results were benchmarked against those derived from neutron activation analysis and also supported by solid sampling continuum source GF-AAS for several of the elements. Although laborious to execute, the multi-step microwave-assisted acid digestion proved to be most reliable for recovery of the majority of the analytes, although content of Cr remained biased low for each approach, likely due to its presence as refractory carbide. - Highlights: • Determination of trace and residual catalyst metal content in Single-Wall Carbon Nanotubes by Inductively Coupled Plasma Mass Spectrometry. • Comparative study of digestion methodology combined with high precision isotope dilution ICP-MS for quantitation of elements of toxicologic relevance. • Results were benchmarked against those derived from neutron activation analysis and also supported by solid sampling continuum source GF-AAS for several of the elements.

  20. AC electrokinetic drug delivery in dentistry using an interdigitated electrode assembly powered by inductive coupling.

    Science.gov (United States)

    Ivanoff, Chris S; Wu, Jie Jayne; Mirzajani, Hadi; Cheng, Cheng; Yuan, Quan; Kevorkyan, Stepan; Gaydarova, Radostina; Tomlekova, Desislava

    2016-10-01

    AC electrokinetics (ACEK) has been shown to deliver certain drugs into human teeth more effectively than diffusion. However, using electrical wires to power intraoral ACEK devices poses risks to patients. The study demonstrates a novel interdigitated electrode arrays (IDE) assembly powered by inductive coupling to induce ACEK effects at appropriate frequencies to motivate drugs wirelessly. A signal generator produces the modulating signal, which multiplies with the carrier signal to produce the amplitude modulated (AM) signal. The AM signal goes through the inductive link to appear on the secondary coil, then rectified and filtered to dispose of its carrier signal, and the positive half of the modulating signal appears on the load. After characterizing the device, the device is validated under light microscopy by motivating carboxylate-modified microspheres, tetracycline, acetaminophen, benzocaine, lidocaine and carbamide peroxide particles with induced ACEK effects. The assembly is finally tested in a common dental bleaching application. After applying 35 % carbamide peroxide to human teeth topically or with the IDE at 1200 Hz, 5 Vpp for 20 min, spectrophotometric analysis showed that compared to diffusion, the IDE enhanced whitening in specular optic and specular optic excluded modes by 215 % and 194 % respectively. Carbamide peroxide absorbance by the ACEK group was two times greater than diffusion as measured by colorimetric oxidation-reduction and UV-Vis spectroscopy at 550 nm. The device motivates drugs of variable molecular weight and structure wirelessly. Wireless transport of drugs to intraoral targets under ACEK effects may potentially improve the efficacy and safety of drug delivery in dentistry.

  1. Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, M.; Urzay, J., E-mail: jurzay@stanford.edu; Mani, A. [Center for Turbulence Research, Stanford University, Stanford, California 94305-3024 (United States)

    2015-06-15

    This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers and induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of

  2. Hybrid simulations of solenoidal radio-frequency inductively coupled hydrogen discharges at low pressures

    Science.gov (United States)

    Yang, Wei; Li, Hong; Gao, Fei; Wang, You-Nian

    2016-12-01

    In this article, we have described a radio-frequency (RF) inductively coupled H2 plasma using a hybrid computational model, incorporating the Maxwell equations and the linear part of the electron Boltzmann equation into global model equations. This report focuses on the effects of RF frequency, gas pressure, and coil current on the spatial profiles of the induced electric field and plasma absorption power density. The plasma parameters, i.e., plasma density, electron temperature, density of negative ion, electronegativity, densities of neutral species, and dissociation degree of H2, as a function of absorption power, are evaluated at different gas pressures. The simulation results show that the utilization efficiency of the RF source characterized by the coupling efficiency of the RF electric field and power to the plasma can be significantly improved at the low RF frequency, gas pressure, and coil current, due to a low plasma density in these cases. The densities of vibrational states of H2 first rapidly increase with increasing absorption power and then tend to saturate. This is because the rapidly increased dissociation degree of H2 with increasing absorption power somewhat suppresses the increase of the vibrational states of H2, thus inhibiting the increase of the H-. The effects of absorption power on the utilization efficiency of the RF source and the production of the vibrational states of H2 should be considered when setting a value of the coil current. To validate the model simulations, the calculated electron density and temperature are compared with experimental measurements, and a reasonable agreement is achieved.

  3. [Determination of chlorine in gasoline by inductively coupled plasma atomic emission spectrometry].

    Science.gov (United States)

    Zhao, Yan; Chen, Xiao-yan; Xu, Dong-yu; Zhang, Shi-yuan; Chen, Ze-yong

    2014-12-01

    A new method was studied for the analysis of chlorine in gasoline by inductively coupled plasma atomic emission spectrometry (ICP-AES). Samples werediluted 1+4(φ) with kerosene. The intense spectral line for chlorine (134.724 nm) was used. In order to eliminate carbon and maintain stable plasma, small amounts of oxygen (0.050 L · min(-1)) were added to the auxiliary gas. The instrumental main condition was optimized in terms of effects of generator power, nebulizer gas flow, auxiliary gas flow, and oxygen flow on SBR for chlorine. Standard addition method was used to compensate matrix effect and signal drift. The recovery for spiking gasoline samples and the limit of detection were in the range of 96.6%~103.9% and 0.27 mg · L(-1) respectively. The relative standard deviation (RSD) was between 1.57% and 4.49%. Compared with microcoulometry, the analysis results of organic chlorine were basically the same. Moreover, chlorine content, including organic chlorine and inorganic chloride was determined by ICP-AES. The proposed method had the advantages of simplicity, speediness and sensitivity, and expanded the ICP-AES application in non-metals especially halogen elements. It can be used for the analysis of chlorine in gasoline and provides technical support for quality evaluation.

  4. Determination of multiple human arsenic metabolites employing high performance liquid chromatography inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Stice, Szabina; Liu, Guangliang; Matulis, Shannon; Boise, Lawrence H.; Cai, Yong

    2016-01-01

    During the metabolism of different arsenic-containing compounds in human, a variety of metabolites are produced with significantly varying toxicities. Currently available analytical methods can only detect a limited number of human metabolites in biological samples during one run due to their diverse characteristics. In addition, co-elution of species is often unnoticeable with most detection techniques leading to inaccurate metabolic profiles and assessment of toxicity. A high performance liquid chromatography inductively coupled mass spectrometry (HPLC-ICP-MS) method was developed that can identify thirteen common arsenic metabolites possibly present in human with special attention dedicated to thiolated or thiol conjugated arsenicals. The thirteen species included in this study are arsenite (AsIII), arsino-glutathione (As(GS)3), arsenate (AsV), monomethylarsonous acid (MMAIII), monomethylarsino-glutathione (MMAIII(GS)2), monomethylarsonic acid (MMAV), dimethylarsinous acid (DMAIII (from DMAIIII)), S-(dimethylarsinic)cysteine (DMAIII(Cys)), dimethylarsino-glutathione (DMAIII(GS)), dimethylarsinic acid (DMAV), dimethylmonothioarsinic acid (DMMTAV), dimethyldithioarsinic acid (DMDTAV), dimethylarsinothioyl glutathione (DMMTAV(GS)). The developed method was applied for the analysis of cancer cells that were incubated with Darinaparsin (DMAIII(GS)), a novel chemotherapeutic agent for refractory malignancies, and the arsenic metabolic profile obtained was compared to results using a previously developed method. This method provides a useful analytical tool which is much needed in unequivocally identifying the arsenicals formed during the metabolism of environmental arsenic exposure or therapeutic arsenic administration. PMID:26708625

  5. Oxygen bomb combustion of biological samples for inductively coupled plasma optical emission spectrometry

    Science.gov (United States)

    Souza, Gilberto B.; Carrilho, Elma Neide V. M.; Oliveira, Camila V.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2002-12-01

    A rapid sample preparation method is proposed for decomposition of milk powder, corn bran, bovine and fish tissues, containing certified contents of the analytes. The procedure involves sample combustion in a commercial stainless steel oxygen bomb operating at 25 bar. Most of the samples were decomposed within 5 min. Diluted nitric acid or water-soluble tertiary amines 10% v/v were used as absorption solutions. Calcium, Cu, K, Mg, Na, P, S and Zn were recovered with the bomb washings and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Ethanol mixed with paraffin was used as a combustion aid to allow complete combustion. A cooling step prior releasing of the bomb valve was employed to increase the efficiency of sample combustion. Iodine was also determined in milk samples spiked with potassium iodide to evaluate the volatilization and collection of iodine in amine CFA-C medium and the feasibility of its determination by ICP-OES with axial view configuration. Most of the element recoveries in the samples were between 91 and 105% and the certified and found contents exhibited a fair agreement at a 95% confidence level.

  6. Characterization of microconcentric nebulizer uptake rates for capillary electrophoresis inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2003-05-01

    There is demonstrated interest in combining capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICP-MS) for speciation determinations. When self-aspirating nebulizers are used for this application, it is important to offset the suction effect to avoid degradation of the separation. In this study, sample uptake rates for three microconcentric nebulizers of the same model, in combination with a cyclonic spray chamber, were characterized and compared for future utilization in CE-ICP-MS interfaces. The specific model studied was a MicroMist with a nominal uptake rate of 100 μl/min at 1 l/min argon gas flow rate per the manufacturer's specifications. Sample uptake rates at various nebulizer gas flows were measured by aspirating water from a weighed container and calculating the uptake rate in microliter per minute. The nebulizers studied provided good reproducibility from day to day, but a comparison of the different nebulizers reflected a significant difference in performance. A characteristic observed during the study was that uptake rates decreased with increasing nebulizer gas flow. This can be used for sample introduction for CE-ICP-MS. Interestingly, very different performance was observed when comparing the three different nebulizers of the same model. Uptake rates showed strong dependence on argon gas flow rates and the dimensions of the sample uptake tubing.

  7. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  8. Langmuir Probe Measurements of Inductively Coupled Plasma in CF4/AR/O2 Mixtures

    Science.gov (United States)

    Rao, M. V. V. S.; Cruden, Brett; Sharma, Surendra; Meyyappan, Meyya

    2001-01-01

    Inductively coupled plasmas of CF4:Ar:O2, which have been of importance to material processing, were studied in the GEC cell at 80:10:10, 60:20:20, and 40:30:30 mixture ratios. Radial distributions of plasma potential (V(sub p)), electron and ion number densities (n(sub e) and n(sub i)), electron temperature (T(sub e)), and electron energy distribution functions (EEDFs) were measured in the mid-plane of plasma across the electrodes in the pressure range of 10-50 mTorr, and RF power of 200 and 300 W. V(sub p), n(sub e) and n(sub i), which peak in the center of the plasma, increase with decrease of pressure. T(sub e) also increases with pressure but peaks toward the electrode edge. Both V(sub p) and T(sub e) remain nearly independent of RF power, whereas n(sub e) and n(sub i) increase with power. In all conditions the EEDFs exhibit non-Maxwellian shape and are more like Druyvesteyn form at higher energies. They exhibit a broad lip in the energy range 0-10 eV suggesting an electron loss mechanism, which could be due to via resonance electron attachment processes producing negative ions in this rich electronegative gas mixture. This behavior is more prominent towards the electrode edge.

  9. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Jill Wisnewski [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactions either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO+), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.

  10. Accurate determination of silver nanoparticles in animal tissues by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Veverková, Lenka [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Hradilová, Šárka [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Milde, David, E-mail: david.mlde@upol.cz [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Panáček, Aleš [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Skopalová, Jana [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Kvítek, Libor [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); Petrželová, Kamila [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, CZ 771 46 Olomouc (Czech Republic); National Reference Laboratory for Chemical Elements, Department of Residues in Kroměříž, State Veterinary Institute Olomouc, Hulínská 2286, CZ 767 60 Kroměříž (Czech Republic); and others

    2014-12-01

    This study examined recoveries of silver determination in animal tissues after wet digestion by inductively coupled plasma mass spectrometry. The composition of the mineralization mixture for microwave assisted digestion was optimized and the best recoveries were obtained for mineralization with HNO{sub 3} and addition of HCl promptly after digestion. The optimization was performed on model samples of chicken meat spiked with silver nanoparticles and a solution of ionic silver. Basic calculations of theoretical distribution of Ag among various silver-containing species were implemented and the results showed that most of the silver is in the form of soluble complexes AgCl{sub 2}{sup −} and AgCl{sub 3}{sup 2−} for the optimized composition of the mineralization mixture. Three animal tissue certified reference materials were then analyzed to verify the trueness and precision of the results. - Highlights: • We performed detailed optimization of microwave assisted digestion procedure of animal tissue used prior to Ag determination by ICP-MS. • We provide basic equilibrium calculations to give theoretical explanation of results from optimization of tested mineralization mixtures. • Results from method validation that was done by analysis of several matrix CRMs are presented.

  11. Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drugs

    Science.gov (United States)

    Ossipov, K.; Seregina, I. F.; Bolshov, M. A.

    2016-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in the analysis of biological samples (whole blood, serum, blood plasma, urine, tissues, etc.) and pharmaceutical drugs. The shortcomings of this method related to spectral and non-spectral interferences are manifested in full measure in determination of the target analytes in these complex samples strongly differing in composition. The spectral interferences are caused by similarity of masses of the target component and sample matrix components. Non-spectral interferences are related to the influence of sample matrix components on the physicochemical processes taking place during formation and transportation of liquid sample aerosols into the plasma, on the value and spatial distribution of plasma temperature and on the transmission of the ion beam from the interface to mass spectrometer detector. The review is devoted to analysis of different mechanisms of appearance of non-spectral interferences and to ways for their minimization or elimination. Special attention is paid to the techniques of biological sample preparation, which largely determine the mechanisms of the influence of sample composition on the results of element determination. The ways of lowering non-spectral interferences by instrumental parameter tuning and application of internal standards are considered. The bibliography includes 189 references.

  12. Determination of impurity elements in MnZn ferrites by inductively coupled plasma mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    张萍; 符靓; 马俊才; 唐有根

    2015-01-01

    An inductively coupled plasma mass spectrometry (ICP-MS) method was developed for the determination of Na, Mg, Al, K, Ca, Ti, Cr, Co, Ni, Cu, Ga, As, Mo, Ag, Cd and Pb in MnZn ferrites. The sample was digested by HNO3+HCl with microwave digestion followed by dilution with ultrapure water, then the above 16 impurity elements in the solution were analyzed directly by ICP-MS. The impurity elements were introduced by the helium gas or hydrogen gas into the octopole reaction system (ORS) to eliminate the polyatomic interferences caused by the high salty matrixes. The matrix effect was minimized through matrix matching, and Be, Y and Rh were used as internal standard elements. The working parameters of the instrument were optimized. The results show that the method has good precision and high accuracy. The detection limits for the investigated elements are in the range of 0.9−37.5 ng/L, the relative standard deviation of each element is within 1.1%−4.8%, and the recovery of each element is 90%−108%.

  13. Analytic Couple Modeling Introducing Device Design Factor, Fin Factor, Thermal Diffusivity Factor, and Inductance Factor

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    A set of convenient thermoelectric device solutions have been derived in order to capture a number of factors which are previously only resolved with numerical techniques. The concise conversion efficiency equations derived from governing equations provide intuitive and straight-forward design guidelines. These guidelines allow for better device design without requiring detailed numerical modeling. The analytical modeling accounts for factors such as i) variable temperature boundary conditions, ii) lateral heat transfer, iii) temperature variable material properties, and iv) transient operation. New dimensionless parameters, similar to the figure of merit, are introduced including the device design factor, fin factor, thermal diffusivity factor, and inductance factor. These new device factors allow for the straight-forward description of phenomenon generally only captured with numerical work otherwise. As an example a device design factor of 0.38, which accounts for thermal resistance of the hot and cold shoes, can be used to calculate a conversion efficiency of 2.28 while the ideal conversion efficiency based on figure of merit alone would be 6.15. Likewise an ideal couple with efficiency of 6.15 will be reduced to 5.33 when lateral heat is accounted for with a fin factor of 1.0.

  14. [Determination of relative elements of hard metal in workplace air and urine by inductive coupled plama].

    Science.gov (United States)

    Li, X X; Jiao, Y N; Luo, Y N; Chen, Y X; Tian, D; Lou, F; Li, H D; Li, W; Chen, J D; Yan, Y J

    2016-11-20

    Objective: To establish a rapid detection method regarding the air conditions of workplace and the workers' urine included Tungsten, Cobalt, Nickel, Titanium, Cadmium, Manganese, Lead and its compounds based on inductively coupled plasma mass spectrometry (ICP-MS) . Methods: The experiment adopts ICP-MS to deter-mine those metals in workshop air and workers urine, evaluate the detection's limitation, the precision and accuracy of the method. Using the membrane filter and urine freeze - dried metal standard material to verify this method. Results: Each element of correlation coefficient was greater than 0.999. The recovery rate of air samples was 91.6%~104.6%, within-batch RSD precision was 1.41%~3.50%, between-run precision was 1.28%~4.31%, urine samples recovery rate was 93.0%~102.6%, within - batch RSD precision was 1.25%~3.56%, between - run precision was 1.58%~4.67%, According to the method every element was within the scope of the standard reference, it was also showed that the established method is accurate and reliable. Conclusion: ICP-MS is an effective and feasible method to detect the workshop air and the workers' urine which included Tungsten, Cobalt, Nickel, Titanium, Cadmium, Manganese, Lead and its compounds.

  15. Determination of stable cesium and strontium in rice samples by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Srinuttrakul, W.; Yoshida, S.

    2017-06-01

    For long-term radiation dose assessment models, food ingestion is one of the major exposure pathways to human. In general, the stable isotopes can serve as analogues of radioisotopes. In this study, rice samples were collected from 30 paddy fields in Si Sa Ket, Yasothon and Roi Et in the northeast of Thailand in November 2014. The concentrations of stable cesium (Cs-133) and strontium (Sr-88) in polished rice were determined by inductively coupled plasma mass spectrometry (ICP-MS). The standard reference material of rice flour (NIST 1568a) with spiked Cs and Sr was used to validate the analytical method. The concentration of Cs in polished rice from Si Sa Ket, Yasothon and Roi Et was 0.158 ± 0.167 mg kg-1, 0.090 ± 0.117 mg kg-1 and 0.054 ± 0.031 mg kg-1, respectively. The concentration of Sr in polished rice from Si Sa Ket, Yasothon and Roi Et was 0.351 ± 0.108 mg kg-1, 0.364 ± 0.215 mg kg-1 and 0.287 ± 0.102 mg kg-1, respectively. Comparison of the results with Japanese data before the Fukushima Di-ichi nuclear power plant accident showed that the concentrations of both Cs and Sr for Thai rice were higher than those for Japanese rice.

  16. High-Resolution THz Measurements of BrO Generated in AN Inductively Coupled Plasma

    Science.gov (United States)

    Nemchick, Deacon J.; Drouin, Brian

    2017-06-01

    Building upon the foundation provided by previous work, the X_{1}^{2}Π_{3/2} and X_{2}^{2}Π_{1/2} states of the transient radical, BrO, were interrogated in previously unprobed spectral regions (0.5 to 1.7 THz) by employing JPL developed high-resolution cascaded frequency multiplier sources. Like other members of the halogen monoxides (XO), this species has been the target of several recent atmospheric remote sensing studies and is a known participant in a catalytic ozone degradation cycle. For the current work, BrO is generated in an inductively coupled plasma under dynamic flow conditions and rotational lines are observed directly at their Doppler-limited resolution. New spectral transitions including those owing to both the ground (ν=0) and excited (ν=1 and 2) vibrational states of isotopologues composed of permutations of natural abundance ^{16}O, ^{18}O, ^{79}Br, and ^{81}Br are fit to a global Hamiltonian containing both fine and hyperfine terms. In addition to further refining existing spectroscopic parameters, new observations will be made available to remote detection communities through addition to the JPL catalog. New findings will be discussed along with future plans to extend these studies to other halogen monoxides (X=Cl and I) and the more massive halogen dioxides (OXO & XOO).

  17. Unexpected properties of the inductively coupled plasma induced defect in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, S.M.M., E-mail: sergio@up.ac.za; Auret, F.D.; Janse van Rensburg, P.J.; Nel, J.M.

    2014-04-15

    Inductively coupled plasma (ICP) etching of germanium introduces a single defect, the E{sub 0.31} electron trap, for a large range of argon partial pressures from 4×10{sup –3} to 6.5×10{sup –4} mbar that correspond to ion energies of 8 to 60 eV. Ge of three crystallographic orientations, (1 0 0), (1 1 0) and (1 1 1), treated with 20 and 60 eV ICP had defect concentration profiles that were similar in appearance, with a maximum concentration of 10{sup 14} cm{sup −3} extending more than a µm into the material, approximately three orders of magnitude deeper than what TRIM simulations predicted. All profiles were measured using Laplace deep level transient spectroscopy (L-DLTS), a technique that is sensitive to defect concentrations as low as 10{sup 11} cm{sup −3}. Isochronal annealing of samples showed concentration curves broadening after a 400 K anneal and decreasing to the 10{sup 13} cm{sup −3} level after a 450 K anneal. Unannealed samples measured after a year exhibited similar decreases in defect concentration without broadening of their profiles. A 550 K anneal lowered the defect concentration to levels below the L-DLTS detection limit. Thereafter additional plasma treatment of the surface failed to reintroduce this defect indicating that the structure required for the formation of E{sub 0.31} was no longer present in the region under observation.

  18. On the heating of inductively coupled resonators (stents) during MRI examinations.

    Science.gov (United States)

    Busch, Martin; Vollmann, Wolfgang; Bertsch, Thomas; Wetzler, Rainer; Bornstedt, Axel; Schnackenburg, Bernhard; Schnorr, Jörg; Kivelitz, Dietmar; Taupitz, Matthias; Grönemeyer, Dietrich

    2005-10-01

    Stents that have been implanted to preserve the results of vascular dilatation are frequently affected by in-stent restenosis, which ideally should be followed up by a noninvasive diagnostic modality. Active MRI stents can enable this kind of follow-up, while normal metallic stents can not. The prototype stents investigated in this study were designed as electric resonating circuits without a direct connection to the MR imager, and function as inductively coupled transmit coils. The model of a long solenoid coil is used to describe the additional power loss caused by such resonators. The theoretically estimated temperature increase is verified by measurements for different resonators and discussed for worst-case conditions. The RF power absorption of an active resonator is negligible compared to the total power absorbed during MRI. The local temperature increase observed for prototypes embedded in phantoms is in a range that excludes direct tissue damage. However, ruptures in the conducting structure of a resonator can cause hot spots, which may establish a high local temperature. This hazard can be reduced by designing resonators with a low quality (Q) factor or by setting the circuit slightly off resonance; however, this would lower the nominal amplification for which the resonator was designed.

  19. Profiling metals in Cordyceps sinensis by using inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Wei, Xin; Hu, Hankun; Zheng, Baogeng; Arslan, Zikri; Huang, Hung-Chung; Mao, Weidong; Liu, Yi-Ming

    2017-01-28

    Cordyceps sinensis (C. sinensis) is a natural product that has diverse nutritional and medicinal values. Since the availability of natural C. sinensis becomes limited its authentication and quality control is of high significance. Herein we report on profiling of metals in C. sinensis by using inductively coupled plasma mass spectrometry (ICP-MS). The analysis reveals that C. sinensis contains a wide array of essential elements, including P, Mg, Zn, Cu, Fe, etc. Toxic metals detected are Cd, Pb, and As. In all five samples analyzed Pb contents are below 2.0 ppm. Arsenic level in C. sinensis caterpillar is significantly higher than that in its mycelium and varies from 3.0 to 32 ppm likely due to soil contamination. It's for the first time demonstrated in this work that clustering analysis on the proposed metal profiles consisting of 24 elements is very useful to identify "abnormal" C. sinensis samples, thus adding another dimension to the effective means for authentication and quality assessment of this highly demanded previous natural product.

  20. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    Science.gov (United States)

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250-450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl- negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  1. Determination of cobalamins using capillary electrophoresis inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Baker, S. A.; Miller-Ihli, N. J.

    2000-12-01

    The determination of cobalamins using capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS) was investigated. Both capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) modes of operation were studied. The optimal separation of four cobalamin species (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5'-deoxyadenosylcobalamin) and a potentially harmful corrinoid analogue (cobinamide dicyanide) was obtained using CZE at a pH of 2.5. Both 20 mM phosphate and 20 mM formate buffers were used with success, although the formate buffer provided improved resolution. The CZE-ICP-MS method was used to quantify cyanocobalamin in a vitamin supplement and the analytical results were in good agreement (±5%) with values obtained by ICP-MS for total Co levels. The solution detection limits for cobalamins using CZE-ICP-MS were approximately 50 ng/ml. MEKC was found to be useful for the screening of vitamin preparations because it provided a rapid means of distinguishing cyanocobalamin (the form most commonly used in vitamin preparations) from free cobalt. The separation of free cobalt and cyanocobalamin using MEKC was achieved in less than 10 min.

  2. Rapidly removing grinding damage layer on fused silica by inductively coupled plasma processing

    Science.gov (United States)

    Chen, Heng; Zhou, Lin; Xie, Xuhui; Shi, Baolu; Xiong, Haobin

    2016-10-01

    During the conventional optical shaping process of fused silica, lapping is generally used to remove grinding damage layer. But this process is of low efficiency, it cannot meet the demand of large aperture optical components. Therefore, Inductively Coupled Plasma Processing (ICPP) was proposed to remove grinding damage layer instead of lapping. ICPP is a non-contact, deterministic figuring technology performed at atmospheric pressure. The process benefits from its ability to simultaneously remove sub-surface damage (SSD) while imparting the desired figure to the surface with high material remove rate. The removing damage capability of ICPP has preliminarily been confirmed on medium size optical surfaces made of fused silica, meanwhile serious edge warping was found. This paper focused on edge effect and a technique has been designed to compensate for these difficulties. Then it was demonstrated on a large aperture fused silica mirror (Long320mm×Wide370mm×High50mm), the removal depth was 30.2μm and removal rate got 6.6mm3/min. The results indicate that ICPP can rapidly remove damage layer on the fused silica induced by the previous grinding process and edge effect is effective controlled.

  3. Establishing human heart chromium, cobalt and vanadium concentrations by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Day, Patrick L; Eckdahl, Steven J; Maleszewski, Joseph J; Wright, Thomas C; Murray, David L

    2017-05-01

    Chromium, cobalt, and vanadium are used in metallic joint prosthesis. Case studies have associated elevated heart tissue cobalt concentrations with myocardial injury. To document the long term heart metal ion concentrations, a validated inductively coupled plasma mass spectroscopy (ICP-MS) method was needed. The method utilized a closed-vessel microwave digestion system to digest the samples. An ICP-MS method utilizing Universal Cell Technology was used to determine our target analyte concentrations. Accuracy was verified using reference materials. Precision, sensitivity, recovery and linearity studies were performed. This method was used to establish a reference range for a non-implant containing cohort of 80 autopsy human heart tissues RESULTS: This method demonstrated an analytic measurement range of 0.5-100ng/mL for each element. Accuracy was within ±10% of target value for each element. Within-run precision for each element was below 20% CV. The chromium, vanadium and cobalt concentrations (mean±SD) were 0.1523±0.2157μg/g, 0.0094±0.0211μg/g and 0.1039±0.1305μg/g respectively in 80 non-implant containing human heart tissue samples. This method provides acceptable recovery of the chromium, cobalt and vanadium in heart tissue; allowing assessment of the effects of metallic joint prosthesis on myocardial health. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. A control-oriented self-consistent model of an inductively-coupled plasma

    Science.gov (United States)

    Keville, Bernard; Turner, Miles

    2009-10-01

    An essential first step in the design of real time control algorithms for plasma processes is to determine dynamical relationships between actuator quantities such as gas flow rate set points and plasma states such electron density. An ideal first principles-based, control-oriented model should exhibit the simplicity and computational requirements of an empirical model and, in addition, despite sacrificing first principles detail, capture enough of the essential physics and chemistry of the process in order to provide reasonably accurate qualitative predictions. This presentation describes a control-oriented model of a cylindrical low pressure planar inductive discharge with a stove top antenna. The model consists of equivalent circuit coupled to a global model of the plasma chemistry to produce a self-consistent zero-dimensional model of the discharge. The non-local plasma conductivity and the fields in the plasma are determined from the wave equation and the two-term solution of the Boltzmann equation. Expressions for the antenna impedance and the parameters of the transformer equivalent circuit in terms of the isotropic electron distribution and the geometry of the chamber are presented.

  5. The Kalman filter approach to inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Van Veen, E. H.; Bosch, S.; De Loos-Vollebregt, M. T. C.

    1994-07-01

    This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text, comprising the main article and two appendices, is accompanied by a disk containing the compiled program, a reference manual and data files. The work deals with data handling in inductively coupled plasma atomic emission spectrometry (ICP-AES). With this technique, the analyte signal is superimposed on a background signal. When separating the signals by manual or automated three-point background correction, there are many instances in which the data reduction fails. Based on scans recorded in a fast-scanning mode and on a library of pure-component scans, the Kaiman filter approach models the emission in the spectral window (about 100 pm) of the analyte and mathematically solves the problem of background correction. By using a criterion-based algorithm to correct for optical instability, the uncertainty in the determination of the interferent line signal is eliminated. Therefore, the present filter implementation yields more accurate and precise results, especially in the case of line overlap. The Kalman filter Approach to Atomic Spectrometry (KAAS) software automatically processes Perkin-Elmer Plasma 1000/2000 text files, but can also handle ASCII data files. Practical and comprehensive examples are given to evoke the "Kalman filter feeling" in the crucial step of creating the emission model.

  6. Identification of organically associated trace elements in wood and coal by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Richaud, R.; Lazaro, M.J.; Lachas, H.; Miller, B.B.; Herod, A.A.; Dugwell, D.R.; Kandiyoti, R. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology

    2000-07-01

    1-Methyl-2-pyrrolidinone (NMP) was used to extract samples of wood (forest residue) and coal; the extracts were analysed by inductively coupled plasma mass spectrometry (ICP-MS) using two different sample preparation methods, in order to identify trace elements associated with the organic part of the samples. A sample of fly ash was similarly extracted and analysed. Size exclusion chromatograms of the extracts indicated the presence of significant amounts of large molecular mass materials ({gt} 1000 {mu}) in the biomass and coal extracts but not in the ash extract. Trace element analyses were carried out using ICP-MS on the acid digests prepared by 'wet ashing' and microwave extraction. Sixteen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, pH, Sb, Se, V and Zn) were quantified, in the samples before extraction, in the extracts and in the residues. Concentrations of trace elements in the original biomass samples were lower than in the coal sample while the concentrations in the ash sample were the highest. The major trace elements in the NMP extracts were Ba, Cu, Mn and Zn from the forest residue; Ba, Cu, Mn, Pb and Zn from the coal; Cu and Zn from the ash. These elements are believed to be associated with the organic extracts from the forest residue and coal, and also from the ash.

  7. [Determination of Heavy Metal Elements in Diatomite Filter Aid by Inductively Coupled Plasma Mass Spectrometry].

    Science.gov (United States)

    Nie, Xi-du; Fu, Liang

    2015-11-01

    This study established a method for determining Be, Cr, Ni, As, Cd, Sb, Sn, Tl, Hg and Pb, total 10 heavy metals in diatomite filter aid. The diatomite filter aid was digested by using the mixture acid of HNO₃ + HF+ H₃PO₄ in microwave system, 10 heavy metals elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). The interferences of mass spectrometry caused by the high silicon substrate were optimized, first the equipment parameters and isotopes of test metals were selected to eliminate these interferences, the methane was selected as reactant gas, and the mass spectral interferences were eliminated by dynamic reaction cell (DRC). Li, Sc, Y, In and Bi were selected as the internal standard elements to correct the interferences caused by matrix and the drift of sensitivity. The results show that the detection limits for analyte is in the range of 3.29-15.68 ng · L⁻¹, relative standard deviations (RSD) is less than 4.62%, and the recovery is in the range of 90.71%-107.22%. The current method has some advantages such as, high sensitivity, accurate, and precision, which can be used in diatomite filter aid quality control and safety estimations.

  8. Element fingerprinting of marine organisms by dynamic reaction cell inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Cubadda, Francesco; Raggi, Andrea; Coni, Ettore

    2006-02-01

    A method for the determination of sixteen elements (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, Sn, V, Zn) in seafood by dynamic reaction cell inductively coupled plasma mass spectrometry (ICP-DRC-MS) is presented. A preliminary study of polyatomic interferences was carried out in relation to the chemical composition of marine organisms belonging to different taxa. Acid effects and other matrix effects in marine organisms submitted to closed-vessel microwave digestion were investigated as well. Ammonia was the reactive gas used in the DRC to remove polyatomic ions interfering with 27Al, 52Cr, 56Fe and 51V. Optimal conditions for the simultaneous determination of analytes were identified in order to develop a fast multielement method. A suite of real samples (mussels and various fish species) were used during method development along with three certified reference materials: BCR CRM 278R (mussel tissue), BCR CRM 422 (cod muscle) and DORM-2 (dogfish muscle). The proposed analytical approach can be used in conjunction with suitable chemometric procedures to address quality and safety issues in aquaculture and fisheries. As an example, a case study is described in which mussels from three farming sites in the Venice Lagoon were distinguished by multivariate analysis of element fingerprints.

  9. Measuring ion velocity distribution functions through high-aspect ratio holes in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cunge, G., E-mail: gilles.cunge@cea.fr; Darnon, M.; Dubois, J.; Bezard, P.; Mourey, O.; Petit-Etienne, C.; Vallier, L.; Despiau-Pujo, E.; Sadeghi, N. [Laboratoire des Technologies de la Microélectronique, CNRS, 17 rue des Martyrs, 38054 Grenoble (France)

    2016-02-29

    Several issues associated with plasma etching of high aspect ratio structures originate from the ions' bombardment of the sidewalls of the feature. The off normal angle incident ions are primarily due to their temperature at the sheath edge and possibly to charging effects. We have measured the ion velocity distribution function (IVDF) at the wafer surface in an industrial inductively coupled plasma reactor by using multigrid retarding field analyzers (RFA) in front of which we place 400 μm thick capillary plates with holes of 25, 50, and 100 μm diameters. The RFA then probes IVDF at the exit of the holes with Aspect Ratios (AR) of 16, 8, and 4, respectively. The results show that the ion flux dramatically drops with the increase in AR. By comparing the measured IVDF with an analytical model, we concluded that the ion temperature is 0.27 eV in our plasma conditions. The charging effects are also observed and are shown to significantly reduce the ion energy at the bottom of the feature but only with a “minor” effect on the ion flux and the shape of the IVDF.

  10. [Analysis of Trace Inorganic Elements in Castor Oil by Inductively Coupled Plasma Mass Spectrometry].

    Science.gov (United States)

    Li, Tan-ping; Xie, Hua-lin; Nie, Xi-du

    2015-10-01

    A method for the determination of Na, Mg, Si, P, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Hg and Pb in castor oil after direct dilution with ethanol by inductively coupled plasma mass spectrometry (ICP-MS) was established. The sample was diluted by ethanol before ICP-MS determination. The condensation and deposition of high concentrations of carbon in mass cone interface and ion lens, which will decrease the sensitivity of element analysis, were avoided effectively by introducing O2 to plasma. The mass spectral interferences were eliminated by octopole reaction system (ORS). The matrix effects were calibrated to using Sc, Ge, Rh and Ir as internal standard elements. Au standard solution, which could form amalgam alloy with Hg, was dropped to eliminate the memory effect of Hg. The results show that the correlation coefficient for analyte is no less than 0.999 5, the detection limits is in the range of 0.06 - 20.1 ng x L(-1), the recovery is in the range of 990.4% - 110.2%, and the RSD is less than 4.8%. This method was very fast, simple and accurate to simultaneously analyze multi-elements in castor oil.

  11. Macro-loading Effects in Inductively Coupled Plasma Etched Mercury Cadmium Telluride

    Science.gov (United States)

    Apte, Palash; Rybnicek, Kimon; Stoltz, Andrew

    2016-09-01

    This paper reports the effect of macro-loading on mercury cadmium telluride (Hg1- x Cd x Te) and Photoresist (PR) etched in an inductively coupled plasma (ICP). A significant macro-loading effect is observed, which affects the etch rates of both PR and Hg1- x Cd x Te. It is observed that the exposed silicon area has a significant effect on the PR etch rate, but not on the Hg1- x Cd x Te etch rate. It is also observed that the exposed Hg1- x Cd x Te area has a significant effect on the etch rate of the PR, but the exposed PR area does not seem to have an effect on the Hg1- x Cd x Te etch rate. Further, the exposed Hg1- x Cd x Te area is shown to affect the etch rate of the Hg1- x Cd x Te, but there does not seem to be a similar effect for the exposed PR area on the etch rate of the PR. Since the macro-loading affects the selectivity significantly, this effect can cause significant problems in the etching of deep trenches. A few techniques to reduce the effect of macro-loading on the etch rates of the PR and Hg1- x Cd x Te are listed, herein.

  12. Organo-Functionalization of Silicon Nanocrystals Synthesized by Inductively Coupled Plasma Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Don-Sung; Choe, Dong-Hoe; Jeong, Hyun-Dam [Chonnam National University, Gwangju (Korea, Republic of); Yoo, Seung-Wan; Kim, Jung-Hyung [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-05-15

    Octadecyl-terminated silicon nanocrystals (ODE-Si NCs) are obtained via a surface-initiated thermal hydrosilylation reaction on hydride-terminated Si NCs (H-Si NCs). Pristine Si NCs were synthesized at the gram scale by using inductively coupled plasma chemical vapor deposition (ICP-CVD) . The H-Si NCs were produced through a chemical etching process with hydrofluoric acid (HF), ethanol (EtOH), and distilled water (d-H{sub 2}O). The results obtained from X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) indicate that the synthesized Si NCs obtained via ICP-CVD have diamond cubic-structured silicon with a grain size of 10 nm and a densely packed Si NC array consisting of individual NCs. Organo-functionalized Si NCs, i.e., ODE-Si NCs, are well soluble in organic solvent whereas pristine Si NCs synthesized through ICP-CVD are not. The surface chemistry of the ODE-Si NCs was confirmed via Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy ({sup 1}H-NMR), and field emission transmission electron microscopy (FE-TEM). Thereby, these newly synthesized and scalable organo-functionalized Si NCs are applicable as raw materials for practical use in devices by tuning the surface chemistry with various capping molecules.

  13. Inductively coupled plasma emission spectroscopic and flame photometric analysis of goat epididymal fluid

    Institute of Scientific and Technical Information of China (English)

    MeenakshiGaur; VikasPruthi; RamasarePrasad; BenM.J.Pereira

    2000-01-01

    Aim: The elemental composition of the epididymal luminal fluid (ELF) in adult goat (Capra indica) was investigated. Methods: ELF was collected by micropuncture from twelve sites along the epididymal duct. The elemental contents was analyzed with inductively coupled plasma (ICP) emission spectroscopy, a microanalytical technique that can simultaneously measure many elements in minute volumes of sample. The Na and K concentrations were determined by flame photometry. Results: ICP spectroscopy showed the presence of copper, calcium, nickel, iron, magnesium, chromium, titanium and zinc in ELF, with fluctuating levels at different sites along the length of the epididymis.Cadmium, cobalt, lead and manganese were not found. The Na+/K+ ratio was seen to be higher at the initial segments of the epididymis and lower at the distal. Conclusion: It is proposed that the observed characteristic distribution of elements in ELF may have far reaching implications in sperm maturation and storage known to occur in the epididymis. (Asian J Androl 2000 Dec;2:288-292)

  14. Transient plasma potential in pulsed dual frequency inductively coupled plasmas and effect of substrate biasing

    Science.gov (United States)

    Mishra, Anurag; Yeom, Geun Young

    2016-09-01

    An electron emitting probe in saturated floating potential mode has been used to investigate the temporal evolution of plasma potential and the effect of substrate RF biasing on it for pulsed dual frequency (2 MHz/13.56 MHz) inductively coupled plasma (ICP) source. The low frequency power (P2MHz) has been pulsed at 1 KHz and a duty ratio of 50%, while high frequency power (P13.56MHz) has been used in continuous mode. The substrate has been biased with a separate bias power at (P12.56MHz) Argon has been used as a discharge gas. During the ICP power pulsing, three distinct regions in a typical plasma potential profile, have been identified as `initial overshoot', pulse `on-phase' and pulse `off-phase'. It has been found out that the RF biasing of the substrate significantly modulates the temporal evolution of the plasma potential. During the initial overshoot, plasma potential decreases with increasing RF biasing of the substrate, however it increases with increasing substrate biasing for pulse `on-phase' and `off-phase'. An interesting structure in plasma potential profile has also been observed when the substrate bias is applied and its evolution depends upon the magnitude of bias power. The reason of the evolution of this structure may be the ambipolar diffusion of electron and its dependence on bias power.

  15. Electron heating during E-H transition in inductively coupled RF plasmas

    Science.gov (United States)

    Wegner, Th; Küllig, C.; Meichsner, J.

    2015-08-01

    A planar inductively coupled RF discharge (13.56 MHz) in argon and oxygen was exemplarily studied using space and phase resolved optical emission spectroscopy. The characteristic excitation rate pattern due to the electron heating during the sheath expansion was found for both gases in the E-mode. Furthermore, an intensive pattern in oxygen appears during the sheath collapse. This is associated with the electron heating caused by electric field reversal due to the strong electronegativity. The transition from the E- to the H-mode may be stepwise or continuous, depending on the gas type and total gas pressure. In the H-mode, significant differences in the excitation rate patterns exist. A broad and weakly modulated pattern is found over the RF cycle in argon, whereas in oxygen two separated patterns appear representing the electron heating for each half cycle. The reason may be the different excitation processes of the investigated resonant states and the influence of metastable argon atoms as well as attachment/detachment processes and dissociative recombination in oxygen. The E-H transition in oxygen at 5 Pa develops continuously and was studied in detail through the excitation rate. During the transition, the E- and H-mode are present and a hybrid mode was observed.

  16. Serum/plasma methylmercury determination by isotope dilution gas chromatography-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Baxter, Douglas C; Faarinen, Mikko; Österlund, Heléne; Rodushkin, Ilia; Christensen, Morten

    2011-09-01

    A method for the determination of methylmercury in plasma and serum samples was developed. The method uses isotope dilution with (198)Hg-labeled methylmercury, extraction into dichloromethane, back-extraction into water, aqueous-phase ethylation, purge and trap collection, thermal desorption, separation by gas chromatography, and mercury isotope specific detection by inductively coupled plasma mass spectrometry. By spiking 2 mL sample with 1.2 ng tracer, measurements in a concentration interval of (0.007-2.9) μg L(-1) could be performed with uncertainty amplification factors levels of 0.14 μg L(-1), 0.35 μg L(-1) and 2.8 μg L(-1), with recoveries in the range 82-110%. Application of the method to 50 plasma/serum samples yielded a median (mean; range) concentration of methylmercury of 0.081 (0.091; methylmercury has been directly measured in this kind of specimen, and is therefore the first estimate of a reference range.

  17. Determination of myo-inositol hexakisphosphate (phytate) in urine by inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grases, F.; Perello, J.; Isern, B.; Prieto, R.M

    2004-05-10

    Myo-inositol hexakisphosphate (phytate) is a substance present in urine with an important role in preventing calcium renal calculi development. In spite of this, the use of urinary phytate levels on stone-formers' evaluation and treatment is still notably restricted as a consequence of the enormous difficulty to analyze this substance in urine. In this paper, a simple procedure for routinary urinary phytate determination based on phosphorus determination through inductively coupled plasma atomic emission spectrometry is described. The method only requires a previous separation of phytate from other components by column anion exchange chromatography. The working linear range used was 0-2 mg l{sup -1} phosphorus (0-7 mg l{sup -1} phytate). The limit of detection was 64 {mu}g l{sup -1} of phytate and the limit of quantification was 213 {mu}g l{sup -1}. The relative standard deviation (R.S.D.) for 1.35 mg l{sup -1} phytate was 2.4%. Different urine samples were analyzed using an alternative analytical methodology based on gas chromatography (GC)/mass detection used for inositol determination (phytate was previously hydrolyzed), resulting both methods comparable using as criterion to assess statistical significance P<0.05.

  18. Authenticity of Benin metalworks evaluated by inductively coupled plasma mass spectrometry and lead isotope analyses

    Science.gov (United States)

    Fabbri, E.; Soffritti, C.; Merlin, M.; Vaccaro, C.; Garagnani, G. L.

    2017-05-01

    Two metal plaques and a cock statuette belonging to a private collection and stylistically consistent with the Royal Art of Benin (Nigeria) were investigated in order to verify their authenticity. The characterization of alloys and patinas were carried out by inductively coupled plasma mass spectrometry, optical microscopy, scanning electron microscopy and energy dispersion spectroscopy, and X-Ray diffraction spectrometry. Furthermore, thermal ionization mass spectrometry was used to assess the abundances of lead isotopes and to attempt a dating by the measurement of 210Pb/204Pb ratio. The results showed that all three artefacts were mainly composed of low lead-brass alloys, with relatively high concentrations of zinc, antimony, cadmium and aluminum in the solid copper solution. Microstructures were mostly dendritic, typical of as-cast brasses, and characterized by recrystallized non-homogeneous twinned grains in areas corresponding to surface decorations, probably due to multiple hammering steps followed by partial annealing treatments. The matrix was composed of a cored α-Cu solid solution together with non-metallic inclusions, lead globules and Sn-rich precipitates in interdendritic spaces. On the surface of all metalworks, both copper and zinc oxides, a non-continuous layer of sulphur-containing contaminants and chloride-containing compounds, were identified. The lead isotope results were consistent with brasses produced shortly before or after 1900 CE. Overall, the data obtained by different techniques supported the hypothesis that the three artefacts were not authentic.

  19. Studies of selenium and xenon in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bricker, T.

    1994-07-27

    Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon`s role in the reduction of polyatomic ions. 155 refs.

  20. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Applications in Quantitative Proteomics.

    Science.gov (United States)

    Chahrour, Osama; Malone, John

    2017-01-01

    Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) hyphenated to different separation techniques have promoted it as a valuable tool in protein/peptide quantification. These emerging ICP-MS applications allow absolute quantification by measuring specific elemental responses. One approach quantifies elements already present in the structure of the target peptide (e.g. phosphorus and sulphur) as natural tags. Quantification of these natural tags allows the elucidation of the degree of protein phosphorylation in addition to absolute protein quantification. A separate approach is based on utilising bi-functional labelling substances (those containing ICP-MS detectable elements), that form a covalent chemical bond with the protein thus creating analogs which are detectable by ICP-MS. Based on the previously established stoichiometries of the labelling reagents, quantification can be achieved. This technique is very useful for the design of precise multiplexed quantitation schemes to address the challenges of biomarker screening and discovery. This review discusses the capabilities and different strategies to implement ICP-MS in the field of quantitative proteomics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Inductively-coupled plasma mass spectrometry in proteomics, metabolomics and metallomics studies.

    Science.gov (United States)

    Mounicou, Sandra; Szpunar, Joanna; Lobinski, Ryszard

    2010-01-01

    The potential of inductively-coupled plasma mass spectrometry (ICP-MS) and its complementarity to soft- ionization MS techniques are discussed in the context of the analysis for biomolecules. ICP-MS offers detection limits in the attomolar range, regardless of the molecular environment of the target element. The sensitivity is hardly affected by the sample matrix, chromatographic mobile phase, or co-eluted compounds. The abundance sensitivity over six decades and the linear dynamic range over nine decades make simultaneous multi-isotopic analysis routinely possible. The manuscript discusses the state-of-the-art of ICP-MS for the detection of proteins in gel electrophoresis and of peptides in 2D high-performance liquid chromatography. The possibilities of quantification to the degree of some post-translational modifications are highlighted. Attention is also paid to the role of ICP-MS in protein quantification via metal-coded labeling and to the use of differentially-labeled antibodies for the multiplexed biomarker analysis. The key role of ICP-MS in the emerging area of metallomics is briefly discussed.

  2. Unique applications of solvent removal in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, M.

    1997-01-10

    Inductively coupled plasma mass spectrometry (ICP-MS) is the technique of choice for rapid, high precision, semiquantitative elemental and isotopic analysis for over 70 elements. Less than 20 years after the first mass spectrum was obtained by ICP-MS, this technique has applications in clinical chemistry, geochemistry, the semiconductor industry, the nuclear industry, environmental chemistry, and forensic chemistry. The determination of many elements, though, by ICP-MS is complicated by spectral interferences from background species, interelement spectral overlaps, and polyatomic ions of matrix elements. The emphasis of this thesis is the unique applications of solvent removal using cryogenic and membrane desolvation. Chapter 1 is a general introduction providing background information concerning the need for these methods and some information about the methods themselves. Chapter 5 discusses general conclusions and general observations pertaining to this work. Chapters 2, 3, and 4 have been processed separately for inclusion on the database. Chapter 2 describes a method to screen urine samples for vanadium using cryogenic desolvation. Chapter 3 compares solvent removal by cryogenic and membrane desolvation. Chapter 4 describes the use of cool plasma conditions for the determination of potassium in the presence of excess sodium by ICP-MS.

  3. Langmuir Probe Measurements of Inductively Coupled Plasmas in CF4/Ar/O2 Mixtures

    Science.gov (United States)

    Rao, M. V. V. S.; Cruden, Brett; Sharma, Surendra; Meyyappan, Meyya

    2001-01-01

    Inductively coupled plasmas of CF4:Ar:O2, which have been of importance to material processing, were studied in the GEC cell at 80:10:10, 60:20:20, and 40:30:30 mixture ratios. Radial distributions of plasma potential (V(sub p)), electron and ion number densities (n(sub e) and n(sub i), electron temperature (T(sub e)), and electron energy distribution functions (EEDFs) were measured in the mid-plane of plasma across the electrodes in the pressure range of 10-50 mTorr, and RF (radio frequency) power of 200 and 300 W. V(sub p), n(sub e) and n(sub i), which peak in the center of the plasma, increase with decrease of pressure. T(sub e) also increases with pressure but peaks toward the electrode edge. Both V(sub p) and T(sub e) remain nearly independent of RF power, whereas n(sub e) and n(sub i) increase with power. In all conditions the EEDFs exhibit non-Maxwellian shape and are more like Druyvesteyn form at higher energies. They exhibit a broad dip in the energy range 0-10 eV suggesting an electron loss mechanism, which could be due to via resonance electron attachment processes producing negative ions in this rich electronegative gas mixture. This behavior is more prominent towards the electrode edge.

  4. Langmuir Probe Distortions and Probe Compensation in an Inductively Coupled Plasma

    Science.gov (United States)

    Ji, J. S.; Cappelli, M. A.; Kim, J. S.; Rao, M. V. V. S.; Sharma, S. P.

    1999-01-01

    In many RF discharges, Langmuir probe measurements are usually made against a background of sinusoidal (and not so sinusoidal) fluctuations in the plasma parameters such as the plasma potential (Vp), the electron number density (ne), and the electron temperature (Te). The compensation of sinusoidal fluctuations in Vp has been extensively studied and is relatively well understood. Less attention has been paid to the possible distortions introduced by small fluctuations in plasma density and/or plasma temperature, which may arise in the sheath and pre-sheath regions of RF discharges. Here, we present the results of a model simulation of probe characteristics subject to fluctuations in both Vp and ne. The modeling of probe distortion due to possible fluctuations in Te is less straightforward. A comparison is presented of calculations with experimental measurements using a compensated and uncompensated Langmuir probe in an inductively coupled GEC reference cell plasma, operating on Ar and Ar/CF4 mixtures. The plasma parameters determined from the compensated probe characteristics are compared to previous measurements of others made in similar discharges, and to our own measurements of the average electron density derived from electrical impedance measurements.

  5. Langmuir Probe Measurements in an Inductively Coupled Ar/CF4 Plasmas

    Science.gov (United States)

    Rao, M. V. V. S.; Meyyappan, M.; Sharma, S. P.; Arnold, James O. (Technical Monitor)

    2000-01-01

    Technological advancement in the microelectronics industry requires an understanding of the physical and chemical processes occurring in plasmas of fluorocarbon gases, such as carbon tetrafluoride (CF4) which is commonly used as an etchant, and their mixtures to optimize various operating parameters. In this paper we report data on electron number density (ne), electron temperature'(Te), electron energy distribution function (EEDF), mean electron energy, ion number density (ni), and plasma potential (Vp) measured by using Langmuir probe in an inductively coupled 13.56 MHz radio frequency plasmas generated in 50%Ar:50%CF4 mixture in the GEC cell. The probe data were recorded at various radial positions providing radial profiles of these plasma parameters at 10-50 mTorr pressures and 200 W and 300 W of RF power. Present measurements indicate that the electron and ion number densities increase with increase in pressure and power. Whereas the plasma potential and electron temperature decrease with increase in pressure, and they weakly depend on RF power. The radial profiles exhibit that the electron and ion number densities and the plasma potential peak at the center of the plasma with an exponential fall away from it, while the electron temperature has a minimum at the center and it increases steadily towards the electrode edge. The EEDFs have a characteristic drop near the low energy end at all pressures and pressures and their shapes represent non-Maxwellian plasma and exhibit more like Druyvesteyn energy distribution.v

  6. Depleted uranium analysis in blood by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Todorov, T.I.; Xu, H.; Ejnik, J.W.; Mullick, F.G.; Squibb, K.; McDiarmid, M.A.; Centeno, J.A.

    2009-01-01

    In this study we report depleted uranium (DU) analysis in whole blood samples. Internal exposure to DU causes increased uranium levels as well as change in the uranium isotopic composition in blood specimen. For identification of DU exposure we used the 235U/238U ratio in blood samples, which ranges from 0.00725 for natural uranium to 0.002 for depleted uranium. Uranium quantification and isotopic composition analysis were performed by inductively coupled plasma mass spectrometry. For method validation we used eight spiked blood samples with known uranium concentrations and isotopic composition. The detection limit for quantification was determined to be 4 ng L-1 uranium in whole blood. The data reproduced within 1-5% RSD and an accuracy of 1-4%. In order to achieve a 235U/238U ratio range of 0.00698-0.00752% with 99.7% confidence limit a minimum whole blood uranium concentration of 60 ng L??1 was required. An additional 10 samples from a cohort of veterans exposed to DU in Gulf War I were analyzed with no knowledge of their medical history. The measured 235U/ 238U ratios in the blood samples were used to identify the presence or absence of DU exposure within this patient group. ?? 2009 The Royal Society of Chemistry.

  7. Determination of trace elements in refined gold samples by inductively coupled plasma atomic emission spectrometry

    Directory of Open Access Journals (Sweden)

    Steharnik Mirjana

    2013-01-01

    Full Text Available This paper presents a method for determination the trace contents of silver, copper, iron, palladium, zinc and platinum in refined gold samples. Simultaneous inductively coupled plasma atomic emission spectrometer with radial torch position and cross flow nebulizer was used for determination. In order to compare the different calibration strategies, two sets of calibration standards were prepared. The first set was based on matrix matched calibration standards and the second was prepared without the addition of matrix material. Detection limits for matrix matching calibrations were higher for some elements than those without matrix matching. In addition, the internal standardization method was applied and experiments indicated that indium was the best option as internal standard. The obtained results for gold sample by matrix matching and matrix free calibrations were compared with the obtained results by standard addition method. The accuracy of the methods was tested performing recovery test. Recoveries for spiked sample were in the range of 90-115 %. The accuracy of the methods was also tested by analysis of certified reference material of high pure goldAuGHP1. The best results were achieved by matrix free calibration and standard addition method using indium as internal standard at wavelength of 230 nm. [Projekat Ministarstva nauke Republike Srbije, br. 34024: Development of Technologies for Recycling of Precious, Rare and Associated Metals from Solid Waste in Serbia to High Purity Products

  8. Horn-Coupled, Commercially-Fabricated Aluminum Lumped-Element Kinetic Inductance Detectors for Millimeter Wavelengths

    CERN Document Server

    McCarrick, H; Jones, G; Johnson, B R; Ade, P; Araujo, D; Bradford, K; Cantor, R; Che, G; Day, P; Doyle, S; Leduc, H; Limon, M; Luu, V; Mauskopf, P; Miller, A; Mroczkowski, T; Tucker, C; Zmuidzinas, J

    2014-01-01

    We discuss the design, fabrication, and testing of prototype horn-coupled, lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic microwave background (CMB) studies. The LEKIDs are made from a thin aluminum film deposited on a silicon wafer and patterned using standard photolithographic techniques at STAR Cryoelectronics, a commercial device foundry. We fabricated twenty-element arrays, optimized for a spectral band centered on 150 GHz, to test the sensitivity and yield of the devices as well as the multiplexing scheme. We characterized the detectors in two configurations. First, the detectors were tested in a dark environment with the horn apertures covered, and second, the horn apertures were pointed towards a beam-filling cryogenic blackbody load. These tests show that the multiplexing scheme is robust and scalable, the yield across multiple LEKID arrays is 91%, and the noise-equivalent temperatures (NET) for a 4 K optical load are in the range 26$\\thinspace\\pm6 \\thinspace \\mu \\mbox{K} \\s...

  9. Comparing 193 nm photoresist roughening in an inductively coupled plasma system and vacuum beam system

    Science.gov (United States)

    Titus, M. J.; Nest, D. G.; Chung, T.-Y.; Graves, D. B.

    2009-12-01

    We present a comparison of blanket 193 nm photoresist (PR) roughening and chemical modifications of samples processed in a well-characterized argon (Ar) inductively coupled plasma (ICP) system and an ultra-high vacuum beam system. In the ICP system, PR samples are irradiated with Ar vacuum ultraviolet (VUV) and Ar ions, while in the vacuum beam system, samples are irradiated with either a Xe-line VUV source or Ar-lamp VUV source with Ar ions. Sample temperature, photon flux, ion flux and ion energy are controlled and measured. The resulting chemical modifications to bulk 193 nm PR and surface roughness are analysed with Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy. We demonstrate that under VUV-only conditions in the vacuum beam and ICP (with no substrate bias applied) systems 193 nm PR does not roughen. However, roughness increases with simultaneous high energy (>70 eV) ion bombardment and VUV irradiation and is a function of VUV fluence, substrate temperature and photon-to-ion flux ratio. PR processed in the ICP system experiences increased etching, probably due to release of H- and O-containing gaseous products and subsequent chemical etching, in contrast to samples in the vacuum beam system where etch-products are rapidly pumped away. The surface roughness structure and behaviour, however, remain similar and this is attributed to the synergy between VUV-photon and positive ions.

  10. Vacuum ultraviolet photon fluxes in argon-containing inductively coupled plasmas

    Science.gov (United States)

    Radovanov, S. B.; Persing, H. M.; Wang, S.; Culver, C. L.; Boffard, J. B.; Lin, C. C.; Wendt, A. E.

    2013-09-01

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. Damage of materials is induced by energy transfer from the VUV photons to the surface, causing disorder in the surface region, surface reactions, and affecting bonds in the material bulk. Monitoring of the surface flux of VUV photons from inductively coupled plasmas (ICP) and its dependence on discharge parameters is thus highly desirable. Results of non-invasive, direct windowless VUV detection using a photosensitive diode will be presented. Relative VUV fluxes were also obtained using a sodium salicylate coating on the inside of a vacuum window, converting VUV into visible light detected through the vacuum window. The coating is sensitive to wavelengths in the range 80-300 nm, while the photodiode is only sensitive to wavelengths below 120 nm. In argon the VUV emissions are primarily produced by spontaneous decay from 3p5 4 s resonance levels (1s2,1s4) and may be reabsorbed by ground state atoms. Real-time resonance level concentrations were measured and used to predict the VUV photon flux at the detector for a range of different ICP pressures, powers, and for various admixtures of Ar with N2, and H2. This work was supported in part by NSF grant PHY-1068670.

  11. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  12. Wireless thin film transistor based on micro magnetic induction coupling antenna

    Science.gov (United States)

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-12-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT).

  13. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles.

  14. Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Degueldre, C; Favarger, P-Y

    2004-04-19

    Thorium colloid analysis in water has been carried out by a single particle mode using inductively coupled plasma mass spectrometry (ICP-MS). The flash of ions due to the ionisation of a thorium colloidal particle in the plasma torch can be detected and measured in a time scan for (232)Th (+ ) or (248)[ThO] (+ ) according to the sensitivity required by the mass spectrometer. The peaks of the recorded intensity of the MS signal can be analysed as a function of the particle size or fraction of the studied element in the colloid phase. The frequency of the flashes is directly proportional to the concentration of particles in the colloidal suspension. After discussing Th colloid detection, on the basis of the intensity of the ion flashes generated in the plasma torch, tests were performed on thorium dioxide colloidal particles. This feasibility study also describes the experimental conditions and the limitation of the plasma design to detect thorium colloids in a single particle analysis mode down to about 10fg.

  15. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    Science.gov (United States)

    Chan, George C. Y.; Hieftje, Gary M.

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  16. Design of a Wideband Inductively Coupled Loop Feed Patch Antenna for UHF RFID Tag

    Directory of Open Access Journals (Sweden)

    M. S. R. Bashri

    2015-04-01

    Full Text Available A planar wideband patch antenna for ultra-high frequency (UHF radio frequency identification (RFID tag for metallic applications is presented in this research work. Three different shape patches are inductively coupled to a triangle loop to form wide impedance bandwidth for universal application UHF (860-960 MHz RFID. The structure of proposed antenna exhibits planar profile to provide ease of fabrication for cost reduction well suited for mass production. The simulation of the antenna was carried out using Finite Element Method (FEM based software, Ansoft HFSS v13. The simulated and measured impedance bandwidth of 113 MHz and 117 MHz (Return Loss≥6 dB were achieved to cover the entire UHF RFID operating frequency band worldwide. The simulated and measured radiation patterns at the operating frequency of 915 MHz are in good agreement. Moreover the simulated minimum antenna gain at the bore sight direction in free space and when mounted on 200 x 200 mm2 metal plate are -15 dBi and -14dBi respectively which is enough to provide reasonable read range over the entire UHF RFID system operating band.

  17. Inductively coupled plasma--atomic emission spectrometry: trace elements in oil matrices

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C. A.

    1977-12-01

    The simultaneous determination of up to 20 trace elements in various oil matrices by inductively coupled plasma-atomic emission spectrometry is reported. The oil matrices investigated were lubricating oils (for wear metals), fuel oil, centrifuged coal liquefaction product, crude soybean oil, and commercial edible oils. The samples were diluted with appropriate organic solvents and injected into the plasma as an aerosol generated by a pneumatic nebulization technique. Detection limits of the 28 elements studied ranged from 0.0006 to 9 ..mu..g/g with the majority falling in the 0.01 to 0.1 ..mu..g/g range. Analytical calibration curves were linear over at least two orders of magnitude and for some elements this linearity extended over 4.5 orders of magnitude. Relevant data on precision and accuracy are included. Because metals often occur as particles in lubricating oil and coal liquefaction products, the effect of particles on the analytical results was examined. Wear metal particles in used oil did not appear to affect the analytical results. However, incomplete recovery relative to organometallic reference solutions was obtained for iron particles with a nominal mean diameter of 3.0 ..mu..m suspended in oil. It was shown that the following factors contributed to incomplete recovery for the particles: settling of the suspended particles in the flask, a difference in nebulization efficiency between particle suspensions and organometallic solutions, and indications of incomplete vaporization of the larger particles in the plasma.

  18. Control of electron energy distribution by the power balance of the combined inductively and capacitively coupled RF plasmas

    Science.gov (United States)

    Kim, Jin Seok; Lee, Ho-Jun; Lee, Hae June

    2016-09-01

    The control of electron energy probability function (EEPF) is important to control discharge characteristics in materials processing. For example, O radical density increases by changing the EEPF in O2 plasma, which provides high etching efficiency. The effect of the power balance between the capacitively coupled plasma (CCP) and the inductively coupled plasma (ICP) on the EEPF in Ar and O2 plasmas is investigated with a 1d3v (one-dimensional space and three-dimensional velocity domain) particle-in-cell (PIC) simulation for the combined inductively and capacitively coupled plasmas. The combined effects of the transverse electromagnetic and the longitudinal electrostatic fields are solved in PIC simulation at the same time. In a pressure range of a few mTorr, high energy electrons (>5 eV) are heated by the capacitive power in the sheath while low energy electrons (power in the bulk region. The EEPF has bi-Maxwellian distribution when the CCP power is dominant, but it changes to Maxwellian-like distribution with increasing inductive power. Finally, the EEPF changes to Druyvesteyn-like distribution when the inductive power is dominant.

  19. Experimental and numerical studies of neutral gas depletion in an inductively coupled plasma

    Science.gov (United States)

    Shimada, Masashi

    the neutral pressure is reduced due the balance of total pressure with plasma pressure (mainly electron pressure). Neutral gas heating is due to the elastic scattering and charge exchange collisions with ions, which are accelerated by the bulk plasma ambi-polar electrostatic field. The excellent agreement between experiment and simulation, and parametric study reveal that gas heating and pressure balance are the main mechanisms of gas depletion in an inductively coupled plasma. Coupling between plasma and neutral gas was observed by both experiment and simulation. The resulting gas depletion enhances the plasma transport to the surrounding wall, increases the particle loss, and decreases the plasma density.

  20. Speciation of selenium in a commercial dietary supplement by liquid chromatography coupled with inductively coupled plasma-mass spectrometry (ICP-MS).

    Science.gov (United States)

    Ayouni, Linda; Barbier, Frédérique; Imbert, Jean-Louis; Lantéri, Pierre; Grenier-Loustalot, Marie-Florence

    2007-05-01

    Size exclusion and anion-exchange chromatographies coupled with inductively coupled plasma-mass spectrometry (ICP-MS) were used for the speciation of selenium (Se) in a dietary supplement. A sequential extraction method resulted in 85% recovery of Se and 78% of the Se extracted could be identified. The results obtained show that selenomethionine and its oxide are the predominant compounds, while selenite and selenomethylcysteine are present at low concentrations. Methane seleninic acid, probably arising from the oxidation of selenomethylcysteine, accounted for 22% of total Se. High-molecular-weight compounds, probably proteins, were detected in sodium dodecyl sulfate (SDS) and driselase extracts by size exclusion chromatography.

  1. Plasma diagnostics and plasma-surface interactions in inductively coupled plasmas

    Science.gov (United States)

    Titus, Monica Joy

    The semiconductor industry's continued trend of manufacturing device features on the nanometer scale requires increased plasma processing control and improved understanding of plasma characteristics and plasma-surface interactions. This dissertation presents a series of experimental results for focus studies conducted in an inductively coupled plasma (ICP) system. First novel "on-wafer" diagnostic tools are characterized and related to plasma characteristics. Second, plasma-polymer interactions are characterized as a function of plasma species and processing parameters. Complementary simulations accompany each focus study to supplement experimental findings. Wafer heating mechanisms in inductively coupled molecular gas plasmas are explored with PlasmaTemp(TM), a novel "on-wafer" diagnostic tool. Experimental wafer measurements are obtained with the PlasmaTemp(TM) wafer processed in argon (Ar) and argon-oxygen (Ar/O2) mixed plasmas. Wafer heating mechanisms were determined by combining the experimental measurements with a 3-dimensional heat transfer model of the wafer. Comparisons between pure Ar and Ar/O2 plasmas demonstrate that two additional wafer heating mechanisms can be important in molecular gas plasmas compared to atomic gas discharges. Thermal heat conduction from the neutral gas and O-atom recombination on wafer surface can contribute as much as 60% to wafer heating under conditions of low-energy ion bombardment in molecular plasmas. Measurements of a second novel "on-wafer" diagnostic sensor, the PlasmaVolt(TM), were tested and validated in the ICP system for Ar plasmas varying in power and pressure. Sensor measurements were interpreted with a numerical sheath simulation and comparison to scaling laws derived from the inhomogeneous sheath model. The study demonstrates sensor measurements are proportional to the RF-current through the sheath and the scaling is a function of sheath impedance. PlasmaVolt(TM) sensor measurements are proportional to the

  2. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    Science.gov (United States)

    Arnquist, Isaac J.; Holcombe, James A.

    2012-10-01

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (Kapp) and intrinsic (Kint) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu2 + for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu2 + and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu2 + can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu2 + ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data Kapp and Kint were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log Kapp values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log Kint values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log Kint at pH 9.53 was in good agreement with literature values obtained from alternative methods, Kint at pH 7.93 was about 2.5 × larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the "intrinsic" binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at pH 7.93 in order to determine the effect of a denaturant on metal binding. Results for both log

  3. Photochemical vapor generation of lead for inductively coupled plasma mass spectrometric detection

    Science.gov (United States)

    Duan, Hualing; Zhang, Ningning; Gong, Zhenbin; Li, Weifeng; Hang, Wei

    2016-06-01

    Photochemical vapor generation (PCVG) of lead was successfully achieved with a simplified and convenient system, in which only low molecular weight organic acid and a high-efficiency photochemical reactor were needed. The reactor was used to generate lead volatile species when a solution of lead containing a small amount of low molecular weight organic acid was pumped through. Several factors, including the concentration of acetic acid, the concentration of hydrochloride acid, and the irradiation time of UV light were optimized. Under the optimal conditions, including the addition of 0.90% (v/v) acetic acid and 0.03% (v/v) hydrochloride acid, and irradiation time of 28 s, intense and repeatable signal of lead volatile species was successfully obtained and identified with inductively coupled plasma mass spectrometry (ICPMS). In addition, the effects from inorganic anions and transition metal ions, including Cl-, NO3-, SO42 -, Cu2 +, Fe3 +, Co2 + and Ni2 +, were investigated, which suggests that their suppression to the PCVG of lead was in the order of Cl- anions and Ni2 +, Co2 + < Fe3 + < Cu2 + for transition metal ions. Under optimized conditions, relative standard derivation (RSD) of 4.4% was achieved from replicate measurements (n = 5) of a standard solution of 0.1 μg L- 1 lead. And, the limit of quantitation (LOQ, 10σ) of 0.012 μg L- 1 lead was obtained using this method and the method blank could be easily controlled down to 0.023 μg L- 1. To validate applicability of this method, it was also employed for the determination of lead in tap water, rain water and lake water.

  4. Copper Determination in Gunshot Residue by Cyclic Voltammetric and Inductive Coupled Plasma-Optical Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mohd Hashim Nurul’Afiqah Hashimah

    2016-01-01

    Full Text Available Analysis of gunshot residue (GSR is a crucial evidences for a forensic analyst in the fastest way. GSR analysis insists a suitable method provides a relatively simple, rapid and precise information on the spot at the crime scene. Therefore, the analysis of Cu(II in GSR using cyclic voltammetry (CV on screen printed carbon electrode (SPCE is a better choice compared to previous alternative methods such as Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES those required a long time for analysis. SPCE is specially designed to handle with microvolumes of sample such as GSR sample. It gives advantages for identification of copper in GSR on-site preliminary test to prevent the sample loss on the process to be analyzed in the laboratory. SPCE was swabbed directly on the shooter’s arm immediately after firing and acetate buffer was dropped on SPCE before CV analysis. For ICP-OES analysis, cotton that had been soaked in 0.5 M nitric acid was swabbed on the shooter’s arm immediately after firing and kept in a tightly closed sampling tube. Gold coated SPCE that had been through nanoparticles modification exhibits excellent performance on voltammograms. The calibration was linear from 1 to 50 ppm of copper, the limit of detection for copper was 0.3 ppm and a relative standard deviation was 6.1 %. The method was successfully applied to the determination of copper in GSR. The Cu determination on SPCE was compared and validated by ICP-OES method with 94 % accuracy.

  5. Gunshot residue testing in suicides: Part II: Analysis by inductive coupled plasma-atomic emission spectrometry.

    Science.gov (United States)

    Molina, D Kimberley; Castorena, Joe L; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a decedent's hands, including scanning electron microscopy with energy dispersive x-ray (SEM/EDX) and inductive coupled plasma-atomic emission spectrometry (ICP-AES). In part I of this 2-part series, GSR results performed by SEM/EDX in undisputed cases of suicidal handgun wounds were studied. In part II, the same population was studied, deceased persons with undisputed suicidal handgun wounds, but GSR testing was performed using ICP-AES. A total of 102 cases were studied and analyzed for caliber of weapon, proximity of wound, and the results of the GSR testing. This study found that 50% of cases where the deceased was known to have fired a handgun immediately prior to death had positive GSR results by ICP/AES, which did not differ from the results of GSR testing by SEM/EDX. Since only 50% of cases where the person is known to have fired a weapon were positive for GSR by either method, this test should not be relied upon to determine whether someone has discharged a firearm and is not useful as a determining factor of whether or not a wound is self-inflicted or non-self-inflicted. While a positive GSR result may be of use, a negative result is not helpful in the medical examiner setting as a negative result indicates that either a person fired a weapon prior to death or a person did not fire a weapon prior to death.

  6. Determination of ammonium and organic bound nitrogen by inductively coupled plasma emission spectroscopy.

    Science.gov (United States)

    Jaber, A M Y; Mehanna, N A; Sultan, S M

    2009-06-15

    The continuous flow sample introduction technique with a hydride generator system in conjunction with an inductively coupled plasma emission spectrometer (ICP-AES-HG), is used in this study for quantitative determination of ammonium and organic bound nitrogen in aqueous and solid samples. Ammonia vapor released from ammonium salt after treatment with concentrated NaOH is transferred by argon to plasma for detection at 174.273 nm using axial argon plasma mode. The calibration curves were linear within a range of 25-1000 mg L(-1)N as ammonium molybdate with correlation coefficients of better than 0.99 and limits of detection of about 10-25mg L(-1)N. The percent recovery of N (25-500 mg L(-1)N) in soft (distilled) water and high salt content (1.7 mol L(-1) NaCl) matrices was found to be in the range of about 97-102% with %RSD in the range of 4.6-0.62. The sensitivity, limit of detection, and blank contribution from the atmospheric nitrogen, were tremendously improved in this method compared with the available ICP-AES spray chamber counterpart. Furthermore, the ICP-AES-HG method gave results for real samples (soil, fertilizer, waste water) containing about 50-1800 mg L(-1)N in good agreement with those obtained by the standard Kjeldahl method. No statistical differences at the 95% confidence level on applying the t-test were observed between the values obtained by the two methods. Thus, the ICP-AES-HG method is reliable and faster than the conventional tedious Kjeldahl method, superior to the ICP-AES spray chamber method, and almost free from matrix interference which is usually a critical factor in atomic emission spectroscopic techniques.

  7. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo, E-mail: bradywang@hit.edu.cn; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-06-30

    Highlights: • The morphology evolution of ground fused silica, processed by atmospheric plasma, was investigated experimentally. • The roughness development results from opening and coalescing of the plasma-etched cracks. • The shapes of grain-like etched pits are the results of the adjacent cracks coalescing with one another. • The descent of the pits density is due to some smaller etched pits that are swallowed up by larger pits. • Leading role in surface smoothing is laterally etching away the side walls of the intersecting pits. - Abstract: Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP.

  8. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perring, Loic; Basic-Dvorzak, Marija [Department of Quality and Safety Assurance, Nestle Research Centre, P.O. Box 44, Vers chez-les-Blanc, 1000, Lausanne (Switzerland)

    2002-09-01

    Tin is considered to be a priority contaminant by the Codex Alimentarius Commission. Tin can enter foods either from natural sources, environmental pollution, packaging material or pesticides. Higher concentrations are found in processed food and canned foods. Dissolution of the tinplate depends on the of food matrix, acidity, presence of oxidising reagents (anthocyanin, nitrate, iron and copper) presence of air (oxygen) in the headspace, time and storage temperature. To reduce corrosion and dissolution of tin, nowadays cans are usually lacquered, which gives a marked reduction of tin migration into the food product. Due to the lack of modern validated published methods for food products, an ICP-AES (Inductively coupled plasma-atomic emission spectroscopy) method has been developed and evaluated. This technique is available in many laboratories in the food industry and is more sensitive than atomic absorption. Conditions of sample preparation and spectroscopic parameters for tin measurement by axial ICP-AES were investigated for their ruggedness. Two methods of preparation involving high-pressure ashing or microwave digestion in volumetric flasks were evaluated. They gave complete recovery of tin with similar accuracy and precision. Recoveries of tin from spiked products with two levels of tin were in the range 99{+-}5%. Robust relative repeatabilities and intermediate reproducibilities were <5% for different food matrices containing >30 mg/kg of tin. Internal standard correction (indium or strontium) did not improve the method performance. Three emission lines for tin were tested (189.927, 283.998 and 235.485 nm) but only 189.927 nm was found to be robust enough with respect to interferences, especially at low tin concentrations. The LOQ (limit of quantification) was around 0.8 mg/kg at 189.927 nm. A survey of tin content in a range of canned foods is given. (orig.)

  9. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Mitrano, Denise M; Lesher, Emily K; Bednar, Anthony; Monserud, Jon; Higgins, Christopher P; Ranville, James F

    2012-01-01

    The environmental prevalence of engineered nanomaterials, particularly nanoparticulate silver (AgNP), is expected to increase substantially. The ubiquitous use of commercial products containing AgNP may result in their release to the environment, and the potential for ecological effects is unknown. Detecting engineered nanomaterials is one of the greatest challenges in quantifying their risks. Thus, it is imperative to develop techniques capable of measuring and characterizing exposures, while dealing with the innate difficulties of nanomaterial detection in environmental samples, such as low-engineered nanomaterial concentrations, aggregation, and complex matrices. Here the authors demonstrate the use of inductively coupled plasma-mass spectrometry, operated in a single-particle counting mode (SP-ICP-MS), to detect and quantify AgNP. In the present study, two AgNP products were measured by SP-ICP-MS, including one of precisely manufactured size and shape, as well as a commercial AgNP-containing health food product. Serial dilutions, filtration, and acidification were applied to confirm that the method detected particles. Differentiation of dissolved and particulate silver (Ag) is a feature of the technique. Analysis of two wastewater samples demonstrated the applicability of SP-ICP-MS at nanograms per liter Ag concentrations. In this pilot study, AgNP was found at 100 to 200 ng/L in the presence of 50 to 500 ng/L dissolved Ag. The method provides the analytical capability to monitor Ag and other metal and metal oxide nanoparticles in fate, transport, stability, and toxicity studies using a commonly available laboratory instrument. Rapid throughput and element specificity are additional benefits of SP-ICP-MS as a measurement tool for metal and metal oxide engineered nanoparticles. Copyright © 2011 SETAC.

  10. Langmuir Probe and Mass Spectroscopic Measurements in Inductively Coupled CF4 Plasmas

    Science.gov (United States)

    Rao, M. V. V. S.; Sharma, Surendra; Cruden, B. A.; Meyyappan, M.

    2001-01-01

    Abstract Electron and ion energy distribution functions and other plasma parameters such as plasma potential (V(sub p)) , electron temperature (T(sub e)), and electron and ion number densities (n (sub e) and n(sub i)) in low pressure CF4 plasmas have been measured. The experiments were conducted in a GEC cell using an inductively coupled plasma (ICP) device powered by a 13.56 MHz radio-frequency (rf) power source. The measurements were made at 300 W of input rf power at 10, 30 and 50 mTorr gas pressures. Langmuir probe measurements suggest that n(sub e), n(sub i) and V(sub p) remain constant over 60% of the central electrode area, beyond which they decrease. Within the limits of experimental error (+/- 0.25 eV), T(sub e) remains nearly constant over the electrode area. T(sub e) and V(sub p) increase with a decrease in pressure. n(sub e) and n(sub i) are not affected as significantly as T(sub e) or V(sub p) by variation in the gas pressure. The electron energy distribution function (EEDF) measurements indicate a highly non-Maxwellian plasma. CF3+ is the most dominant ion product of the plasma, followed by CF2+ and CF+. The concentrations of CF2+ and CF+ are much larger than that is possible from direct electron impact ionization of the parent gas. The cross-section data suggest that the direct electron impact ionization of fragment neutrals and negative ion production by electron attachment may be responsible for increase of the minor ions.

  11. Determination of iodine and bromine compounds in foodstuffs by CE-inductively coupled plasma MS.

    Science.gov (United States)

    Chen, Jing-Huan; Wang, Kai-en; Jiang, Shiuh-Jen

    2007-11-01

    A CE-inductively coupled plasma mass spectrometric (CE-ICP-MS) method for iodine and bromine speciation analysis is described. Samples containing ionic iodine (I(-) and IO(3)(-)) and bromine (Br(-) and BrO(3)(-)) species are subjected to electrophoretic separation before injection into the microconcentric nebulizer (CEI-100). The separation has been achieved in a 50 cm length x 75 microm id fused-silica capillary. The electrophoretic buffer used is 10 mmol/L Tris (pH 8.0), while the applied voltage is set at -8 kV. Detection limits are 1 and 20-50 ng/mL for various I and Br compounds, respectively, based on peak height. The RSD of the peak areas for seven injections of 0.1 microg/mL I(-), IO(3)(-) and 1 microg/mL Br(-), BrO(3)(-) mixture is in the range of 3-5%. This method has been applied to determine various iodine and bromine species in NIST SRM 1573a Tomato Leaves reference material and a salt and seaweed samples obtained locally. A microwave-assisted extraction method is used for the extraction of these compounds. Over 87% of the total iodine and 83% of the total bromine are extracted using a 10% m/v tetramethylammonium hydroxide (TMAH) solution in a focused microwave field within a period of 10 min. The spike recoveries are in the range of 94-105% for all the determinations. The major species of iodine and bromine in tomato leaves, salt, and seaweed are Br(-), IO(3)(-), I(-), and Br(-), respectively.

  12. Multielemental inductively coupled plasma optical emission spectrometry analysis of nickeliferous minerals.

    Science.gov (United States)

    Abad-Peña, Elizabet; Larrea-Marín, María Teresa; Villanueva-Tagle, Margarita Edelia; Pomares-Alfonso, Mario Simeón

    2014-06-01

    An inductively coupled plasma optical emission spectrometry method for the quantitative simultaneous determination of Al, Ca, Co, Cu, Cr, Fe, K, Mg, Mn, Na, Ni, P and Zn in Cuban laterite and serpentine minerals has been developed. Additionally, V and Ti can be quantitatively determined in laterite mineral; Li, Sr, and Zr can be detected in both mineral types and Pb can be detected just in laterite mineral. The microwave-assisted total acid digestion of samples was achieved with HCl+HNO3+HF and HNO3+HClO4+HF acid mixtures for laterite and serpentine samples, respectively. In non-robust plasma operating conditions, the matrix effect characteristics of the laterite sample were dictated by the principal component Fe; while the character of the Mg principal component matrix effect was some how modified by the concomitants Fe and Ni in serpentine sample. The selection of robust conditions decreased the matrix effect. Additionally, the simulation of the matrix samples by introducing the principal component Fe or Mg, correspondingly, in calibration dissolutions was needed to overcome completely the matrix effect over the analysis accuracy. Precision of analysis was very near or lower than 10% for most elements, except Sr (15%) in L-1; and K (15%) and Li (15%) in SNi sample. Accuracy of analysis was around or lowers than 10% for most elements, except K (15%), Na (19%), P (19%) and V (19%) in L-1 sample; and Ca (14%) and P (20%) in SNi sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Preparation of thin Si:H films in an inductively coupled plasma reactor and analysis of their surface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Wenfeng [School of Physics and Telecommunication Engineering, Laboratory of Quantum Information Technology, South China Normal University, Guangzhou 510006 (China); College of Engineering, South China Agricultural University, Guangzhou 510642 (China); Chen Junfang, E-mail: chenjf@scnu.edu.cn [School of Physics and Telecommunication Engineering, Laboratory of Quantum Information Technology, South China Normal University, Guangzhou 510006 (China); Meng Ran; Wang Yang; Wang Hui; Guo Chaofeng; Xue Yongqi [School of Physics and Telecommunication Engineering, Laboratory of Quantum Information Technology, South China Normal University, Guangzhou 510006 (China)

    2010-01-15

    An important concern in the deposition of Si:H films is to obtain smooth surfaces. Herein, we deposit the thin Si:H films using Ar-diluted SiH{sub 4} as feedstock gas in an inductively coupled plasma reactor. And we carry a real-time monitor on the deposition process by using optical emission spectrum technology in the vicinity of substrate and diagnose the Ar plasma radial distribution by Langmuir probe. Surface detecting by AFM and surface profilometry in large scale shows that the thin Si:H films have small surface roughness. Distributions of both the ion density and the electron temperature are homogeneous at h = 0.5 cm. Based on these experimental results, it can be proposed inductively coupled plasma reactor is fit to deposit the thin film in large scale. Also, Ar can affect the reaction process and improve the thin Si:H films characteristics.

  14. Fractionation analysis of manganese in Turkish hazelnuts (Corylus avellana L.) by inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Erdemir, Umran Seven; Gucer, Seref

    2014-11-05

    In this study, an analytical fractionation scheme based on water, diethyl ether, n-hexane, and methanol extractions has been developed to identify manganese-bound fractions. Additionally, in vitro simulated gastric and intestinal digestion, n-octanol extraction, and activated carbon adsorption were used to interpret the manganese-bound structures in hazelnuts in terms of bioaccessibility. The total content of manganese in the samples was determined by inductively coupled plasma-mass spectrometry after microwave-assisted digestion, and additional validation was performed using atomic absorption spectroscopy. Water fractions were further evaluated by high-performance liquid chromatography hyphenated to inductively coupled plasma-mass spectrometry for the identification of water-soluble manganese fractions in hazelnut samples. The limits of detection and quantification were 3.6 and 12.0 μg L(-1), respectively, based on peak height.

  15. Coupled molecular dynamics-Monte Carlo model to study the role of chemical processes during laser ablation of polymeric materials.

    Science.gov (United States)

    Prasad, Manish; Conforti, Patrick F; Garrison, Barbara J

    2007-08-28

    The coarse grained chemical reaction model is enhanced to build a molecular dynamics (MD) simulation framework with an embedded Monte Carlo (MC) based reaction scheme. The MC scheme utilizes predetermined reaction chemistry, energetics, and rate kinetics of materials to incorporate chemical reactions occurring in a substrate into the MD simulation. The kinetics information is utilized to set the probabilities for the types of reactions to perform based on radical survival times and reaction rates. Implementing a reaction involves changing the reactants species types which alters their interaction potentials and thus produces the required energy change. We discuss the application of this method to study the initiation of ultraviolet laser ablation in poly(methyl methacrylate). The use of this scheme enables the modeling of all possible photoexcitation pathways in the polymer. It also permits a direct study of the role of thermal, mechanical, and chemical processes that can set off ablation. We demonstrate that the role of laser induced heating, thermomechanical stresses, pressure wave formation and relaxation, and thermochemical decomposition of the polymer substrate can be investigated directly by suitably choosing the potential energy and chemical reaction energy landscape. The results highlight the usefulness of such a modeling approach by showing that various processes in polymer ablation are intricately linked leading to the transformation of the substrate and its ejection. The method, in principle, can be utilized to study systems where chemical reactions are expected to play a dominant role or interact strongly with other physical processes.

  16. Relationship between the discharge mode and the spatial oxygen plasma distribution in a large size ferrite inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jun [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); R and D Center for PSK-INC Corporation, Hwaseong-si 445-170 (Korea, Republic of); Hwang, Hye Ju; Cho, Jeong Hee; Chae, Hee Sun [R and D Center for PSK-INC Corporation, Hwaseong-si 445-170 (Korea, Republic of); Kim, Dong Hwan [Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-15

    The electrical characteristics and the spatial distribution of oxygen plasma according to the number of turns in ferrite inductively coupled plasmas (ferrite ICPs) are investigated. Through a new ICP model, which includes the capacitive coupling and the power loss of the ferrite material with the conventional ICP model, the variation of the oxygen discharge characteristics depending on the number of turns is simply understood by the electrical measurement, such as the antenna voltages and the currents. As the number of the turns increases, the capacitive coupling dominantly affects the spatial plasma distribution. This capacitive coupling results in a center focused density profile along the radial direction. In spite of the same discharge conditions (discharge chamber, neutral gas, and pressure), the spatial plasma distribution over 450 mm has drastic changes by increasing number of the turns. In addition, the effect of the negative species to the density profile is compared with the argon discharge characteristics at the same discharge configuration.

  17. Thermal effect and energy-level transition rule for a mesoscopic LC circuit with inductance-capacitance coupling

    Institute of Scientific and Technical Information of China (English)

    Su Jie; Wang Ji-Suo; Liang Bao-Long; Zhang Xiao-Yan

    2009-01-01

    This paper reports that the mesoscopic inductance and capacitance coupling LC circuit is quantized by means of the canonical quantization method. Using the 'invariant eigen-operator' method, it deduces the energy-level transition rule when the system is disturbed by an external electromagnetic field. At the same time, the quantum fluctuations for the system at finite temperature are examined by virtue of the generalized Hellmann-Feynman theorem.

  18. Elemental analysis using instrumental neutron activation analysis and inductively coupled plasma atomic emission spectrometry: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Choi, Kwang Soon; Moon, Jong Hwa; Kim, Sun Ha; Lim, Jong Myoung; Kim, Young Jin [KAERI, Taejon (Korea, Republic of); Quraishi, Shamshad Begum [Bangladesh Atomic Energy Commission, Dhaka (Bangladesh)

    2003-05-01

    Elemental analyses for certified reference materials were carried out using instrumental neutron activation analysis and inductively coupled plasma-atomic emission spectrometry. Five Certified Reference Materials (CRM) were selected for the study on comparative analysis of environmental samples. The CRM are Soil (NIST SRM 2709), Coal fly ash (NIST SRM 1633a), urban dust (NIST SRM 1649a) and air particulate on filter media (NIST SRM 2783 and human hair (GBW 09101)

  19. Application of inductively coupled plasma quadrupole mass spectrometry for the determination of monazite ages by lead isotope ratios

    OpenAIRE

    Godoy,José Marcus; Godoy,Maria Luiza D. P; Aronne,Cláudia C.

    2007-01-01

    In order to evaluate the applicability of inductively coupled plasma quadrupole mass spectrometry to the determination of Pb/Pb, U/Pb and Th/Pb ages of monazite, studies were carried out initially applying lead atom ratio reference standards (NIST SRM 981 and 982). Further, the optimized methodology was applied to monazite sands from three different sites, Sugar Loaf Hill (Rio de Janeiro city), Buena (Rio de Janeiro state) and Black Sands Beach (Guarapari, Espirito Santo state); the obtained ...

  20. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma-mass spectrometry

    OpenAIRE

    Pace, Heather E.; Rogers, Nicola J.; Jarolimek, Chad; Coleman, Victoria A.; Higgins, Christopher P.; Ranville, James F.

    2011-01-01

    Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that can both size and count metal-containing nanoparticles. A major benefit of the spICP-MS method is its ability to characterize nanoparticles at concentrations relevant to the environment. This paper...

  1. Catheter Ablation

    Science.gov (United States)

    ... ablation. Visit Cardiac ablation procedures and Cardiac conduction system for more information about this topic. Related ... National Institutes of Health Department of Health and Human Services USA.gov

  2. Coupling of a gas chromatograph to a simultaneous-detection inductively coupled plasma mass spectrograph for speciation of organohalide and organometallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, James H.; Schilling, G; Sperline, Roger; Denton, M Bonner B.; Young, Erick T.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2004-06-01

    A gas chromatograph (GC) has been coupled to an inductively coupled plasma Mattauch-Herzog geometry mass spectrograph (ICP-MHMS) equipped with a novel detector array. In its current state of development the detector array, termed the focal plan camera (FPC), permits the simultaneous monitoring of up to 15 m/z values. A heated line was used to transfer the capillary-column effluent from the GC to the ICP torch, though due to instrument operating conditions, the transfer line was terminated 50 mm ahead of the ICP torch. Minimal tailing was observed, with the most severe effect seen for high-boiling analytes. With the coupling, absolute limits of detection are in the tens to hundreds of femtogram regime for organometallic species and in the single pictogram regime for halogenated hydrocarbons.

  3. Depolymerization of the waste polymers in municipal solid waste streams using induction-coupled plasma technology

    Science.gov (United States)

    Guddeti, Ravikishan Reddy

    2000-10-01

    A significant, valuable percentage of today's municipal solid waste stream consists of polymeric materials, for which almost no economic recycling technology currently exists. This polymeric waste is incinerated, landfilled or recycled via downgraded usage. Thermal plasma treatment is a potentially viable means of recycling these materials by converting them back into monomers or into other useful compounds. The technical, laboratory scale, feasibility of using an induction-coupled RF plasma [ICP] heated reactor for this purpose has been demonstrated in the present study. Polyethylene [PE], polypropylene [PP] and polyethylene terephthalate [PET], the model polymers chosen for the study, were injected axially through the center of an ICP torch. 68% of PE, 78% of PP and 75% of PET were converted into gaseous products. Ethylene and propylene were the primary gaseous products of decomposition of the former two polymers and acetylene was the primary product of the depolymerization of PET. The amount of propylene obtained in PE depolymerization was significantly higher than anticipated and was believed to be due to beta-scission reactions occurring at the high plasma temperatures. Statistical design of experiments was used to determine the influence of individual variables. Analysis of results showed that plasma plate power, central gas flow rate, probe gas flow rate, powder feed rate and the interaction between the quench gas flow rate and power input were the key process parameters affecting the yield of monomer in the product gas stream. Depolymerization of a PE + PP mixture yielded concentrations of propylene and ethylene close to those predicted from weighting the concentrations of products from the individual polymers. 75.5 wt.% of the mixture was converted into monomers. TEM analysis of the carbon residues collected from different locations of the reactor indicated the formation of some novel carbon structures, including carbon nanotubes. The presence of these

  4. Developments in and applications of capillary electrophoresis inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, K.A

    1999-08-01

    This project has set out to design and optimise a robust and efficient interface for capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) and to investigate the application of the technique in elemental speciation studies. An interface was constructed using a commercial microconcentric nebuliser (MCN) and a cyclonic spray chamber. The cyclonic spray chamber was designed specifically to provide rapid sample response and washout and to minimise sample dispersion. Isoforms of the heavy metal binding protein, metallothionein, were separated and the bound metals detected to characterise the interface. Suction from the self-aspirating nebuliser was identified as the principal factor controlling electrophoretic resolution. To maintain resolution, two methods for counterbalancing the nebuliser suction were investigated. In the first method an optimised make-up flow was employed, and in the second a negative pressure was applied to the buffer vial during the separation. The negative pressure method was preferred because it did not significantly compromise sensitivity. The MCN was found to be prone to regular blocking which compromised the analytical precision of the system. A second interface was constructed using a glass MicroMist nebuliser. The MicroMist nebuliser was found to be less prone to blocking than the MCN and significantly improved the precision of the system to less than 4.3% RSD. The MicroMist nebuliser did, however, provide a lower sensitivity. The advantage of employing an electroosmotic flow marker to correct for migration time drifts was demonstrated. A CE-ICP-MS method was developed for the speciation of selenium in selenium enriched yeasts and nutritional supplements. Selenoamino acids and inorganic selenium species were separated, as anions, under strong electroosmotic flow conditions. Methods to enhance the selenium sensitivity were investigated. A proteolytic enzyme extraction method was employed and the effect of the

  5. Determination of uranium from nuclear fuel in environmental samples using inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F. [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen]|[Radiation Physics and Chemistry Problems Inst., Minsk (Belarus); Becker, J.S. [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen

    2000-11-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The {sup 236}U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on inductively coupled plasma quadrupole mass spectrometry with a hexapole collision cell (HEX-ICP-QMS). The figures of merit of the HEX-ICP-QMS were studied with a plasma-shielded torch using different nebulizers (such as an ultrasonic nebulizer (USN) and Meinhard nebulizer) for solution introduction. A {sup 238}U{sup +} ion intensity of up to 27000 MHz/ppm in HEX-ICP-QMS with USN was observed by introducing helium into the hexapole collision cell as the collision gas at a flow rate of 10 ml min{sup -1}. The formation rate of uranium hydride ions UH{sup +}/U{sup +} of 2 x 10{sup -6} was obtained by using USN with a membrane desolvator. The limit of {sup 236}U/{sup 238}U ratio determination in 10 {mu}g 1{sup -1} uranium solution was 3 x 10{sup -7} corresponding to the detection limit for {sup 236}U of 3 pg 1{sup -1}. The precision of uranium isotopic ratio measurements in 10 {mu}g 1{sup -1} laboratory uranium isotopic standard solution was 0.13% ({sup 235}U/{sup 238}U) and 0.33% ({sup 236}U/{sup 238}U) using a Meinhard nebulizer and 0.45% ({sup 235}U/{sup 238}U) and 0.88% ({sup 236}U/{sup 238}U) using a USN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the {sup 236}U/{sup 238}U ratio ranged from 10{sup -5} to 10{sup -3}. (orig.)

  6. Deactivation of lipopolysaccharide by Ar and H2 inductively coupled low-pressure plasma

    Science.gov (United States)

    Bartis, E. A. J.; Barrett, C.; Chung, T.-Y.; Ning, N.; Chu, J.-W.; Graves, D. B.; Seog, J.; Oehrlein, G. S.

    2014-01-01

    Using an inductively coupled plasma system, we study the effects of direct plasma, plasma-generated high-energy photons in the ultraviolet and vacuum ultraviolet (UV/VUV), and radical treatments on lipopolysaccharide (LPS). LPS is a biomolecule found in the outer membrane of Gram-negative bacteria and a potent stimulator of the immune system composed of polysaccharide and lipid A, which contains six aliphatic chains. LPS film thickness spun on silicon was monitored by ellipsometry while the surface chemistry was characterized before and after treatments by x-ray photoelectron spectroscopy (XPS). Additionally, biological activity was measured using an enzyme-linked immunosorbent assay under (a) a sensitive regime (sub-µM concentrations of LPS) and (b) a bulk regime (above µM concentrations of LPS) after plasma treatments. Direct plasma treatment causes rapid etching and deactivation of LPS in both Ar and H2 feed gases. To examine the effect of UV/VUV photons, a long-pass filter with a cut-off wavelength of 112 nm was placed over the sample. H2 UV/VUV treatment causes material removal and deactivation due to atomic and molecular UV/VUV emission while Ar UV/VUV treatment shows minimal effects as Ar plasma does not emit UV/VUV photons in the transmitted wavelength range explored. Interestingly, radical treatments remove negligible material but cause deactivation. Based on the amphiphilic structure of LPS, we expect a lipid A rich surface layer to form at the air-water interface during sample preparation with polysaccharide layers underneath. XPS shows that H2 plasma treatment under direct and UV/VUV conditions causes oxygen depletion through removal of C-O and O-C = O bonds in the films, which does not occur in Ar treatments. Damage to these groups can remove aliphatic chains that contribute to the pyrogenicity of LPS. Radical treatments from both Ar and H2 plasmas remove aliphatic carbon from the near-surface, demonstrating the important role of neutral species.

  7. Investigation of a measure of robustness in inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Makonnen, Yoseif; Beauchemin, Diane

    2015-01-01

    In industrial/commercial settings where operators often have minimal expertise in inductively coupled plasma (ICP) mass spectrometry (MS), there is a prevalent need for a response factor indicating robust plasma conditions, which is analogous to the Mg II/Mg I ratio in ICP optical emission spectrometry (OES), whereby a Mg II/Mg I ratio of 10 constitutes robust conditions. While minimizing the oxide ratio usually corresponds to robust conditions, there is no specific target value that is widely accepted as indicating robust conditions. Furthermore, tuning for low oxide ratios does not necessarily guarantee minimal matrix effects, as they really address polyatomic interferences. From experiments, conducted in parallel for both MS and OES, there were some element pairs of similar mass and very different ionization potential that were exploited for such a purpose, the rationale being that, if these elements were ionized to the same extent, then that could be indicative of a robust plasma. The Be II/Li I intensity ratio was directly related to the Mg II/Mg I ratio in OES. Moreover, the 9Be+/7Li+ ratio was inversely related to the CeO+/Ce+ and LaO+/La+ oxide ratios in MS. The effects of different matrices (i.e. 0.01-0.1 M Na) were also investigated and compared to a conventional argon plasma optimized for maximum sensitivity. The suppression effect of these matrices was significantly reduced, if not eliminated in the case of 0.01 M Na, when the 9Be+/7Li+ ratio was around 0.30 on the Varian 820 MS instrument. Moreover, a very similar ratio (0.28) increased robustness to the same extent on a completely different ICP-MS instrument (PerkinElmer NEXION). Much greater robustness was achieved using a mixed-gas plasma with nitrogen in the outer gas and either nitrogen or hydrogen as a sheathing gas, as the 9Be+/7Li+ ratio was then around 1.70. To the best of our knowledge, this is the first report on using a simple analyte intensity ratio, 9Be+/7Li+, to gauge plasma robustness.

  8. Identification of organically associated trace elements in wood and coal by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Richaud, R; Lazaro, M J; Lachas, H; Miller, B B; Herod, A A; Dugwell, D R; Kandiyoti, R

    2000-01-01

    1-Methyl-2-pyrrolidinone (NMP) was used to extract samples of wood (forest residue) and coal; the extracts were analysed by inductively coupled plasma mass spectrometry (ICP-MS) using two different sample preparation methods, in order to identify trace elements associated with the organic part of the samples. A sample of fly ash was similarly extracted and analysed in order to assess the behaviour of the mineral matter contained within the wood and coal samples. 32% of the biomass was extracted at the higher temperature and 12% at room temperature while only 12% of the coal was extracted at the higher temperature and 3% at room temperature. Less than 2% of the ash dissolved at the higher temperature. Size exclusion chromatograms of the extracts indicated the presence of significant amounts of large molecular mass materials (>1000 mu) in the biomass and coal extracts but not in the ash extract. Trace element analyses were carried out using ICP-MS on the acid digests prepared by 'wet ashing' and microwave extraction. Sixteen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, V and Zn) were quantified, in the samples before extraction, in the extracts and in the residues. Concentrations of trace elements in the original biomass sample were lower than in the coal sample while the concentrations in the ash sample were the highest. The major trace elements in the NMP extracts were Ba, Cu, Mn and Zn from the forest residue; Ba, Cu, Mn, Pb and Zn from the coal; Cu and Zn from the ash. These elements are believed to be associated with the organic extracts from the forest residue and coal, and also from the ash. Be and Sb were not quantified in the extracts because they were present at too low concentrations; up to 40% of Mn was extracted from the biomass sample at 202 degrees C, while Se was totally extracted from the ash sample. For the forest residue, approximately 7% (at room temperature) and 45% (at 202 degrees C) of the total trace elements studied were

  9. Inductive couple plasma reactive ion etching characteristics of TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Garay, Adrian Adalberto; Hwang, Su Min; Chung, Chee Won, E-mail: cwchung@inha.ac.kr

    2015-07-31

    Changes in the inductively coupled plasma reactive ion etching characteristics of TiO{sub 2} thin films in response to the addition of HBr, Cl{sub 2} and C{sub 2}F{sub 6} to Ar gas were investigated. As the HBr, Cl{sub 2} and C{sub 2}F{sub 6} concentration increased, the etch rate increased; however, the etch profile degree of anisotropy followed a different trend. As HBr concentration increased, the greatest anisotropic etch profile was obtained at 100% HBr, while the greatest anisotropic etch profile was obtained at concentrations of 25% when etching was conducted under C{sub 2}F{sub 6} and Cl{sub 2}. Field emission scanning electron microscopy revealed that 25% C{sub 2}F{sub 6} generated the greatest vertical etch profile; hence, etch parameters were varied at this concentration. The effects of rf power, dc-bias voltage and gas pressure on the etch rate and etch profile were also investigated. The etch rate and degree of anisotropy in the etch profile increased with increasing rf power and dc-bias voltage and decreasing gas pressure. X-ray photoelectron spectroscopy analysis of the films etched under a C{sub 2}F{sub 6}/Ar gas mixture revealed the existence of etch byproducts containing F (i.e. TiF{sub x}) over the film. C{sub x}F{sub y} compounds were not detected on the film surface, probably due to contamination with atmospheric carbon. - Highlights: • Reactive ion etching of TiO{sub 2} films under HBr, C{sub 2}F{sub 6}, and Cl{sub 2} gases was studied. • Etch rate and etch profile of TiO{sub 2} films were investigated under each gas chemistry. • The highest degree of anisotropy was achieved at 25% C{sub 2}F{sub 6}/Ar. • Strong etch conditions at 25% C{sub 2}F{sub 6}/Ar increased etch rate and degree of anisotropy. • X-ray photoelectron spectroscopy revealed the existence of F-containing etch residues.

  10. Optimization of the operating conditions of solid sampling electrothermal vaporization coupled to inductively coupled plasma optical emission spectrometry for the sensitive direct analysis of powdered rice.

    Science.gov (United States)

    Sadiq, Nausheen; Beauchemin, Diane

    2014-12-03

    Two different approaches were used to improve the capabilities of solid sampling (SS) electrothermal vaporization (ETV) coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) for the direct analysis of powdered rice. Firstly, a cooling step immediately before and after the vaporization step in the ETV temperature program resulted in a much sharper analyte signal peak. Secondly, point-by-point internal standardization with an Ar emission line significantly improved the linearity of calibration curves obtained with an increasing amount of rice flour certified reference material (CRM). Under the optimized conditions, detection limits ranged from 0.01 to 6ngg(-1) in the solid, depending on the element and wavelength selected. The method was validated through the quantitative analysis of corn bran and wheat flour CRMs. Application of the method to the multi-elemental analysis of 4-mg aliquots of real organic long grain rice (white and brown) also gave results for Al, As, Co, Cu, Fe, Mg, Se, Pb and Zn in agreement with those obtained by inductively coupled plasma mass spectrometry following acid digestion of 0.2-g aliquots. As the analysis takes roughly 5min per sample (2.5min for grinding, 0.5-1min for weighing a 4-mg aliquot and 87s for the ETV program), this approach shows great promise for fast screening of food samples.

  11. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Arnquist, Isaac J.; Holcombe, James A., E-mail: holcombe@mail.utexas.edu

    2012-10-15

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (K{sub app}) and intrinsic (K{sub int}) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu{sup 2+} for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu{sup 2+} and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu{sup 2+} can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu{sup 2+} ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data K{sub app} and K{sub int} were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log K{sub app} values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log K{sub int} values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log K{sub int} at pH 9.53 was in good agreement with literature values obtained from alternative methods, K{sub int} at pH 7.93 was about 2.5 Multiplication-Sign larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the 'intrinsic' binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at p

  12. Gas and liquid chromatography with inductively coupled plasma mass spectrometry detection for environmental speciation analysis — advances and limitations

    Science.gov (United States)

    Szpunar, Joanna; McSheehy, Shona; Połeć, Kasia; Vacchina, Véronique; Mounicou, Sandra; Rodriguez, Isaac; Łobiński, Ryszard

    2000-07-01

    Recent advances in the coupling of gas chromatography (GC) and high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP MS) and their role in trace element speciation analysis of environmental materials are presented. The discussion is illustrated with three research examples concerning the following topics: (i) development and coupling of multicapillary microcolumn GC with ICP MS for speciation of organotin in sediment and biological tissue samples; (ii) speciation of arsenic in marine algae by size-exclusion-anion-exchange HPLC-ICP MS; and (iii) speciation of cadmium in plant cell cultures by size-exclusion HPLC-ICP MS. Particular attention is paid to the problem of signal identification in ICP MS chromatograms; the potential of electrospray MS/MS for this purpose is highlighted.

  13. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Wiewior, P. P.; Chalyy, O. [University of Nevada Reno, Reno, Nevada 89557 (United States); Papp, D. [University of Nevada Reno, Reno, Nevada 89557 (United States); ELI-ALPS, ELI-Hu Nkft., H-6720 Szeged (Hungary)

    2015-11-15

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  14. Flow-field differences and electromagnetic-field properties of air and N2 inductively coupled plasmas

    Science.gov (United States)

    Yu, Minghao; Yamada, Kazuhiko; Takahashi, Yusuke; Liu, Kai; Zhao, Tong

    2016-12-01

    A numerical model for simulating air and nitrogen inductively coupled plasmas (ICPs) was developed considering thermochemical nonequilibrium and the third-order electron transport properties. A modified far-field electromagnetic model was introduced and tightly coupled with the flow field equations to describe the Joule heating and inductive discharge phenomena. In total, 11 species and 49 chemical reactions of air, which include 5 species and 8 chemical reactions of nitrogen, were employed to model the chemical reaction process. The internal energy transfers among translational, vibrational, rotational, and electronic energy modes of chemical species were taken into account to study thermal nonequilibrium effects. The low-Reynolds number Abe-Kondoh-Nagano k-ɛ turbulence model was employed to consider the turbulent heat transfer. In this study, the fundamental characteristics of an ICP flow, such as the weak ionization, high temperature but low velocity in the torch, and wide area of the plasma plume, were reproduced by the developed numerical model. The flow field differences between the air and nitrogen ICP flows inside the 10-kW ICP wind tunnel were made clear. The interactions between the electromagnetic and flow fields were also revealed for an inductive discharge.

  15. Methyl mercury in nail clippings in relation to fish consumption analysis with gas chromatography coupled to inductively coupled plasma mass spectrometry: a first orientation.

    Science.gov (United States)

    Krystek, Petra; Favaro, Paulo; Bode, Peter; Ritsema, Rob

    2012-08-15

    For the identification of human exposure to one of the most toxic compounds, which is methyl mercury (MeHg(+)), fingernail clippings were selected as the matrix of interest. Within this pilot study, six samples from different origins and from people with different food consumption patterns were chosen. Species-analysis of MeHg(+) was performed according to the following procedure: dissolution of the sample material in tetramethylammonium hydroxide (TMAH), derivatisation of MeHg(+) with sodium tetraethylborate (NaBEt(4)), extraction into iso-octane and measurement with gas chromatography hyphenated to inductively coupled plasma mass spectrometry (GC-ICPMS) for the quantification MeHg(+).

  16. Hyphenation of ultra performance liquid chromatography (UPLC) with inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of bromine containing preservatives

    DEFF Research Database (Denmark)

    Bendahl, Lars; Hansen, Steen Honoré; Gammelgaard, Bente

    2006-01-01

    Ultra performance liquid chromatography (UPLC) was coupled to inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of three bromine-containing preservatives, monitoring the 79Br and 81Br isotopes simultaneously. Due to the efficiency of the 1.7 microm column packing material, t...... analysis of bromine-containing preservatives in commercially available cosmetic products.......Ultra performance liquid chromatography (UPLC) was coupled to inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of three bromine-containing preservatives, monitoring the 79Br and 81Br isotopes simultaneously. Due to the efficiency of the 1.7 microm column packing material...

  17. Fabrication and application of a wireless inductance-capacitance coupling microsensor with electroplated high permeability material NiFe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y H; Chang, I N [Ph. D. Program in Electrical and Communications Engineering, Feng-Chia University, Taichung 40724, Taiwan (China); Chang, H C; Lai, C C, E-mail: hcchang@fcu.edu.tw [Department of Automatic Control Engineering, Feng-Chia University, Taichung 40724, Taiwan (China)

    2011-01-01

    A fully integrated wireless inductance-capacitance (LC) coupling microsensor was designed and fabricated by MEMS technology. The sensing loop was formed by connecting a deformable parallel-plated capacitor and a planar spiral inductor with a Ni(80)Fe(20) core. Polyimide and PMMA were used to isolate and package the devices. Typical dimension of the sensors was 5 x 5 mm{sup 2} x 0.77 mm. Different electroplated inductive coils (30, 40, and 60 turns) were fabricated to connect with a 4 x 4 mm{sup 2} plate capacitor in series. The LC sensing module for measuring liquid-level induced frequency responses was setup. Experimental results show that frequency response decreased as liquid level increased and sensitivity is about 7.01 kHz/cm with deviation less than 2%. Developed planar spiral inductor with high permeability magnetic core can provide a wide range of frequency variation in LC sensing applications.

  18. Experimental observation of electron bounce resonance through electron energy distribution measurement in a finite size inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Seuli [Department of Nanoscale Semiconductor Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763 (Korea, Republic of); Kang, Hyun-Ju; Kim, Yu-Sin; Chang, Yoon-Min; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763 (Korea, Republic of); Kwon, Deuk-Chul [Plasma Technology Research Center, National Fusion Research Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of)

    2016-06-15

    The electron bounce resonance was experimentally investigated in a low pressure planar inductively coupled plasma. The electron energy probability functions (EEPFs) were measured at different chamber heights and the energy diffusion coefficients were calculated by the kinetic model. It is found that the EEPFs begin to flatten at the first electron bounce resonance condition, and the plateau shifts to a higher electron energy as the chamber height increases. The plateau which indicates strong electron heating corresponds not only to the electron bounce resonance condition but also to the peaks of the first component of the energy diffusion coefficients. As a result, the plateau formation in the EEPFs is mainly due to the electron bounce resonance in a finite inductive discharge.

  19. Influence of Discharge Parameters on Tuned Substrate Self-Bias in an Radio-Frequency Inductively Coupled Plasma

    Institute of Scientific and Technical Information of China (English)

    Ding Zhenfeng; Sun Jingchao; Wang Younian

    2005-01-01

    The tuned substrate self-bias in an rf inductively coupled plasma source is controlled by means of varying the impedance of an external LC network inserted between the substrate and the ground. The influencing parameters such as the substrate axial position, different coupling coils and inserted resistance are experimentally studied. To get a better understanding of the experimental results, the axial distributions of the plasma density, electron temperature and plasma potential are measured with an rf compensated Langmuir probe; the coil rf peak-to-peak voltage is measured with a high voltage probe. As in the case of changing discharge power, it is found that continuity, instability and bi-stability of the tuned substrate bias can be obtained by means of changing the substrate axial position in the plasma source or the inserted resistance. Additionally,continuity can not transit directly into bi-stability, but evolves via instability. The inductance of the coupling coil has a substantial effect on the magnitude and the property of the tuned substrate bias.

  20. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    Energy Technology Data Exchange (ETDEWEB)

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.

  1. Uncertainty Estimation of Metals and Semimetals Determination in Wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)

    Science.gov (United States)

    Marques, J. R.; Villa-Soares, S. M.; Stellato, T. B.; Silva, T. B. S. C.; Faustino, M. G.; Monteiro, L. R.; Pires, M. A. F.; Cotrim, M. E. B.

    2016-07-01

    The measurement uncertainty is a parameter that represents the dispersion of the results obtained by a method of analysis. The estimation of measurement uncertainty in the determination of metals and semimetals is important to compare the results with limits defined by environmental legislation and conclude if the analytes are meeting the requirements. Therefore, the aim of this paper is present all the steps followed to estimate the uncertainty of the determination of amount of metals and semimetals in wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Measurement uncertainty obtained was between 4.6 and 12.2% in the concentration range of mg.L-1.

  2. Magneto-structural Coupling Field Analysis on the End Winding of a Multi-phase Induction Machine

    Directory of Open Access Journals (Sweden)

    Liu Hailong

    2012-09-01

    Full Text Available In order to study the steady-state electromagnetic forces acting on the stator end-winding in a multi-phase induction machine during the operation, we conducted a 3-D electromagnetic and mechanical sequential coupling analysis to analyze the stress and the deformation. Both of them are done by the finite-element method. Meanwhile, the geometry of the nose portion is modified for the limited computer resources. The result shows the nose part of the coil ends experiences larger displacement, but von Mises stresses are larger in the straight part.

  3. Differentiation of colloidal and dissolved silica: Analytical separation using spectrophotometry and inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.

    1991-01-01

    A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.

  4. A Comparison between Ion chromatography and Inductively Coupled Plasma for the Determination of Bromate in Certain Samples of Foodstuffs

    Directory of Open Access Journals (Sweden)

    Alanowd O. Mehder

    2015-06-01

    Full Text Available Ion chromatography (IC and inductively coupled plasma (ICP-MS both were applied for the determination of bromate in some food samples. Attempts were made to establish calibration curves, however in case of IC, an additional abnormal peak was found to overlap with the bromate peak. This renders IC to be unsuccessful in the determination of bromate compared to ICP-MS technique. ICP-MS was found to give accurate results; therefore, it was applied for the determination of bromate in different samples of food stuffs.

  5. Femtosecond Laser Ablation Multicollector ICPMS Analysis of Uranium Isotopes in NIST Glass

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, Andrew M.; Springer, Kellen WE; Ward, Jesse D.; Jarman, Kenneth D.; Robinson, John W.; Endres, Mackenzie C.; Hart, Garret L.; Gonzalez, Jhanis J.; Oropeza, Dayana; Russo, Richard; Willingham, David G.; Naes, Benjamin E.; Fahey, Albert J.; Eiden, Gregory C.

    2015-02-06

    We have utilized femtosecond laser ablation coupled to multi-collector inductively couple plasma mass spectrometry to measure the uranium isotopic content of NIST 61x (x=0,2,4,6) glasses. The uranium content of these glasses is a linear two-component mixing between isotopically natural uranium and the isotopically depleted spike used in preparing the glasses. Laser ablation results match extremely well, generally within a few ppm, with solution analysis following sample dissolution and chemical separation. In addition to isotopic data, sample utilization efficiency measurements indicate that over 1% of ablated uranium atoms reach a mass spectrometer detector, making this technique extremely efficient. Laser sampling also allows for spatial analysis and our data indicate that rare uranium concentration inhomogeneities exist in NIST 616 glass.

  6. A low-power ASK demodulator for inductively coupled implantable electronics

    DEFF Research Database (Denmark)

    Gudnason, Gunnar

    2000-01-01

    An amplitude shift keying (ASK) demodulator is presented which is suitable for implantable electronic devices that are powered through an inductive link. The demodulator has been tested with carrier frequencies in the range 1-15 MHz, covering most commonly used frequencies. Data rates up to several...

  7. Determination of hafnium at the 10(-4)% level (relative to zirconium content) using neutron activation analysis, inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry.

    Science.gov (United States)

    Smolik, Marek; Polkowska-Motrenko, Halina; Hubicki, Zbigniew; Jakóbik-Kolon, Agata; Danko, Bożena

    2014-01-02

    Hafnium at the very low level of 1-8 ppm (in relation to zirconium) was determined in zirconium sulfate solutions (originating from investigations of the separation of ca. 44 ppm Hf from zirconium by means of the ion exchange method) by using three independent methods: inductively coupled plasma mass spectrometry (ICP MS), neutron activation analysis (NAA) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results of NAA and ICP MS determinations were consistent with each other across the entire investigated range (the RSD of both methods did not exceed 38%). The results of ICP-AES determination were more diverse, particularly at less than 5 ppm Hf (RSD was significantly higher: 29-253%). The ion exchange method exploiting Diphonix(®) resin proved sufficient efficiency in Zr-Hf separation when the initial concentration ratio of the elements ([Zr]0/[Hf]0) ranged from 1200 to ca. 143,000. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Determination of 20 trace elements and arsenic species for a realgar-containing traditional Chinese medicine Niuhuang Jiedu tablets by direct inductively coupled plasma-mass spectrometry and high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Jin, Pengfei; Liang, Xiaoli; Xia, Lufeng; Jahouh, Farid; Wang, Rong; Kuang, Yongmei; Hu, Xin

    2016-01-01

    Niuhuang Jiedu tablet (NHJDT) is a realgar-containing traditional Chinese medicine. A direct inductively coupled plasma-mass spectrometry (ICP-MS) method for the simultaneous determination of 20 trace elements (Mg, K, Ca, Na, Fe, As, Zn, Sr, Ba, Cu, Mn, Ni, Pb, V, Cr, Se, Co, Mo, Cd, Hg) in NHJDT, as well as in water, gastric fluid and intestinal fluid was established. Meanwhile, a high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) method was developed for the determination of arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and for the identification of arsenobetaine (AsB) and arsenocholine (AsC) in these extracts. Both methods were fully validated in the respect of linearity, sensitivity, precision, stability and accuracy. The reliability of the ICP-MS method was further evaluated using a certified standard reference material prepared from dried tomato leaves (NIST, SRM 1572a). The analysis showed that some manufacturers formulated lower amount of realgar than required in the Chinese Pharmacopoeia (ChP) in their preparations. In addition, almost same extraction profiles for total As and inorganic As were found in water and in gastrointestinal fluids, while higher extraction rates for other 19 elements were observed in gastrointestinal fluids. Our findings show that the toxicities of Hg, Cu, Cd and Pb in NHJDP are low, while the real As toxicity in NHJDT should be deeply investigated.

  9. Effects of Leakage Inductances on Magnetically Coupled Y-Source Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede

    2014-01-01

    Coupled inductors have been used with impedance-source networks, extended from the earlier Z-source network, to keep their shoot-through times short, while providing high-voltage gains. A commonly stated requirement for these networks is that their magnetic couplings must be strong or their leaka...

  10. Investigating Age Resolution in Laser Ablation Geochronology

    Science.gov (United States)

    Horstwood, Matt; Kosler, Jan; Jackson, Simon; Pearson, Norman; Sylvester, Paul

    2009-02-01

    Workshop on Data Handling in LA-ICP-MS U-Th-Pb Geochronology; Vancouver, British Columbia, Canada, 12-13 July 2008; Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) uranium-thorium-lead (U-Th-Pb) dating is an increasingly popular approach for determining the age of mineral grains and the timing of geological events. The spatial resolution offered by this technique allows detailed investigations of complex igneous and metamorphic processes, and the speed of data capture allows vast amounts of information to be gathered rapidly. Laser ablation U-Th-Pb dating is therefore becoming an increasingly influential technique to the geochronology community, providing cost-effective and ready access to age data for laboratories and end users worldwide. However, complications in acquiring, processing, and interpreting data can lead to inaccurate age information entering the literature. With the numbers of practitioners expanding rapidly, the need to standardize approaches and resolve difficulties (particularly involving the subjectivity in processing laser ablation U-Th-Pb data) is becoming important.

  11. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: A tutorial review. Part II. Practical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Leclercq, Amélie, E-mail: amelie.leclercq@cea.fr [CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette (France); Nonell, Anthony, E-mail: anthony.nonell@cea.fr [CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette (France); Todolí Torró, José Luis, E-mail: jose.todoli@ua.es [Universidad de Alicante, Departamento de Quimica Analitica, Nutricion y Bromatología, Ap. de Correos, 99, 03080 Alicante (Spain); Bresson, Carole, E-mail: carole.bresson@cea.fr [CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette (France); Vio, Laurent, E-mail: laurent.vio@cea.fr [CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette (France); Vercouter, Thomas, E-mail: thomas.vercouter@cea.fr [CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette (France); Chartier, Frédéric, E-mail: frederic.chartier@cea.fr [CEA Saclay, DEN, DANS, DPC, 91191 Gif-sur-Yvette (France)

    2015-07-23

    Graphical abstract: This tutorial review is dedicated to the analysis of organic/hydro-organic matrices by ICP techniques. A state-of-the-art focusing on sample introduction, relevant operating parameters optimization and analytical strategies for elemental quantification is provided. - Highlights: • Practical considerations to perform analyses in organic/hydro-organic matrices. • Description, benefits and drawbacks of recent introduction devices. • Optimization to improve plasma tolerance towards organic/hydro-organic matrices. • Analytical strategies for elemental quantification in organic/hydro-organic matrices. - Abstract: Inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are increasingly used to carry out analyses in organic/hydro-organic matrices. The introduction of such matrices into ICP sources is particularly challenging and can be the cause of numerous drawbacks. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP sources. Part I provided theoretical considerations associated with the physico-chemical properties of such matrices, in an attempt to understand the induced phenomena. Part II of this tutorial review is dedicated to more practical considerations on instrumentation, instrumental and operating parameters, as well as analytical strategies for elemental quantification in such matrices. Two important issues are addressed in this part: the first concerns the instrumentation and optimization of instrumental and operating parameters, pointing out (i) the description, benefits and drawbacks of different kinds of nebulization and desolvation devices and the impact of more specific instrumental parameters such as the injector characteristics and the material used for the cone; and, (ii) the optimization of operating parameters, for both ICP-OES and ICP-MS. Even if it is at the margin of this tutorial review

  12. Study on atomic layer etching of Si in inductively coupled Ar/Cl2 plasmas driven by tailored bias waveforms

    Science.gov (United States)

    Ma, Xiaoqin; Zhang, Saiqian; Dai, Zhongling; Wang, Younian

    2017-08-01

    Plasma atomic layer etching is proposed to attain layer-by-layer etching, as it has atomic-scale resolution, and can etch monolayer materials. In the etching process, ion energy and angular distributions (IEADs) bombarding the wafer placed on the substrate play a critical role in trench profile evolution, thus importantly flexibly controlling IEADs in the process. Tailored bias voltage waveform is an advisable method to modulate the IEADs effectively, and then improve the trench profile. In this paper, a multi-scale model, coupling the reaction chamber model, sheath model, and trench model, is used to research the effects of bias waveforms on the atomic layer etching of Si in Ar/Cl2 inductively coupled plasmas. Results show that different discharge parameters, such as pressure and radio-frequency power influence the trench evolution progress with bias waveforms synergistically. Tailored bias waveforms can provide nearly monoenergetic ions, thereby obtaining more anisotropic trench profile.

  13. Novel applications of high performance ion chromatography-inductively coupled plasma mass spectrometry (HPIC-ICP-MS)

    CERN Document Server

    Hann, S

    2001-01-01

    This work demonstrates the development of highly sensitive and selective analytical methods, which make use of the hyphenation of high performance ion chromatography (HPIC) to inductively coupled plasma sector field mass spectrometry (ICP-SFMS). On-line coupling a chromatographic separation method with an elemental detection method provides two advantages: (1) the components of a possibly interfering matrix can be separated allowing accurate and precise ultra trace analysis of the element of interest and (2) elemental species of an element can be separated and quantified. In this work, matrix separation methods for interference free determination of 232Th, 234U, 235U and 238U in geological matrices were developed and employed. Furthermore HPIC-ICP-SFMS was applied for ultra trace analysis of Pd in environmental and geological matrices. The usefulness of HPIC-ICP-SFMS for speciation studies was demonstrated by investigating the interaction of an anti-cancer drug (cisplatin) with guanosine monophosphates.

  14. Bead Injection Extraction Chromatography using High-capacity Lab-on-Valve as a Front End to Inductively Coupled Plasma Mass Spectrometry for Rapid Urine Radiobioassay

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per

    2013-01-01

    A novel bead injection (BI) extraction chromatographic microflow system exploiting high-capacity lab-on-valve (LOV) platform coupled with inductively coupled plasma mass spectrometric detection is developed for rapid and automated determination of plutonium in human urine. A microconduit (1 mL) i...

  15. A Maximum Efficiency Point Tracking Control Scheme Based on Different Cross Coupling of Dual-Receiver Inductive Power Transfer System

    Directory of Open Access Journals (Sweden)

    Ruikun Mai

    2017-02-01

    Full Text Available One of the most promising inductive power transfer applications is the wireless power supply for locomotives which may cancel the need for pantographs. In order to meet the dynamic and high power demands of wireless power supplies for locomotives, a relatively long transmitter track and multiple receivers are usually adopted. However, during the dynamic charging, the mutual inductances between the transmitter and receivers vary and the load of the locomotives also changes randomly, which dramatically affects the system efficiency. A maximum efficiency point tracking control scheme is proposed to improve the system efficiency against the variation of the load and the mutual inductances between the transmitter and receivers while considering the cross coupling between receivers. Firstly, a detailed theoretical analysis on dual receivers is carried out. Then a control scheme with three control loops is proposed to regulate the receiver currents to be the same, to regulate the output voltage and to search for the maximum efficiency point. Finally, a 2 kW prototype is established to validate the performance of the proposed method. The overall system efficiency (DC-DC efficiency reaches 90.6% at rated power and is improved by 5.8% with the proposed method under light load compared with the traditional constant output voltage control method.

  16. Radiofrequency ablation coupled with Roux-en-Y gastric bypass: a treatment option for morbidly obese patients with Barrett's esophagus

    Science.gov (United States)

    Parikh, Keyur; Khaitan, Leena

    2016-01-01

    Barrett's esophagus (BE) is a premalignant condition that is associated with the development of esophageal adenocarcinoma. Risk factors that have been associated with the development of BE include male gender, Caucasian race, chronic gastroesophageal reflux disease, smoking, age >50 and obesity. The current management of BE is dependent on underlying pathological changes and treatment can range from surveillance endoscopy with daily proton pump inhibitor (PPI) therapy in the setting of intestinal metaplasia or low-grade dysplasia (LGD) to radiofrequency ablation (RFA), endoscopic mucosal resection or surgical resection in the setting of high-grade dysplasia. We report the case of a morbidly obese patient who was found to have long-segment BE with LGD during preoperative work-up for weight loss surgery with Roux-en-Y gastric bypass (RYGBP). The patient underwent successful RFA for the treatment of her BE before and after her RYGBP procedure. At 5-year follow-up, there was minimal progression of BE after treatment. PMID:26945777

  17. Contactless vector network analysis using diversity calibration with capacitive and inductive coupled probes

    Directory of Open Access Journals (Sweden)

    T. Zelder

    2007-06-01

    Full Text Available Contactless vector network analysis based on a diversity calibration is investigated for the measurement of embedded devices in planar circuits. Conventional contactless measurement systems based on two probes for each measurement port have the disadvantage that the signal-to-noise system dynamics strongly depends on the distance between the contactless probes.

    In order to avoid a decrease in system dynamics a diversity based measurement system is presented. The measurement setup uses one inductive and two capacitive probes. As an inductive probe a half magnetic loop in combination with a broadband balun is introduced. In order to eliminate systematic errors from the measurement results a diversity calibration algorithm is presented. Simulation and measurement results for a one-port configuration are shown.

  18. Radionuclide Determination In Surface Water Samples By Inductively Coupled Plasma With Sector Field Mass Spectrometry (ICP-SFMS

    Directory of Open Access Journals (Sweden)

    E. T. Romero-Guzmán

    2016-08-01

    Full Text Available The determination of naturally occurring radionuclides in the environment by inductively coupled plasma mass spectrometry of high resolution (ICP-SFMS has gained recognition over the last fifteen years, relative to the radiometric techniques, as the result of improvement in instrumental performance, sample introduction equipment and sample preparation. With the increase in instrumental sensitivity, it is now possible to measure ultratrace levels of many radioisotopes. The aim of this work was to determined the natural radionuclides (232Th, 234U, 235U and 238U in surface water using Inductively Coupled PlasmaSector Field Mass Spectrometry (ICP-SFMS. The samples were sampling from Lerma river, State of Mexico at february to april 2015. The process of treatment of sample consisted in perform an acid digestion according to the 3015A USEPA method followed of the direct measurement in ICP-SFMS. Results obtained were: a identify the presence of 232Th, 234U, 235U and 238U isotopes in water, b isotopic ratios were for 234U/238U=1.133 ± 0.016. ICPSFMS has gained popularity in the field of radiochemistry, particularly as a method of detection for long lived-actinides.

  19. Cobalamin speciation using reversed-phase micro-high-performance liquid chromatography interfaced to inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2004-06-01

    Micro-high-performance liquid chromatography interfaced to inductively coupled plasma mass spectrometry was optimized for the determination and separation of a mixture of cobalt containing species. Four cobalamin species (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5'-deoxyadenosylcobalamin) representing the various forms of vitamin B12 as well as the harmful corrinoid analogue cobinamide dicyanide were separated using reversed-phase microcapillary chromatography with columns containing C18 packing material with a 2-μm particle size. Selection of organic solvents for the separation took into consideration compatibility with the inductively coupled plasma mass spectrometer being used for element specific detection. Optimized method conditions included use of a methanol gradient and make-up solution for the nebulizer. Some issues associated with dead volume were overcome by the extension of the gradient program. The total analysis time was 52 min. The column-to-column variability was evaluated and was found to be very reasonable (9% RSD on average), confirming that this method is rugged and that the technology should be easily transferred to other laboratories.

  20. Cobalamin speciation using reversed-phase micro-high-performance liquid chromatography interfaced to inductively coupled plasma mass spectrometry

    Energy Technol