WorldWideScience

Sample records for ablation assisted resonance

  1. Chemically assisted laser ablation ICP mass spectrometry.

    Science.gov (United States)

    Hirata, Takafumi

    2003-01-15

    A new laser ablation technique combined with a chemical evaporation reaction has been developed for elemental ratio analysis of solid samples using an inductively coupled plasma mass spectrometer (ICPMS). Using a chemically assisted laser ablation (CIA) technique developed in this study, analytical repeatability of the elemental ratio measurement was successively improved. To evaluate the reliability of the CLA-ICPMS technique, Pb/U isotopic ratios were determined for zircon samples that have previously been analyzed by other techniques. Conventional laser ablation for Pb/U shows a serious elemental fractionation during ablation mainly due to the large difference in elemental volatility between Pb and U. In the case of Pb/U ratio measurement, a Freon R-134a gas (1,1,1,2-tetrafluoroethane) was introduced into the laser cell as a fluorination reactant. The Freon gas introduced into the laser cell reacts with the ablated sample U, and refractory U compounds are converted to a volatile U fluoride compound (UF6) under the high-temperature condition at the ablation site. This avoids the redeposition of U around the ablation pits. Although not all the U is reacted with Freon, formation of volatile UF compounds improves the transmission efficiency of U. Typical precision of the 206Pb/238U ratio measurement is 3-5% (2sigma) for NIST SRM 610 and Nancy 91500 zircon standard, and the U-Pb age data obtained here show good agreement within analytical uncertainties with the previously reported values. Since the observed Pb/U ratio for solid samples is relatively insensitive to laser power and ablation time, optimization of ablation conditions or acquisition parameters no longer needs to be performed on a sample-to-sample basis.

  2. Resonant laser ablation: mechanisms and applications

    International Nuclear Information System (INIS)

    Anderson, J.E.; Bodla, R.; Eiden, G.C.; Nogar, N.S.; Smith, C.H.

    1996-01-01

    Resonant laser ablation (RLA) typically relies on irradiation of a sample in a mass spectrometer with modest intensity laser pulses tuned to a one or two photon resonant transition in the analyte of interest. This paper shows that RLA is well suited for highly sensitive analyses of complex samples. The examples actually studied are trace components in rhenium and technetium in nickel. The authors also studied the 2+1 multiphoton ionization spectrum of iron-56 detected by RLA of Re containing 70 ppm iron. Two-photon transition rates for Fe transitions were calculated perturbatively and found to agree semi-quantitatively with experimentally observed intensities. 17 refs., 3 figs

  3. Radiofrequency ablation for hepatocellular carcinoma: assistant techniques for difficult cases.

    Science.gov (United States)

    Inoue, Tatsuo; Minami, Yasunori; Chung, Hobyung; Hayaishi, Sousuke; Ueda, Taisuke; Tatsumi, Chie; Takita, Masahiro; Kitai, Satoshi; Hatanaka, Kinuyo; Ishikawa, Emi; Yada, Norihisa; Hagiwara, Satoru; Ueshima, Kazuomi; Kudo, Masatoshi

    2010-07-01

    To confirm the safety and effectiveness of techniques to assist radiofrequency ablation (RFA) for difficult cases, we retrospectively evaluated successful treatment rates, early complications and local tumor progressions. Between June 1999 and April 2009, a total of 341 patients with 535 nodules were treated as difficult cases. Artificial pleural effusion assisted ablation was performed on 64 patients with 82 nodules. Artificial ascites-assisted ablation was performed on 11 patients with 13 nodules. Cooling by endoscopic nasobiliary drainage (ENBD) tube-assisted ablation was performed on 6 patients with 8 nodules. When the tumors were not well visualized with conventional B-mode ultrasonography (US), contrast-enhanced US-assisted ablation with Levovist or Sonazoid or virtual CT sonography-assisted ablation was performed. Contrast-enhanced US-assisted ablation was performed on 139 patients with 224 nodules and virtual CT sonography-assisted ablation was performed on 121 patients with 209 nodules. In total, complete ablation was achieved in 514 of 535 (96%) nodules in difficult cases. For RFA with artificial pleural effusion, artificial ascites and ENBD, complete response was confirmed in all cases. For contrast-enhanced US- and CT sonography-assisted ablation, complete response was 95%. Early complications were recognized in 24 cases (4.5%). All cases recovered with no invasive treatment. Local tumor recurrence was investigated in 377 nodules of 245 patients, and 69 (18%) nodules were positive. Tumor recurrences in each assisted technique were 14.7% in artificial pleural effusion cases, 7% in artificial ascites, 12.5% in ENBD tube cases, 31% in virtual CT sonography, and 8.5% in contrast-enhanced US. Although local tumor progression needs to be carefully monitored, assisted techniques of RFA for difficult cases are well tolerated and expand the indications of RFA. Copyright (c) 2010 S. Karger AG, Basel.

  4. Water spray assisted ultrashort laser pulse ablation

    International Nuclear Information System (INIS)

    Silvennoinen, M.; Kaakkunen, J.J.J.; Paivasaari, K.; Vahimaa, P.

    2013-01-01

    Highlights: ► We show the novel method to use multibeam processing with ultrashort pulses efficiently. ► Sprayed thin water layer on ablation zone enhances ablation rate and quality. ► In some cases this method also enables ablation of the deeper and straighter holes compared to ones made without the water layer. ► Method also makes possible to directly write features without the self-organizing structures. - Abstract: We have studied femtosecond ablation under sprayed thin water film and its influence and benefits compared with ablation in the air atmosphere. These have been studied in case of the hole and the groove ablation using IR femtosecond laser. Water enhances the ablation rate and in some situations it makes possible to ablate the holes with a higher aspect ratio. While ablating the grooves, the water spray allows using the high fluences without the generation of the self-organized structures.

  5. Robotic-assisted thermal ablation of liver tumours

    International Nuclear Information System (INIS)

    Abdullah, Basri Johan Jeet; Yeong, Chai Hong; Goh, Khean Lee; Yoong, Boon Koon; Ho, Gwo Fuang; Yim, Carolyn Chue Wai; Kulkarni, Anjali

    2015-01-01

    This study aimed to assess the technical success, radiation dose, safety and performance level of liver thermal ablation using a computed tomography (CT)-guided robotic positioning system. Radiofrequency and microwave ablation of liver tumours were performed on 20 patients (40 lesions) with the assistance of a CT-guided robotic positioning system. The accuracy of probe placement, number of readjustments and total radiation dose to each patient were recorded. The performance level was evaluated on a five-point scale (5-1: excellent-poor). The radiation doses were compared against 30 patients with 48 lesions (control) treated without robotic assistance. Thermal ablation was successfully completed in 20 patients with 40 lesions and confirmed on multiphasic contrast-enhanced CT. No procedure related complications were noted in this study. The average number of needle readjustment was 0.8 ± 0.8. The total CT dose (DLP) for the entire robotic assisted thermal ablation was 1382 ± 536 mGy.cm, while the CT fluoroscopic dose (DLP) per lesion was 352 ± 228 mGy.cm. There was no statistically significant (p > 0.05) dose reduction found between the robotic-assisted versus the conventional method. This study revealed that robotic-assisted planning and needle placement appears to be safe, with high accuracy and a comparable radiation dose to patients. (orig.)

  6. Robotic-assisted thermal ablation of liver tumours

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Basri Johan Jeet; Yeong, Chai Hong [University of Malaya, Department of Biomedical Imaging and University of Malaya Research Imaging Centre, Faculty of Medicine, Kuala Lumpur (Malaysia); University of Malaya, Department of Internal Medicine, Faculty of Medicine, Kuala Lumpur (Malaysia); Goh, Khean Lee [University of Malaya, Department of Internal Medicine, Faculty of Medicine, Kuala Lumpur (Malaysia); Yoong, Boon Koon [University of Malaya, Department of Surgery, Faculty of Medicine, Kuala Lumpur (Malaysia); Ho, Gwo Fuang [University of Malaya, Department of Oncology, Faculty of Medicine, Kuala Lumpur (Malaysia); Yim, Carolyn Chue Wai [University of Malaya, Department of Anesthesia, Faculty of Medicine, Kuala Lumpur (Malaysia); Kulkarni, Anjali [Perfint Healthcare Corporation, Florence, OR (United States)

    2015-01-15

    This study aimed to assess the technical success, radiation dose, safety and performance level of liver thermal ablation using a computed tomography (CT)-guided robotic positioning system. Radiofrequency and microwave ablation of liver tumours were performed on 20 patients (40 lesions) with the assistance of a CT-guided robotic positioning system. The accuracy of probe placement, number of readjustments and total radiation dose to each patient were recorded. The performance level was evaluated on a five-point scale (5-1: excellent-poor). The radiation doses were compared against 30 patients with 48 lesions (control) treated without robotic assistance. Thermal ablation was successfully completed in 20 patients with 40 lesions and confirmed on multiphasic contrast-enhanced CT. No procedure related complications were noted in this study. The average number of needle readjustment was 0.8 ± 0.8. The total CT dose (DLP) for the entire robotic assisted thermal ablation was 1382 ± 536 mGy.cm, while the CT fluoroscopic dose (DLP) per lesion was 352 ± 228 mGy.cm. There was no statistically significant (p > 0.05) dose reduction found between the robotic-assisted versus the conventional method. This study revealed that robotic-assisted planning and needle placement appears to be safe, with high accuracy and a comparable radiation dose to patients. (orig.)

  7. Robotically Assisted Sonic Therapy as a Noninvasive Nonthermal Ablation Modality: Proof of Concept in a Porcine Liver Model.

    Science.gov (United States)

    Smolock, Amanda R; Cristescu, Mircea M; Vlaisavljevich, Eli; Gendron-Fitzpatrick, Annette; Green, Chelsey; Cannata, Jonathan; Ziemlewicz, Timothy J; Lee, Fred T

    2018-05-01

    Purpose To determine the feasibility of creating a clinically relevant hepatic ablation (ie, an ablation zone capable of treating a 2-cm liver tumor) by using robotically assisted sonic therapy (RAST), a noninvasive and nonthermal focused ultrasound therapy based on histotripsy. Materials and Methods This study was approved by the institutional animal use and care committee. Ten female pigs were treated with RAST in a single session with a prescribed 3-cm spherical treatment region and immediately underwent abdominal magnetic resonance (MR) imaging. Three pigs (acute group) were sacrificed immediately following MR imaging. Seven pigs (chronic group) were survived for approximately 4 weeks and were reimaged with MR imaging immediately before sacrifice. Animals underwent necropsy and harvesting of the liver for histologic evaluation of the ablation zone. RAST ablations were performed with a 700-kHz therapy transducer. Student t tests were performed to compare prescribed versus achieved ablation diameter, difference of sphericity from 1, and change in ablation zone volume from acute to chronic imaging. Results Ablation zones had a sphericity index of 0.99 ± 0.01 (standard deviation) (P < .001 vs sphericity index of 1). Anteroposterior and transverse dimensions were not significantly different from prescribed (3.4 ± 0.7; P = .08 and 3.2 ± 0.8; P = .29, respectively). The craniocaudal dimension was significantly larger than prescribed (3.8 ± 1.1; P = .04), likely because of respiratory motion. The central ablation zone demonstrated complete cell destruction and a zone of partial necrosis. A fibrous capsule surrounded the ablation zone by 4 weeks. On 4-week follow-up images, ablation zone volumes decreased by 64% (P < .001). Conclusion RAST is capable of producing clinically relevant ablation zones in a noninvasive manner in a porcine model. © RSNA, 2018.

  8. Hard tissue ablation with a spray-assisted mid-IR laser

    International Nuclear Information System (INIS)

    Kang, H W; Rizoiu, I; Welch, A J

    2007-01-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment

  9. Hard tissue ablation with a spray-assisted mid-IR laser

    Science.gov (United States)

    Kang, H. W.; Rizoiu, I.; Welch, A. J.

    2007-12-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  10. Targeted Vessel Ablation for More Efficient Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Voogt, Marianne J., E-mail: m.voogt@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands); Stralen, Marijn van [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Ikink, Marlijne E. [University Medical Center Utrecht, Department of Radiology (Netherlands); Deckers, Roel; Vincken, Koen L.; Bartels, Lambertus W. [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Mali, Willem P. Th. M.; Bosch, Maurice A. A. J. van den [University Medical Center Utrecht, Department of Radiology (Netherlands)

    2012-10-15

    Purpose: To report the first clinical experience with targeted vessel ablation during magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) treatment of symptomatic uterine fibroids. Methods: Pretreatment T1-weighted contrast-enhanced magnetic resonance angiography was used to create a detailed map of the uterine arteries and feeding branches to the fibroids. A three-dimensional overlay of the magnetic resonance angiography images was registered on 3D T2-weighted pretreatment imaging data. Treatment was focused primarily on locations where supplying vessels entered the fibroid. Patients were followed 6 months after treatment with a questionnaire to assess symptoms and quality of life (Uterine Fibroid Symptom and Quality of Life) and magnetic resonance imaging to quantify shrinkage of fibroid volumes. Results: In two patients, three fibroids were treated with targeted vessel ablation during MR-HIFU. The treatments resulted in almost total fibroid devascularization with nonperfused volume to total fibroid volume ratios of 84, 68, and 86%, respectively, of treated fibroids. The predicted ablated volumes during MR-HIFU in patients 1 and 2 were 45, 40, and 82 ml, respectively, while the nonperfused volumes determined immediately after treatment were 195, 92, and 190 ml respectively, which is 4.3 (patient 1) and 2.3 (patient 2) times higher than expected based on the thermal dose distribution. Fibroid-related symptoms reduced after treatment, and quality of life improved. Fibroid volume reduction ranged 31-59% at 6 months after treatment. Conclusion: Targeted vessel ablation during MR-HIFU allowed nearly complete fibroid ablation in both patients. This technique may enhance the use of MR-HIFU for fibroid treatment in clinical practice.

  11. Histopathology of breast cancer after magnetic resonance-guided high-intensity focused ultrasound and radiofrequency ablation

    NARCIS (Netherlands)

    Knuttel, Floor; Waaijer, Laurien; Merckel, LG; van den Bosch, Maurice A A J; Witkamp, Arjen J.; Deckers, Roel; van Diest, Paul J.

    AIMS: Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation and radiofrequency ablation (RFA) are being researched as possible substitutes for surgery in breast cancer patients. The histopathological appearance of ablated tissue has not been studied in great detail. This

  12. Transpiration cooling assisted ablative thermal protection of aerospace substructures

    International Nuclear Information System (INIS)

    Khan, M.B.; Iqbal, N.; Haider, Z.

    2009-01-01

    Ablatives are heat-shielding materials used to protect aerospace substructures. These materials are sacrificial in nature and provide protection primarily through the large endothermic transformation during exposure to hyper thermal environment such as encountered in re-entry modules. The performance of certain ablatives was reported in terms of their TGA/DTA in Advanced Materials-97 (pp 57-65). The focus of this earlier research resided in the consolidation of interface between the refractory inclusion and the host polymeric matrix to improve thermal resistance. In the present work we explore the scope of transpiration cooling in ablative performance through flash evaporation of liquid incorporated in the host EPDM (Ethylene Propylene Diene Monomer) matrix. The compression-molded specimens were exposed separately to plasma flame (15000 C) and oxyacetylene torch (3000 C) and the back face transient temperature is recorded in situ employing a thermocouple/data logger system. Both head on impingement (HOI) and parallel flow (PF) through a central cavity in the ablator were used. It is observed that transpiration cooling is effective and yields (a) rapid thermal equilibrium in the specimen, (b) lower back face temperature and (c) lower ablation rate, compared to conventional ablatives. SEM/EDS analysis is presented to amplify the point. (author)

  13. [Clinical observation on laparoscopic radiofrequency ablation assisted enucleation for the renal epithelial angimyolipoma].

    Science.gov (United States)

    Yang, Yang; Yang, Rong; Guo, Hongqian

    2014-08-13

    To explore the clinicopathological characteristics of epithelial angiomyolipoma (EAML) and examine the clinical efficacy and prognosis of laparoscopic radio frequency ablation assisted enucleation. The clinicopathological data of 7 patients with renal EAML undergoing laparoscopic radio frequency ablation assisted enucleation were reviewed from April 2009 to June 2012. And the clinical efficacy and prognosis of laparoscopic radio frequency ablation assisted enucleation were analyzed. Laparoscopic radio frequency ablation assisted enucleation was successfully performed in all cases without postoperative bleeding, ureteral obstruction, chronic renal insufficiency or urinary leakage. The mean operative duration was 110 min. Renal pedicles were blocked in 4 patients with a mean blockage time of 9 min. The mean intraoperative bleeding was 90 ml. No blood transfusion was required. The absolute bedrest time was 1-3 days and the drainage tube implanted for 3.8 days. Postoperative pathology showed that all cases were EAML. Immunohistochemistry showed HMB-45⁺ and small muscle action⁺ and creatine kinase⁻ in epithelioid cells. During a mean follow-up period of 1.8 years, none of them had local tumor recurrence, chronic renal insufficiency or other complications. Renal EAML is a rare subtype of angiomyolipoma without specific clinical and imaging features. And its definite confirmation depends on pathology. Laparoscopic radio frequency ablation assisted enucleation is both safe and effective in the treatment of renal EAML with pseudocapsule.

  14. Stress assisted selective ablation of ITO thin film by picosecond laser

    Science.gov (United States)

    Farid, Nazar; Chan, Helios; Milne, David; Brunton, Adam; M. O'Connor, Gerard

    2018-01-01

    Fast selective pattering with high precession on 175 nm ITO thin film with IR ps lasers is investigated. Ablation parameters are optimized with detailed studies on the scribed depth, topography, and particle generation using AFM and SEM. A comparison of 10 and 150 ps laser revealed that the shorter pulse (10 ps) laser is more appropriate in selective and partial ablation; up to 20 nm resolution for controlled depth with multipulses having energy below the damage threshold is demonstrated. The experimental results are interpreted to involve stress assisted ablation mechanism for the 10 ps laser while thermal ablation along with intense melting occurs for 150 ps laser. The transition between these regimes is estimated to occur at approximately 30 ps.

  15. Hemodynamic Change in Pulmonary Vein Stenosis after Radiofrequency Ablation: Assessment with Magnetic Resonance Angiography

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Doyoung; Jung, Jung Im; Oh, Yong Seog; Youn, Ho Joong [Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2012-11-15

    We present a case of pulmonary vein (PV) stenosis after radio-frequency (RF) ablation, in which a hemodynamic change in the pulmonary artery was similar to that of congenital PV atresia on time-resolved contrast-enhanced magnetic resonance angiography (TR-MRA). A 48-year-old man underwent RF ablation due to atrial fibrillation. The patient subsequently complained of hemoptysis, dyspnea on exertion, and right chest pain. Right PV stenosis after catheter ablation was diagnosed through chest computed tomography and lung perfusion scan. Pulmonary TR-MRA revealed the pulmonary artery via systemic arterial collaterals and draining systemic collateral veins. On a velocity-encoded cine image, the flow direction of the right pulmonary artery was reversed in the diastolic phase and the left pulmonary artery demonstrated continuous forward flow throughout the cardiac cycle. These hemodynamic changes were similar to those seen in congenital unilateral PV atresia.

  16. Developing laser ablation in an electron cyclotron resonance ion source for actinide detection with AMS

    Energy Technology Data Exchange (ETDEWEB)

    Bauder, W. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Pardo, R.C.; Kondev, F.G.; Kondrashev, S.; Nair, C.; Nusair, O. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Palchan, T. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel); Scott, R.; Seweryniak, D.; Vondrasek, R. [Argonne National Laboratory, Physics Division, 9600 S. Cass Ave, Lemont, IL 60439 (United States); Collon, P. [University of Notre Dame, Nuclear Science Laboratory, 124 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Paul, M. [Hebrew University, Racah Institute of Physics, Jerusalem 91904 (Israel)

    2015-10-15

    A laser ablation material injection system has been developed at the ATLAS electron cyclotron resonance (ECR) ion source for use in accelerator mass spectrometry experiments. Beam production with laser ablation initially suffered from instabilities due to fluctuations in laser energy and cratering on the sample surface by the laser. However, these instabilities were rectified by applying feedback correction for the laser energy and rastering the laser across the sample surface. An initial experiment successfully produced and accelerated low intensity actinide beams with up to 1000 counts per second. With continued development, laser ablation shows promise as an alternative material injection scheme for ECR ion sources and may help substantially reduce cross talk in the source.

  17. Assessment of ablative margin after radiofrequency ablation for hepatocellular carcinoma; comparison between magnetic resonance imaging with ferucarbotran and enhanced CT with iodized oil deposition

    International Nuclear Information System (INIS)

    Koda, Masahiko; Tokunaga, Shiho; Fujise, Yuki; Kato, Jun; Matono, Tomomitsu; Sugihara, Takaaki; Nagahara, Takakazu; Ueki, Masaru; Murawaki, Yoshikazu; Kakite, Suguru; Yamashita, Eijiro

    2012-01-01

    Background and purpose: Our aim was to investigate whether magnetic resonance imaging (MRI) with ferucarbotran administered prior to radiofrequency ablation could accurately assess ablative margin when compared with enhanced computed tomography (CT) with iodized oil marking. Materials and methods: We enrolled 27 patients with 32 hepatocellular carcinomas in which iodized oil deposits were visible throughout the nodule after transcatheter arterial chemoembolization. For these nodules, radiofrequency ablation was performed after ferucarbotran administration. We then performed T2-weighted MRI after 1 week and enhanced CT after 1 month. T2-weighted MRI demonstrated the ablative margin as a low-intensity rim. We classified the margin into three grades; margin (+): high-intensity area with a continuous low-intensity rim; margin zero: high-intensity area with a discontinuous low-intensity rim; and margin (−): high-intensity area extending beyond the low-intensity rim. Results: In 28 (86%) of 32 nodules, there was agreement between MRI and CT. The overall agreement between for the two modalities in the assessment of ablative margin was good (κ = 0.759, 95% confidence interval: 0.480–1.000, p < 0.001). In four nodules, ablative margins on MRI were underestimated by one grade compared with CT. Conclusion: MRI using ferucarbotran is less invasive and allows earlier assessment than CT. The MRI technique performed similarly to enhanced CT with iodized oil marking in evaluating the ablative margin after radiofrequency ablation.

  18. Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling

    NARCIS (Netherlands)

    Yeoh, S.Y.; Arias Moreno, A.J.; Rietbergen, van B.; Hoeve, ter N.D.; Diest, van P.J.; Grull, H.

    2015-01-01

    Background Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for palliative treatment of bone pain. In this study, the effects of MR-HIFU ablation on bone mechanics and modeling were investigated. Methods A total of 12 healthy rat femurs were ablated

  19. Colour marking of transparent materials by laser-induced plasma-assisted ablation (LIPAA)

    International Nuclear Information System (INIS)

    Hanada, Yasutaka; Sugioka, Koji; Miyamoto, Iwao; Midorikawa, Katsumi

    2007-01-01

    We demonstrate colour marking of a transparent material using laser-induced plasma-assisted ablation (LIPAA) system. After the LIPAA process, metal thin film is deposited on the surface of the ablated groove. This feature is applied to RGB (red, green and blue) colour marking by using specific metal targets. The metal targets, for instance, are Pb 3 O 4 for red, Cr 2 O 3 for green and [Cu(C 32 H 15 ClN 8 )] for blue colour marking. Additionally, adhesion of the metal thin film deposited on the processed groove by various experimental conditions is investigated

  20. Translational medicine in the field of ablative fractional laser (AFXL)-assisted drug delivery

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Erlendsson, Andrés M; Paasch, Uwe

    2016-01-01

    Ablative fractional lasers enhance uptake of topical therapeutics and the concept of fractional laser-assisted drug delivery has now been taken into clinical practice. Objectives We systematically reviewed preclinical data and clinical evidence for fractional lasers to enhance drug uptake...... level of evidence was reached for actinic keratoses treated with methylaminolevulinate for photodynamic therapy (level IB, 5 randomized controlled trials), substantiating superior and long-lasting efficacy versus conventional photodynamic therapy. No adverse events were reported, but ablative fractional...... laser-assisted drug delivery implies risks of systemic drug absorption, especially when performed over large skin areas. Conclusions Fractional laser-assisted drug delivery is beneficial in enhancing preclinical and clinical outcomes for certain skin conditions....

  1. Magnetic resonance imaging-guided focused ultrasound ablation of uterine fibroids. Early clinical experience

    International Nuclear Information System (INIS)

    Mikami, Koji; Osuga, Keigo; Tomoda, Kaname; Nakamura, Hironobu; Murakami, Takamichi; Okada, Atsuya

    2008-01-01

    The aim of this study was to assess the feasibility and effectiveness of magnetic resonance (MRI)-guided focused ultrasound (MRIgFUS) ablation for uterine fibroids and to identify the candidates for this treatment. A total of 48 patients with a symptomatic uterine fibroid underwent MRIgFUS. The percent ablation volume was calculated, and the patients' characteristics and the MR imaging features of the fibroids that might predict the effect of this treatment were assessed. Changes in the symptoms related to the uterine fibroid were assessed at 6 and 12 months. The planned target zone were successfully treated in 32 patients with bulk-related and menstrual symptoms but unsuccessfully treated in the remaining 16 patients. These 16 patients were obese or their uterine fibroid showed heterogeneous high signal intensity on T2-weighted images. The 32 successfully treated patients were followed up for 6 months. At the 6-month follow-up, bulk-related and menstrual symptoms were diminished in 60% and 51% of patients, respectively. Among them, 17 patients were followed up for 12 months, and 9 of them who showed alleviation of bulk-related symptoms at 6 months had further improvement. The mean percent ablation volume of those nine patients was 51%. In 5 (33%) of the 15 patients with alleviation of menstrual symptoms at 6 months, the symptoms became worse at 12 months. There was a significant difference in the mean percent ablation volume between patients with alleviation of menstrual symptoms and those without (54% vs. 37%; P=0.03). MRIgFUS ablation is a safe, effective treatment for nonobese patients with symptomatic fibroids that show low signal intensity on T2-weighted images. Ablation of more than 50% of the fibroid volume may be needed with a short-term follow-up. (author)

  2. Robot-assisted radiofrequency ablation of primary and secondary liver tumours: early experience

    International Nuclear Information System (INIS)

    Abdullah, Basri Johan Jeet; Yeong, Chai Hong; Goh, Khean Lee; Yoong, Boon Koon; Ho, Gwo Fuang; Yim, Carolyn Chue Wai; Kulkarni, Anjali

    2014-01-01

    Computed tomography (CT)-compatible robots, both commercial and research-based, have been developed with the intention of increasing the accuracy of needle placement and potentially improving the outcomes of therapies in addition to reducing clinical staff and patient exposure to radiation during CT fluoroscopy. In the case of highly inaccessible lesions that require multiple plane angulations, robotically assisted needles may improve biopsy access and targeted drug delivery therapy by avoidance of the straight line path of normal linear needles. We report our preliminary experience of performing radiofrequency ablation of the liver using a robotic-assisted CT guidance system on 11 patients (17 lesions). Robotic-assisted planning and needle placement appears to have high accuracy, is technically easier than the non-robotic-assisted procedure, and involves a significantly lower radiation dose to both patient and support staff. (orig.)

  3. Robot-assisted radiofrequency ablation of primary and secondary liver tumours: early experience

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Basri Johan Jeet [University of Malaya, Department of Biomedical Imaging, Faculty of Medicine, Kuala Lumpur (Malaysia); Yeong, Chai Hong [University of Malaya, University of Malaya Research Imaging Centre, Faculty of Medicine, Kuala Lumpur (Malaysia); Goh, Khean Lee [University of Malaya, Department of Internal Medicine, Faculty of Medicine, Kuala Lumpur (Malaysia); Yoong, Boon Koon [University of Malaya, Department of Surgery, Faculty of Medicine, Kuala Lumpur (Malaysia); Ho, Gwo Fuang [University of Malaya, Department of Oncology, Faculty of Medicine, Kuala Lumpur (Malaysia); Yim, Carolyn Chue Wai [University of Malaya, Department of Anesthesia, Faculty of Medicine, Kuala Lumpur (Malaysia); Kulkarni, Anjali [Perfint Healthcare Corporation, Florence, OR (United States)

    2014-01-15

    Computed tomography (CT)-compatible robots, both commercial and research-based, have been developed with the intention of increasing the accuracy of needle placement and potentially improving the outcomes of therapies in addition to reducing clinical staff and patient exposure to radiation during CT fluoroscopy. In the case of highly inaccessible lesions that require multiple plane angulations, robotically assisted needles may improve biopsy access and targeted drug delivery therapy by avoidance of the straight line path of normal linear needles. We report our preliminary experience of performing radiofrequency ablation of the liver using a robotic-assisted CT guidance system on 11 patients (17 lesions). Robotic-assisted planning and needle placement appears to have high accuracy, is technically easier than the non-robotic-assisted procedure, and involves a significantly lower radiation dose to both patient and support staff. (orig.)

  4. Resonance-assisted decay of nondispersive wave packets

    OpenAIRE

    Wimberger, S.; Schlagheck, P.; Eltschka, C.; Buchleitner, A.

    2006-01-01

    We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.

  5. Magnetic resonance guided focalized ultrasound thermo-ablation: A promising oncologic local therapy

    International Nuclear Information System (INIS)

    Iannessi, A.; Doyen, J.; Leysalle, A.; Thyss, A.

    2014-01-01

    Pain management of bone metastases is usually made using systemic and local therapy. Even though radiations are nowadays the gold standard for painful metastases, innovations regarding minimally invasive treatment approaches have been developed because of the existing non-responder patients [1]. Indeed, cementoplasty and thermo-ablations like radiofrequency or cryotherapy have shown to be efficient on pain [2-4]. Among thermo-therapy, magnetic resonance guided focalized ultrasound is now a new non-invasive weapon for bone pain palliation. (authors)

  6. Microwave ablation assisted by a real-time virtual navigation system for hepatocellular carcinoma undetectable by conventional ultrasonography

    International Nuclear Information System (INIS)

    Liu Fangyi; Yu Xiaoling; Liang Ping; Cheng Zhigang; Han Zhiyu; Dong Baowei; Zhang Xiaohong

    2012-01-01

    Objectives: To evaluate the efficiency and feasibility of microwave (MW) ablation assisted by a real-time virtual navigation system for hepatocellular carcinoma (HCC) undetectable by conventional ultrasonography. Methods: 18 patients with 18 HCC nodules (undetectable on conventional US but detectable by intravenous contrast-enhanced CT or MRI) were enrolled in this study. Before MW ablation, US images and MRI or CT images were synchronized using the internal markers at the best timing of the inspiration. Thereafter, MW ablation was performed under real-time virtual navigation system guidance. Therapeutic efficacy was assessed by the result of contrast-enhanced imagings after the treatment. Results: The target HCC nodules could be detected with fusion images in all patients. The time required for image fusion was 8–30 min (mean, 13.3 ± 5.7 min). 17 nodules were successfully ablated according to the contrast enhanced imagings 1 month after ablation. The technique effectiveness rate was 94.44% (17/18). The follow-up time was 3–12 months (median, 6 months) in our study. No severe complications occurred. No local recurrence was observed in any patients. Conclusions: MW ablation assisted by a real-time virtual navigation system is a feasible and efficient treatment of patients with HCC undetectable by conventional ultrasonography.

  7. Accuracy and efficacy of percutaneous biopsy and ablation using robotic assistance under computed tomography guidance: a phantom study

    International Nuclear Information System (INIS)

    Koethe, Yilun; Xu, Sheng; Velusamy, Gnanasekar; Wood, Bradford J.; Venkatesan, Aradhana M.

    2014-01-01

    To compare the accuracy of a robotic interventional radiologist (IR) assistance platform with a standard freehand technique for computed-tomography (CT)-guided biopsy and simulated radiofrequency ablation (RFA). The accuracy of freehand single-pass needle insertions into abdominal phantoms was compared with insertions facilitated with the use of a robotic assistance platform (n = 20 each). Post-procedural CTs were analysed for needle placement error. Percutaneous RFA was simulated by sequentially placing five 17-gauge needle introducers into 5-cm diameter masses (n = 5) embedded within an abdominal phantom. Simulated ablations were planned based on pre-procedural CT, before multi-probe placement was executed freehand. Multi-probe placement was then performed on the same 5-cm mass using the ablation planning software and robotic assistance. Post-procedural CTs were analysed to determine the percentage of untreated residual target. Mean needle tip-to-target errors were reduced with use of the IR assistance platform (both P < 0.0001). Reduced percentage residual tumour was observed with treatment planning (P = 0.02). Improved needle accuracy and optimised probe geometry are observed during simulated CT-guided biopsy and percutaneous ablation with use of a robotic IR assistance platform. This technology may be useful for clinical CT-guided biopsy and RFA, when accuracy may have an impact on outcome. (orig.)

  8. Accuracy and efficacy of percutaneous biopsy and ablation using robotic assistance under computed tomography guidance: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Koethe, Yilun [National Institutes of Health, Center for Interventional Oncology, NIH Clinical Center, Bethesda, MD (United States); National Institutes of Health, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD (United States); Duke University School of Medicine, Durham, NC (United States); Xu, Sheng [National Institutes of Health, Center for Interventional Oncology, NIH Clinical Center, Bethesda, MD (United States); Velusamy, Gnanasekar [Perfint Healthcare Pvt. Ltd., Chennai (India); Wood, Bradford J. [National Institutes of Health, Center for Interventional Oncology, NIH Clinical Center, Bethesda, MD (United States); National Institutes of Health, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD (United States); Venkatesan, Aradhana M. [National Institutes of Health, Center for Interventional Oncology, NIH Clinical Center, Bethesda, MD (United States); National Institutes of Health, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD (United States); National Institutes of Health, Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD (United States)

    2014-03-15

    To compare the accuracy of a robotic interventional radiologist (IR) assistance platform with a standard freehand technique for computed-tomography (CT)-guided biopsy and simulated radiofrequency ablation (RFA). The accuracy of freehand single-pass needle insertions into abdominal phantoms was compared with insertions facilitated with the use of a robotic assistance platform (n = 20 each). Post-procedural CTs were analysed for needle placement error. Percutaneous RFA was simulated by sequentially placing five 17-gauge needle introducers into 5-cm diameter masses (n = 5) embedded within an abdominal phantom. Simulated ablations were planned based on pre-procedural CT, before multi-probe placement was executed freehand. Multi-probe placement was then performed on the same 5-cm mass using the ablation planning software and robotic assistance. Post-procedural CTs were analysed to determine the percentage of untreated residual target. Mean needle tip-to-target errors were reduced with use of the IR assistance platform (both P < 0.0001). Reduced percentage residual tumour was observed with treatment planning (P = 0.02). Improved needle accuracy and optimised probe geometry are observed during simulated CT-guided biopsy and percutaneous ablation with use of a robotic IR assistance platform. This technology may be useful for clinical CT-guided biopsy and RFA, when accuracy may have an impact on outcome. (orig.)

  9. Efficacy evaluation of laparoscopy assisted ultrasound guided radiofrequency ablation in the treatment of hepatocellular carcinoma beneath the diaphragm

    Directory of Open Access Journals (Sweden)

    Song WANG

    2017-06-01

    Full Text Available Objective To explore the feasibility, safety and efficacy of laparoscopy assisted ultrasound guided radiofrequency ablation (RFA in the treatment of hepatocellular carcinoma (HCC beneath the diaphragm. Methods Twenty- three consecutive patients with solitary HCC beneath the diaphragm were treated by laparoscopy assisted ultrasound guided RFA in the Chinese PLA General Hospital from January 2013 to March 2016. We observed the perioperative complications and followed- up long-term effect. Results All the 23 patients successfully underwent laparoscopy assisted ultrasound guided radiofrequency ablation. No serious complications such as massive hemorrhage, biliary fistula and severe pleural effusion, hemopneumothorax occurred in the patients during perioperative period. CT examination 2-3 days after the operation revealed that the tumor was completely covered by the ablation area. Besides, the survival condition was satisfactory during follow-up period of 9-38 months. Conclusion Laparoscopy-assisted ultrasound-guided radiofrequency ablation is effective and safe for HCC beneath the diaphragm. DOI: 10.11855/j.issn.0577-7402.2017.05.16

  10. Atrioesophageal Fistula after Minimally Invasive Video-Assisted Epicardial Ablation for Lone Atrial Fibrillation.

    Science.gov (United States)

    Kik, Charles; van Valen, Richard; Mokhles, Mostafa M; Bekkers, Jos A; Bogers, Ad J J C

    2017-09-01

    Minimally invasive video-assisted epicardial beating heart ablation for lone atrial fibrillation claims to be safe and effective. We, however, report on three patients with an atrioesophageal fistula after this procedure. The exact pathogenesis of this complication is unknown. All patients presented around 6 weeks after surgery with either fever or neurological deficits. Diagnosis can be made by computed tomography scan. We advocate an aggressive surgical approach with closure of the atrial defect on cardiopulmonary bypass and closure and reinforcement of the esophagus with an intercostal muscle flap in a single-stage surgery. Some caution as to the low-risk character of this procedure seems to be realistic. Georg Thieme Verlag KG Stuttgart · New York.

  11. Resonant ablation of single-wall carbon nanotubes by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Arutyunyan, N R; Komlenok, M S; Kononenko, V V; Pashinin, V P; Pozharov, A S; Konov, V I; Obraztsova, E D

    2015-01-01

    The thin 50 nm film of bundled arc-discharge single-wall carbon nanotubes was irradiated by femtosecond laser pulses with wavelengths 675, 1350 and 1745 nm corresponding to the absorption band of metallic nanotubes E 11 M , to the background absorption and to the absorption band of semiconducting nanotubes E 11 S , respectively. The aim was to induce a selective removal of nanotubes of specific type from the bundled material. Similar to conducted thermal heating experiments, the effect of laser irradiation results in suppression of all radial breathing modes in the Raman spectra, with preferential destruction of the metallic nanotubes with diameters less than 1.26 nm and of the semiconducting nanotubes with diameters 1.36 nm. However, the etching rate of different nanotubes depends on the wavelength of the laser irradiation. It is demonstrated that the relative content of nanotubes of different chiralities can be tuned by a resonant laser ablation of undesired nanotube fraction. The preferential etching of the resonant nanotubes has been shown for laser wavelengths 675 nm (E 11 M ) and 1745 nm (E 11 S ). (paper)

  12. Computer Assisted Instruction (Cain) For Nuclear Magnetic Resonance Spectroscopy

    International Nuclear Information System (INIS)

    Jaturonrusmee, Wasna; Arthonvorakul, Areerat; Assateranuwat, Adisorn

    2005-10-01

    A computer assisted instruction program for nuclear magnetic resonance spectroscopy was developed by using Author ware 5.0, Adobe Image Styler 1.0, Adobe Photo shop 7.0 and Flash MX. The contents included the basic theory of 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, the instrumentation of NMR spectroscopy, the two dimensional (2D) NMR spectroscopy and the interpretation of NMR spectra. The program was also provided examples, and exercises, with emphasis on NMR spectra interpretation to determine the structure of unknown compounds and solutions for self study. The questionnaire from students showed that they were very satisfied with the software

  13. Controlling chaos-assisted directed transport via quantum resonance.

    Science.gov (United States)

    Tan, Jintao; Zou, Mingliang; Luo, Yunrong; Hai, Wenhua

    2016-06-01

    We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.

  14. Controlling chaos-assisted directed transport via quantum resonance

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jintao; Zou, Mingliang; Luo, Yunrong; Hai, Wenhua, E-mail: whhai2005@aliyun.com [Department of Physics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081 (China)

    2016-06-15

    We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.

  15. Uncertainty in the inelastic resonant scattering assisted by phonons

    International Nuclear Information System (INIS)

    Garcia, N.; Garcia-Sanz, J.; Solana, J.

    1977-01-01

    We have analyzed the inelastic minima observed in new results of He atoms scattered from LiF(001) surfaces. This is done considering bound state resonance processes assisted by phonons. The analysis presents large uncertainties. In the range of uncertainty, we find two ''possible'' bands associated with the vibrations of F - and Li + , respectively. Many more experimental data are necessary to confirm the existence of these processes

  16. Video-assisted thoracoscopic PlasmaJet ablation for malignant pleural mesothelioma.

    Science.gov (United States)

    Perikleous, Periklis; Asadi, Nizar; Anikin, Vladimir

    2018-01-01

    The role of surgery in malignant pleural mesothelioma (MPM) remains debatable; nonetheless the relative advantages of different surgical approaches are frequently reassessed and reconsidered. While extensive operations and longer recovery periods can be justified for a group of carefully selected patients, many will present at an advanced stage of their disease or with associated co-morbidities which will exclude them from selection criteria for radical treatment. For these patients, minimally invasive video-assisted procedures may be considered, for purposes of cytoreduction and/or symptomatic relief. Even though there is currently not enough clinical evidence to suggest an improvement in overall survival with limited debulking procedures, it has been suggested that they can improve quality of life over drainage and pleurodesis alone. We consider video-assisted PlasmaJet ablation to potentially have a role in mesothelioma surgery, as it may be used for effective cytoreduction while minimising the risk for complications often associated with extensive pleurectomy procedures, and we report on the use of the PlasmaJet Surgical System in our centre for surgical management of a patient with MPM. After demonstrating safety and absence of major adverse events with this approach, we feel justified in offering the procedure to more of our patients as we aim to collect additional data.

  17. Radiofrequency ablation assisted by real-time virtual sonography for hepatocellular carcinoma inconspicuous under sonography and high-risk locations

    Directory of Open Access Journals (Sweden)

    Cheng-Han Lee

    2015-08-01

    Full Text Available Radiofrequency ablation (RFA is an effective and real-time targeting modality for small hepatocellular carcinomas (HCCs. However, mistargeting may occur when the target tumor is confused with cirrhotic nodules or because of the poor conspicuity of the index tumor under ultrasonography (US. Real-time virtual sonography (RVS can provide the same reconstruction computed tomography images as US images. The aim of this study is to investigate the usefulness of RVS-assisted RFA for HCCs that are inconspicuous or conspicuous under US. A total of 21 patients with 28 HCC tumors—divided into US inconspicuous and high-risk subgroup (3 tumors in 3 patients, US inconspicuous and nonhigh-risk subgroup (5 tumors in 4 patients, US conspicuous and high-risk subgroup (16 tumors in 14 patients, and US conspicuous and nonhigh-risk subgroup (4 tumors in 3 patients—underwent RVS-assisted RFA between May 2012 and June 2014 in our institution. The mean diameter of the nodules was 2.0 ± 1.1 cm. The results showed that the complete ablation rate is 87.5% (7/8 in the US undetectable group and 75% (15/20 in the US detectable group. A comparison between six tumors with incomplete ablation and 22 tumors with complete ablation showed higher alpha-fetoprotein level (mean, 1912 ng/mL vs. 112 ng/mL and larger tumor size (mean diameter, 26 mm vs. 16 mm in the incomplete ablation nodules (both p < 0.05. In conclusion, RVS-assisted RFA is useful for tumors that are difficult to detect under conventional US and may also be useful for tumors in high-risk locations because it may prevent complication induced by mistargeting.

  18. Low-threshold ablation of enamel and dentin using Nd:YAG laser assisted with chromophore with different pulse shapes

    Science.gov (United States)

    Bonora, Stefano; Benazzato, Paolo; Stefani, Alessandro; Villoresi, Paolo

    2004-05-01

    Neodimium laser treatment has several drawbacks when used in the hard tissue cutting, because of the low absorption of the dental tissues at its wavelength. This investigation proved that the Nd:YAG radiation is a powerful ablation tool if it is used with the dye assisted method. Several in vitro tests on enamel and dentin were accomplished changing some laser parameters to have different pulse shapes and durations from 125μs up to 1.4ms. The importance of short time high power peaks, typical of crystal lasers, in the ablation process was investigated. The pulse shapes were analyzed by their intensity in space and time profiles. A first set of results found the optimum dye concentration be used in all the following tests. Furthermore the ablation threshold for this technique was found for each different pulse shapes and durations. A low energy ablation method was found to avoid temperature increase and surface cracks formation. In vitro temperature analysis was reported comparing the differences between no dye application laser treatment and with a dye spray applied. A strong reduction of the temperature increase was found in the dye assisted method. A discussion on the general findings and their possible clinical applications is presented.

  19. Perioperative outcomes of zero ischemia radiofrequency ablation-assisted tumor enucleation for renal cell carcinoma: results of 182 patients.

    Science.gov (United States)

    Zhang, Chengwei; Zhao, Xiaozhi; Guo, Suhan; Ji, Changwei; Wang, Wei; Guo, Hongqian

    2018-05-15

    To evaluate the perioperative outcomes of zero ischemia radiofrequency ablation-assisted tumor enucleation. Patients undergoing zero ischemia radiofrequency ablation-assisted tumor enucleation were retrospectively identified from July 2008 to March 2013. The tumor was enucleated after RFA treatment. R.E.N.A.L., PADUA and centrality index (C-index) score systems were used to assess each tumor case. We analyzed the correlation of perioperative outcomes with these scores. Postoperative complications were graded with Clavien-Dindo system. Multivariate logistic regression analyses were used to assess risk of complications. Among 182 patients assessed, median tumor size, estimated blood loss, hospital stay and operative time were 3.2 cm (IQR 2.8-3.4), 80 ml (IQR 50-120), 7 days (IQR 6-8) and 100 min (IQR 90-120), respectively. All three scoring systems were strongly correlated with estimated blood loss, hospital stay and operative time. We found 3 (1.6%) intraoperative and 23 (12.6%, 13 [7.1%] Grade 1 and 10 [5.5%] Grade 2 & 3a) postoperative complications. The median follow-up was 55.5 months (IQR 45-70). Additionally, the complexities of R.E.N.A.L., PADUA and C-index scores were significantly correlated with complication grades (P radiofrequency ablation-assisted tumor enucleation is considered an effective nephron-sparing treatment. Scoring systems could be useful for predicting perioperative outcomes of radiofrequency ablation-assisted tumor enucleation.

  20. Endoscopic Radiofrequency Ablation-Assisted Resection of Juvenile Nasopharyngeal Angiofibroma: Comparison with Traditional Endoscopic Technique.

    Science.gov (United States)

    McLaughlin, Eamon J; Cunningham, Michael J; Kazahaya, Ken; Hsing, Julianna; Kawai, Kosuke; Adil, Eelam A

    2016-06-01

    To evaluate the feasibility of radiofrequency surgical instrumentation for endoscopic resection of juvenile nasopharyngeal angiofibroma (JNA) and to test the hypothesis that endoscopic radiofrequency ablation-assisted (RFA) resection will have superior intraoperative and/or postoperative outcomes as compared with traditional endoscopic (TE) resection techniques. Case series with chart review. Two tertiary care pediatric hospitals. Twenty-nine pediatric patients who underwent endoscopic transnasal resection of JNA from January 2000 to December 2014. Twenty-nine patients underwent RFA (n = 13) or TE (n = 16) JNA resection over the 15-year study period. Mean patient age was not statistically different between the 2 groups (P = .41); neither was their University of Pittsburgh Medical Center classification stage (P = .79). All patients underwent preoperative embolization. Mean operative times were not statistically different (P = .29). Mean intraoperative blood loss and the need for a transfusion were also not statistically different (P = .27 and .47, respectively). Length of hospital stay was not statistically different (P = .46). Recurrence rates did not differ between groups (P = .99) over a mean follow-up period of 2.3 years. There were no significant differences between RFA and TE resection in intraoperative or postoperative outcome parameters. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  1. Skin pre-ablation and laser assisted microjet injection for deep tissue penetration.

    Science.gov (United States)

    Jang, Hun-Jae; Yeo, Seonggu; Yoh, Jack J

    2017-04-01

    For conventional needless injection, there still remain many unresolved issues such as the potential for cross-contamination, poor reliability of targeted delivery dose, and significantly painstaking procedures. As an alternative, the use of microjets generated with Er:YAG laser for delivering small doses with controlled penetration depths has been reported. In this study, a new system with two stages is evaluated for effective transdermal drug delivery. First, the skin is pre-ablated to eliminate the hard outer layer and second, laser-driven microjet penetrates the relatively weaker and freshly exposed epidermis. Each stage of operation shares a single Er:YAG laser that is suitable for skin ablation as well as for the generation of a microjet. In this study, pig skin is selected for quantification of the injection depth based on the two-stage procedure, namely pre-ablation and microjet injection. The three types of pre-ablation devised here consists of bulk ablation, fractional ablation, and fractional-rotational ablation. The number of laser pulses are 12, 18, and 24 for each ablation type. For fractional-rotational ablation, the fractional beams are rotated by 11.25° at each pulse. The drug permeation in the skin is evaluated using tissue marking dyes. The depth of penetration is quantified by a cross sectional view of the single spot injections. Multi-spot injections are also carried out to control the dose and spread of the drug. The benefits of a pre-ablation procedure prior to the actual microjet injection to the penetration is verified. The four possible combinations of injection are (a) microjet only; (b) bulk ablation and microjet injection; (c) fractional ablation and microjet injection; and (d) fractional-rotational ablation and microjet injection. Accordingly, the total depth increases with injection time for all cases. In particular, the total depth of penetration attained via fractional pre-ablation increased by 8 ∼ 11% and that of fractional

  2. The influence of wavelength, temporal sequencing, and pulse duration on resonant infrared matrix-assisted laser processing of polymer films

    Science.gov (United States)

    O'Malley, S. M.; Schoeffling, Jonathan; Jimenez, Richard; Zinderman, Brian; Yi, SunYong; Bubb, D. M.

    2014-06-01

    We have carried out a systematic investigation of laser ablation plume interactions in resonant infrared matrix-assisted pulsed laser evaporation. The laser source utilized in this study was a mid-infrared OPO capable of dual sequential ns pulses with adjustable delay ranging from 1 to 100 μs. This unique capability enabled us both to probe the ablation plume with a second laser pulse, and to effectively double the laser fluence. The primary ablation target used for this study consisted of poly(methyl methacrylate) dissolved in a binary mixture of methanol and toluene. Both the critical thermodynamic and optical properties of the binary mixture were determined and used to interpret our results. We found that deposition rates associated with single pulse irradiation tracks with the optical absorption coefficient in the spectral range from 2,700 to 3,800 nm. In the case of dual sequential pulses, discrepancies in this trend have been linked to the rate of change in the optical absorption coefficient with temperature. The influence of fluence on deposition rate was found to follow a sigmoidal dependence. Surface roughness was observed to have a diametrically opposed trend with pulse delay depending on whether the OH or CH vibrational mode was excited. In the case of CH excitation, we suggest that the rougher films are due to the absorbance of the second pulse by droplets within the plume containing residual solvent which leads to the formation of molecular balloons and hence irregularly shaped features on the substrate.

  3. Molybdenum oxide nanocolloids prepared by an external field-assisted laser ablation in water

    Directory of Open Access Journals (Sweden)

    Spadaro Salvatore

    2018-01-01

    Full Text Available he synthesis of extremely stable molybdenum oxide nanocolloids by pulsed laser ablation was studied. This green technique ensures the formation of contaminant-free nanostructures and the absence of by-products. A focused picosecond pulsed laser beam was used to ablate a solid molybdenum target immersed in deionized water. Molybdenum oxide nearly spherical nanoparticles with dimensions within few nanometers (20-100 nm are synthesized when the ablation processes were carried out, in water, at room temperature and 80°C. The application of an external electric field during the ablation process induces a nanostructures reorganization, as indicated by Scanning-Transmission Electron Microscopy images analysis. The ablation products were also characterized by some spectroscopic techniques: conventional UV-vis optical absorption, atomic absorption, dynamic light scattering, micro-Raman and X-ray photoelectron spectroscopies. Finally, NIH/3T3 mouse fibroblasts were used to evaluate cell viability by the sulforhodamine B assay

  4. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets.

    Science.gov (United States)

    Chang, Nan; Lu, Shukuan; Qin, Dui; Xu, Tianqi; Han, Meng; Wang, Supin; Wan, Mingxi

    2018-07-01

    A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration. Copyright © 2018. Published by Elsevier B.V.

  5. Depth-resolved phase retardation measurements for laser-assisted non-ablative cartilage reshaping

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Jong-In [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612 (United States); Vargas, Gracie [Center for Bioengineering, University of Texas Medical Branch, Galveston, TX 77555 (United States); Wong, Brian J F [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612 (United States); Milner, Thomas E [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)

    2005-05-07

    Since polarization-sensitive optical coherence tomography (PS-OCT) is emerging as a new technique for determining phase retardation in biological materials, we measured phase retardation changes in cartilage during local laser heating for application to laser-assisted cartilage reshaping. Thermally-induced changes in phase retardation of nasal septal cartilage following Nd:YAG laser irradiation were investigated using a PS-OCT system. A PS-OCT system and infrared imaging radiometer were used to record, respectively, depth-resolved images of the Stokes parameters of light backscattered from ex vivo porcine nasal septal cartilage and radiometric temperature changes following laser irradiation. PS-OCT images of cartilage were recorded before (control), during and after laser irradiation. From the measured Stokes parameters (I, Q, U and V), an estimate of the relative phase retardation between two orthogonal polarizations was computed to determine birefringence in cartilage. Phase retardation images of light backscattered from cartilage show significant changes in retardation following laser irradiation. To investigate the origin of retardation changes in response to local heat generation, we differentiated two possible mechanisms: dehydration and thermal denaturation. PS-OCT images of cartilage were recorded after dehydration in glycerol and thermal denaturation in heated physiological saline. In our experiments, observed retardation changes in cartilage are primarily due to dehydration. Since dehydration is a principal source for retardation changes in cartilage over the range of heating profiles investigated, our studies suggest that the use of PS-OCT as a feedback control methodology for non-ablative cartilage reshaping requires further investigation.

  6. Depth-resolved phase retardation measurements for laser-assisted non-ablative cartilage reshaping

    International Nuclear Information System (INIS)

    Youn, Jong-In; Vargas, Gracie; Wong, Brian J F; Milner, Thomas E

    2005-01-01

    Since polarization-sensitive optical coherence tomography (PS-OCT) is emerging as a new technique for determining phase retardation in biological materials, we measured phase retardation changes in cartilage during local laser heating for application to laser-assisted cartilage reshaping. Thermally-induced changes in phase retardation of nasal septal cartilage following Nd:YAG laser irradiation were investigated using a PS-OCT system. A PS-OCT system and infrared imaging radiometer were used to record, respectively, depth-resolved images of the Stokes parameters of light backscattered from ex vivo porcine nasal septal cartilage and radiometric temperature changes following laser irradiation. PS-OCT images of cartilage were recorded before (control), during and after laser irradiation. From the measured Stokes parameters (I, Q, U and V), an estimate of the relative phase retardation between two orthogonal polarizations was computed to determine birefringence in cartilage. Phase retardation images of light backscattered from cartilage show significant changes in retardation following laser irradiation. To investigate the origin of retardation changes in response to local heat generation, we differentiated two possible mechanisms: dehydration and thermal denaturation. PS-OCT images of cartilage were recorded after dehydration in glycerol and thermal denaturation in heated physiological saline. In our experiments, observed retardation changes in cartilage are primarily due to dehydration. Since dehydration is a principal source for retardation changes in cartilage over the range of heating profiles investigated, our studies suggest that the use of PS-OCT as a feedback control methodology for non-ablative cartilage reshaping requires further investigation

  7. Magnetic resonance angiography virtual endoscopy in the assessment of pulmonary veins before radiofrequency ablation procedures for atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, S.; Tosetti, Irene; Giuseppe, M.De; Longo, M.; Regge, D. [Institute for Cancer Research and Treatment (IRCC), Unit of Radiology, Candiolo (Torino) (Italy); Bonamini, R. [University of Torino, Department of Cardiology, Torino (Italy); Gaita, F.; Bianchi, F.; Vivalda, L. [Ospedale Mauriziano Umberto I, Department of Cardiology, Torino (Italy)

    2004-11-01

    Magnetic resonance angiography (MRA) is a safe and non-invasive imaging method that can readily depict the pulmonary veins (PV), whose imaging has acquired momentum with the advent of new techniques for radiofrequency ablation of atrial fibrillation (AF). We evaluated whether virtual endoscopy from 3D MRA images (MRA-VE) is feasible in studying the morphology of PV. Fifty patients with AF underwent pre-ablative MRA (1.5 T). Images were acquired with axial T-2 weighted and 3D-SPGR sequences after intravenous administration of Gd-DTPA and automatic triggering. Postprocessing was performed by an experienced radiologist with maximum intensity projection (MIP) and virtual endoscopy software (Navigator, GEMS). The venoatrial junction was visualized with MRA-VE in 49 of 50 patients (98.0%). Twenty-seven patients (55.1%) had two ostia on both sides, 13 patients (26.5%) had two ostia on the right and a single common ostium on the left, 5 patients (10.2%) had accessory PV and 4 patients (8.2%) had both an accessory right PV and a single common ostium on the left. Flythrough navigation showed the number and spatial disposition of second-order PV branches in 48 out of 49 patients (98.0%). MRA-VE is an excellent tool for at-a-glance visualization of ostia morphology, navigation of second-generation PV branches and easy endoluminal assessment of left atrial structures in pre-ablative imaging. (orig.)

  8. Magnetic resonance angiography virtual endoscopy in the assessment of pulmonary veins before radiofrequency ablation procedures for atrial fibrillation

    International Nuclear Information System (INIS)

    Cirillo, S.; Tosetti, Irene; Giuseppe, M.De; Longo, M.; Regge, D.; Bonamini, R.; Gaita, F.; Bianchi, F.; Vivalda, L.

    2004-01-01

    Magnetic resonance angiography (MRA) is a safe and non-invasive imaging method that can readily depict the pulmonary veins (PV), whose imaging has acquired momentum with the advent of new techniques for radiofrequency ablation of atrial fibrillation (AF). We evaluated whether virtual endoscopy from 3D MRA images (MRA-VE) is feasible in studying the morphology of PV. Fifty patients with AF underwent pre-ablative MRA (1.5 T). Images were acquired with axial T-2 weighted and 3D-SPGR sequences after intravenous administration of Gd-DTPA and automatic triggering. Postprocessing was performed by an experienced radiologist with maximum intensity projection (MIP) and virtual endoscopy software (Navigator, GEMS). The venoatrial junction was visualized with MRA-VE in 49 of 50 patients (98.0%). Twenty-seven patients (55.1%) had two ostia on both sides, 13 patients (26.5%) had two ostia on the right and a single common ostium on the left, 5 patients (10.2%) had accessory PV and 4 patients (8.2%) had both an accessory right PV and a single common ostium on the left. Flythrough navigation showed the number and spatial disposition of second-order PV branches in 48 out of 49 patients (98.0%). MRA-VE is an excellent tool for at-a-glance visualization of ostia morphology, navigation of second-generation PV branches and easy endoluminal assessment of left atrial structures in pre-ablative imaging. (orig.)

  9. Radiofrequency Ablation Assisted by Real-Time Virtual Sonography and CT for Hepatocellular Carcinoma Undetectable by Conventional Sonography

    International Nuclear Information System (INIS)

    Nakai, Motoki; Sato, Morio; Sahara, Shinya; Takasaka, Isao; Kawai, Nobuyuki; Minamiguchi, Hiroki; Tanihata, Hirohiko; Kimura, Masashi; Takeuchi, Nozomu

    2009-01-01

    Real-time virtual sonography (RVS) is a diagnostic imaging support system, which provides the same cross-sectional multiplanar reconstruction images as ultrasound images on the same monitor screen in real time. The purpose of this study was to evaluate radiofrequency ablation (RFA) assisted by RVS and CT for hepatocellular carcinoma (HCC) undetectable with conventional sonography. Subjects were 20 patients with 20 HCC nodules not detected by conventional sonography but detectable by CT or MRI. All patients had hepatitis C-induced liver cirrhosis; there were 13 males and 7 females aged 55-81 years (mean, 69.3 years). RFA was performed in the CT room, and the tumor was punctured with the assistance of RVS. CT was performed immediately after puncture, and ablation was performed after confirming that the needle had been inserted into the tumor precisely. The mean number of punctures and success rates of the first puncture were evaluated. Treatment effects were evaluated with dynamic CT every 3 months after RFA. RFA was technically feasible and local tumor control was achieved in all patients. The mean number of punctures was 1.1, and the success rate of the first puncture was 90.0%. This method enabled safe ablation without complications. The mean follow-up period was 13.5 month (range, 9-18 months). No local recurrence was observed at the follow-up points. In conclusion, RFA assisted by RVS and CT is a safe and efficacious method of treatment for HCC undetectable by conventional sonography.

  10. A retrospective study of magnetic resonance-guided focused ultrasound ablation for uterine myoma in Taiwan

    Directory of Open Access Journals (Sweden)

    Sheng-Ling Tung

    2016-10-01

    Conclusion: The results obtained from this study demonstrated that MRgFUS can be safely and effectively used to ablate uterine fibroids to produce a significant decrease in mean fibroid volume and improve SSS for up to 6 months after treatment.

  11. Cholecystokinin-Assisted Hydrodissection of the Gallbladder Fossa during FDG PET/CT-guided Liver Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, Sanjit O., E-mail: tewaris@mskcc.org [Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, Department of Radiology (United States); Petre, Elena N., E-mail: petree@mskcc.org [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States); Osborne, Joseph, E-mail: osbornej@mskcc.org [Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, Department of Radiology (United States); Sofocleous, Constantinos T., E-mail: sofoclec@mskcc.org [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States)

    2013-12-15

    A 68-year-old female with colorectal cancer developed a metachronous isolated fluorodeoxyglucose-avid (FDG-avid) segment 5/6 gallbladder fossa hepatic lesion and was referred for percutaneous ablation. Pre-procedure computed tomography (CT) images demonstrated a distended gallbladder abutting the segment 5/6 hepatic metastasis. In order to perform ablation with clear margins and avoid direct puncture and aspiration of the gallbladder, cholecystokinin was administered intravenously to stimulate gallbladder contraction before hydrodissection. Subsequently, the lesion was ablated successfully with sufficient margins, of greater than 1.0 cm, using microwave with ultrasound and FDG PET/CT guidance. The patient tolerated the procedure very well and was discharged home the next day.

  12. Production of microscale particles from fish bone by gas flow assisted laser ablation

    International Nuclear Information System (INIS)

    Boutinguiza, M.; Lusquinos, F.; Comesana, R.; Riveiro, A.; Quintero, F.; Pou, J.

    2007-01-01

    Recycled wastes from fish and seafood can constitute a source of precursor material for different applications in the biomedical field such as bone fillers or precursor material for bioceramic coatings to improve the osteointegration of metallic implants. In this work, fish bones have been used directly as target in a laser ablation system. A pulsed Nd:YAG laser was used to ablate the fish bone material and a transverse air flow was used to extract the ablated material out of the interaction zone. The particles collected at a filter were in the micro and nanoscale range. The morphology as well as the composition of the obtained particles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results reveal that the composition of the analyzed particles is similar to that of the inorganic part of the fish bone

  13. Production of microscale particles from fish bone by gas flow assisted laser ablation

    Science.gov (United States)

    Boutinguiza, M.; Lusquiños, F.; Comesaña, R.; Riveiro, A.; Quintero, F.; Pou, J.

    2007-12-01

    Recycled wastes from fish and seafood can constitute a source of precursor material for different applications in the biomedical field such as bone fillers or precursor material for bioceramic coatings to improve the osteointegration of metallic implants. In this work, fish bones have been used directly as target in a laser ablation system. A pulsed Nd:YAG laser was used to ablate the fish bone material and a transverse air flow was used to extract the ablated material out of the interaction zone. The particles collected at a filter were in the micro and nanoscale range. The morphology as well as the composition of the obtained particles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results reveal that the composition of the analyzed particles is similar to that of the inorganic part of the fish bone.

  14. Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling.

    Science.gov (United States)

    Yeo, Sin Yuin; Arias Moreno, Andrés J; van Rietbergen, Bert; Ter Hoeve, Natalie D; van Diest, Paul J; Grüll, Holger

    2015-01-01

    Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for palliative treatment of bone pain. In this study, the effects of MR-HIFU ablation on bone mechanics and modeling were investigated. A total of 12 healthy rat femurs were ablated using 10 W for 46 ± 4 s per sonication with 4 sonications for each femur. At 7 days after treatments, all animals underwent MR and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. Then, six animals were euthanized. At 1 month following ablations, the remaining six animals were scanned again with MR and SPECT/CT prior to euthanization. Thereafter, both the HIFU-treated and contralateral control bones of three animals from each time interval were processed for histology, whereas the remaining bones were subjected to micro-CT (μCT), three-point bending tests, and micro-finite element (micro-FE) analyses. At 7 days after HIFU ablations, edema formation around the treated bones coupled with bone marrow and cortical bone necrosis was observed on MRI and histological images. SPECT/CT and μCT images revealed presence of bone modeling through an increased uptake of (99m)Tc-MDP and formation of woven bone, respectively. At 31 days after ablations, as illustrated by imaging and histology, healing of the treated bone and the surrounding soft tissue was noted, marked by decreased in amount of tissue damage, formation of scar tissue, and sub-periosteal reaction. The results of three-point bending tests showed no significant differences in elastic stiffness, ultimate load, and yield load between the HIFU-treated and contralateral control bones at 7 days and 1 month after treatments. Similarly, the elastic stiffness and Young's moduli determined by micro-FE analyses at both time intervals were not statistically different. Multimodality imaging and histological data illustrated the presence of HIFU-induced bone damage at the cellular level, which activated the

  15. Trace isotope analysis using resonance ionization mass spectrometry based on isotope selection with doppler shift of laser ablated atoms

    International Nuclear Information System (INIS)

    Higuchi, Yuki; Watanabe, Kenichi; Kawarabayashi, Jun; Iguchi, Tetsuo

    2005-01-01

    We have proposed a novel isotope selective Resonance Ionization Mass Spectroscopy (RIMS) concept, which can avoid the Doppler broadening on solid sample direct measurement based on laser ablation technique. We have succeeded in experimentally demonstrating the principle of our RIMS concept. Through comparison between the simulated and experimental results, we have validated the simulation model. It would be concluded from these results that we could achieve the isotope selectivity defined as the ratio of 41 Ca to 40 Ca sensitivity to be 4.5x10 10 by adopting the multi-step excitation scheme in the present method. As future works, we will try to experimentally perform the multi-step excitation scheme and improve the detection efficiency by modifying the ion extraction configuration. (author)

  16. Microjet-assisted dye-enhanced diode laser ablation of cartilaginous tissue

    Science.gov (United States)

    Pohl, John; Bell, Brent A.; Motamedi, Massoud; Frederickson, Chris J.; Wallace, David B.; Hayes, Donald J.; Cowan, Daniel

    1994-08-01

    Recent studies have established clinical application of laser ablation of cartilaginous tissue. The goal of this study was to investigate removal of cartilaginous tissue using diode laser. To enhance the interaction of laser light with tissue, improve the ablation efficiency and localize the extent of laser-induced thermal damage in surrounding tissue, we studied the use of a novel delivery system developed by MicroFab Technologies to dispense a known amount of Indocyanine Green (ICG) with a high spatial resolution to alter the optical properties of the tissue in a controlled fashion. Canine intervertebral disks were harvested and used within eight hours after collection. One hundred forty nL of ICG was topically applied to both annulus and nucleus at the desired location with the MicroJet prior to each irradiation. Fiber catheters (600 micrometers ) were used and positioned to irradiate the tissue with a 0.8 mm spot size. Laser powers of 3 - 10 W (Diomed, 810 nm) were used to irradiate the tissue with ten pulses (200 - 500 msec). Discs not stained with ICG were irradiated as control samples. Efficient tissue ablation (80 - 300 micrometers /pulse) was observed using ICG to enhance light absorption and confine thermal damage while there was no observable ablation in control studied. The extent of tissue damage observed microscopically was limited to 50 - 100 micrometers . The diode laser/Microjet combination showed promise for applications involving removal of cartilaginous tissue. This procedure can be performed using a low power compact diode laser, is efficient, and potentially more economical compared to procedures using conventional lasers.

  17. In-plane aligned YBCO tape on textured YSZ buffer layer deposited on stainless steel substrate by laser ablation only with O{sup +} ion beam assistance

    Energy Technology Data Exchange (ETDEWEB)

    Huang Xintang [Huazhong Univ. of Sci. and Technol., Wuhan (China). Nat. Lab. of Laser Technol.]|[Huazhong Normal Univ., Wuhan, HB (China). Dept. of Physics; Wang Youqing; Wang Qiuliang; Chen Qingming [Huazhong Univ. of Sci. and Technol., Wuhan (China). Nat. Lab. of Laser Technol.

    1999-08-16

    In this paper we have prepared YSZ buffer layers on stainless steel substrates by laser ablation only with O{sup +} ion beam assistance and YBCO films on YSZ/steel consequently. The relevant parameters of YSZ and YBCO film deposition are indicated. (orig.) 8 refs.

  18. In-plane aligned YBCO tape on textured YSZ buffer layer deposited on stainless steel substrate by laser ablation only with O+ ion beam assistance

    International Nuclear Information System (INIS)

    Huang Xintang; Huazhong Normal Univ., Wuhan, HB; Wang Youqing; Wang Qiuliang; Chen Qingming

    1999-01-01

    In this paper we have prepared YSZ buffer layers on stainless steel substrates by laser ablation only with O + ion beam assistance and YBCO films on YSZ/steel consequently. The relevant parameters of YSZ and YBCO film deposition are indicated. (orig.)

  19. Multilayered metal oxide thin film gas sensors obtained by conventional and RF plasma-assisted laser ablation

    International Nuclear Information System (INIS)

    Mitu, B.; Marotta, V.; Orlando, S.

    2006-01-01

    Multilayered thin films of In 2 O 3 and SnO 2 have been deposited by conventional and RF plasma-assisted reactive pulsed laser ablation, with the aim to evaluate their behaviour as toxic gas sensors. The depositions have been carried out by a frequency doubled Nd-YAG laser (λ = 532 nm, τ = 7 ns) on Si(1 0 0) substrates, in O 2 atmosphere. The thin films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrical resistance measurements. A comparison of the electrical response of the simple (indium oxide, tin oxide) and multilayered oxides to toxic gas (nitric oxide, NO) has been performed. The influence on the structural and electrical properties of the deposition parameters, such as substrate temperature and RF power is reported

  20. Fractional non-ablative laser-assisted drug delivery leads to improvement in male and female pattern hair loss.

    Science.gov (United States)

    Bertin, Ana Carina Junqueira; Vilarinho, Adriana; Junqueira, Ana Lúcia Ariano

    2018-02-16

    Androgenetic alopecia, also known as male and female pattern hair loss, is a very prevalent condition; however, approved therapeutic options are limited. Fractionated laser has been proposed to assist in penetration of topical medications to the cutaneous tissue. We present four cases of androgenetic alopecia that underwent treatment with a non-ablative erbium glass fractional laser followed by the application of topical finasteride 0,05% and growth factors including basic fibroblast growth factor, insulin-like growth factor, vascular endothelial growth factor, and copper peptide 1%. During all laser treatment sessions, eight passes were performed, at 7 mJ, 3-9% of coverage and density of 120 mzt/cm 2 . A positive response was observed in all of the four patients. Photographs taken 2 weeks after the last session showed improvement in hair regrowth and density. No significant side effects were observed.

  1. Hybrid laparoscopic and robotic ultrasound-guided radiofrequency ablation-assisted clampless partial nephrectomy.

    Science.gov (United States)

    Nadler, Robert B; Perry, Kent T; Smith, Norm D

    2009-07-01

    To describe a clampless approach made possible by creating an avascular plane of tissue with radiofrequency ablation. Laparoscopic partial nephrectomy is slowly gaining acceptance as a method to treat small (generator. Typically, we used a power setting of 50 W but have found settings as low as 25 W necessary to provide hemostasis for larger vessels. The tumor was then sharply excised with a negative margin using robotic scissors and electrocautery to facilitate tissue cutting. Retrograde injection of methylthioninium chloride and saline through an externalized ureteral catheter allowed for precise sutured closure of the collecting system. FloSeal and BioGlue were then applied, making surgical bolsters or parenchymal sutures unnecessary. Intraoperative histologic evaluation of the surgical margin and repeat resection of the tumor bed was possible because the renal hilum was not clamped, and no warm ischemia was used. This technique, which combines the improving technologies of robotic surgery, intraoperative laparoscopic ultrasonography, and radiofrequency ablation, might make more surgeons comfortable with the intricacies of laparoscopic suturing and eliminate prolonged warm ischemia times. Overall, this method should result in more patients being able to undergo minimally invasive laparoscopic partial nephrectomy.

  2. Acquiring Multiview C-Arm Images to Assist Cardiac Ablation Procedures

    Directory of Open Access Journals (Sweden)

    Fallavollita Pascal

    2010-01-01

    Full Text Available CARTO XP is an electroanatomical cardiac mapping system that provides 3D color-coded maps of the electrical activity of the heart; however it is expensive and it can only use a single costly magnetic catheter for each patient intervention. Our approach consists of integrating fluoroscopic and electrical data from the RF catheters into the same image so as to better guide RF ablation, shorten the duration of this procedure, increase its efficacy, and decrease hospital cost when compared to CARTO XP. We propose a method that relies on multi-view C-arm fluoroscopy image acquisition for (1 the 3D reconstruction of the anatomical structure of interest, (2 the robust temporal tracking of the tip-electrode of a mapping catheter between the diastolic and systolic phases and (3 the 2D/3D registration of color coded isochronal maps directly on the 2D fluoroscopy image that would help the clinician guide the ablation procedure much more effectively. The method has been tested on canine experimental data.

  3. Multiplicity and contiguity of ablation mechanisms in laser-assisted analytical micro-sampling

    International Nuclear Information System (INIS)

    Bleiner, Davide; Bogaerts, Annemie

    2006-01-01

    Laser ablation is implemented in several scientific and technological fields, as well as a rapid sample introduction technique in elemental and trace analysis. At high laser fluence, the ejection of micro-sized droplets causes the enhancement of the surface recession speed and depth resolution degradation as well as the alteration of the sampling stoichiometry. The origin of such large particles seems to be due to at least two different processes, phase explosion and melt splashing. Experimental evidence for both was found in metallic matrices, whereas non-metallic samples showed more complex phenomena like cracking. The spatial distribution of the beam energy profile is responsible for significant differences in the ablation mechanism across the irradiated region and for heterogeneous sampling. Under Gaussian irradiance distribution, the center of the crater, where the irradiance is the highest, experienced a fast heating with rapid ejection of a mixture of particles and vapor (spinodal breakdown). The crater periphery was subjected to more modest irradiation, with melt mobilization and walls formation. The overall resulting particle size distribution was composed of an abundant nano-sized fraction, produced by vapor condensation, and a micro-sized fraction during melt expulsion

  4. Spectroscopic Detection of Glyphosate in Water Assisted by Laser-Ablated Silver Nanoparticles

    Science.gov (United States)

    De Góes, Rafael Eleodoro; Muller, Marcia; Fabris, José Luís

    2017-01-01

    Glyphosate is one of the most widely used herbicides in the world. Its safety for both human health and aquatic biomes is a subject of wide debate. There are limits to glyphosate’s presence in bodies of water, and it is usually detected through complex analytical procedures. In this work, the presence of glyphosate is detected directly through optical interrogation of aqueous solution. For this purpose, silver nanoparticles were produced by pulsed laser ablation in liquids. Limits of detection of 0.9 mg/L and 3.2 mg/L were obtained with UV-Vis extinction and Surface Enhanced Raman spectroscopies, respectively. The sensing mechanism was evaluated in the presence of potential interferents as well as with commercial glyphosate-based herbicides. PMID:28445394

  5. Electron cyclotron resonance heating assisted plasma startup in the Tore Supra tokamak

    International Nuclear Information System (INIS)

    Bucalossi, J.; Hertout, P.; Lennholm, M.; Saint-Laurent, F.; Bouquey, F.; Darbos, C.; Traisnel, E.

    2009-04-01

    ECRH assisted plasma startup at fundamental resonance is investigated in Tore Supra in view of ITER operation. ECRH pre-ionisation is found to be very efficient allowing plasma initiation in a wide range of pre-fill pressure compared to ohmic startup. Reliable assisted startup has been achieved at the ITER reference toroidal electric field (0.3 V/m) with 160 kW of ECRH. Resonance location scan indicates that the plasma is initiated at the resonance location and that the plasma current channel position had to be real-time controlled since the very beginning of the discharge to obtain robust plasma startup. (authors)

  6. Magnetic resonance imaging with gadoxetic acid for local tumour progression after radiofrequency ablation in patients with hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae Wook; Rhim, Hyunchul; Lee, Jisun; Song, Kyoung Doo; Lee, Min Woo; Kim, Young-sun; Lim, Hyo Keun; Jang, Kyung Mi; Kim, Seong Hyun [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Gwak, Geum-Youn [Sungkyunkwan University School of Medicine, Division of Hepatology, Department of Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Jung, Sin-Ho [Sungkyunkwan University School of Medicine, Biostatics and Clinical Epidemiology Center, Samsung Medical Center, Seoul (Korea, Republic of)

    2016-10-15

    To develop and validate a prediction model using magnetic resonance imaging (MRI) for local tumour progression (LTP) after radiofrequency ablation (RFA) in hepatocellular carcinoma (HCC) patients. Two hundred and eleven patients who had received RFA as first-line treatment for HCC were retrospectively analyzed. They had undergone gadoxetic acid-enhanced MRI before treatment, and parameters including tumour size; margins; signal intensities on T1-, T2-, and diffusion-weighted images, and hepatobiliary phase images (HBPI); intratumoral fat or tumoral capsules; and peritumoural hypointensity in the HBPI were used to develop a prediction model for LTP after treatment. This model to discriminate low-risk from high-risk LTP groups was constructed based on Cox regression analysis. Our analyses produced the following model: 'risk score = 0.617 x tumour size + 0.965 x tumour margin + 0.867 x peritumoural hypointensity on HBPI'. This was able to predict which patients were at high risk for LTP after RFA (p < 0.001). Patients in the low-risk group had a significantly better 5-year LTP-free survival rate compared to the high-risk group (89.6 % vs. 65.1 %; hazard ratio, 3.60; p < 0.001). A predictive model based on MRI before RFA could robustly identify HCC patients at high risk for LTP after treatment. (orig.)

  7. Validation studies on quick analysis of MOX fuel by combination of laser induced breakdown spectroscopy and ablation resonance absorption spectroscopy

    International Nuclear Information System (INIS)

    Wakaida, Ikuo; Akaoka, Katsuaki; Miyabe, Masabumi; Kato, Masaaki; Otobe, Haruyoshi; Ohoba, Hironori; Khumaeni, Ali

    2014-01-01

    Research and development of laser based quick analysis without chemical analysis and neutron measurement for next-generation Minor Actinide containing MOX fuel has been carried out, and the basic performances by using un-irradiated MOX fuel were demonstrated. The glove box had been re-constructed and specialized for laser spectroscopy, and the remote spectroscopy of MOX sample contained several concentrations of Pu was performed. In elemental analysis by Laser Induced Breakdown Spectroscopy (LIBS) with high resolution spectrometer, relative error of 2.9% at 30% Pu and the detection lower limit of 2500ppm in natural U oxide were demonstrated with the operation time of 5 min. In isotope ratio analysis by Ablation Resonance Absorption Spectroscopy, tunable semiconductor laser system was constructed, and the performances such as relative deviation less than 1% in the ratio of "2"4"0Pu/"2"3"9Pu and the sensitivity of 30-100ppm in natural U were also accomplished with laser operation time of 3 to 5min. As for an elemental analysis of the simulated liquid sample, ultra-thin laminate flow was experimented as LIBS target, and the sensitivity comparable to conventional ICP-AES was confirmed. Present study includes the result of the entrusted project by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). (author)

  8. Comparison of single-step reverse transepithelial all-surface laser ablation (ASLA) to alcohol-assisted photorefractive keratectomy.

    Science.gov (United States)

    Aslanides, Ioannis M; Padroni, Sara; Arba Mosquera, Samuel; Ioannides, Antonis; Mukherjee, Achyut

    2012-01-01

    To evaluate postoperative pain, corneal epithelial healing, development of corneal haze, refractive outcomes, and corneal aberrations in a novel one-step, modified transepithelial photorefractive keratectomy (PRK), termed All-surface laser ablation (ASLA), compared to conventional, alcohol-assisted PRK. Sixty eyes of 30 myopic patients were prospectively recruited to a randomized fellow eye study. Patients underwent conventional alcohol-assisted PRK in one eye (control group) and ASLA-modified transepithelial PRK in the other (30 eyes in each treatment arm). Primary endpoints were postoperative pain and haze scores at 1 day, 3 days, 1 week, and 1, 3, 6, and 12 months. Secondary endpoints included visual acuity at 1, 3, 6, and 12 months, corneal aberrations at 3, 6, and 12 months, and early and late onset haze. Refractive predictability, safety, and efficacy of the two methods were considered. The average age of the cohort was 29 years (standard deviation [SD]: 9; range: 18-46), and the average spherical equivalent refractive error was -4.18 diopters (SD: 1.9). At 3 days after surgery, the average pain score was 64% lower in the ASLA group (P < 0.0005). At this point, 96% of ASLA eyes had no epithelial defect, whereas 43% in the alcohol-assisted group did not achieve complete epithelial healing, and required replacement of bandage contact lens. The haze level was consistently lower in the ASLA group at all time points from 1 to 6 months. This study shows that the ASLA technique may have a future role in refractive surgery, due to the fact that it offers faster epithelial healing, lower pain scores, and significantly less haze formation.

  9. Dynamic T2-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    International Nuclear Information System (INIS)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M.

    2012-01-01

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate ( 2 , since T 2 increases linearly in fat during heating. T 2 -mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T 2 . Calibration of T 2 -based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T 2 and temperature with a thermocouple. A positive T 2 temperature dependence in bone marrow of 20 ms/°C was observed. Dynamic T 2 -mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  10. High excitation of the species in nitrogen–aluminum plasma generated by electron cyclotron resonance microwave discharge of N2 gas and pulsed laser ablation of Al target

    International Nuclear Information System (INIS)

    Liang, Peipei; Li, Yanli; Cai, Hua; You, Qinghu; Yang, Xu; Huang, Feiling; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-01-01

    A reactive nitrogen–aluminum plasma generated by electron cyclotron resonance (ECR) microwave discharge of N 2 gas and pulsed laser ablation of an Al target is characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy (OES). The vibrational and rotational temperatures of N 2 species are determined by spectral simulation. The generated plasma strongly emits radiation from a variety of excited species including ambient nitrogen and ablated aluminum and exhibits unique features in optical emission and temperature evolution compared with the plasmas generated by a pure ECR discharge or by the expansion of the ablation plume. The working N 2 gas is first excited by ECR discharge and the excitation of nitrogen is further enhanced due to the fast expansion of the aluminum plume induced by target ablation, while the excitation of the ablated aluminum is prolonged during the plume expansion in the ECR nitrogen plasma, resulting in the formation of strongly reactive nitrogen–aluminum plasma which contains highly excited species with high vibrational and rotational temperatures. The enhanced intensities and the prolonged duration of the optical emissions of the combined plasma would provide an improved analytical capability for spectrochemical analysis. - Highlights: • ECR discharge and pulsed laser ablation generate highly excited ECR–PLA plasma. • The expansion of PLA plasma results in excitation enhancement of ECR plasma species. • The ECR plasma leads to excitation prolongation of PLA plasma species. • The ECR–PLA plasma emits strong emissions from a variety of excited species. • The ECR–PLA plasma maintains high vibrational–rotational temperatures for a long time

  11. Magnetic resonance imaging after radiofrequency ablation in a rodent model of liver tumor: tissue characterization using a novel necrosis-avid contrast agent

    International Nuclear Information System (INIS)

    Ni, Yicheng; Yu, Jie; Marchal, Guy; Chen, Feng; Mulier, Stefaan; Sun, Xihe; Landuyt, Willy; Verbruggen, Alfons

    2006-01-01

    We exploited a necrosis-avid contrast agent ECIV-7 for magnetic resonance imaging (MRI) in rodent liver tumors after radiofrequency ablation (RFA). Rats bearing liver rhabdomyosarcoma (R1) were randomly allocated to three groups: group I, complete RFA, group II, incomplete RFA, and group III, sham ablation. Within 24 h after RFA, T1-weighted (T1-w) MRI was performed before and after injection of ECIV-7 at 0.05 mmol/kg and followed up from 6-24 h. Signal intensities (SIs) were measured with relative enhancement (RE) and contrast ratio (CR) calculated. The MRI findings were verified histomorphologically. On plain T1-w MRI the contrasts between normal liver, RFA lesion, residual and/or intact tumor were vague. Early after administration of ECIV-7, the liver SI was strongly enhanced (RE=40-50%), leaving the RFA lesion as a hypointense region in groups I and II. At delayed phase, two striking peri-ablational enhancement patterns appeared (RE=90% and CR=1.89%), i.e., ''O'' type of hyperintense rim in group I and ''C'' type of incomplete rim in group II. These MRI manifestations could be proven histologically. In this study, tissue components after RFA could be characterized with discernable contrasts by necrosis-avid contrast agent (NACA)-enhanced MRI, especially at delayed phase. This approach may prove useful for defining the ablated area and identifying residual tumor after RFA. (orig.)

  12. Transcranial magnetic stimulation assisted by neuronavigation of magnetic resonance images

    Science.gov (United States)

    Viesca, N. Angeline; Alcauter, S. Sarael; Barrios, A. Fernando; González, O. Jorge J.; Márquez, F. Jorge A.

    2012-10-01

    Technological advance has improved the way scientists and doctors can learn about the brain and treat different disorders. A non-invasive method used for this is Transcranial Magnetic Stimulation (TMS) based on neuron excitation by electromagnetic induction. Combining this method with functional Magnetic Resonance Images (fMRI), it is intended to improve the localization technique of cortical brain structures by designing an extracranial localization system, based on Alcauter et al. work.

  13. Bioinspired Multifunctional Melanin-Based Nanoliposome for Photoacoustic/Magnetic Resonance Imaging-Guided Efficient Photothermal Ablation of Cancer

    Science.gov (United States)

    Zhang, Liang; Sheng, Danli; Wang, Dong; Yao, Yuanzhi; Yang, Ke; Wang, Zhigang; Deng, Liming; Chen, Yu

    2018-01-01

    Background: The construction of theranostic nanosystems with concurrently high biosafety and therapeutic performance is a challenge but has great significance for the clinical translation of nanomedicine for combating cancer. Methods: Bio-inspired melanin-based nanoliposomes (Lip-Mel) as theranostic agents were constructed for simultaneous photoacoustic (PA) imaging- and T1-weighted magnetic resonance (MR) imaging-guided photothermal ablation of tumors, which was demonstrated both in vitro and in vivo. The high biosafety of Lip-Mel was also systematically evaluated. Results: The achieved Lip-Mel nanoliposomes demonstrated their imaging capability for both PA and T1-weighted MR imaging (r1 = 0.25 mM-1·s-1) both in vitro and in vivo, providing the potential for therapeutic guidance and monitoring. Importantly, the desirable photothermal-conversion efficiency of the as-prepared Lip-Mel achieved complete eradication of tumors in breast cancer-bearing mice, exhibiting remarkable photothermal-based therapeutic performance. In particular, the efficient encapsulation of melanin into the PEGylated liposome mitigated the potential toxicity of melanin and improved the photothermal performance of the loaded melanin. Systematic in vivo biosafety evaluations demonstrated the high biocompatibility of Lip-Mel at a high dose of 100 mg/kg. Conclusion: In this work, we reported a bioinspired strategy where melanin, a natural product in the human body, is encapsulated into PEGylated nanoliposomes for efficient theranostics with high biocompatibility. This work provides a new strategy for creating desirable theranostic agents with concurrent high biocompatibility and satisfactory theranostic performance through the use of materials that totally originate from biosystems. PMID:29556343

  14. 1.0 T open-configuration magnetic resonance-guided microwave ablation of pig livers in real time

    Science.gov (United States)

    Dong, Jun; Zhang, Liang; Li, Wang; Mao, Siyue; Wang, Yiqi; Wang, Deling; Shen, Lujun; Dong, Annan; Wu, Peihong

    2015-01-01

    The current fastest frame rate of each single image slice in MR-guided ablation is 1.3 seconds, which means delayed imaging for human at an average reaction time: 0.33 seconds. The delayed imaging greatly limits the accuracy of puncture and ablation, and results in puncture injury or incomplete ablation. To overcome delayed imaging and obtain real-time imaging, the study was performed using a 1.0-T whole-body open configuration MR scanner in the livers of 10 Wuzhishan pigs. A respiratory-triggered liver matrix array was explored to guide and monitor microwave ablation in real-time. We successfully performed the entire ablation procedure under MR real-time guidance at 0.202 s, the fastest frame rate for each single image slice. The puncture time ranged from 23 min to 3 min. For the pigs, the mean puncture time was shorted to 4.75 minutes and the mean ablation time was 11.25 minutes at power 70 W. The mean length and widths were 4.62 ± 0.24 cm and 2.64 ± 0.13 cm, respectively. No complications or ablation related deaths during or after ablation were observed. In the current study, MR is able to guide microwave ablation like ultrasound in real-time guidance showing great potential for the treatment of liver tumors. PMID:26315365

  15. Comparison of single-step reverse transepithelial all-surface laser ablation (ASLA to alcohol-assisted photorefractive keratectomy

    Directory of Open Access Journals (Sweden)

    Aslanides IM

    2012-06-01

    Full Text Available Ioannis M Aslanides,1 Sara Padroni,1 Samuel Arba Mosquera,2 Antonis Ioannides,1 Achyut Mukherjee11Emmetropia Mediterranean Eye Institute, Heraklion, Crete, Greece; 2Schwind eye-tech-solutions GmbH, Kleinostheim, GermanyPurpose: To evaluate postoperative pain, corneal epithelial healing, development of corneal haze, refractive outcomes, and corneal aberrations in a novel one-step, modified transepithelial photorefractive keratectomy (PRK, termed All-surface laser ablation (ASLA, compared to conventional, alcohol-assisted PRK.Materials and methods: Sixty eyes of 30 myopic patients were prospectively recruited to a randomized fellow eye study. Patients underwent conventional alcohol-assisted PRK in one eye (control group and ASLA-modified transepithelial PRK in the other (30 eyes in each treatment arm. Primary endpoints were postoperative pain and haze scores at 1 day, 3 days, 1 week, and 1, 3, 6, and 12 months. Secondary endpoints included visual acuity at 1, 3, 6, and 12 months, corneal aberrations at 3, 6, and 12 months, and early and late onset haze. Refractive predictability, safety, and efficacy of the two methods were considered.Results: The average age of the cohort was 29 years (standard deviation [SD]: 9; range: 18–46, and the average spherical equivalent refractive error was -4.18 diopters (SD: 1.9. At 3 days after surgery, the average pain score was 64% lower in the ASLA group (P < 0.0005. At this point, 96% of ASLA eyes had no epithelial defect, whereas 43% in the alcohol-assisted group did not achieve complete epithelial healing, and required replacement of bandage contact lens. The haze level was consistently lower in the ASLA group at all time points from 1 to 6 months.Conclusion: This study shows that the ASLA technique may have a future role in refractive surgery, due to the fact that it offers faster epithelial healing, lower pain scores, and significantly less haze formation.Keywords: cornea, ASLA, PRK, alcohol

  16. Biocompatible Au@Carbynoid/Pluronic-F127 nanocomposites synthesized by pulsed laser ablation assisted CO2 recycling

    Science.gov (United States)

    Del Rosso, T.; Louro, S. R. W.; Deepak, F. L.; Romani, E. C.; Zaman, Q.; Tahir; Pandoli, O.; Cremona, M.; Freire Junior, F. L.; De Beule, P. A. A.; De St. Pierre, T.; Aucelio, R. Q.; Mariotto, G.; Gemini-Piperni, S.; Ribeiro, A. R.; Landi, S. M.; Magalhães, A.

    2018-05-01

    Ligand-free carbynoid-encapsulated gold nanocomposites (Au@Carbynoid NCs) with blue-shifted localized surface plasmon resonance (LSPR) have been synthesized by CO2 recycling induced by pulsed laser ablation (PLA) of a solid gold target in aqueous solution with NaOH at pH 7.0. High Resolution Transmission Electron Microscopy (HRTEM) images at not destructive acceleration voltage of 80 kV revealed carbynoid nanocrystals around the gold core, associated to the intense bond length alternation (BLA) Raman mode of the carbon atomic wires (CAWs), centered at 2124 cm-1, observed in the Surface Enhanced Raman Scattering (SERS) spectra. It was verified that interlinking process with sp to sp2 conversion of the CAWs is induced both by high acceleration voltage in HRTEM and high irradiance of the excitation beam used in SERS measurements. Post synthesis mixing of Pluronic-F127 copolymer with pre-synthesized Au@Carbynoid NCs allows the formation of a fully biocompatible colloidal solution of Au@Carbynoid/Copolymer NCs. SERS investigation highlights that the Raman band of the BLA mode can be used as efficient Raman tag to monitor the functionalization of the NCs with the copolymer. The biocompatibility of the NCs was demonstrated performing a study of cytotoxicity using human skin fibroblasts. As proof of principle, it was demonstrated that the photodynamic activity of the bifunctional Au@Carbynoid/PF127 NCs in the presence of chlorin e6 (Ce6) drug can be enhanced inducing the aggregation state of the colloidal suspension. The stability of the colloidal dispersions of Au@Carbynoid NCs functionalized with Pluronic-F127 is verified after centrifugation in PBS (0.15 mol L-1 NaCl) solutions, confirming the possibility to use the green carbynoid based NCs as drug-carrier in biological applications.

  17. Surface plasmon resonance assisted rapid laser joining of glass

    Energy Technology Data Exchange (ETDEWEB)

    Zolotovskaya, Svetlana A.; Tang, Guang; Abdolvand, Amin, E-mail: a.abdolvand@dundee.ac.uk [School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, Zengbo [School of Electronic Engineering, Bangor University, Bangor LL57 1UT (United Kingdom)

    2014-08-25

    Rapid and strong joining of clear glass to glass containing randomly distributed embedded spherical silver nanoparticles upon nanosecond pulsed laser irradiation (∼40 ns and repetition rate of 100 kHz) at 532 nm is demonstrated. The embedded silver nanoparticles were ∼30–40 nm in diameter, contained in a thin surface layer of ∼10 μm. A joint strength of 12.5 MPa was achieved for a laser fluence of only ∼0.13 J/cm{sup 2} and scanning speed of 10 mm/s. The bonding mechanism is discussed in terms of absorption of the laser energy by nanoparticles and the transfer of the accumulated localised heat to the surrounding glass leading to the local melting and formation of a strong bond. The presented technique is scalable and overcomes a number of serious challenges for a widespread adoption of laser-assisted rapid joining of glass substrates, enabling applications in the manufacture of microelectronic devices, sensors, micro-fluidic, and medical devices.

  18. Assessment of pulmonary venous stenosis after radiofrequency catheter ablation for atrial fibrillation by magnetic resonance angiography: a comparison of linear and cross-sectional area measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tintera, Jaroslav; Porod, Vaclav; Rolencova, Eva; Fendrych, Pavel [Institute for Clinical and Experimental Medicine, Department of Radiology, Prague 4 (Czech Republic); Cihak, Robert; Mlcochova, Hanka; Kautzner, Josef [Institute for Clinical and Experimental Medicine, Department of Cardiology, Prague 4 (Czech Republic)

    2006-12-15

    One of the recognised complications of catheter ablation is pulmonary venous stenosis. The aim of this study was to compare two methods of evaluation of pulmonary venous diameter for follow-up assessment of the above complication: (1) a linear approach evaluating two main diameters of the vein, (2) semiautomatically measured cross-sectional area (CSA). The study population consists of 29 patients. All subjects underwent contrast-enhanced magnetic resonance angiography (CeMRA) of the pulmonary veins (PVs) before and after the ablation; 14 patients were also scanned 3 months later. PV diameter was evaluated from two-dimensional multiplanar reconstructions by measuring either the linear diameter or CSA. A comparison between pulmonary venous CSA and linear measurements revealed a systematic difference in absolute values. This difference was not significant when comparing the relative change CSA and quadratic approximation using linear extents (linear approach). However, a trend towards over-estimation of calibre reduction was documented for the linear approach. Using CSA assessment, significant PV stenosis was found in ten PVs (8%) shortly after ablation. Less significant PV stenosis, ranging from 20 to 50% was documented in other 18 PVs (15%). CeMRA with CSA assessment of the PVs is suitable method for evaluation of PV diameters. (orig.)

  19. Assessment of pulmonary venous stenosis after radiofrequency catheter ablation for atrial fibrillation by magnetic resonance angiography: a comparison of linear and cross-sectional area measurements

    International Nuclear Information System (INIS)

    Tintera, Jaroslav; Porod, Vaclav; Rolencova, Eva; Fendrych, Pavel; Cihak, Robert; Mlcochova, Hanka; Kautzner, Josef

    2006-01-01

    One of the recognised complications of catheter ablation is pulmonary venous stenosis. The aim of this study was to compare two methods of evaluation of pulmonary venous diameter for follow-up assessment of the above complication: (1) a linear approach evaluating two main diameters of the vein, (2) semiautomatically measured cross-sectional area (CSA). The study population consists of 29 patients. All subjects underwent contrast-enhanced magnetic resonance angiography (CeMRA) of the pulmonary veins (PVs) before and after the ablation; 14 patients were also scanned 3 months later. PV diameter was evaluated from two-dimensional multiplanar reconstructions by measuring either the linear diameter or CSA. A comparison between pulmonary venous CSA and linear measurements revealed a systematic difference in absolute values. This difference was not significant when comparing the relative change CSA and quadratic approximation using linear extents (linear approach). However, a trend towards over-estimation of calibre reduction was documented for the linear approach. Using CSA assessment, significant PV stenosis was found in ten PVs (8%) shortly after ablation. Less significant PV stenosis, ranging from 20 to 50% was documented in other 18 PVs (15%). CeMRA with CSA assessment of the PVs is suitable method for evaluation of PV diameters. (orig.)

  20. Significance of the Resonance Condition for Controlling the Seam Position in Laser-assisted TIG Welding

    Science.gov (United States)

    Emde, B.; Huse, M.; Hermsdorf, J.; Kaierle, S.; Wesling, V.; Overmeyer, L.; Kozakov, R.; Uhrlandt, D.

    As an energy-preserving variant of laser hybrid welding, laser-assisted arc welding uses laser powers of less than 1 kW. Recent studies have shown that the electrical conductivity of a TIG welding arc changes within the arc in case of a resonant interaction between laser radiation and argon atoms. This paper presents investigations on how to control the position of the arc root on the workpiece by means of the resonant interaction. Furthermore, the influence on the welding result is demonstrated. The welding tests were carried out on a cooled copper plate and steel samples with resonant and non-resonant laser radiation. Moreover, an analysis of the weld seam is presented.

  1. Radiofrequency ablation of liver metastases-software-assisted evaluation of the ablation zone in MDCT: tumor-free follow-up versus local recurrent disease.

    Science.gov (United States)

    Keil, Sebastian; Bruners, Philipp; Schiffl, Katharina; Sedlmair, Martin; Mühlenbruch, Georg; Günther, Rolf W; Das, Marco; Mahnken, Andreas H

    2010-04-01

    The purpose of this study was to investigate differences in change of size and CT value between local recurrences and tumor-free areas after CT-guided radiofrequency ablation (RFA) of hepatic metastases during follow-up by means of dedicated software for automatic evaluation of hepatic lesions. Thirty-two patients with 54 liver metastases from breast or colorectal cancer underwent triphasic contrast-enhanced multidetector-row computed tomography (MDCT) to evaluate hepatic metastatic spread and localization before CT-guided RFA and for follow-up after intervention. Sixteen of these patients (65.1 + or - 10.3 years) with 30 metastases stayed tumor-free (group 1), while the other group (n = 16 with 24 metastases; 62.0 + or - 13.8 years) suffered from local recurrent disease (group 2). Applying an automated software tool (SyngoCT Oncology; Siemens Healthcare, Forchheim, Germany), size parameters (volume, RECIST, WHO) and attenuation were measured within the lesions before, 1 day after, and 28 days after RFA treatment. The natural logarithm (ln) of the quotient of the volume 1 day versus 28 days after RFA treament was computed: lnQ1//28/0(volume). Analogously, ln ratios of RECIST, WHO, and attenuation were computed and statistically evaluated by repeated-measures ANOVA. One lesion in group 2 was excluded from further evaluation due to automated missegmentation. Statistically significant differences between the two groups were observed with respect to initial volume, RECIST, and WHO (p free and local-recurrent ablation zones with respect to the corresponding size parameters. A new parameter (lnQ1//28/0(volume/RECIST/WHO/attenuation)) was introduced, which appears to be of prognostic value at early follow-up CT.

  2. Toward magnetic resonance-guided electroanatomical voltage mapping for catheter ablation of scar-related ventricular tachycardia: a comparison of registration methods.

    Science.gov (United States)

    Tao, Qian; Milles, Julien; VAN Huls VAN Taxis, Carine; Lamb, Hildo J; Reiber, Johan H C; Zeppenfeld, Katja; VAN DER Geest, Rob J

    2012-01-01

    Integration of preprocedural delayed enhanced magnetic resonance imaging (DE-MRI) with electroanatomical voltage mapping (EAVM) may provide additional high-resolution substrate information for catheter ablation of scar-related ventricular tachycardias (VT). Accurate and fast image integration of DE-MRI with EAVM is desirable for MR-guided ablation. Twenty-six VT patients with large transmural scar underwent catheter ablation and preprocedural DE-MRI. With different registration models and EAVM input, 3 image integration methods were evaluated and compared to the commercial registration module CartoMerge. The performance was evaluated both in terms of distance measure that describes surface matching, and correlation measure that describes actual scar correspondence. Compared to CartoMerge, the method that uses the translation-and-rotation model and high-density EAVM input resulted in a registration error of 4.32±0.69 mm as compared to 4.84 ± 1.07 (P <0.05); the method that uses the translation model and high-density EAVM input resulted in a registration error of 4.60 ± 0.65 mm (P = NS); and the method that uses the translation model and a single anatomical landmark input resulted in a registration error of 6.58 ± 1.63 mm (P < 0.05). No significant difference in scar correlation was observed between all 3 methods and CartoMerge (P = NS). During VT ablation procedures, accurate integration of EAVM and DE-MRI can be achieved using a translation registration model and a single anatomical landmark. This model allows for image integration in minimal mapping time and is likely to reduce fluoroscopy time and increase procedure efficacy. © 2011 Wiley Periodicals, Inc.

  3. In-plane aligned YBCO film on textured YSZ buffer layer deposited on NiCr alloy tape by laser ablation with only O+ ion beam assistance

    International Nuclear Information System (INIS)

    Xin Tang Huang

    2000-01-01

    High critical current density and in-plane aligned YBa 2 Cu 3 O 7-x (YBCO) film on a textured yttria-stabilized zirconia (YSZ) buffer layer deposited on NiCr alloy (Hastelloy c-275) tape by laser ablation with only O + ion beam assistance was fabricated. The values of the x-ray phi-scan full width at half-maximum (FWHM) for YSZ(202) and YBCO(103) are 18 deg. and 11 deg., respectively. The critical current density of YBCO film is 7.9 x 105 A cm -2 at liquid nitrogen temperature and zero field, and its critical temperature is 90 K. (author)

  4. The Characterization of Laser Ablation Patterns and a New Definition of Resolution in Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS).

    Science.gov (United States)

    O'Rourke, Matthew B; Raymond, Benjamin B A; Padula, Matthew P

    2017-05-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) is a technique that has seen a sharp rise in both use and development. Despite this rapid adoption, there have been few thorough investigations into the actual physical mechanisms that underlie the acquisition of IMS images. We therefore set out to characterize the effect of IMS laser ablation patterns on the surface of a sample. We also concluded that the governing factors that control spatial resolution have not been correctly defined and therefore propose a new definition of resolution. Graphical Abstract ᅟ.

  5. Percutaneous Radiofrequency Ablation Versus Robotic-Assisted Partial Nephrectomy for the Treatment of Small Renal Cell Carcinoma

    International Nuclear Information System (INIS)

    Pantelidou, Maria; Challacombe, Ben; McGrath, Andrew; Brown, Matthew; Ilyas, Shahzad; Katsanos, Konstantinos; Adam, Andreas

    2016-01-01

    IntroductionThe authors compared the oncologic outcomes of radiofrequency ablation (RFA) with robotic-assisted partial nephrectomy (RPN) for the treatment of T1 stage renal cell carcinoma (RCC).Materials and methodsThis was a retrospective data analysis of a high-volume single tertiary centre. Patients were treated with RFA or RPN following multidisciplinary decision making. Only histologically proven RCCs were included. Baseline demographics were collected, and PADUA scores of tumour features were calculated to standardize baseline anatomy. Peri-operative complications, kidney function and oncological outcomes were compared.ResultsSixty-three cases were included in each group. Baseline renal function was poorer in RFA, and 16/63 RFA patients had tumours in single kidneys compared to 1/63 RPN cases (p < 0.001). Length of stay was shorter in RFA (1 vs. 3 days, p < 0.0001). Post-procedure renal function decline at 30 days was significantly less in RFA [(−0.8) ± 9.6 vs. (−16.1) ± 19.5 mls/min/1.73 m"2; p < 0.0001]. More minor complications were recorded in RPN (10/63 vs. 4/63, p = 0.15), but local recurrence was numerically higher in RFA (6/63 vs. 1/63, p = 0.11). Disease-free survival (DFS) was not significantly different (adjusted HR = 0.6, 95 % Cl 0.1–3.7; p = 0.60). Increasing tumour size was an independent predictor of local recurrence (adjusted HR = 1.7; 95 % Cl 1.1–2.6 per cm; p = 0.02).ConclusionsBoth RPN and RFA offer very good oncological outcomes for the treatment of T1 RCC with low peri-operative morbidity and similar oncologic outcomes. RFA demonstrated fewer peri-operative complications and better preservation of renal function, whereas RPN had an insignificantly lower local recurrence rate. RFA should be offered alongside RPN for selected cases.

  6. Percutaneous Radiofrequency Ablation Versus Robotic-Assisted Partial Nephrectomy for the Treatment of Small Renal Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Pantelidou, Maria [King’s Health Partners, Department of Interventional Radiology, Guy’s and St. Thomas’ Hospitals, NHS Foundation Trust (United Kingdom); Challacombe, Ben [King’s Health Partners, Department of Urology, Guy’s and St. Thomas’ Hospitals, NHS Foundation Trust (United Kingdom); McGrath, Andrew [King’s Health Partners, Department of Interventional Radiology, Guy’s and St. Thomas’ Hospitals, NHS Foundation Trust (United Kingdom); Brown, Matthew [King’s Health Partners, Department of Urology, Guy’s and St. Thomas’ Hospitals, NHS Foundation Trust (United Kingdom); Ilyas, Shahzad; Katsanos, Konstantinos, E-mail: konstantinos.katsanos@gstt.nhs.uk; Adam, Andreas [King’s Health Partners, Department of Interventional Radiology, Guy’s and St. Thomas’ Hospitals, NHS Foundation Trust (United Kingdom)

    2016-11-15

    IntroductionThe authors compared the oncologic outcomes of radiofrequency ablation (RFA) with robotic-assisted partial nephrectomy (RPN) for the treatment of T1 stage renal cell carcinoma (RCC).Materials and methodsThis was a retrospective data analysis of a high-volume single tertiary centre. Patients were treated with RFA or RPN following multidisciplinary decision making. Only histologically proven RCCs were included. Baseline demographics were collected, and PADUA scores of tumour features were calculated to standardize baseline anatomy. Peri-operative complications, kidney function and oncological outcomes were compared.ResultsSixty-three cases were included in each group. Baseline renal function was poorer in RFA, and 16/63 RFA patients had tumours in single kidneys compared to 1/63 RPN cases (p < 0.001). Length of stay was shorter in RFA (1 vs. 3 days, p < 0.0001). Post-procedure renal function decline at 30 days was significantly less in RFA [(−0.8) ± 9.6 vs. (−16.1) ± 19.5 mls/min/1.73 m{sup 2}; p < 0.0001]. More minor complications were recorded in RPN (10/63 vs. 4/63, p = 0.15), but local recurrence was numerically higher in RFA (6/63 vs. 1/63, p = 0.11). Disease-free survival (DFS) was not significantly different (adjusted HR = 0.6, 95 % Cl 0.1–3.7; p = 0.60). Increasing tumour size was an independent predictor of local recurrence (adjusted HR = 1.7; 95 % Cl 1.1–2.6 per cm; p = 0.02).ConclusionsBoth RPN and RFA offer very good oncological outcomes for the treatment of T1 RCC with low peri-operative morbidity and similar oncologic outcomes. RFA demonstrated fewer peri-operative complications and better preservation of renal function, whereas RPN had an insignificantly lower local recurrence rate. RFA should be offered alongside RPN for selected cases.

  7. The Origin of the Non-Additivity in Resonance-Assisted Hydrogen Bond Systems.

    Science.gov (United States)

    Lin, Xuhui; Zhang, Huaiyu; Jiang, Xiaoyu; Wu, Wei; Mo, Yirong

    2017-11-09

    The concept of resonance-assisted hydrogen bond (RAHB) has been widely accepted, and its impact on structures and energetics can be best studied computationally using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory and able to derive strictly electron-localized structures self-consistently. In this work, we use the BLW method to examine a few molecules that result from the merging of two malonaldehyde molecules. As each of these molecules contains two hydrogen bonds, these intramolecular hydrogen bonds may be cooperative or anticooperative, depended on their relative orientations, and compared with the hydrogen bond in malonaldehyde. Apart from quantitatively confirming the concept of RAHB, the comparison of the computations with and without π resonance shows that both σ-framework and π-resonance contribute to the nonadditivity in these RAHB systems with multiple hydrogen bonds.

  8. Preservation of the endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound ablation of submucosal uterine fibroids

    International Nuclear Information System (INIS)

    Kim, Young-sun; Kim, Tae-Joong; Lee, Jeong-Won; Kim, Byoung-Gie; Lim, Hyo Keun; Rhim, Hyunchul; Jung, Sin-Ho; Ahn, Joong Hyun

    2017-01-01

    To evaluate the integrity of endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) ablation of submucosal uterine fibroids based on contrast-enhanced MRI findings, and to identify the risk factors for endometrial impairment. In total, 117 submucosal fibroids (diameter: 5.9 ± 3.0 cm) in 101 women (age: 43.6 ± 4.4 years) treated with MR-HIFU ablation were retrospectively analysed. Endometrial integrity was assessed with contrast-enhanced T1-weighted images at immediate (n = 101), 3-month (n = 62) and 12-month (n = 15) follow-ups. Endometrial impairment was classified into grades 0 (continuous endometrium), 1 (pin-point, full-thickness discontinuity), 2 (between grade 1 and 3), or 3 (full-thickness discontinuity >1 cm). Risk factors were assessed with generalized estimating equation (GEE) analysis. Among 117 fibroids, grades 0, 1, 2 and 3 endometrial impairments were observed at initial examination in 56.4%, 24.8%, 13.7% and 4.3%, respectively. Among 37 fibroid cases of endometrial impairment for which follow-ups were conducted, 30 showed improvements at 3- and/or 12-month follow-up. GEE analysis revealed the degree of endometrial protrusion was significantly associated with severity of endometrial injury (P < 0.0001). After MR-HIFU ablation of submucosal fibroids, endometrial enhancement was preserved intact or minimally impaired in most cases. Impaired endometrium, which is more common after treating endometrially-protruded fibroids, may recover spontaneously. (orig.)

  9. Preservation of the endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound ablation of submucosal uterine fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-sun [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Seoul (Korea, Republic of); Uterine Fibroid Integrated Management Center, MINT Intervention Hospital, Department of Radiology, Seoul (Korea, Republic of); Kim, Tae-Joong; Lee, Jeong-Won; Kim, Byoung-Gie [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of); Lim, Hyo Keun [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Seoul (Korea, Republic of); SAIHST, Sungkyunkwan University, Department of Health Sciences and Technology, Seoul (Korea, Republic of); Rhim, Hyunchul [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Seoul (Korea, Republic of); Jung, Sin-Ho [SAIHST, Sungkyunkwan University, Department of Health Sciences and Technology, Seoul (Korea, Republic of); Samsung Medical Center, Department of Biostatistics and Clinical Epidemiology, Seoul (Korea, Republic of); Ahn, Joong Hyun [Samsung Biomedical Research Institute, Samsung Medical Center, Biostatistics Team, Seoul (Korea, Republic of)

    2017-09-15

    To evaluate the integrity of endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) ablation of submucosal uterine fibroids based on contrast-enhanced MRI findings, and to identify the risk factors for endometrial impairment. In total, 117 submucosal fibroids (diameter: 5.9 ± 3.0 cm) in 101 women (age: 43.6 ± 4.4 years) treated with MR-HIFU ablation were retrospectively analysed. Endometrial integrity was assessed with contrast-enhanced T1-weighted images at immediate (n = 101), 3-month (n = 62) and 12-month (n = 15) follow-ups. Endometrial impairment was classified into grades 0 (continuous endometrium), 1 (pin-point, full-thickness discontinuity), 2 (between grade 1 and 3), or 3 (full-thickness discontinuity >1 cm). Risk factors were assessed with generalized estimating equation (GEE) analysis. Among 117 fibroids, grades 0, 1, 2 and 3 endometrial impairments were observed at initial examination in 56.4%, 24.8%, 13.7% and 4.3%, respectively. Among 37 fibroid cases of endometrial impairment for which follow-ups were conducted, 30 showed improvements at 3- and/or 12-month follow-up. GEE analysis revealed the degree of endometrial protrusion was significantly associated with severity of endometrial injury (P < 0.0001). After MR-HIFU ablation of submucosal fibroids, endometrial enhancement was preserved intact or minimally impaired in most cases. Impaired endometrium, which is more common after treating endometrially-protruded fibroids, may recover spontaneously. (orig.)

  10. Can pre- and postoperative magnetic resonance imaging predict recurrence-free survival after whole-gland high-intensity focused ablation for prostate cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Rosset, Remy; Bratan, Flavie [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Lyon (France); Crouzet, Sebastien [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urology, Lyon (France); Universite de Lyon, Lyon (France); Faculte de Medecine Lyon Est, Universite Lyon 1, Lyon (France); Inserm, U1032, LabTau, Lyon (France); Tonoli-Catez, Helene [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urology, Lyon (France); Mege-Lechevallier, Florence [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Pathology, Lyon (France); Gelet, Albert [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urology, Lyon (France); Inserm, U1032, LabTau, Lyon (France); Rouviere, Olivier [Hopital Edouard Herriot, Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Lyon (France); Universite de Lyon, Lyon (France); Faculte de Medecine Lyon Est, Universite Lyon 1, Lyon (France); Inserm, U1032, LabTau, Lyon (France)

    2017-04-15

    Our aim was to assess whether magnetic resonance imaging (MRI) features predict recurrence-free survival (RFS) after prostate cancer high-intensity focused ultrasound (HIFU) ablation. We retrospectively selected 81 patients who underwent (i) whole-gland HIFU ablation between 2007 and 2011 as first-line therapy or salvage treatment after radiotherapy or brachytherapy, and (ii) pre- and postoperative MRI. On preoperative imaging, two senior (R1, R2) and one junior (R3) readers assessed the number of sectors invaded by the lesion with the highest Likert score (dominant lesion) using a 27-sector diagram. On postoperative imaging, readers assessed destruction of the dominant lesion using a three-level score. Multivariate analysis included the number of sectors invaded by the dominant lesion, its Likert and destruction scores, the pre-HIFU prostate-specific antigen (PSA) level, Gleason score, and the clinical setting (primary/salvage). The most significant predictor was the number of prostate sectors invaded by the dominant lesion for R2 and R3 (p≤0.001) and the destruction score of the dominant lesion for R1 (p = 0.011). The pre-HIFU PSA level was an independent predictor for R2 (p = 0.014), but with only marginal significance for R1 (p = 0.059) and R3 (p = 0.053). The dominant lesion's size and destruction assessed by MRI provide independent prognostic information compared with usual predictors. (orig.)

  11. Resonance absorption spectroscopy for laser-ablated lanthanide atom. (1) Optimized experimental conditions for isotope-selective absorption of gadolinium (Contract research)

    International Nuclear Information System (INIS)

    Miyabe, Masabumi; Oba, Masaki; Iimura, Hideki; Akaoka, Katsuaki; Maruyama, Yoichiro; Wakaida, Ikuo; Watanabe, Kazuo

    2008-06-01

    For remote isotope analysis of low-decontaminated TRU fuel, we are developing an analytical technique on the basis of the resonance absorption spectroscopy for the laser-ablation plume. To improve isotopic selectivity and detection sensitivity of this technique, we measured absorption spectra of Gd atom with various plume production conditions (ablation laser intensity, ambient gas and its pressure) and observation conditions (transition, probe height from sample, observation timing). As a result, high resolution spectrum was obtained from the observation of slow component of the plume produced under low-pressure rare-gas ambient. The observed narrowest linewidth of about 0.85GHz was found to be close to the Doppler width estimated for Gd atom of room temperature. Furthermore, relaxation rate of higher meta-stable state was found to be higher than that of ground state, suggesting that use of the transition arising from ground state or lower meta-stable state is preferable for highly sensitive isotope analysis. (author)

  12. Spatial and temporal observation of phase-shift nano-emulsions assisted cavitation and ablation during focused ultrasound exposure.

    Science.gov (United States)

    Qiao, Yangzi; Zong, Yujin; Yin, Hui; Chang, Nan; Li, Zhaopeng; Wan, Mingxi

    2014-09-01

    Phase-shift nano-emulsions (PSNEs) with a small initial diameter in nanoscale have the potential to leak out of the blood vessels and to accumulate at the target point of tissue. At desired location, PSNEs can undergo acoustic droplet vaporization (ADV) process, change into gas bubbles and enhance focused ultrasound efficiency. The threshold of droplet vaporization and influence of acoustic parameters have always been research hotspots in order to spatially control the potential of bioeffects and optimize experimental conditions. However, when the pressure is much higher than PSNEs' vaporization threshold, there were little reports on their cavitation and thermal effects. In this study, PSNEs induced cavitation and ablation effects during pulsed high-intensity focused ultrasound (HIFU) exposure were investigated, including the spatial and temporal information and the influence of acoustic parameters. Two kinds of tissue-mimicking phantoms with uniform PSNEs were prepared because of their optical transparency. The Sonoluminescence (SL) method was employed to visualize the cavitation activities. And the ablation process was observed as the heat deposition could produce white lesion. Precisely controlled HIFU cavitation and ablation can be realized at a relatively low input power. But when the input power was high, PSNEs can accelerate cavitation and ablation in pre-focal region. The cavitation happened layer by layer advancing the transducer. While the lesion appeared to be separated into two parts, one in pre-focal region stemmed from one point and grew quickly, the other in focal region grew much more slowly. The influence of duty cycle has also been examined. Longer pulse off time would cause heat transfer to the surrounding media, and generate smaller lesion. On the other hand, this would give outer layer bubbles enough time to dissolve, and inner bubbles can undergo violent collapse and emit bright light. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus

    International Nuclear Information System (INIS)

    Zhang Lian; Chen Wenzhi; Liu Yinjiang; Hu Xiao; Zhou Kun; Chen Li; Peng Song; Zhu Hui; Zou Huiling; Bai Jin; Wang Zhibiao

    2010-01-01

    Purpose: To prospectively evaluate the feasibility of magnetic resonance (MR) imaging-guided high intensity focused ultrasound (HIFU) therapeutic ablation of uterine fibroids in patients with bowel lies anterior to uterus. Materials and methods: Twenty-one patients with 23 uterine fibroids underwent MR imaging-guided high intensity focused ultrasound treatment, with a mean age of 39.4 ± 6.9 (20-49) years, with fibroids average measuring 6.0 ± 1.6 (range, 2.9-9.5) cm in diameter. After being compressed with a degassed water balloon on abdominal wall, MR imaging-guided high intensity focused ultrasound treatment was performed under conscious sedation by using fentanyl and midazolam. This procedure was performed by a Haifu JM focused ultrasound tumour therapeutic system (JM2.5C, Chongqing Haifu Technology Co., Ltd., China), in combination with a 1.5-Tesla MRI system (Symphony, Siemens, Germany), which provides real-time guidance and control. Contrast-enhanced MR imaging was performed to evaluate the efficacy of thermal ablation immediately and 3 months after HIFU treatment. The treatment time and adverse events were recorded. Results: The mean fibroid volume was 97.0 ± 78.3 (range, 12.7-318.3) cm 3 . According to the treatment plan, an average 75.0 ± 11.4% (range, 37.8-92.4%) of the fibroid volume was treated. The mean fibroid volume immediately after HIFU was 109.7 ± 93.1 (range, 11.9-389.6) cm 3 , slightly enlarged because of edema. The average non-perfused volume was 83.3 ± 71.7 (range, 7.7-282.9) cm 3 , the average fractional ablation, which was defined as non-perfused volume divided by the fibroid volume immediately after HIFU treatment, was 76.9 ± 18.7% (range, 21.0-97.0%). There were no statistically significant differences between the treatment volume and the non-perfused volume. Follow-up magnetic resonance imaging (MRI) at 3 months obtained in 12 patients, the fibroid volume decreased by 31.4 ± 29.3% (range, -1.9 to 60.0%) in average, with paired t

  14. Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lian; Chen Wenzhi [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); Liu Yinjiang; Hu Xiao [National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Zhou Kun [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); Chen Li [National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Peng Song; Zhu Hui [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); Zou Huiling [National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Bai Jin [Institute of Ultrasound Engineering in Medicine of Chongqing University of Medical Sciences, Chongqing 400016 (China); Wang Zhibiao [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Institute of Ultrasound Engineering in Medicine of Chongqing University of Medical Sciences, Chongqing 400016 (China)], E-mail: wangzhibiao@haifu.com.cn

    2010-02-15

    Purpose: To prospectively evaluate the feasibility of magnetic resonance (MR) imaging-guided high intensity focused ultrasound (HIFU) therapeutic ablation of uterine fibroids in patients with bowel lies anterior to uterus. Materials and methods: Twenty-one patients with 23 uterine fibroids underwent MR imaging-guided high intensity focused ultrasound treatment, with a mean age of 39.4 {+-} 6.9 (20-49) years, with fibroids average measuring 6.0 {+-} 1.6 (range, 2.9-9.5) cm in diameter. After being compressed with a degassed water balloon on abdominal wall, MR imaging-guided high intensity focused ultrasound treatment was performed under conscious sedation by using fentanyl and midazolam. This procedure was performed by a Haifu JM focused ultrasound tumour therapeutic system (JM2.5C, Chongqing Haifu Technology Co., Ltd., China), in combination with a 1.5-Tesla MRI system (Symphony, Siemens, Germany), which provides real-time guidance and control. Contrast-enhanced MR imaging was performed to evaluate the efficacy of thermal ablation immediately and 3 months after HIFU treatment. The treatment time and adverse events were recorded. Results: The mean fibroid volume was 97.0 {+-} 78.3 (range, 12.7-318.3) cm{sup 3}. According to the treatment plan, an average 75.0 {+-} 11.4% (range, 37.8-92.4%) of the fibroid volume was treated. The mean fibroid volume immediately after HIFU was 109.7 {+-} 93.1 (range, 11.9-389.6) cm{sup 3}, slightly enlarged because of edema. The average non-perfused volume was 83.3 {+-} 71.7 (range, 7.7-282.9) cm{sup 3}, the average fractional ablation, which was defined as non-perfused volume divided by the fibroid volume immediately after HIFU treatment, was 76.9 {+-} 18.7% (range, 21.0-97.0%). There were no statistically significant differences between the treatment volume and the non-perfused volume. Follow-up magnetic resonance imaging (MRI) at 3 months obtained in 12 patients, the fibroid volume decreased by 31.4 {+-} 29.3% (range, -1.9 to 60

  15. [Microsurgery assisted by intraoperative magnetic resonance imaging and neuronavigation for small lesions in deep brain].

    Science.gov (United States)

    Song, Zhi-jun; Chen, Xiao-lei; Xu, Bai-nan; Sun, Zheng-hui; Sun, Guo-chen; Zhao, Yan; Wang, Fei; Wang, Yu-bo; Zhou, Ding-biao

    2012-01-03

    To explore the practicability of resecting small lesions in deep brain by intraoperative magnetic resonance imaging (iMRI) and neuronavigator-assisted microsurgery and its clinical efficacies. A total of 42 cases with small lesions in deep brain underwent intraoperative MRI and neuronavigator-assisted microsurgery. The drifting of neuronavigation was corrected by images acquired from intraoperative MR rescanning. All lesions were successfully identified and 40 cases totally removed without mortality. Only 3 cases developed new neurological deficits post-operatively while 2 of them returned to normal neurological functions after a follow-up duration of 3 months to 2 years. The application of intraoperative MRI can effectively correct the drifting of neuronavigation and enhance the accuracy of microsurgical neuronavigation for small lesions in deep brain.

  16. Comparing renal function preservation after laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy for clinical T1a renal tumor: using a 3D parenchyma measurement system.

    Science.gov (United States)

    Zhu, Liangsong; Wu, Guangyu; Huang, Jiwei; Wang, Jianfeng; Zhang, Ruiyun; Kong, Wen; Xue, Wei; Huang, Yiran; Chen, Yonghui; Zhang, Jin

    2017-05-01

    To compare the renal function preservation between laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy. Data were analyzed from 246 patients who underwent laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy for solitary cT1a renal cell carcinoma from January 2013 to July 2015. To reduce the intergroup difference, we used a 1:1 propensity matching analysis. The functional renal parenchyma volume preservation were measured preoperative and 12 months after surgery. The total renal function recovery and spilt GFR was compared. Multivariable logistic analysis was used for predictive factors for renal function decline. After 1:1 propensity matching, each group including 100 patients. Patients in the laparoscopic radio frequency ablation assisted tumor enucleation had a smaller decrease in estimate glomerular filtration rate at 1 day (-7.88 vs -20.01%, p renal parenchyma volume preservation (89.19 vs 84.27%, p renal parenchyma volume preservation, warm ischemia time and baseline renal function were the important independent factors in determining long-term functional recovery. The laparoscopic radio frequency ablation assisted tumor enucleation technology has unique advantage and potential in preserving renal parenchyma without ischemia damage compared to conventional laparoscopic partial nephrectomy, and had a better outcome, thus we recommend this technique in selected T1a patients.

  17. Suitability of a tumour-mimicking material for the evaluation of high-intensity focused ultrasound ablation under magnetic resonance guidance

    International Nuclear Information System (INIS)

    Pichardo, S; Kivinen, J; Curiel, L; Melodelima, D

    2013-01-01

    This study tests the suitability of a tumour-mimic for targeting magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU). An agarose-based tumour-mimic was injected as a warm solution that polymerized in tissue. Thermal characteristics and acoustic absorption of the mimic were observed within the values reported for tissues. The relaxation times at 3T were 1679 ± 15 ms for T1 and 41 ± 1 ms for T2. The mimic was clearly visible on in vivo images. With lower contrast the tumour-mimic was visible on T2-weighted images, where it was possible to detect the ablated tissue surrounding the mimic after sonications. HIFU sonications were performed to induce thermal ablation on and around the mimic using a Sonalleve system (Philips). MR thermometry maps were performed during HIFU. The average temperature when the sonication was done at the tumour-mimic was 67.6 ± 8.0 °C in vitro and 67.6 ± 5.0 °C in vivo. The average temperature for sonications at tissues was 68.4 ± 8.7 °C in vitro (liver) and 66.0 ± 2.6 °C in vivo (muscle), with no significant difference between tissue and tumour-mimic (p > 0.05). The tumour-mimic behaviour when using MR-guided HIFU was similar to tissues, showing that this mimic can be used as an alternative to tumour models for validating MR-guided HIFU devices targeting. (paper)

  18. Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria

    Science.gov (United States)

    Kuroda, Chiaki; Iizuka, Ryota; Ohki, Yoshimichi; Fujimaki, Makoto

    2018-05-01

    To detect biological substances such as bacteria speedily and accurately, a dielectrophoresis-assisted surface plasmon resonance (SPR) fluorescence biosensor is being developed. Using Escherichia coli as a target organism, an appropriate voltage frequency to collect E. coli cells on indium tin oxide quadrupole electrodes by dielectrophoresis is analyzed. Then, E. coli is stained with 4‧,6-diamidino-2-phenylindole (DAPI). To clearly detect fluorescence signals from DAPI-stained E. coli cells, the sensor is optimized so that we can excite SPR on Al electrodes by illuminating 405 nm photons. As a result, the number of fluorescence signals is increased on the electrodes by the application of a low-frequency voltage. This indicates that E. coli cells with a lower permittivity than the surrounding water are collected by negative dielectrophoresis onto the electrodes where the electric field strength is lowest.

  19. Low-temperature-compatible tunneling-current-assisted scanning microwave microscope utilizing a rigid coaxial resonator.

    Science.gov (United States)

    Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka

    2016-06-01

    We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.

  20. Cardiac ablation

    Directory of Open Access Journals (Sweden)

    Kelly Ratheal

    2016-01-01

    Full Text Available Cardiac ablation is a procedure that uses either radiofrequency or cryothermal energy to destroy cells in the heart to terminate and/or prevent arrhythmias. The indications for cardiac catheter ablation include refractory, symptomatic arrhythmias, with more specific guidelines for atrial fibrillation in particular. The ablation procedure itself involves mapping the arrhythmia and destruction of the aberrant pathway in an effort to permanently prevent the arrhythmia. There are many types of arrhythmias, and they require individualized approaches to ablation based on their innately different electrical pathways. Ablation of arrhythmias, such as Wolff-Parkinson-White syndrome, AV nodal reentrant tachycardia, and atrial-fibrillation, is discussed in this review. Ablation has a high success rate overall and minimal complication rates, leading to improved quality of life in many patients.

  1. Ablation centration after active eye tracker-assisted LASIK and comparison of flying-spot and broad-beam laser.

    Science.gov (United States)

    Lin, Jane-Ming; Chen, Wen-Lu; Chiang, Chun-Chi; Tsai, Yi-Yu

    2008-04-01

    To evaluate ablation centration of flying-spot LASIK, investigate the effect of patient- and surgeon-related factors on centration, and compare flying-spot and broad-beam laser results. This retrospective study comprised 173 eyes of 94 patients who underwent LASIK with the Alcon LADARVision4000 with an active eye-tracking system. The effective tracking rate of the system is 100 Hz. The amount of decentration was analyzed by corneal topography. Patient- (low, high, and extreme myopia; effect of learning) and surgeon-related (learning curve) factors influencing centration were identified. Centration was compared to the SCHWIND Multiscan broad-beam laser with a 50-Hz tracker from a previous study. Mean decentration was 0.36+/-0.18 mm (range: 0 to 0.9 mm). Centration did not differ in low, high, and extreme myopia or in patients' first and second eyes. There were no significant differences in centration between the first 50 LASIK procedures and the last 50 procedures. Comparing flying-spot and broad-beam laser results, there were no differences in centration in low myopia. However, the LADARVision4000 yielded better centration results in high and extreme myopia. The Alcon LADARVision4000 active eye tracking system provides good centration for all levels of myopic correction and better centration than the Schwind broad-beam Multiscan in eyes with high and extreme myopia.

  2. Deposition of Methylammonium Lead Triiodide by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation

    Science.gov (United States)

    Barraza, E. Tomas; Dunlap-Shohl, Wiley A.; Mitzi, David B.; Stiff-Roberts, Adrienne D.

    2018-02-01

    Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) was used to deposit the metal-halide perovskite (MHP) CH3NH3PbI3 (methylammonium lead triiodide, or MAPbI), creating phase-pure films. Given the moisture sensitivity of these crystalline, multi-component organic-inorganic hybrid materials, deposition of MAPbI by RIR-MAPLE required a departure from the use of water-based emulsions as deposition targets. Different chemistries were explored to create targets that properly dissolved MAPbI components, were stable under vacuum conditions, and enabled resonant laser energy absorption. Secondary phases and solvent contamination in the resulting films were studied through Fourier transform infrared (FTIR) absorbance and x-ray diffraction (XRD) measurements, suggesting that lingering excess methylammonium iodide (MAI) and low-vapor pressure solvents can distort the microstructure, creating crystalline and amorphous non-perovskite phases. Thermal annealing of films deposited by RIR-MAPLE allowed for excess solvent to be evaporated from films without degrading the MAPbI structure. Further, it was demonstrated that RIR-MAPLE does not require excess MAI to create stoichiometric films with optoelectronic properties, crystal structure, and film morphology comparable to films created using more established spin-coating methods for processing MHPs. This work marks the first time a MAPLE-related technique was used to deposit MHPs.

  3. Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers

    Science.gov (United States)

    Del Rosso, T.; Rey, N. A.; Rosado, T.; Landi, S.; Larrude, D. G.; Romani, E. C.; Freire Junior, F. L.; Quinteiro, S. M.; Cremona, M.; Aucelio, R. Q.; Margheri, G.; Pandoli, O.

    2016-06-01

    Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.

  4. Dynamic T{sub 2}-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M. [Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Philips Healthcare Canada, Markham, ON, L6C 2S3 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada)

    2012-11-28

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1 Degree-Sign C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T{sub 2}, since T{sub 2} increases linearly in fat during heating. T{sub 2}-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T{sub 2}. Calibration of T{sub 2}-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T{sub 2} and temperature with a thermocouple. A positive T{sub 2} temperature dependence in bone marrow of 20 ms/ Degree-Sign C was observed. Dynamic T{sub 2}-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  5. Video-assisted microwave ablation for the treatment of a metastatic lung lesion in a dog with appendicular osteosarcoma and hypertrophic osteopathy.

    Science.gov (United States)

    Mazzaccari, Kaitlyn; Boston, Sarah E; Toskich, Beau B; Bowles, Kristina; Case, J Brad

    2017-11-01

    To describe video-assisted microwave ablation (VAMA) for the treatment of a metastatic lung lesion secondary to right forelimb osteosarcoma in a dog. Case report. A 10-year-old female spayed mixed breed dog with a metastatic lung lesion secondary to appendicular osteosarcoma. An osteosarcoma of the right distal scapula and proximal humerus that was suspected to be a radiation-induced osteosarcoma was treated with limb amputation and carboplatin chemotherapy. The patient developed pulmonary metastatic lesions and hypertrophic osteopathy (HO). VAMA of a metastatic lesion in the right caudal lung lobe was performed 227 days after amputation. The procedure was performed without complication. Follow-up information with the referring veterinarian 40 days after VAMA indicated that the patient was stable and that the clinical signs of HO had resolved. Thoracic radiographs taken by the referring veterinarian (RDVM) at monthly intervals showed that the previously treated metastatic lesion was stable. At 134 days from VAMA, the patient presented to the RDVM for lethargy and dyspnea and was transferred to an emergency clinic. The patient arrested and died 136 days from the VAMA procedure while hospitalized. A postmortem was not performed. VAMA for pulmonary metastatic lesions is technically feasible and allows for the treatment of symptoms associated with HO and minimally invasive management of pulmonary metastases in the case reported. © 2017 The American College of Veterinary Surgeons.

  6. Development of double-pulse lasers ablation system and electron paramagnetic resonance spectroscopy for direct spectral analysis of manganese doped PVA polymer

    Science.gov (United States)

    Khalil, A. A. I.; Morsy, M. A.; El-Deen, H. Z.

    2017-11-01

    Series of manganese-co-precipitated poly (vinyl alcohol) (PVA) polymer were quantitatively and qualitatively analyzed using laser ablation system (LAS) based on double-pulse laser induced breakdown spectroscopy (DP-LIBS) and electron paramagnetic resonance (EPR) spectroscopy. The collinear nanosecond laser beams of 266 and 1064 nm were optimized to focus on the surface of the PVA polymer target. Both laser beams were employed to estimate the natural properties of the excited Mn-PVA plasma, such as electron number density (Ne), electron temperature (Te), and Mn concentration. Individual transition lines of manganese (Mn), carbon (C), lithium (Li), hydrogen (H) and oxygen (O) atoms are identified based on the NIST spectral database. The results show better responses with DP-LIBS than the single-pulse laser induced breakdown spectroscopy (SP-LIBS). On the other hand, the EPR investigation shows characteristic broad peak of Mn-nano-particles (Mn-NPs) in the range of quantum dots of superparamagnetic materials. The line width (peak-to-peak, ΔHpp) and g-value of the observed Mn-EPR peak are ∼20 mT and 2.0046, respectively. The intensities of Mn-emission line at a wavelength 403.07 nm and the Mn-EPR absorption peak were used to accurate quantify the Mn-content in the polymer matrix. The results produce linear trends within the studied concentration range with regression coefficient (R2) value of ∼0.99, and limit of detection (LOD) of 0.026 mol.% and 0.016 mol.%, respectively. The LOD values are at a fold change of about -0.2 of the studied lowest mol.%. The proposed protocols of trace element detection are of significant advantage and can be applied to the other metal analysis.

  7. Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging.

    Science.gov (United States)

    Osborne, Elizabeth A; Atkins, Tonya M; Gilbert, Dustin A; Kauzlarich, Susan M; Liu, Kai; Louie, Angelique Y

    2012-06-01

    Currently, magnetic iron oxide nanoparticles are the only nanosized magnetic resonance imaging (MRI) contrast agents approved for clinical use, yet commercial manufacturing of these agents has been limited or discontinued. Though there is still widespread demand for these particles both for clinical use and research, they are difficult to obtain commercially, and complicated syntheses make in-house preparation unfeasible for most biological research labs or clinics. To make commercial production viable and increase accessibility of these products, it is crucial to develop simple, rapid and reproducible preparations of biocompatible iron oxide nanoparticles. Here, we report a rapid, straightforward microwave-assisted synthesis of superparamagnetic dextran-coated iron oxide nanoparticles. The nanoparticles were produced in two hydrodynamic sizes with differing core morphologies by varying the synthetic method as either a two-step or single-step process. A striking benefit of these methods is the ability to obtain swift and consistent results without the necessity for air-, pH- or temperature-sensitive techniques; therefore, reaction times and complex manufacturing processes are greatly reduced as compared to conventional synthetic methods. This is a great benefit for cost-effective translation to commercial production. The nanoparticles are found to be superparamagnetic and exhibit properties consistent for use in MRI. In addition, the dextran coating imparts the water solubility and biocompatibility necessary for in vivo utilization.

  8. Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Osborne, Elizabeth A; Atkins, Tonya M; Kauzlarich, Susan M; Gilbert, Dustin A; Liu Kai; Louie, Angelique Y

    2012-01-01

    Currently, magnetic iron oxide nanoparticles are the only nanosized magnetic resonance imaging (MRI) contrast agents approved for clinical use, yet commercial manufacturing of these agents has been limited or discontinued. Though there is still widespread demand for these particles both for clinical use and research, they are difficult to obtain commercially, and complicated syntheses make in-house preparation unfeasible for most biological research labs or clinics. To make commercial production viable and increase accessibility of these products, it is crucial to develop simple, rapid and reproducible preparations of biocompatible iron oxide nanoparticles. Here, we report a rapid, straightforward microwave-assisted synthesis of superparamagnetic dextran-coated iron oxide nanoparticles. The nanoparticles were produced in two hydrodynamic sizes with differing core morphologies by varying the synthetic method as either a two-step or single-step process. A striking benefit of these methods is the ability to obtain swift and consistent results without the necessity for air-, pH- or temperature-sensitive techniques; therefore, reaction times and complex manufacturing processes are greatly reduced as compared to conventional synthetic methods. This is a great benefit for cost-effective translation to commercial production. The nanoparticles are found to be superparamagnetic and exhibit properties consistent for use in MRI. In addition, the dextran coating imparts the water solubility and biocompatibility necessary for in vivo utilization. (paper)

  9. Computer-assisted imaging of the fetus with magnetic resonance imaging.

    Science.gov (United States)

    Colletti, P M

    1996-01-01

    The purpose of this paper is to review the use of magnetic resonance imaging (MRI) of the fetus and to propose future techniques and applications. Institutional review board approved MR images of the fetus were acquired in 66 patients with sonographically suspected fetal abnormalities. Axial, coronal, and sagittal short TR, short TE images were obtained. In addition, 12 studies were performed with rapid scans requiring 700-1200 ms using either GRASS or Spoiled GRASS techniques. Sequential studies demonstrating fetal motion were also performed. Three studies with 3D IR prepped GRASS were performed. These allowed for orthogonal and non-orthogonal reformatted views and 3D display. Normal fetal structures were shown with MRI, including brain, heart, liver, stomach, intestines, and bladder. Gross fetal anomalies could generally be demonstrated with MRI. MRI may give additional information to that of sonography in fetal anomalies, particularly those involving the central nervous system, and in the detection of fat, blood, and meconium. MRI of the fetus can demonstrate normal and abnormal structures. Newer techniques with faster imaging will allow for greater possibility of computer assisted manipulation of data.

  10. The rotational spectrum of CuCCH(X̃  1Σ+): a Fourier transform microwave discharge assisted laser ablation spectroscopy and millimeter/submillimeter study.

    Science.gov (United States)

    Sun, M; Halfen, D T; Min, J; Harris, B; Clouthier, D J; Ziurys, L M

    2010-11-07

    The pure rotational spectrum of CuCCH in its ground electronic state (X̃  (1)Σ(+)) has been measured in the frequency range of 7-305 GHz using Fourier transform microwave (FTMW) and direct absorption millimeter/submillimeter methods. This work is the first spectroscopic study of CuCCH, a model system for copper acetylides. The molecule was synthesized using a new technique, discharge assisted laser ablation spectroscopy (DALAS). Four to five rotational transitions were measured for this species in six isotopologues ((63)CuCCH, (65)CuCCH, (63)Cu(13)CCH, (63)CuC(13)CH, (63)Cu(13)C(13)CH, and (63)CuCCD); hyperfine interactions arising from the copper nucleus were resolved, as well as smaller splittings in CuCCD due to deuterium quadrupole coupling. Five rotational transitions were also recorded in the millimeter region for (63)CuCCH and (65)CuCCH, using a Broida oven source. The combined FTMW and millimeter spectra were analyzed with an effective Hamiltonian, and rotational, electric quadrupole (Cu and D) and copper nuclear spin-rotation constants were determined. From the rotational constants, an r(m)(2) structure for CuCCH was established, with r(Cu-C) = 1.8177(6) Å, r(C-C) = 1.2174(6) Å, and r(C-H) = 1.046(2) Å. The geometry suggests that CuCCH is primarily a covalent species with the copper atom singly bonded to the C≡C-H moiety. The copper quadrupole constant indicates that the bonding orbital of this atom may be sp hybridized. The DALAS technique promises to be fruitful in the study of other small, metal-containing molecules of chemical interest.

  11. Magnetic resonance imaging - guided vacuum-assisted breast biopsy: an initial experience in a community hospital

    International Nuclear Information System (INIS)

    Friedman, P.; Enis, S.; Pinyard, J.

    2009-01-01

    To evaluate the effectiveness in diagnosing mammographically and sonographically occult breast lesions by using magnetic resonance imaging (MRI) guided vacuum-assisted breast biopsy in patients who presented to a community-based hospital with a newly established breast MRI program. The records of 142 consecutive patients, median age of 55 years, who had undergone MRI-guided biopsy at our institution between July 2006 and July 2007 were reviewed. From these patients, 197 mammographically and sonographically occult lesions were biopsied at the time of discovery. The pathology was then reviewed and correlated with the MRI findings. Cancer was present and subsequently discovered in 8% of the previously occult lesions (16/197) or 11% of the women studied (16/142). Of the cancerous lesions, 56% were invasive carcinomas (9/16) and 44% were ductal carcinomas in situ (7/16). Fourteen percent of the discovered lesions (28/197) were defined as high risk and included atypical ductal hyperplasia, atypical lobular hyperplasia, lobular carcinoma in situ, and radial scar. In total, occult cancerous and high-risk lesions were discovered in 22% of the found lesions (44/197) or 31% of the women who underwent MRI-guided biopsy (44/142). This study demonstrated that detection of cancerous and high-risk lesions can be significantly increased when an MRI-guided biopsy program is introduced at a community-based hospital. We believe that as radiologists gain confidence in imaging and histologic correlation, community-based hospitals can achieve similar rates of occult lesion diagnosis as those found in data emerging from academic institutions. (author)

  12. Magnetic resonance imaging - guided vacuum-assisted breast biopsy: an initial experience in a community hospital

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, P.; Enis, S.; Pinyard, J., E-mail: jpinyard@gmail.com [Morristown Memorial Hospital, The Carol W. and Julius A. Rippel Breast Center, The Carol G. Simon Cancer Centre, Morristown, New Jersey (United States)

    2009-10-15

    To evaluate the effectiveness in diagnosing mammographically and sonographically occult breast lesions by using magnetic resonance imaging (MRI) guided vacuum-assisted breast biopsy in patients who presented to a community-based hospital with a newly established breast MRI program. The records of 142 consecutive patients, median age of 55 years, who had undergone MRI-guided biopsy at our institution between July 2006 and July 2007 were reviewed. From these patients, 197 mammographically and sonographically occult lesions were biopsied at the time of discovery. The pathology was then reviewed and correlated with the MRI findings. Cancer was present and subsequently discovered in 8% of the previously occult lesions (16/197) or 11% of the women studied (16/142). Of the cancerous lesions, 56% were invasive carcinomas (9/16) and 44% were ductal carcinomas in situ (7/16). Fourteen percent of the discovered lesions (28/197) were defined as high risk and included atypical ductal hyperplasia, atypical lobular hyperplasia, lobular carcinoma in situ, and radial scar. In total, occult cancerous and high-risk lesions were discovered in 22% of the found lesions (44/197) or 31% of the women who underwent MRI-guided biopsy (44/142). This study demonstrated that detection of cancerous and high-risk lesions can be significantly increased when an MRI-guided biopsy program is introduced at a community-based hospital. We believe that as radiologists gain confidence in imaging and histologic correlation, community-based hospitals can achieve similar rates of occult lesion diagnosis as those found in data emerging from academic institutions. (author)

  13. Diagnostics of microwave assisted electron cyclotron resonance plasma source for surface modification of nylon 6

    Science.gov (United States)

    More, Supriya E.; Das, Partha Sarathi; Bansode, Avinash; Dhamale, Gayatri; Ghorui, S.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Mathe, Vikas L.

    2018-01-01

    Looking at the increasing scope of plasma processing of materials surface, here we present the development and diagnostics of a microwave assisted Electron Cyclotron Resonance (ECR) plasma system suitable for surface modification of polymers. Prior to the surface-treatment, a detailed diagnostic mapping of the plasma parameters throughout the reactor chamber was carried out by using single and double Langmuir probe measurements in Ar plasma. Conventional analysis of I-V curves as well as the elucidation form of the Electron Energy Distribution Function (EEDF) has become the source of calibration of plasma parameters in the reaction chamber. The high energy tail in the EEDF of electron temperature is seen to extend beyond 60 eV, at much larger distances from the ECR zone. This proves the suitability of the rector for plasma processing, since the electron energy is much beyond the threshold energy of bond breaking in most of the polymers. Nylon 6 is used as a representative candidate for surface processing in the presence of Ar, H2 + N2, and O2 plasma, treated at different locations inside the plasma chamber. In a typical case, the work of adhesion is seen to almost get doubled when treated with oxygen plasma. Morphology of the plasma treated surface and its hydrophilicity are discussed in view of the variation in electron density and electron temperature at these locations. Nano-protrusions arising from plasma treatment are set to be responsible for the hydrophobicity. Chemical sputtering and physical sputtering are seen to influence the surface morphology on account of sufficient electron energies and increased plasma potential.

  14. Computed tomography guided navigation assisted percutaneous ablation of osteoid osteoma in a 7-year-old patient: the low dose approach

    Energy Technology Data Exchange (ETDEWEB)

    Krokidis, Miltiadis; Tappero, Carlo; Bogdanovic, Daniel; Stamm, Anna-Christina [Inselspital, Bern University Hospital, Department of Diagnostic, Interventional and Pediatric Radiology, Bern (Switzerland); Ziebarth, Kai [Inselspital, Bern University Hospital, Department of Pediatric Surgery, Bern (Switzerland)

    2017-07-15

    Osteoid osteoma (OO) is a benign tumour that can cause severe pain and functional limitation to children and young adults; the treatment of choice is image-guided ablation. Due to the very small size of the lesion, detection and accurate needle placement may be challenging. Computed tomography (CT) offers very detailed imaging of the skeleton and is the modality of choice for the detection of small OO and for ablation guidance. Nevertheless, CT-guided positioning of the ablation applicator is linked to significant radiation exposure, particularly for the paediatric population. This case describes the successful use of a novel CT-based navigation system that offers the possibility of accurate ablation with only minimal radiation exposure in a paediatric patient. (orig.)

  15. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  16. Deterministic transfer of an unknown qutrit state assisted by the low-Q microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong; Zhang, Yang; Yu, Chang-Shui, E-mail: quaninformation@sina.com; Zhang, Wei-Ning

    2017-05-25

    Highlights: • We propose a scheme to achieve an unknown quantum state transfer between two flux qutrits coupled to two superconducting coplanar waveguide resonators. • The quantum state transfer can be deterministically achieved without measurements. • Because resonator photons are virtually excited during the operation time, the decoherences caused by the resonator decay and the unwanted inter-resonator crosstalk are greatly suppressed. - Abstract: Qutrits (i.e., three-level quantum systems) can be used to achieve many quantum information and communication tasks due to their large Hilbert spaces. In this work, we propose a scheme to transfer an unknown quantum state between two flux qutrits coupled to two superconducting coplanar waveguide resonators. The quantum state transfer can be deterministically achieved without measurements. Because resonator photons are virtually excited during the operation time, the decoherences caused by the resonator decay and the unwanted inter-resonator crosstalk are greatly suppressed. Moreover, our approach can be adapted to other solid-state qutrits coupled to circuit resonators. Numerical simulations show that the high-fidelity transfer of quantum state between the two qutrits is feasible with current circuit QED technology.

  17. Deterministic transfer of an unknown qutrit state assisted by the low-Q microwave resonators

    International Nuclear Information System (INIS)

    Liu, Tong; Zhang, Yang; Yu, Chang-Shui; Zhang, Wei-Ning

    2017-01-01

    Highlights: • We propose a scheme to achieve an unknown quantum state transfer between two flux qutrits coupled to two superconducting coplanar waveguide resonators. • The quantum state transfer can be deterministically achieved without measurements. • Because resonator photons are virtually excited during the operation time, the decoherences caused by the resonator decay and the unwanted inter-resonator crosstalk are greatly suppressed. - Abstract: Qutrits (i.e., three-level quantum systems) can be used to achieve many quantum information and communication tasks due to their large Hilbert spaces. In this work, we propose a scheme to transfer an unknown quantum state between two flux qutrits coupled to two superconducting coplanar waveguide resonators. The quantum state transfer can be deterministically achieved without measurements. Because resonator photons are virtually excited during the operation time, the decoherences caused by the resonator decay and the unwanted inter-resonator crosstalk are greatly suppressed. Moreover, our approach can be adapted to other solid-state qutrits coupled to circuit resonators. Numerical simulations show that the high-fidelity transfer of quantum state between the two qutrits is feasible with current circuit QED technology.

  18. Synthesis of high Al content AlxGa1−xN ternary films by pulsed laser co-ablation of GaAs and Al targets assisted by nitrogen plasma

    International Nuclear Information System (INIS)

    Cai, Hua; You, Qinghu; Hu, Zhigao; Guo, Shuang; Yang, Xu; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-01-01

    Highlights: • Al x Ga 1−x N films were synthesized by co-ablation of an Al target and a GaAs target. • Nitrogen plasma was used to assist the synthesis of Al x Ga 1−x N ternary films. • The Al x Ga 1−x N films are slightly rich in N with an Al content above 0.6. • The Al x Ga 1−x N films are hexagonal wurtzite in crystal structure. • The Al x Ga 1−x N films have an absorption edge of 260 nm and a band gap of 4.7 eV. - Abstract: We present the synthesis of Al x Ga 1−x N ternary films by pulsed laser co-ablation of a polycrystalline GaAs target and a metallic Al target in the environment of nitrogen plasma which provides nitrogen for the films and assists the formation of nitride films. Field emission scanning electron microscopy exposes the smooth surface appearance and dense film structure. X-ray diffraction, Fourier-transform infrared spectroscopy and Raman scattering spectroscopy reveal the hexagonal wurtzite structure. Optical characterization shows high optical transmittance with an absorption edge of about 260 nm and a band gap of 4.7 eV. Compositional analysis gives the Al content of about 0.6. The structure and optical properties of the Al x Ga 1−x N films are compared with those of binary GaN and AlN films synthesized by ablating GaAs or Al target with the same nitrogen plasma assistance

  19. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water

    Energy Technology Data Exchange (ETDEWEB)

    Kyaw, Htet Htet [Department of Physics, College of Science, Sultan Qaboos University, P. O. Box 36, Al-Khoud 123 (Oman); Boonruang, Sakoolkan, E-mail: sakoolkan.boonruang@nectec.or.th, E-mail: waleed.m@bu.ac.th [Photonics Technology Laboratory, National Electronics and Computer Technology Center (NECTEC), 112 Thailand Science Park, PathumThani 12120 (Thailand); Mohammed, Waleed S., E-mail: sakoolkan.boonruang@nectec.or.th, E-mail: waleed.m@bu.ac.th [Center of Research in Optoelectronics, Communication and Control Systems (BUCROCCS), School of Engineering, Bangkok University, PathumThani 12120 (Thailand); Dutta, Joydeep [Functional Materials Division, School of Information and Communication Technology, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40 Kista, Stockholm (Sweden)

    2015-10-15

    Surface Plasmon Resonance (SPR) sensors are widely used in diverse applications. For detecting heavy metal ions in water, surface functionalization of the metal surface is typically used to adsorb target molecules, where the ionic concentration is detected via a resonance shift (resonance angle, resonance wavelength or intensity). This paper studies the potential of a possible alternative approach that could eliminate the need of using surface functionalization by the application of an external electric field in the flow channel. The exerted electrical force on the ions pushes them against the surface for enhanced adsorption; hence it is referred to as “Electric-Field assisted SPR system”. High system sensitivity is achieved by monitoring the time dynamics of the signal shift. The ion deposition dynamics are discussed using a derived theoretical model based on ion mobility in water. On the application of an appropriate force, the target ions stack onto the sensor surface depending on the ionic concentration of target solution, ion mass, and flow rate. In the experimental part, a broad detection range of target cadmium ions (Cd{sup 2+}) in water from several parts per million (ppm) down to a few parts per billion (ppb) can be detected.

  20. Percutaneous thermal ablation of renal neoplasms

    International Nuclear Information System (INIS)

    Tacke, J.; Mahnken, A.H.; Guenther, R.W.

    2005-01-01

    Due to modern examination techniques such as multidetector computed tomography and high-field magnetic resonance imaging, the detection rate of renal neoplasms is continually increasing. Even though tumors exceeding 4 cm in diameter rarely metastasize, all renal lesions that are possible neoplasms should be treated. Traditional treatment techniques include radical nephrectomy or nephron-sparing resection, which are increasingly performed laparoscopically. Modern thermal ablation techniques such as hyperthermal techniques like radiofrequency ablation RFA, laser induced thermal ablation LITT, focused ultrasound FUS and microwave therapy MW, as well as hypothermal techniques (cryotherapy) may be a useful treatment option for patients who are unfit for or refuse surgical resection. Cryotherapy is the oldest and best known thermal ablation technique and can be performed laparoscopically or percutaneously. Since subzero temperatures have no antistyptic effect, additional maneuvers must be performed to control bleeding. Percutaneous cryotherapy of renal tumors is a new and interesting method, but experience with it is still limited. Radiofrequency ablation is the most frequently used method. Modern probe design allows volumes between 2 and 5 cm in diameter to be ablated. Due to hyperthermal tract ablation, the procedure is deemed to be safe and has a low complication rate. Although there are no randomized comparative studies to open resection, the preliminary results for renal RFA are promising and show RFA to be superior to other thermal ablation techniques. Clinical success rates are over 90% for both, cryo- and radiofrequency ablation. Whereas laser induced thermal therapy is established in hepatic ablation, experience is minimal with respect to renal application. For lesions of more than 2 cm in diameter, additional cooling catheters are required. MR thermometry offers temperature control during ablation. Microwave ablation is characterized by small ablation volumes

  1. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  2. Narrow band wavelength selective filter using grating assisted single ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Prabhathan, P., E-mail: PPrabhathan@ntu.edu.sg; Murukeshan, V. M. [Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-09-15

    This paper illustrates a filter configuration which uses a single ring resonator of larger radius connected to a grating resonator at its drop port to achieve single wavelength selectivity and switching property with spectral features suitable for on-chip wavelength selection applications. The proposed configuration is expected to find applications in silicon photonics devices such as, on-chip external cavity lasers and multi analytic label-free biosensors. The grating resonator has been designed for a high Q-factor, high transmittivity, and minimum loss so that the wavelength selectivity of the device is improved. The proof-of-concept device has been demonstrated on a Silicon-on-Insulator (SOI) platform through electron beam lithography and Reactive Ion Etching (RIE) process. The transmission spectrum shows narrow band single wavelength selection and switching property with a high Free Spectral Range (FSR) ∼60 nm and side band rejection ratio >15 dB.

  3. Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators

    International Nuclear Information System (INIS)

    Ahmadivand, Arash; Sinha, Raju; Karabiyik, Mustafa; Vabbina, Phani Kiran; Gerislioglu, Burak; Kaya, Serkan; Pala, Nezih

    2017-01-01

    Graphene plasmonics has been introduced as a novel platform to design various nano- and microstructures to function in a wide range of spectrum from optical to THz frequencies. Herein, we propose a tunable plasmonic metamaterial in the THz regime by using metallic (silver) concentric microscale split ring resonator arrays on a multilayer metasurface composed of silica and silicon layers. We obtained an absorption percentage of 47.9% including two strong Fano resonant dips in THz regime for the purely plasmonic metamaterial without graphene layer. Considering the data of an atomic graphene sheet (with the thickness of ~0.35 nm) in both analytical and experimental regimes obtained by prior works, we employed a graphene layer under concentric split ring resonator arrays and above the multilayer metasurface to enhance the absorption ratio in THz bandwidth. Our numerical and analytical results proved that the presence of a thin graphene layer enhances the absorption coefficient of MM to 64.35%, at the highest peak in absorption profile that corresponds to the Fano dip position. We also have shown that changing the intrinsic characteristics of graphene sheet leads to shifts in the position of Fano dips and variations in the absorption efficiency. The maximum percentage of absorption (~67%) was obtained for graphene-based MM with graphene layer with dissipative loss factor of 1477 Ω. Employing the antisymmetric feature of the split ring resonators, the proposed graphene-based metamaterial with strong polarization dependency is highly sensitive to the polarization angle of the incident THz beam.

  4. Radiofrequency Ablation of Lung Tumors

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Radiofrequency Ablation (RFA) / Microwave Ablation (MWA) of Lung Tumors ... and Microwave Ablation of Lung Tumors? What are Radiofrequency and Microwave Ablation of Lung Tumors? Radiofrequency ablation, ...

  5. Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment

    Science.gov (United States)

    Greer, James A.

    2011-11-01

    Since the development of the Matrix Assisted Pulsed Laser Evaporation (MAPLE) process by the Naval Research Laboratory (NRL) in the late 1990s, MAPLE has become an active area of research for the deposition of a variety of polymer, biological, and organic thin films. As is often the case with advancements in thin-film deposition techniques new technology sometimes evolves by making minor or major adjustments to existing deposition process equipment and techniques. This is usually the quickest and least expensive way to try out new ideas and to "push the envelope" in order to obtain new and unique scientific results as quickly as possible. This process of "tweaking" current equipment usually works to some degree, but once the new process is further refined overall designs for a new deposition tool based on the critical attributes of the new process typically help capitalize more fully on the all the salient features of the new and improved process. This certainly has been true for the MAPLE process. In fact the first MAPLE experiments the polymer/solvent matrix was mixed and poured into a copper holder held at LN2 temperature on a laboratory counter top. The holder was then quickly placed onto a LN2 cooled reservoir in a vacuum deposition chamber and placed in a vertical position on a LN2 cooled stage and pumped down as quickly as possible. If the sample was not placed into the chamber quickly enough the frozen matrix would melt and drip into the bottom of the chamber onto the chambers main gate valve making a bit of a mess. However, skilled and motivated scientists usually worked quickly enough to make this process work most of the time. The initial results from these experiments were encouraging and led to several publications which sparked considerable interest in this newly developed technique Clearly this approach provided the vision that MAPLE was a viable deposition process, but the equipment was not optimal for conducting MAPLE experiments on a regular basis

  6. WE-EF-BRA-12: Magnetic Resonance- Guided High-Intensity Focused Ultrasound for Localized Ablation of Head and Neck Tissue Structures: A Feasibility Study in An Animal Model

    International Nuclear Information System (INIS)

    Partanen, A; Ellens, N; Noureldine, S; Tufano, R; Burdette, E; Farahani, K

    2015-01-01

    Purpose: High-intensity focused ultrasound (HIFU) ablation is feasible in the head and neck [1]. This study aims to expand upon these findings to assess the feasibility of treatment planning and monitoring via magnetic resonance imaging (MRI) guidance using a clinical MR-guided HIFU platform. Methods: Two 31 kg pigs were anaesthetized, shaved, and positioned prone on the HIFU table (Sonalleve, Philips Healthcare, Vantaa, Finland). The necks were acoustically coupled to the integrated transducer using gel pads and degassed water. MR imaging verified acoustic coupling and facilitated target selection in the thyroid and thymus. Targets were thermally ablated with 130–200 W of acoustic power over a period of 16 s at a frequency of 1.2 MHz while being monitored through real-time, multi-planar MR-thermometry. Contrast-enhanced MR imaging was used to assess treatment efficacy. Post-treatment, animals were euthanized and sonicated tissues were harvested for histology assessment. Results: MR-thermometry, post-contrast-imaging, and gross pathology demonstrated that the system was capable of causing localized thermal ablation in both the thyroid and the thymus without damaging the aerodigestive tract. In one animal, superficial bruising was observed in the ultrasound beam path. Otherwise, there were no adverse events. Analysis of the tissue histology found regions of damage consistent with acute thermal injury at the targeted locations. Conclusion: It is feasible to use a clinical MR-guided HIFU platform for extracorporeal ablation of porcine head and neck tissues. MR guidance and thermometry are sufficient to target and monitor treatment in the thyroid region, despite the presence of the inhomogeneous aerodigestive tract. Further study is necessary to assess efficacy and survival using a tumor model, and to examine what modifications should be made to the transducer positioning system and associated patient positioning aids to adapt it for clinical head and neck targets

  7. Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality

    Science.gov (United States)

    Hu, Li; Huang, Yingzhou; Fang, Liang; Chen, Guo; Wei, Hua; Fang, Yurui

    2015-11-01

    In this work, the circular dichroisms (CD) of nanorice heterodimers consisting of two parallel arranged nanorices with the same size but different materials are investigated theoretically. Symmetry-breaking is introduced by using different materials and oblique incidence to achieve strong CD at the vicinity of Fano resonance peaks. We demonstrate that all Au-Ag heterodimers exhibit multipolar Fano resonances and strong CD effect. A simple quantitative analysis shows that the structure with larger Fano asymmetry factor has stronger CD. The intensity and peak positions of the CD effect can be flexibly tuned in a large range by changing particle size, shape, the inter-particle distance and surroundings. Furthermore, CD spectra exhibit high sensitivity to ambient medium in visible and near infrared regions. Our results here are beneficial for the design and application of high sensitive CD sensors and other related fields.

  8. Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing

    Science.gov (United States)

    Butt, M. A.; Khonina, S. N.; Kazanskiy, N. L.

    2018-05-01

    A highly sensitive refractive index sensor based on an integrated hybrid plasmonic waveguide (HPWG) and a Metal-Insulator-Metal (M-I-M) micro-ring resonator is presented. In our design, there are two slot-waveguide-based micro-rings that encircle a gold disc. The outer slot WG is formed by the combination of Silicon-Air-Gold ring and the inner slot-waveguide is formed by Gold ring-Air-Gold disc. The slot-waveguide rings provide an interaction length sufficient to accumulate a detectable wavelength shift. The transmission spectrum and electric field distribution of this sensor structure are simulated using Finite Element Method (FEM). The sensitivity of this micro-ring resonator is achieved at 800 nm/RIU which is about six times higher than that of the conventional Si ring with the same geometry. Our proposed sensor design has a potential to find further applications in biomedical science and nano-photonic circuits.

  9. Photon-Assisted Resonant Chiral Tunneling Through a Bilayer Graphene Barrier

    OpenAIRE

    Phillips A. H.; Mina A. N.

    2011-01-01

    The electronic transport property of a bilayer graphene is investigated under the effect of an electromagnetic field. We deduce an expression for the conductance by solving the Dirac equation. This conductance depends on the barrier height for graphene and the energy of the induced photons. A resonance oscillatory behavior of the conductance is observed. These oscillations are strongly depends on the barrier height for chiral tunneling through graphene. This oscillatory behavio...

  10. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.

  11. Pellet ablation and ablation model development

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1989-01-01

    A broad survey of pellet ablation is given, based primarily on information presented at this meeting. The implications of various experimental observations for ablation theory are derived from qualitative arguments of the physics involved. The major elements of a more complete ablation theory are then outlined in terms of these observations. This is followed by a few suggestions on improving the connections between theory and experimental results through examination of ablation data. Although this is a rather aggressive undertaking for such a brief (and undoubtedly incomplete) assessment, some of the discussion may help us advance the understanding of pellet ablation. 17 refs

  12. Photon-Assisted Resonant Chiral Tunneling Through a Bilayer Graphene Barrier

    Directory of Open Access Journals (Sweden)

    Phillips A. H.

    2011-01-01

    Full Text Available The electronic transport property of a bilayer graphene is investigated under the effect of an electromagnetic field. We deduce an expression for the conductance by solving the Dirac equation. This conductance depends on the barrier height for graphene and the energy of the induced photons. A resonance oscillatory behavior of the conductance is observed. These oscillations are strongly depends on the barrier height for chiral tunneling through graphene. This oscillatory behavior might be due to the interference of different central band and sidebands of graphene states. The present investigation is very important for the application of bilayer graphene in photodetector devices, for example, far-infrared photodevices and ultrafast lasers.

  13. Successful radiofrequency catheter ablation assisted by the CartoSound® system for outflow tract origin nonsustained ventricular tachycardia in a patient with a severely deformed thorax

    Directory of Open Access Journals (Sweden)

    Naoaki Onishi

    2014-02-01

    Full Text Available We report the case of a 72-year-old man with a nonsustained ventricular tachycardia and a history of palpitations. He had a severely deformed thorax since childhood due to spinal caries. An integrated computed tomography image of the outflow tract region from the CartoSound® system revealed the detailed anatomical information around the origin of the tachycardia and that the left anterior descending coronary artery was very close (<10 mm to the target site. We carefully ablated that site with a 3.5-mm cooled-tip catheter while confirming it in the sound view, and succeeded without any complications.

  14. Resonant tunneling assisted propagation and amplification of plasmons in high electron mobility transistors

    International Nuclear Information System (INIS)

    Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace; Rajan, Siddharth; Volakis, John L.

    2016-01-01

    A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. It is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures

  15. Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation Of Inorganic Nanoparticles And Organic/Inorganic Hybrid Nanocomposites

    Science.gov (United States)

    Pate, Ryan; Lantz, Kevin R.; Dhawan, Anuj; Vo-Dinh, Tuan; Stiff-Roberts, Adrienne D.

    2010-10-01

    In this research, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been used to deposit different classes of inorganic nanoparticles, including bare, un-encapsulated ZnO and Au nanoparticles, as well as ligand-encapsulated CdSe colloidal quantum dots (CQDs). RIR-MAPLE has been used for thin-film deposition of different organic/inorganic hybrid nanocomposites using some of these inorganic nanoparticles, including CdSe CQD-poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-(1-cyanovinylene)phenylene] (MEH-CN-PPV) nanocomposites and Au nanoparticle-poly(methyl methacrylate) (PMMA) nanocomposites. The unique contribution of this research is that a technique is demonstrated for the deposition of organic-based thin-films requiring solvents with bond energies that do not have to be resonant with the laser energy. By creating an emulsion of solvent and ice in the target, RIR-MAPLE using a 2.94 μm laser can deposit most material systems because the hydroxyl bonds in the ice component of the emulsion matrix are strongly resonant with the 2.94 μm laser. In this way, the types of materials that can be deposited using RIR-MAPLE has been significantly expanded. Furthermore, materials with different solvent bond energies can be co-deposited without concern for material degradation and without the need to specifically tune the laser energy to each material solvent bond energy, thereby facilitating the realization of organic/inorganic hybrid nanocomposite thin-films. In addition to the structural characterization of the inorganic nanoparticle and hybrid nanocomposite thin-films deposited using this RIR-MAPLE technique, optical characterization is presented to demonstrate the potential of such films for optoelectronic device applications.

  16. Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation Of Inorganic Nanoparticles And Organic/Inorganic Hybrid Nanocomposites

    International Nuclear Information System (INIS)

    Pate, Ryan; Lantz, Kevin R.; Stiff-Roberts, Adrienne D.; Dhawan, Anuj; Vo-Dinh, Tuan

    2010-01-01

    In this research, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been used to deposit different classes of inorganic nanoparticles, including bare, un-encapsulated ZnO and Au nanoparticles, as well as ligand-encapsulated CdSe colloidal quantum dots (CQDs). RIR-MAPLE has been used for thin-film deposition of different organic/inorganic hybrid nanocomposites using some of these inorganic nanoparticles, including CdSe CQD-poly[2-methoxy-5-(2'-ethylhexyloxy )-1,4-(1-cyanovinylene)phenylene](MEH-CN-PPV) nanocomposites and Au nanoparticle-poly(methyl methacrylate)(PMMA) nanocomposites. The unique contribution of this research is that a technique is demonstrated for the deposition of organic-based thin-films requiring solvents with bond energies that do not have to be resonant with the laser energy. By creating an emulsion of solvent and ice in the target, RIR-MAPLE using a 2.94 μm laser can deposit most material systems because the hydroxyl bonds in the ice component of the emulsion matrix are strongly resonant with the 2.94 μm laser. In this way, the types of materials that can be deposited using RIR-MAPLE has been significantly expanded. Furthermore, materials with different solvent bond energies can be co-deposited without concern for material degradation and without the need to specifically tune the laser energy to each material solvent bond energy, thereby facilitating the realization of organic/inorganic hybrid nanocomposite thin-films. In addition to the structural characterization of the inorganic nanoparticle and hybrid nanocomposite thin-films deposited using this RIR-MAPLE technique, optical characterization is presented to demonstrate the potential of such films for optoelectronic device applications.

  17. Thermally Assisted Macroscopic Quantum Resonance on a Single-Crystal of Mn12-ac

    Science.gov (United States)

    Lionti, F.; Thomas, L.; Ballou, R.; Wernsdorfer, W.; Barbara, B.; Sulpice, A.; Sessoli, R.; Gatteschi, D.

    1997-03-01

    Magnetization measurements have been performed on a single mono-crystal of the molecule Mn12-acetate (L. Thomas, F. Lionti, R. Ballou, R. Sessoli, D. Gatteschi and B. Barbara, Nature, 383, 145 (1996).). Steps were observed in the hysteresis loop for values of the applied field at which level crossings of the collective spin states of each manganese clusters take place. The influence of quartic terms is taken into account. At these fields, the magnetization relaxes at short time scales, being otherwise essentially blocked. This novel behavior is interpreted in terms of resonant quantum tunneling of the magnetization from thermally activated energy levels. Hysteresis loop measurements performed for different field orientations and ac-susceptibility experiments, confirm general trends of this picture.

  18. Fiber Bragg grating assisted surface plasmon resonance sensor with graphene oxide sensing layer

    Science.gov (United States)

    Arasu, P. T.; Noor, A. S. M.; Shabaneh, A. A.; Yaacob, M. H.; Lim, H. N.; Mahdi, M. A.

    2016-12-01

    A single mode fiber Bragg grating (FBG) is used to generate Surface Plasmon Resonance (SPR). The uniform gratings of the FBG are used to scatter light from the fiber optic core into the cladding thus enabling the interaction between the light and a thin gold film in order to generate SPR. Applying this technique, the cladding around the FBG is left intact, making this sensor very robust and easy to handle. A thin film of graphene oxide (GO) is deposited over a 45 nm gold film to enhance the sensitivity of the SPR sensor. The gold coated sensor demonstrated high sensitivity of approximately 200 nm/RIU when tested with different concentrations of ethanol in an aqueous medium. A 2.5 times improvement in sensitivity is observed with the GO enhancement compared to the gold coated sensor.

  19. Dipole-resonance assisted isomerization in the electronic ground state using few-cycle infrared pulses.

    Science.gov (United States)

    Skocek, Oliver; Uiberacker, Christoph; Jakubetz, Werner

    2011-06-30

    A computational investigation of HCN → HNC isomerization in the electronic ground state by one- and few-cycle infrared pulses is presented. Starting from a vibrationally pre-excited reagent state, isomerization yields of more than 50% are obtained using single one- to five-cycle pulses. The principal mechanism includes two steps of population transfer by dipole-resonance (DR), and hence, the success of the method is closely linked to the polarity of the system and, in particular, the stepwise change of the dipole moment from reactant to transition state and on to products. The yield drops massively if the diagonal dipole matrix elements are artificially set to zero. In detail, the mechanism includes DR-induced preparation of a delocalized vibrational wavepacket, which traverses the barrier region and is finally trapped in the product well by DR-dominated de-excitation. The excitation and de-excitation steps are triggered by pulse lobes of opposite field direction. As the number of optical cycles is increased, the leading field lobes prepare a vibrational superposition state by off-resonant ladder climbing, which is then subjected to the three steps of the principal isomerization mechanism. DR excitation is more efficient from a preformed vibrational wavepacket than from a molecular eigenstate. The entire process can be loosely described as Tannor-Kosloff-Rice type transfer mechanism on a single potential surface effected by a single pulse, individual field lobes assuming the roles of pump- and dump-pulses. Pre-excitation to a transient wavepacket can be enhanced by applying a separate, comparatively weak few-cycle prepulse, in which the prepulse prepares a vibrational wavepacket. The two-pulse setup corresponds to a double Tannor-Kosloff-Rice control scheme on a single potential surface.

  20. Design of Contactlessly Powered and Piezoelectrically Actuated Tools for Non-Resonant Vibration Assisted Milling

    Directory of Open Access Journals (Sweden)

    Martin Silge

    2018-04-01

    Full Text Available This contribution presents a novel design approach for vibration assisted machining (VAM. A lot of research has already been done regarding the influence of superimposed vibrations during a milling process, but there is almost no information about how to design a VAM tool where the tool is actually rotating. The proposed system consists of a piezoelectric actuator for vibration excitation, an inductive contactless energy transfer system and an electronic circuit for powering the actuated tool. The main benefit of transferring the required power without mechanical contact is that the maximum spindle speed is no longer restricted by friction of slip rings. A detailed model is shown that enables for preliminary estimation of the system’s response to different excitation signals. Experimental data are provided to validate the model. Finally, some parts are shown that have been manufactured using the contactlessly actuated milling tool.

  1. Effect of biological characteristics of different types of uterine fibroids, as assessed with T2-weighted magnetic resonance imaging, on ultrasound-guided high-intensity focused ultrasound ablation.

    Science.gov (United States)

    Zhao, Wen-Peng; Chen, Jin-Yun; Chen, Wen-Zhi

    2015-02-01

    The aims of this study were to assess the effects of the biological characteristics of different types of uterine fibroids, as assessed with T2-weighted magnetic resonance imaging (MRI), on ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation. Thirty-five patients with 39 symptomatic uterine fibroids who underwent myomectomy or hysterectomy were enrolled. Before surgery, the uterine fibroids were subdivided into hypo-intense, iso-intense, heterogeneous hyper-intense and homogeneous hyper-intense categories based on signal intensity on T2-weighted MRI. Tissue density and moisture content were determined in post-operative samples and normal uterine tissue, the isolated uterine fibroids were subjected to USgHIFU, and the extent of ablation was measured using triphenyltetrazolium chloride. Hematoxylin and eosin staining and sirius red staining were undertaken to investigate the organizational structure of the uterine fibroids. Estrogen and progesterone receptor expression was assayed via immunohistochemical staining. The mean diameter of uterine fibroids was 6.9 ± 2.8 cm. For all uterine fibroids, the average density and moisture content were 10.7 ± 0.7 mg/mL and 75.7 ± 2.4%, respectively; and for the homogeneous hyper-intense fibroids, 10.3 ± 0.5 mg/mL and 76.6 ± 2.3%. The latter subgroup had lower density and higher moisture content compared with the other subgroups. After USgHIFU treatment, the extent of ablation of the hyper-intense fibroids was 102.7 ± 42.1 mm(2), which was significantly less than those of the hypo-intense and heterogeneous hyper-intense fibroids. Hematoxylin and eosin staining and sirius red staining revealed that the homogeneous hyper-intense fibroids had sparse collagen fibers and abundant cells. Immunohistochemistry results revealed that estrogen and progesterone receptors were highly expressed in the homogeneous hyper-intense fibroids. This study revealed that lower density, higher moisture content, sparse collagen

  2. Implications for psychedelic-assisted psychotherapy: functional magnetic resonance imaging study with psilocybin.

    Science.gov (United States)

    Carhart-Harris, R L; Leech, R; Williams, T M; Erritzoe, D; Abbasi, N; Bargiotas, T; Hobden, P; Sharp, D J; Evans, J; Feilding, A; Wise, R G; Nutt, D J

    2012-03-01

    Psilocybin is a classic psychedelic drug that has a history of use in psychotherapy. One of the rationales for its use was that it aids emotional insight by lowering psychological defences. To test the hypothesis that psilocybin facilitates access to personal memories and emotions by comparing subjective and neural responses to positive autobiographical memories under psilocybin and placebo. Ten healthy participants received two functional magnetic resonance imaging scans (2 mg intravenous psilocybin v. intravenous saline), separated by approximately 7 days, during which they viewed two different sets of 15 positive autobiographical memory cues. Participants viewed each cue for 6 s and then closed their eyes for 16 s and imagined re-experiencing the event. Activations during this recollection period were compared with an equivalent period of eyes-closed rest. We split the recollection period into an early phase (first 8 s) and a late phase (last 8 s) for analysis. Robust activations to the memories were seen in limbic and striatal regions in the early phase and the medial prefrontal cortex in the late phase in both conditions (Ppsilocybin that were absent under placebo. Ratings of memory vividness and visual imagery were significantly higher after psilocybin (Ppsilocybin enhances autobiographical recollection implies that it may be useful in psychotherapy either as a tool to facilitate the recall of salient memories or to reverse negative cognitive biases.

  3. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

    Science.gov (United States)

    Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.

    2018-03-01

    In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

  4. Rapid microwave-assisted synthesis of PVP-coated ultrasmall gadolinium oxide nanoparticles for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vahdatkhah, Parisa [Department of Materials Science and Engineering, Sharif University of Technology (Iran, Islamic Republic of); Madaah Hosseini, Hamid Reza, E-mail: Madaah@sharif.ir [Department of Materials Science and Engineering, Sharif University of Technology (Iran, Islamic Republic of); Khodaei, Azin [Department of Materials Science and Engineering, Sharif University of Technology (Iran, Islamic Republic of); Montazerabadi, Ali Reza [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (Iran, Islamic Republic of); Irajirad, Rasoul [Biomolecular Image Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (Iran, Islamic Republic of); Oghabian, Mohamad Ali [Biomolecular Image Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (Iran, Islamic Republic of); Delavari, Hamid H., E-mail: Hamid.delavari@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, Tehran, PO Box 14115-143 (Iran, Islamic Republic of)

    2015-05-12

    Highlights: • A rapid microwave-assisted polyol process used to synthesize Gd{sub 2}O{sub 3} nanoparticles. • In situ surface modification of ultrasmall Gd{sub 2}O{sub 3}NPs with PVP has been performed. • Gd{sub 2}O{sub 3}NPs shows considerable increasing of relaxivity in comparison to Gd-chelates. • PVP-covered Gd{sub 2}O{sub 3}NPs show appropriate stability for approximately 15 days. • Spectrophotometric indicates the leaching of free Gd ions not occurred versus time. - Abstract: Synthesis of polyvinyl pyrrolidone (PVP) coated ultrasmall Gd{sub 2}O{sub 3} nanoparticles (NPs) with enhanced T{sub 1}-weighted signal intensity and r{sub 2}/r{sub 1} ratio close to unity is performed by a microwave-assisted polyol process. PVP coated Gd{sub 2}O{sub 3}NPs with spherical shape and uniform size of 2.5 ± 0.5 nm have been synthesized below 5 min and structure and morphology confirmed by HRTEM, XRD and FTIR. The longitudinal (r{sub 1}) and transversal relaxation (r{sub 2}) of Gd{sub 2}O{sub 3}NPs is measured by a 3 T MRI scanner. The results showed considerable increasing of relaxivity for Gd{sub 2}O{sub 3}NPs in comparison to gadolinium chelates which are commonly used for clinical magnetic resonance imaging. In addition, a mechanism for Gd{sub 2}O{sub 3}NPs formation and in situ surface modification of PVP-grafted Gd{sub 2}O{sub 3}NPs is proposed.

  5. Ablation of intervertebral discs in dogs using a MicroJet-assisted dye-enhanced injection device coupled with the diode laser

    Science.gov (United States)

    Bartels, Kenneth E.; Henry, George A.; Dickey, D. Thomas; Stair, Ernest L.; Powell, Ronald; Schafer, Steven A.; Nordquist, Robert E.; Frederickson, Christopher J.; Hayes, Donald J.; Wallace, David B.

    1998-07-01

    Use of holmium laser energy for vaporization/coagulation of the nucleus pulposus in canine intervertebral discs has been previously reported and is currently being applied clinically in veterinary medicine. The procedure was originally developed in the canine model and intended for potential human use. Since the pulsed (15 Hz) holmium laser energy exerts photomechanical and photothermal effects, the potential for extrusion of additional disc material to the detriment of the patient is possible using the procedure developed for the dog. To reduce this potential complication, use of diode laser (805 nm - CW mode) energy, coupled with indocyanine green (ICG) as a selective laser energy absorber, was formulated as a possible alternative. Delivery of the ICG and diode laser energy was through a MicroJet device that could dispense dye interactively between individual laser 'shots.' Results have shown that it is possible to selectively ablate nucleus pulposus in the canine model using the device described. Acute observations (gross and histopathologic) illustrate that accurate placement of the spinal needle before introduction of the MicroJet device is critically dependent on the expertise of the interventional radiologist. In addition, the success of the overall technique depends on consistent delivery of both ICG and diode laser energy. Minimizing tissue carbonization on the tip of the MicroJet device is also of crucial importance for effective application of the technique in clinical veterinary medicine.

  6. Image-guided radiofrequency ablation of renal cell carcinoma

    International Nuclear Information System (INIS)

    Boss, Andreas; Clasen, Stephan; Pereira, Philippe L.; Kuczyk, Markus; Schick, Fritz

    2007-01-01

    The incidence of renal cell carcinoma is rising with the increased number of incidental detection of small tumours. During the past few years, percutaneous imaging-guided radiofrequency ablation has evolved as a minimally invasive treatment of small unresectable renal tumours offering reduced patient morbidity and overall health care costs. In radiofrequency ablation, thermal energy is deposited into a targeted tumour by means of a radiofrequency applicator. In recent studies, radiofrequency ablation was shown to be an effective and safe modality for local destruction of renal cell carcinoma. Radiofrequency applicator navigation can be performed via ultrasound, computed tomography or magnetic resonance guidance; however, ultrasound seems less favourable because of the absence of monitoring capabilities during ablation. On-line monitoring of treatment outcome can only be performed with magnetic resonance imaging giving the possibility of eventual applicator repositioning to ablate visible residual tumour tissue. Long-term follow-up is crucial to assess completeness of tumour ablation. New developments in ablation technology and radiological equipment will further increase the indication field for radiofrequency ablation of renal cell carcinoma. Altogether, radiofrequency ablation seems to be a promising new modality for the minimally invasive treatment of renal cell carcinoma, which was demonstrated to exhibit high short-term effectiveness. (orig.)

  7. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    Science.gov (United States)

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  8. Graphene Oxide and Gadolinium-Chelate Functionalized Poly(lactic acid) Nanocapsules Encapsulating Perfluorooctylbromide for Ultrasound/Magnetic Resonance Bimodal Imaging Guided Photothermal Ablation of Cancer.

    Science.gov (United States)

    Li, Zhenglin; Ke, Hengte; Wang, Jinrui; Miao, Zhaohua; Yue, Xiuli

    2016-03-01

    This paper successfully fabricated a novel multifunctional theranostic agent (PFOB@PLA/GO/Gd-DTPA NCs) by loading perfluorooctylbromide (PFOB) into poly(lactic acid) (PLA) nanocapsules (NCs) followed by surface functionalization with graphene oxide (GO) and gadolinium-chelate (Gd-DTPA). It was found that the resulting nanoagent could serve as a contrast agent simultaneously to enhance ultrasound (US) and magnetic resonance imaging (MRI). Benefiting from the strong absorption in the near infrared (NIR) region, the nanocapsules could efficiently kill cancer cells under NIR laser irradiation. Thus, such a single theranostic agent with the combination of realtime US imaging and high-resolution MR imaging could achieve great therapeutic effectiveness without systemic damage to the body. In addition, the cytotoxicity assay on HUVEC cells revealed a good biocompatibility of PFOB@PLA/GO/Gd-DTPA NCs, showing that the versatile nanocapsule system may hold great potential as an effective nanoplatform for contrast enhanced imaging guided photothermal therapy.

  9. Percutaneous thermal ablation of renal neoplasms; Perkutane Thermoablation von Nierentumoren

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, J. [Inst. fuer Diagnostische und Interventionelle Radiologie/Neuroradiologie, Klinikum Passau (Germany); Mahnken, A.H.; Guenther, R.W. [Klinik fuer Radiologische Diagnostik, Universitaetsklinikum Aachen (Germany)

    2005-12-15

    Due to modern examination techniques such as multidetector computed tomography and high-field magnetic resonance imaging, the detection rate of renal neoplasms is continually increasing. Even though tumors exceeding 4 cm in diameter rarely metastasize, all renal lesions that are possible neoplasms should be treated. Traditional treatment techniques include radical nephrectomy or nephron-sparing resection, which are increasingly performed laparoscopically. Modern thermal ablation techniques such as hyperthermal techniques like radiofrequency ablation RFA, laser induced thermal ablation LITT, focused ultrasound FUS and microwave therapy MW, as well as hypothermal techniques (cryotherapy) may be a useful treatment option for patients who are unfit for or refuse surgical resection. Cryotherapy is the oldest and best known thermal ablation technique and can be performed laparoscopically or percutaneously. Since subzero temperatures have no antistyptic effect, additional maneuvers must be performed to control bleeding. Percutaneous cryotherapy of renal tumors is a new and interesting method, but experience with it is still limited. Radiofrequency ablation is the most frequently used method. Modern probe design allows volumes between 2 and 5 cm in diameter to be ablated. Due to hyperthermal tract ablation, the procedure is deemed to be safe and has a low complication rate. Although there are no randomized comparative studies to open resection, the preliminary results for renal RFA are promising and show RFA to be superior to other thermal ablation techniques. Clinical success rates are over 90% for both, cryo- and radiofrequency ablation. Whereas laser induced thermal therapy is established in hepatic ablation, experience is minimal with respect to renal application. For lesions of more than 2 cm in diameter, additional cooling catheters are required. MR thermometry offers temperature control during ablation. Microwave ablation is characterized by small ablation volumes

  10. Effect of liquid film on near-threshold laser ablation of a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongsik; Oh, Bukuk; Lee, Ho

    2004-01-30

    Enhancement of material ablation and photoacoustic excitation by an artificially deposited liquid film in the process of pulsed-laser ablation (PLA) is investigated in this paper. Ablation threshold, ablation rate, surface topography, and acoustic-transient emission are also measured for dry and liquid film-coated surfaces. The physical mechanisms of enhanced ablation in the liquid-assisted process are analyzed at relatively low laser fluences with negligible effect of laser-produced plasma. Particularly, correlation between material ablation and acoustic-transient generation is examined. In the experiment, aluminum thin-films and bulk foils are ablated by Q-switched Nd:YAG laser pulses. The dependence of ablation rate and laser-induced topography on liquid film thickness and chemical composition is also examined. Photoacoustic emission is measured by the probe beam deflection method utilizing a CW HeNe laser and a microphone. In comparison with a dry ablation process, the liquid-assisted ablation process results in substantially augmented ablation efficiency and reduced ablation threshold. The results indicate that both increased laser-energy coupling, i.e., lowered reflectance, and amplified photoacoustic excitation in explosive vaporization of liquid are responsible for the enhanced material ablation.

  11. A feasibility study evaluating the relationship between dose and focal liver reaction in stereotactic ablative radiotherapy for liver cancer based on intensity change of Gd-EOB-DTPA-enhanced magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sang Hoon; Yu, Jeong Il; Park, Hee Chul; Lim, Do Hoon; Han, Young Yih [Dept. of Radiation Oncology, amsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-03-15

    In order to evaluate the relationship between the dose to the liver parenchyma and focal liver reaction (FLR) after stereotactic ablative body radiotherapy (SABR), we suggest a novel method using a three-dimensional dose distribution and change in signal intensity of gadoxetate disodium-gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) hepatobiliary phase images. In our method, change of the signal intensity between the pretreatment and follow-up hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI was calculated and then threshold dose (TD) for developing FLR was obtained from correlation of dose with the change of the signal intensity. For validation of the method, TDs for six patients, who had been treated for liver cancer with SABR with 45-60 Gy in 3 fractions, were calculated using the method, and we evaluated concordance between volume enclosed by isodose of TD by the method and volume identified as FLR by a physician. The dose to normal liver was correlated with change in signal intensity between pretreatment and follow-up MRI with a median R{sup 2} of 0.935 (range, 0.748 to 0.985). The median TD by the method was 23.5 Gy (range, 18.3 to 39.4 Gy). The median value of concordance was 84.5% (range, 44.7% to 95.9%). Our method is capable of providing a quantitative evaluation of the relationship between dose and intensity changes on follow-up MRI, as well as determining individual TD for developing FLR. We expect our method to provide better information about the individual relationship between dose and FLR in radiotherapy for liver cancer.

  12. A feasibility study evaluating the relationship between dose and focal liver reaction in stereotactic ablative radiotherapy for liver cancer based on intensity change of Gd-EOB-DTPA-enhanced magnetic resonance images

    International Nuclear Information System (INIS)

    Jung, Sang Hoon; Yu, Jeong Il; Park, Hee Chul; Lim, Do Hoon; Han, Young Yih

    2016-01-01

    In order to evaluate the relationship between the dose to the liver parenchyma and focal liver reaction (FLR) after stereotactic ablative body radiotherapy (SABR), we suggest a novel method using a three-dimensional dose distribution and change in signal intensity of gadoxetate disodium-gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) hepatobiliary phase images. In our method, change of the signal intensity between the pretreatment and follow-up hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI was calculated and then threshold dose (TD) for developing FLR was obtained from correlation of dose with the change of the signal intensity. For validation of the method, TDs for six patients, who had been treated for liver cancer with SABR with 45-60 Gy in 3 fractions, were calculated using the method, and we evaluated concordance between volume enclosed by isodose of TD by the method and volume identified as FLR by a physician. The dose to normal liver was correlated with change in signal intensity between pretreatment and follow-up MRI with a median R 2 of 0.935 (range, 0.748 to 0.985). The median TD by the method was 23.5 Gy (range, 18.3 to 39.4 Gy). The median value of concordance was 84.5% (range, 44.7% to 95.9%). Our method is capable of providing a quantitative evaluation of the relationship between dose and intensity changes on follow-up MRI, as well as determining individual TD for developing FLR. We expect our method to provide better information about the individual relationship between dose and FLR in radiotherapy for liver cancer

  13. Pulmonary ablation: a primer.

    Science.gov (United States)

    Roberton, Benjamin J; Liu, David; Power, Mark; Wan, John M C; Stuart, Sam; Klass, Darren; Yee, John

    2014-05-01

    Percutaneous image-guided thermal ablation is safe and efficacious in achieving local control and improving outcome in the treatment of both early stage non-small-cell lung cancer and pulmonary metastatic disease, in which surgical treatment is precluded by comorbidity, poor cardiorespiratory reserve, or unfavorable disease distribution. Radiofrequency ablation is the most established technology, but new thermal ablation technologies such as microwave ablation and cryoablation may offer some advantages. The use of advanced techniques, such as induced pneumothorax and the popsicle stick technique, or combining thermal ablation with radiotherapy, widens the treatment options available to the multidisciplinary team. The intent of this article is to provide the reader with a practical knowledge base of pulmonary ablation by concentrating on indications, techniques, and follow-up. Copyright © 2014 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  14. Advances in Imaging for Atrial Fibrillation Ablation

    International Nuclear Information System (INIS)

    D'Silva, A.; Wright, M.; Wright, M.

    2011-01-01

    Over the last fifteen years, our understanding of the pathophysiology of atrial fibrillation (AF) has paved the way for ablation to be utilized as an effective treatment option. With the aim of gaining more detailed anatomical representation, advances have been made using various imaging modalities, both before and during the ablation procedure, in planning and execution. Options have flourished from procedural fluoroscopy, electro anatomic mapping systems, pre procedural computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and combinations of these technologies. Exciting work is underway in an effort to allow the electro physiologist to assess scar formation in real time. One advantage would be to lessen the learning curve for what are very complex procedures. The hope of these developments is to improve the likelihood of a successful ablation procedure and to allow more patients access to this treatment

  15. Laser ablation principles and applications

    CERN Document Server

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  16. Pathological and 3 Tesla Volumetric Magnetic Resonance Imaging Predictors of Biochemical Recurrence after Robotic Assisted Radical Prostatectomy: Correlation with Whole Mount Histopathology.

    Science.gov (United States)

    Tan, Nelly; Shen, Luyao; Khoshnoodi, Pooria; Alcalá, Héctor E; Yu, Weixia; Hsu, William; Reiter, Robert E; Lu, David Y; Raman, Steven S

    2018-05-01

    We sought to identify the clinical and magnetic resonance imaging variables predictive of biochemical recurrence after robotic assisted radical prostatectomy in patients who underwent multiparametric 3 Tesla prostate magnetic resonance imaging. We performed an institutional review board approved, HIPAA (Health Insurance Portability and Accountability Act) compliant, single arm observational study of 3 Tesla multiparametric magnetic resonance imaging prior to robotic assisted radical prostatectomy from December 2009 to March 2016. Clinical, magnetic resonance imaging and pathological information, and clinical outcomes were compiled. Biochemical recurrence was defined as prostate specific antigen 0.2 ng/cc or greater. Univariate and multivariate regression analysis was performed. Biochemical recurrence had developed in 62 of the 255 men (24.3%) included in the study at a median followup of 23.5 months. Compared to the subcohort without biochemical recurrence the subcohort with biochemical recurrence had a greater proportion of patients with a high grade biopsy Gleason score, higher preoperative prostate specific antigen (7.4 vs 5.6 ng/ml), intermediate and high D'Amico classifications, larger tumor volume on magnetic resonance imaging (0.66 vs 0.30 ml), higher PI-RADS® (Prostate Imaging-Reporting and Data System) version 2 category lesions, a greater proportion of intermediate and high grade radical prostatectomy Gleason score lesions, higher pathological T3 stage (all p <0.01) and a higher positive surgical margin rate (19.3% vs 7.8%, p = 0.016). On multivariable analysis only tumor volume on magnetic resonance imaging (adjusted OR 1.57, p = 0.016), pathological T stage (adjusted OR 2.26, p = 0.02), positive surgical margin (adjusted OR 5.0, p = 0.004) and radical prostatectomy Gleason score (adjusted OR 2.29, p = 0.004) predicted biochemical recurrence. In this cohort tumor volume on magnetic resonance imaging and pathological variables, including Gleason score

  17. Percutaneous local ablation of unifocal subclinical breast cancer: clinical experience and preliminary results of cryotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Manenti, Guglielmo; Perretta, Tommaso; Gaspari, Eleonora; Pistolese, Chiara A.; Scarano, Lia; Cossu, Elsa; Simonetti, Giovanni; Masala, Salvatore [University Hospital ' ' Tor Vergata' ' , Department of Diagnostic Imaging and Interventional Radiology, Molecular Imaging and Radiotherapy, Rome (Italy); Bonanno, Elena [University Hospital ' ' Tor Vergata' ' , Department of Biopathology, Rome (Italy); Buonomo, Oreste C.; Petrella, Giuseppe [University Hospital ' ' Tor Vergata' ' , Department of General Surgery Division, Rome (Italy)

    2011-11-15

    To assess the ablative effectiveness, the oncological and cosmetic efficacy of image-guided percutaneous cryoablation in the treatment of single breast nodules with subclinical dimensions after identification with ultrasonography (US), mammography, magnetic resonance (MRI) and characterization by vacuum assisted biopsy. Fifteen women with a mean age of 73 {+-} 5 years (range 64-82 years) and lesion diameter of 8 {+-} 4 mm were undergoing cryotherapy technology with a single probe under US-guidance associated with intra-procedural lymph-node mapping and excision of the sentinel node. All the patients underwent surgical resection (lumpectomy) from 30 to 45 days after the percutaneous ablation. The iceball size generated by the cryoprobe during the procedure at minus 40 C was 16 x 41 mm. In 14 of the 15 patients was observed a complete necrosis of the cryo-ablated lesion both in post-procedural MRI follow-up and anatomo-pathological evaluation after surgical resection. In one case there was a residual disease in post-procedural MRI and postoperative histological examination, probably justified by an incorrect positioning of the probe. The percutaneous cryoablation as a ''minimally invasive'' technique can provide excellent oncological and cosmetic results on selected cases handled by experienced operators by using the tested devices. (orig.)

  18. Percutaneous local ablation of unifocal subclinical breast cancer: clinical experience and preliminary results of cryotherapy

    International Nuclear Information System (INIS)

    Manenti, Guglielmo; Perretta, Tommaso; Gaspari, Eleonora; Pistolese, Chiara A.; Scarano, Lia; Cossu, Elsa; Simonetti, Giovanni; Masala, Salvatore; Bonanno, Elena; Buonomo, Oreste C.; Petrella, Giuseppe

    2011-01-01

    To assess the ablative effectiveness, the oncological and cosmetic efficacy of image-guided percutaneous cryoablation in the treatment of single breast nodules with subclinical dimensions after identification with ultrasonography (US), mammography, magnetic resonance (MRI) and characterization by vacuum assisted biopsy. Fifteen women with a mean age of 73 ± 5 years (range 64-82 years) and lesion diameter of 8 ± 4 mm were undergoing cryotherapy technology with a single probe under US-guidance associated with intra-procedural lymph-node mapping and excision of the sentinel node. All the patients underwent surgical resection (lumpectomy) from 30 to 45 days after the percutaneous ablation. The iceball size generated by the cryoprobe during the procedure at minus 40 C was 16 x 41 mm. In 14 of the 15 patients was observed a complete necrosis of the cryo-ablated lesion both in post-procedural MRI follow-up and anatomo-pathological evaluation after surgical resection. In one case there was a residual disease in post-procedural MRI and postoperative histological examination, probably justified by an incorrect positioning of the probe. The percutaneous cryoablation as a ''minimally invasive'' technique can provide excellent oncological and cosmetic results on selected cases handled by experienced operators by using the tested devices. (orig.)

  19. Imaging in percutaneous ablation for atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Maksimovic, Ruzica [Erasmus Medical Center, Department of Radiology, GD Rotterdam (Netherlands); Institute for Cardiovascular Diseases of the University Medical Center, Belgrade (Czechoslovakia); Dill, Thorsten [Kerckhoff-Heart Center, Department of Cardiology, Bad Nauheim (Germany); Ristic, Arsen D.; Seferovic, Petar M. [Institute for Cardiovascular Diseases of the University Medical Center, Belgrade (Czechoslovakia)

    2006-11-15

    Percutaneous ablation for electrical disconnection of the arrhythmogenic foci using various forms of energy has become a well-established technique for treating atrial fibrillation (AF). Success rate in preventing recurrence of AF episodes is high although associated with a significant incidence of pulmonary vein (PV) stenosis and other rare complications. Clinical workup of AF patients includes imaging before and after ablative treatment using different noninvasive and invasive techniques such as conventional angiography, transoesophageal and intracardiac echocardiography, computed tomography (CT) and magnetic resonance imaging (MRI), which offer different information with variable diagnostic accuracy. Evaluation before percutaneous ablation involves assessment of PVs (PV pattern, branching pattern, orientation and ostial size) to facilitate position and size of catheters and reduce procedure time as well as examining the left atrium (presence of thrombi, dimensions and volumes). Imaging after the percutaneous ablation is important for assessment of overall success of the procedure and revealing potential complications. Therefore, imaging methods enable depiction of PVs and the anatomy of surrounding structures essential for preprocedural management and early detection of PV stenosis and other ablation-related procedures, as well as long-term follow-up of these patients. (orig.)

  20. Imaging in percutaneous ablation for atrial fibrillation

    International Nuclear Information System (INIS)

    Maksimovic, Ruzica; Dill, Thorsten; Ristic, Arsen D.; Seferovic, Petar M.

    2006-01-01

    Percutaneous ablation for electrical disconnection of the arrhythmogenic foci using various forms of energy has become a well-established technique for treating atrial fibrillation (AF). Success rate in preventing recurrence of AF episodes is high although associated with a significant incidence of pulmonary vein (PV) stenosis and other rare complications. Clinical workup of AF patients includes imaging before and after ablative treatment using different noninvasive and invasive techniques such as conventional angiography, transoesophageal and intracardiac echocardiography, computed tomography (CT) and magnetic resonance imaging (MRI), which offer different information with variable diagnostic accuracy. Evaluation before percutaneous ablation involves assessment of PVs (PV pattern, branching pattern, orientation and ostial size) to facilitate position and size of catheters and reduce procedure time as well as examining the left atrium (presence of thrombi, dimensions and volumes). Imaging after the percutaneous ablation is important for assessment of overall success of the procedure and revealing potential complications. Therefore, imaging methods enable depiction of PVs and the anatomy of surrounding structures essential for preprocedural management and early detection of PV stenosis and other ablation-related procedures, as well as long-term follow-up of these patients. (orig.)

  1. Percutaneous tumor ablation in medical radiology

    Energy Technology Data Exchange (ETDEWEB)

    Vogl, T.J.; Mack, M.G. [University Hospital Frankfurt Univ. (Germany). Inst. for Diagnostic and Interventional Radiology; Helmberger, T.K. [Klinikum Bogenhausen, Academic Teaching Hospital of the Technical Univ. Munich (Germany). Dept. for Diagnostic and Interventional Radiology and Nuclear Medicine; Reiser, M.F. (eds.) [University Hospitals - Grosshadern and Innenstadt Munich Univ. (Germany). Dept. of Clinical Radiology

    2008-07-01

    Thermal ablation has become an integral part of oncology, especially in the field of interventional oncology. This very comprehensive book encompasses the different technologies employed in thermal ablation, its indications and the results achieved in various clinical conditions. The first part of the book clearly explains the basics of thermal ablative techniques such as laser-induced thermotherapy, radiofrequency ablation, microwave ablation, cryotherapy, and localized tumor therapy. The latest developments in the application of minimally invasive therapies in localized neoplastic disease are demonstrated. In the main part of the book, techniques of guiding the applicators to the target structures by use of different imaging tools such as ultrasound, computed tomography and magnetic resonance imaging are discussed. The results are presented for a variety of clinical indications, including liver and lung tumors and metastases and some rather rare conditions involving the kidney, the head and neck, the prostate, and soft tissue structures. A large number of acknowledged experts have contributed to the book, which benefits from a lucid structure and excellent images. (orig.)

  2. Percutaneous tumor ablation in medical radiology

    International Nuclear Information System (INIS)

    Vogl, T.J.; Mack, M.G.; Helmberger, T.K.; Reiser, M.F.

    2008-01-01

    Thermal ablation has become an integral part of oncology, especially in the field of interventional oncology. This very comprehensive book encompasses the different technologies employed in thermal ablation, its indications and the results achieved in various clinical conditions. The first part of the book clearly explains the basics of thermal ablative techniques such as laser-induced thermotherapy, radiofrequency ablation, microwave ablation, cryotherapy, and localized tumor therapy. The latest developments in the application of minimally invasive therapies in localized neoplastic disease are demonstrated. In the main part of the book, techniques of guiding the applicators to the target structures by use of different imaging tools such as ultrasound, computed tomography and magnetic resonance imaging are discussed. The results are presented for a variety of clinical indications, including liver and lung tumors and metastases and some rather rare conditions involving the kidney, the head and neck, the prostate, and soft tissue structures. A large number of acknowledged experts have contributed to the book, which benefits from a lucid structure and excellent images. (orig.)

  3. Radiofrequency ablation in dermatology

    Directory of Open Access Journals (Sweden)

    Sachdeva Silonie

    2007-01-01

    Full Text Available Radiofreqeuency ablation is a versatile dermatosurgical procedure used for surgical management of skin lesions by using various forms of alternating current at an ultra high frequency. The major modalities in radiofrequency are electrosection, electrocoagulation, electrodessication and fulguration. The use of radiofrequency ablation in dermatosurgical practice has gained importance in recent years as it can be used to treat most of the skin lesions with ease in less time with clean surgical field due to adequate hemostasis and with minimal side effects and complications. This article focuses on the major tissue effects and factors influencing radiofrequency ablation and its application for various dermatological conditions.

  4. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D2O ice beneath a H2O ice layer

    International Nuclear Information System (INIS)

    Yang, Rui; Gudipati, Murthy S.

    2014-01-01

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D 2 O ices by novel infrared (IR) laser ablation of a layered non-absorbing D 2 O ice (spectator) containing the analytes and an ablation-active IR-absorbing H 2 O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H 2 O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D 2 O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D 2 O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H 2 O molecules in the shockwave. We call this “shockwave mediated surface resonance enhanced subsurface ablation” technique as “two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers.” This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes—ablation and ionization. This new technique

  5. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D{sub 2}O ice beneath a H{sub 2}O ice layer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui, E-mail: ryang73@ustc.edu; Gudipati, Murthy S., E-mail: gudipati@jpl.nasa.gov [Science Division, Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 183-301, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D{sub 2}O ices by novel infrared (IR) laser ablation of a layered non-absorbing D{sub 2}O ice (spectator) containing the analytes and an ablation-active IR-absorbing H{sub 2}O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H{sub 2}O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D{sub 2}O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D{sub 2}O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H{sub 2}O molecules in the shockwave. We call this “shockwave mediated surface resonance enhanced subsurface ablation” technique as “two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers.” This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes—ablation and

  6. Ablative skin resurfacing.

    Science.gov (United States)

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Moldable cork ablation material

    Science.gov (United States)

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  8. Organic Thin Films Deposited by Emulsion-Based, Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation: Fundamentals and Applications

    Science.gov (United States)

    Ge, Wangyao

    Thin film deposition techniques are indispensable to the development of modern technologies as thin film based optical coatings, optoelectronic devices, sensors, and biological implants are the building blocks of many complicated technologies, and their performance heavily depends on the applied deposition technique. Particularly, the emergence of novel solution-processed materials, such as soft organic molecules, inorganic compounds and colloidal nanoparticles, facilitates the development of flexible and printed electronics that are inexpensive, light weight, green and smart, and these thin film devices represent future trends for new technologies. One appealing feature of solution-processed materials is that they can be deposited into thin films using solution-processed deposition techniques that are straightforward, inexpensive, high throughput and advantageous to industrialize thin film based devices. However, solution-processed techniques rely on wet deposition, which has limitations in certain applications, such as multi-layered film deposition of similar materials and blended film deposition of dissimilar materials. These limitations cannot be addressed by traditional, vacuum-based deposition techniques because these dry approaches are often too energetic and can degrade soft materials, such as polymers, such that the performance of resulting thin film based devices is compromised. The work presented in this dissertation explores a novel thin film deposition technique, namely emulsion-based, resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE), which combines characteristics of wet and dry deposition techniques for solution-processed materials. Previous studies have demonstrated the feasibility of emulsion-based RIR-MAPLE to deposit uniform and continuous organic, nanoparticle and blended films, as well as hetero-structures that otherwise are difficult to achieve. However, fundamental understanding of the growth mechanisms that govern

  9. Innovative Free-range Resonant Electrical Energy Delivery system (FREE-D System) for a ventricular assist device using wireless power.

    Science.gov (United States)

    Waters, Benjamin H; Smith, Joshua R; Bonde, Pramod

    2014-01-01

    Technological innovation of a smaller, single moving part has an advantage over earlier large pulsatile ventricular assist devices (VADs) prone to mechanical failure. Drivelines limit the potential for extended patient survival durations with newer pumps and act as source for infection, increased morbidity, rehospitalizations, and reduced quality of life. The Free-range Resonant Electrical Energy Delivery (FREE-D) wireless power system uses magnetically coupled resonators to efficiently transfer power. We demonstrate the efficiency over distance of this system. The experimental setup consists of an radiofrequency amplifier and control board which drives the transmit resonator coil, and a receiver unit consisting of a resonant coil attached to a radiofrequency rectifier and power management module. The power management module supplies power to the axial pump, which was set at 9,600 rpm. To achieve a seamless wireless delivery in any room size, we introduced a third relay coil. This relay coil can be installed throughout a room, whereas a single relay coil could be built into a jacket worn by the patient, which would always be within range of the receive coil implanted in the patient's body. The power was delivered over a meter distance without interruptions or fluctuations with coil, rectifier, and regulator efficiency more than 80% and overall system efficiency of 61%. The axial pump worked well throughout the 8 hours of continuous operation. Having same setup on the opposite side can double the distance. A tether-free operation of a VAD can be achieved by FREE-D system in room-size distances. It has the potential to make the VAD therapy more acceptable from the patient perspective.

  10. Image-guided focused ultrasound ablation of breast cancer: current status, challenges, and future directions

    NARCIS (Netherlands)

    Schmitz, A.C.; Gianfelice, D.; Daniel, B.L.; Mali, W.P.T.M.; Bosch, M.A.A.J. van den

    2008-01-01

    Image-guided focussed ultrasound (FUS) ablation is a noninvasive procedure that has been used for treatment of benign or malignant breast tumours. Image-guidance during ablation is achieved either by using real-time ultrasound (US) or magnetic resonance imaging (MRI). The past decade phase I

  11. Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation

    International Nuclear Information System (INIS)

    Liu, C Y; Mao, X L; Greif, R; Russo, R E

    2007-01-01

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume

  12. Time Resolved Shadowgraph Images of Silicon during Laser Ablation:Shockwaves and Particle Generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.Y.; Mao, X.L.; Greif, R.; Russo, R.E.

    2006-05-06

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume.

  13. Three-dimensional magnetic resonance imaging overlay to assist with percutaneous transhepatic access at the time of cardiac catheterization

    Directory of Open Access Journals (Sweden)

    Wendy Whiteside

    2015-01-01

    Full Text Available Multimodality image overlay is increasingly used for complex interventional procedures in the cardiac catheterization lab. We report a case in which three-dimensional magnetic resonance imaging (3D MRI overlay onto live fluoroscopic imaging was utilized to safely obtain transhepatic access in a 12-year-old patient with prune belly syndrome, complex and distorted abdominal anatomy, and a vascular mass within the liver.

  14. Three-dimensional magnetic resonance imaging overlay to assist with percutaneous transhepatic access at the time of cardiac catheterization

    International Nuclear Information System (INIS)

    Whiteside, Wendy; Christensen, Jason; Zampi, Jeffrey D

    2005-01-01

    Multimodality image overlay is increasingly used for complex interventional procedures in the cardiac catheterization lab. We report a case in which three-dimensional magnetic resonance imaging (3D MRI) overlay onto live fluoroscopic imaging was utilized to safely obtain transhepatic access in a 12-year-old patient with prune belly syndrome, complex and distorted abdominal anatomy, and a vascular mass within the liver

  15. Computational study of plasma-assisted photoacoustic response from gold nanoparticles irradiated by off-resonance ultrafast laser

    International Nuclear Information System (INIS)

    Hatef, Ali; Darvish, Behafarid; Sajjadi, Amir Yousef

    2017-01-01

    The gold nanoparticles (AuNPs) are capable of enhancing the incident laser field in the form of scattered near field for even an off-resonance irradiation where the incident laser wavelength is far away from the localized surface plasmon resonance (LSPR). If the intensity of the pulse laser is large enough, this capability can be employed to generate a highly localized free electron (plasma) in the vicinity of the particles. The generated plasma can absorb more energy during the pulse, and this energy deposition can be considered as an energy source for structural mechanics calculations in the surrounding media to generate a photoacoustic (PA) signal. To show this, in this paper, we model plasma-mediated PA pressure wave propagation from a 100-nm AuNPs and the surrounding media irradiated by an ultrashort pulse laser. In this model, the AuNP is immersed in water and the laser pulse width is ranging from 70 fs to 2 ps at the wavelength of 800 nm (off-resonance). Our results qualitatively show the substantial impact of the energy deposition in plasma on the PA signal through boosting the pressure amplitudes up to ∼1000 times compared to the conventional approach.

  16. Computational study of plasma-assisted photoacoustic response from gold nanoparticles irradiated by off-resonance ultrafast laser

    Energy Technology Data Exchange (ETDEWEB)

    Hatef, Ali, E-mail: alih@nipissingu.ca; Darvish, Behafarid [Nipissing University, Nipissing Computational Physics Laboratory (NCPL), Department of Computer Science and Mathematics (Canada); Sajjadi, Amir Yousef [Massachusetts General Hospital, Cutaneous Biology Research Center (United States)

    2017-02-15

    The gold nanoparticles (AuNPs) are capable of enhancing the incident laser field in the form of scattered near field for even an off-resonance irradiation where the incident laser wavelength is far away from the localized surface plasmon resonance (LSPR). If the intensity of the pulse laser is large enough, this capability can be employed to generate a highly localized free electron (plasma) in the vicinity of the particles. The generated plasma can absorb more energy during the pulse, and this energy deposition can be considered as an energy source for structural mechanics calculations in the surrounding media to generate a photoacoustic (PA) signal. To show this, in this paper, we model plasma-mediated PA pressure wave propagation from a 100-nm AuNPs and the surrounding media irradiated by an ultrashort pulse laser. In this model, the AuNP is immersed in water and the laser pulse width is ranging from 70 fs to 2 ps at the wavelength of 800 nm (off-resonance). Our results qualitatively show the substantial impact of the energy deposition in plasma on the PA signal through boosting the pressure amplitudes up to ∼1000 times compared to the conventional approach.

  17. Quantum-coherence-assisted tunable on- and off-resonance tunneling through a quantum-dot-molecule dielectric film

    International Nuclear Information System (INIS)

    Shen Jianqi; Zeng Ruixi

    2017-01-01

    Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates. (author)

  18. Pressure-assisted cold denaturation of hen egg white lysozyme: the influence of co-solvents probed by hydrogen exchange nuclear magnetic resonance.

    Science.gov (United States)

    Vogtt, K; Winter, R

    2005-08-01

    COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL) in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80 degrees C) and under high pressure conditions at low temperature (3.75 kbar, -13 degrees C). Moreover, the influence of co-solvents (sorbitol, urea) on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM) led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.

  19. Pressure-assisted cold denaturation of hen egg white lysozyme: the influence of co-solvents probed by hydrogen exchange nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    K. Vogtt

    2005-08-01

    Full Text Available COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80ºC and under high pressure conditions at low temperature (3.75 kbar, -13ºC. Moreover, the influence of co-solvents (sorbitol, urea on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.

  20. Radiofrequency ablation of liver tumors (II): clinical application and outcomes.

    Science.gov (United States)

    Vanagas, Tomas; Gulbinas, Antanas; Pundzius, Juozas; Barauskas, Giedrius

    2010-01-01

    Radiofrequency ablation is one of the alternatives in the management of liver tumors, especially in patients who are not candidates for surgery. The aim of this article is to review applicability of radiofrequency ablation achieving complete tumor destruction, utility of imaging techniques for patients' follow-up, indications for local ablative procedures, procedure-associated morbidity and mortality, and long-term results in patients with different tumors. The success of local thermal ablation consists in creating adequate volumes of tissue destruction with adequate "clear margin," depending on improved delivery of radiofrequency energy and modulated tissue biophysiology. Different volumes of coagulation necrosis are achieved applying different types of electrodes, pulsing energy sources, utilizing sophisticated ablation schemes. Some additional methods are used to increase the overall deposition of energy through alterations in tissue electrical conductivity, to improve heat retention within the tissue, and to modulate tolerance of tumor tissue to hyperthermia. Contrast-enhanced computed tomography, magnetic resonance imaging, ultrasound or positron emission tomography are applied to control the effectiveness of radiofrequency ablation. The long-term results of radiofrequency ablation are controversial.

  1. Synthesis and characterization of a novel laser ablation sensitive triazene incorporated epoxy resin

    KAUST Repository

    Patole, Archana S.; Hyeon, Jeong min; Hyun, Jung Mn; Kim, Tae Ho; Patole, Shashikant P.; Hong, Dae Jo; Lee, Chang Bo; Choi, Cheol Ho

    2014-01-01

    . Thermogravimetrical investigations indicate the loss of nitrogen being the initial thermal decomposition step and exhibit sufficient stabilities for the requirements for laser ablation application. Fourier transform infra-red, nuclear magnetic resonance, and gas

  2. Development of a Three-dimensional Surgical Navigation System with Magnetic Resonance Angiography and a Three-dimensional Printer for Robot-assisted Radical Prostatectomy.

    Science.gov (United States)

    Jomoto, Wataru; Tanooka, Masao; Doi, Hiroshi; Kikuchi, Keisuke; Mitsuie, Chiemi; Yamada, Yusuke; Suzuki, Toru; Yamano, Toshiko; Ishikura, Reiichi; Kotoura, Noriko; Yamamoto, Shingo

    2018-01-02

    We sought to develop a surgical navigation system using magnetic resonance angiography (MRA) and a three-dimensional (3D) printer for robot-assisted radical prostatectomy (RARP). Six patients with pathologically proven localized prostate cancer were prospectively enrolled in this study. Prostate magnetic resonance imaging (MRI), consisting of T2-weighted sampling perfection with application-optimized contrasts using different flip-angle evolutions (SPACE) and true fast imaging with steady-state precession (true FISP), reconstructed by volume rendering, was followed by dynamic contrast-enhanced MRA performed with a volumetric interpolated breath-hold examination (VIBE) during intravenous bolus injection of gadobutrol. Images of arterial and venous phases were acquired over approximately 210 seconds. Selected images were sent to a workstation for generation of 3D volume-rendered images and standard triangulated language (STL) files for 3D print construction. The neurovascular bundles (NVBs) were found in sequence on non-contrast images. Accessory pudendal arteries (APAs) were found in all cases in the arterial phase of contrast enhancement but were ill-defined on non-contrast enhanced MRA. Dynamic contrast-enhanced MRA helped to detect APAs, suggesting that this 3D system using MRI will be useful in RARP.

  3. Power Laser Ablation Symposia

    CERN Document Server

    Phipps, Claude

    2007-01-01

    Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficu...

  4. Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels.

    Science.gov (United States)

    Ashiba, Hiroki; Sugiyama, Yuki; Wang, Xiaomin; Shirato, Haruko; Higo-Moriguchi, Kyoko; Taniguchi, Koki; Ohki, Yoshimichi; Fujimaki, Makoto

    2017-07-15

    A highly sensitive biosensor to detect norovirus in environment is desired to prevent the spread of infection. In this study, we investigated a design of surface plasmon resonance (SPR)-assisted fluoroimmunosensor to increase its sensitivity and performed detection of norovirus virus-like particles (VLPs). A quantum dot fluorescent dye was employed because of its large Stokes shift. The sensor design was optimized for the CdSe-ZnS-based quantum dots. The optimal design was applied to a simple SPR-assisted fluoroimmunosensor that uses a sensor chip equipped with a V-shaped trench. Excitation efficiency of the quantum dots, degree of electric field enhancement by SPR, and intensity of autofluorescence of a substrate of the sensor chip were theoretically and experimentally evaluated to maximize the signal-to-noise ratio. As the result, an excitation wavelength of 390nm was selected to excite SPR on an Al film of the sensor chip. The sandwich assay of norovirus VLPs was performed using the designed sensor. Minimum detectable concentration of 0.01ng/mL, which corresponds to 100 virus-like particles included in the detection region of the V-trench, was demonstrated. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Exploring Biosignatures Associated with Thenardite by Geomatrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (GALDI-FTICR-MS)

    Energy Technology Data Exchange (ETDEWEB)

    C. Doc Richardson; Nancy W. Hinman; Timothy R. McJunkin; J. Michelle Kotler; Jill R. Scott

    2008-10-01

    Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) has been employed to determine how effectively bio/organic molecules associated with the mineral thenardite (Na2SO4) can be detected. GALDI is based on the ability of the mineral host to assist desorption and ionization of bio/organic molecules without additional sample preparation. When glycine was mixed with thenardite, glycine was deprotonated to produce C2H4NO-2 at m/z 74.025. The combination of stearic acid with thenardite produced a complex cluster ion at m/z 390.258 in the negative mode, which was assigned a composition ofC18H39O7Na-. Anatural sample of thenardite from Searles Lake in California also produced a peak at m/z 390.260. The bio/organic signatures in both the laboratory-based and natural samples were heterogeneously dispersed as revealed by chemical imaging. The detection limits for the stearic acid and thenardite combination were estimated to be 3 parts per trillion or~7 zeptomoles (10-21) per laser spot. Attempts to improve the signal-to-noise ratio by co-adding FTICR-MS data predetermined to contain the biosignatures of interest revealed problems due to a lack of phase coherence between data sets.

  6. Optical solver for a system of ordinary differential equations based on an external feedback assisted microring resonator.

    Science.gov (United States)

    Hou, Jie; Dong, Jianji; Zhang, Xinliang

    2017-06-15

    Systems of ordinary differential equations (SODEs) are crucial for describing the dynamic behaviors in various systems such as modern control systems which require observability and controllability. In this Letter, we propose and experimentally demonstrate an all-optical SODE solver based on the silicon-on-insulator platform. We use an add/drop microring resonator to construct two different ordinary differential equations (ODEs) and then introduce two external feedback waveguides to realize the coupling between these ODEs, thus forming the SODE solver. A temporal coupled mode theory is used to deduce the expression of the SODE. A system experiment is carried out for further demonstration. For the input 10 GHz NRZ-like pulses, the measured output waveforms of the SODE solver agree well with the calculated results.

  7. Intense harmonic generation from various ablation media

    International Nuclear Information System (INIS)

    Ozaki, T.; Elouga, L.; Suzuki, M.; Kuroda, H.; Ganeev, R.A.

    2006-01-01

    lens (f = 680 nm). The high-order harmonics were spectrally resolved using a flat-field grazing-incidence XUV spectrometer with a Hitachi 1200-grooves/mm grating. The XUV spectrum was detected by a microchannel plate with phosphor screen and recorded by a CCD camera. Ablation harmonic experiments were performed with silver and indium targets. We selected silver because of its high conversion efficiency, and indium for its peculiar intensity enhancement effects of the 13 th harmonics. Due to the high intensities of the ablation harmonics, all harmonic spectra were obtained in a single shot. Experiments reveal that the pre-pulse condition for maximum harmonic generation is distinctly different for the two targets. Hydrodynamic simulations using the HYADES code show that the high density of the ablation medium results in strong absorption of the generated harmonics. Therefore, the trade-off between high harmonic efficiency and high absorption is especially important in the present scheme, which can change significantly with the pre-plasma condition. Results with indium targets also reveal a distinct change in the ratio between the 13 th and 15 th harmonic intensity when varying the main pump intensity. This phenomenon is attributed to the change in the resonance conditions of the 13 th harmonic with a strong radiative transition of the In + ion, due to the AC-Stark effect. We will also present new results on ablation harmonics using tin targets.

  8. Atomic population redistribution in a dense Ga vapour proceeding via energy pooling ionization induced by resonant laser-assisted collisions

    International Nuclear Information System (INIS)

    Barsanti, S; Bicchi, P

    2002-01-01

    In this paper we report on the atomic population redistribution originating from the ionization that takes place in a dense Ga vapour kept in quartz cells and resonantly excited by laser radiation, in the collisions between two excited atoms. This ionization process is known as energy-pooling ionization (EPI). The electron/ion recombination that takes place in the low density plasma produced gives rise to population in the atomic Rydberg levels and from the latter via cascade transitions to lower lying ones. We have monitored the fluorescences relative to the radiative emissions from such levels, namely those corresponding to the nP → 5S 1/2 series, with 9 ≤ n ≤ 26, and the 4D → 4P 1/2,3/2 transitions. Their characteristics testify to their origin as being due to the EPI process. Further confirmation is obtained by performing a time-resolved analysis of such fluorescences, whose appearance and time evolution is strongly influenced by the dynamics of the process. The effect of the introduction of a few Torr of buffer gas inside the quartz cell, resulting in the quenching of all the fluorescences for n ≥ 12, is also discussed

  9. The efficacy and utilisation of preoperative multiparametric magnetic resonance imaging in robot-assisted radical prostatectomy: does it change the surgical dissection plan?

    Science.gov (United States)

    Tavukçu, Hasan Hüseyin; Aytaç, Ömer; Balcı, Numan Cem; Kulaksızoğlu, Haluk; Atuğ, Fatih

    2017-12-01

    We investigated the effect of the use of multiparametric prostate magnetic resonance imaging (mp-MRI) on the dissection plan of the neurovascular bundle and the oncological results of our patients who underwent robot-assisted radical prostatectomy. We prospectively evaluated 60 consecutive patients, including 30 patients who had (Group 1), and 30 patients who had not (Group 2) mp-MRI before robot-assisted radical prostatectomy. Based on the findings of mp-MRI, the dissection plan was changed as intrafascial, interfascial, and extrafascial in the mp-MRI group. Two groups were compared in terms of age, prostate-specific antigen (PSA), Gleason sum scores and surgical margin positivity. There was no statistically significant difference between the two groups in terms of age, PSA, biopsy Gleason score, final pathological Gleason score and surgical margin positivity. mp-MRI changed the initial surgical plan in 18 of 30 patients (60%) in Group 1. In seventeen of these patients (56%) surgical plan was changed from non-nerve sparing to interfascial nerve sparing plan. In one patient dissection plan was changed to non-nerve sparing technique which had extraprostatic extension on final pathology. Surgical margin positivity was similar in Groups 1, and 2 (16% and 13%, respectively) although, Group 1 had higher number of high- risk patients. mp-MRI confirmed the primary tumour localisation in the final pathology in 27 of of 30 patients (90%). Preoperative mp-MRI effected the decision to perform a nerve-sparing technique in 56% of the patients in our study; moreover, changing the dissection plan from non-nerve-sparing technique to a nerve sparing technique did not increase the rate of surgical margin positivity.

  10. Factors Limiting Complete Tumor Ablation by Radiofrequency Ablation

    International Nuclear Information System (INIS)

    Paulet, Erwan; Aube, Christophe; Pessaux, Patrick; Lebigot, Jerome; Lhermitte, Emilie; Oberti, Frederic; Ponthieux, Anne; Cales, Paul; Ridereau-Zins, Catherine; Pereira, Philippe L.

    2008-01-01

    The purpose of this study was to determine radiological or physical factors to predict the risk of residual mass or local recurrence of primary and secondary hepatic tumors treated by radiofrequency ablation (RFA). Eighty-two patients, with 146 lesions (80 hepatocellular carcinomas, 66 metastases), were treated by RFA. Morphological parameters of the lesions included size, location, number, ultrasound echogenicity, computed tomography density, and magnetic resonance signal intensity were obtained before and after treatment. Parameters of the generator were recorded during radiofrequency application. The recurrence-free group was statistically compared to the recurrence and residual mass groups on all these parameters. Twenty residual masses were detected. Twenty-nine lesions recurred after a mean follow-up of 18 months. Size was a predictive parameter. Patients' sex and age and the echogenicity and density of lesions were significantly different for the recurrence and residual mass groups compared to the recurrence-free group (p < 0.05). The presence of an enhanced ring on the magnetic resonance control was more frequent in the recurrence and residual mass groups. In the group of patients with residual lesions, analysis of physical parameters showed a significant increase (p < 0.05) in the time necessary for the temperature to rise. In conclusion, this study confirms risk factors of recurrence such as the size of the tumor and emphasizes other factors such as a posttreatment enhanced ring and an increase in the time necessary for the rise in temperature. These factors should be taken into consideration when performing RFA and during follow-up

  11. Radiofrequency Ablation Treatment for Renal Cell Carcinoma: Early Clinical Experience

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hoon; Yoon, Seong Kuk; Cho, Jin Han; Oh, Jong Young; Nam, Kyung Jin; Kwon, Hee Jin; Kim, Su Yeon; Kang, Myong Jin; Choi, Sun Seob; Sung, Gyung Tak [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2008-08-15

    To evaluate the early clinical experience associated with radiofrequency (RF) ablation in patients with renal cell carcinoma (RCC). The RF ablation treatment was performed on 17 tumors from 16 patients (mean age, 60.5 years; range, 43 73 years) with RCC. The treatment indications were localized, solid renal mass, comorbidities, high operation risk, and refusal to perform surgery. All tumors were treated by a percutaneous CT (n = 10), followed by an US-guided (n = 2), laparoscopy-assisted US (n = 2), and an open (n = 2) RF ablation. Furthermore, patients underwent a follow- up CT at one day, one week, one month, three and six months, and then every six months from the onset of treatment. We evaluated the technical success, technical effectiveness, ablation zone, benign periablation enhancement, irregular peripheral enhancement, and complications. All 17 exophytic tumors (mean size, 2.2 cm; range, 1.1 5.0 cm) were completely ablated. Technical success and effectiveness was achieved in all cases and the mean follow-up period was 23.8 months (range, 17 33 months). A local recurrence was not detected in any of the cases; however, five patients developed complications as a result of treatment, including hematuria (n = 2), mild thermal injury of the psoas muscle (n = 1), mild hydronephrosis (n = 1), and fistula formation (n = 1). The RF ablation is an alternative treatment for exophytic RCCs and represents a promising treatment for some patients with small RCCs.

  12. Radiofrequency Ablation Treatment for Renal Cell Carcinoma: Early Clinical Experience

    International Nuclear Information System (INIS)

    Park, Seong Hoon; Yoon, Seong Kuk; Cho, Jin Han; Oh, Jong Young; Nam, Kyung Jin; Kwon, Hee Jin; Kim, Su Yeon; Kang, Myong Jin; Choi, Sun Seob; Sung, Gyung Tak

    2008-01-01

    To evaluate the early clinical experience associated with radiofrequency (RF) ablation in patients with renal cell carcinoma (RCC). The RF ablation treatment was performed on 17 tumors from 16 patients (mean age, 60.5 years; range, 43 73 years) with RCC. The treatment indications were localized, solid renal mass, comorbidities, high operation risk, and refusal to perform surgery. All tumors were treated by a percutaneous CT (n = 10), followed by an US-guided (n = 2), laparoscopy-assisted US (n = 2), and an open (n = 2) RF ablation. Furthermore, patients underwent a follow- up CT at one day, one week, one month, three and six months, and then every six months from the onset of treatment. We evaluated the technical success, technical effectiveness, ablation zone, benign periablation enhancement, irregular peripheral enhancement, and complications. All 17 exophytic tumors (mean size, 2.2 cm; range, 1.1 5.0 cm) were completely ablated. Technical success and effectiveness was achieved in all cases and the mean follow-up period was 23.8 months (range, 17 33 months). A local recurrence was not detected in any of the cases; however, five patients developed complications as a result of treatment, including hematuria (n = 2), mild thermal injury of the psoas muscle (n = 1), mild hydronephrosis (n = 1), and fistula formation (n = 1). The RF ablation is an alternative treatment for exophytic RCCs and represents a promising treatment for some patients with small RCCs

  13. Ablative thermal protection systems

    International Nuclear Information System (INIS)

    Vaniman, J.; Fisher, R.; Wojciechowski, C.; Dean, W.

    1983-01-01

    The procedures used to establish the TPS (thermal protection system) design of the SRB (solid rocket booster) element of the Space Shuttle vehicle are discussed. A final evaluation of the adequacy of this design will be made from data obtained from the first five Shuttle flights. Temperature sensors installed at selected locations on the SRB structure covered by the TPS give information as a function of time throughout the flight. Anomalies are to be investigated and computer design thermal models adjusted if required. In addition, the actual TPS ablator material loss is to be measured after each flight and compared with analytically determined losses. The analytical methods of predicting ablator performance are surveyed. 5 references

  14. The impact of treatment density and molecular weight for fractional laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Haak, Christina S; Bhayana, Brijesh; Farinelli, William A

    2012-01-01

    Ablative fractional lasers (AFXL) facilitate uptake of topically applied drugs by creating narrow open micro-channels into the skin, but there is limited information on optimal laser settings for delivery of specific molecules. The objective of this study was to investigate the impact of laser...... treatment density (% of skin occupied by channels) and molecular weight (MW) for fractional CO(2) laser-assisted drug delivery. AFXL substantially increased intra- and transcutaneous delivery of polyethylene glycols (PEGs) in a MW range from 240 to 4300 Da (Nuclear Magnetic Resonance, p...

  15. Laser systems for ablative fractional resurfacing

    DEFF Research Database (Denmark)

    Paasch, Uwe; Haedersdal, Merete

    2011-01-01

    of a variety of skin conditions, primarily chronically photodamaged skin, but also acne and burn scars. In addition, it is anticipated that AFR can be utilized in the laser-assisted delivery of topical drugs. Clinical efficacy coupled with minimal downtime has driven the development of various fractional...... ablative laser systems. Fractionated CO(2) (10,600-nm), erbium yttrium aluminum garnet, 2940-nm and yttrium scandium gallium garnet, 2790-nm lasers are available. In this article, we present an overview of AFR technology, devices and histopathology, and we summarize the current clinical possibilities...

  16. Laser systems for ablative fractional resurfacing

    DEFF Research Database (Denmark)

    Paasch, Uwe; Haedersdal, Merete

    2011-01-01

    ablative laser systems. Fractionated CO(2) (10,600-nm), erbium yttrium aluminum garnet, 2940-nm and yttrium scandium gallium garnet, 2790-nm lasers are available. In this article, we present an overview of AFR technology, devices and histopathology, and we summarize the current clinical possibilities...... of a variety of skin conditions, primarily chronically photodamaged skin, but also acne and burn scars. In addition, it is anticipated that AFR can be utilized in the laser-assisted delivery of topical drugs. Clinical efficacy coupled with minimal downtime has driven the development of various fractional...

  17. Strong band edge luminescence from InN films grown on Si substrates by electron cyclotron resonance-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yodo, Tokuo; Yona, Hiroaki; Ando, Hironori; Nosei, Daiki; Harada, Yoshiyuki

    2002-01-01

    We observed strong band edge luminescence at 8.5-200 K from 200-880 nm thick InN films grown on 10 nm thick InN buffer layers on Si(001) and Si(111) substrates by electron cyclotron resonance-assisted molecular beam epitaxy. The InN film on the Si(001) substrate exhibited strong band edge photoluminescence (PL) emission at 1.814 eV at 8.5 K, tentatively assigned as donor to acceptor pair [DAP (α-InN)] emission from wurtzite-InN (α-InN) crystal grains, while those on Si(111) showed other stronger band edge PL emissions at 1.880, 2.081 and 2.156 eV, tentatively assigned as donor bound exciton [D 0 X(α-InN)] from α-InN grains, DAP (β-InN) and D 0 X (β-InN) emissions from zinc blende-InN (β-InN) grains, respectively

  18. Enhanced spectrophotometric detection of Hg in water samples by surface plasmon resonance of Au nanoparticles after preconcentration with vortex-assisted liquid-liquid microextraction

    Science.gov (United States)

    Martinis, Estefanía M.; Wuilloud, Rodolfo G.

    2016-10-01

    This article presents an efficient, simple, and cost-effective method for the determination of trace amounts of Hg by vortex-assisted liquid-liquid microextraction (VALLME) coupled to microvolume UV-Vis spectrophotometry. This method correlates changes in the intensity of localized surface plasmon resonance (LSPR) of tetraoctylammonium bromide (TOABr) coated Au nanoparticles (NPs) after interaction with Hg2+ ion. Spectroscopic measurements of the TOABr-coated Au NPs phase with particular absorption properties (strong and well-defined absorption bands) after analyte extraction by VALLME, provide an accurate and sensitive determination of Hg in water samples, comparable with measurements obtained by atomic absorption spectrometry (AAS). Different variables including sample volume, extraction time, and TOABr-coated Au NPs dispersion volume were carefully studied; final experimental conditions were 5 mL, 120 μL and 5 min respectively. The limit of detection (LOD) was 0.8 ng mL- 1. The calibration curve was linear at concentrations between the limit of quantification (LOQ) (4.9 ng mL- 1) and up to at least 120 ng mL- 1 of Hg. The relative standard deviation for six replicate determinations of 20 ng mL- 1 of Hg was 4.7%. This method exhibited an excellent analytical performance in terms of selectivity and sensitivity and it was finally applied for Hg determination in spiked tap and mineral water samples.

  19. Lesion size in relation to ablation site during radiofrequency ablation

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, A

    1998-01-01

    This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation was perfor......This study was designed to investigate the effect of the convective cooling of the tip of the ablation electrode during temperature controlled radiofrequency ablation. In vivo two different application sites in the left ventricle of anaesthetised pigs were ablated and in vitro ablation...... was performed during two different flow-velocities in a tissue bath, while electrode contact pressure and position were unchanged. Target temperature was 80 degrees C. Obtained tip temperature, power consumption and lesion dimensions were measured. In vivo lesion volume, depth and width were found significantly.......61 in vitro). We conclude that during temperature controlled radiofrequency ablation lesion size differs for septal and apical left ventricular applications. Differences in convective cooling might play an important role in this respect. This is supported by our in vitro experiments, where increased...

  20. Field enhancement induced laser ablation

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob

    Sub-diffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures....... The accompanying field enhancement substantially lowers the ablation threshold of the polymer film and thus creates local ablation spots and corresponding topographic modifications of the polymer film. Such modifications are quantified straightforwardly via scanning electron and atomic force microscopy. Thickness...

  1. Should fat in the radiofrequency ablation zone of hepatocellular adenomas raise suspicion for residual tumour?

    International Nuclear Information System (INIS)

    Costa, Andreu F.; Kajal, Dilkash; Pereira, Andre; Atri, Mostafa

    2017-01-01

    To assess the significance of fat in the radiofrequency ablation (RFA) zone of hepatocellular adenomas (HCA), and its association with tumoral fat and hepatic steatosis. The radiological archive was searched for patients with ablated HCAs and follow-up magnetic resonance imaging between January 2008 and June 2014. Age, sex, risk factors and duration of clinical and imaging follow-up were recorded. Pre-RFA imaging was assessed for tumour size, intra-tumoral fat and steatosis. Post-RFA imaging was reviewed for size, enhancement and intra-ablational fat. Intra-ablational fat was classified as peripheral, central or mixed; the association of these distributions with steatosis and tumoral fat was assessed using Fisher's exact test. Sixteen patients with 26 ablated HCAs were included. Fat was present in 23/26 (88 %) ablation zones. Only 1/26 (4 %) showed serial enlargement and enhancement suggestive of residual disease; the enhancing area did not contain fat. All remaining ablations showed involution and/or diminishing fat content without suspicious enhancement (mean follow-up, 27 months; range, 2-84 months). The peripheral and mixed/central patterns of intra-ablational fat were associated with steatosis (P = 0.0005) and tumoral fat (P = 0.0003), respectively. Fat in the ablation zone of HCAs is a common finding which, in isolation, does not indicate residual tumour. (orig.)

  2. Should fat in the radiofrequency ablation zone of hepatocellular adenomas raise suspicion for residual tumour?

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Andreu F. [University Health Network and Mount Sinai Hospital, University of Toronto, Joint Department of Medical Imaging, Toronto, Ontario (Canada); Dalhousie University, Department of Diagnostic Radiology, QE II Health Sciences Centre - VG Site, Halifax, Nova Scotia (Canada); Kajal, Dilkash; Pereira, Andre; Atri, Mostafa [University Health Network and Mount Sinai Hospital, University of Toronto, Joint Department of Medical Imaging, Toronto, Ontario (Canada)

    2017-04-15

    To assess the significance of fat in the radiofrequency ablation (RFA) zone of hepatocellular adenomas (HCA), and its association with tumoral fat and hepatic steatosis. The radiological archive was searched for patients with ablated HCAs and follow-up magnetic resonance imaging between January 2008 and June 2014. Age, sex, risk factors and duration of clinical and imaging follow-up were recorded. Pre-RFA imaging was assessed for tumour size, intra-tumoral fat and steatosis. Post-RFA imaging was reviewed for size, enhancement and intra-ablational fat. Intra-ablational fat was classified as peripheral, central or mixed; the association of these distributions with steatosis and tumoral fat was assessed using Fisher's exact test. Sixteen patients with 26 ablated HCAs were included. Fat was present in 23/26 (88 %) ablation zones. Only 1/26 (4 %) showed serial enlargement and enhancement suggestive of residual disease; the enhancing area did not contain fat. All remaining ablations showed involution and/or diminishing fat content without suspicious enhancement (mean follow-up, 27 months; range, 2-84 months). The peripheral and mixed/central patterns of intra-ablational fat were associated with steatosis (P = 0.0005) and tumoral fat (P = 0.0003), respectively. Fat in the ablation zone of HCAs is a common finding which, in isolation, does not indicate residual tumour. (orig.)

  3. Radiofrequency ablation of pulmonary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Crocetti, Laura, E-mail: l.crocetti@med.unipi.i [Division of Diagnostic Imaging and Intervention, Department of Liver Transplants, Hepatology and Infectious Diseases, Pisa University School of Medicine (Italy); Lencioni, Riccardo [Division of Diagnostic Imaging and Intervention, Department of Liver Transplants, Hepatology and Infectious Diseases, Pisa University School of Medicine (Italy)

    2010-07-15

    The development of image-guided percutaneous techniques for local tumor ablation has been one of the major advances in the treatment of solid tumors. Among these methods, radiofrequency (RF) ablation is currently established as the primary ablative modality at most institutions. RF ablation is accepted as the best therapeutic choice for patients with early-stage hepatocellular carcinoma when liver transplantation or surgical resection are not suitable options and is considered as a viable alternate to surgery for inoperable patients with limited hepatic metastatic disease, especially from colorectal cancer. Recently, RF ablation has been demonstrated to be a safe and valuable treatment option for patients with unresectable or medically inoperable lung malignancies. Resection should remain the standard therapy for non-small cell lung cancer (NSCLC) but RF ablation may be better than conventional external-beam radiation for the treatment of the high-risk individual with NSCLC. Initial favourable outcomes encourage combining radiotherapy and RF ablation, especially for treating larger tumors. In the setting of colorectal cancer lung metastases, survival rates provided by RF ablation in selected patients, are substantially higher than those obtained with any chemotherapy regimens and provide indirect evidence that RF ablation therapy improves survival in patients with limited lung metastatic disease.

  4. Laser ablated copper plasmas in liquid and gas ambient

    Science.gov (United States)

    Kumar, Bhupesh; Thareja, Raj K.

    2013-05-01

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (ne) determined using Stark broadening of the Cu I (3d104d1 2D3/2-3d104p1 2P3/2 at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (Te) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ˜590 nm.

  5. Laser ablation/ionization studies in a glow discharge

    International Nuclear Information System (INIS)

    Hess, K.R.; Harrison, W.W.

    1985-01-01

    The pin cathode glow discharge is used in the laboratory as an atomization/ionization source for a variety of applications, including solids mass spectrometry. Coupled with a tunable dye laser, the glow discharge may also serve as an atom reservoir for resonance ionization mass spectrometry in which the laser ionizes the discharge sputtered atoms. By tightly focusing the laser onto solid samples, various ablation effects may also be investigated. The laser may be used to generate an ionized plasma which may be directly analyzed by mass spectrometry. Alternatively, the ablated neutral atoms may be used in post-ablation excitation/ionization processes, in this case the glow discharge. The results of these investigations are the basis of this paper

  6. Fractional ablative erbium YAG laser

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth H; Haak, Christina S; Erlendsson, Andrés M

    2014-01-01

    laser parameters with tissue effects. MATERIALS AND METHODS: Ex vivo pig skin was exposed to a miniaturized 2,940 nm AFXL, spot size 225 µm, density 5%, power levels 1.15-2.22 W, pulse durations 50-225 microseconds, pulse repetition rates 100-500 Hz, and 2, 20, or 50 stacked pulses, resulting in pulse......BACKGROUND AND OBJECTIVES: Treatment of a variety of skin disorders with ablative fractional lasers (AFXL) is driving the development of portable AFXLs. This study measures micropore dimensions produced by a small 2,940 nm AFXL using a variety of stacked pulses, and determines a model correlating...... 190 to 347 µm. CONCLUSIONS: Pulse stacking with a small, low power 2,940 nm AFXL created reproducible shallow to deep micropores, and influenced micropore configuration. Mathematical modeling established relations between laser settings and micropore dimensions, which assists in choosing laser...

  7. Thermal ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism.

    Science.gov (United States)

    Duan, Ya-Qi; Liang, Ping

    2013-05-01

    Many studies have been conducted on splenic thermal ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism. In this article, we review the evolution and current status of radiofrequency and microwave ablation in the treatment of spleen diseases. All publications from 1990 to 2011 on radiofrequency and microwave ablation for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism were retrieved by searching PubMed. Thermal ablation in the spleen for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism can preserve part of the spleen and maintain splenic immunologic function. Thermal ablation for assisting hemostasis in partial splenectomy minimizes blood loss during operation. Thermal ablation for spleen trauma reduces the number of splenectomy and the amount of blood transfusion. Thermal ablation for splenic metastasis is minimally invasive and can be done under the guidance of an ultrasound, which helps shorten the recovery time. Thermal ablation for hypersplenism increases platelet (PLT) and white blood cell (WBC) counts and improves liver function. It also helps to maintain splenic immunologic function and even improves splenic immunologic function in the short-term. In conclusion, thermal ablative approaches are promising for partial splenectomy hemostasis, spleen trauma, splenic metastasis and hypersplenism. In order to improve therapeutic effects, directions for future studies may include standardized therapeutic indications, prolonged observation periods and enlarged sample sizes.

  8. Parametric investigations on the influence of nano-second Nd{sup 3+}:YAG laser wavelength and fluence in synthesizing NiTi nano-particles using liquid assisted laser ablation technique

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Nandini, E-mail: nandinipatra2007@gmail.com [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Akash, K.; Shiva, S.; Gagrani, Rohit; Rao, H. Sai Pranesh; Anirudh, V.R. [Mechatronics and Instrumentation lab, Discipline of Mechanical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Palani, I.A., E-mail: palaniia@iiti.ac.in [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Mechatronics and Instrumentation lab, Discipline of Mechanical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Singh, Vipul [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India)

    2016-03-15

    Graphical abstract: - Highlights: • Influence of laser wavelengths (1064 nm, 532 nm and 355 nm) and fluences (40 J/cm{sup 2}, 30 J/cm{sup 2} and 20 J/cm{sup 2}) on generation of underwater laser ablated NiTi nanoparticles. • Particle size range of 140–10 nm was generated at varying laser wavelengths. • The alloy formation of NiTi nanoparticles was confirmed from XRD and TEM analysis where the crystalline peaks of NiTi, Ni{sub 4}Ti{sub 3} and Ni{sub 3}Ti were observed from XRD. • Formation efficiency of NiTi nanoparticles was maximum at 1064 nm wavelength and 40 J/cm{sup 2} fluence. - Abstract: This paper investigates the influence of laser wavelengths and laser fluences on the size and quality of the NiTi nanoparticles, generated through underwater solid state Nd:YAG laser ablation technique. The experiments were performed on Ni55%–Ti45% sheet to synthesize NiTi nano-particles at three different wavelengths (1064 nm, 532 nm and 355 nm) with varying laser fluences ranging from 20 to 40 J/cm{sup 2}. Synthesized NiTi nano-particles were characterized through SEM, DLS, XRD, FT-IR, TEM and UV–vis spectrum. It was observed that, maximum particle size of 140 nm and minimum particle size of 10 nm were generated at varying laser wavelengths. The crystallinity and lattice spacing of NiTi alloy nanoparticles were confirmed from the XRD analysis and TEM images, respectively.

  9. Ablation of polytetrafluoroethylene using a continuous CO2 laser beam

    International Nuclear Information System (INIS)

    Tolstopyatov, E M

    2005-01-01

    The ablation of polytetrafluoroethylene (PTFE) is studied using a continuous CO 2 laser beam of 30-50 W at a mean intensity of 0.05-50 MW m -2 . The ablation products and changes in the target layer are examined using infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction and electron microscopy. The main experiments were conducted with an unfocused beam of intensity 0.9-1.2 MW m -2 . The radiation-polymer interaction characteristics were found to change appreciably as the ablation conditions are approached. Within the polymer layer, light scattering diminishes and true resonant light absorption increases. Two distinct polymer components, which differ primarily in their resistance to CO 2 laser radiation, were found to exist under ablation conditions. The less stable component depolymerizes intensively, while the more resistant component is blown up into fibres by intense gas flow. The reasons behind this behaviour are discussed. Preliminary gamma irradiation of PTFE is found to have a significant influence on the laser ablation process

  10. Coumarins as new matrices for matrix-assisted laser-desorption/ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of hydrophobic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hang, E-mail: hangwang@sjtu.edu.cn [Instrumental Analysis Center, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China); Dai, Bona [Instrumental Analysis Center, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China); Liu, Bin [Key Laboratory of Kidney Disease Pathogenesis and Intervention of Hubei Province, College of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003 (China); Lu, Han [Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 197, Rui Jin Er Road, Shanghai 200025 (China)

    2015-07-02

    Highlights: • Coumarins were used as new MALDI matrices. • Coumarins were used for MALDI-FT ICR MS detection of hydrophobic compounds. • DCA had improvement in detection sensitivity, stability, selectivity and reproducibility. • DCA was applied to sterols detection in yeast cells. - Abstract: Hydrophobic compounds with hydroxyl, aldehyde or ketone groups are generally difficult to detect using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), because these compounds have low proton affinity and are poorly ionized by MALDI. Herein, coumarins have been used as new matrices for MALDI-MS analysis of a variety of hydrophobic compounds with low ionization efficiency, including steroids, coenzyme Q10, a cyclic lipopeptide and cholesterol oleate. Five coumarins, including coumarin, umbelliferone, esculetin, 7-hydroxycoumarin-3-carboxylic acid (HCA) and 6,7-dihydroxycoumarin-3-carboxylic acid (DCA), were compared with the conventional matrices of 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA). Coumarins with hydroxyl or carboxylic acid groups enabled detection. Taking DCA as an example, this matrix proved to be superior to DHB or CHCA in detection sensitivity, stability, spot-to-spot and sample-to-sample reproducibility, and accuracy. DCA increased the stability of the target compounds and decreased the loss of water. The [M + Na]{sup +} peaks were observed for all target compounds by adding NaCl as an additive, and the [M − H{sub 2}O + H]{sup +} and [M + H]{sup +} peaks decreased. DCA was selected for the identification of sterols in yeast cells, and thirteen sterols were detected by Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry. This work demonstrates the potential of DCA as a new matrix for detection of hydrophobic molecules by MALDI-MS and provides an alternative tool for screening sterols in antifungal research.

  11. Morphology and structure evolution of Cu(In,Ga)S{sub 2} films deposited by reactive magnetron co-sputtering with electron cyclotron resonance plasma assistance

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Man, E-mail: man.nie@helmholtz-berlin.de; Ellmer, Klaus [Department of Solar Fuels and Energy Storage Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D14109 Berlin (Germany)

    2014-02-28

    Cu(In,Ga)S{sub 2} (CIGS) films were deposited on Mo coated soda lime glass substrates using an electron cyclotron resonance plasma enhanced one-step reactive magnetron co-sputtering process (ECR-RMS). The crystalline quality and the morphology of the Cu(In,Ga)S{sub 2} films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray fluorescence. We also compared these CIGS films with films previously prepared without ECR assistance and find that the crystallinity of the CIGS films is correlated with the roughness evolution during deposition. Atomic force microscopy was used to measure the surface topography and to derive one-dimensional power spectral densities (1DPSD). All 1DPSD spectra of CIGS films exhibit no characteristic peak which is typical for the scaling of a self-affine surface. The growth exponent β, characterizing the roughness R{sub q} evolution during the film growth as R{sub q} ∼ d{sup β}, changes with film thickness. The root-mean-square roughness at low temperatures increases only slightly with a growth exponent β = 0.013 in the initial growth stage, while R{sub q} increases with a much higher exponent β = 0.584 when the film thickness is larger than about 270 nm. Additionally, we found that the H{sub 2}S content of the sputtering atmosphere and the Cu- to-(In + Ga) ratio has a strong influence of the morphology of the CIGS films in this one-step ECR-RMS process.

  12. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure.

    Science.gov (United States)

    Zhuang, Leimeng; Beeker, Willem; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-02-11

    We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.

  13. Infrared Laser Ablation with Vacuum Capture for Fingermark Sampling

    Science.gov (United States)

    Donnarumma, Fabrizio; Camp, Eden E.; Cao, Fan; Murray, Kermit K.

    2017-09-01

    Infrared laser ablation coupled to vacuum capture was employed to collect material from fingermarks deposited on surfaces of different porosity and roughness. Laser ablation at 3 μm was performed in reflection mode with subsequent capture of the ejecta with a filter connected to vacuum. Ablation and capture of standards from fingermarks was demonstrated on glass, plastic, aluminum, and cardboard surfaces. Using matrix assisted laser desorption ionization (MALDI), it was possible to detect caffeine after spiking with amounts as low as 1 ng. MALDI detection of condom lubricants and detection of antibacterial peptides from an antiseptic cream was demonstrated. Detection of explosives from fingermarks left on plastic surfaces as well as from direct deposition on the same surface using gas chromatography mass spectrometry (GC-MS) was shown. [Figure not available: see fulltext.

  14. Radiofrequency ablation of osteoid osteoma

    NARCIS (Netherlands)

    Vanderschueren, Geert Maria Joris Michael

    2009-01-01

    The main purpose of this thesis was to evaluate the effectiveness and safety of CT-guided radiofrequency ablation for the treatment of spinal and non-spinal osteoid osteomas. Furthermore, the technical requirements needed for safe radiofrequency ablation and the clinical outcome after radiofrequency

  15. [Radiofrequency ablation of hepatocellular carcinoma].

    Science.gov (United States)

    Widmann, Gerlig; Schullian, Peter; Bale, Reto

    2013-03-01

    Percutaneous radiofrequency ablation (RFA) is well established in the treatment of hepatocellular carcinoma (HCC). Due to its curative potential, it is the method of choice for non resectable BCLC (Barcelona Liver Clinic) 0 and A. RFA challenges surgical resection for small HCC and is the method of choice in bridging for transplantation and recurrence after resection or transplantation. The technical feasibility of RFA depends on the size and location of the HCC and the availability of ablation techniques (one needle techniques, multi-needle techniques). More recently, stereotactic multi-needle techniques with 3D trajectory planning and guided needle placement substantially improve the spectrum of treatable lesions including large volume tumors. Treatment success depends on the realization of ablations with large intentional margins of tumor free tissue (A0 ablation in analogy to R0 resection), which has to be documented by fusion of post- with pre-ablation images, and confirmed during follow-up imaging.

  16. Particle size determination of silver nanoparticles generated by plasma laser ablation using a deconvolution method

    Czech Academy of Sciences Publication Activity Database

    Picciotto, A.; Torrisi, L.; Margarone, Daniele; Bellutti, P.

    2010-01-01

    Roč. 165, 6-10 (2010), s. 706-712 ISSN 1042-0150. [International Workshop on Pulsed Plasma Laser Ablation (PPLA)/4./. Monte Pieta, Messina, 18.06.2009-20.06.2009] Institutional research plan: CEZ:AV0Z10100522 Keywords : nanoparticles * plasma * laser ablation * surface plasmon resonance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.660, year: 2010

  17. Laboratory Simulations of Micrometeoroid Ablation

    Science.gov (United States)

    Thomas, Evan Williamson

    Each day, several tons of meteoric material enters Earth's atmosphere, the majority of which consist of small dust particles (micrometeoroids) that completely ablate at high altitudes. The dust input has been suggested to play a role in a variety of phenomena including: layers of metal atoms and ions, nucleation of noctilucent clouds, effects on stratospheric aerosols and ozone chemistry, and the fertilization of the ocean with bio-available iron. Furthermore, a correct understanding of the dust input to the Earth provides constraints on inner solar system dust models. Various methods are used to measure the dust input to the Earth including satellite detectors, radar, lidar, rocket-borne detectors, ice core and deep-sea sediment analysis. However, the best way to interpret each of these measurements is uncertain, which leads to large uncertainties in the total dust input. To better understand the ablation process, and thereby reduce uncertainties in micrometeoroid ablation measurements, a facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to accelerate iron particles to relevant meteoric velocities (10-70 km/s). The particles are then introduced into a chamber pressurized with a target gas, and they partially or completely ablate over a short distance. An array of diagnostics then measure, with timing and spatial resolution, the charge and light that is generated in the ablation process. In this thesis, we present results from the newly developed ablation facility. The ionization coefficient, an important parameter for interpreting meteor radar measurements, is measured for various target gases. Furthermore, experimental ablation measurements are compared to predictions from commonly used ablation models. In light of these measurements, implications to the broader context of meteor ablation are discussed.

  18. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    Science.gov (United States)

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    efficient coupling of optical energy, pre-injection of photoactive dyes promoted the degree of tissue removal during laser irradiation. Further studies will investigate spatial distribution of dyes and optimal injecting pressure to govern the extent of dye-assisted ablation in a predictable manner. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser vaporization for BPH with low power application. © 2014 Wiley Periodicals, Inc.

  19. Innovative approach for in-vivo ablation validation on multimodal images

    Science.gov (United States)

    Shahin, O.; Karagkounis, G.; Carnegie, D.; Schlaefer, A.; Boctor, E.

    2014-03-01

    Radiofrequency ablation (RFA) is an important therapeutic procedure for small hepatic tumors. To make sure that the target tumor is effectively treated, RFA monitoring is essential. While several imaging modalities can observe the ablation procedure, it is not clear how ablated lesions on the images correspond to actual necroses. This uncertainty contributes to the high local recurrence rates (up to 55%) after radiofrequency ablative therapy. This study investigates a novel approach to correlate images of ablated lesions with actual necroses. We mapped both intraoperative images of the lesion and a slice through the actual necrosis in a common reference frame. An electromagnetic tracking system was used to accurately match lesion slices from different imaging modalities. To minimize the liver deformation effect, the tracking reference frame was defined inside the tissue by anchoring an electromagnetic sensor adjacent to the lesion. A validation test was performed using a phantom and proved that the end-to-end accuracy of the approach was within 2mm. In an in-vivo experiment, intraoperative magnetic resonance imaging (MRI) and ultrasound (US) ablation images were correlated to gross and histopathology. The results indicate that the proposed method can accurately correlate invivo ablations on different modalities. Ultimately, this will improve the interpretation of the ablation monitoring and reduce the recurrence rates associated with RFA.

  20. Multiparametric magnetic resonance imaging and frozen-section analysis efficiently predict upgrading, upstaging, and extraprostatic extension in patients undergoing nerve-sparing robotic-assisted radical prostatectomy.

    Science.gov (United States)

    Bianchi, Roberto; Cozzi, Gabriele; Petralia, Giuseppe; Alessi, Sarah; Renne, Giuseppe; Bottero, Danilo; Brescia, Antonio; Cioffi, Antonio; Cordima, Giovanni; Ferro, Matteo; Matei, Deliu Victor; Mazzoleni, Federica; Musi, Gennaro; Mistretta, Francesco Alessandro; Serino, Alessandro; Tringali, Valeria Maria Lucia; Coman, Ioan; De Cobelli, Ottavio

    2016-10-01

    To evaluate the role of multiparametric magnetic resonance imaging (mpMRI) in predicting upgrading, upstaging, and extraprostatic extension in patients with low-risk prostate cancer (PCa). MpMRI may reduce positive surgical margins (PSM) and improve nerve-sparing during robotic-assisted radical prostatectomy (RARP) for localized prostate cancer PCa.This was a retrospective, monocentric, observational study. We retrieved the records of patients undergoing RARP from January 2012 to December 2013 at our Institution. Inclusion criteria were: PSA <10 ng/mL; clinical stage

  1. LAPAROSCOPIC NEPHRECTOMY USING RADIOFREQUENCY THERMAL ABLATION

    Directory of Open Access Journals (Sweden)

    B. Ya. Alekseev

    2012-01-01

    Full Text Available The wide use of current diagnostic techniques, such as ultrasound study, computed tomography, and magnetic resonance imaging, has led to significantly increased detection rates for disease in its early stages. This gave rise to a change in the standards for the treatment of locally advanced renal cell carcinoma (RCC. Laparoscopic nephrectomy (LN has recently become the standard treatment of locally advanced RCC in the clinics having much experience with laparoscopic surgery. The chief drawback of LN is difficulties in maintaining intraoperative hemostasis and a need for creating renal tissue ischemia. The paper gives the intermediate results of application of the new procedure of LN using radiofrequency thermal ablation in patients with non-ischemic early-stage RCC.

  2. Radiofrequency Ablation of Liver Tumors

    Science.gov (United States)

    ... have had a surgical procedure in which the liver bile duct has been connected to a loop of bowel are at much greater risk of developing a liver abscess after ablation. Women should always inform their ...

  3. Cryoballoon Ablation for Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Jason G. Andrade, MD

    2012-03-01

    Full Text Available Focal point-by-point radiofrequency catheter ablation has shown considerable success in the treatment of paroxysmal atrial fibrillation. However, it is not without limitations. Recent clinical and preclinical studies have demonstrated that cryothermal ablation using a balloon catheter (Artic Front©, Medtronic CryoCath LP provides an effective alternative strategy to treating atrial fibrillation. The objective of this article is to review efficacy and safety data surrounding cryoballoon ablation for paroxysmal and persistent atrial fibrillation. In addition, a practical step-by-step approach to cryoballoon ablation is presented, while highlighting relevant literature regarding: 1 the rationale for adjunctive imaging, 2 selection of an appropriate cryoballoon size, 3 predictors of efficacy, 4 advanced trouble-shooting techniques, and 5 strategies to reduce procedural complications, such as phrenic nerve palsy.

  4. Laser-assisted shape selective fragmentation of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, P.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 117942 Moscow (Russian Federation); Simakin, A.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 117942 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 117942 Moscow (Russian Federation)]. E-mail: shafeev@kapella.gpi.ru; Viau, G. [ITODYS, UMR 7086, Universite Paris 7-Denis Diderot, case 7090, 2 place Jussieu, 75251 Paris Cedex 05 (France); Soumare, Y. [ITODYS, UMR 7086, Universite Paris 7-Denis Diderot, case 7090, 2 place Jussieu, 75251 Paris Cedex 05 (France); Bozon-Verduraz, F. [ITODYS, UMR 7086, Universite Paris 7-Denis Diderot, case 7090, 2 place Jussieu, 75251 Paris Cedex 05 (France)

    2007-07-31

    Experimental results are presented on laser-assisted fragmentation of gold-containing nanoparticles suspended in liquids (either ethanol or water). Two kinds of nanoparticles are considered: (i) elongated Au nanorods synthesized by laser ablation of a gold target immersed in liquid phase; (ii) gold-covered NiCo nanorods with high aspect ratio ({theta} {approx} 10) synthesized by wet chemistry processes. The shape selectivity induced by laser fragmentation of these nanorods is gained via tuning the wavelength of laser radiation into different parts of the spectrum of their plasmon resonance corresponding to different aspect ratios {theta}. Fragmentation is performed using three laser wavelengths, involving a Cu vapour laser (510 and 578 nm) and a Nd:YAG (1064 nm). Nanoparticles are characterized by UV-vis spectrometry, Transmission Electron Microscopy (TEM). The effect of laser pulse duration (nanosecond against picosecond range) is also studied in the case of fragmentation with an IR laser radiation.

  5. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films

    International Nuclear Information System (INIS)

    Toftmann, B.; Papantonakis, M.R.; Auyeung, R.C.Y.; Kim, W.; O'Malley, S.M.; Bubb, D.M.; Horwitz, J.S.; Schou, J.; Johansen, P.M.; Haglund, R.F.

    2004-01-01

    A comparative study of thin film production based on gentle laser-ablation techniques has been carried out with the luminescent polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. Using a free-electron laser films were made by resonant infrared pulsed laser deposition (RIR-PLD). For the first time resonant infrared matrix assisted pulsed laser evaporation (RIR-MAPLE) was successfully demonstrated on a luminescent polymer system. In addition to this, an excimer laser has been used for UV-MAPLE depositions at 193 and 248-nm irradiation. Films deposited onto NaCl and quartz substrates were analyzed by Fourier transform infrared spectroscopy, UV-visible absorbance and photoluminescence. Photoluminescent material was deposited by RIR-MAPLE and 248-nm MAPLE, while the RIR-PLD and 193-nm-MAPLE depositions displayed the smoothest surfaces but did not show photoluminescence

  6. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Papantonalis, M.R.; Auyeung, R.C.Y.

    2004-01-01

    -PLD). For the first time resonant infrared matrix assisted pulsed laser evaporation (RIR-MAPLE) was successfully demonstrated on a luminescent polymer system. In addition to this, an excimer laser has been used for UV-MAPLE depositions at 193 and 248-nm irradiation. Films deposited onto NaCl and quartz substrates......A comparative study of thin film production based on gentle laser-ablation techniques has been carried out with the luminescent polymer poly [2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. Using a free-electron laser films were made by resonant infrared pulsed laser deposition (RIR...... were analyzed by Fourier transform infrared spectroscopy, UV-visible absorbance and photoluminescence. Photoluminescent material was deposited by RIR-MAPLE and 248-nm MAPLE, while the RIR-PLD and 193-nm-MAPLE depositions displayed the smoothest surfaces but did not show photoluminescence. (C) 2003...

  7. Resonant infrared pulsed laser deposition of a polyimide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Dygert, N L; Schriver, K E; Jr, R F Haglund [Department of Physics and Astronomy and W M Keck Foundation Free-Electron Laser Centre, Vanderbilt University, Nashville TN 37235 (United States)

    2007-04-15

    Poly(amic acid) (PAA), a precursor to polyimide, was successfully deposited on substrates without reaching curing temperature, by resonant infrared pulsed laser ablation. The PAA was prepared by dissolving pyromellitic dianhydride and 4, 4' oxidianiline in the polar solvent Nmethyl pyrrolidinone (NMP). The PAA was deposited in droplet-like morphologies when ablation occurred in air, and in string-like moieties in the case of ablation in vacuum. In the as-deposited condition, the PAA was easily removed by washing with NMP; however, once cured thermally for thirty minutes, the PAA hardened, indicating the expected thermosetting property. Plume shadowgraphy showed very clear contrasts in the ablation mechanism between ablation of the solvent alone and the ablation of the PAA, even at low concentrations. A Wavelength dependence in plume velocity was also observed.

  8. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    Science.gov (United States)

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  9. Ablation of hypertrophic septum using radiofrequency energy: an alternative for gradient reduction in patient with hypertrophic obstructive cardiomyopathy?

    Science.gov (United States)

    Riedlbauchová, Lucie; Janoušek, Jan; Veselka, Josef

    2013-06-01

    Alcohol septal ablation and surgical myectomy represent accepted therapeutic options for treatment of symptomatic patients with hypertrophic obstructive cardiomyopathy. Long-term experience with radiofrequency ablation of arrhythmogenic substrates raised a question if this technique might be effective for left ventricular outflow tract (LVOT) gradient reduction. We report on a 63-year-old patient with recurrence of symptoms 1 year after alcohol septal ablation (ASA) leading originally to a significant reduction of both symptoms and gradient. Due to a new increase of gradient in the LVOT up to 200 mm Hg with corresponding worsening of symptoms and due to refusal of surgical myectomy by the patient, endocardial radiofrequency ablation of the septal hypertrophy (ERASH) was indicated. Radiofrequency ablation was performed in the LVOT using irrigated-tip ablation catheter; the target site was identified using intracardiac echocardiography and electroanatomical CARTO mapping. ERASH caused an immediate gradient reduction due to hypokinesis of the ablated septum. At 2-month follow-up exam, significant clinical improvement was observed, together with persistent gradient reduction assessed with Doppler echocardiography. Echocardiography and magnetic resonance revealed persistent septal hypokinesis and slight thinning of the ablated region. Septal ablation using radiofrequency energy may be a promising alternative or adjunct to the treatment of hypertrophic obstructive cardiomyopathy. Intracardiac echocardiography and electroanatomical CARTO mapping enable exact lesion placement and preservation of atrioventricular conduction.

  10. Ablation of Solid Hydrogen in a Plasma

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment.......Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment....

  11. Local ablation therapy with contrast-enhanced ultrasonography for hepatocellular carcinoma: a practical review

    Directory of Open Access Journals (Sweden)

    Tae Kyoung Kim

    2015-10-01

    Full Text Available A successful program for local ablation therapy for hepatocellular carcinoma (HCC requires extensive imaging support for diagnosis and localization of HCC, imaging guidance for the ablation procedures, and post-treatment monitoring. Contrast-enhanced ultrasonography (CEUS has several advantages over computed tomography/magnetic resonance imaging (CT/MRI, including real-time imaging capability, sensitive detection of arterial-phase hypervascularity and washout, no renal excretion, no ionizing radiation, repeatability, excellent patient compliance, and relatively low cost. CEUS is useful for image guidance for isoechoic lesions. While contrast-enhanced CT/MRI is the standard method for the diagnosis of HCC and post-ablation monitoring, CEUS is useful when CT/MRI findings are indeterminate or CT/MRI is contraindicated. This article provides a practical review of the role of CEUS in imaging algorithms for pre- and post-ablation therapy for HCC.

  12. Infrared laser ablation atmospheric pressure photoionization mass spectrometry.

    Science.gov (United States)

    Vaikkinen, Anu; Shrestha, Bindesh; Kauppila, Tiina J; Vertes, Akos; Kostiainen, Risto

    2012-02-07

    In this paper we introduce laser ablation atmospheric pressure photoionization (LAAPPI), a novel atmospheric pressure ion source for mass spectrometry. In LAAPPI the analytes are ablated from water-rich solid samples or from aqueous solutions with an infrared (IR) laser running at 2.94 μm wavelength. Approximately 12 mm above the sample surface, the ablation plume is intercepted with an orthogonal hot solvent (e.g., toluene or anisole) jet, which is generated by a heated nebulizer microchip and directed toward the mass spectrometer inlet. The ablated analytes are desolvated and ionized in the gas-phase by atmospheric pressure photoionization using a 10 eV vacuum ultraviolet krypton discharge lamp. The effect of operational parameters and spray solvent on the performance of LAAPPI is studied. LAAPPI offers ~300 μm lateral resolution comparable to, e.g., matrix-assisted laser desorption ionization. In addition to polar compounds, LAAPPI efficiently ionizes neutral and nonpolar compounds. The bioanalytical application of the method is demonstrated by the direct LAAPPI analysis of rat brain tissue sections and sour orange (Citrus aurantium) leaves. © 2012 American Chemical Society

  13. Femtosecond laser ablation of enamel

    Science.gov (United States)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  14. Plasmonic angular tunability of gold nanoparticles generated by fs laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pace, M.L.; Guarnaccio, A.; Ranù, F. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Trucchi, D. [CNR, ISM UOS Montelibretti, Via Salaria km 29.300, Monterotondo Scalo, (RM) 00015 (Italy); Orlando, S., E-mail: stefano.orlando@ism.cnr.it [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Mollica, D.; Parisi, G.P. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Medici, L.; Lettino, A. [CNR, IMAA, Area della Ricerca di Potenza -Zona Industriale, Tito Scalo, (PZ) 85050 (Italy); De Bonis, A.; Teghil, R. [Dipart. di Scienze,Università della Basilicata, Viale dell’Ateneo Lucano 10, Potenza, 85100 (Italy); Santagata, A. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy)

    2016-06-30

    Highlights: • fs pulsed laser ablation as a technique to produce nanoparticles. • Nanoparticle distribution as an evidence for plasmonic tunable resonances. • Correlation between angular distribution of deposited nanoparticles and specific plasmonic resonances. - Abstract: With the aim to study the influence of deposition parameters on the plasmonic properties of gold (Au) nanoparticles (NPs) deposited by ultra-short ablation, we have focused our attention in evaluating how their size distribution can be varied. In this work, the role played by the NPs’ angular distribution, agglomeration and growth is related to the resulting optical properties. UV–vis-NIR absorption spectra together with Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray microdiffraction observations are presented in order to show how the angular distribution of fs laser ablation and deposition of Au NPs provides different plasmonic properties which can be beneficial for several aims, from optoelectronic to biosensor applications.

  15. Laparoscopic Ultrasound-Guided Radiofrequency Ablation of Uterine Fibroids

    International Nuclear Information System (INIS)

    Milic, Andrea; Asch, Murray R.; Hawrylyshyn, Peter A.; Allen, Lisa M.; Colgan, Terence J.; Kachura, John R.; Hayeems, Eran B.

    2006-01-01

    Four patients with symptomatic uterine fibroids measuring less than 6 cm underwent laparoscopic ultrasound-guided radiofrequency ablation (RFA) using multiprobe-array electrodes. Follow-up of the treated fibroids was performed with gadolinium-enhanced magnetic resonance imaging (MRI) and patients' symptoms were assessed by telephone interviews. The procedure was initially technically successful in 3 of the 4 patients and MRI studies at 1 month demonstrated complete fibroid ablation. Symptom improvement, including a decrease in menstrual bleeding and pain, was achieved in 2 patients at 3 months. At 7 months, 1 of these 2 patients experienced symptom worsening which correlated with recurrent fibroid on MRI. The third, initially technically successfully treated patient did not experience any symptom relief after the procedure and was ultimately diagnosed with adenomyosis. Our preliminary results suggest that RFA is a technically feasible treatment for symptomatic uterine fibroids in appropriately selected patients

  16. Clinical effect of ablative fractional laser-assisted topical anesthesia on human skin%点阵Er:YAG激光辅助外用麻醉药物传输的临床观察

    Institute of Scientific and Technical Information of China (English)

    罗瑶佳; 吴严; 高兴华; 何春涤; 陈洪铎; 李远宏

    2011-01-01

    Objective Most topically used medications need a long time to be absorbed into the skin owing to the stratum corneum(SC) barrier. The fractional Erbium:yttrium-aluminum-garnet (Er:YAG) laser,creating vertical channels to disrupt the SC,might assist the delivery of topically applied drug to penetrate into the skin. This study was intended to determine whether pretreatment with fractional Er:YAG laser could assist transdermal delivery of topical anesthesia. Methods Thirty-one subjects were enrolled in this study. Three neighboring 4cm×3cm regions were marked on their left forearm with the interference of Er:YAG laser plus topical anesthesia (laser +anesthesia +pain stimuli), anesthesia control (anesthesia + pain stimuli) and blank control (moisture + pain stimuli) respectively. Then each region was treated with YSGG laser to evaluate the pain sensation using the visual analogue scale (VAS) as a way to scale the transdermal absorption of topical anesthesia. Results The pain scores for Er:YAG laser plus topical anesthesia, anesthesia control and blank control regions are 2.84±0.66, 3.91 ±0.79 and 4.59±0.87 respectively. The pain score for Er:YAG laser plus topical anesthesia region is significantly lower than the anesthesia control (P=0.042) and blank control (P=0.003). Conclusion This proved the laser assistance of transdermal absorption for topical anesthesia medication.%目的:由于角质层的屏障作用,外用药物很难经皮吸收.铒:钇铝石榴石(Er:YAG)点阵激光通过点状剥脱的模式穿透角质层,破坏了角质层的完整性,可以加速外用药物经皮吸收的速度.本实验旨在验证外用表面麻醉药之前用点阵Er:YAG激光破坏角质层,可以促进表面麻醉药的吸收速度.方法:在31名受试者的左前臂上划出三块相邻的4cm×3cm区域,分别予以Er:YAG激光加表面麻醉药("点阵+麻药+疼痛"),表面麻醉药对照("麻药+疼痛")和空白对照干预("润肤露+疼痛").干预后对各区域

  17. Femtosecond laser ablation of dentin

    International Nuclear Information System (INIS)

    Alves, S; Vilar, R; Oliveira, V

    2012-01-01

    The surface morphology, structure and composition of human dentin treated with a femtosecond infrared laser (pulse duration 500 fs, wavelength 1030 nm, fluences ranging from 1 to 3 J cm -2 ) was studied by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The average dentin ablation threshold under these conditions was 0.6 ± 0.2 J cm -2 and the ablation rate achieved in the range 1 to 2 µm/pulse for an average fluence of 3 J cm -2 . The ablation surfaces present an irregular and rugged appearance, with no significant traces of melting, deformation, cracking or carbonization. The smear layer was entirely removed by the laser treatment. For fluences only slightly higher than the ablation threshold the morphology of the laser-treated surfaces was very similar to the dentin fracture surfaces and the dentinal tubules remained open. For higher fluences, the surface was more porous and the dentin structure was partially concealed by ablation debris and a few resolidified droplets. Independently on the laser processing parameters and laser processing method used no sub-superficial cracking was observed. The dentin constitution and chemical composition was not significantly modified by the laser treatment in the processing parameter range used. In particular, the organic matter is not preferentially removed from the surface and no traces of high temperature phosphates, such as the β-tricalcium phosphate, were observed. The achieved results are compatible with an electrostatic ablation mechanism. In conclusion, the high beam quality and short pulse duration of the ultrafast laser used should allow the accurate preparation of cavities, with negligible damage of the underlying material. (paper)

  18. Does non-echo-planar diffusion-weighted magnetic resonance imaging have a role in assisting the clinical diagnosis of cholesteatoma in selected cases?

    Science.gov (United States)

    Nash, R; Lingam, R K; Chandrasekharan, D; Singh, A

    2018-03-01

    To determine the diagnostic performance of diffusion-weighted magnetic resonance imaging in the assessment of patients with suspected, but not clinically evident, cholesteatoma. A retrospective analysis of a prospectively collected database of non-echo-planar diffusion-weighted magnetic resonance imaging studies (using a half-Fourier single-shot turbo-spin echo sequence) was conducted. Clinical records were retrospectively reviewed to determine indications for imaging and operative findings. Seventy-eight investigations in 74 patients with suspected cholesteatoma aged 5.7-79.2 years (mean, 41.7 years) were identified. Operative confirmation was available in 44 ears. Diagnostic accuracy of the imaging technique was calculated using operative findings as a 'gold standard'. Sensitivity of the investigation was examined via comparison with clinically evident cholesteatoma. The accuracy of diffusion-weighted magnetic resonance imaging in assessment of suspected cholesteatoma was 63.6 per cent. The imaging technique was significantly less accurate in assessment of suspected cholesteatoma than clinically evident disease (p < 0.001). Computed tomography and diffusion-weighted magnetic resonance imaging may be complementary in assessment of suspected cholesteatoma, but should be used with caution, and clinical judgement is paramount.

  19. Transhemangioma Ablation of Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Pua, Uei

    2012-01-01

    Radiofrequency ablation (RFA) is a well-established treatment modality in the treatment of early hepatocellular carcinoma (HCC) [1]. Safe trajectory of the RFA probe is crucial in decreasing collateral tissue damage and unwarranted probe transgression. As a percutaneous technique, however, the trajectory of the needle is sometimes constrained by the available imaging plane. The presence of a hemangioma beside an HCC is uncommon but poses the question of safety related to probe transgression. We hereby describe a case of transhemangioma ablation of a dome HCC.

  20. Transhemangioma Ablation of Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Pua, Uei, E-mail: druei@yahoo.com [Tan Tock Seng Hospital, Department of Diagnostic Radiology (Singapore)

    2012-12-15

    Radiofrequency ablation (RFA) is a well-established treatment modality in the treatment of early hepatocellular carcinoma (HCC) [1]. Safe trajectory of the RFA probe is crucial in decreasing collateral tissue damage and unwarranted probe transgression. As a percutaneous technique, however, the trajectory of the needle is sometimes constrained by the available imaging plane. The presence of a hemangioma beside an HCC is uncommon but poses the question of safety related to probe transgression. We hereby describe a case of transhemangioma ablation of a dome HCC.

  1. Fractional ablative laser skin resurfacing: a review.

    Science.gov (United States)

    Tajirian, Ani L; Tarijian, Ani L; Goldberg, David J

    2011-12-01

    Ablative laser technology has been in use for many years now. The large side effect profile however has limited its use. Fractional ablative technology is a newer development which combines a lesser side effect profile along with similar efficacy. In this paper we review fractional ablative laser skin resurfacing.

  2. Endometrial ablation with paracervical block

    NARCIS (Netherlands)

    Penninx, Josien P. M.; Mol, Ben Willem; Bongers, Marlies Y.

    2009-01-01

    OBJECTIVE: To evaluate the safety, feasibility and efficacy of endometrial ablation under local anesthesia. STUDY DESIGN: A prospective cohort study was performed at the gynecology department of a large teaching hospital. Women with dysfunctional uterine bleeding were included to undergo NovaSure

  3. Mucosal ablation in Barrett's esophagus.

    Science.gov (United States)

    Walker, S J; Selvasekar, C R; Birbeck, N

    2002-01-01

    Barrett's esophagus is a prevalent, premalignant condition affecting the gastroesophageal junction and distal esophagus. Ablation plus antireflux therapy has recently been advocated to prevent the development of adenocarcinoma or to treat those unfit or unwilling to undergo esophagectomy. The present article, based on a search of Medline/ISI databases and cross-referencing of relevant articles, reviews the literature on this subject. A number of techniques have been used to remove the affected mucosa, including laser, electrocoagulation, argon plasma coagulation and photodynamic therapy but, as yet, none has been shown to be superior. Depending on the method used, ablation results in complete removal of Barrett's esophagus in approximately one third of patients and a partial response in nearly two-thirds. The resultant squamous mucosa is apparently 'normal' but may regress. To promote and maintain regeneration, antireflux therapy must be sufficient to reduce repetitive injury to the esophageal mucosa. Whether ablation reduces the cancer risk or delays its occurrence is unknown, though recent data suggests benefit. Complications are infrequent and usually mild. Regular follow-up endoscopy and deep biopsies continue to be necessary. Careful data from much larger populations with long-term follow-up is required before ablation reaches the stage of broad clinical application.

  4. Hydrodynamic instabilities in an ablation front

    International Nuclear Information System (INIS)

    Piriz, A R; Portugues, R F

    2004-01-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved

  5. Hydrodynamic instabilities in an ablation front

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A R; Portugues, R F [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2004-06-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved.

  6. Comparison of wet radiofrequency ablation with dry radiofrequency ablation and radiofrequency ablation using hypertonic saline preinjection: ex vivo bovine liver

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Han, Joon Koo; Kim, Se Hyung; Lee, Jae Young; Park, Hee Sun; Hur, Hurn; Choi, Byung Ihn; Shin, Kyung Sook

    2004-01-01

    We wished to compare the in-vitro efficiency of wet radiofrequency (RF) ablation with the efficiency of dry RF ablation and RF ablation with preinjection of NaCl solutions using excised bovine liver. Radiofrequency was applied to excised bovine livers in a monopolar mode for 10 minutes using a 200 W generator and a perfused-cooled electrode with or without injection or slow infusion of NaCl solutions. After placing the perfused-cooled electrode in the explanted liver, 50 ablation zones were created with five different regimens: group A; standard dry RF ablation, group B; RF ablation with 11 mL of 5% NaCl solution preinjection, group C; RF ablation with infusion of 11 mL of 5% NaCl solution at a rate of 1 mL/min, group D; RFA with 6 mL of 36% NaCl solution preinjection, group E; RF ablation with infusion of 6 mL of 36% NaCl solution at a rate of 0.5 mL/min. In groups C and E, infusion of the NaCl solutions was started 1 min before RF ablation and then maintained during RF ablation (wet RF ablation). During RF ablation, we measured the tissue temperature at 15 mm from the electrode. The dimensions of the ablation zones and changes in impedance, current and liver temperature during RF ablation were then compared between the groups. With injection or infusion of NaCl solutions, the mean initial tissue impedance prior to RF ablation was significantly less in groups B, C, D, and E (43-75 Ω) than for group A (80 Ω) (ρ 3 in group A; 12.4 ± 3.8 cm 3 in group B; 80.9 ± 9.9 cm 3 in group C; 45.3 ± 11.3 cm 3 in group D and 81.6 ± 8.6 cm 3 in group E. The tissue temperature measured at 15 mm from the electrode was higher in groups C, D and E than other groups (ρ < 0.05): 53 ± 12 .deg. C in group A, 42 ± 2 .deg. C in group B, 93 ± 8 .deg. C in group C; 79 ± 12 .deg. C in group D and 83 ± 8 .deg.C in group E. Wet RF ablation with 5% or 36% NaCl solutions shows better efficiency in creating a large ablation zone than does dry RF ablation or RF ablation with

  7. Pain perception description after advanced surface ablation

    Directory of Open Access Journals (Sweden)

    Sobas EM

    2017-04-01

    Full Text Available Eva M Sobas,1,2 Sebastián Videla,3,4 Amanda Vázquez,1 Itziar Fernández,1,5 Miguel J Maldonado,1 José-Carlos Pastor1,6,7 1Instituto Universitario de Oftalmobiología Aplicada (IOBA, Universidad de Valladolid, Valladolid, Spain; 2Facultad de Enfermería, Universidad de Valladolid, Valladolid Spain; 3Laboratorios Dr. Esteve S.A., Barcelona, Spain; 4Department of Experimental and Health Sciences, Facultad de Ciencias de la Salud y de la Vida, Universidad Pompeu Fabra, Barcelona, Spain; 5Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, Valladolid, Spain; 6Department of Ophthalmology, Hospital Clínico Universitario, Valladolid, Spain; 7Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain Purpose: The objective of this study was to characterize the evolution of ocular pain after advanced surface ablation (ASA to improve strategies in postoperative pain management.Methods: This was a multicenter, prospective, descriptive, cohort study. The inclusion criteria were healthy individuals ≥18 years old receiving bilateral alcohol-assisted surface ablation with epithelial removal. Pain intensity was evaluated with the visual analog scale (VAS and the numeric pain rating scale before and after surgery. Comorbidities (photophobia, burning, tearing, and foreign body sensation and Hospital Anxiety and Depression (HAD questionnaire were evaluated before and at 6 hours after surgery. Postoperative treatments included cold patch, topical cold antibiotics, topical steroids, and benzodiazepines.Results: Thirty-two consecutive patients having similar profiles of postoperative pain evolution were included. At 0.5 hour after ASA, the pain score by VAS was 37±20 mm, and the maximum pain, 61±31 mm, occurred at 24 hours. Afterward, it decreased progressively until 72 hours after surgery (19±20 mm. Most patients (81% scored >60 mm, and

  8. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias; Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas; Mahnken, Andreas H.

    2012-01-01

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 ± 0.14, 1.45 ± 0.13, and 1.74 ± 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 ± 0.09 and 1.26 ± 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 ± 0.65, 2.85 ± 0.72, and 4.45 ± 0.47 cm 3 for MW ablation at outputs of 25W, 35W, and 45W and 1.18 ± 0.30 and 2.29 ± 0.55 cm 3 got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  9. Laser ablated copper plasmas in liquid and gas ambient

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Bhupesh; Thareja, Raj K. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2013-05-15

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (n{sub e}) determined using Stark broadening of the Cu I (3d{sup 10}4d{sup 1} {sup 2}D{sub 3/2}-3d{sup 10}4p{sup 1} {sup 2}P{sub 3/2} at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (T{sub e}) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ∼590 nm.

  10. Computer-assisted superimposition of magnetic resonance and high-resolution technetium-99m-HMPAO and thallium-201 SPECT images of the brain

    International Nuclear Information System (INIS)

    Holman, B.L.; Zimmerman, R.E.; Johnson, K.A.; Carvalho, P.A.; Schwartz, R.B.; Loeffler, J.S.; Alexander, E.; Pelizzari, C.A.; Chen, G.T.

    1991-01-01

    A method for registering three-dimensional CT, MR, and PET data sets that require no special patient immobilization or other precise positioning measures was adapted to high-resolution SPECT and MRI and was applied in 14 subjects [five normal volunteers, four patients with dementia (Alzheimer's disease), two patients with recurrent glioblastoma, and three patients with focal lesions (stroke, arachnoid cyst and head trauma)]. T2-weighted axial magnetic resonance images and transaxial 99mTc-HMPAO and 201Tl images acquired with an annular gamma camera were merged using an objective registration (translation, rotation and rescaling) program. In the normal subjects and patients with dementia and focal lesions, focal areas of high uptake corresponded to gray matter structures. Focal lesions observed on MRI corresponded to perfusion defects on SPECT. In the patients who had undergone surgical resection of glioblastoma followed by interstitial brachytherapy, increased 201Tl corresponding to recurrent tumor could be localized from the superimposed images. The method was evaluated by measuring the residuals in all subjects and translational errors due to superimposition of deep structures in the 12 subjects with normal thalamic anatomy and 99mTc-HMPAO uptake. This method for superimposing magnetic resonance and high-resolution SPECT images of the brain is a useful technique for correlating regional function with brain anatomy

  11. Preparation of CuO nanoparticles by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Abdulateef, Sinan A., E-mail: sinan1974@yahoo.com; MatJafri, M. Z.; Omar, A. F., E-mail: thinker-academy@yahoo.com; Ahmed, Naser M.; Azzez, Shrook A. [School of Physics, USM, 11800 Penang (Malaysia); Ibrahim, Issam M. [Baghdad university, physics department (Iraq); Al-Jumaili, Batool E. B. [Department of Physics, (UPM), Serdang, Selangor 43400 (Malaysia)

    2016-07-06

    Colloidal Cu nanoparticles (NPs) were synthesized by pulsed Nd:YAG laser ablation in acetone. Cu NPs were converted into CuO. The size and optical properties of these NPs were characterized using an UV/Vis spectrophotometer, transmission electron microscopy, and X-ray diffraction. Cu NPs were spherical, and their mean diameter in acetone was 8 nm–10 nm. Optical extinction immediately after the ablation showed surface Plasmon resonance peaks at 602 nm. The color of Cu NPs in acetone was green and stable even after a long time.

  12. Optical feedback-induced light modulation for fiber-based laser ablation.

    Science.gov (United States)

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  13. Characterization of tracked radiofrequency ablation in phantom

    International Nuclear Information System (INIS)

    Chen, Chun-Cheng R.; Miga, Michael I.; Galloway, Robert L.

    2007-01-01

    In radiofrequency ablation (RFA), successful therapy requires accurate, image-guided placement of the ablation device in a location selected by a predictive treatment plan. Current planning methods rely on geometric models of ablations that are not sensitive to underlying physical processes in RFA. Implementing plans based on computational models of RFA with image-guided techniques, however, has not been well characterized. To study the use of computational models of RFA in planning needle placement, this work compared ablations performed with an optically tracked RFA device with corresponding models of the ablations. The calibration of the tracked device allowed the positions of distal features of the device, particularly the tips of the needle electrodes, to be determined to within 1.4±0.6 mm of uncertainty. Ablations were then performed using the tracked device in a phantom system based on an agarose-albumin mixture. Images of the sliced phantom obtained from the ablation experiments were then compared with the predictions of a bioheat transfer model of RFA, which used the positional data of the tracked device obtained during ablation. The model was demonstrated to predict 90% of imaged pixels classified as being ablated. The discrepancies between model predictions and observations were analyzed and attributed to needle tracking inaccuracy as well as to uncertainties in model parameters. The results suggest the feasibility of using finite element modeling to plan ablations with predictable outcomes when implemented using tracked RFA

  14. Endometrial ablation in the management of abnormal uterine bleeding.

    Science.gov (United States)

    Laberge, Philippe; Leyland, Nicholas; Murji, Ally; Fortin, Claude; Martyn, Paul; Vilos, George; Leyland, Nicholas; Wolfman, Wendy; Allaire, Catherine; Awadalla, Alaa; Dunn, Sheila; Heywood, Mark; Lemyre, Madeleine; Marcoux, Violaine; Potestio, Frank; Rittenberg, David; Singh, Sukhbir; Yeung, Grace

    2015-04-01

    Abnormal uterine bleeding (AUB) is the direct cause of a significant health care burden for women, their families, and society as a whole. Up to 30% of women will seek medical assistance for the problem during their reproductive years. To provide current evidence-based guidelines on the techniques and technologies used in endometrial ablation (EA), a minimally invasive technique for the management of AUB of benign origin. Members of the guideline committee were selected on the basis of individual expertise to represent a range of practical and academic experience in terms of both location in Canada and type of practice, as well as subspecialty expertise and general background in gynaecology. The committee reviewed all available evidence in the English medical literature, including published guidelines, and evaluated surgical and patient outcomes for the various EA techniques. Recommendations were established by consensus. Published literature was retrieved through searches of MEDLINE and The Cochrane Library in 2013 and 2014 using appropriate controlled vocabulary and key words (endometrial ablation, hysteroscopy, menorrhagia, heavy menstrual bleeding, AUB, hysterectomy). RESULTS were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies written in English from January 2000 to November 2014. Searches were updated on a regular basis and incorporated in the guideline to December 2014. Grey (unpublished) literature was identifies through searching the websites of health technology assessment and health technology-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence in this document was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care (Table 1). This document reviews the evidence regarding the available techniques and technologies for EA

  15. Minimally invasive surgery using the open magnetic resonance imaging system combined with video-assisted thoracoscopic surgery for synchronous hepatic and pulmonary metastases from colorectal cancer: report of four cases.

    Science.gov (United States)

    Sonoda, Hiromichi; Shimizu, Tomoharu; Takebayashi, Katsushi; Ohta, Hiroyuki; Murakami, Koichiro; Shiomi, Hisanori; Naka, Shigeyuki; Hanaoka, Jun; Tani, Tohru

    2015-05-01

    Simultaneous resection of hepatic and pulmonary metastases (HPM) from colorectal cancer (CRC) has been reported to be effective, but it is also considered invasive. We report the preliminary results of performing minimally invasive surgery using the open magnetic resonance (MR) imaging system to resect synchronous HPM from CRC in four patients. All four patients were referred for thoracoscopy-assisted interventional MR-guided microwave coagulation therapy (T-IVMR-MCT) combined with video-assisted thoracoscopic surgery (VATS). The median diameters of the HPM were 18.2 and 23.2 mm, respectively. The median duration of VATS and T-IVMR-MCT was 82.5 and 139 min, respectively. All patients were discharged without any major postoperative complications. One patient was still free of disease at 24 months and the others died of disease progression 13, 36, and 47 months without evidence of recurrence in the treated area. Thus, simultaneous VATS + T-IVMR-MCT appears to be an effective option as a minimally invasive treatment for synchronous HPM from CRC.

  16. Radiofrequency ablation for renal tumors. Our experience

    International Nuclear Information System (INIS)

    Hiraoka, Kenji; Kawauchi, Akihiro; Nakamura, Terukazu; Soh, Jintetsu; Mikami, Kazuya; Miki, Tsuneharu

    2009-01-01

    The objective of this study was to report our results of percutaneous radiofrequency ablation (RFA) for renal tumors and to assess predictors of therapeutic efficacy. Forty patients (median age 73 years) with renal tumors were treated with RFA under local or epidural anesthesia. All of them had high surgical risk or refused radical surgery. Tumors were punctured percutaneously using the Radionics Cool-tip RF System under computed tomography or ultrasonographic guidance. Median tumor diameter was 24 mm. After RFA, contrast-enhanced computed tomography or magnetic resonance imaging was performed within 1 month. Complete response (CR) was defined as no enhancement inside the tumor. Factors related to the outcome and to renal function were assessed. Median follow up was 16 months. CR was observed in 34 cases (85.0%). A significant difference in CR rate was observed between tumors ≤30 mm and those >30 mm. Outcomes tended to be better for tumors in the mid to lower kidney, and those away from the renal hilum. Recurrence was observed in one case (2.9%), but a CR was obtained again by additional RFA. Out of a total of 77 RFA procedures, complications occurred in only three cases (3.9%), and conservative treatment was possible in all cases. Serum creatinine levels 3 months after RFA did not differ from those before RFA. Percutaneous RFA is a safe and effective treatment for small renal tumors in patients with high surgical risk or who refuse radical surgery. (author)

  17. MR thermometry for monitoring tumor ablation

    International Nuclear Information System (INIS)

    Senneville, Baudouin D. de; Quesson, Bruno; Dragonu, Iulius; Moonen, Chrit T.W.; Mougenot, Charles; Grenier, Nicolas

    2007-01-01

    Local thermal therapies are increasingly used in the clinic for tissue ablation. During energy deposition, the actual tissue temperature is difficult to estimate since physiological processes may modify local heat conduction and energy absorption. Blood flow may increase during temperature increase and thus change heat conduction. In order to improve the therapeutic efficiency and the safety of the intervention, mapping of temperature and thermal dose appear to offer the best strategy to optimize such interventions and to provide therapy endpoints. MRI can be used to monitor local temperature changes during thermal therapies. On-line availability of dynamic temperature mapping allows prediction of tissue death during the intervention based on semi-empirical thermal dose calculations. Much progress has been made recently in MR thermometry research, and some applications are appearing in the clinic. In this paper, the principles of MRI temperature mapping are described with special emphasis on methods employing the temperature dependency of the water proton resonance frequency. Then, the prospects and requirements for widespread applications of MR thermometry in the clinic are evaluated. (orig.)

  18. Decomposition of dioxin analogues and ablation study for carbon nanotube

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko

    2002-01-01

    Two application studies associated with the free electron laser are presented separately, which are the titles of 'Decomposition of Dioxin Analogues' and 'Ablation Study for Carbon Nanotube'. The decomposition of dioxin analogues by infrared (IR) laser irradiation includes the thermal destruction and multiple-photon dissociation. It is important for us to choose the highly absorbable laser wavelength for the decomposition. The thermal decomposition takes place by the irradiation of the low IR laser power. Considering the model of thermal decomposition, it is proposed that adjacent water molecules assist the decomposition of dioxin analogues in addition to the thermal decomposition by the direct laser absorption. The laser ablation study is performed for the aim of a carbon nanotube synthesis. The vapor by the ablation is weakly ionized in the power of several-hundred megawatts. The plasma internal energy is kept over an 8.5 times longer than the vacuum. The cluster was produced from the weakly ionized gas in the enclosed gas, which is composed of the rough particles in the low power laser more than the high power which is composed of the fine particles. (J.P.N.)

  19. Endometrial ablation by rollerball electrocoagulation compared to uterine balloon thermal ablation. Technical and safety aspects.

    NARCIS (Netherlands)

    Zon-Rabelink, I.A.A. van; Vleugels, M.P.; Merkus, J.M.W.M.; Graaf, R.M. de

    2003-01-01

    OBJECTIVE: To compare two methods of endometrial ablation, hysteroscopic rollerball electrocoagulation (RBE) and non-hysteroscopic uterine balloon thermal (UBT) ablation (Thermachoice), regarding intra- and post-operative technical complications and safety aspects. STUDY DESIGN: A randomised

  20. Resonance hairpin and Langmuir probe-assisted laser photodetachment measurements of the negative ion density in a pulsed dc magnetron discharge

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, James W.; Dodd, Robert; You, S.-D.; Sirse, Nishant; Karkari, Shantanu Kumar [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool (United Kingdom); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Republic of Ireland (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Republic of Ireland and Institute for Plasma Research, Bhat Gandhinagar, Gujarat (India)

    2011-05-15

    The time-resolved negative oxygen ion density n{sub -} close to the center line in a reactive pulsed dc magnetron discharge (10 kHz and 50% duty cycle) has been determined for the first time using a combination of laser photodetachment and resonance hairpin probing. The discharge was operated at a power of 50 W in 70% argon and 30% oxygen gas mixtures at 1.3 Pa pressure. The results show that the O{sup -} density remains pretty constant during the driven phase of the discharge at values typically below 5x10{sup 14} m{sup -3}; however, in the off-time, the O{sup -} density grows reaching values several times those in the on-time. This leads to the negative ion fraction (or degree of electronegativity) {alpha}=n{sub -}/n{sub e} being higher in the off phase (maximum value {alpha}{approx}1) than in the on phase ({alpha}=0.05-0.3). The authors also see higher values of {alpha} at positions close to the magnetic null than in the more magnetized region of the plasma. This fractional increase in negative ion density during the off-phase is attributed to the enhanced dissociative electron attachment of highly excited oxygen molecules in the cooling plasma. The results show that close to the magnetic null the photodetached electron density decays quickly after the laser pulse, followed by a slow decay over a few microseconds governed by the negative ion temperature. However, in the magnetized regions of the plasma, this decay is more gradual. This is attributed to the different cross-field transport rates for electrons in these two regions. The resonance hairpin probe measurements of the photoelectron densities are compared directly to photoelectron currents obtained using a conventional Langmuir probe. There is good agreement in the general trends, particularly in the off-time.

  1. Attitudes Towards Catheter Ablation for Atrial Fibrillation

    DEFF Research Database (Denmark)

    Vadmann, Henrik; Pedersen, Susanne S; Nielsen, Jens Cosedis

    2015-01-01

    BACKGROUND: Catheter ablation for atrial fibrillation (AF) is an important but expensive procedure that is the subject of some debate. Physicians´ attitudes towards catheter ablation may influence promotion and patient acceptance. This is the first study to examine the attitudes of Danish...... cardiologists towards catheter ablation for AF, using a nationwide survey. METHODS AND RESULTS: We developed a purpose-designed questionnaire to evaluate attitudes towards catheter ablation for AF that was sent to all Danish cardiologists (n = 401; response n = 272 (67.8%)). There was no association between...... attitudes towards ablation and the experience or age of the cardiologist with respect to patients with recurrent AF episodes with a duration of 7 days and/or need for cardioversion. The majority (69%) expected a recurrence of AF after catheter ablation in more than 30% of the cases...

  2. Radiofrequency Ablation of Hepatic Cysts : Case Report

    International Nuclear Information System (INIS)

    Lee, Ye Ri; Kim, Pyo Nyun

    2005-01-01

    Radiofrequency ablation has been frequently performed on intra-hepatic solid tumor, namely, hepatocellular carcinoma, metastatic tumor and cholangio carcinoma, for take the cure. But, the reports of radiofrequency ablation for intrahepatic simple cysts are few. In vitro experiment of animal and in vivo treatment for intrahepatic cysts of human had been reported in rare cases. We report 4 cases of radiofrequency ablation for symptomatic intrahepatic cysts

  3. Usefulness of administration of SPIO prior to RF ablation for evaluation of the therapeutic effect: An experimental study using miniature pigs

    Energy Technology Data Exchange (ETDEWEB)

    Kakite, Suguru, E-mail: sugkaki@med.tottori-u.ac.jp [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8503 (Japan); Fujii, Shinya; Nakamatsu, Satoru; Kanasaki, Yoshiko; Yamashita, Eijirou; Matsusue, Eiji; Ouchi, Yasufumi; Kaminou, Toshio [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8503 (Japan); Tokunaga, Shiho; Koda, Masahiko [Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8503 (Japan); Ogawa, Toshihide [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8503 (Japan)

    2011-05-15

    Objectives: To evaluate the usefulness of administration of superparamagnetic iron oxide (SPIO) and magnetic resonance (MR) imaging for assessing the efficacy of radiofrequency (RF) liver ablation. Material and methods: Using a protocol approved by the animal research committee of our university, nine RF liver ablations were performed in three miniature pigs. Six ablations were performed after administration of SPIO in two pigs (group A). Three ablations were performed in the other pig without administration of SPIO (group B). All pigs were sacrificed 4 days after the procedure. Harvested livers were scanned with a 1.5 T MR system before and after fixation with 10% buffered formalin, and MR images were precisely compared with histological specimens. Results: There were no histological differences between the two groups. All ablated liver lesions showed coagulation necrosis at the external layer. There were no viable cells inside the coagulation necrosis. All ablated lesions had a hypointense rim on fast low angle shot (FLASH) images. The rims of group A were thicker than those of group B. The rims of group B corresponded histologically to congestion and hemorrhagic necrosis area. The rims of the group A corresponded to hemorrhagic necrosis and coagulation necrosis areas. In group A, the hypointense rim reflected necrotic Kupffer cells that took up SPIO before RF liver ablation. Conclusion: Administration of SPIO made it possible to precisely evaluate ablated liver parenchyma by hypointense rim on FLASH images. This method is helpful for the evaluation of safety margin after RF ablation for liver tumors.

  4. Cryoballoon Catheter Ablation in Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Cevher Ozcan

    2011-01-01

    Full Text Available Pulmonary vein isolation with catheter ablation is an effective treatment in patients with symptomatic atrial fibrillation refractory or intolerant to antiarrhythmic medications. The cryoballoon catheter was recently approved for this procedure. In this paper, the basics of cryothermal energy ablation are reviewed including its ability of creating homogenous lesion formation, minimal destruction to surrounding vasculature, preserved tissue integrity, and lower risk of thrombus formation. Also summarized here are the publications describing the clinical experience with the cryoballoon catheter ablation in both paroxysmal and persistent atrial fibrillation, its safety and efficacy, and discussions on the technical aspect of the cryoballoon ablation procedure.

  5. Radiofrequency ablation of pancreas and optimal cooling of peripancreatic tissue in an ex-vivo porcine model

    Directory of Open Access Journals (Sweden)

    Michal Crha

    2011-01-01

    Full Text Available Radiofrequency ablation is a possible palliative treatment for patients suffering from pancreatic neoplasia. However, radiofrequency-induced damage to the peripancreatic tissues during pancreatic ablation might cause fatal complications. The aim of this experimental ex vivo study on pigs was to verify ablation protocols and evaluate whether or not the cooling of peripancereatic tissues during pancreatic ablation has any benefit for their protection against thermal injury. Radiofrequency ablation was performed on 52 pancreatic specimens obtained from pigs. During each pancreatic ablation, continuous measurements of the temperature in the portal vein and duodenal lumen were performed. Peripancreatic tissues were either not cooled or were cooled by being submerged in 14 °C water, or by a perfusion of the portal vein and duodenum with 14 °C saline. The effects of variation in target temperature of the ablated area (90 °C and 100 °C, duration of ablation (5 and 10 min and the effect of peripancreatic tissues cooling were studied. We proved that optimal radiofrequency ablation of the porcine pancreas can be reached with the temperature of 90  °C for 5 min in the ablated area. The perfusion of the duodenal and portal vein by 14 °C saline was found to be the most effective cooling method for minimizing damage to the walls. Continuous measurement of temperatures in peripancreatic tissues will provide useful feedback to assist in their protection against thermal injury. This therapy could be used in the treatment of pancreatic tumours.

  6. Magnetic resonance–guided interstitial high-intensity focused ultrasound for brain tumor ablation

    Science.gov (United States)

    MacDonell, Jacquelyn; Patel, Niravkumar; Rubino, Sebastian; Ghoshal, Goutam; Fischer, Gregory; Burdette, E. Clif; Hwang, Roy; Pilitsis, Julie G.

    2018-01-01

    Currently, treatment of brain tumors is limited to resection, chemotherapy, and radiotherapy. Thermal ablation has been recently explored. High-intensity focused ultrasound (HIFU) is being explored as an alternative. Specifically, the authors propose delivering HIFU internally to the tumor with an MRI-guided robotic assistant (MRgRA). The advantage of the authors’ interstitial device over external MRI-guided HIFU (MRgHIFU) is that it allows for conformal, precise ablation and concurrent tissue sampling. The authors describe their workflow for MRgRA HIFU delivery. PMID:29385926

  7. Stroke risk associated with balloon based catheter ablation for atrial fibrillation: Rationale and design of the MACPAF Study

    Directory of Open Access Journals (Sweden)

    Schultheiss Heinz-Peter

    2010-07-01

    Full Text Available Abstract Background Catheter ablation of the pulmonary veins has become accepted as a standard therapeutic approach for symptomatic paroxysmal atrial fibrillation (AF. However, there is some evidence for an ablation associated (silent stroke risk, lowering the hope to limit the stroke risk by restoration of rhythm over rate control in AF. The purpose of the prospective randomized single-center study "Mesh Ablator versus Cryoballoon Pulmonary Vein Ablation of Symptomatic Paroxysmal Atrial Fibrillation" (MACPAF is to compare the efficacy and safety of two balloon based pulmonary vein ablation systems in patients with symptomatic paroxysmal AF. Methods/Design Patients are randomized 1:1 for the Arctic Front® or the HD Mesh Ablator® catheter for left atrial catheter ablation (LACA. The predefined endpoints will be assessed by brain magnetic resonance imaging (MRI, neuro(psychological tests and a subcutaneously implanted reveal recorder for AF detection. According to statistics 108 patients will be enrolled. Discussion Findings from the MACPAF trial will help to balance the benefits and risks of LACA for symptomatic paroxysmal AF. Using serial brain MRIs might help to identify patients at risk for LACA-associated cerebral thromboembolism. Potential limitations of the study are the single-center design, the existence of a variety of LACA-catheters, the missing placebo-group and the impossibility to assess the primary endpoint in a blinded fashion. Trial registration clinicaltrials.gov NCT01061931

  8. Simultaneous atomization and ionization of large organic molecules using femtosecond laser ablation

    International Nuclear Information System (INIS)

    Kurata-Nishimura, Mizuki; Tokanai, Fuyuki; Matsuo, Yukari; Kobayashi, Tohru; Kawai, Jun; Kumagai, Hiroshi; Midorikawa, Katsumi; Tanihata, Isao; Hayashizaki, Yoshihide

    2002-01-01

    We have experimentally demonstrated femtosecond laser ablation for simultaneous atomization and ionization (fs-SAI) of organic molecules on solid substrates. We find most of the constituent atoms of organic molecules are atomized and ionized non-resonantly by femtosecond laser ablation. This observation is in contrast with that for the photoionization of cyclic aromatic hydrocarbons by femtosecond laser in the gas phase where little fragmentation has been observed. Crucial contribution of ablation plasma of solid sample to fs-SAI process is suggested. The ratio of natural abundance of stable isotopes contained in sample molecules is well reproduced, which confirms fs-SAI can be applied to the quantitative chemical analysis of isotope-labeled large organic molecules

  9. MR-Guided Laser Ablation of Osteoid Osteoma in an Open High-Field System (1.0 T)

    International Nuclear Information System (INIS)

    Streitparth, F.; Gebauer, B.; Melcher, I.; Schaser, K.; Philipp, C.; Rump, J.; Hamm, B.; Teichgraeber, U.

    2009-01-01

    Computed tomography is the standard imaging modality to minimize the extent of surgical or ablative treatment in osteoid osteomas. In the last 15 years, since a description of thermal ablation of osteoid osteomas was first published, this technique has become a treatment of choice for this tumor. We report the case of a 20-year-old man with an osteoid osteoma treated with laser ablation in an open high-field magnetic resonance imaging scanner (1.0 T). The tumor, located in the right fibula, was safely and effectively ablated under online monitoring. We describe the steps of this interventional procedure and discuss related innovative guidance and monitoring features and potential benefits compared with computed tomographic guidance.

  10. The Efficacy and Utilisation of Preoperative Magnetic Resonance Imaging in Robot-assisted Radical Prostatectomy: Does it Change the Surgical Dissection Plan? A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Hasan Hüseyin Tavukçu

    2015-06-01

    Full Text Available Purpose: We investigated the effect of prostate magnetic resonance imaging (MRI on the dissection plan of the neurovascular bundle and the oncological results of our patients who underwent robotic radical prostatectomy operation. Materials and Methods: We prospectively evaluated 30 consecutive patients, 15 of whom had prostate MRI before the operation, and 15 of whom did not. With the findings of MRI, the dissection plan was changed as intrafascial, interfascial, and extrafascial technique in the MRI group. Two groups were compared in terms of age, prostate-specific antigen (PSA, and Gleason scores (GSs. Surgical margin status was also checked with the final pathology. Results: There was no significant difference between the two groups in terms of age, PSA, biopsy GS, and final pathological GS. MRI changed the initial surgical plan to a nerve-sparing technique in 7 of the 15 patients. Only one patient in the MRI group had a positive surgical margin on bladder neck. MRI was confirmed as the primary tumour localisation in the final pathology in 93.3% of patients. Conclusion: Preoperative prostate MRI influenced the decision to carry out a nerve-sparing technique in 46% of the patients in our study; however, the change to a nerve-sparing technique did not seem to compromise the surgical margin positivity.

  11. Endovascular Radiofrequency Ablation for Varicose Veins

    Science.gov (United States)

    2011-01-01

    catheter) with ELT but mainly focused on peri-procedural outcomes such as pain, complications and recovery. Vein ablation rates were not evaluated in the trials, except for one small trial involving bilateral VV. Pain responses in patients undergoing ablation were extremely variable and up to 2 weeks, mean pain levels were significantly less with RFA than ELT ablation but differences were not significant at one month. Recovery, evaluated as return to usual activity or return to work, however, was similar in the treatment groups. Vein symptom and QOL improvements were improved in both groups but were significantly better in the RFA group than the ELT group at 2 weeks, but not at one month. Vein ablation rates were evaluated in several controlled clinical studies comparing the treatments between centers or within centers between individuals or over time. Comparisons in these studies were inconsistent with vein ablation rates for RFA reported to be similar to, higher than and lower than those with ELT. Economic Analysis RFA and surgical vein stripping, the main comparator reimbursed by the public system, are comparable in clinical benefits. Hence a cost-analysis was conducted to identify the differences in resources and costs between both procedures and a budgetary impact analysis (BIA) was conducted to project costs over a 5- year period in the province of Ontario. The target population of this economic analysis was patients with symptomatic varicose veins and the primary analytic perspective was that of the Ministry of Health and Long-Term Care. The average case cost (based on Ontario hospital costs and medical resources) for surgical vein stripping was estimated to be $1,799. In order to calculate a procedural cost for RFA it was assumed that the hospital cost and physician labour fees, excluding anaesthesia and surgical assistance, were the same as vein stripping surgery. The manufacturer also provided details on the generator with a capital cost of $27,500 and a lifespan

  12. Increase in Volume of Ablation Zones during Follow-up Is Highly Suggestive of Ablation Site Recurrence in Colorectal Liver Metastases Treated with Radiofrequency Ablation

    NARCIS (Netherlands)

    Kele, Petra G.; de Jong, Koert P.; van der Jagt, Eric J.

    Purpose: To test the hypothesis that volume changes of ablation zones (AZs) on successive computed tomography (CT) scans could predict ablation site recurrences (ASRs) in patients with colorectal liver metastases treated by radiofrequency (RF) ablation. Materials and Methods: RF ablation was

  13. Perioral Rejuvenation With Ablative Erbium Resurfacing.

    Science.gov (United States)

    Cohen, Joel L

    2015-11-01

    Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.

  14. Therapeutic efficacy of percutaneous radiofrequency ablation versus microwave ablation for hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available The aim of this study was to investigate the therapeutic efficacy of percutaneous radiofrequency (RF ablation versus microwave (MW ablation for hepatocellular carcinoma (HCC measuring ≤ 5 cm in greatest diameter. From January 2006 to December 2006, 78 patients had undergone RF ablation whereas 77 had undergone MW ablation. Complete ablation (CA, local tumour progression (LTP and distant recurrence (DR were compared. The overall survival curves were calculated with the Kaplan-Meier technique and compared with the log-rank test. The CA rate was 83.4% (78/93 for RF ablation and 86.7%(91/105 for MW ablation. The LTP rate was 11.8% (11/93 for RF ablation and 10.5% (11/105 for MW ablation. DR was found in 51 (65.4% in the RF ablation and 62 (80.5% in the MW ablation. There was no significant difference in the 1-, 3-, and 5-year overall survival rates (P = 0.780 and the 1-, 3-, and 5-year disease-free survival rates (P = 0.123 between RF and MW ablation. At subgroup analyses, for patients with tumors ≤ 3.0 cm, there was no significant difference in the 1-, 3-, and 5-year overall survival rates (P = 0.067 and the corresponding disease-free survival rates(P = 0.849. For patients with tumor diameters of 3.1-5.0 cm, the 1-, 3-, and 5-year overall survival rates were 87.1%, 61.3%, and 40.1% for RF ablation and 85.4%, 36.6%, and 22% for MW ablation, with no significant difference (P = 0.068. The corresponding disease-free survival rates were 74.2%, 54.8%, and 45.2% for the RF ablation group and 53.3%, 26.8%, and 17.1% for the MW ablation group. The disease-free survival curve for the RF ablation group was significantly better than that for the MW ablation group (P = 0.018. RF ablation and MW ablation are both effective methods in treating hepatocellular carcinomas, with no significant differences in CA, LTP, DR, and overall survival.

  15. Gallbladder ablation by radiologic intervention

    International Nuclear Information System (INIS)

    Becker, C.D.; Quenville, N.F.; Burhenne, H.J.

    1988-01-01

    Thirty pigs underwent cystic duct occlusion by means of transcatheter endoluminal bipolar radiofrequency electrocoagulation under fluoroscopic guidance. Twenty animals subsequently underwent gallbladder ablation with alcohol and sotradecol; ten animals served as controls. Serial histologic blocking of the common bile duct, cystic duct, and gallbladder in all animals revealed no adverse effects of the sclerosants on the bile ducts or the structures adjacent to the gallbladder. The combination of 95% alcohol plus 3% sotradecol resulted in necrosis of the gallbladder mucosa within 2 weeks (two of two animals) and complete eradication of the mucosa and fibrotic obliteration of the gallbladder lumen within 8 weeks (six of eight animals)

  16. Laser assisted removal of fixed contamination from metallic substrate

    International Nuclear Information System (INIS)

    Kumar, Aniruddha; Prasad, Manisha; Prakash, Tej; Shail, Shailini; Bhatt, R.B.; Behere, P.G.; Mohd Afzal; Kumar, Arun; Biswas, D.J.

    2015-01-01

    A single mode pulsed fiber laser was used to remove fixed contamination from stainless steel substrate by ablation. Samples were simulated by electro-deposition technique with 232 U as the test contaminant. Laser power, repetition rate, laser beam scanning speed and number of passes were optimised to obtain the desired ablation depth in the substrate. Ablation depth varying between few microns to few hundreds of microns could be achieved through careful control of these processing parameters. The absence of any activity in laser treated samples provided experimental signature of the efficacy of the laser assisted removal of fixed contamination. (author)

  17. Synthesis and characterization of a novel laser ablation sensitive triazene incorporated epoxy resin

    KAUST Repository

    Patole, Archana S.

    2014-01-01

    New triazene monomer was synthesized and further employed as a crosslinking agent partner with epoxy matrix using ethyl methyl imidazole as a curing agent in order to investigate the effect of triazene moieties on polymeric properties for laser ablation application. The synthesized triazene monomer was characterized by analytical and spectroscopic methods, while the surface morphology of resist after laser ablation was visualized by optical laser scanning images and scanning electron microscopy. Thermogravimetrical investigations indicate the loss of nitrogen being the initial thermal decomposition step and exhibit sufficient stabilities for the requirements for laser ablation application. Fourier transform infra-red, nuclear magnetic resonance, and gas chromatography analyses showed the successful synthesis of triazene. The ablation results from the optical laser scanning images revealed that the etching depth could be controlled by varying the concentration of triazene monomer in the formulation of epoxy. The shear strength analysis revealed that that the shear strength increased with increasing the amount of triazene in the formulation of direct ablation sensitive resist. © 2014 The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht.

  18. Single-pulse and burst-mode ablation of gold films measured by quartz crystal microbalance

    Science.gov (United States)

    Andrusyak, Oleksiy G.; Bubelnik, Matthew; Mares, Jeremy; McGovern, Theresa; Siders, Craig W.

    2005-02-01

    Femtosecond ablation has several distinct advantages: the threshold energy fluence for the onset of damage and ablation is orders of magnitude less than for traditional nanosecond laser machining, and by virtue of the rapid material removal of approximately an optical penetration depth per pulse, femtosecond machined cuts can be cleaner and more precise than those made with traditional nanosecond or longer pulse lasers. However, in many materials of interest, especially metals, this limits ablation rates to 10-100 nm/pulse. We present the results of using multiple pulse bursts to significantly increase the per-burst ablation rate compared to a single pulse with the same integrated energy, while keeping the peak intensity of each individual pulse below the air ionization limit. Femtosecond ablation with pulses centered at 800-nm having integrated energy of up to 30 mJ per pulse incident upon thin gold films was measured via resonance frequency shifts in a gold-electrode-coated quartz-crystal oscillator. Measurements were performed using Michelson-interferometer-based burst generators, with up to 2 ns pulse separations, as well as pulse shaping by programmable acousto-optic dispersive filter (Dazzler from FastLite) with up to 2 ps pulse separations.

  19. Hyperkalaemia after radiofrequency ablation of hepatocellular carcinoma

    NARCIS (Netherlands)

    Verhoevena, BH; Haagsma, EB; Appeltans, BMG; Slooff, MJH; de Jong, KP

    Radiofrequency ablation of liver tumours is a useful therapy for otherwise unresectable tumours. The complication rate is said to be low. In this case report we describe hyperkalaemia after radiofrequency ablation of a hepatocellular carcinoma in a patient with end-stage renal insufficiency. (C)

  20. Testing and evaluation of light ablation decontamination

    International Nuclear Information System (INIS)

    Demmer, R.L.; Ferguson, R.L.

    1994-10-01

    This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment

  1. Ablative Laser Propulsion: An Update, Part I

    International Nuclear Information System (INIS)

    Pakhomov, Andrew V.; Cohen, Timothy; Lin Jun; Thompson, M. Shane; Herren, Kenneth A.

    2004-01-01

    This paper presents an updated review of studies on Ablative Laser Propulsion conducted by the Laser Propulsion Group (LPG) at the University of Alabama in Huntsville. In particular, we describe the newest results of our experimental study of specific impulses and coupling coefficients achieved by double-pulsed ablation of graphite, aluminum, copper and lead targets

  2. The atrial fibrillation ablation pilot study

    DEFF Research Database (Denmark)

    Arbelo, Elena; Brugada, Josep; Hindricks, Gerhard

    2014-01-01

    AIMS: The Atrial Fibrillation Ablation Pilot Study is a prospective registry designed to describe the clinical epidemiology of patients undergoing an atrial fibrillation (AFib) ablation, and the diagnostic/therapeutic processes applied across Europe. The aims of the 1-year follow-up were to analyse...... was achieved in 40.7% of patients (43.7% in paroxysmal AF; 30.2% in persistent AF; 36.7% in long-lasting persistent AF). A second ablation was required in 18% of the cases and 43.4% were under antiarrhythmic treatment. Thirty-three patients (2.5%) suffered an adverse event, 272 (21%) experienced a left atrial...... tachycardia, and 4 patients died (1 haemorrhagic stroke, 1 ventricular fibrillation in a patient with ischaemic heart disease, 1 cancer, and 1 of unknown cause). CONCLUSION: The AFib Ablation Pilot Study provided crucial information on the epidemiology, management, and outcomes of catheter ablation of AFib...

  3. Advances in laser ablation of materials

    International Nuclear Information System (INIS)

    Singh, R.K.; Lowndes, D.H.; Chrisey, D.B.; Fogarassy, E.; Narayan, J.

    1998-01-01

    The symposium, Advances in Laser Ablation of Materials, was held at the 1998 MRS Spring Meeting in San Francisco, California. The papers in this symposium illustrate the advances in pulsed laser ablation for a wide variety of applications involving semiconductors, superconductors, metals, ceramics, and polymers. In particular, advances in the deposition of oxides and related materials are featured. Papers dealing with both fundamentals and the applications of laser ablation are presented. Topical areas include: fundamentals of ablation and growth; in situ diagnostics and nanoscale synthesis advances in laser ablation techniques; laser surface processing; pulsed laser deposition of ferroelectric, magnetic, superconducting and optoelectronic thin films; and pulsed laser deposition of carbon-based and polymeric materials. Sixty papers have been processed separately for inclusion on the data base

  4. A framework for continuous target tracking during MR-guided high intensity focused ultrasound thermal ablations in the abdomen

    NARCIS (Netherlands)

    Zachiu, Cornel; Denis de Senneville, Baudouin; Dmitriev, Ivan D.; Moonen, Chrit T.W.; Ries, Mario

    2017-01-01

    Background: During lengthy magnetic resonance-guided high intensity focused ultrasound (MRg-HIFU) thermal ablations in abdominal organs, the therapeutic work-flow is frequently hampered by various types of physiological motion occurring at different time-scales. If left un-addressed this can lead to

  5. Catheter ablation of epicardial ventricular tachycardia

    Directory of Open Access Journals (Sweden)

    Takumi Yamada, MD, PhD

    2014-08-01

    Full Text Available Ventricular tachycardias (VTs can usually be treated by endocardial catheter ablation. However, some VTs can arise from the epicardial surface, and their substrate can be altered only by epicardial catheter ablation. There are two approaches to epicardial catheter ablation: transvenous and transthoracic. The transvenous approach through the coronary venous system (CVS has been commonly used because it is easily accessible. However, this approach may be limited by the distribution of the CVS and insufficient radiofrequency energy delivery. Transthoracic epicardial catheter ablation has been developed to overcome these limitations of the transvenous approach. It is a useful supplemental or even preferred strategy to eliminate epicardial VTs in the electrophysiology laboratory. This technique has been applied for scar-related VTs secondary to often non-ischemic cardiomyopathy and sometimes ischemic cardiomyopathy, and idiopathic VTs as the epicardial substrates of these VTs have become increasingly recognized. When endocardial ablation and epicardial ablation through the CVS are unsuccessful, transthoracic epicardial ablation should be the next option. Intrapericardial access is usually obtained through a subxiphoidal pericardial puncture. This approach might not be possible in patients with pericardial adhesions caused by prior cardiac surgery or pericarditis. In such cases, a hybrid procedure involving surgical access with a subxiphoid pericardial window and a limited anterior or lateral thoracotomy might be a feasible and safe method of performing an epicardial catheter ablation in the electrophysiology laboratory. Potential complications associated with this technique include bleeding and collateral damage to the coronary arteries and phrenic nerve. Although the risk of these complications is low, electrophysiologists who attempt epicardial catheter ablation should know the complications associated with this technique, how to minimize their

  6. Influences of residual oxygen impurities, cubic indium oxide grains and indium oxy-nitride alloy grains in hexagonal InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yodo, T.; Nakamura, T.; Kouyama, T.; Harada, Y.

    2005-01-01

    We investigated the influences of residual oxygen (O) impurities, cubic indium oxide (β-In 2 O 3 ) grains and indium oxy-nitride (InON) alloy grains in 200 nm-thick hexagonal (α)-InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy. Although β-In 2 O 3 grains with wide band-gap energy were formed in In film by N 2 annealing, they were not easily formed in N 2 -annealed InN films. Even if they were not detected in N 2 -annealed InN films, the as-grown films still contained residual O impurities with concentrations of less than 0.5% ([O]≤0.5%). Although [O]∝1% could be estimated by investigating In 2 O 3 grains formed in N 2 -annealed InN films, [O]≤0.5% could not be measured by it. However, we found that they can be qualitatively measured by investigating In 2 O 3 grains formed by H 2 annealing with higher reactivity with InN and O 2 , using X-ray diffraction and PL spectroscopy. In this paper, we discuss the formation mechanism of InON alloy grains in InN films. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report.

    Science.gov (United States)

    Oddo, Silvia; Balestra, Margherita; Vera, Lara; Giusti, Massimo

    2018-05-11

    Radiofrequency ablation and laser ablation are safe and effective techniques for reducing thyroid nodule volume, neck symptoms, and cosmetic complaints. Therapeutic success is defined as a nodule reduction > 50% between 6 and 12 months after the procedure, but a percentage of nodules inexplicably do not respond to thermal ablation. We describe the case of a young Caucasian woman with a solid benign thyroid nodule who refused surgery and who had undergone radiofrequency ablation in 2013. The nodule did not respond in terms of either volume reduction or improvement in neck symptoms. After 2 years, given the patient's continued refusal of thyroidectomy, we proposed laser ablation. The nodule displayed a significant volume reduction (- 50% from radiofrequency ablation baseline volume, - 57% from laser ablation baseline), and the patient reported a significant improvement in neck symptoms (from 6/10 to 1/10 on a visual analogue scale). We conjecture that some benign thyroid nodules may be intrinsically resistant to necrosis when one specific ablation technique is used, but may respond to another technique. To the best of our knowledge, this is the first description of the effect of performing a different percutaneous ablation technique in a nodule that does not respond to radiofrequency ablation.

  8. Biliary peritonitis after radiofrequency ablation diagnosed by gadoxetic acid-enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Akihiro; Isoda, Hiroyoshi; Togashi, Kaori [Dept. of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto (Japan); Koyama, Takashi; Todo, Giro; Osaki, Yukio [Osaka Red Cross Hospital, Osaka (Japan)

    2013-12-15

    This study describes the first case of biliary peritonitis after radiofrequency ablation diagnosed by magnetic resonance (MR) imaging with gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA), a hepatocyte-specific MR imaging contrast agent. The image acquired 300 minutes after the administration of Gd-EOB-DTPA was useful to make a definite diagnosis and to identify the pathway of bile leakage. It is important to decide on the acquisition timing with consideration of the predicted location of bile duct injury.

  9. Factors associated with initial incomplete ablation for benign thyroid nodules after radiofrequency ablation: First results of CEUS evaluation.

    Science.gov (United States)

    Zhao, Chong-Ke; Xu, Hui-Xiong; Lu, Feng; Sun, Li-Ping; He, Ya-Ping; Guo, Le-Hang; Li, Xiao-Long; Bo, Xiao-Wan; Yue, Wen-Wen

    2017-01-01

    To assess the factors associated with initial incomplete ablation (ICA) after radiofrequency ablation for benign thyroid nodules (BTNs). 69 BTNs (mean volume 6.35±5.66 ml, range 1.00-25.04 ml) confirmed by fine-needle aspiration cytology (FNAC) in fifty-four patients were treated with ultrasound-guided percutaneous radiofrequency ablation (RFA) and the local treatment efficacy was immediately assessed by intra-procedural contrast-enhanced ultrasound (CEUS). The RFA was performed with a bipolar electrode (CelonProSurge 150-T20, output power: 20 W). CEUS was performed with a second generation contrast agent under low acoustic power (i.e. coded phase inversion, CPI). Characteristics of clinical factors, findings on conventional gray-scale ultrasound, color-Doppler ultrasound, and CEUS were evaluated preoperatively. Factors associated with initial ICA and initial ICA patterns on CEUS were assessed. Volume reduction ratios (VRRs) of ICA nodules were compared with those with complete ablation (CA). The RFA procedures were accomplished with a mean ablation time and mean total energy deposition of 11.13±3.39 min (range, 5.38-22.13 min) and 12612±4466 J (range, 6310-26130 J) respectively. CEUS detected initial ICA in 21 of 69 (30.8%) BTNs and 16 (76.2%) of the 21 BTNs with initial ICA achieved CA after additional RFA, leading to a final CA rate of 92.8% (64/69). The factors associated with initial ICA were predominantly solid nodule, nodule close to danger triangle area, nodule close to carotid artery, and peripheral blood flow on color-Doppler ultrasound (all P 50% at the 6-month follow-up, among which 7 nodules (10.1%) had VRRs of >90%. There were significant differences in VRRs between ICA nodules and CA nodules at the 3- and 6-month follow-up (all P ultrasound. CEUS assists quick treatment response evaluation and facilitates subsequent additional RFA and final CA of the nodules. Nodules with CA achieve a better outcome in terms of VRR in comparison with

  10. Ablation and optical third-order nonlinearities in Ag nanoparticles

    Directory of Open Access Journals (Sweden)

    Carlos Torres-Torres

    2010-11-01

    Full Text Available Carlos Torres-Torres1, Néstor Peréa-López2, Jorge Alejandro Reyes-Esqueda3, Luis Rodríguez-Fernández3, Alejandro Crespo-Sosa3, Juan Carlos Cheang-Wong3, Alicia Oliver31Section of Graduate Studies and Research, School of Mechanical and Electrical Engineering, National Polytechnic Institute, Zacatenco, Distrito Federal, Mexico; 2Laboratory for Nanoscience and Nanotechnology Research and Advanced Materials Department, IPICYT, Camino a la Presa San Jose, San Luis Potosi, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000, MéxicoAbstract: The optical damage associated with high intensity laser excitation of silver nanoparticles (NPs was studied. In order to investigate the mechanisms of optical nonlinearity of a nanocomposite and their relation with its ablation threshold, a high-purity silica sample implanted with Ag ions was exposed to different nanosecond and picosecond laser irradiations. The magnitude and sign of picosecond refractive and absorptive nonlinearities were measured near and far from the surface plasmon resonance (SPR of the Ag NPs with a self-diffraction technique. Saturable optical absorption and electronic polarization related to self-focusing were identified. Linear absorption is the main process involved in nanosecond laser ablation, but nonlinearities are important for ultrashort picosecond pulses when the absorptive process become significantly dependent on the irradiance. We estimated that near the resonance, picosecond intraband transitions allow an expanded distribution of energy among the NPs, in comparison to the energy distribution resulting in a case of far from resonance, when the most important absorption takes place in silica. We measured important differences in the ablation threshold and we estimated that the high selectiveness of the SPR of Ag NPs as well as their corresponding optical nonlinearities can be strongly significant for laser

  11. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  12. A spectral analysis of ablating meteors

    Science.gov (United States)

    Bloxam, K.; Campbell-Brown, M.

    2017-09-01

    Meteor ablation features in the spectral lines occurring at 394, 436, 520, and 589 nm were observed using a four-camera spectral system between September and December 2015. In conjunction with this multi-camera system the Canadian Automated Meteor Observatory was used to observe the orbital parameters and fragmentation of these meteors. In total, 95 light curves with complete data in the 520 and 589 nm filters were analyzed; some also had partial or complete data in the 394 nm filter, but no usable data was collected with the 436 nm filter. Of the 95 events, 70 exhibited some degree of differential ablation, and in all except 3 of these 70 events the 589 nm filter started or ended sooner compared with the 520 nm filter, indicating early ablation at the 589 nm wavelength. In the majority of cases the meteor showed evidence of fragmentation regardless of the type of ablation (differential or uniform). A surprising result was the lack of correlation found concerning the KB parameter, linked to meteoroid strength, and differential ablation. In addition, 22 shower-associated meteors were observed; Geminids showed mainly slight differential ablation, while Taurids were more likely to ablate uniformly.

  13. An experimental study of simultaneous ablation with dual probes in radiofrequency thermal ablation

    International Nuclear Information System (INIS)

    Jang, Il Soo; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Kim, Yong Soo; Kim, Young Sun; Heo, Jeong Nam

    2003-01-01

    To determine the differences between sequential ablation with a single probe and simultaneous ablation with dual probes. Using two 14-gauge expandable probes (nine internal prongs with 4-cm deployment), radiofrequency was applied sequentially (n=8) or simultaneously (n=8) to ten ex-vivo cow livers. Before starting ablation, two RF probes with an inter-probe space of 2 cm (n=8) or 3 cm (n=8) were inserted. In the sequential group, switching the connecting cable to an RF generator permitted ablation with the second probe just after ablation with the first probe had finished. In the simultaneous group, single ablation was performed only after connecting the shafts of both RF probes using a connection device. Each ablation lasted 7 minutes at a target temperature of 105-110 .deg. C. The size and shape of the ablated area, and total ablation time were then compared between the two groups. With 2-cm spacing, the group, mean length and overlapping width of ablated lesions were, respectively, 5.20 and 5.05 cm in the sequential group (n=4), and 5.81 and 5.65 cm in the simultaneous group (n=4). With 3-cm spacing, the corresponding figures were 4.99 and 5.60 cm in the sequential group (n=4), and 6.04 and 6.78 cm in the simultaneous group (n=4). With 2-cm spacing, the mean depth of the proximal waist was 0.58 cm in the sequential (group and 0.28 cm in the simultaneous group, while with 3-cm spacing, the corresponding figures were 1.65 and 1.48 cm. In neither group was there a distal waist. Mean total ablation time was 23.4 minutes in the sequential group and 14 minutes in the simultaneous group. In terms of ablation size and ablation time, simultaneous radiofrequency ablation with dual probes is superior to sequential ablation with a single probe. A simultaneous approach will enable an operator to overcome difficulty in probe repositioning during overlapping ablation, resulting in complete ablation with a successful safety margin

  14. Direct His bundle pacing post AVN ablation.

    Science.gov (United States)

    Lakshmanadoss, Umashankar; Aggarwal, Ashim; Huang, David T; Daubert, James P; Shah, Abrar

    2009-08-01

    Atrioventricular nodal (AVN) ablation with concomitant pacemaker implantation is one of the strategies that reduce symptoms in patients with atrial fibrillation (AF). However, the long-term adverse effects of right ventricular (RV) apical pacing have led to the search for alternating sites of pacing. Biventricular pacing produces a significant improvement in functional capacity over RV pacing in patients undergoing AVN ablation. Another alternative site for pacing is direct His bundle to reduce the adverse outcome of RV pacing. Here, we present a case of direct His bundle pacing using steerable lead delivery system in a patient with symptomatic paroxysmal AF with concurrent AVN ablation.

  15. TEM investigations of laser ablated particles

    International Nuclear Information System (INIS)

    Fliegel, D.; Dundas, S.; Kosler, J.; Klementova, M.

    2009-01-01

    Full text: Laser ablation inductively coupled plasma mass spectrometry suffers from fractionation effects hindering a non matrix matched calibration strategy. Different reasons for elemental fractionation that are related to the laser ablation, the transport and the vaporization in the plasma are discussed. One major question to be addressed linked to the vaporization yield in the ICP is in which of mineralogical phase the different ablated particle sizes enter the plasma. This contribution will investigate particles generated by a 213 nm laser from different samples such as minerals and alloys with respect to their chemical and phase compositions using high resolution TEM. (author)

  16. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    International Nuclear Information System (INIS)

    Baladi, Arash; Sarraf Mamoory, Rasoul

    2010-01-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  17. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Baladi, Arash [Materials Engineering Department, Tarbiat Modares University, Jalal Al Ahmad, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Sarraf Mamoory, Rasoul, E-mail: rsarrafm@modares.ac.ir [Materials Engineering Department, Tarbiat Modares University, Jalal Al Ahmad, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2010-10-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  18. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    Science.gov (United States)

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  19. MR-guided microwave ablation in hepatic tumours: initial results in clinical routine

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Ruediger; Rempp, Hansjoerg; Kessler, David-Emanuel; Weiss, Jakob; Nikolaou, Konstantin; Clasen, Stephan [Eberhard-Karls-University, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Pereira, Philippe L. [SLK-Kliniken Heilbronn GmbH, Department of Radiology, Minimally Invasive Therapies and Nuclear Medicine, Heilbronn (Germany)

    2017-04-15

    Evaluation of the technical success, patient safety and technical effectiveness of magnetic resonance (MR)-guided microwave ablation of hepatic malignancies. Institutional review board approval and informed patient consent were obtained. Fifteen patients (59.8 years ± 9.5) with 18 hepatic malignancies (7 hepatocellular carcinomas, 11 metastases) underwent MR-guided microwave ablation using a 1.5-T MR system. Mean tumour size was 15.4 mm ± 7.7 (7-37 mm). Technical success and ablation zone diameters were assessed by post-ablative MR imaging. Technique effectiveness was assessed after 1 month. Complications were classified according to the Common Terminology Criteria for Adverse Events (CTCAE). Mean follow-up was 5.8 months ± 2.6 (1-10 months). Technical success and technique effectiveness were achieved in all lesions. Lesions were treated using 2.5 ± 1.2 applicator positions. Mean energy and ablation duration per tumour were 37.6 kJ ± 21.7 (9-87 kJ) and 24.7 min ± 11.1 (7-49 min), respectively. Coagulation zone short- and long-axis diameters were 31.5 mm ± 10.5 (16-65 mm) and 52.7 mm ± 15.4 (27-94 mm), respectively. Two CTCAE-2-complications occurred (pneumothorax, pleural effusion). Seven patients developed new tumour manifestations in the untreated liver. Local tumour progression was not observed. Microwave ablation is feasible under near real-time MR guidance and provides effective treatment of hepatic malignancies in one session. (orig.)

  20. Femtosecond envelope of the high-harmonic emission from ablation plasmas

    International Nuclear Information System (INIS)

    Haessler, S; Gobert, O; Hergott, J-F; Lepetit, F; Perdrix, M; Carré, B; Salières, P; Bom, L B Elouga; Ozaki, T

    2012-01-01

    We characterize the temporal profile of the high-order harmonic emission from ablation plasma plumes using cross-correlations with the infrared (IR) laser beam provided by two-photon harmonic+IR ionization of rare gas atoms. We study both non-resonant plasmas (lead, gold and chrome) and resonant plasmas (indium and tin), i.e. plasmas presenting in the singly charged ions a strong radiative transition coinciding with a harmonic order. The cross-correlation traces are found to be very similar for all harmonic orders and all plasma targets. The recovered harmonic pulse durations are very similar to the driving laser, with a tendency towards being shorter, demonstrating that the emission is a directly laser-driven process even in the case of resonant harmonics. This provides a valuable input for theories describing resonant-harmonic emission and opens the perspective of a very high flux tabletop XUV source for applications. (paper)

  1. Thoracoscopic sympathectomy ganglia ablation in the management ...

    African Journals Online (AJOL)

    Thoracoscopic sympathectomy ganglia ablation in the management of palmer hyperhidrosis: A decade experience in a single institution. D Kravarusic, E Freud. Abstract. Background: Hyperhidrosis can cause significant professional and social handicaps. Surgery is the preferred treatment modality for hyperhidrosis.

  2. Laser ablation in analytical chemistry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  3. Simple spherical ablative-implosion model

    International Nuclear Information System (INIS)

    Mayer, F.J.; Steele, J.T.; Larsen, J.T.

    1980-01-01

    A simple model of the ablative implosion of a high-aspect-ratio (shell radius to shell thickness ratio) spherical shell is described. The model is similar in spirit to Rosenbluth's snowplow model. The scaling of the implosion time was determined in terms of the ablation pressure and the shell parameters such as diameter, wall thickness, and shell density, and compared these to complete hydrodynamic code calculations. The energy transfer efficiency from ablation pressure to shell implosion kinetic energy was examined and found to be very efficient. It may be possible to attach a simple heat-transport calculation to our implosion model to describe the laser-driven ablation-implosion process. The model may be useful for determining other energy driven (e.g., ion beam) implosion scaling

  4. Endometrial ablation: normal appearance and complications.

    Science.gov (United States)

    Drylewicz, Monica R; Robinson, Kathryn; Siegel, Cary Lynn

    2018-03-14

    Global endometrial ablation is a commonly performed, minimally invasive technique aimed at improving/resolving abnormal uterine bleeding and menorrhagia in women. As non-resectoscopic techniques have come into existence, endometrial ablation performance continues to increase due to accessibility and decreased requirements for operating room time and advanced technical training. The increased utilization of this method translates into increased imaging of patients who have undergone the procedure. An understanding of the expected imaging appearances of endometrial ablation using different modalities is important for the abdominal radiologist. In addition, the frequent usage of the technique naturally comes with complications requiring appropriate imaging work-up. We review the expected appearance of the post-endometrial ablated uterus on multiple imaging modalities and demonstrate the more common and rare complications seen in the immediate post-procedural time period and remotely.

  5. Microwave Tissue Ablation: Biophysics, Technology and Applications

    Science.gov (United States)

    2010-01-01

    Microwave ablation is an emerging treatment option for many cancers, cardiac arrhythmias and other medical conditions. During treatment, microwaves are applied directly to tissues to produce rapid temperature elevations sufficient to produce immediate coagulative necrosis. The engineering design criteria for each application differ, with individual consideration for factors such as desired ablation zone size, treatment duration, and procedural invasiveness. Recent technological developments in applicator cooling, power control and system optimization for specific applications promise to increase the utilization of microwave ablation in the future. This article will review the basic biophysics of microwave tissue heating, provide an overview of the design and operation of current equipment, and outline areas for future research for microwave ablation. PMID:21175404

  6. Selective Laser Ablation and Melting, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project Advratech will develop a new additive manufacturing (AM) process called Selective Laser Ablation and Melting (SLAM). The key innovation in this...

  7. Vehicle type affects filling of fractional laser-ablated channels imaged by optical coherence tomography

    DEFF Research Database (Denmark)

    Olesen, Uffe Høgh; Mogensen, Mette; Haedersdal, Merete

    2017-01-01

    Ablative fractional laser (AFXL) is an emerging method that enhances topical drug delivery. Penetrating the skin in microscopic, vertical channels, termed microscopic treatment zones (MTZs), the fractional technique circumvents the skin barrier and allows increased uptake of topically applied dru...... was overall greater for more superficial MTZs. In conclusion, vehicle type affects filling of MTZs, which may be of importance for AFXL-assisted drug delivery....

  8. Diagnostics of laser ablated plasma plumes

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2004-01-01

    The effect of an ambient gas on the expansion dynamics of laser ablated plasmas has been studied for two systems by exploiting different diagnostic techniques. First, the dynamics of a MgB2 laser produced plasma plume in an Ar atmosphere has been investigated by space-and time-resolved optical...... of the laser ablated plasma plume propagation in a background gas. (C) 2003 Elsevier B.V All rights reserved....

  9. ROLE OF RADIOFREQUENCY ABLATION IN ADENOMA SEBACEUM

    Directory of Open Access Journals (Sweden)

    Ch. Madh

    2016-03-01

    Full Text Available Adenoma sebaceum, pathognomonic of tuberous sclerosis, are tiny angiofibromas which commonly occur over central part of face. Recurrence after treatment is common and hence a need for inexpensive, safe and efficient treatment is required. Radiofrequency ablation is a safe and an economical procedure and has been known to cause less scarring with good aesthetic results compared to other ablative methods such as electrocautery.

  10. Micrometeoroid ablation simulated in the laboratory

    Science.gov (United States)

    Sternovsky, Zoltan; Thomas, Evan W.; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Munsat, Tobin L.; Plane, John M. C.

    2016-04-01

    A facility is developed to simulate the ablation of micrometeoroids in laboratory conditions, which also allows measuring the ionization probability of the ablated material. An electrostatic dust accelerator is used to generate iron and meteoric analog particles with velocities 10-50 km/s. The particles are then introduced into a cell filled with nitrogen, air or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where the partial or complete ablation of the particle occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path, allowing thus the study of the temporal resolution of the process. A simple ablation model is used to match the observations. For completely ablated particles the total collected charge directly yields the ionization efficiency for. The measurements using iron particles in N2 and air are in relatively good agreement with earlier data. The measurements with CO2 and He gases, however, are significantly different from the expectations.

  11. Laser ablation of microparticles for nanostructure generation

    International Nuclear Information System (INIS)

    Waraich, Palneet Singh; Tan, Bo; Venkatakrishnan, Krishnan

    2011-01-01

    The process of laser ablation of microparticles has been shown to generate nanoparticles from microparticles; but the generation of nanoparticle networks from microparticles has never been reported before. We report a unique approach for the generation of nanoparticle networks through ablation of microparticles. Using this approach, two samples containing microparticles of lead oxide (Pb 3 O 4 ) and nickel oxide (NiO), respectively, were ablated under ambient conditions using a femtosecond laser operating in the MHz repetition rate regime. Nanoparticle networks with particle diameter ranging from 60 to 90 nm were obtained by ablation of microparticles without use of any specialized equipment, catalysts or external stimulants. The formation of finer nanoparticle networks has been explained by considering the low pressure region created by the shockwave, causing rapid condensation of microparticles into finer nanoparticles. A comparison between the nanostructures generated by ablating microparticle and those by ablating bulk substrate was carried out; and a considerable reduction in size and narrowed size distribution was observed. Our nanostructure fabrication technique will be a unique process for nanoparticle network generation from a vast array of materials.

  12. Spin density projection-assisted R2 magnetic resonance imaging of the liver in the management of body iron stores in patients receiving multiple red blood cell transfusions: an audit and retrospective study in South Australia.

    Science.gov (United States)

    Brown, G C; Patton, W N; Tapp, H E; Taylor, D J; St Pierre, T G

    2012-09-01

    To assess the impact of non-invasive monitoring of liver iron concentration (LIC) on management of body iron stores in patients receiving multiple blood transfusions. A retrospective audit was conducted on clinical data from 40 consecutive subjects with haemolytic anaemias or ineffective haematopoiesis who had been monitored non-invasively for LIC over a period of at least 1 year. LIC was measured with spin density projection-assisted proton transverse relaxation rate-magnetic resonance imaging. Nineteen clinical decisions were explicitly documented in the case notes as being based on LIC results. Decisions comprised initiation of chelation therapy, increasing chelator dose, decreasing chelator dose and change of mode of delivery of deferioxamine from subcutaneous to intravenous. The geometrical mean LIC for the cohort dropped significantly (P= 0.008) from 6.8 mg Fe/g dry tissue at initial measurement to 4.8 mg Fe/g dry tissue at final measurement. The proportion of subjects with LIC in the range associated with greatly increased risk of cardiac disease and death (>15 mg Fe/g dry tissue) dropped significantly (P= 0.01) from 14 of 40 subjects at initial measurement to 5 of 40 subjects at final measurement. No significant changes in the geometrical mean of serum ferritin or the proportion of subjects with serum ferritin above 2500 or 1500 µg/L were observed. The data are consistent with previous observations that introduction of non-invasive monitoring of LIC can contribute to a decreased body iron burden through improved clinical decision making and improved feedback to patients and hence improved adherence to chelation therapy.

  13. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    1977-03-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. While the existence of sideband resonances of the main betatron oscillation frequencies has been previously observed and analyzed, the resonances observed in SPEAR do not appear to be of the same variety. Experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  14. Snake resonances

    International Nuclear Information System (INIS)

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs

  15. Use of shear waves for diagnosis and ablation monitoring of prostate cancer: a feasibility study

    International Nuclear Information System (INIS)

    Gomez, A; Saffari, N; Rus, G

    2016-01-01

    Prostate cancer remains as a major healthcare issue. Limitations in current diagnosis and treatment monitoring techniques imply that there is still a need for improvements. The efficacy of prostate cancer diagnosis is still low, generating under and over diagnoses. High intensity focused ultrasound ablation is an emerging treatment modality, which enables the noninvasive ablation of pathogenic tissue. Clinical trials are being carried out to evaluate its longterm efficacy as a focal treatment for prostate cancer. Successful treatment of prostate cancer using non-invasive modalities is critically dependent on accurate diagnostic means and is greatly benefited by a real-time monitoring system. While magnetic resonance imaging remains the gold standard for prostate imaging, its wider implementation for prostate cancer diagnosis remains prohibitively expensive. Conventional ultrasound is currently limited to guiding biopsy. Elastography techniques are emerging as a promising real-time imaging method, as cancer nodules are usually stiffer than adjacent healthy prostatic tissue. In this paper, a new transurethral approach is proposed, using shear waves for diagnosis and ablation monitoring of prostate cancer. A finite-difference time domain model is developed for studying the feasibility of the method, and an inverse problem technique based on genetic algorithms is proposed for reconstructing the location, size and stiffness parameters of the tumour. Preliminary results indicate that the use of shear waves for diagnosis and monitoring ablation of prostate cancer is feasible. (paper)

  16. Persistent Visual Aura following Catheter Ablation in a Patient with WPW Syndrome

    Directory of Open Access Journals (Sweden)

    Shinichi Koyama

    2007-01-01

    Full Text Available We report a patient who has had persistent visual disturbances since she underwent catheter ablation to treat her Wolff-Parkinson-White (WPW syndrome. We examined her visual symptoms carefully and quantitatively by means of our newly developed method combining image-processing and psychophysics. We first simulated the patient’s visual symptoms using image-processing techniques. Since the simulation indicated that she would be very sensitive to the edges of the visual stimuli, we evaluated her sensitivity to the edges using psychophysics. The results indicated that she was hypersensitive to the clear-cut edges of the visual stimuli. Her visual symptoms were very similar to those of visual aura of migraine, rather than those of photosensitive epilepsy. Magnetic resonance imaging (MRI and single photon emission computed tomography (SPECT, electroenchepalogram (EEG, and visual-evoked potentials (VEP in the patient were normal. No abnormalities in her fundus, visual field, or electroretinogram were found, either. Transesophageal echocardiography with bubble study indicated that she had a preexisting right-to-left shunt. We hypothesize that visual aura of migraine was triggered and made persistent by the catheter ablation in this patient. Although the relationship between migraine, catheter ablation, and right-to-left shunts is unknown, previous studies on the transcatheter closure of patent foramen ovale suggest a possible link between them. Catheter ablation in patients with migraine and preexisting shunts may lead to exacerbations in migraine symptoms.

  17. Radiofrequency ablation of chondroblastoma: procedure technique, clinical and MR imaging follow up of four cases

    Energy Technology Data Exchange (ETDEWEB)

    Christie-Large, M.; Evans, N.; Davies, A.M.; James, S.L.J. [Royal Orthopaedic Hospital Foundation Trust, Department of Radiology, Birmingham (United Kingdom)

    2008-11-15

    The aim of this study is to describe the procedure technique, clinical and imaging outcomes of patients treated with radiofrequency ablation for chondroblastoma. Four patients (female/male, 3:1; mean age, 13 years; age range; 9-16 years) underwent the procedure. All had pre-operative magnetic resonance imaging (MRI) and symptomatic, biopsy-proven chondroblastomas (two proximal femur, two proximal tibia). The lesion size ranged from 1.5 to 2.5 cm in maximal dimension (mean size, 1.8 cm). Bone access was gained with a Bonopty biopsy needle system (mean number of radiofrequency needle placements, 5; mean ablation time, 31 min). Clinical and MRI follow-up was available in all cases (mean, 12.25 months; range, 5-18 months). All patients reported resolution of symptoms at 2-6 weeks post ablation. At their most recent clinical follow-up, three patients remained completely asymptomatic with full return to normal activities and one patient had minor local discomfort (different pain pattern) that was not limiting activity. All four patients' follow-up MRI studies demonstrated resolution of the oedema pattern around the lesion and temporal evolution of the internal signal characteristics with fatty replacement. Radiofrequency ablation for chondroblastoma provides an alternative to surgical curettage, and we have demonstrated both a clinical improvement in symptoms and the follow-up MRI appearances. (orig.)

  18. Percutaneous Microwave Ablation of Renal Angiomyolipomas

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, Mircea, E-mail: mcristescu@uwhealth.org [University of Wisconsin, Department of Radiology (United States); Abel, E. Jason, E-mail: abel@urology.wisc.edu [University of Wisconsin, Department of Urology (United States); Wells, Shane, E-mail: swells@uwhealth.org; Ziemlewicz, Timothy J., E-mail: tziemlewicz@uwhealth.org [University of Wisconsin, Department of Radiology (United States); Hedican, Sean P., E-mail: hedican@surgery.wisc.edu [University of Wisconsin, Department of Urology (United States); Lubner, Megan G., E-mail: mlubner@uwhealth.org; Hinshaw, J. Louis, E-mail: jhinshaw@uwhealth.org; Brace, Christopher L., E-mail: cbrace@uwhealth.org; Lee, Fred T., E-mail: flee@uwhealth.org [University of Wisconsin, Department of Radiology (United States)

    2016-03-15

    PurposeTo evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML).Materials and MethodsFrom January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4–4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits.ResultsAll ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60–70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3–8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8 % (3.4–3.3 cm) and 1.7 % (27.5–26.3 cm{sup 3}), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9–47) demonstrated mean tumor diameter and volume decreases of 29 % (3.4–2.4 cm) and 47 % (27.5–12.1 cm{sup 3}), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation.ConclusionOur early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.

  19. Effect of ablatant composition on the ablation of a fuelling pellet

    International Nuclear Information System (INIS)

    Chang, C.T.; Thomsen, K.; Piret, S.

    1988-01-01

    The single species neutral-shielding model for the ablation of a hydrogenic pellet is extended by considering the ablatant as a mixture of four species: molecular and atomic hydrogen, protons and electrons. Compared with the results of the frozen flow, (i.e. the single species molecular hydrogen gas model), results of the analysis showed that the presence of dissociation and ionization effects caused a marked difference of the ablatant state. The attenuations of the incoming electron energy and energy flux, however, are very much similar irrespective of whether the ablated flow is in a frozen or an equilibrium state. The scaling law of the pellet ablation rate with respect to the plasma state of Te, ne and the pellet radius remains the same; the ablation rate is reduced by approximately 15%. To examine the possible existence of a spherical shell around the pellet where most of the incoming electron energy is absorbed, acodmparison is made between the local electron collisional mean free path and the electron Larmor radius. A critical field at the ionization radius is evaluated. An effective spherical energyabsorbing region exists when the local field strength is below the critical value. For a plasma state of low Te and ne, (where the ablatant is hardly ionized), and for one near the thermonuclear condition (where a highly dense ablatant exists near the pellet), the effective energy absorption region is nearly spherical. 20 refs. (author)

  20. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    Science.gov (United States)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  1. Radiofrequency Ablation with a New Perfused-Cooled Electrode Using a Single Pump: An Experimental Study in Ex Vivo Bovine Liver

    International Nuclear Information System (INIS)

    Kim, Seung Kwon; Seo, Jung Wook

    2005-01-01

    The purpose of this study was to assess the efficacy of a new perfused-cooled electrode that uses a single pump for creating a large ablation zone in explanted bovine liver. This was done by comparing with the radiofrequency (RF) ablation zones that were created with a monopolar cooled electrode to the RF ablation zones that were created by the new perfused-cooled electrode. We developed a new perfused-cooled electrode that uses a single pump by modifying a 17-gauge cooled electrode (Radionics) with a 2.5-cm outer metallic sheath (15-gauge) in order to allow use of the internal cooling water (5.85 % hypertonic saline) for the infused saline. Thirty ablation zones were created in explanted bovine livers (12-min ablation cycle; pulsed technique; 2000 mA, maximum) with three different regimens: group A, RF ablation with the 17-gauge cooled electrode; group B, RF ablation with the 15-gauge cooled electrode; group C, RF ablation with the perfused-cooled electrode. T2-weighted magnetic resonance (MR) imaging was obtained immediately after RF ablation for calculating volumes of the ablation zone. Following MR imaging, the ablation zones were excised and measured for transverse diameters and vertical diameters. The transverse diameter, vertical diameter, and the calculated volumes of the ablation zones on MR imaging were compared among the groups. Ablation zones created with the perfused-cooled electrode (group C) were significantly larger than those created with the 17-gauge cooled electrode (group A) and the 15-gauge cooled electrode (group B) according to the transverse diameter and vertical diameter on the gross specimens (p 3 in group A, 28.9 ± 5.7 cm 3 in group B, and 80.0 ± 34 cm 3 in group C, respectively. A new perfused-cooled electrode using a single pump could efficiently increase the size of the ablation zone in liver compared with a monopolar cooled electrode, and this was due to its simultaneous use of internal cooling and saline infusion

  2. Radiofrequency thermal ablation of malignant hepatic tumors: post-ablation syndrome

    International Nuclear Information System (INIS)

    Choi, Jung Bin; Rhim, Hyunchul; Kim, Yongsoo; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Lee, Seung Ro

    2000-01-01

    To evaluate post-ablation syndrome after radiofrequency thermal ablation of malignant hepatic tumors. Forty-two patients with primary (n=3D29) or secondary (n=3D13) hepatic tumors underwent radiofrequency thermal ablation. A total of 65 nodules ranging in size from 1.1 to 5.0 (mean, 3.1) cm were treated percutaneously using a 50W RF generator with 15G expandable needle electrodes. We retrospectively evaluated the spectrum of post-ablation syndrome including pain, fever (≥3D 38 deg C), nausea, vomiting, right shoulder pain, and chest discomfort according to frequency, intensity and duration, and the findings were correlated with tumor location and number of ablations. We also evaluated changes in pre-/post-ablation serum aminotransferase (ALT/AST) and prothrombin time, and correlated these findings with the number of ablations. Post-ablation syndrome was noted in 29 of 42 patients (69.0%), and most symptoms improved with conservative treatment. The most important of these were abdominal plan (n=3D20, 47.6%), fever (n=3D8, 19.0%), and nausea (n=3D7, 16.7%), and four of 42 (9.5%) patients complained of severe pain. The abdominal pain lasted from 3 hours to 5.5 days (mean; 20.4 hours), the fever from 6 hours to 5 days (mean; 63.0 hours). And the nausea from 1 hours to 4 days (mean; 21.0 hours). Other symptoms were right shoulder pain (n=3D6, 14.3%), chest discomfort (n=3D3, 7.1%), and headache (n=3D3, 7.1%). Seventeen of 20 patients (85%) with abdominal pain had subcapsular tumor of the liver. There was significant correlation between pain, location of the tumor, and a number of ablations. After ablation, ALT/AST was elevated more than two-fold in 52.6%/73.7% of patients, respectively but there was no significant correlation with the number of ablation. Post-ablation syndrome is a frequent and tolerable post-procedural process after radiofrequency thermal ablation. The spectrum of this syndrome provides a useful guideline for the post-ablation management. (author)

  3. Radioiodine Remnant Ablation: A Critical Review

    International Nuclear Information System (INIS)

    Bal, Chandra Sekhar; Padhy, Ajit Kumar

    2015-01-01

    Radioiodine remnant ablation (RRA) is considered a safe and effective method for eliminating residual thyroid tissue, as well as microscopic disease if at all present in thyroid bed following thyroidectomy. The rationale of RRA is that in the absence of thyroid tissue, serum thyroglobulin (Tg) measurement can be used as an excellent tumor marker. Other considerations are like the presence of significant remnant thyroid tissue makes detection and treatment of nodal or distant metastases difficult. Rarely, microscopic disease in the thyroid bed if not ablated, in the future, could be a source of anaplastic transformation. On the other hand, microscopic tumor emboli in distant sites could be the cause of distant metastasis too. The ablation of remnant tissue would in all probability eliminate these theoretical risks. It may be noted that all these are unproven contentious issues except postablation serum Tg estimation that could be a good tumor marker for detecting early biochemical recurrence in long-term follow-up strategy. Radioactive iodine is administered as a form of “adjuvant therapy” for remnant ablation. There have been several reports with regard to the administered dose for remnant ablation. The first report of a prospective randomized clinical trial was published from India by a prospective randomized study conducted at the All India Institute of Medical Sciences, New Delhi in the year 1996. The study reported that increasing the empirical 131 I initial dose to more than 50 mCi results in plateauing of the dose-response curve and thus, conventional high-dose remnant ablation needs critical evaluation. Recently, two important studies were published: One from French group and the other from UK on a similar line. Interestingly, all three studies conducted in three different geographical regions of the world showed exactly similar conclusion. The new era of low-dose remnant ablation has taken a firm scientific footing across the continents

  4. Radiofrequency assisted pancreaticoduodenectomy for palliative surgical resection of locally advanced pancreatic adenocarcinoma.

    Science.gov (United States)

    Kumar, Jayant; Reccia, Isabella; Sodergren, Mikael H; Kusano, Tomokazu; Zanellato, Artur; Pai, Madhava; Spalding, Duncan; Zacharoulis, Dimitris; Habib, Nagy

    2018-03-20

    Despite careful patient selection and preoperative investigations curative resection rate (R0) in pancreaticoduodenectomy ranges from 15% to 87%. Here we describe a new palliative approach for pancreaticoduodenectomy using a radiofrequency energy device to ablate tumor in situ in patients undergoing R1/R2 resections for locally advanced pancreatic ductal adenocarcinoma where vascular reconstruction was not feasible. There was neither postoperative mortality nor significant morbidity. Each time the ablation lasted less than 15 minutes. Following radiofrequency ablation it was observed that the tumor remnant attached to the vessel had shrunk significantly. In four patients this allowed easier separation and dissection of the ablated tumor from the adherent vessel leading to R1 resection. In the other two patients, the ablated tumor did not separate from vessel due to true tumor invasion and patients had an R2 resection. The ablated remnant part of the tumor was left in situ. Whenever pancreaticoduodenectomy with R0 resection cannot be achieved, this new palliative procedure could be considered in order to facilitate resection and enable maximum destruction in remnant tumors. Six patients with suspected tumor infiltration and where vascular reconstruction was not warranted underwent radiofrequency-assisted pancreaticoduodenectomy for locally advanced pancreatic ductal adenocarcinoma. Radiofrequency was applied across the tumor vertically 5-10 mm from the edge of the mesenteric and portal veins. Following ablation, the duodenum and the head of pancreas were removed after knife excision along the ablated line. The remaining ablated tissue was left in situ attached to the vessel.

  5. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO2 laser.

    Science.gov (United States)

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2016-09-01

    Polyoxymethylene (POM) decomposes gradually as it is heated up by the irradiation of CO2 laser; the long-chain molecules of POM are broken into short chains, which leads to the lowering of the melting point and the critical temperature of the ablation products. When the product temperature is above the melting point, ablation comes up in the way of vaporization; when the product temperature is higher than the critical temperature, all liquid products are transformed into gas instantly and the ablation mechanism is changed. The laser fluence at which significant ablation is observed is defined as the ablation threshold, and the fluence corresponding to the ablation mechanism changing is denoted as the flyover threshold. In this paper, random pyrolysis is adopted to describe the pyrolytic decomposition of POM, and consequently, the components of the pyrolysis products under different pyrolysis rates are acquired. The Group Contribution method is used to count the thermodynamic properties of the pyrolysis products, and the melting point and the critical temperature of the product mixture are obtained by the Mixing Law. The Knudsen layer relationship is employed to evaluate the ablation mass removal when the product temperature is below the critical temperature. The gas dynamics conservation laws associated with the Jouguet condition are used to calculate the mass removal when the product temperature is higher than the critical temperature. Based on the model, a set of simulations for various laser intensities and lengths are carried out to generalize the relationships between the thresholds and the laser parameters. Besides the ablated mass areal density, which fits the experimental data quite well, the ablation temperature, pyrolysis rate, and product components are also discussed for a better understanding of the ablation mechanism of POM.

  6. Recurrences and fertility after endometrioma ablation in women with and without colorectal endometriosis: a prospective cohort study.

    Science.gov (United States)

    Roman, Horace; Quibel, Solène; Auber, Mathieu; Muszynski, Hélène; Huet, Emmanuel; Marpeau, Loïc; Tuech, Jean Jacques

    2015-03-01

    What are the recurrence and pregnancy rates in women managed for ovarian endometrioma by ablation using plasma energy with and without associated surgery for colorectal endometriosis? Concomitant management of colorectal endometriosis does not impact either risk of recurrences or probability of pregnancy in women managed for endometrioma ablation using plasma energy. No consensus exists on how best to manage patients presenting with ovarian endometriomas and colorectal endometriosis, in terms of impact on fertility preservation and recurrence rates. A prospective series of consecutive patients managed for ovarian endometriomas by ablation using plasma energy, over a period of 48 consecutive months. The study included patients with associated colorectal endometriosis (n = 52) and those who were free of colorectal localizations of the disease (n = 72). No women were lost to follow-up. The 124 women included in this study were managed for either unilateral or bilateral ovarian endometriomas using plasma energy at a university tertiary care center. Recurrences and pregnancy rate were compared in patients with and without colorectal endometriosis. The minimum length of follow-up was 1 year. Cyst recurrences were assessed using pelvic ultrasound and magnetic resonance imaging. Kaplan-Meier and actuarial life-table analysis were used to estimate the recurrence-free survival curve and the probability of pregnancy. The Cox model was used to assess independent predictive factors for recurrences. Pregnancy likelihood and independent predictors were estimated using a regression logistic model. Mean follow-up was 32 ± 18 months. Forty-eight patients (40.3%) were presumed infertile and attended an assisted reproductive techniques (ART) center. Eighteen patients presented with a recurrence (14.5%). Bilateral localization of endometriomas was the only factor independently related to an increased risk of recurrences [hazard ratio 3.3, 95% confidence interval (CI) 1.2-9.4]. Of the

  7. Efficacy of ablation at the anteroseptal line for the treatment of perimitral flutter

    Directory of Open Access Journals (Sweden)

    Bernard Abi-Saleh, MD, FACP, FACC, FHRS

    2015-12-01

    Conclusion: Ablation at the left atrial anteroseptal line is safe and efficacious for the treatment of PMF. Unlike ablation at the traditional mitral isthmus line, ablation at the left atrial anteroseptal line does not require ablation in the coronary sinus.

  8. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  9. Assistive Technology

    Science.gov (United States)

    ... Page Resize Text Printer Friendly Online Chat Assistive Technology Assistive technology (AT) is any service or tool that helps ... be difficult or impossible. For older adults, such technology may be a walker to improve mobility or ...

  10. Comparison of the Three NIF Ablators

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Clark, D. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haan, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yi, S. A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zylstra, A. B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weber, C. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Indirect drive implosion experiments on NIF have now been performed using three different ablator materials: glow discharge polymer (GDP) or CH, high density carbon (HDC, which we also refer to as diamond), and sputtered beryllium (Be). It has been appreciated for some time that each of these materials has specific advantages and disadvantages as an ICF ablator.[1-4] In light of experiments conducted on NIF in the last few years, how do these ablators compare? Given current understanding, is any ablator more or less likely to reach ignition on NIF? Has the understanding of their respective strengths and weaknesses changed since NIF experiments began? How are those strengths and weaknesses highlighted by implosion designs currently being tested or planned for testing soon? This document aims to address these questions by combining modern simulation results with a survey of the current experimental data base. More particularly, this document is meant to fulfill an L2 Milestone for FY17 to “Document our understanding of the relative advantages and disadvantages of CH, HDC, and Be designs.” Note that this document does not aim to recommend a down-selection of the current three ablator choices. It is intended only to gather and document the current understanding of the differences between these ablators and thereby inform the choices made in planning future implosion experiments. This document has two themes: (i) We report on a reanalysis project in which post-shot simulations were done on a common basis for layered shots using each ablator. This included data from keyholes, 2D ConA, and so forth, from each campaign, leading up to the layered shots. (“Keyholes” are shots dedicated to measuring the shock timing in a NIF target, as described in Ref. 5. “2DConAs” are backlit implosions in which the symmetry of the implosion is measured between about half and full convergence, as described in Ref. 6.) This set of common-basis postshot simulations is compared to

  11. Fracture in Phenolic Impregnated Carbon Ablator

    Science.gov (United States)

    Agrawal, Parul; Chavez-Garcia, Jose; Pham, John

    2013-01-01

    This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  12. Dynamic behaviors of laser ablated Si particles

    International Nuclear Information System (INIS)

    Ohyanagi, T.; Murakami, K.; Miyashita, A.; Yoda, O.

    1995-01-01

    The dynamics of laser-ablated Si particles produced by laser ablation have been investigated by time-and-space resolved X-ray absorption spectroscopy in a time scale ranging from 0 ns to 120 ns with a time resolution of 10 ns. Neutral and charged particles are observed through all X-ray absorption spectra. Assignments of transitions from 2s and 2p initial states to higher Rydberg states of Si atom and ions are achieved, and we experimentally determine the L II,III absorption edges of neutral Si atom (Si 0 ) and Si + , Si 2+ , Si 3+ and Si 4+ ions. The main ablated particles are found to be Si atom and Si ions in the initial stage of 0 ns to 120 ns. The relative amounts depend strongly on times and laser energy densities. We find that the spatial distributions of particles produced by laser ablation are changed with supersonic helium gas bombardment, but no cluster formation takes place. This suggests that a higher-density region of helium gas is formed at the top of the plume of ablated particles, and free expansion of particles is restrained by this helium cloud, and that it takes more than 120 ns to form Si clusters. (author)

  13. Assisted Living

    Science.gov (United States)

    ... it, too. Back to top What is the Cost for Assisted Living? Although assisted living costs less than nursing home ... Primarily, older persons or their families pay the cost of assisted living. Some health and long-term care insurance policies ...

  14. Ammonia-treated N-(1-naphthyl) ethylenediamine dihydrochloride as a novel matrix for rapid quantitative and qualitative determination of serum free fatty acids by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yaping [Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005 (China); Wang, Yanmin [Department of Clinical Laboratory, Heze Municipal Hospital, Shandong (China); Guo, Shuai; Guo, Yumei; Liu, Hui [Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005 (China); Li, Zhili, E-mail: lizhili@ibms.pumc.edu.cn [Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005 (China)

    2013-09-10

    Graphical abstract: -- Highlights: •A novel MALDI matrix for the detection of serum free fatty acids is ammonia-treated N-(1-naphthyl) ethylenediamine dihydrochloride. •Multiple point internal standard calibration curves were constructed for nine FFAs, respectively, with excellent correlation coefficients between 0.991 and 0.999. •The MALDI-MS approach was used to rapidly differentiate the patients with and without hyperglycemia and healthy controls. -- Abstract: The blood free fatty acids (FFAs), which provide energy to the cell and act as substrates in the synthesis of fats, lipoproteins, liposaccharides, and eicosanoids, involve in a number of important physiological processes. In the present study, matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS) with ammonia-treated N-(1-naphthyl) ethylenediamine dihydrochloride (ATNEDC) as a novel MALDI matrix in a negative ion mode was employed to directly quantify serum FFAs. Multiple point internal standard calibration curves between the concentration ratios of individual fatty acids to internal standard (IS, C{sub 17:0}) versus their corresponding intensity ratios were constructed for C{sub 14:0}, C{sub 16:1}, C{sub 16:0}, C{sub 18:0}, C{sub 18:1}, C{sub 18:2}, C{sub 18:3}, C{sub 20:4}, and C{sub 22:6}, respectively, in their mixture, with correlation coefficients between 0.991 and 0.999 and limits of detection (LODs) between 0.2 and 5.4 μM, along with the linear dynamic range of more than two orders of magnitude. The results indicate that the multiple point internal standard calibration could reduce the impact of ion suppression and improve quantification accuracy in the MALDI mode. The quantitative results of nine FFAs from 339 serum samples, including 161 healthy controls, 118 patients with hyperglycemia and 60 patients without hyperglycemia show that FFAs levels in hyperglycemic patient sera are significantly higher than those in healthy

  15. Ammonia-treated N-(1-naphthyl) ethylenediamine dihydrochloride as a novel matrix for rapid quantitative and qualitative determination of serum free fatty acids by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Zhang, Yaping; Wang, Yanmin; Guo, Shuai; Guo, Yumei; Liu, Hui; Li, Zhili

    2013-01-01

    Graphical abstract: -- Highlights: •A novel MALDI matrix for the detection of serum free fatty acids is ammonia-treated N-(1-naphthyl) ethylenediamine dihydrochloride. •Multiple point internal standard calibration curves were constructed for nine FFAs, respectively, with excellent correlation coefficients between 0.991 and 0.999. •The MALDI-MS approach was used to rapidly differentiate the patients with and without hyperglycemia and healthy controls. -- Abstract: The blood free fatty acids (FFAs), which provide energy to the cell and act as substrates in the synthesis of fats, lipoproteins, liposaccharides, and eicosanoids, involve in a number of important physiological processes. In the present study, matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS) with ammonia-treated N-(1-naphthyl) ethylenediamine dihydrochloride (ATNEDC) as a novel MALDI matrix in a negative ion mode was employed to directly quantify serum FFAs. Multiple point internal standard calibration curves between the concentration ratios of individual fatty acids to internal standard (IS, C 17:0 ) versus their corresponding intensity ratios were constructed for C 14:0 , C 16:1 , C 16:0 , C 18:0 , C 18:1 , C 18:2 , C 18:3 , C 20:4 , and C 22:6 , respectively, in their mixture, with correlation coefficients between 0.991 and 0.999 and limits of detection (LODs) between 0.2 and 5.4 μM, along with the linear dynamic range of more than two orders of magnitude. The results indicate that the multiple point internal standard calibration could reduce the impact of ion suppression and improve quantification accuracy in the MALDI mode. The quantitative results of nine FFAs from 339 serum samples, including 161 healthy controls, 118 patients with hyperglycemia and 60 patients without hyperglycemia show that FFAs levels in hyperglycemic patient sera are significantly higher than those in healthy controls and patients without

  16. Human Plasma N-glycosylation as Analyzed by Matrix-Assisted Laser Desorption/Ionization-Fourier Transform Ion Cyclotron Resonance-MS Associates with Markers of Inflammation and Metabolic Health*

    Science.gov (United States)

    Reiding, Karli R.; Ruhaak, L. Renee; Uh, Hae-Won; el Bouhaddani, Said; van den Akker, Erik B.; Plomp, Rosina; McDonnell, Liam A.; Houwing-Duistermaat, Jeanine J.; Slagboom, P. Eline; Beekman, Marian; Wuhrer, Manfred

    2017-01-01

    Glycosylation is an abundant co- and post-translational protein modification of importance to protein processing and activity. Although not template-defined, glycosylation does reflect the biological state of an organism and is a high-potential biomarker for disease and patient stratification. However, to interpret a complex but informative sample like the total plasma N-glycome, it is important to establish its baseline association with plasma protein levels and systemic processes. Thus far, large-scale studies (n >200) of the total plasma N-glycome have been performed with methods of chromatographic and electrophoretic separation, which, although being informative, are limited in resolving the structural complexity of plasma N-glycans. MS has the opportunity to contribute additional information on, among others, antennarity, sialylation, and the identity of high-mannose type species. Here, we have used matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR)-MS to study the total plasma N-glycome of 2144 healthy middle-aged individuals from the Leiden Longevity Study, to allow association analysis with markers of metabolic health and inflammation. To achieve this, N-glycans were enzymatically released from their protein backbones, labeled at the reducing end with 2-aminobenzoic acid, and following purification analyzed by negative ion mode intermediate pressure MALDI-FTICR-MS. In doing so, we achieved the relative quantification of 61 glycan compositions, ranging from Hex4HexNAc2 to Hex7HexNAc6dHex1Neu5Ac4, as well as that of 39 glycosylation traits derived thereof. Next to confirming known associations of glycosylation with age and sex by MALDI-FTICR-MS, we report novel associations with C-reactive protein (CRP), interleukin 6 (IL-6), body mass index (BMI), leptin, adiponectin, HDL cholesterol, triglycerides (TG), insulin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and smoking. Overall, the

  17. Human Plasma N-glycosylation as Analyzed by Matrix-Assisted Laser Desorption/Ionization-Fourier Transform Ion Cyclotron Resonance-MS Associates with Markers of Inflammation and Metabolic Health.

    Science.gov (United States)

    Reiding, Karli R; Ruhaak, L Renee; Uh, Hae-Won; El Bouhaddani, Said; van den Akker, Erik B; Plomp, Rosina; McDonnell, Liam A; Houwing-Duistermaat, Jeanine J; Slagboom, P Eline; Beekman, Marian; Wuhrer, Manfred

    2017-02-01

    Glycosylation is an abundant co- and post-translational protein modification of importance to protein processing and activity. Although not template-defined, glycosylation does reflect the biological state of an organism and is a high-potential biomarker for disease and patient stratification. However, to interpret a complex but informative sample like the total plasma N-glycome, it is important to establish its baseline association with plasma protein levels and systemic processes. Thus far, large-scale studies (n >200) of the total plasma N-glycome have been performed with methods of chromatographic and electrophoretic separation, which, although being informative, are limited in resolving the structural complexity of plasma N-glycans. MS has the opportunity to contribute additional information on, among others, antennarity, sialylation, and the identity of high-mannose type species.Here, we have used matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR)-MS to study the total plasma N-glycome of 2144 healthy middle-aged individuals from the Leiden Longevity Study, to allow association analysis with markers of metabolic health and inflammation. To achieve this, N-glycans were enzymatically released from their protein backbones, labeled at the reducing end with 2-aminobenzoic acid, and following purification analyzed by negative ion mode intermediate pressure MALDI-FTICR-MS. In doing so, we achieved the relative quantification of 61 glycan compositions, ranging from Hex 4 HexNAc 2 to Hex 7 HexNAc 6 dHex 1 Neu5Ac 4 , as well as that of 39 glycosylation traits derived thereof. Next to confirming known associations of glycosylation with age and sex by MALDI-FTICR-MS, we report novel associations with C-reactive protein (CRP), interleukin 6 (IL-6), body mass index (BMI), leptin, adiponectin, HDL cholesterol, triglycerides (TG), insulin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and smoking. Overall

  18. Role of Electrophysiological Study and Catheter Ablation for Recurrent Ventricular Tachycardia Complicating Myocarditis

    Directory of Open Access Journals (Sweden)

    Emanuele Cecchi

    2012-01-01

    Full Text Available Here we report the case of a 31-year-old man admitted to our hospital with echocardiografic and Cardiac Magnetic Resonance signs of myocarditis complicated by ventricular tachycardia, initially resolved with direct current shock. After the recurrence of ventricular tachycardia the patient was submitted to electrophysiological study revealing a re-entrant circuit at the level of the medium segment of interventricular septum, successfully treated with transcatheter ablation. This case highlights how the presence of recurrent ventricular arrhythmias at the onset of acute myocarditis, suspected or proven, could be associated with a pre-existing arrhythmogenic substrate, therefore these patients should be submitted to electrophysiological study in order to rule out the presence of arrhythmogenic focuses that can be treated with transcatheter ablation.

  19. Synthesis by picosecond laser ablation of ligand-free Ag and Au nanoparticles for SERS applications

    Science.gov (United States)

    Fazio, Enza; Spadaro, Salvatore; Santoro, Marco; Trusso, Sebastiano; Lucotti, Andrea.; Tommasini, Matteo.; Neri, Fortunato; Maria Ossi, Paolo

    2018-01-01

    The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS) measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  20. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    Science.gov (United States)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  1. Bilateral cornual abscess after endometrial ablation following Essure sterilization.

    NARCIS (Netherlands)

    Jansen, N.E.; Vleugels, M.P.; Kluivers, K.B.; Vierhout, M.E.

    2007-01-01

    Endometrial ablation is used extensively to treat dysfunctional bleeding. Since the introduction of Essure tubal sterilization, this permanent contraception method has been widely used. Both endometrial ablation and Essure sterilization are procedures reported to have only a few complications. We

  2. MR-Guided High-Intensity Focused Ultrasound Ablation of Breast Cancer with a Dedicated Breast Platform

    International Nuclear Information System (INIS)

    Merckel, Laura G.; Bartels, Lambertus W.; Köhler, Max O.; Bongard, H. J. G. Desirée van den; Deckers, Roel; Mali, Willem P. Th. M.; Binkert, Christoph A.; Moonen, Chrit T.; Gilhuijs, Kenneth G. A.; Bosch, Maurice A. A. J. van den

    2013-01-01

    Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.

  3. First clinical experience with a dedicated MRI-guided high-intensity focused ultrasound system for breast cancer ablation

    Energy Technology Data Exchange (ETDEWEB)

    Merckel, Laura G.; Knuttel, Floor M.; Peters, Nicky H.G.M.; Mali, Willem P.T.M.; Bosch, Maurice A.A.J. van den [University Medical Center Utrecht, Department of Radiology, HP E 01.132, Utrecht (Netherlands); Deckers, Roel; Moonen, Chrit T.W.; Bartels, Lambertus W. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Dalen, Thijs van [Diakonessenhuis Utrecht, Department of Surgery, Utrecht (Netherlands); Schubert, Gerald [Philips Healthcare, Best (Netherlands); Weits, Teun [Diakonessenhuis Utrecht, Department of Radiology, Utrecht (Netherlands); Diest, Paul J. van [University Medical Center Utrecht, Department of Pathology, Utrecht (Netherlands); Vaessen, Paul H.H.B. [University Medical Center Utrecht, Department of Anesthesiology, Utrecht (Netherlands); Gorp, Joost M.H.H. van [Diakonessenhuis Utrecht, Department of Pathology, Utrecht (Netherlands)

    2016-11-15

    To assess the safety and feasibility of MRI-guided high-intensity focused ultrasound (MR-HIFU) ablation in breast cancer patients using a dedicated breast platform. Patients with early-stage invasive breast cancer underwent partial tumour ablation prior to surgical resection. MR-HIFU ablation was performed using proton resonance frequency shift MR thermometry and an MR-HIFU system specifically designed for breast tumour ablation. The presence and extent of tumour necrosis was assessed by histopathological analysis of the surgical specimen. Pearson correlation coefficients were calculated to assess the relationship between sonication parameters, temperature increase and size of tumour necrosis at histopathology. Ten female patients underwent MR-HIFU treatment. No skin redness or burns were observed in any of the patients. No correlation was found between the applied energy and the temperature increase. In six patients, tumour necrosis was observed with a maximum diameter of 3-11 mm. In these patients, the number of targeted locations was equal to the number of areas with tumour necrosis. A good correlation was found between the applied energy and the size of tumour necrosis at histopathology (Pearson = 0.76, p = 0.002). Our results show that MR-HIFU ablation with the dedicated breast system is safe and results in histopathologically proven tumour necrosis. (orig.)

  4. Femtosecond laser ablation of carbon reinforced polymers

    International Nuclear Information System (INIS)

    Moreno, P.; Mendez, C.; Garcia, A.; Arias, I.; Roso, L.

    2006-01-01

    Interaction of intense ultrashort laser pulses (120 fs at 795 nm) with polymer based composites has been investigated. We have found that carbon filled polymers exhibit different ultrafast ablation behaviour depending on whether the filling material is carbon black or carbon fiber and on the polymer matrix itself. The shape and dimensions of the filling material are responsible for some geometrical bad quality effects in the entrance and inner surfaces of drilled microholes. We give an explanation for these non-quality effects in terms of fundamentals of ultrafast ablation process, specifically threshold laser fluences and material removal paths. Since carbon fiber reinforced polymers seemed particularly concerned, this could prevent the use of ultrafast ablation for microprocessing purposes of some of these materials

  5. Effects of endocardial microwave energy ablation

    Directory of Open Access Journals (Sweden)

    Vicente Climent

    2005-07-01

    Full Text Available Until recently the treatment of atrial fibrillation (AF consisted primarily of palliation, mostly in the form of pharmacological intervention. However because of recent advances in nonpharmacologic therapies, the current expectation of patients and referring physicians is that AF will be cured, rather than palliated. In recent years there has been a rapid expansion in the availability and variety of energy sources and devices for ablation. One of these energies, microwave, has been applied clinically only in the last few years, and may be a promising technique that is potentially capable of treating a wide range of ventricular and supraventricular arrhythmias. The purpose of this study was to review microwave energy ablation in surgical treatment of AF with special interest in histology and ultrastructure of lesions produced by this endocardial ablation procedure.

  6. Numerical Modeling of Ablation Heat Transfer

    Science.gov (United States)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  7. Image-Guided Spinal Ablation: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Koch, Guillaume, E-mail: guillaume.koch@chru-strasbourg.fr; Caudrelier, Jean, E-mail: jean.caudrelier@chru-strasbourg.fr; Garnon, Julien, E-mail: julien.garnon@chru-strasbourg.fr; Cazzato, Roberto Luigi, E-mail: roberto-luigi.cazzato@chru-strasbourg.fr; Edalat, Faramarz, E-mail: faramarz.edalat@gmail.com; Gangi, Afshin, E-mail: gangi@unistra.fr [Strasbourg University Hospital (France)

    2016-09-15

    The image-guided thermal ablation procedures can be used to treat a variety of benign and malignant spinal tumours. Small size osteoid osteoma can be treated with laser or radiofrequency. Larger tumours (osteoblastoma, aneurysmal bone cyst and metastasis) can be addressed with radiofrequency or cryoablation. Results on the literature of spinal microwave ablation are scarce, and thus it should be used with caution. A distinct advantage of cryoablation is the ability to monitor the ice-ball by intermittent CT or MRI. The different thermal insulation, temperature and electrophysiological monitoring techniques should be applied. Cautious pre-procedural planning and intermittent intra-procedural monitoring of the ablation zone can help reduce neural complications. Tumour histology, patient clinical-functional status and life-expectancy should define the most efficient and least disabling treatment option.

  8. Deep Dive Topic: Choosing between ablators

    Energy Technology Data Exchange (ETDEWEB)

    Hurricane, O. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thomas, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Olson, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-14

    Recent data on implosions using identical hohlraums and very similar laser drives underscores the conundrum of making a clear choice of one ablator over another. Table I shows a comparison of Be and CH in a nominal length, gold, 575 μm-diameter, 1.6 mg/cc He gas-fill hohlraum while Table II shows a comparison of undoped HDC and CH in a +700 length, gold, 575 μm diameter, 1.6 mg/cc He gas fill hohlraum. As can be seen in the tables, the net integrated fusion performance of these ablators is the same to within error bars. In the case of the undoped HDC and CH ablators, the hot spot shapes of the implosions were nearly indistinguishable for the experiments listed in Table II.

  9. Kinetic depletion model for pellet ablation

    International Nuclear Information System (INIS)

    Kuteev, Boris V.

    2001-11-01

    A kinetic model for depletion effect, which determines pellet ablation when the pellet passes a rational magnetic surface, is formulated. The model predicts a moderate decrease of the ablation rate compared with the earlier considered monoenergy versions [1, 2]. For typical T-10 conditions the ablation rate reduces by a reactor of 2.5 when the 1-mm pellet penetrates through the plasma center. A substantial deceleration of pellets -about 15% per centimeter of low shire rational q region; is predicted. Penetration for Low Field Side and High Field Side injections is considered taking into account modification of the electron distribution function by toroidal magnetic field. It is shown that Shafranov shift and toroidal effects yield the penetration length for HFS injection higher by a factor of 1.5. This fact should be taken into account when plasma-shielding effects on penetration are considered. (author)

  10. Fractional CO(2) laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Sakamoto, Fernanda H; Farinelli, William A

    2010-01-01

    Ablative fractional resurfacing (AFR) creates vertical channels that might assist the delivery of topically applied drugs into skin. The purpose of this study was to evaluate drug delivery by CO(2) laser AFR using methyl 5-aminolevulinate (MAL), a porphyrin precursor, as a test drug....

  11. Effect of Radiofrequency Endometrial Ablation on Dysmenorrhea.

    Science.gov (United States)

    Wyatt, Sabrina N; Banahan, Taylor; Tang, Ying; Nadendla, Kavita; Szychowski, Jeff M; Jenkins, Todd R

    To examine rates of dysmenorrhea after radiofrequency endometrial ablation in patients with and without known dysmenorrhea symptoms prior to the procedure in a diverse population. Retrospective cohort study (Canadian Task Force classification II-2). Academic gynecology practice. A total of 307 women underwent endometrial ablation between 2007 and 2013 at our institution. Patients who had preoperative and postoperative pain symptom assessments as well as a description of pain timing recorded were included in our analysis. Exclusion criteria were age dysmenorrhea was evaluated. Demographic information and other outcome variables were used to evaluate factors associated with resolution of dysmenorrhea. A total of 307 patients who underwent radiofrequency endometrial ablation were identified. After exclusions, 296 charts were examined, and 144 patients met our enrollment criteria. The mean age of the study cohort was 45.4 ± 6.2 years; 57 patients (40%) were African American, 16 (11%) had a body mass index (BMI) > 40, and 41 (29%) were of normal weight. Preoperative dysmenorrhea was reported by 100 patients (69%); 48 of these patients (48%) experienced resolution of symptoms postoperatively. Only 3 of the 44 patients (7%) without preoperative dysmenorrhea reported new-onset dysmenorrhea postoperatively. Significantly fewer patients had dysmenorrhea after compared to before radiofrequency ablation (55 of 144 [38%] vs 100 of 144 [69%]; p dysmenorrhea after ablation was associated with reduction in bleeding volume (p = .048) but not with a reduction in frequency of bleeding (p = .12). Approximately one-half of women who undergo radiofrequency endometrial ablation to treat heavy menstrual bleeding who also have preoperative dysmenorrhea exhibit documented pain resolution after the procedure. Resolution of dysmenorrhea is more likely if menstrual flow volume is decreased postprocedure. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  12. Temperature-controlled irrigated tip radiofrequency catheter ablation

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, Adrian

    1998-01-01

    INTRODUCTION: In patients with ventricular tachycardias due to structural heart disease, catheter ablation cures radiofrequency ablation. Irrigated tip radiofrequency ablation using power control and high infusion rates enlarges lesion......: We conclude that temperature-controlled radiofrequency ablation with irrigated tip catheters using low target temperature and low infusion rate enlarges lesion size without increasing the incidence of cratering and reduces coagulum formation of the tip....

  13. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  14. Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jung Hwan; Lee, Jeong Hyun [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Valcavi, Roberto [Endocrinology Division and Thyroid Disease Center, Arcispedale Santa Maria Nuova, Reggio Emilia (Italy); Pacella, Claudio M. [Diagnostic Imaging and Interventional Radiology Department, Ospedale Regina Apostolorum, Albano Laziale-Rome (IT); Rhim, Hyun Chul [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Na, Dong Kyu [Human Medical Imaging and Intervention Center, Seoul (Korea, Republic of)

    2011-10-15

    Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation.

  15. High throughput solar cell ablation system

    Science.gov (United States)

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  16. Efficacy and satisfaction rate comparing endometrial ablation by rollerball electrocoagulation to uterine balloon thermal ablation in a randomised controlled trial.

    NARCIS (Netherlands)

    Zon-Rabelink, I.A.A. van; Vleugels, M.P.; Merkus, J.M.W.M.; Graaf, R.M. de

    2004-01-01

    OBJECTIVE: To compare two methods of endometrial ablation, hysteroscopic rollerball electrocoagulation (RBE) and non-hysteroscopic uterine balloon thermal ablation (Thermachoice trade mark ), regarding efficacy for reducing dysfunctional uterine bleeding and patients satisfaction rate. METHODS: A

  17. Spin-offs from laser ablation in art conservation

    Science.gov (United States)

    Asmus, J.; Elford, J.; Parfenov, V.

    2013-05-01

    In 1973 The Center for Art Conservation Studies (CASS) was established at the University of California, San Diego (UCSD). This was in response to demonstrations that were conducted during January-March 1972 in Venice for UNESCO, Venice in Peril, International Fund for Monuments, and the Italian Petroleum Institute (ENI). The feasibility investigation explored in-situ pulsed holography, holographic interferometry, and laser ablation divestment for applications in art conservation practice. During subsequent decades scores of UCSD graduate and undergraduate students as well as conservators, conservation scientists, academics, and engineers who resided in CASS as "Visiting Scholars" contributed to advancing the understanding and performance of radiation technologies in the arts. Several technologies in addition to those involving optical wavelengths were also investigated to aid in art conservation and conservation science. Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance (NMR) were employed to detect and map moisture within masonry. Lead isotopic analyses revealed authenticity and provenance of Benin bronzes. Inside-out x-ray radiography facilitated the detection of defects in stone. Ultrasonic imaging was introduced for the mapping of fresco strata. Photoacoustic Spectroscopy (PAS) was used to characterize varnish layers on paintings. Digital image processing was introduced in order to detect and visualize pentimenti within paintings as well as to perform virtual restoration and provide interactive museum displays. Holographic images were employed as imaginary theater sets. In the years that followed the graduation of students and the visits of professional collaborators, numerous other applications of radiation ablation began appearing in a wide variety of other fields such as aircraft maintenance, ship maintenance, toxic chemical remediation, biological sterilization, food processing, industrial fabrication, industrial maintenance, nuclear

  18. Robotically assisted MRgFUS system

    Science.gov (United States)

    Jenne, Jürgen W.; Krafft, Axel J.; Maier, Florian; Rauschenberg, Jaane; Semmler, Wolfhard; Huber, Peter E.; Bock, Michael

    2010-03-01

    Magnetic resonance imaging guided focus ultrasound surgery (MRgFUS) is a highly precise method to ablate tissue non-invasively. The objective of this ongoing work is to establish an MRgFUS therapy unit consisting of a specially designed FUS applicator as an add-on to a commercial robotic assistance system originally designed for percutaneous needle interventions in whole-body MRI systems. The fully MR compatible robotic assistance system InnoMotion™ (Synthes Inc., West Chester, USA; formerly InnoMedic GmbH, Herxheim, Germany) offers six degrees of freedom. The developed add-on FUS treatment applicator features a fixed focus ultrasound transducer (f = 1.7 MHz; f' = 68 mm, NA = 0.44, elliptical shaped -6-dB-focus: 8.1 mm length; O/ = 1.1 mm) embedded in a water-filled flexible bellow. A Mylar® foil is used as acoustic window encompassed by a dedicated MRI loop coil. For FUS application, the therapy unit is directly connected to the head of the robotic system, and the treatment region is targeted from above. A newly in-house developed software tool allowed for complete remote control of the MRgFUS-robot system and online analysis of MRI thermometry data. The system's ability for therapeutic relevant focal spot scanning was tested in a closed-bore clinical 1.5 T MR scanner (Magnetom Symphony, Siemens AG, Erlangen, Germany) in animal experiments with pigs. The FUS therapy procedure was performed entirely under MRI guidance including initial therapy planning, online MR-thermometry, and final contrast enhanced imaging for lesion detection. In vivo trials proved the MRgFUS-robot system as highly MR compatible. MR-guided focal spot scanning experiments were performed and a well-defined pattern of thermal tissue lesions was created. A total in vivo positioning accuracy of the US focus better than 2 mm was estimated which is comparable to existing MRgFUS systems. The newly developed FUS-robotic system offers an accurate, highly flexible focus positioning. With its access

  19. Ultraviolet laser ablation of fluorine-doped tin oxide thin films for dye-sensitized back-contact solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Fu, Dongchuan [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia); Jiang, Ming [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Duan, Jun, E-mail: duans@hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Zhang, Fei; Zeng, Xiaoyan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Bach, Udo [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia)

    2013-03-01

    In this study, laser ablation of a fluorine-doped tin oxide (FTO) thin film on a glass substrate was conducted using a 355 nm Nd:YVO{sub 4} ultraviolet (UV) laser to obtain a 4 × 4 mm microstructure. The microstructure contains a symmetric set of interdigitated FTO finger electrodes of a monolithic back-contact dye-sensitized solar cell (BC-DSC) on a common substrate. The effects of UV laser ablation parameters (such as laser fluence, repetition frequency, and scanning speed) on the size precision and quality of the microstructure were investigated using a 4 × 4 orthogonal design and an assistant experimental design. The incident photon-to-electron conversion efficiency and the current–voltage characteristics of the BC-DSC base of the interdigitated FTO finger electrodes were also determined. The experimental results show that an FTO film microstructure with high precision and good quality can be produced on a glass substrate via laser ablation with high scanning speed, high repetition frequency, and appropriate laser fluence. - Highlights: ► The ablation width and depth generally depend on the laser fluence. ► The scanning speed and the repetition frequency must match each other. ► Slight ablation of the glass substrate can completely remove F-doped tin oxide.

  20. Precise femtosecond laser ablation of dental hard tissue: preliminary investigation on adequate laser parameters

    International Nuclear Information System (INIS)

    Hikov, Todor; Pecheva, Emilia; Petrov, Todor; Montgomery, Paul; Antoni, Frederic; Leong-Hoi, Audrey

    2017-01-01

    This work aims at evaluating the possibility of introducing state-of-the-art commercial femtosecond laser system in restorative dentistry by maintaining well-known benefits of lasers for caries removal, but also in overcoming disadvantages such as thermal damage of irradiated substrate. Femtosecond ablation of dental hard tissue is investigated by changing the irradiation parameters (pulsed laser energy, scanning speed and pulse repetition rate), assessed for enamel and dentin. The femtosecond laser system used in this work may be suitable for cavity preparation in dentin and enamel, due to the expected effective ablation and low temperature increase when using ultra short laser pulses. If adequate laser parameters are selected, this system seems to be promising for promoting a laser-assisted, minimally invasive approach in restorative dentistry. (paper)

  1. How to perform posterior wall isolation in catheter ablation for atrial fibrillation.

    Science.gov (United States)

    Sugumar, Hariharan; Thomas, Stuart P; Prabhu, Sandeep; Voskoboinik, Aleksandr; Kistler, Peter M

    2018-02-01

    Catheter ablation has become standard of care in patients with symptomatic atrial fibrillation (AF). Although there have been significant advances in our understanding and technology, a substantial proportion of patients have ongoing AF requiring repeat procedures. Pulmonary vein isolation (PVI) is the cornerstone of AF ablation; however, it is less effective in patients with persistent as opposed to paroxysmal atrial fibrillation. Left atrial posterior wall isolation (PWI) is commonly performed as an adjunct to PVI in patients with persistent AF with nonrandomized studies showing improved outcomes. Anatomical considerations and detailed outline of the various approaches and techniques to performing PWI are detailed, and advantages and pitfalls to assist the clinical electrophysiologist successfully and safely complete PWI are described. © 2017 Wiley Periodicals, Inc.

  2. A review of the safety aspects of radio frequency ablation

    Directory of Open Access Journals (Sweden)

    Abhishek Bhaskaran

    2015-09-01

    Full Text Available In light of recent reports showing high incidence of silent cerebral infarcts and organized atrial arrhythmias following radiofrequency (RF atrial fibrillation (AF ablation, a review of its safety aspects is timely. Serious complications do occur during supraventricular tachycardia (SVT ablations and knowledge of their incidence is important when deciding whether to proceed with ablation. Evidence is emerging for the probable role of prophylactic ischemic scar ablation to prevent VT. This might increase the number of procedures performed. Here we look at the various complications of RF ablation and also the methods to minimize them. Electronic database was searched for relevant articles from 1990 to 2015. With better awareness and technological advancements in RF ablation the incidence of complications has improved considerably. In AF ablation it has decreased from 6% to less than 4% comprising of vascular complications, cardiac tamponade, stroke, phrenic nerve injury, pulmonary vein stenosis, atrio-esophageal fistula (AEF and death. Safety of SVT ablation has also improved with less than 1% incidence of AV node injury in AVNRT ablation. In VT ablation the incidence of major complications was 5–11%, up to 3.4%, up to 1.8% and 4.1–8.8% in patients with structural heart disease, without structural heart disease, prophylactic ablations and epicardial ablations respectively. Vascular and pericardial complications dominated endocardial and epicardial VT ablations respectively. Up to 3% mortality and similar rates of tamponade were reported in endocardial VT ablation. Recent reports about the high incidence of asymptomatic cerebral embolism during AF ablation are concerning, warranting more research into its etiology and prevention.

  3. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D. E-mail: lumd@21cn.com; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up.

  4. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    International Nuclear Information System (INIS)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D.; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J.

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up

  5. Atmospheric Profile Imprint in Firewall Ablation Coefficient

    Science.gov (United States)

    Ceplecha, Z.; Pecina, P.

    1984-01-01

    A general formula which expresses the distance along the meteoric fireball trajectory 1 as a function of t is discussed. Differential equations which include the motion and ablation of a single nonfragmenting meteor body are presented. The importance of the atmospheric density profile in the meteor formula is emphasized.

  6. Ablation of liver metastases by radiofrequency

    International Nuclear Information System (INIS)

    Baere, T. de

    2012-01-01

    Radiofrequency is a thermal ablative technique that is most often used percuteanously under image guidance. Thermal damage is obtained through frictional heating of a high frequency current. The maximal volume of destruction obtained in one radiofrequency delivery is around 4 cm and consequently, best indication for treatment are tumours below 3 cm. When compared, radiofrequency and surgical removal for tumours below 25 mm in diameter demonstrated a rate of incomplete resection/ablation of 6% and 7.3% respectively. Median survival after the first radiofrequency of a liver metastasis of CRC is reported to be 24 to 52 months with a 5 years overall survival of 18 to 44%. The median overall survival increases from 22 to 48 months depending on the use of radiofrequency ablation as rescue treatment after failure of others, or as a first line treatment. For patients with a single tumour, less than 4 cm, the survival rates at 1, 3, and 5 years are respectively 97%, 84% and 40%, with a median survival of 50 months. Follow-up imaging requires to use contrast-enhanced CT or MRI, looking for local recurrences evidenced by local foci of enhancement at the periphery of the ablation zone. (author)

  7. Pulsed Radiofrequency Ablation for Treating Sural Neuralgia.

    Science.gov (United States)

    Abd-Elsayed, Alaa; Jackson, Markus; Plovanich, Elizabeth

    2018-01-01

    Sural neuralgia is persistent pain in the distribution of the sural nerve that provides sensation to the lateral posterior corner of the leg, lateral foot, and fifth toe. Sural neuralgia is a rare condition but can be challenging to treat and can cause significant limitation. We present 2 cases of sural neuralgia resistant to conservative management that were effectively treated by pulsed radiofrequency ablation. A 65-year-old female developed sural neuralgia after a foot surgery and failed conservative management. She had successful sural nerve blocks, and pulsed radiofrequency ablation led to an 80% improvement in her pain. A 33-year-old female presented with sural neuralgia secondary to two falls. The patient had tried several conservative modalities with no success. We performed diagnostic blocks and pulsed radiofrequency ablation, and the patient reported 80% improvement in her pain. Pulsed radiofrequency ablation may be a safe and effective treatment for patients with sural neuralgia that does not respond to conservative therapy. However, studies are needed to elucidate its effectiveness and safety profile.

  8. Organized Atrial Tachycardias after Atrial Fibrillation Ablation

    Science.gov (United States)

    Castrejón-Castrejón, Sergio; Ortega, Marta; Pérez-Silva, Armando; Doiny, David; Estrada, Alejandro; Filgueiras, David; López-Sendón, José L.; Merino, José L.

    2011-01-01

    The efficacy of catheter-based ablation techniques to treat atrial fibrillation is limited not only by recurrences of this arrhythmia but also, and not less importantly, by new-onset organized atrial tachycardias. The incidence of such tachycardias depends on the type and duration of the baseline atrial fibrillation and specially on the ablation technique which was used during the index procedure. It has been repeatedly reported that the more extensive the left atrial surface ablated, the higher the incidence of organized atrial tachycardias. The exact origin of the pathologic substrate of these trachycardias is not fully understood and may result from the interaction between preexistent regions with abnormal electrical properties and the new ones resultant from radiofrequency delivery. From a clinical point of view these atrial tachycardias tend to remit after a variable time but in some cases are responsible for significant symptoms. A precise knowledge of the most frequent types of these arrhythmias, of their mechanisms and components is necessary for a thorough electrophysiologic characterization if a new ablation procedure is required. PMID:21941669

  9. Microwave ablation devices for interventional oncology.

    Science.gov (United States)

    Ward, Robert C; Healey, Terrance T; Dupuy, Damian E

    2013-03-01

    Microwave ablation is one of the several options in the ablation armamentarium for the treatment of malignancy, offering several potential benefits when compared with other ablation, radiation, surgical and medical treatment modalities. The basic microwave system consists of the generator, power distribution system and antennas. Often under image (computed tomography or ultrasound) guidance, a needle-like antenna is inserted percutaneously into the tumor, where local microwave electromagnetic radiation is emitted from the probe's active tip, producing frictional tissue heating, capable of causing cell death by coagulation necrosis. Half of the microwave ablation systems use a 915 MHz generator and the other half use a 2450 MHz generator. To date, there are no completed clinical trials comparing microwave devices head-to-head. Prospective comparisons of microwave technology with other treatment alternatives, as well as head-to-head comparison with each microwave device, is needed if this promising field will garner more widespread support and use in the oncology community.

  10. Plasma dynamics from laser ablated solid lithium

    Indian Academy of Sciences (India)

    b; 52.25.-b; 52.70.-m. 1. Introduction. Pulsed laser ablation of a solid sample generates a dense plasma emission in the shape of ... The multichannel analyser plate of the ICCD was gated for as less as 4 ns using ... to explain the atomic collision processes [4]. .... Within duration of laser pulse, there occurs laser-solid interac-.

  11. Bending diamonds by femtosecond laser ablation

    DEFF Research Database (Denmark)

    Balling, Peter; Esberg, Jakob; Kirsebom, Kim

    2009-01-01

    We present a new method based on femtosecond laser ablation for the fabrication of statically bent diamond crystals. Using this method, curvature radii of 1 m can easily be achieved, and the curvature obtained is very uniform. Since diamond is extremely tolerant to high radiation doses, partly due...

  12. Femtosecond laser ablation of bovine cortical bone

    Science.gov (United States)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  13. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  14. Laser ablation comparison by picosecond pulses train and nanosecond pulse

    Science.gov (United States)

    Lednev, V. N.; Filippov, M. N.; Bunkin, A. F.; Pershin, S. M.

    2015-12-01

    A comparison of laser ablation by a train of picosecond pulses and nanosecond pulses revealed a difference in laser craters, ablation thresholds, plasma sizes and spectral line intensities. Laser ablation with a train of picosecond pulses resulted in improved crater quality while ablated mass decreased up to 30%. A reduction in laser plasma dimensions for picosecond train ablation was observed while the intensity of atomic/ionic lines in the plasma spectra was greater by a factor of 2-4 indicating an improved excitation and atomization in the plasma.

  15. Burn, freeze, or photo-ablate?: comparative symptom profile in Barrett's dysplasia patients undergoing endoscopic ablation

    Science.gov (United States)

    Gill, Kanwar Rupinder S.; Gross, Seth A.; Greenwald, Bruce D.; Hemminger, Lois L.; Wolfsen, Herbert C.

    2009-06-01

    Background: There are few data available comparing endoscopic ablation methods for Barrett's esophagus with high-grade dysplasia (BE-HGD). Objective: To determine differences in symptoms and complications associated with endoscopic ablation. Design: Prospective observational study. Setting: Two tertiary care centers in USA. Patients: Consecutive patients with BE-HGD Interventions: In this pilot study, symptoms profile data were collected for BE-HGD patients among 3 endoscopic ablation methods: porfimer sodium photodynamic therapy, radiofrequency ablation and low-pressure liquid nitrogen spray cryotherapy. Main Outcome Measurements: Symptom profiles and complications from the procedures were assessed 1-8 weeks after treatment. Results: Ten BE-HGD patients were treated with each ablation modality (30 patients total; 25 men, median age: 69 years (range 53-81). All procedures were performed in the clinic setting and none required subsequent hospitalization. The most common symptoms among all therapies were chest pain, dysphagia and odynophagia. More patients (n=8) in the porfimer sodium photodynamic therapy group reported weight loss compared to radio-frequency ablactation (n=2) and cryotherapy (n=0). Four patients in the porfimer sodium photodynamic therapy group developed phototoxicity requiring medical treatment. Strictures, each requiring a single dilation, were found in radiofrequency ablactation (n=1) and porfimer sodium photodynamic therapy (n=2) patients. Limitations: Small sample size, non-randomized study. Conclusions: These three endoscopic therapies are associated with different types and severity of post-ablation symptoms and complications.

  16. Evaluation of thermometric monitoring for intradiscal laser ablation in an open 1.0 T MR scanner.

    Science.gov (United States)

    Wonneberger, Uta; Schnackenburg, Bernhard; Wlodarczyk, Waldemar; Rump, Jens; Walter, Thula; Streitparth, Florian; Teichgräber, Ulf Karl Mart

    2010-01-01

    The purpose of this study was to evaluate different methods of magnetic resonance thermometry (MRTh) for the monitoring of intradiscal laser ablation therapy in an open 1.0 Tesla magnetic resonance (MR) scanner. MRTh methods based on the two endogenous MR temperature indicators of spin-lattice relaxation time T1 and water proton resonance frequency (PRF) shift were optimised and compared in vitro. For the latter, we measured the effective spin-spin relaxation times T2* in intervertebral discs of volunteers. Then we compared four gradient echo-based imaging techniques to monitor laser ablations in human disc specimens. Criteria of assessment were outline of anatomic detail, immunity against needle artefacts, signal-to-noise ratio (SNR) and accuracy of the calculated temperature. T2* decreased in an inverse and almost linear manner with the patients' age (r = 0.9) from 70 to 30 ms (mean of 49 ms). The optimum image quality (anatomic details, needle artefacts, SNR) and temperature accuracy (+/-1.09 degrees C for T1-based and +/-1.11 degrees C for PRF-based MRTh) was achieved with a non-spoiled gradient-echo sequence with an echo time of TE = 10 ms. Combination of anatomic and thermometric non-invasive monitoring of laser ablations in the lumbar spine is feasible. The temperature accuracy of the investigated T1- and PRF-based MRTh methods in vitro is high enough and promises to be reliable in vivo as well.

  17. Auxiliary resonant DC tank converter

    Science.gov (United States)

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  18. Effects of pressure rise on cw laser ablation of tissue

    Science.gov (United States)

    LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.

    1991-06-01

    The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.

  19. Thermal Ablation of T1c Renal Cell Carcinoma: A Comparative Assessment of Technical Performance, Procedural Outcome, and Safety of Microwave Ablation, Radiofrequency Ablation, and Cryoablation.

    Science.gov (United States)

    Zhou, Wenhui; Arellano, Ronald S

    2018-04-06

    To evaluate perioperative outcomes of thermal ablation with microwave (MW), radiofrequency (RF), and cryoablation for stage T1c renal cell carcinoma (RCC). A retrospective analysis of 384 patients (mean age, 71 y; range, 22-88 y) was performed between October 2006 and October 2016. Mean radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines; preoperative aspects and dimensions used for anatomic classification; and centrality index scores were 6.3, 7.9, and 2.7, respectively. Assessment of pre- and postablation serum blood urea nitrogen, creatinine, and estimated glomerular filtration rate was performed to assess functional outcomes. Linear regression analyses were performed to compare sedation medication dosages among the three treatment cohorts. Univariable and multivariable logistic regression analyses were performed to compare rates of residual disease and complications among treatment modalities. A total of 437 clinical stage T1N0M0 biopsy-proven RCCs measuring 1.2-6.9 cm were treated with computed tomography (CT)-guided MW ablation (n = 44; 10%), RF ablation (n = 347; 79%), or cryoablation (n = 46; 11%). There were no significant differences in patient demographic or tumor characteristics among cohorts. Complication rates and immediate renal function changes were similar among the three ablation modalities (P = .46 and P = .08, respectively). MW ablation was associated with significantly decreased ablation time (P < .05), procedural time (P < .05), and dosage of sedative medication (P < .05) compared with RF ablation and cryoablation. CT-guided percutaneous MW ablation is comparable to RF ablation or cryoablation for the treatment of stage T1N0M0 RCC with regard to treatment response and is associated with shorter treatment times and less sedation than RF ablation or cryoablation. In addition, the safety profile of CT-guided MW ablation is noninferior to those of RF ablation or

  20. Multiquark Resonances

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  1. Neuroaesthetic Resonance

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2013-01-01

    Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment...... sessions are achieved via adaptive action-analyzed activities. These interactive virtual environments are designed to empower patients’ creative and/or playful expressions via digital feedback stimuli. Unconscious self- pushing of limits result from innate distractive mechanisms offered by the alternative...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....

  2. Baryon Resonances

    International Nuclear Information System (INIS)

    Oset, E.; Sarkar, S.; Sun Baoxi; Vicente Vacas, M.J.; Ramos, A.; Gonzalez, P.; Vijande, J.; Martinez Torres, A.; Khemchandani, K.

    2010-01-01

    In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the Λ(1405) resonance, as well as the prediction of one 1/2 + baryon state around 1920 MeV which might have been seen in the γp→K + Λ reaction.

  3. Combination of ablative fractional laser and daylight-mediated photodynamic therapy for actinic keratosis in organ transplant recipients – a randomized controlled trial

    DEFF Research Database (Denmark)

    Togsverd-Bo, Katrine; Lei, Ulrikke; Erlendsson, A M

    2015-01-01

    BACKGROUND: Topical photodynamic therapy (PDT) for actinic keratoses (AK) is hampered by pain during illumination and inferior efficacy in organ-transplant recipients (OTR). OBJECTIVES: We assessed ablative fractional laser (AFL)-assisted daylight photodynamic therapy (PDT) (AFL-dPDT) compared...

  4. Capturing Pain in the Cortex during General Anesthesia: Near Infrared Spectroscopy Measures in Patients Undergoing Catheter Ablation of Arrhythmias.

    Directory of Open Access Journals (Sweden)

    Barry D Kussman

    Full Text Available The predictability of pain makes surgery an ideal model for the study of pain and the development of strategies for analgesia and reduction of perioperative pain. As functional near-infrared spectroscopy reproduces the known functional magnetic resonance imaging activations in response to a painful stimulus, we evaluated the feasibility of functional near-infrared spectroscopy to measure cortical responses to noxious stimulation during general anesthesia. A multichannel continuous wave near-infrared imager was used to measure somatosensory and frontal cortical activation in patients undergoing catheter ablation of arrhythmias under general anesthesia. Anesthetic technique was standardized and intraoperative NIRS signals recorded continuously with markers placed in the data set for the timing and duration of each cardiac ablation event. Frontal cortical signals only were suitable for analysis in five of eight patients studied (mean age 14 ± 1 years, weight 66.7 ± 17.6 kg, 2 males. Thirty ablative lesions were recorded for the five patients. Radiofrequency or cryoablation was temporally associated with a hemodynamic response function in the frontal cortex characterized by a significant decrease in oxyhemoglobin concentration (paired t-test, p<0.05 with the nadir occurring in the period 4 to 6 seconds after application of the ablative lesion. Cortical signals produced by catheter ablation of arrhythmias in patients under general anesthesia mirrored those seen with noxious stimulation in awake, healthy volunteers, during sedation for colonoscopy, and functional Magnetic Resonance Imaging activations in response to pain. This study demonstrates the feasibility and potential utility of functional near-infrared spectroscopy as an objective measure of cortical activation under general anesthesia.

  5. 996 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    996. RESONANCE. November 2013. Page 2. 997. RESONANCE. November 2013. Page 3. 998. RESONANCE. November 2013. Page 4. 999. RESONANCE. November 2013. Page 5. 1000. RESONANCE. November 2013. Page 6. 1001. RESONANCE. November 2013. Page 7. 1002. RESONANCE. November 2013 ...

  6. 817 RESONANCE September 2013

    Indian Academy of Sciences (India)

    IAS Admin

    817. RESONANCE ⎜ September 2013. Page 2. 818. RESONANCE ⎜ September 2013. Page 3. 819. RESONANCE ⎜ September 2013. Page 4. 820. RESONANCE ⎜ September 2013. Page 5. 821. RESONANCE ⎜ September 2013. Page 6. 822. RESONANCE ⎜ September 2013. Page 7. 823. RESONANCE ⎜ September ...

  7. 369 RESONANCE April 2016

    Indian Academy of Sciences (India)

    IAS Admin

    369. RESONANCE ⎜ April 2016. Page 2. 370. RESONANCE ⎜ April 2016. Page 3. 371. RESONANCE ⎜ April 2016. Page 4. 372. RESONANCE ⎜ April 2016. Page 5. 373. RESONANCE ⎜ April 2016. Page 6. 374. RESONANCE ⎜ April 2016. Page 7. 375. RESONANCE ⎜ April 2016.

  8. The effect of ethanol infusion on the size of the ablated lesion in radiofrequency thermal ablation: A pilot study

    International Nuclear Information System (INIS)

    Kim, Young Sun; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Seo, Heung Suk; Kim, Yong Soo; Joo, Kyoung Bin

    2001-01-01

    To assess the effect of ethanol infusion on the size of ablated lesion during radiofrequency (RF) thermal ablation. We performed an ex vivo experimental study using a total of 15 pig livers. Three groups were designed: 1)normal control (n=10), 2) saline infusion (n=10) 3) ethanol infusion (n=10). Two radiofrequency ablations were done using a 50 watt RF generator and a 15 guage expandable elections with four prongs in each liver. During ablation for 8 minutes, continuous infusion of fluid at a rate of 0.5 ml/min through the side arm of electrode was performed. We checked the frequency of the 'impeded-out' phenomenon due to abrupt increase of impedance during ablation. Size of ablated lesion was measured according to length, width, height, and subsequently volume after the ablations. The sizes of the ablated lesions were compared between the three groups. 'Impeded-out' phenomenon during ablation was noted 4 times in control group, although that never happened in saline or ethanol infusion groups. There were significant differences in the volumes of ablated lesions between control group (10.62 ± 1.45 cm 3 ) and saline infusion group (15.33 ± 2.47 cm 3 ), and saline infusion group and ethanol infusion group (18.78 ± 3.58 cm 3 ) (p<0.05). Fluid infusion during radiofrequency thermal ablation decrease a chance of charming and increase the volume of the ablated lesion. Ethanol infusion during ablation may induce larger volume of ablated lesion than saline infusion.

  9. Capabilities of laser ablation mass spectrometry in the differentiation of natural and artificial opal gemstones.

    Science.gov (United States)

    Erel, Eric; Aubriet, Frédéric; Finqueneisel, Gisèle; Muller, Jean-François

    2003-12-01

    The potentialities of laser ablation coupled to ion cyclotron resonance Fourier transform mass spectrometry are evaluated to distinguish natural and artificial opals. The detection of specific species in both ion detection modes leads us to obtain relevant criteria of differentiation. In positive ions, species including hafnium and large amounts of zirconium atoms are found to be specific for artificial opal. In contrast, aluminum, titanium, iron, and rubidium are systematically detected in the study of natural opals. Moreover, some ions allow us to distinguish between natural opal from Australia and from Mexico. Australian gemstone includes specifically strontium, cesium, and barium. Moreover, it is also found that the yield of (H2O)0-1(SiO2)nX- (X- = O-, OH-, KO-, NaO-, SiO2-, AlO1-2-, FeO2-, ZrO2-, and ZrO3-) and (Al2O3)(SiO2)nAlO2- ions depends on the composition of the sample when opals are laser ablated. Ions, which include zirconium oxide species, are characteristics of artificial gem. In contrast, natural opals lead us, after laser ablation, to the production of ions including H2O, Al2O3 motifs and AlO-, KO-, NaO-, and FeO2- species.

  10. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. These resonances occur when the betatron oscillation wave numbers ν/sub x/ or ν/sub y/ and the synchrotron wave number ν/sub s/ satisfy the relation (ν/sub x,y/ - mν/sub s/) = 5, with m an integer denoting the m/sup th/ satellite. The main difference between SPEAR II and SPEAR I is the value of ν/sub s/, which in SPEAR II is approximately 0.04, an order of magnitude larger than in SPEAR I. An ad hoc meeting was held at the 1975 Particle Accelerator Conference, where details of the SPEAR II results were presented and various possible mechanisms for producing these resonances were discussed. Later, experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  11. Autostereogram resonators

    Science.gov (United States)

    Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes

    2012-09-01

    Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.

  12. Low rate of asymptomatic cerebral embolism and improved procedural efficiency with the novel pulmonary vein ablation catheter GOLD: results of the PRECISION GOLD trial.

    Science.gov (United States)

    De Greef, Yves; Dekker, Lukas; Boersma, Lucas; Murray, Stephen; Wieczorek, Marcus; Spitzer, Stefan G; Davidson, Neil; Furniss, Steve; Hocini, Mélèze; Geller, J Christoph; Csanádi, Zoltan

    2016-05-01

    This prospective, multicentre study (PRECISION GOLD) evaluated the incidence of asymptomatic cerebral embolism (ACE) after pulmonary vein isolation (PVI) using a new gold multi-electrode radiofrequency (RF) ablation catheter, pulmonary vein ablation catheter (PVAC) GOLD. Also, procedural efficiency of PVAC GOLD was compared with ERACE. The ERACE study demonstrated that a low incidence of ACE can be achieved with a platinum multi-electrode RF catheter (PVAC) combined with procedural manoeuvres to reduce emboli. A total of 51 patients with paroxysmal atrial fibrillation (AF) (age 57 ± 9 years, CHA2DS2-VASc score 1.4 ± 1.4) underwent AF ablation with PVAC GOLD. Continuous oral anticoagulation using vitamin K antagonists, submerged catheter introduction, and heparinization (ACT ≥ 350 s prior to ablation) were applied. Cerebral magnetic resonance imaging (MRI) scans were performed within 48 h before and 16-72 h post-ablation. Cognitive function assessed by the Mini-Mental State Exam at baseline and 30 days post-ablation. New post-procedural ACE occurred in only 1 of 48 patients (2.1%) and was not detectable on MRI after 30 days. The average number of RF applications per patient to achieve PVI was lower in PRECISION GOLD (20.3 ± 10.0) than in ERACE (28.8 ± 16.1; P = 0.001). Further, PVAC GOLD ablations resulted in significantly fewer low-power (GOLD in combination with established embolic lowering manoeuvres results in a low incidence of ACE. Pulmonary vein ablation catheter GOLD demonstrates improved biophysical efficiency compared with platinum PVAC. ClinicalTrials.gov NCT01767558. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  13. International assistance. Licensing assistance project

    International Nuclear Information System (INIS)

    Aleev, A.

    1999-01-01

    Description of licensing assistance project for VATESI is presented. In licensing of unit No.1 of INPP VATESI is supported by many western countries. Experts from regulatory bodies or scientific organizations of those countries assist VATESI staff in reviewing documentation presented by INPP. Among bilateral cooperation support is provided by European Commission through Phare programme

  14. Automated planning of ablation targets in atrial fibrillation treatment

    Science.gov (United States)

    Keustermans, Johannes; De Buck, Stijn; Heidbüchel, Hein; Suetens, Paul

    2011-03-01

    Catheter based radio-frequency ablation is used as an invasive treatment of atrial fibrillation. This procedure is often guided by the use of 3D anatomical models obtained from CT, MRI or rotational angiography. During the intervention the operator accurately guides the catheter to prespecified target ablation lines. The planning stage, however, can be time consuming and operator dependent which is suboptimal both from a cost and health perspective. Therefore, we present a novel statistical model-based algorithm for locating ablation targets from 3D rotational angiography images. Based on a training data set of 20 patients, consisting of 3D rotational angiography images with 30 manually indicated ablation points, a statistical local appearance and shape model is built. The local appearance model is based on local image descriptors to capture the intensity patterns around each ablation point. The local shape model is constructed by embedding the ablation points in an undirected graph and imposing that each ablation point only interacts with its neighbors. Identifying the ablation points on a new 3D rotational angiography image is performed by proposing a set of possible candidate locations for each ablation point, as such, converting the problem into a labeling problem. The algorithm is validated using a leave-one-out-approach on the training data set, by computing the distance between the ablation lines obtained by the algorithm and the manually identified ablation points. The distance error is equal to 3.8+/-2.9 mm. As ablation lesion size is around 5-7 mm, automated planning of ablation targets by the presented approach is sufficiently accurate.

  15. Ultrasound elastographic imaging of thermal lesions and temperature profiles during radiofrequency ablation

    Science.gov (United States)

    Techavipoo, Udomchai

    Manual palpation to sense variations in tissue stiffness for disease diagnosis has been regularly performed by clinicians for centuries. However, it is generally limited to large and superficial structures and the ability of the physician performing the palpation. Imaging of tissue stiffness or elastic properties via the aid of modern imaging such as ultrasound and magnetic resonance imaging, referred to as elastography, enhances the capability for disease diagnosis. In addition, elastography could be used for monitoring tissue response to minimally invasive ablative therapies, which are performed percutaneously to destruct tumors with minimum damage to surrounding tissue. Monitoring tissue temperature during ablation is another approach to estimate tissue damage. The ultimate goal of this dissertation is to improve the image quality of elastograms and temperature profiles for visualizing thermal lesions during and after ablative therapies. Elastographic imaging of thermal lesions is evaluated by comparison of sizes, shapes, and volumes with the results obtained using gross pathology. Semiautomated segmentation of lesion boundaries on elastograms is also developed. It provides comparable results to those with manual segmentation. Elastograms imaged during radiofrequency ablation in vitro show that the impact of gas bubbles during ablation on the ability to delineate the thermal lesion is small. Two novel methods to reduce noise artifacts in elastograms, and an accurate estimation of displacement vectors are proposed. The first method applies wavelet-denoising algorithms to the displacement estimates. The second method utilizes angular compounding of the elastograms generated using ultrasound signal frames acquired from different insonification angles. These angular frames are also utilized to estimate all tissue displacement vector components in response to a deformation. These enable the generation of normal and shear strain elastograms and Poisson's ratio

  16. 3D Multifunctional Ablative Thermal Protection System

    Science.gov (United States)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  17. Laser ablation of the lysozyme protein: a model system for soft materials

    DEFF Research Database (Denmark)

    Schou, Jørgen; Matei, Andreea; Constantinescu, Catalin

    .3 1015 molecules per pulse. This is perhaps one of the highest ablation yields ever measured. Films with a significant number of intact lysozyme molecules have been produced by PLD (pulsed laser deposition) and MAPLE (Matrix-assisted pulsed laser evaporation). The deposition of intact molecules...... is expected in MAPLE, but is surprising in PLD, where a high degree of thermal fragmentation is typically required for generation of a sufficient amount of volatile decomposition products that drive the transfer of molecules to the film substrate. The experimental results will be discussed based...

  18. Design calculations for NIF convergent ablator experiments

    Directory of Open Access Journals (Sweden)

    Olson R.E.

    2013-11-01

    Full Text Available The NIF convergent ablation tuning effort is underway. In the early experiments, we have discovered that the design code simulations over-predict the capsule implosion velocity and shock flash ρr, but under-predict the hohlraum x-ray flux measurements. The apparent inconsistency between the x-ray flux and radiography data implies that there are important unexplained aspects of the hohlraum and/or capsule behavior.

  19. Radiofrequency ablation of two femoral head chondroblastomas

    Energy Technology Data Exchange (ETDEWEB)

    Petsas, Theodore [Department of Radiology, University of Patras (Greece); Megas, Panagiotis [Department of Orthopaedic Surgery, University of Patras (Greece)]. E-mail: panmegas@med.upatras.gr; Papathanassiou, Zafiria [Department of Radiology, University of Patras (Greece)

    2007-07-15

    Chondroblastoma is a rare benign cartilaginous bone tumor. Surgical resection is the treatment of choice for pain relief and prevention of further growth. Open surgical techniques are associated with complications, particularly when the tumors are located in deep anatomical sites. The authors performed RF ablation in two cases of subarticular femoral head chondroblastomas and emphasize its positive impact. The clinical course, the radiological findings and the post treatment results are discussed.

  20. A Review of Laser Ablation Propulsion

    International Nuclear Information System (INIS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-01-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  1. Isotopic analysis of a single Pb particle by using laser ablation TOF-MS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, I. H.; Yoo, H. S. [Chungbuk National Univ., Cheongju (Korea, Republic of); Song, K. S. [KAERI, Daejeon (Korea, Republic of)

    2008-11-15

    A laser ablation can be applied to a direct isotopic analysis of solid samples due to the following advantages. Because a laser ablation is a very powerful ionization source, an additional ionization source is not required and an one step vaporization and ionization of samples is possible. Due to the small size of a laser beam, an analysis of a local trace can be applied. Also, the contamination or loss of samples is reduced because there is no need for a sample preparation process. In this study, Pb particles with a size of∼150μm were analyzed by LA TOF MS and a second harmonic of the Nd:YAG laser, 532nm, was used for the laser ablation. First, the ion signal of Pb was measured depending on the matrices. For loading a Pb particle, a silicon wafer, cotton textile, and Ta metal plate were used as a basic plate. As a result, the silicon wafer plate was identified to be the best matrix for the analysis of Pb with a good resolution and its measured isotopic ratios reasonably agree with the natural abundance within 5%. The figure shows a mass spectrum of Pb onto a silicon wafer. In applying the resonance laser ablation, the detection sensitivity was increased by more than 10 times. In the experiment regarding the cotton textile, the mass resolution of Pb was more than 500 which was enough to measure the isotopes, and it is applicable to real swipe samples in various fields such as environmental analysis, industry, and nuclear forensic.

  2. MRI-guided prostate focal laser ablation therapy using a mechatronic needle guidance system

    Science.gov (United States)

    Cepek, Jeremy; Lindner, Uri; Ghai, Sangeet; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron

    2014-03-01

    Focal therapy of localized prostate cancer is receiving increased attention due to its potential for providing effective cancer control in select patients with minimal treatment-related side effects. Magnetic resonance imaging (MRI)-guided focal laser ablation (FLA) therapy is an attractive modality for such an approach. In FLA therapy, accurate placement of laser fibers is critical to ensuring that the full target volume is ablated. In practice, error in needle placement is invariably present due to pre- to intra-procedure image registration error, needle deflection, prostate motion, and variability in interventionalist skill. In addition, some of these sources of error are difficult to control, since the available workspace and patient positions are restricted within a clinical MRI bore. In an attempt to take full advantage of the utility of intraprocedure MRI, while minimizing error in needle placement, we developed an MRI-compatible mechatronic system for guiding needles to the prostate for FLA therapy. The system has been used to place interstitial catheters for MRI-guided FLA therapy in eight subjects in an ongoing Phase I/II clinical trial. Data from these cases has provided quantification of the level of uncertainty in needle placement error. To relate needle placement error to clinical outcome, we developed a model for predicting the probability of achieving complete focal target ablation for a family of parameterized treatment plans. Results from this work have enabled the specification of evidence-based selection criteria for the maximum target size that can be confidently ablated using this technique, and quantify the benefit that may be gained with improvements in needle placement accuracy.

  3. Thyroid remnant ablation success and disease outcome in stage III or IV differentiated thyroid carcinoma: recombinant human thyrotropin versus thyroid hormone withdrawal.

    Science.gov (United States)

    Vallejo Casas, Juan A; Mena Bares, Luisa M; Gálvez Moreno, Maria A; Moreno Ortega, Estefanía; Marlowe, Robert J; Maza Muret, Francisco R; Albalá González, María D

    2016-06-01

    Most publications to date compare outcomes after post-surgical thyroid remnant ablation stimulated by recombinant human thyrotropin (rhTSH) versus thyroid hormone withholding/withdrawal (THW) in low-recurrence risk differentiated thyroid carcinoma (DTC) patients. We sought to perform this comparison in high-risk patients. We retrospectively analyzed ~9-year single-center experience in 70 consecutive adults with initial UICC (Union for International Cancer Control) stage III/IV, M0 DTC undergoing rhTSH-aided (N.=54) or THW-aided (N.=16) high-activity ablation. Endpoints included ablation success and DTC outcome. Assessed ≥1 year post-ablation, ablation success comprised a) no visible scintigraphic thyroid bed uptake or pathological extra-thyroidal uptake; b) undetectable stimulated serum thyroglobulin (Tg) without interfering autoantibodies; c) both criteria. DTC outcome, determined at the latest visit, comprised either 1) "no evidence of disease" (NED): undetectable Tg, negative Tg autoantibodies, negative most recent whole-body scan, no suspicious findings clinically, on neck ultrasonography, or on other imaging; 2) persistent disease: failure to attain NED; or 3) recurrence: loss of NED. After the first ablative activity, ablation success by scintigraphic plus biochemical criteria was 64.8% in rhTSH patients, 56.3% in THW patients (P=NS). After 3.5-year versus 6.2-year median follow-up (P<0.05), DTC outcomes were NED, 85.2%, persistent disease, 13.0%, recurrence, 1.9%, in the rhTSH group and NED, 87.5%, persistent or recurrent disease, 6.3% each, in the THW group (P=NS). In patients with initial stage III/IV, M0 DTC, rhTSH-aided and THW-assisted ablation were associated with comparable remnant eradication or DTC cure rates.

  4. A tubular electrode for radiofrequency ablation therapy

    KAUST Repository

    Antunes, Carlos Lemos Lemos Lemos

    2012-07-06

    Purpose – Due to its good mechanical and biocompatibility characteristics, nitinol SEMS is a popular endoprothesis used for relieving stricture problems in hollow organs due to carcinomas. Besides its mechanical application, SEMS can be regarded as well as potential electrode for performing RF ablation therapy on the tumor. The purpose of this work is to perform numerical and experimental analyses in order to characterize the lesion volume induced in biological tissue using this kind of tubular electrode. Design/methodology/approach – Data concerning electrical conductivity and dimension of the damaged tissue after RF ablation procedure were obtained from ex vivo samples. Next, numerical models using 3D finite element method were obtained reassembling the conditions considered at experimentation setup and results were compared. Findings – Numerical and experimental results show that a regular volume of damaged tissue can be obtained considering this type of electrode. Also, results obtained from numerical simulation are close to those obtained by experimentation. Originality/value – SEMSs, commonly used as devices to minimize obstruction problems due to the growth of tumors, may still be considered as an active electrode for RF ablation procedures. A method considering this observation is presented in this paper. Also, numerical simulation can be regarded in this case as a tool for determining the lesion volume.

  5. Interactive Volumetry Of Liver Ablation Zones.

    Science.gov (United States)

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-10-20

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm's results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.

  6. Interactive Volumetry Of Liver Ablation Zones

    Science.gov (United States)

    Egger, Jan; Busse, Harald; Brandmaier, Philipp; Seider, Daniel; Gawlitza, Matthias; Strocka, Steffen; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Kainz, Bernhard; Hann, Alexander; Chen, Xiaojun; Alhonnoro, Tuomas; Pollari, Mika; Schmalstieg, Dieter; Moche, Michael

    2015-10-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm’s results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.

  7. Radiofrequency ablation of osteoid osteomas. Analgesia and patient satisfaction in long-term follow-up

    International Nuclear Information System (INIS)

    Gebauer, B.; Collettini, F.; Bruger, C.; Streitparth, F.; Schaser, K.D.; Melcher, I.; Tunn, P.U.

    2013-01-01

    Purpose: To review the long term clinical outcomes in the treatment of osteoid osteoma (OO) using radiofrequency ablation (RFA). Materials and Methods: Our retrospective study included 59 patients who were treated in the period from April 2001 to December 2012 due to a symptomatic OO using RFA. Here, the occurrence of complications and postoperative recurrence, as well as postoperative patient satisfaction were examined. Patients satisfaction was assessed by means of a telephone interview with the visual analogue scale (VAS). Results: Mean follow-up was 50 months (2 - 116 months). The average size of the nidus was 6 mm (range 2 - 14 mm). After initial radiofrequency ablation 11.8 % (7/59) of patient showed a recurrence of symptoms. Symptoms could successfully be treated by a second ablation in 5 patients. Assisted success rate was therefore 96.6 % (57/59). The complication rate was 5.1 % (2 major and one minor complication). Furthermore we report a very high patient satisfaction and acceptance of therapy. Conclusion: RFA is a very successful therapy of symptomatic OOs with a high patient satisfaction. (orig.)

  8. Resonating Statements

    DEFF Research Database (Denmark)

    Hjelholt, Morten; Jensen, Tina Blegind

    2015-01-01

    IT projects are often complex arrangements of technological components, social actions, and organizational transformation that are difficult to manage in practice. This paper takes an analytical discourse perspective to explore the process of legitimizing IT projects. We introduce the concept...... of resonating statements to highlight how central actors navigate in various discourses over time. Particularly, the statements and actions of an IT project manager are portrayed to show how individuals can legitimize actions by connecting statements to historically produced discourses. The case study...... as part of a feedback loop to re-attach the localized IT project to the broader national discourse. The paper concludes with reflections on how to actively build on resonating statements as a strategic resource for legitimizing IT projects...

  9. Modeling CO2 Laser Ablative Impulse with Polymers

    International Nuclear Information System (INIS)

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-01-01

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO 2 laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO 2 laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  10. Innovative techniques for image-guided ablation of benign thyroid nodules: Combined ethanol and radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Sun; Baek, Jung Hwan; Choi, Young Jun; Lee, Jeong Hyun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2017-06-15

    In the treatment of benign thyroid nodules, ethanol ablation (EA), and radiofrequency ablation (RFA) have been suggested for cystic and solid thyroid nodules, respectively. Although combining these ablation techniques may be effective, no guidelines for or reviews of the combination have been published. Currently, there are three ways of combining EA and RFA: additional RFA is effective for treatment of incompletely resolved symptoms and solid residual portions of a thyroid nodule after EA. Additional EA can be performed for the residual unablated solid portion of a nodule after RFA if it is adjacent to critical structures (e.g., trachea, esophagus, and recurrent laryngeal nerve). In the concomitant procedure, ethanol is injected to control venous oozing after aspiration of cystic fluid prior to RFA of the remaining solid nodule.

  11. Convergent ablation measurements of plastic ablators in gas-filled rugby hohlraums on OMEGA

    Science.gov (United States)

    Casner, A.; Jalinaud, T.; Masse, L.; Galmiche, D.

    2015-10-01

    Indirect-drive implosions experiments were conducted on the Omega Laser Facility to test the performance of uniformly doped plastic ablators for Inertial Confinement Fusion. The first convergent ablation measurements in gas-filled rugby hohlraums are reported. Ignition relevant limb velocities in the range from 150 to 300 μm .n s-1 have been reached by varying the laser drive energy and the initial capsule aspect ratio. The measured capsule trajectory and implosion velocity are in good agreement with 2D integrated simulations and a zero-dimensional modeling of the implosions. We demonstrate experimentally the scaling law for the maximum implosion velocity predicted by the improved rocket model [Y. Saillard, Nucl. Fusion 46, 1017 (2006)] in the high-ablation regime case.

  12. Gravitoelectromagnetic resonances

    International Nuclear Information System (INIS)

    Tsagas, Christos G.

    2011-01-01

    The interaction between gravitational and electromagnetic radiation has a rather long research history. It is well known, in particular, that gravity-wave distortions can drive propagating electromagnetic signals. Since forced oscillations provide the natural stage for resonances to occur, gravitoelectromagnetic resonances have been investigated as a means of more efficient gravity-wave detection methods. In this report, we consider the coupling between the Weyl and the Maxwell fields on a Minkowski background, which also applies to astrophysical environments where gravity is weak, at the second perturbative level. We use covariant methods that describe gravitational waves via the transverse component of the shear, instead of pure-tensor metric perturbations. The aim is to calculate the properties of the electromagnetic signal, which emerges from the interaction of its linear counterpart with an incoming gravitational wave. Our analysis shows how the wavelength and the amplitude of the gravitationally driven electromagnetic wave vary with the initial conditions. More specifically, for certain initial data, the amplitude of the induced electromagnetic signal is found to diverge. Analogous, diverging, gravitoelectromagnetic resonances were also reported in cosmology. Given that, we extend our Minkowski space study to cosmology and discuss analogies and differences in the physics and in the phenomenology of the Weyl-Maxwell coupling between the aforementioned two physical environments.

  13. Magnetic resonance annual 1986

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1986-01-01

    This book contains papers written on magnetic resonance during 1986. Topics include: musculosketetal magnetic resonance imaging; imaging of the spine; magnetic resonance chemical shift imaging; magnetic resonance imaging in the central nervous system; comparison to computed tomography; high resolution magnetic resonance imaging using surface coils; magnetic resonance imaging of the chest; magnetic resonance imaging of the breast; magnetic resonance imaging of the liver; magnetic resonance spectroscopy of neoplasms; blood flow effects in magnetic resonance imaging; and current and potential applications of clinical sodium magnetic resonance imaging

  14. Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold

    International Nuclear Information System (INIS)

    Upadhyay, Arun K.; Inogamov, Nail A.; Rethfeld, Baerbel; Urbassek, Herbert M.

    2008-01-01

    Ultrafast laser irradiation of solids may ablate material off the surface. We study this process for thin films using molecular-dynamics simulation and thermodynamic analysis. Both metals and Lennard-Jones (LJ) materials are studied. We find that despite the large difference in thermodynamical properties between these two classes of materials--e.g., for aluminum versus LJ the ratio T c /T tr of critical to triple-point temperature differs by more than a factor of 4--the values of the ablation threshold energy E abl normalized to the cohesion energy, ε abl =E abl /E coh , are surprisingly universal: all are near 0.3 with ±30% scattering. The difference in the ratio T c /T tr means that for metals the melting threshold ε m is low, ε m abl , while for LJ it is high, ε m >ε abl . This thermodynamical consideration gives a simple explanation for the difference between metals and LJ. It explains why despite the universality in ε abl , metals thermomechanically ablate always from the liquid state. This is opposite to LJ materials, which (near threshold) ablate from the solid state. Furthermore, we find that immediately below the ablation threshold, the formation of large voids (cavitation) in the irradiated material leads to a strong temporary expansion on a very slow time scale. This feature is easily distinguished from the acoustic oscillations governing the material response at smaller intensities, on the one hand, and the ablation occurring at larger intensities, on the other hand. This finding allows us to explain the puzzle of huge surface excursions found in experiments at near-threshold laser irradiation

  15. Design of Ablation Test Device for Brick Coating of Gun

    Science.gov (United States)

    shirui, YAO; yongcai, CHEN; fei, WANG; jianxin, ZHAO

    2018-03-01

    As a result of the live ammunition test conditions, the barrel resistance of the barrel coating has high cost, time consuming, low efficiency and high test site requirements. This article designed a simple, convenient and efficient test device. Through the internal trajectory calculation by Matlab, the ablation environment produced by the ablation test device has achieved the expected effect, which is consistent with the working condition of the tube in the launching state, which can better reflect the ablation of the coating.

  16. A 6-year review of the outcome of endometrial ablation.

    Science.gov (United States)

    Tsaltas, J; Taylor, N; Healey, M

    1998-02-01

    In June, 1995 a postal questionnaire was distributed to all 232 women who had an endometrial ablation at Monash Medical Centre between July, 1989 and December, 1994. Data was analyzed from the 149 who responded. Length of follow-up ranged from 6 months to 6 years 6 months. Of these 78% were satisfied with their ablation and 84% found their menses to be lighter or to have stopped. The repeat ablation rate was 13% and the hysterectomy rate was 17%.

  17. Measurement of intrahepatic pressure during radiofrequency ablation in porcine liver.

    Science.gov (United States)

    Kawamoto, Chiaki; Yamauchi, Atsushi; Baba, Yoko; Kaneko, Keiko; Yakabi, Koji

    2010-04-01

    To identify the most effective procedures to avoid increased intrahepatic pressure during radiofrequency ablation, we evaluated different ablation methods. Laparotomy was performed in 19 pigs. Intrahepatic pressure was monitored using an invasive blood pressure monitor. Radiofrequency ablation was performed as follows: single-step standard ablation; single-step at 30 W; single-step at 70 W; 4-step at 30 W; 8-step at 30 W; 8-step at 70 W; and cooled-tip. The array was fully deployed in single-step methods. In the multi-step methods, the array was gradually deployed in four or eight steps. With the cooled-tip, ablation was performed by increasing output by 10 W/min, starting at 40 W. Intrahepatic pressure was as follows: single-step standard ablation, 154.5 +/- 30.9 mmHg; single-step at 30 W, 34.2 +/- 20.0 mmHg; single-step at 70 W, 46.7 +/- 24.3 mmHg; 4-step at 30 W, 42.3 +/- 17.9 mmHg; 8-step at 30 W, 24.1 +/- 18.2 mmHg; 8-step at 70 W, 47.5 +/- 31.5 mmHg; and cooled-tip, 114.5 +/- 16.6 mmHg. The radiofrequency ablation-induced area was spherical with single-step standard ablation, 4-step at 30 W, and 8-step at 30 W. Conversely, the ablated area was irregular with single-step at 30 W, single-step at 70 W, and 8-step at 70 W. The ablation time was significantly shorter for the multi-step method than for the single-step method. Increased intrahepatic pressure could be controlled using multi-step methods. From the shapes of the ablation area, 30-W 8-step expansions appear to be most suitable for radiofrequency ablation.

  18. Efficiency of ablative plasma energy transfer into a massive aluminum target using different atomic number ablators

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Stepniewski, W.; Jach, K.; Swierczynski, R.; Renner, Oldřich; Šmíd, Michal; Ullschmied, Jiří; Cikhart, J.; Klír, D.; Kubeš, P.; Řezáč, K.; Krouský, Eduard; Pfeifer, Miroslav; Skála, Jiří

    2015-01-01

    Roč. 33, č. 3 (2015), s. 379-386 ISSN 0263-0346 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk(CZ) LD14089 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; AVČR(CZ) M100101208 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : ablator atomic number * crater volume * laser energy transfer * plasma ablative pressure Subject RIV: BL - Plasma and Gas Discharge Physics; BH - Optics, Masers, Lasers (UFP-V) Impact factor: 1.649, year: 2015

  19. CT-guided radiofrequency tumor ablation in children

    International Nuclear Information System (INIS)

    Botsa, Evanthia; Poulou, Loukia S.; Koundouraki, Antonia; Thanos, Loukas; Koutsogiannis, Ioannis; Ziakas, Panayiotis D.; Alexopoulou, Efthimia

    2014-01-01

    Image-guided radiofrequency ablation is a well-accepted technique of interventional oncology in adults. To evaluate the efficacy and safety of CT-guided radiofrequency ablation as a minimally invasive treatment for metastatic neoplasms in children. A total of 15 radiofrequency ablation sessions were performed in 12 children and young adults (median age 9.5; range 5-18 years) with metastatic malignancies. Seven children and young adults had secondary hepatic lesions, three had pulmonary and two had bone lesions. Radiofrequency ablation was performed under conscious sedation. The median lesion size was 1.7 cm (range 1.3-2.8 cm). The median time for ablation was 8 min (range 7-10 min). Radiofrequency procedures were technically successful in all tumors. Postablation imaging immediately after, and 1 month and 3 months after radiofrequency ablation showed total necrosis in all patients. At 6-month follow-up, three patients (all with lesion size >2 cm) had local recurrence and underwent a second radiofrequency ablation session. At 2-year follow-up no patient had recurrence of the treated tumor. Post-ablation syndrome occurred in four children. No major complication occurred. CT-guided radiofrequency tumor ablation was safe and efficient for palliative treatment in our cohort of patients. (orig.)

  20. Osteoid Osteoma: Experience with Laser- and Radiofrequency-Induced Ablation

    International Nuclear Information System (INIS)

    Gebauer, Bernhard; Tunn, Per-Ulf; Gaffke, Gunnar; Melcher, Ingo; Felix, Roland; Stroszczynski, Christian

    2006-01-01

    The purpose of this study was to analyze the clinical outcome of osteoid osteoma treated by thermal ablation after drill opening. A total of 17 patients and 20 procedures were included. All patients had typical clinical features (age, pain) and a typical radiograph showing a nidus. In 5 cases, additional histological specimens were acquired. After drill opening of the osteoid osteoma nidus, 12 thermal ablations were induced by laser interstitial thermal therapy (LITT) (9F Power-Laser-Set; Somatex, Germany) and 8 ablations by radiofrequency ablation (RFA) (RITA; StarBurst, USA). Initial clinical success with pain relief has been achieved in all patients after the first ablation. Three patients had an osteoid osteoma recurrence after 3, 9, and 10 months and were successfully re-treated by thermal ablation. No major complication and one minor complication (sensible defect) were recorded. Thermal ablation is a safe and minimally invasive therapy option for osteoid osteoma. Although the groups are too small for a comparative analysis, we determined no difference between laser- and radiofrequency-induced ablation in clinical outcome after ablation

  1. A thermal model for nanosecond pulsed laser ablation of aluminum

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-07-01

    Full Text Available In order to simulate the nanosecond pulsed laser ablation of aluminum, a novel model was presented for the target ablation and plume expansion. The simulation of the target ablation was based on one-dimensional heat conduction, taking into account temperature dependent material properties, phase transition, dielectric transition and phase explosion. While the simulation of the plume expansion was based on one-dimensional gas-dynamical equation, taking into account ionization, plume absorption and shielding. By coupling the calculations of the target ablation and plume expansion, the characteristics of the target and plume were obtained. And the calculated results were in good agreement with the experimental data, in terms of ablation threshold and depth within the fluence range of the tested laser. Subsequently, investigations were carried out to analyze the mechanisms of nanosecond pulsed laser ablation. The calculated results showed that the maximum surface temperature remained at about 90% of the critical temperature (0.9Tc due to phase explosion. Moreover, the plume shielding has significant effects on the laser ablation, and the plume shielding proportion increase as the laser fluence increasing. The ambient pressure belows 100 Pa is more suitable for laser ablation, which can obtained larger ablation depth.

  2. Using Target Ablation for Ion Beam Quality Improvement

    International Nuclear Information System (INIS)

    Zhao Shuan; Chen Jia-Er; Lin Chen; Ma Wen-Jun; Yan Xue-Qing; Wang Jun-Jie

    2016-01-01

    During the laser foil interaction, the output ion beam quality including the energy spread and beam divergence can be improved by the target ablation, due to the direct laser acceleration (DLA) electrons generated in the ablation plasma. The acceleration field established at the target rear by these electrons, which is highly directional and triangle-envelope, is helpful for the beam quality. With the help of the target ablation, both the beam divergence and energy spread will be reduced. If the ablation is more sufficient, the impact of DLA-electron-caused field will be strengthened, and the beam quality will be better, confirmed by the particle-in-cell simulation. (paper)

  3. Development of laser ablation plasma by anisotropic self-radiation

    Directory of Open Access Journals (Sweden)

    Ohnishi Naofumi

    2013-11-01

    Full Text Available We have proposed a method for reproducing an accurate solution of low-density ablation plasma by properly treating anisotropic radiation. Monte-Carlo method is employed for estimating Eddington tensor with limited number of photon samples in each fluid time step. Radiation field from ablation plasma is significantly affected by the anisotropic Eddington tensor. Electron temperature around the ablation surface changes with the radiation field and is responsible for the observed emission. An accurate prediction of the light emission from the laser ablation plasma requires a careful estimation of the anisotropic radiation field.

  4. CT-guided radiofrequency tumor ablation in children

    Energy Technology Data Exchange (ETDEWEB)

    Botsa, Evanthia [National and Kapodistrian University of Athens, First Pediatric Clinic, Agia Sofia Children' s Hospital, Athens (Greece); Poulou, Loukia S.; Koundouraki, Antonia; Thanos, Loukas [Sotiria General Hospital for Chest Diseases, Department of Medical Imaging and Interventional Radiology, Athens (Greece); Koutsogiannis, Ioannis [General Military Hospital NIMTS, Department of Medical Imaging, Athens (Greece); Ziakas, Panayiotis D. [Warren Alpert Medical School of Brown University Rhode Island Hospital, Division of Infectious Diseases, Providence, RI (United States); Alexopoulou, Efthimia [Attikon University Hospital, Second Department of Radiology, Athens University School of Medicine, Athens (Greece)

    2014-11-15

    Image-guided radiofrequency ablation is a well-accepted technique of interventional oncology in adults. To evaluate the efficacy and safety of CT-guided radiofrequency ablation as a minimally invasive treatment for metastatic neoplasms in children. A total of 15 radiofrequency ablation sessions were performed in 12 children and young adults (median age 9.5; range 5-18 years) with metastatic malignancies. Seven children and young adults had secondary hepatic lesions, three had pulmonary and two had bone lesions. Radiofrequency ablation was performed under conscious sedation. The median lesion size was 1.7 cm (range 1.3-2.8 cm). The median time for ablation was 8 min (range 7-10 min). Radiofrequency procedures were technically successful in all tumors. Postablation imaging immediately after, and 1 month and 3 months after radiofrequency ablation showed total necrosis in all patients. At 6-month follow-up, three patients (all with lesion size >2 cm) had local recurrence and underwent a second radiofrequency ablation session. At 2-year follow-up no patient had recurrence of the treated tumor. Post-ablation syndrome occurred in four children. No major complication occurred. CT-guided radiofrequency tumor ablation was safe and efficient for palliative treatment in our cohort of patients. (orig.)

  5. Effect of liquid environment on the titanium surface modification by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Nisar, E-mail: chnisarali@gmail.com [Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna (Austria); Department of Basic Science and Humanities, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad (Pakistan); Laser Laboratories, Centre for Advanced Studies in Physics, GC University, 1-Church Road, Lahore (Pakistan); Department of Physics, GC University, Kachehri Road, Lahore (Pakistan); Bashir, Shazia [Laser Laboratories, Centre for Advanced Studies in Physics, GC University, 1-Church Road, Lahore (Pakistan); Umm-i-Kalsoom [Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna (Austria); Laser Laboratories, Centre for Advanced Studies in Physics, GC University, 1-Church Road, Lahore (Pakistan); Department of Physics, GC University, Kachehri Road, Lahore (Pakistan); Department of Basic Science and Humanities, University of Engineering and Technology Lahore, Kala Shah Kaku Campus, Lahore (Pakistan); Begum, Narjis [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology Lahore (Pakistan); Husinsky, Wolfgang [Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna (Austria)

    2017-05-31

    Highlights: • Liquid assisted ablation effects on the titanium under varying number of laser pulses is investigated. • SEM analysis reveals the growth of various features like ripples, dendritic structures, pores, grains and craters. • Raman and XRD analyses shows the presence of TiO{sub 2} & TiH in both media whereas, TiC, TiCxOy are only identified in propanol. • Hardness of ablated Ti explored by Nano indentation is found to decrease with increasing number of pulses in both media. • Relationship between surface, structural and mechanical modifications is established. - Abstract: The effect of liquid environment (de-ionized water and propanol) on surface, structural and mechanical properties of femtosecond laser ablated titanium has been investigated. For this purpose, Ti: sapphire laser (800 nm, 30 fs, 1 kHz) has been employed, at a fluence of 3.6 J/cm{sup 2} in ambient environments of de-ionized water, and propanol for various number of laser pulses i.e. 500, 1000, 1500 and 2000. The surface features, chemical composition, structural analysis and mechanical properties of irradiated targets have been evaluated by using Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X -ray Diffraction (XRD), Raman Spectroscopy and Nano-hardness tester. Various features like dendritic structures, globules, porous granular morphology, cones, crater, circular ripples and thermal stress cracking are observed at the ablated area after irradiation. These features are instigated by various thermal and chemical phenomena induced by laser heating at the solid–liquid interface. Decrease in nano-hardness observed in both ambient environments is attributable to the formation of hydrides after irradiation in both media.

  6. 1004 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    1004. RESONANCE │ November 2013. Page 2. 1005. RESONANCE │ November 2013. Page 3. 1006. RESONANCE │ November 2013. Page 4. 1007. RESONANCE │ November 2013. Page 5. 1008. RESONANCE │ November 2013. Page 6. 1009. RESONANCE │ November 2013. Page 7. 1010. RESONANCE ...

  7. Even order snake resonances

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1993-01-01

    We found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune shift of imperfection resonances, each snake resonance splits into two

  8. Junctional rhythm occurring during AV nodal reentrant tachycardia ablation, is it different among Egyptians?

    Directory of Open Access Journals (Sweden)

    Ayman M. Abdel Moteleb

    2013-12-01

    Conclusion: Junctional rhythm is a sensitive predictor of successful ablation. The pattern of JR is a useful predictor of successful ablation. Egyptian population has distinctive patterns of JR during AVNRT ablation.

  9. CT-guided Bipolar and Multipolar Radiofrequency Ablation (RF Ablation) of Renal Cell Carcinoma: Specific Technical Aspects and Clinical Results

    International Nuclear Information System (INIS)

    Sommer, C. M.; Lemm, G.; Hohenstein, E.; Bellemann, N.; Stampfl, U.; Goezen, A. S.; Rassweiler, J.; Kauczor, H. U.; Radeleff, B. A.; Pereira, P. L.

    2013-01-01

    Purpose. This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. Methods. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Results. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m 2 before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m 2 after RF ablation; not significant). Conclusions. CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  10. CT-guided Bipolar and Multipolar Radiofrequency Ablation (RF Ablation) of Renal Cell Carcinoma: Specific Technical Aspects and Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Lemm, G.; Hohenstein, E. [Minimally Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Clinic for Radiology (Germany); Bellemann, N.; Stampfl, U. [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Goezen, A. S.; Rassweiler, J. [Clinic for Urology, SLK Kliniken Heilbronn GmbH (Germany); Kauczor, H. U.; Radeleff, B. A. [University Hospital Heidelberg, INF 110, Department of Diagnostic and Interventional Radiology (Germany); Pereira, P. L. [Minimally Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Clinic for Radiology (Germany)

    2013-06-15

    Purpose. This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. Methods. We included 22 consecutive patients (3 women; age 74.2 {+-} 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 {+-} 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Results. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 {+-} 13.6 min and 43.7 {+-} 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 {+-} 8.8 months, local recurrence-free survival was 14.4 {+-} 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 {+-} 16.6 ml/min/1.73 m{sup 2} before RF ablation vs. 47.2 {+-} 11.9 ml/min/1.73 m{sup 2} after RF ablation; not significant). Conclusions. CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  11. Theoretical analyses of the refractive implications of transepithelial PRK ablations.

    Science.gov (United States)

    Arba Mosquera, Samuel; Awwad, Shady T

    2013-07-01

    To analyse the refractive implications of single-step, transepithelial photorefractive keratectomy (TransPRK) ablations. A simulation for quantifying the refractive implications of TransPRK ablations has been developed. The simulation includes a simple modelling of corneal epithelial profiles, epithelial ablation profiles as well as refractive ablation profiles, and allows the analytical quantification of the refractive implications of TransPRK in terms of wasted tissue, achieved optical zone (OZ) and induced refractive error. Wasted tissue occurs whenever the actual corneal epithelial profile is thinner than the applied epithelial ablation profile, achieved OZ is reduced whenever the actual corneal epithelial profile is thicker than the applied epithelial ablation profile and additional refractive errors are induced whenever the actual difference centre-to-periphery in the corneal epithelial profile deviates from the difference in the applied epithelial ablation profile. The refractive implications of TransPRK ablations can be quantified using simple theoretical simulations. These implications can be wasted tissue (∼14 µm, if the corneal epithelial profile is thinner than the ablated one), reduced OZ (if the corneal epithelial profile is thicker than ablated one, very severe for low corrections) and additional refractive errors (∼0.66 D, if the centre-to-periphery progression of the corneal epithelial profile deviates from the progression of the ablated one). When TransPRK profiles are applied to normal, not previously treated, non-pathologic corneas, no specific refractive implications associated to the transepithelial profile can be anticipated; TransPRK would provide refractive outcomes equal to those of standard PRK. Adjustments for the planned OZ and, in the event of retreatments, for the target sphere can be easily derived.

  12. Electroporation ablation: A new energy modality for ablation of arrhythmogenic cardiac substrate

    NARCIS (Netherlands)

    van Driel, VJHM

    2016-01-01

    At the very end of the Direct Current (DC) era, low-energy DC ablation was demonstrated to cause myocardial lesions by non-thermal irreversible electroporation (IRE) (permanent formation of pores in the cell membrane, leading to cell death), without arcing and/or barotrauma. To eliminate rather

  13. Similarities and differences in ablative and non-ablative iron oxide nanoparticle hyperthermia cancer treatment

    Science.gov (United States)

    Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. Jack

    2015-03-01

    The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. It has been demonstrated by many research groups that ablative temperatures and cytotoxicity can be produced with locally NP-based hyperthermia. Such ablative NP techniques have demonstrated the potential for success. Much attention has also been given to the fact that NP may be administered systemically, resulting in a broader cancer therapy approach, a lower level of tumor NP content and a different type of NP cancer therapy (most likely in the adjuvant setting). To use NP based hyperthermia successfully as a cancer treatment, the technique and its goal must be understood and utilized in the appropriate clinical context. The parameters include, but are not limited to, NP access to the tumor (large vs. small quantity), cancer cell-specific targeting, drug carrying capacity, potential as an ionizing radiation sensitizer, and the material properties (magnetic characteristics, size and charge). In addition to their potential for cytotoxicity, the material properties of the NP must also be optimized for imaging, detection and direction. In this paper we will discuss the differences between, and potential applications for, ablative and non-ablative magnetic nanoparticle hyperthermia.

  14. Assisted Living

    Science.gov (United States)

    ... a resident's needs depends as much on the philosophy and services of the assisted living facility as it does on the quality of care. The Administration on Aging, a part of the U.S. Department of Health and Human Services (HHS), offers these suggestions to help you ...

  15. Assistive Devices

    Science.gov (United States)

    If you have a disability or injury, you may use a number of assistive devices. These are tools, products or types of equipment that help you perform tasks and activities. They may help you move around, see, communicate, eat, or get ...

  16. Widely tunable asymmetric long-period fiber grating with high sensitivity using optical polymer on laser-ablated cladding.

    Science.gov (United States)

    Chen, Nan-Kuang; Hsu, Der-Yi; Chi, Sien

    2007-08-01

    We demonstrate high-efficiency, wideband-tunable, laser-ablated long-period fiber gratings that use an optical polymer overlay. Portions of the fiber cladding are periodically removed by CO(2) laser pulses to induce periodic index changes for coupling the core mode into cladding modes. An optical polymer with a high thermo-optic coefficient with a dispersion distinct from that of silica is used on a deep-ablated cladding structure so that the effective indices of cladding modes become dispersive and the resonant wavelengths can be efficiently tuned. The tuning efficiency can be as high as 15.8 nm/ degrees C, and the tuning range can be wider than 105 nm (1545-1650 nm).

  17. Inertial effects in laser-driven ablation

    International Nuclear Information System (INIS)

    Harrach, R.J.; Szeoke, A.; Howard, W.M.

    1983-01-01

    The gasdynamic partial differential equations (PDE's) governing the motion of an ablatively accelerated target (rocket) contain an inertial force term that arises from acceleration of the reference frame in which the PDE's are written. We give a simple, intuitive description of this effect, and estimate its magnitude and parametric dependences by means of approximate analytical formulas inferred from our computer hydrocode calculations. Often this inertial term is negligible, but for problems in the areas of laser fusion and laser equation of state studies we find that it can substantially reduce the attainable hydrodynamic efficiency of acceleration and implosion

  18. Ablative Material Testing at Lewis Rocket Lab

    Science.gov (United States)

    1997-01-01

    The increasing demand for a low-cost, reliable way to launch commercial payloads to low- Earth orbit has led to the need for inexpensive, expendable propulsion systems for new launch vehicles. This, in turn, has renewed interest in less complex, uncooled rocket engines that have combustion chambers and exhaust nozzles fabricated from ablative materials. A number of aerospace propulsion system manufacturers have utilized NASA Lewis Research Center's test facilities with a high degree of success to evaluate candidate materials for application to new propulsion devices.

  19. Obtention of Ti nanoparticles by laser ablation

    International Nuclear Information System (INIS)

    Diaz E, J.R.; Escobar A, L.; Camps, E.; Santiago, P.; Ascencio, J.

    2002-01-01

    The obtention of Ti nanoparticles around 5-30 nm diameter through the laser ablation technique is reported. The formation of nanoparticles is carried out in He atmosphere to different pressures, placing directly in Si substrates (100) and in Cu grids. The results show that the work pressure is an important parameter that allows to control the nanoparticles size. Also the plasma characterization results are presented where the Ti II is the predominant specie with an average kinetic energy of 1824 eV. (Author)

  20. Excimer laser ablation of the cornea

    Science.gov (United States)

    Pettit, George H.; Ediger, Marwood N.; Weiblinger, Richard P.

    1995-03-01

    Pulsed ultraviolet laser ablation is being extensively investigated clinically to reshape the optical surface of the eye and correct vision defects. Current knowledge of the laser/tissue interaction and the present state of the clinical evaluation are reviewed. In addition, the principal findings of internal Food and Drug Administration research are described in some detail, including a risk assessment of the laser-induced-fluorescence and measurement of the nonlinear optical properties of cornea during the intense UV irradiation. Finally, a survey is presented of the alternative laser technologies being explored for this ophthalmic application.

  1. Ablation of polymers by ultraviolet pulsed laser

    International Nuclear Information System (INIS)

    Brezini, A.; Benharrats, N.

    1993-08-01

    The surface modifications of different polymers treated by far UV-Excimer laser (λ = 193mn, 248, 308nm) are analysed by X-Ray Photoelectrons Spectroscopy. The main feature observed depends strongly on the absorption coefficients. For the high absorbing polymers such (PVC, PS, PI,...) the mechanism of the UV-Excimer Laser interaction appears to be governed by an ablative photodecomposition process (APD) with an APD threshold. In the other limit, i.e. low absorbing polymer the interaction leads to a photothermal process. (author). 51 refs, 24 figs, 7 tabs

  2. Laser ablation studies in southern Africa

    Science.gov (United States)

    McKenzie, Edric; Forbes, A.; Turner, G. R.; Michaelis, Max M.

    2000-08-01

    With the launch of the South African National Laser Centre, new programs will need to be defined. Medical, environmental and industrial laser applications must obviously take top priority -- as opposed to the uranium isotope separation and military applications of the past. We argue however, that a small effort in laser ablation for space propulsion is justifiable, since a few very large CO2 lasers are available and since two tentative propulsion experiments have already been conducted in South Africa. We attempt to give LISP (Laser Impulse Space Propulsion) an equatorial and a Southern dimension.

  3. Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up

    International Nuclear Information System (INIS)

    Lepetit-Coiffe, Matthieu; Quesson, Bruno; Moonen, Chrit T.W.; Laumonier, Herve; Trillaud, Herve; Seror, Olivier; Sesay, Musa-Bahazid; Grenier, Nicolas

    2010-01-01

    To assess the practical feasibility and effectiveness of real-time magnetic resonance (MR) temperature monitoring for the radiofrequency (RF) ablation of liver tumours in a clinical setting, nine patients (aged 49-87 years, five men and four women) with one malignant tumour (14-50 mm, eight hepatocellular carcinomas and one colorectal metastasis), were treated by 12-min RF ablation using a 1.5-T closed magnet for real-time temperature monitoring. The clinical monopolar RF device was filtered at 64 MHz to avoid electromagnetic interference. Real-time computation of thermal-dose (TD) maps, based on Sapareto and Dewey's equation, was studied to determine its ability to provide a clear end-point of the RF procedure. Absence of local recurrence on follow-up MR images obtained 45 days after the RF ablation was used to assess the apoptotic and necrotic prediction obtained by real-time TD maps. Seven out of nine tumours were completely ablated according to the real-time TD maps. Compared with 45-day follow-up MR images, TD maps accurately predicted two primary treatment failures, but were not relevant in the later progression of one case of secondary local tumour. The real-time TD concept is a feasible and promising monitoring method for the RF ablation of liver tumours. (orig.)

  4. Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit-Coiffe, Matthieu; Quesson, Bruno; Moonen, Chrit T.W. [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Laumonier, Herve; Trillaud, Herve [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service de Radiologie, Hopital Saint-Andre, CHU Bordeaux, Bordeaux (France); Seror, Olivier [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service de Radiologie, Hopital Jean Verdier, Bondy (France); Sesay, Musa-Bahazid [Service d' Anesthesie Reanimation III, Hopital Pellegrin, CHU Bordeaux, Bordeaux (France); Grenier, Nicolas [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service d' Imagerie Diagnostique et Therapeutique de l' Adulte, Hopital Pellegrin, CHU Bordeaux, Bordeaux (France)

    2010-01-15

    To assess the practical feasibility and effectiveness of real-time magnetic resonance (MR) temperature monitoring for the radiofrequency (RF) ablation of liver tumours in a clinical setting, nine patients (aged 49-87 years, five men and four women) with one malignant tumour (14-50 mm, eight hepatocellular carcinomas and one colorectal metastasis), were treated by 12-min RF ablation using a 1.5-T closed magnet for real-time temperature monitoring. The clinical monopolar RF device was filtered at 64 MHz to avoid electromagnetic interference. Real-time computation of thermal-dose (TD) maps, based on Sapareto and Dewey's equation, was studied to determine its ability to provide a clear end-point of the RF procedure. Absence of local recurrence on follow-up MR images obtained 45 days after the RF ablation was used to assess the apoptotic and necrotic prediction obtained by real-time TD maps. Seven out of nine tumours were completely ablated according to the real-time TD maps. Compared with 45-day follow-up MR images, TD maps accurately predicted two primary treatment failures, but were not relevant in the later progression of one case of secondary local tumour. The real-time TD concept is a feasible and promising monitoring method for the RF ablation of liver tumours. (orig.)

  5. Multipolar radiofrequency ablation using 4–6 applicators simultaneously: A study in the ex vivo bovine liver

    International Nuclear Information System (INIS)

    Stoffner, Rudolf; Kremser, Christian; Schullian, Peter; Haidu, Marion; Widmann, Gerlig; Bale, Reto J.

    2012-01-01

    In this study the volume and shape of coagulation zones after multipolar radiofrequency ablation (RFA) with simultaneous use of 4–6 applicators in the ex vivo bovine liver were investigated. The RF-applicators were positioned in 13 different configurations to simulate ablation of large solitary tumors and simultaneous ablation of multiple lesions with 120 kJ of applied energy/session. In total, 110 coagulation zones were induced. Standardized measurements of the volume and shape of the coagulation zones were carried out on magnetic resonance images and statistically analyzed. The coagulation zones induced with solitary applicators and with 2 applicators were imperceptibly small and incomplete, respectively. At 20 mm applicator distance, the total ablated volume was significantly larger if all applicators were arranged in a single group compared to placement in 2 distant applicator groups, each consisting of 3 applicators (p = .001). The mean total coagulated volume ranged from immeasurably small (if 6 solitary applicators were applied simultaneously) to 74.7 cc (if 6 applicators at 30 mm distance between neighboring applicators were combined to a single group). Applicator distance, number and positioning array impacted time and shape. The coagulation zones surrounding groups with 4–6 applicators were regularly shaped, homogeneous and completely fused, and the axial diameters were almost constant. In conclusion, multipolar RFA with 4–6 applicators is feasible. The multipolar simultaneous mode should be applied for large and solitary lesions only, small and multiple tumors should be ablated consecutively in standard multipolar mode with up to 3 applicators

  6. Rail gun performance and plasma characteristics due to wall ablation

    Science.gov (United States)

    Ray, P. K.

    1986-01-01

    The experiment of Bauer, et al. (1982) is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time.

  7. Ganglion Plexus Ablation in Advanced Atrial Fibrillation: The AFACT Study

    NARCIS (Netherlands)

    Driessen, Antoine H. G.; Berger, Wouter R.; Krul, Sébastien P. J.; van den Berg, Nicoline W. E.; Neefs, Jolien; Piersma, Femke R.; Chan Pin Yin, Dean R. P. P.; de Jong, Jonas S. S. G.; van Boven, WimJan P.; de Groot, Joris R.

    2016-01-01

    Patients with long duration of atrial fibrillation (AF), enlarged atria, or failed catheter ablation have advanced AF and may require more extensive treatment than pulmonary vein isolation. The aim of this study was to investigate the efficacy and safety of additional ganglion plexus (GP) ablation

  8. Delayed Development of Pneumothorax After Pulmonary Radiofrequency Ablation

    International Nuclear Information System (INIS)

    Clasen, Stephan; Kettenbach, Joachim; Kosan, Bora; Aebert, Hermann; Schernthaner, Melanie; Kroeber, Stefan-Martin; Boemches, Andrea; Claussen, Claus D.; Pereira, Philippe L.

    2009-01-01

    Acute pneumothorax is a frequent complication after percutaneous pulmonary radiofrequency (RF) ablation. In this study we present three cases showing delayed development of pneumothorax after pulmonary RF ablation in 34 patients. Our purpose is to draw attention to this delayed complication and to propose a possible approach to avoid this major complication. These three cases occurred subsequent to 44 CT-guided pulmonary RF ablation procedures (6.8%) using either internally cooled or multitined expandable RF electrodes. In two patients, the pneumothorax, being initially absent at the end of the intervention, developed without symptoms. One of these patients required chest drain placement 32 h after RF ablation, and in the second patient therapy remained conservative. In the third patient, a slight pneumothorax at the end of the intervention gradually increased and led into tension pneumothorax 5 days after ablation procedure. Underlying bronchopleural fistula along the coagulated former electrode track was diagnosed in two patients. In conclusion, delayed development of pneumothorax after pulmonary RF ablation can occur and is probably due to underlying bronchopleural fistula, potentially leading to tension pneumothorax. Patients and interventionalists should be prepared for delayed onset of this complication, and extensive track ablation following pulmonary RF ablation should be avoided.

  9. Spectroscopic photoacoustic imaging of radiofrequency ablation in the left atrium

    NARCIS (Netherlands)

    S. Iskander-Rizk (Sophinese); P. Kruizinga (Pieter); A.F.W. van der Steen (Ton); G. van Soest (Gijs)

    2018-01-01

    textabstractCatheter-based radiofrequency ablation for atrial fibrillation has long-term success in 60-70% of cases. A better assessment of lesion quality, depth, and continuity could improve the procedure’s outcome. We investigate here photoacoustic contrast between ablated and healthy atrial-wall

  10. Catheter Ablation of Focal Atrial Tachycardia Using Remote Magnetic Navigation

    DEFF Research Database (Denmark)

    Liu, Xiao-Yu; Jacobsen, Peter Karl; Pehrson, Steen

    2018-01-01

    , a total of 56 atrial foci were found. Acute success of the primary ablation was obtained in 52 patients (98%). Mean procedure duration was 109 ± 35 min, ablation duration was 401 sec (interquartile range [IQR], 332 sec), and fluoroscopy time was 5.0 min (IQR, 3.0 min). After a mean follow-up of 31 ± 18...

  11. Subtotal ablation of parietal epithelial cells induces crescent formation.

    NARCIS (Netherlands)

    Sicking, E.M.; Fuss, A.; Uhlig, S.; Jirak, P.; Dijkman, H.; Wetzels, J.; Engel, D.R.; Urzynicok, T.; Heidenreich, S.; Kriz, W.; Kurts, C.; Ostendorf, T.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established

  12. Unusual tumour ablations: report of difficult and interesting cases

    OpenAIRE

    Mauri, Giovanni; Nicosia, Luca; Varano, Gianluca Maria; Shyn, Paul; Sartori, Sergio; Tombesi, Paola; Di Vece, Francesca; Orsi, Franco; Solbiati, Luigi

    2017-01-01

    Image-guided ablations are nowadays applied in the treatment of a wide group of diseases and in different organs and regions, and every day interventional radiologists have to face more difficult and unusual cases of tumour ablation. In the present case review, we report four difficult and unusual cases, reporting some tips and tricks for a successful image-guided treatment.

  13. Low vulnerability of the right phrenic nerve to electroporation ablation

    NARCIS (Netherlands)

    van Driel, Vincent J. H. M.; Neven, KGEJ; van Wessel, Harri; Vink, Aryan; Doevendans, Pieter A. F. M.; Wittkampf, Fred H. M.

    BACKGROUND Circular electroporation ablation is a novel ablation modality for electrical pulmonary vein isolation. With a single 200-3 application, deep circular myocardial lesions can be created. However, the acute and chronic effects of this energy source on phrenic nerve (PN) function are

  14. Laser-assisted delivery of topical methotrexate - in vitro investigations

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth Hjardem

    2016-01-01

    of the correlation between laser parameters and tissue effects was used to deliver methotrexate (MTX) topically through microscopic ablation zones (MAZs) of precise dimensions. MTX is a well-known chemotherapeutic and anti-inflammatory drug that may cause systemic adverse effects, and topical delivery is thus......Ablative fractional lasers (AFXL) are increasingly used to treat dermatological disorders and to facilitate laser-assisted topical drug delivery. In this thesis, laser-tissue interactions generated by stacked pulses with a miniaturized low-power 2,940 nm AFXL were characterized (study I). Knowledge...... zones of varying thickness. The ratio of skin deposition versus transdermal permeation was constant, regardless of MAZ depth. Impact of transport kinetics on AFXL-assisted topical MTX delivery: MTX accumulated rapidly in AFXL-processed skin. MTX was detectable in mid-dermis after 15 min. and saturated...

  15. Macrophages loaded with gold nanoshells for photothermal ablation of glioma: An in vitro model

    Science.gov (United States)

    Makkouk, Amani Riad

    The current median survival of patients with glioblastoma multiforme (GBM), the most common type of glioma, remains at 14.6 months despite multimodal treatments (surgery, radiotherapy and chemotherapy). This research aims to study the feasibility of photothermal ablation of glioma using gold nanoshells that are heated upon laser irradiation at their resonance wavelength. The novelty of our approach lies in improving nanoshell tumor delivery by loading them in macrophages, which are known to be recruited to gliomas via tumor-released chemoattractive agents. Ferumoxides, superparamagnetic iron oxide (SPIO) nanoparticles, are needed as an additional macrophage load in order to visualize macrophage accumulation in the tumor with magnetic resonance imaging (MRI) prior to laser irradiation. The feasibility of this approach was studied in an in vitro model of glioma spheroids with the use of continuous wave (CW) laser light for ablation. The optimal loading of both murine and rat macrophages with Ferumoxides was determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Higher concentrations of SPIO were observed in rat macrophages, and the optimal concentration was chosen at 100 microg Fe/ml. Macrophages were found to be very sensitive to near infra-red (NIR) laser irradiation, and their use as vehicles was thus not expected to hinder the function of loaded nanoshells as tumor-ablating tools. The intracellular presence of gold nanoshells in macrophages was confirmed with TEM imaging. Next, the loading of both murine and rat macrophages with gold nanoshells was studied using UV/Vis spectrophotometry, where higher nanoshell uptake was found in rat macrophages. Incubation of loaded murine and rat macrophages with rat C-6 and human ACBT spheroids, respectively, resulted in their infiltration of the spheroids. Subsequent laser irradiation at 55 W/cm2 for 10 min and follow-up of spheroid average diameter size over 14 days post-irradiation showed that

  16. Pulsed Tm:YAG laser ablation of knee joint tissues

    Science.gov (United States)

    Shi, Wei-Qiang; Vari, Sandor G.; Duffy, J. T.; Miller, J. M.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1992-06-01

    We investigated the effect of a free-running 2.01 micron pulsed Tm:YAG laser on bovine knee joint tissues. Ablation rates of fresh fibrocartilage, hyaline cartilage, and bone were measured in saline as a function of laser fluence (160 - 640 J/cm2) and fiber core size (400 and 600 microns). All tissues could be effectively ablated and the ablation rate increased linearly with the increasing fluence. Use of fibers of different core sizes, while maintaining constant energy fluence, did not result in significant difference in ablation rate. Histology analyses of the ablated tissue samples reveal average Tm:YAG radiation induced thermal damage (denatunalization) zones ranging between 130 and 540 microns, depending on the laser parameters and the tissue type.

  17. Nanoparticle fabrication of hydroxyapatite by laser ablation in water

    International Nuclear Information System (INIS)

    Musaev, O. R.; Wieliczka, D. M.; Wrobel, J. M.; Kruger, M. B.; Dusevich, V.

    2008-01-01

    Synthetic polycrystalline hydroxyapatite was ablated in water with 337 nm radiation from a UV nitrogen pulsed laser. According to transmission electron microscopy micrographs, the ablated particles were approximately spherical and had a size of ∼80 nm. Raman spectroscopic analysis demonstrated that particles had the same structure as the original crystal. X-ray photoelectron spectroscopy showed that the surface chemical composition was close to that of the original material. The characteristics of the ablated particles and estimations of the temperature rise of the hydroxyapatite surface under laser irradiation are consistent with the mechanism of explosive boiling being responsible for ablation. The experimental observations offer the basis for preparation of hydroxyapatite nanoparticles by laser ablation in water

  18. Chemothermal Therapy for Localized Heating and Ablation of Tumor

    Directory of Open Access Journals (Sweden)

    Zhong-Shan Deng

    2013-01-01

    Full Text Available Chemothermal therapy is a new hyperthermia treatment on tumor using heat released from exothermic chemical reaction between the injected reactants and the diseased tissues. With the highly minimally invasive feature and localized heating performance, this method is expected to overcome the ubiquitous shortcomings encountered by many existing hyperthermia approaches in ablating irregular tumor. This review provides a relatively comprehensive review on the latest advancements and state of the art in chemothermal therapy. The basic principles and features of two typical chemothermal ablation strategies (acid-base neutralization-reaction-enabled thermal ablation and alkali-metal-enabled thermal/chemical ablation are illustrated. The prospects and possible challenges facing chemothermal ablation are analyzed. The chemothermal therapy is expected to open many clinical possibilities for precise tumor treatment in a minimally invasive way.

  19. Computational modeling of ultra-short-pulse ablation of enamel

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Bailey, D.S.; Young, D.A. [and others

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 sec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  20. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study.

    Science.gov (United States)

    Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G

    2016-01-01

    Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.

  1. Picosecond laser ablation of porcine sclera

    Science.gov (United States)

    Góra, Wojciech S.; Harvey, Eleanor M.; Dhillon, Baljean; Parson, Simon H.; Maier, Robert R. J.; Hand, Duncan P.; Shephard, Jonathan D.

    2013-03-01

    Lasers have been shown to be successful in certain medical procedures and they have been identified as potentially making a major contribution to the development of minimally invasive procedures. However, the uptake is not as widespread and there is scope for many other applications where laser devices may offer a significant advantage in comparison to the traditional surgical tools. The purpose of this research is to assess the potential of using a picosecond laser for minimally invasive laser sclerostomy. Experiments were carried out on porcine scleral samples due to the comparable properties to human tissue. Samples were prepared with a 5mm diameter trephine and were stored in lactated Ringer's solution. After laser machining, the samples were fixed in 3% glutaraldehyde, then dried and investigated under SEM. The laser used in the experiments is an industrial picosecond TRUMPF TruMicro laser operating at a wavelength of 1030nm, pulse length of 6ps, repetition rate of 1 kHz and a focused spot diameter of 30μm. The laser beam was scanned across the samples with the use of a galvanometer scan head and various ablation patterns were investigated. Processing parameters (pulse energy, spot and line separation) which allow for the most efficient laser ablation of scleral tissue without introducing any collateral damage were investigated. The potential to create various shapes, such as linear incisions, square cavities and circular cavities was demonstrated.

  2. Recolonization of laser-ablated bacterial biofilm.

    Science.gov (United States)

    Nandakumar, Kanavillil; Obika, Hideki; Utsumi, Akihiro; Toshihiko, Ooie; Yano, Tetsuo

    2004-01-20

    The recolonization of laser-ablated bacterial monoculture biofilm was studied in the laboratory by using a flow-cytometer system. The marine biofilm-forming bacterium Pseudoalteromonas carrageenovora was used to develop biofilms on titanium coupons. Upon exposure to a low-power pulsed irradiation from an Nd:YAG laser, the coupons with biofilm were significantly reduced both in terms of total viable count (TVC) and area cover. The energy density used for a pulse of 5 ns was 0.1 J/cm(2) and the durations of irradiation exposure were 5 and 10 min. When placed in a flow of dilute ZoBell marine broth medium (10%) the laser-destructed bacterial film in a flow-cytometer showed significant recovery over a period of time. The flow of medium was regulated at 3.2 ml/min. The increase in area cover and TVC, however, was significantly less than that observed for nonirradiated control (t-test, Precolonization compared to control was thought be due to the lethal and sublethal impacts of laser irradiation on bacteria. This observation thus provided data on the online recolonization speed of biofilm, which is important when considering pulsed laser irradiation as an ablating technique of biofilm formation and removal in natural systems. Copyright 2003 Wiley Periodicals, Inc.

  3. Applied neutron resonance theory

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1980-01-01

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (author)

  4. Applied neutron resonance theory

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1978-07-01

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (orig.) [de

  5. Ventricular fibrillation occurring after atrioventricular node ablation despite minimal difference between pre- and post-ablation heart rates.

    Science.gov (United States)

    Squara, F; Theodore, G; Scarlatti, D; Ferrari, E

    2017-02-01

    We report the case of an 82-year-old man presenting with ventricular fibrillation (VF) occurring acutely after atrioventricular node (AVN) ablation. This patient had severe valvular cardiomyopathy, chronic atrial fibrillation (AF), and underwent prior to the AVN ablation a biventricular implantable cardiac defibrillator positioning. The VF was successfully cardioverted with one external electrical shock. What makes this presentation original is that the pre-ablation spontaneous heart rate in AF was slow (84 bpm), and that VF occurred after ablation despite a minimal heart rate drop of only 14 bpm. VF is the most feared complication of AVN ablation, but it had previously only been described in case of acute heart rate drop after ablation of at least 30 bpm (and more frequently>50 bpm). This case report highlights the fact that VF may occur after AVN ablation regardless of the heart rate drop, rendering temporary fast ventricular pacing mandatory whatever the pre-ablation heart rate. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Improvement of the surface finish obtained by laser ablation with a Nd: YAG laser on pre-ablated tool steel

    CSIR Research Space (South Africa)

    Steyn, J

    2007-01-01

    Full Text Available . In recent years, these lasers have been used in other fields, such as laser ablation of small tools for plastics injection moulding. Laser ablation is a technology that is investigated as a method to improve the surface finish in tool steel. Different...

  7. Clinical effects of non-ablative and ablative fractional lasers on various hair disorders: a case series of 17 patients.

    Science.gov (United States)

    Cho, Suhyun; Choi, Min Ju; Zheng, Zhenlong; Goo, Boncheol; Kim, Do-Young; Cho, Sung Bin

    2013-04-01

    Both ablative and non-ablative fractional lasers have been applied to various uncommon hair disorders. The purpose of this study was to demonstrate the clinical effects of fractional laser therapy on the course of primary follicular and perifollicular pathologies and subsequent hair regrowth. A retrospective review of 17 patients with uncommon hair disorders - including ophiasis, autosomal recessive woolly hair/hypotrichosis, various secondary cicatricial alopecias, pubic hypotrichosis, frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens - was conducted. All patients had been treated with non-ablative and/or ablative fractional laser therapies. The mean clinical improvement score in these 17 patients was 2.2, while the mean patient satisfaction score was 2.5. Of the 17 subjects, 12 (70.6%) demonstrated a clinical response to non-ablative and/or ablative fractional laser treatments, including individuals with ophiasis, autosomal recessive woolly hair/hypotrichosis, secondary cicatricial alopecia (scleroderma and pressure-induced alopecia), frontal fibrosing alopecia, and perifolliculitis abscedens et suffodiens. Conversely, patients with long-standing ophiasis, surgical scar-induced secondary cicatricial alopecia, and pubic hypotrichosis did not respond to fractional laser therapy. Our findings demonstrate that the use of non-ablative and/or ablative fractional lasers promoted hair growth in certain cases of uncommon hair disorders without any remarkable side effects.

  8. Foreign assistance

    International Nuclear Information System (INIS)

    1991-07-01

    This paper reports that providing energy assistance to developing countries remains a relatively low priority of the Agency for International Development. AID is helping some developing countries meet their energy needs, but this assistance varies substantially because of the agency's decentralized structure. Most AID energy funding has gone to a handful of countries-primarily Egypt and Pakistan. With limited funding in most other countries, AID concentrates on providing technical expertise and promoting energy policy reforms that will encourage both energy efficiency and leverage investment by the private sector and other donors. Although a 1989 congressional directive to pursue a global warming initiative has had a marginal impact on the agency's energy programming, many AID energy programs, including those directed at energy conservation, help address global warming concerns

  9. Nonthermal ablation with microbubble-enhanced focused ultrasound close to the optic tract without affecting nerve function.

    Science.gov (United States)

    McDannold, Nathan; Zhang, Yong-Zhi; Power, Chanikarn; Jolesz, Ferenc; Vykhodtseva, Natalia

    2013-11-01

    Tumors at the skull base are challenging for both resection and radiosurgery given the presence of critical adjacent structures, such as cranial nerves, blood vessels, and brainstem. Magnetic resonance imaging-guided thermal ablation via laser or other methods has been evaluated as a minimally invasive alternative to these techniques in the brain. Focused ultrasound (FUS) offers a noninvasive method of thermal ablation; however, skull heating limits currently available technology to ablation at regions distant from the skull bone. Here, the authors evaluated a method that circumvents this problem by combining the FUS exposures with injected microbubble-based ultrasound contrast agent. These microbubbles concentrate the ultrasound-induced effects on the vasculature, enabling an ablation method that does not cause significant heating of the brain or skull. In 29 rats, a 525-kHz FUS transducer was used to ablate tissue structures at the skull base that were centered on or adjacent to the optic tract or chiasm. Low-intensity, low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes after intravenous injection of an ultrasound contrast agent (Definity, Lantheus Medical Imaging Inc.). Using histological analysis and visual evoked potential (VEP) measurements, the authors determined whether structural or functional damage was induced in the optic tract or chiasm. Overall, while the sonications produced a well-defined lesion in the gray matter targets, the adjacent tract and chiasm had comparatively little or no damage. No significant changes (p > 0.05) were found in the magnitude or latency of the VEP recordings, either immediately after sonication or at later times up to 4 weeks after sonication, and no delayed effects were evident in the histological features of the optic nerve and retina. This technique, which selectively targets the intravascular microbubbles, appears to be a promising method of noninvasively producing sharply demarcated lesions in

  10. Efficacy and Safety of Radiofrequency Ablation for Focal Hepatic Lesions Adjacent to Gallbladder: Reconfiguration of the Ablation Zone through Probe Relocation and Ablation Time Reduction.

    Science.gov (United States)

    Choi, In Young; Kim, Pyo Nyun; Lee, Sung Gu; Won, Hyung Jin; Shin, Yong Moon

    2017-10-01

    To evaluate the safety and efficacy of radiofrequency (RF) ablation for treatment of focal hepatic lesions adjacent to the gallbladder with electrode relocation and ablation time reduction. Thirty-nine patients who underwent RF ablation for focal hepatic lesions adjacent to the gallbladder (≤ 10 mm) were evaluated retrospectively from January 2011 to December 2014 (30 men and 9 women; age range, 51-85 y; mean age, 65 y). Of 36 patients with hepatocellular carcinoma, 3 had a second treatment for recurrence (mean tumor size, 15 mm ± 6). Patients were divided into 2 subgroups based on lesion distance from the gallbladder: nonabutting (> 5 mm; n = 19) and abutting (≤ 5 mm; n = 20). Electrodes were inserted parallel to the gallbladder through the center of a tumor in the nonabutting group and through the center of the expected ablation zone between a 5-mm safety zone on the liver side and the gallbladder in the abutting group. Ablation time was decreased in proportion to the transverse diameter of the expected ablation zone. Technical success and technical effectiveness rates were 89.7% and 97.4%, respectively, with no significant differences between groups (P = 1.00). Local tumor progression was observed in 3 patients (1 in the nonabutting group and 2 in the abutting group; P = 1.00). There were no major complications. The gallbladder was thickened in 10 patients, with no significant difference between groups (P = .72). Biloma occurred in 1 patient in the nonabutting group. RF ablation with electrode relocation and reduction of ablation time can be a safe and effective treatment for focal hepatic lesions adjacent to the gallbladder. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  11. Percutaneous Renal Tumor Ablation: Radiation Exposure During Cryoablation and Radiofrequency Ablation

    Energy Technology Data Exchange (ETDEWEB)

    McEachen, James C., E-mail: james.mceachen2@gmail.com [Mayo Clinic, Division of Preventive, Occupational, and Aerospace Medicine (United States); Leng, Shuai; Atwell, Thomas D. [Mayo Clinic, Department of Radiology (United States); Tollefson, Matthew K. [Mayo Clinic, Department of Urology (United States); Friese, Jeremy L. [Mayo Clinic, Department of Radiology (United States); Wang, Zhen; Murad, M. Hassan [Mayo Clinic, Division of Preventive, Occupational, and Aerospace Medicine (United States); Schmit, Grant D. [Mayo Clinic, Department of Radiology (United States)

    2016-02-15

    IntroductionOnce reserved solely for non-surgical cases, percutaneous ablation is becoming an increasingly popular treatment option for a wider array of patients with small renal masses and the radiation risk needs to be better defined as this transition continues.Materials and MethodsRetrospective review of our renal tumor ablation database revealed 425 patients who underwent percutaneous ablation for treatment of 455 renal tumors over a 5-year time period. Imparted radiation dose information was reviewed for each procedure and converted to effective patient dose and skin dose using established techniques. Statistical analysis was performed with each ablative technique.ResultsFor the 331 cryoablation procedures, the mean DLP was 6987 mGycm (SD = 2861) resulting in a mean effective dose of 104.7 mSv (SD = 43.5) and the mean CTDI{sub vol} was 558 mGy (SD = 439) resulting in a mean skin dose of 563.2 mGy (SD = 344.1). For the 124 RFA procedures, the mean DLP was 3485 mGycm (SD = 1630) resulting in a mean effective dose of 50.3 mSv (SD = 24.0) and the mean CTDI{sub vol} was 232 mGy (SD = 149) resulting in a mean skin dose of 233.2 mGy (SD = 117.4). The difference in patient radiation exposure between the two renal ablation techniques was statistically significant (p < 0.001).ConclusionBoth cryoablation and RFA imparted an average skin dose that was well below the 2 Gy deterministic threshold for appreciable sequela. Renal tumor cryoablation resulted in a mean skin and effective radiation dose more than twice that for RFA. The radiation exposure for both renal tumor ablation techniques was at the high end of the medical imaging radiation dose spectrum.

  12. Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy

    DEFF Research Database (Denmark)

    Banzhaf, Christina A.; Wind, Bas S.; Mogensen, Mette

    2016-01-01

    Background and Objective Optical coherence tomography (OCT) and reflectance confocal microscopy (RCM) offer high-resolution optical imaging of the skin, which may provide benefit in the context of laser-assisted drug delivery. We aimed to characterize postoperative healing of ablative fractional...... laser (AFXL)-induced channels and dynamics in their spatiotemporal closure using in vivo OCT and RCM techniques. Study design/Materials and Methods The inner forearm of healthy subjects (n = 6) was exposed to 10,600 nm fractional CO2 laser using 5 and 25% densities, 120 μm beam diameter, 5, 15, and 25 m......J/microbeam. Treatment sites were scanned with OCT to evaluate closure of AFXL-channels and RCM to evaluate subsequent re-epithelialization. Results OCT and RCM identified laser channels in epidermis and upper dermis as black, ablated tissue defects surrounded by characteristic hyper-and hyporeflective zones. OCT imaged...

  13. Radiofrequency catheter ablation of idiopathic ventricular arrhythmias originating from intramural foci in the left ventricular outflow tract: efficacy of sequential versus simultaneous unipolar catheter ablation.

    Science.gov (United States)

    Yamada, Takumi; Maddox, William R; McElderry, H Thomas; Doppalapudi, Harish; Plumb, Vance J; Kay, G Neal

    2015-04-01

    Idiopathic ventricular arrhythmias (VAs) originating from the left ventricular outflow tract (LVOT) sometimes require catheter ablation from the endocardial and epicardial sides for their elimination, suggesting the presence of intramural VA foci. This study investigated the efficacy of sequential and simultaneous unipolar radiofrequency catheter ablation from the endocardial and epicardial sides in treating intramural LVOT VAs. Fourteen consecutive LVOT VAs, which required sequential or simultaneous irrigated unipolar radiofrequency ablation from the endocardial and epicardial sides for their elimination, were studied. The first ablation was performed at the site with the earliest local ventricular activation and best pace map on the endocardial or epicardial side. When the first ablation was unsuccessful, the second ablation was delivered on the other surface. If this sequential unipolar ablation failed, simultaneous unipolar ablation from both sides was performed. The first ablation was performed on the epicardial side in 9 VAs and endocardial side in 5 VAs. The intramural LVOT VAs were successfully eliminated by the sequential (n=9) or simultaneous (n=5) unipolar catheter ablation. Simultaneous ablation was most likely to be required for the elimination of the VAs when the distance between the endocardial and epicardial ablation sites was >8 mm and the earliest local ventricular activation time relative to the QRS onset during the VAs of sequential unipolar radiofrequency ablation and sometimes required simultaneous ablation from both the endocardial and epicardial sides. © 2015 American Heart Association, Inc.

  14. Narrow dibaryon resonances

    International Nuclear Information System (INIS)

    Kajdalov, A.B.

    1986-01-01

    Experimental data on np interactions indicating to existence of narrow resonances in pp-system are discussed. Possible theoretical interpretations of these resonances are given. Experimental characteristics of the dibaryon resonances with isospin I=2 are considered

  15. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...

  16. Near-real-time feedback control system for liver thermal ablations based on self-referenced temperature imaging

    International Nuclear Information System (INIS)

    Keserci, Bilgin M.; Kokuryo, Daisuke; Suzuki, Kyohei; Kumamoto, Etsuko; Okada, Atsuya; Khankan, Azzam A.; Kuroda, Kagayaki

    2006-01-01

    Our challenge was to design and implement a dedicated temperature imaging feedback control system to guide and assist in a thermal liver ablation procedure in a double-donut 0.5T open MR scanner. This system has near-real-time feedback capability based on a newly developed 'self-referenced' temperature imaging method using 'moving-slab' and complex-field-fitting techniques. Two phantom validation studies and one ex vivo experiment were performed to compare the newly developed self-referenced method with the conventional subtraction method and evaluate the ability of the feedback control system in the same MR scanner. The near-real-time feedback system was achieved by integrating the following primary functions: (1) imaging of the moving organ temperature; (2) on-line needle tip tracking; (3) automatic turn-on/off the heating devices; (4) a Windows operating system-based novel user-interfaces. In the first part of the validation studies, microwave heating was applied in an agar phantom using a fast spoiled gradient recalled echo in a steady state sequence. In the second part of the validation and ex vivo study, target visualization, treatment planning and monitoring, and temperature and thermal dose visualization with the graphical user interface of the thermal ablation software were demonstrated. Furthermore, MR imaging with the 'self-referenced' temperature imaging method has the ability to localize the hot spot in the heated region and measure temperature elevation during the experiment. In conclusion, we have demonstrated an interactively controllable feedback control system that offers a new method for the guidance of liver thermal ablation procedures, as well as improving the ability to assist ablation procedures in an open MR scanner

  17. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  18. Pacemaker implantation after catheter ablation for atrial fibrillation.

    Science.gov (United States)

    Deshmukh, Abhishek J; Yao, Xiaoxi; Schilz, Stephanie; Van Houten, Holly; Sangaralingham, Lindsey R; Asirvatham, Samuel J; Friedman, Paul A; Packer, Douglas L; Noseworthy, Peter A

    2016-01-01

    Sinus node dysfunction requiring pacemaker implantation is commonly associated with atrial fibrillation (AF), but may not be clinically apparent until restoration of sinus rhythm with ablation or cardioversion. We sought to determine frequency, time course, and predictors for pacemaker implantation after catheter ablation, and to compare the overall rates to a matched cardioversion cohort. We conducted a retrospective analysis using a large US commercial insurance database and identified 12,158 AF patients who underwent catheter ablation between January 1, 2005 and December 31, 2012. Over an average of 2.4 years of follow-up, 5.6 % of the patients underwent pacemaker implantation. Using the Cox proportional hazards models, we found that risk of risks of pacemaker implantation was associated with older age (50-64 and ≥65 versus pacemaker implantation between ablation patients and propensity score (PS)-matched cardioversion groups (3.5 versus. 4.1 % at 1 year and 8.8 versus 8.3 % at 5 years). Overall, pacemaker implantation occurs in about 1/28 patients within 1 year of catheter ablation. The overall implantation rate decreased between 2005 and 2012. Furthermore, the risk after ablation is similar to cardioversion, suggesting that patients require pacing due to a common underlying electrophysiologic substrate, rather than the ablation itself.

  19. Laser ablation of tumors: current concepts and recent developments

    International Nuclear Information System (INIS)

    Stroszczynski, C.; Gaffke, G.; Gnauck, M.; Ricke, J.; Felix, R.; Puls, R.; Speck, U.; Hosten, N.; Oettle, H.; Hohenberger, P.

    2004-01-01

    Purpose. The purpose of this paper is to present technical innovations and clinical results of percutaneous interventional laser ablation of tumors using new techniques. Methods. Laser ablation was performed in 182 patients (liver tumors: 131, non hepatic tumors - bone, lung, others: 51) after interdisciplinary consensus was obtained. The procedure was done using a combination of imaging modalities (CT/MRI, CT/US) or only closed high field MRI (1.5 T). All patients received an MRI-scan immediately after laser ablation. Results. In 90.9% of the patients with liver tumors, a complete ablation was achieved. Major events occurred in 5.4%. The technical success rate of laser ablation in non-hepatic tumors was high, clinical results differed depending on the treated organ. Conclusions. The treatment of tumors of the liver and other organs up to 5 cm by laser ablation was a safe procedure with a low rate of complications and side effects. Image guidance by MRI is advantageous for precise tumor visualization in all dimensions, therapy monitoring, and control of laser ablation results. (orig.) [de

  20. New mitigation schemes of the ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Azechi, H.; Shiraga, H.; Nakai, M.; Shigemori, K.; Fujioka, S.; Sakaiya, T.; Tamari, Y.; Ohtani, K.; Watari, T.; Murakami, M.; Sunahara, A.; Nagatomo, H.; Nishihara, K.; Miyanaga, N.; Izawa, Y.; Ohnishi, N.

    2005-01-01

    The Rayleigh-Taylor (RT) instability with material ablation through the unstable interface is the key physics that determines success or failure of inertial fusion energy (IFE) generation, as the RT instability potentially quenches ignition and burn by disintegrating the IFE target. We present two suppression schemes of the RT growth without significant degradation of the target density. The first scheme is to generate double ablation structure in high-Z doped plastic targets. In addition to the electron ablation surface, a new ablation surface is created by x-ray radiation from the high-Z ions. Contrary to the previous thought, the electron ablation surface is almost completely stabilized by extremely high flow velocity. On the other hand, the RT instability on the radiative ablation surface is significantly moderated. The second is to enhance the nonlocal nature of the electron heat transport by illuminating the target with long wavelength laser light, whereas the high ablation pressure is generated by irradiating short wavelength laser light. The significant suppression of the RT instability may increase the possibility of impact ignition which uses a high velocity fuel colliding with a preformed main fuel. (author)

  1. Actual role of radiofrequency ablation of liver metastases

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Philippe L. [Eberhard-Karls-University of Tuebingen, Department of Diagnostic Radiology, Tuebingen (Germany)

    2007-08-15

    The liver is, second only to lymph nodes, the most common site for metastatic disease irrespective of the primary tumour. More than 50% of all patients with malignant diseases will develop liver metastases with a significant morbidity and mortality. Although the surgical resection leads to an improved survival in patients with colorectal metastases, only approximately 20% of patients are eligible for surgery. Thermal ablation and especially radiofrequency ablation emerge as an important additional therapy modality for the treatment of liver metastases. RF ablation shows a benefit in life expectancy and may lead in a selected patient group to cure. Percutaneous RF ablation appears safer (versus cryotherapy), easier (versus laser), and more effective (versus ethanol instillation and transarterial chemoembolisation) compared with other minimally invasive procedures. RF ablation can be performed by a percutaneous, laparoscopical or laparotomic approach, and may be potentially combined with chemotherapy and surgery. At present ideal candidates have tumours with a maximum diameter less than 3.5 cm. An untreatable primary tumour or a systemic disease represents contraindications for performing local therapies. Permanent technical improvements of thermal ablation devices and a better integration of thermal ablation in the overall patient care may lead to prognosis improvement in patients with liver metastases. (orig.)

  2. Actual role of radiofrequency ablation of liver metastases

    International Nuclear Information System (INIS)

    Pereira, Philippe L.

    2007-01-01

    The liver is, second only to lymph nodes, the most common site for metastatic disease irrespective of the primary tumour. More than 50% of all patients with malignant diseases will develop liver metastases with a significant morbidity and mortality. Although the surgical resection leads to an improved survival in patients with colorectal metastases, only approximately 20% of patients are eligible for surgery. Thermal ablation and especially radiofrequency ablation emerge as an important additional therapy modality for the treatment of liver metastases. RF ablation shows a benefit in life expectancy and may lead in a selected patient group to cure. Percutaneous RF ablation appears safer (versus cryotherapy), easier (versus laser), and more effective (versus ethanol instillation and transarterial chemoembolisation) compared with other minimally invasive procedures. RF ablation can be performed by a percutaneous, laparoscopical or laparotomic approach, and may be potentially combined with chemotherapy and surgery. At present ideal candidates have tumours with a maximum diameter less than 3.5 cm. An untreatable primary tumour or a systemic disease represents contraindications for performing local therapies. Permanent technical improvements of thermal ablation devices and a better integration of thermal ablation in the overall patient care may lead to prognosis improvement in patients with liver metastases. (orig.)

  3. Subtotal Ablation of Parietal Epithelial Cells Induces Crescent Formation

    Science.gov (United States)

    Sicking, Eva-Maria; Fuss, Astrid; Uhlig, Sandra; Jirak, Peggy; Dijkman, Henry; Wetzels, Jack; Engel, Daniel R.; Urzynicok, Torsten; Heidenreich, Stefan; Kriz, Wilhelm; Kurts, Christian; Ostendorf, Tammo; Floege, Jürgen; Smeets, Bart

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established an inducible transgenic mouse to allow subtotal ablation of PECs. Proteinuria developed during doxycycline-induced cellular ablation but fully reversed 26 days after termination of doxycycline administration. The ablation of PECs was focal, with only 30% of glomeruli exhibiting histologic changes; however, the number of PECs was reduced up to 90% within affected glomeruli. Ultrastructural analysis revealed disruption of PEC plasma membranes with cytoplasm shedding into Bowman’s space. Podocytes showed focal foot process effacement, which was the most likely cause for transient proteinuria. After >9 days of cellular ablation, the remaining PECs formed cellular extensions to cover the denuded Bowman’s capsule and expressed the activation marker CD44 de novo. The induced proliferation of PECs persisted throughout the observation period, resulting in the formation of typical cellular crescents with periglomerular infiltrate, albeit without accompanying proteinuria. In summary, subtotal ablation of PECs leads the remaining PECs to react with cellular activation and proliferation, which ultimately forms cellular crescents. PMID:22282596

  4. Neutral and plasma shielding model for pellet ablation

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Milora, S.L.; Attenberger, S.E.

    1987-10-01

    The neutral gas shielding model for ablation of frozen hydrogenic pellets is extended to include the effects of an initial Maxwelliam distribution of incident electron energies; a cold plasma shield outside the neutral shield and extended along the magnetic field; energetic neutral beam ions and alpha particles; and self-limiting electron ablation in the collisionless plasma limit. Including the full electron distribution increases ablation, but adding the cold ionized shield reduces ablation; the net effect is a modest reduction in pellet penetration compared with the monoenergetic electron neutral shielding model with no plasma shield. Unlike electrons, fast ions can enter the neutral shield directly without passing through the cold ionized shield because their gyro-orbits are typically larger than the diameter of the cold plasma tube. Fast alpha particles should not enhance the ablation rate unless their population exceeds that expected from local classical thermalization. Fast beam ions, however, may enhance ablation in the plasma periphery if their population is high enough. Self-limiting ablation in the collisionless limit leads to a temporary distortion of the original plasma electron Maxwellian distribution function through preferential depopulation of the higher-energy electrons. 23 refs., 9 figs

  5. Cartilage ablation studies using mid-IR free electron laser

    Science.gov (United States)

    Youn, Jong-In; Peavy, George M.; Venugopalan, Vasan

    2005-04-01

    The ablation rate of articular cartilage and fibrocartilage (meniscus), were quantified to examine wavelength and tissue-composition dependence of ablation efficiency for selected mid-infrared wavelengths. The wavelengths tested were 2.9 um (water dominant absorption), 6.1 (protein and water absorption) and 6.45 um (protein dominant absorption) generated by the Free Electron Laser (FEL) at Vanderbilt University. The measurement of tissue mass removal using a microbalance during laser ablation was conducted to determine the ablation rates of cartilage. The technique can be accurate over methods such as profilometer and histology sectioning where tissue surface and the crater morphology may be affected by tissue processing. The ablation efficiency was found to be dependent upon the wavelength. Both articular cartilage and meniscus (fibrocartilage) ablations at 6.1 um were more efficient than those at the other wavelengths evaluated. We observed the lowest ablation efficiency of both types of cartilage with the 6.45 um wavelength, possibly due to the reduction in water absorption at this wavelength in comparison to the other wavelengths that were evaluated.

  6. Percutaneous laser ablation of benign and malignant thyroid nodules.

    Science.gov (United States)

    Papini, Enrico; Bizzarri, Giancarlo; Pacella, Claudio M

    2008-10-01

    Percutaneous image-guided procedures, largely based on thermal ablation, are at present under investigation for achieving a nonsurgical targeted cytoreduction in benign and malignant thyroid lesions. In several uncontrolled clinical trials and in two randomized clinical trials, laser ablation has demonstrated a good efficacy and safety for the shrinkage of benign cold thyroid nodules. In hyperfunctioning nodules, laser ablation induced a nearly 50% volume reduction with a variable frequency of normalization of thyroid-stimulating hormone levels. Laser ablation has been tested for the palliative treatment of poorly differentiated thyroid carcinomas, local recurrences or distant metastases. Laser ablation therapy is indicated for the shrinkage of benign cold nodules in patients with local pressure symptoms who are at high surgical risk. The treatment should be performed only by well trained operators and after a careful cytological evaluation. Laser ablation does not seem to be consistently effective in the long-term control of hyperfunctioning thyroid nodules and is not an alternative treatment to 131I therapy. Laser ablation may be considered for the cytoreduction of tumor tissue prior to external radiation therapy or chemotherapy of local or distant recurrences of thyroid malignancy that are not amenable to surgical or radioiodine treatment.

  7. Resonances, resonance functions and spectral deformations

    International Nuclear Information System (INIS)

    Balslev, E.

    1984-01-01

    The present paper is aimed at an analysis of resonances and resonance states from a mathematical point of view. Resonances are characterized as singular points of the analytically continued Lippman-Schwinger equation, as complex eigenvalues of the Hamiltonian with a purely outgoing, exponentially growing eigenfunction, and as poles of the S-matrix. (orig./HSI)

  8. Efficacy and Safety of Atrial Fibrillation Ablation Using Remote Magnetic Navigation

    DEFF Research Database (Denmark)

    Jin, Q I; Pehrson, Steen; Jacobsen, Peter Karl

    2016-01-01

    .0 minutes, PerAF, P = 0.17). The overall complication rate was 0.6%. One PAF patient experienced cardiac tamponade. AF repeat ablations by RMN significantly reduced the procedural and ablation times when compared with their first ablation times. CONCLUSIONS: AF ablation guided by RMN is safe as evidenced...

  9. Characterisation of tissue shrinkage during microwave thermal ablation.

    Science.gov (United States)

    Farina, Laura; Weiss, Noam; Nissenbaum, Yitzhak; Cavagnaro, Marta; Lopresto, Vanni; Pinto, Rosanna; Tosoratti, Nevio; Amabile, Claudio; Cassarino, Simone; Goldberg, S Nahum

    2014-11-01

    The aim of this study was to characterise changes in tissue volume during image-guided microwave ablation in order to arrive at a more precise determination of the true ablation zone. The effect of power (20-80 W) and time (1-10 min) on microwave-induced tissue contraction was experimentally evaluated in various-sized cubes of ex vivo liver (10-40 mm ± 2 mm) and muscle (20 and 40 mm ± 2 mm) embedded in agar phantoms (N = 119). Post-ablation linear and volumetric dimensions of the tissue cubes were measured and compared with pre-ablation dimensions. Subsequently, the process of tissue contraction was investigated dynamically during the ablation procedure through real-time X-ray CT scanning. Overall, substantial shrinkage of 52-74% of initial tissue volume was noted. The shrinkage was non-uniform over time and space, with observed asymmetry favouring the radial (23-43 % range) over the longitudinal (21-29%) direction. Algorithmic relationships for the shrinkage as a function of time were demonstrated. Furthermore, the smallest cubes showed more substantial and faster contraction (28-40% after 1 min), with more considerable volumetric shrinkage (>10%) in muscle than in liver tissue. Additionally, CT imaging demonstrated initial expansion of the tissue volume, lasting in some cases up to 3 min during the microwave ablation procedure, prior to the contraction phenomenon. In addition to an asymmetric substantial shrinkage of the ablated tissue volume, an initial expansion phenomenon occurs during MW ablation. Thus, complex modifications of the tissue close to a radiating antenna will likely need to be taken into account for future methods of real-time ablation monitoring.

  10. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    Science.gov (United States)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  11. Emerging indications of endoscopic radiofrequency ablation

    Science.gov (United States)

    Becq, Aymeric; Camus, Marine; Rahmi, Gabriel; de Parades, Vincent; Marteau, Philippe

    2015-01-01

    Introduction Radiofrequency ablation (RFA) is a well-validated treatment of dysplastic Barrett's esophagus. Other indications of endoscopic RFA are under evaluation. Results Four prospective studies (total 69 patients) have shown that RFA achieved complete remission of early esophageal squamous intra-epithelial neoplasia at a rate of 80%, but with a substantial risk of stricture. In the setting of gastric antral vascular ectasia, two prospective monocenter studies, and a retrospective multicenter study, (total 51 patients), suggest that RFA is efficacious in terms of reducing transfusion dependency. In the setting of chronic hemorrhagic radiation proctopathy, a prospective monocenter study and a retrospective multicenter study (total 56 patients) suggest that RFA is an efficient treatment. A retrospective comparative study (64 patients) suggests that RFA improves stents patency in malignant biliary strictures. Conclusions Endoscopic RFA is an upcoming treatment modality in early esophageal squamous intra-epithelial neoplasia, as well as in gastric, rectal, and biliary diseases. PMID:26279839

  12. Ultraviolet-laser ablation of skin

    Energy Technology Data Exchange (ETDEWEB)

    Lane, R.J.; Linsker, R.; Wynne, J.J.; Torres, A.; Geronemus, R.G.

    1985-05-01

    The authors report on the use of pulsed ultraviolet-laser irradiation at 193 nm from an argon-fluoride laser and at 248 nm from a krypton-fluoride laser to ablate skin. In vitro, both wavelengths performed comparably, removing tissue precisely and cleanly, and leaving minimal thermal damage to the surrounding tissue. In vivo, the 193-nm laser radiation failed to remove tissue after bleeding began. The 248-nm radiation, however, continued to remove tissue despite bleeding and left a clean incision with only minimal thermal damage. The krypton-fluoride excimer laser beam at 248 nm, which should be deliverable through a quartz optical fiber, has great potential as a surgical instrument.